WO2019127921A1 - 一种用于多肽液相合成载体的化合物及其制备方法和用途 - Google Patents

一种用于多肽液相合成载体的化合物及其制备方法和用途 Download PDF

Info

Publication number
WO2019127921A1
WO2019127921A1 PCT/CN2018/079288 CN2018079288W WO2019127921A1 WO 2019127921 A1 WO2019127921 A1 WO 2019127921A1 CN 2018079288 W CN2018079288 W CN 2018079288W WO 2019127921 A1 WO2019127921 A1 WO 2019127921A1
Authority
WO
WIPO (PCT)
Prior art keywords
fmoc
compound
reaction
otbu
group
Prior art date
Application number
PCT/CN2018/079288
Other languages
English (en)
French (fr)
Inventor
熊战魁
陈新亮
宓鹏程
陶安进
袁建成
Original Assignee
深圳翰宇药业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳翰宇药业股份有限公司 filed Critical 深圳翰宇药业股份有限公司
Publication of WO2019127921A1 publication Critical patent/WO2019127921A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/62Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with more than three condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/26Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing at least one six-membered aromatic ring
    • C07C211/27Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing at least one six-membered aromatic ring having amino groups linked to the six-membered aromatic ring by saturated carbon chains
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/02Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions involving the formation of amino groups from compounds containing hydroxy groups or etherified or esterified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/54Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
    • C07C217/56Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton with amino groups linked to the six-membered aromatic ring, or to the condensed ring system containing that ring, by carbon chains not further substituted by singly-bound oxygen atoms
    • C07C217/58Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton with amino groups linked to the six-membered aromatic ring, or to the condensed ring system containing that ring, by carbon chains not further substituted by singly-bound oxygen atoms with amino groups and the six-membered aromatic ring, or the condensed ring system containing that ring, bound to the same carbon atom of the carbon chain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C23/00Compounds containing at least one halogen atom bound to a ring other than a six-membered aromatic ring
    • C07C23/18Polycyclic halogenated hydrocarbons
    • C07C23/20Polycyclic halogenated hydrocarbons with condensed rings none of which is aromatic
    • C07C23/36Halogenated completely or partially hydrogenated naphthalenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C269/00Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C269/04Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups from amines with formation of carbamate groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/08Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
    • C07C271/10Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/16Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/16Preparation of ethers by reaction of esters of mineral or organic acids with hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/21Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing rings other than six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/235Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring and to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C43/253Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring and to a carbon atom of a ring other than a six-membered aromatic ring containing hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J61/00Steroids in which the cyclopenta(a)hydrophenanthrene skeleton has been modified by contraction of only one ring by one or two atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/02General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length in solution
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/06General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/06General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents
    • C07K1/061General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using protecting groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/57581Thymosin; Related peptides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the invention relates to the field of polypeptide synthesis, in particular to a compound for liquid phase synthesis of a polypeptide, a preparation method thereof and use thereof.
  • the method of solid phase synthesis can avoid the cumbersome separation and purification steps, and has obvious advantages compared with the liquid phase method: (1) during the synthesis of the polypeptide, the peptide chain is attached to the insoluble carrier, so the product peptide is also insoluble. Easy to wash and easy to filter; (2) excess reaction can be added to the reaction to complete the reaction, while excess reagents and by-products can be removed by washing and filtration; (3) the whole reaction is carried out in the same container, avoiding the liquid The mechanical loss caused by multiple precipitation, washing and separation in phase synthesis is simple and quick to operate; (4) The operation has strong repeatability and is beneficial to the automation of peptide synthesis reaction. At present, peptide synthesis is mostly carried out by solid phase synthesis.
  • solid phase synthesis requires the use of a solid phase carrier resin.
  • the main solid phase carrier resins are: polystyrene-divinylbenzene cross-linking resin; polyamide resin; polyethylene-ethylene glycol resin.
  • the solid phase synthesis of peptides cannot effectively separate the intermediate reaction steps and effectively separate the impurities generated in the process, resulting in complex impurity components in the final product, which is difficult to separate and purify. Due to the use of solid phase carrier, the synthesis scale is replaced by resin.
  • the degree of synthesis such as the degree of resin, resin particle size, mechanical properties, etc., is generally significantly smaller than the liquid phase method.
  • Commonly used solid phase synthetic resins are usually coupled with a linker to facilitate the coupling of amino acids. Among them, common linker-resins include wang resin, amino resin and trityl chloride resin.
  • a class of fused ring compounds can also be used as a liquid carrier for polypeptides for liquid phase synthesis of polypeptides.
  • one aspect of the invention provides a cyclic ketone compound as a liquid carrier for a polypeptide, the structure of which is as shown in Formula I or II:
  • X is selected from the group consisting of H, F, Cl, Br, I or a group having a hydroxyl group, an amino group, a carboxyl group, or a halogen.
  • the X is selected from the group consisting of H, F, Cl, Br, I,
  • the compound of formula I is preferably
  • the compound of formula II is preferably
  • Another aspect of the invention provides a liquid phase synthetic carrier having the structural formula described above in Formula I or II.
  • Another aspect of the present invention provides a method for preparing a liquid phase synthetic carrier according to the present invention, which comprises the steps of:
  • the method for preparing a compound of formula I comprises the following steps:
  • compound 1a is coupled with a functional functional group to provide a liquid phase synthesis support.
  • step 1) is compound 1 Or compound 2 Reflow reaction under the action of reducing agent to completely obtain 1a
  • the reducing agent is selected from the group consisting of sodium borohydride, lithium aluminum hydride, borane.
  • step 2) includes the following steps:
  • step 2-1) is carried out under the conditions of N-bromosuccinimide or benzoyl peroxide to obtain a halogenated product;
  • Step 2-2) Step 2-1) The obtained halogenated product and compound 5 Coupling of one of methylol phenol, p-hydroxyethyl phenol, p-hydroxypropyl phenol, p-hydroxybutyl phenol, p-hydroxypentyl phenol or p-hydroxyhexyl phenol under basic conditions.
  • the basic conditions are under potassium carbonate and DMF conditions.
  • the method for preparing a compound of formula II includes the following steps:
  • compound 3a is coupled with a functional functional group to provide a liquid phase synthesis support.
  • the compound 3 is subjected to a reflux reaction under the action of a reducing agent to completely obtain 3a.
  • a reducing agent is selected from the group consisting of sodium borohydride, lithium aluminum hydride, borane.
  • step 2) includes the following steps:
  • step 2-1) is carried out under the conditions of N-bromosuccinimide or benzoyl peroxide to obtain a halogenated product;
  • Step 2-2) Step 2-1)
  • the obtained halogenated product is compound with compound 5, p-hydroxymethylphenol, p-hydroxyethylphenol, p-hydroxypropylphenol, p-hydroxybutylphenol, p-hydroxypentylphenol or p-hydroxyl
  • One of the hexylphenols is coupled under basic conditions.
  • the basic conditions are under potassium carbonate and DMF conditions.
  • Another aspect of the invention provides the use of a compound of formula I or formula II as a liquid phase synthetic carrier.
  • a method for synthesizing a polypeptide wherein a compound represented by Formula I or Formula II is used as a liquid phase synthesis carrier, and an amino acid is sequentially coupled to a functional group of the compound of Formula I or Formula II.
  • the amino acid is coupled by activating a carboxyl component with a condensing agent, and condensing with an amino component under basic conditions, removing an amino protecting group, and continuing to couple the next amino acid.
  • the peptide is cleaved to synthesize the carrier until the polypeptide is completed.
  • the condensing agent is selected from one or more of EDCI, EDC, DCC, DIC, HATU, HBTU, HOAt, HOBt, PyAOP, PyBOP.
  • the basic condition is provided by one or more of DIEA, NMM, TEA, pyridine, DBU, N-methylmorpholine, trimethylpyridine or lutidine.
  • the amino protecting group removal conditions are removed under basic conditions, and the amino protecting group is preferably removed with diethylamine and DBU.
  • the amino protecting group is selected from the group consisting of Fmoc or Boc.
  • the compound of the formula A has one or more functional groups of an amino group, a carboxyl group, a hydroxyl group, and a halogen.
  • a novel method for synthesizing thymus which comprises a compound represented by Formula I or Formula II as a liquid phase synthesis carrier, coupled with Fmoc-Asn(Trt)1-OH, and an amino-protecting group.
  • Fmoc-Glu(OtBu)-OH, Fmoc-Ala-OH, Fmoc-Glu(OtBu)-OH, Fmoc-Glu(OtBu)-OH, Fmoc-Val-OH, Fmoc-Val-OH were sequentially coupled.
  • the liquid carrier is used for peptide synthesis, and the operation is simpler than conventional liquid phase synthesis;
  • the liquid carrier is used for peptide synthesis, and the synthesis scale is larger than the traditional solid phase synthesis;
  • the carrier utilization rate is high, and the molecular weight of the liquid carrier reported in Org. Lett. 17 (2015) 4264-4267) and Tetrahedron 67 (2011) 6633-6643 is 832, and only one peptide chain can be synthesized;
  • the obtained amino acid phase carrier has a molecular weight of 1234, and four peptide chains can be synthesized, and the average molecular weight of one peptide chain is 306.
  • Figure 1 is a mass spectrum of Compound 1, M + Na + .
  • Figure 3 is a mass spectrum of Compound 3.
  • Figure 5 is a new mass spectrum of thymus.
  • Figure 6 is a new HPLC chromatogram of thymus.
  • Fig. 7 is a mass spectrum of Wang resin type carrier 2.
  • Fig. 8 is a mass spectrum of the amino type resin carrier 1.
  • reaction solution was cooled to 10 ° C or less in an ice bath. 1 mol/L of dilute hydrochloric acid (100 mL) was slowly added dropwise under the conditions of thorough stirring. After the dropwise addition, the THF was concentrated under reduced pressure, and purified water (450 mL) was added to the remaining reaction mixture, and pH was adjusted with 1 mol/L diluted hydrochloric acid. To 5-7.
  • reaction solution was cooled to 10 ° C or less in an ice bath. 1 mol/L of dilute hydrochloric acid (100 mL) was slowly added dropwise under the conditions of thorough stirring. After the dropwise addition, the THF was concentrated under reduced pressure, and purified water (450 mL) was added to the remaining reaction mixture, and pH was adjusted with 1 mol/L diluted hydrochloric acid. To 5-7.
  • a white solid is an amino resin type carrier 1
  • the filter cake was washed twice with purified water (200 mL ⁇ 2), and the obtained filtrate was allowed to stand for separation and the organic phase was collected, and the organic phase was concentrated to dryness at 45 ° C.
  • the filter cake was combined with the concentrated residue and the mixture was stirred twice with methanol and acetonitrile (1:1, 200 mL). After filtration, the filter cake was vacuum dried at 45 ° C for 5 hours to obtain a white solid compound activated amino resin type carrier.
  • the white solid compound can be used directly for peptides.
  • the reaction mixture was concentrated under reduced pressure at 30 ° C to a viscous material, and acetonitrile (20 mL) was added to the viscous material and stirred for 30 minutes. Filter and filter cake twice with methanol (10 mL x 2). The filter cake was vacuum dried at 40 ° C for 2 hours to give an off-white solid, 29.7 g, yield 99%.
  • the filtrate was dried at 40 ° C to give a white solid (144.1 g, purity 90.2%, cleavage yield 99%).
  • the purified peptide was prepared by HPLC to obtain 101.8 g, the purity was 99.5% or more, the maximum single impurity was less than 0.1%, and the total yield was 54.1%.
  • the activated amino resin (resin obtained in Example 7) 2 (18.5 g, 15 mmol) was weighed into a 500 mL three-necked flask, and chloroform (200 was added to the reaction flask, followed by HOBt (9.8 g. 72 mmol), Fmoc-Asp-OtBu (29.6 g, 72 mmol), which was stirred and evaporated. EtOAc (13.9 g, EtOAc) The reaction was monitored.
  • reaction mixture was concentrated under reduced pressure to a viscous material at 30 ° C, and methanol (60 mL) was added to the viscous material, and the mixture was stirred for 2 hours, filtered, and the filter cake was methanol (20 mL ⁇ 3). Rinse three times. The filter cake was vacuum dried at 40 ° C for 5 hours to give compound A 51.6 g 97%)
  • the reaction mixture was concentrated under reduced pressure at 30 ° C to a viscous material, and acetonitrile (20 mL) was added to the viscous material and stirred for 30 minutes. Filter and filter cake twice with methanol (10 mL x 2). The filter cake was vacuum dried at 40 ° C for 2 hours to give an off-white solid, 38.6 g, yield 99%.
  • the filtrate was dried at 40 ° C to give a white solid (144.1 g, purity 90.2%, cleavage yield 99%).
  • the purified peptide was prepared by HPLC to obtain 108.3 g, the purity was 99.5% or more, the maximum single impurity was less than 0.1%, and the total yield was 59.6%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Endocrinology (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及一种用于多肽液相合成载体的化合物及其制备方法和用途,具体公开了作为多肽液相载体的环酮化合物,其结构如式I或II所示:其中,X选自H、F、Cl、Br、I或带有羟基、氨基、羧基、卤素的基团。

Description

一种用于多肽液相合成载体的化合物及其制备方法和用途 技术领域
本发明涉及多肽合成领域,具体涉及一种用于多肽液相合成载体的化合物及其制备方法和用途。
背景技术
多肽合成已经有100多年的历史了,现阶段主要有传统的固相合成方法和液相合成方法。这两类方法都具有不同的缺点。传统液相合成方法反应步骤多、分离方法困难、后处理繁琐,合成周期长等缺点;每次接肽以后都要进行分离纯化或结晶以除去未反应的原料或者反应的副产物,这种操作相当费时而且麻烦,并且由操作带来的损失也很大;为了克服这些缺点,Merrifield于1963年首先发展了固相多肽合成的方法。固相合成的方法可以避免繁琐的分离提纯的步骤,与液相的方法相比具有明显的优越性:(1)多肽合成过程中,肽链连接于不溶性载体上,因此产物肽也是不溶的,易洗涤易过滤;(2)反应中可以加入过量的反应物使反应趋于完全,而过量的试剂和副产物可以通过洗涤和过滤除去;(3)整个反应在同一容器中进行,避免了液相法合成中的多次沉淀、洗涤、分离造成的机械损失,操作简便快捷;(4)操作具有很强的重复性,有利于多肽合成反应的自动化。现阶段多肽合成多采用固相合成方法。但是固相合成需要使用固相载体树脂,目前主要的固相载体树脂有:聚苯乙烯一二乙烯苯交联树脂;聚酰胺树脂;聚乙烯一乙二醇类树脂等。固相法合成多肽由于无法对中间反应步骤进行有效监控、过程中产生的杂质进行有效分离,导致终产物中杂质成分复杂,分离纯化难度较大;由于使用到固相载体,合成规模受到树脂取代度等、树脂粒度、机械性能等因素影响,合成规模一般明显小于液相方法。常用的固相合成树脂通常偶联linker,以方便氨基酸的偶联,其中常见的linker-树脂有wang树脂,氨基树脂、三苯甲基氯树脂。
Figure PCTCN2018079288-appb-000001
近些年为了改进传统固相合成方法的缺点,科学家们发明了一类采用液相合成和固相载体相结合的方法进行多肽化合物合成。通过设计具有特定结构的液相载体,在液相中进行氨基酸偶联,结合固相合成和液相合成中间体纯化和后处理方法进行多肽合成。这类方法可以大大提高固相合成的生产规模和中间体的纯 度。实现多肽合成规模的放大,大大提高生产效率。(Tetrahedron 67(2011)6633-6643,Org.Lett.17(2015)4264-4267))。现有技术中已经报道过多种液相合成载体,其结构如下所示:
Figure PCTCN2018079288-appb-000002
由于目前传统的多肽合成方法都存在一些缺点,制约了多肽大规模的生产。现阶段多肽固相合成受合成规模限制,每批次合成规模一般小于1mmol。随着多肽药物的发展多肽需求量逐渐增大,大规模生产多肽成为行业发展的新趋势。发展新的多肽合成方法具有重要的产业化意义。
Figure PCTCN2018079288-appb-000003
发明内容
为了改进固相合成方法的缺点,发明人发现了一类稠环化合物也可以作为多肽液相载体,用于多肽液相合成。
Figure PCTCN2018079288-appb-000004
弯曲环酮的载体底物1 弯曲环酮的载体底物2 直线环酮的载体底物3
因此,本发明一个方面提供了一种作为多肽液相载体的环酮化合物,其结构如式I或II所示:
Figure PCTCN2018079288-appb-000005
其中,X选自H、F、Cl、Br、I或带有羟基、氨基、羧基、卤素的基团。
在本发明的技术方案中,所述X选自H、F、Cl、Br、I、
Figure PCTCN2018079288-appb-000006
在本发明的技术方案中,式I化合物优选为
Figure PCTCN2018079288-appb-000007
Figure PCTCN2018079288-appb-000008
Figure PCTCN2018079288-appb-000009
Figure PCTCN2018079288-appb-000010
在本发明的技术方案中,式II化合物优选为
Figure PCTCN2018079288-appb-000011
本发明另一个方面提供了一种液相合成载体,其具有如上式I或II所述的结构式。
本发明另一个方面提供了本发明所述的液相合成载体的制备方法,其包括如下步骤:
其中式I化合物制备方法包括以下步骤:
1)以化合物1
Figure PCTCN2018079288-appb-000012
或化合物2
Figure PCTCN2018079288-appb-000013
为起始原料进行氢化反应获化合物1a
Figure PCTCN2018079288-appb-000014
任选地,2)化合物1a与功能性官能团偶联得到液相合成载体。
在本发明的技术方案中,其中步骤1)为化合物1
Figure PCTCN2018079288-appb-000015
或化合物2
Figure PCTCN2018079288-appb-000016
在还原剂作用下进行回流反应至完全获得1a
Figure PCTCN2018079288-appb-000017
优选地,所述还原剂选自硼氢化钠、氢化铝锂、硼烷。
在本发明的技术方案中,其中步骤2)包括以下步骤:
2-1)进行卤代反应;
2-2)偶联功能性官能团;
其中步骤2-1)在N-溴代丁二酰亚胺、过氧化苯甲酰条件下进行反应获得卤代产物;
步骤2-2)步骤2-1)所得卤代产物与化合物5
Figure PCTCN2018079288-appb-000018
对羟甲基苯酚、对羟乙基苯酚、对羟丙基苯酚、对羟丁基苯酚、对羟戊基苯酚或对羟己基苯酚中的一种在碱性条件下进行偶联。优选地,所述碱性条件为在碳酸钾和DMF条件下。
其中式II化合物制备方法包括以下步骤:
1)以化合物3
Figure PCTCN2018079288-appb-000019
为起始原料进行氢化反应获化合物3a
Figure PCTCN2018079288-appb-000020
任选地,2)化合物3a与功能性官能团偶联得到液相合成载体。
在本发明的技术方案中,其中步骤1)为化合物3在还原剂作用下进行回流反应至完全获得3a。优选地,所述还原剂选自硼氢化钠、氢化铝锂、硼烷。
在本发明的技术方案中,其中步骤2)包括以下步骤:
2-1)进行卤代反应;
2-2)偶联功能性官能团;
其中步骤2-1)在N-溴代丁二酰亚胺、过氧化苯甲酰条件下进行反应获得卤代产物;
步骤2-2)步骤2-1)所得卤代产物与化合物5、对羟甲基苯酚、对羟乙基苯酚、对羟丙基苯酚、对羟丁基苯酚、对羟戊基苯酚或对羟己基苯酚中的一种在碱性条件下进行偶联。优选地,所述碱性条件为在碳酸钾和DMF条件下。
本发明另一个方面提供了式I或式II所示化合物作为液相合成载体的用途。
本发明再一个方面提供了式I或式II所示化合物用于在液相中合成多肽链的用途。
本发明再一个方面提供了一种多肽的合成方法,其以式I或式II所示化合物作为液相合成载体,在式I或式II所示化合物的官能团上依次偶联氨基酸。
在本发明的技术方案中,偶联氨基酸的方法为,以缩合剂剂活化羧基组分,并在碱性条件下与氨基组分进行缩合,脱除氨基保护基,并继续偶联下一氨基酸直至完成多肽,裂解液相合成载体。
在本发明的技术方案中,缩合剂选自EDCI、EDC、DCC、DIC、HATU、HBTU、HOAt、HOBt、PyAOP、PyBOP中的一种或多种。
在本发明的技术方案中,碱性条件由DIEA、NMM、TEA、吡啶、DBU、N-甲基吗啉、三甲基吡啶或二甲基吡啶中的一种或多种提供。
在本发明的技术方案中,氨基保护基脱除条件为碱性条件下脱除,优选以二乙胺和DBU脱除氨基保护基。
在本发明的技术方案中,氨基保护基选自Fmoc或Boc。
在本发明的技术方案中,裂解多肽和液相合成载体条件为TFA∶TIS∶H 2O的组合,优选为TFA∶TIS∶H 2O=95∶2.5∶2.5。
在本发明的技术方案中,式A所示化合物上具有氨基、羧基、羟基、卤素中的一种或多种官能团。
本发明再一个方面提供了一种胸腺法新的合成方法,其以式I或式II所示化合物作为液相合成载体,偶联Fmoc-Asn(Trt)1-OH、脱除氨基保护基、按此方法依次偶联Fmoc-Glu(OtBu)-OH、Fmoc-Ala-OH、Fmoc-Glu(OtBu)-OH、Fmoc-Glu(OtBu)-OH、Fmoc-Val-OH、Fmoc-Val-OH、Fmoc-Glu(OtBu)-OH、Fmoc-Lys(Boc)-OH、Fmoc-Lys(Boc)-OH、Fmoc-Lys(Boc)-OH、Fmoc-Glu(OtBu)-OH、Fmoc-Lys(Boc)-OH Fmoc-Leu-OH、Fmoc-Asp(OtBu)-OH、Fmoc-Lys(Boc)-OH、Fmoc-Thr(tBu)-OH、Fmoc-Thr(tBu)-OH、Fmoc-Ile-OH、Fmoc-Glu(OtBu)-OH、Fmoc-Ser(tBu)-OH、Fmoc-Ser(tBu)-OH、Fmoc-Thr(tBu)-OH、Fmoc-Asp(OtBu)-OH、Fmoc-Val-OH、Fmoc-Ala-OH、Fmoc-Ala-OH、Fmoc-Asp(OtBu)-OH、Ac-Ser(tBu)-OH脱除保 护基后,裂解液相合成载体,纯化得到胸腺法新。
Fmoc 9-芴甲氧羰基
CHCl 3 氯仿
tBu 叔丁基
OtBu 叔丁氧基
EDC.HCl 1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐
DCM 二氯甲烷
DBLK 20%六氢吡啶/DMF溶液
MsOH 三氟甲磺酸
HOBt 1-羟基苯并三唑
HPLC 高效液相色谱
DMF N,N-二甲基甲酰胺
Rt 室温
TFA 三氟乙酸
NaBH4 硼氢化钠
MeOH 甲醇
EtOH 乙醇
NaOH 氢氧化钠
Toulene 甲苯
DBU 1,8-二氮杂双环[5.4.0]十一碳-7-烯
DCM 二氯甲烷
Hac 醋酸
Fmoc-NH2 9-芴甲氧酰胺
有益效果
1.液相载体用于多肽合成,操作较传统液相合成简便;
2.液相载体用于多肽合成,合成规模大于传统的固相合成;
3.大大减少Fmoc氨基酸的投料量;
4.载体利用率高,Org.Lett.17(2015)4264-4267)和Tetrahedron 67(2011)6633-6643中报道的液相载体分子量为832,只能合成1条肽链;而本 发明提到的氨基液相载体化合分子量1234,可以合成4条肽链,平均合成1条肽链的分子量为306。
附图说明
图1为化合物1的质谱谱图,M+Na +
图2为Wang树脂型液相载体1的质谱谱图。
图3为化合物3的质谱谱图。
图4为氨基型树脂载体2的质谱图。
图5为胸腺法新的质谱谱图。
图6为胸腺法新HPLC谱图。
图7为Wang树脂型载体2质谱图。
图8为氨基型树脂载体1质谱图。
具体实施方式
实施例1 Wang树脂型液相载体1的合成
Figure PCTCN2018079288-appb-000021
1)称取化合物1
Figure PCTCN2018079288-appb-000022
(制备方法参见博士论文:非IPR富勒烯C36、C48、C60前体的有机合成及表征,2016.05.24公开,厦门大学图书馆)22.4g(100mmol)加入1L三口烧瓶内,然后向反应瓶中加入THF(300mL)和甲醇(150mL),搅拌均匀。将反应液升温至60℃后,缓慢加入硼氢化钠(13.3g,200mmol),加完后保持温度继续搅拌4小时。TLC(乙酸乙酯∶正己烷=1∶2,紫外灯显色)监控反应。原料消耗完后,将反应液冰浴冷却至10℃以下。在充分搅拌的条件 下,缓慢滴加1mol/L稀盐酸(100mL),滴加完后,减压浓缩除去THF,向剩余反应液加入纯化水(450mL),并用1mol/L稀盐酸调pH值至5-7。过滤,CH 2C 12萃取3遍(3×500mL),合并有机相,再依次加0.05mol/L HCl溶液洗(2×500ml),饱和NaHCO 3溶液洗涤2遍(2×500ml),饱和NaCl溶液洗1遍(1×500ml),最后用无水Na 2SO 4干燥。将有机相浓缩,采用二氯甲烷和石油醚混合溶剂重结晶得到白色化合物固体1a
Figure PCTCN2018079288-appb-000023
20.4g,收率98%。
2)将化合物1a
Figure PCTCN2018079288-appb-000024
20.4克(98mmol)、NBS(N-溴代丁二酰亚胺)83.4克(500mmol)、BPO(过氧化苯甲酰)7.4克(30mmol)和500ml四氯甲烷加入到1L的反应瓶中,加热回流反应,HPLC监控反应,原料反应完即可停止反应。待反应液回至室温后,过滤除去溶剂,用甲醇重结晶得到淡黄色固体化合物1b
Figure PCTCN2018079288-appb-000025
5.7克,收率89%。
3)取化合物1b
Figure PCTCN2018079288-appb-000026
45.7克(87mmol)和对羟甲基苯酚51.4克(400mmol)加入1L三口烧瓶内,然后向反应瓶中加入DMF(300mL),搅拌均匀,再加入碳酸钾55.2克(400mmol)。将反应液升温至80℃继续搅拌16小时。HPLC监控反应。原料消耗完后,将反应液冰浴冷却至10℃以下。在充分搅拌条件下,向反应液中缓慢滴加1mol/L稀盐酸(300mL),和纯化水(150mL),滴加完后继续搅拌半小时。过滤,滤饼依次用纯化水(100mL)和甲醇(100mL)冲洗。在60℃条件下真空干燥5小时,得到Wang树脂型液相载体1
Figure PCTCN2018079288-appb-000027
56.9克,收率95%。 实验结果参见图2质谱图。
实施例2 Wang树脂型液相载体1的合成方法2(由化合物2合成得到)
Figure PCTCN2018079288-appb-000028
1)称取化合物2
Figure PCTCN2018079288-appb-000029
(制备方法参考博士论文非IPR富勒烯C36、C48、C60前体的有机合成及表征,2016.5.24公开厦门大学图书馆)12.2g(54mmol)加入1L三口烧瓶内,然后向反应瓶中加入THF(200mL)和甲醇(100mL),搅拌均匀。将反应液升温至60℃后,缓慢加入硼氢化钠(4.6g,100mmol),加完后保持温度继续搅拌4小时。TLC(乙酸乙酯∶正己烷=1∶2,紫外灯显色)监控反应。原料消耗完后,将反应液冰浴冷却至10℃以下。在充分搅拌的条件下,缓慢滴加1mol/L稀盐酸(100mL),滴加完后,减压浓缩除去THF,向剩余反应液加入纯化水(450mL),并用1mol/L稀盐酸调pH值至5-7。过滤,CH 2C 12萃取3遍(3×200mL),合并有机相,再依次加0.05mol/LHCl溶液洗(2×200ml),饱和NaHCO 3溶液洗涤2遍(2×200ml),饱和NaCl溶液洗1遍(1×200ml),最后用无水Na 2SO 4干燥。将有机相浓缩,采用二氯甲烷和石油醚混合溶剂重结晶得到白色化合物固体1a 10.7g,收率95%。
2)将化合物1a 10.7克(51mmol)、NBS(N-溴代丁二酰亚胺)83.4克(500mmol)、BPO(过氧化苯甲酰)7.4克(30mmol)和500ml四氯甲烷加入到1L的反应瓶中,加热回流反应,HPLC监控反应,原料反应完即可停止反应。待反应液回至室温后,过滤除去溶剂,用甲醇重结晶得到淡黄色固体化合物1b 24.8克,收率93%。
3)取化合物1b 24.8克(47mmol)和对羟甲基苯酚51.4克(300mmol)加入1L三口烧瓶内,然后向反应瓶中加入DMF(300mL),搅拌均匀,再加入 碳酸钾41.8克(300mmol)。将反应液升温至80℃继续搅拌16小时。HPLC监控反应。原料消耗完后,将反应液冰浴冷却至10℃以下。在充分搅拌条件下,向反应液中缓慢滴加1mol/L稀盐酸(300mL),和纯化水(150mL),滴加完后继续搅拌半小时。过滤,滤饼依次用纯化水(100mL)和甲醇(100mL)冲洗。在60℃条件下真空干燥5小时,得到Wang树脂型液相载体1 31.4克,收率97%。实验结果与实施例1所得结果的质谱图相同,参见图2。
实施例3 Wang树脂型液相载体2的合成
Figure PCTCN2018079288-appb-000030
1)称取化合物
Figure PCTCN2018079288-appb-000031
22.4g(100mmol)加入1L三口烧瓶内,然后向反应瓶中加入THF(300mL)和甲醇(150mL),搅拌均匀。将反应液升温至60℃后,缓慢加入硼氢化钠(13.3g,250mmol),加完后保持温度继续搅拌4小时。TLC(乙酸乙酯∶正己烷=1∶2,紫外灯显色)监控反应。原料消耗完后,将反应液冰浴冷却至10℃以下。在充分搅拌的条件下,缓慢滴加1mol/L稀盐酸(100mL),滴加完后,减压浓缩除去THF,向剩余反应液加入纯化水(450mL),并用1mol/L稀盐酸调pH值至5-7。过滤,CH 2Cl 2萃取3遍(3×500mL),合并有机相,再依次加0.05mol/L HCl溶液洗(2×500ml),饱和NaHCO 3溶液洗涤2遍(2×500ml),饱和NaCl溶液洗1遍(1×500ml),最后用无水Na 2SO 4干燥。将有机相浓缩,采用二氯甲烷和石油醚混合溶剂重结晶得到白色化合物固体3a
Figure PCTCN2018079288-appb-000032
20.8g,收率99%。
2)将化合物3a
Figure PCTCN2018079288-appb-000033
20.8克(99mmol)、NBS(N-溴代丁二酰亚胺)83.4克(450mmol)、BPO(过氧化苯甲酰)7.4克(20mmol)和500ml四氯甲烷加入到1L的反应瓶中,加热回流反应,HPLC监控反应,原料反应完即可 停止反应。待反应液回至室温后,过滤除去溶剂,用甲醇重结晶得到淡黄色固体化合物
Figure PCTCN2018079288-appb-000034
43.1克,收率83%。
3)取化合物
Figure PCTCN2018079288-appb-000035
43.1克(83mmol)和对羟甲基苯酚63.8克(500mmol)加入1L三口烧瓶内,然后向反应瓶中加入DMF(300mL),搅拌均匀,再加入碳酸钾69.2克(500mmol)。将反应液升温至80℃继续搅拌16小时。HPLC监控反应。原料消耗完后,将反应液冰浴冷却至10℃以下。在充分搅拌条件下,向反应液中缓慢滴加1mol/L稀盐酸(300mL),和纯化水(150mL),滴加完后继续搅拌半小时。过滤,滤饼依次用纯化水(100mL)和甲醇(100mL)冲洗。在60℃条件下真空干燥5小时,得到Wang树脂型液相载体2
Figure PCTCN2018079288-appb-000036
53.7克,收率94%,实验结果质谱图参见图7。
实施例4氨基树脂型液相载体1的合成
Figure PCTCN2018079288-appb-000037
1)称取化合物1
Figure PCTCN2018079288-appb-000038
13.3g(60mmol)加入1L三口烧瓶内,然后向反应瓶中加入THF(150mL)和甲醇(150mL),搅拌均匀。将反应液升温至60℃后,缓慢加入硼氢化钠(11.9g,180mmol),加完后保持温度继续搅拌4小时。TLC(乙酸乙酯∶正己烷=1∶2,紫外灯显色)监控反应。原料消耗完后,将反应液冰浴冷却至10℃以下。在充分搅拌的条件下,缓慢滴加1mol/L稀盐酸(100mL),滴加完后,减压浓缩除去THF,向剩余反应液加入纯化水(450mL),并用1mol/L稀盐酸调pH值至5-7。过滤,CH 2C 12萃取3遍(3×300mL),合并有机相,再依次加0.05mol/L HCl溶液洗(2×300ml),饱和NaHCO 3溶液洗涤2遍(2×300ml),饱和NaCl溶液洗1遍(1×300ml),最后用无水Na 2SO 4干燥。将有机相浓缩,采用二氯甲烷和石油醚混合溶剂重结晶得到白色化合物固体1a
Figure PCTCN2018079288-appb-000039
11.9g,收率98%。
2)将化合物1a
Figure PCTCN2018079288-appb-000040
11.9克(58.8mmol)、NBS(N-溴代丁二酰亚胺)83.7克(470mmol)、BPO(过氧化苯甲酰)7.4克(30mmol)和500ml四氯甲烷加入到1L的反应瓶中,加热回流反应,HPLC监控反应,原料反应完即可停止反应。待反应液回至室温后,过滤除去溶剂,用甲醇重结晶得到淡黄色固体化合物1b
Figure PCTCN2018079288-appb-000041
28.7克,收率93%。
3)取化合物1b
Figure PCTCN2018079288-appb-000042
28.7克(54.7mmol)和化合物
Figure PCTCN2018079288-appb-000043
85.3克(330mmol)加入1L三口烧瓶内,然后向反应瓶中加入DMF(500mL),搅拌均匀,再加入碳酸钾45.5克(330mmol)。将反应液升温至80℃继续搅拌16小时。HPLC监控反应。原料消耗完后,将反应液冰浴冷却至10℃以下。在充分搅拌条件下,向反应液中缓慢滴加1mol/L稀盐酸(300mL),和纯化水(150mL),滴加完后继续搅拌半小时。过滤,滤饼依次用纯化水(100mL)和甲醇(100mL)冲洗。在60℃条件下真空干燥5小时,得到类白色化合物2a
Figure PCTCN2018079288-appb-000044
64.1克,收率95.0%。
4)称取化合物2a
Figure PCTCN2018079288-appb-000045
64.1g(51.9mmol)加入1L三口烧瓶内,然后向反应瓶中加入THF(300mL)和甲醇(150mL),搅拌均匀。将反应液升温至60℃后,缓慢加入硼氢化钠(17.4g,300mmol),加完后保持温度继续搅拌4小时。TLC(乙酸乙酯∶正己烷=1∶2,紫外灯显色)监控反应。原料消耗完后,将反应液冰浴冷却至10℃以下。在充分搅拌的条件下,缓慢滴加1mol/L稀盐酸(100mL),滴加完后,减压浓缩除去THF,向剩余反应液加入纯化水(450mL),并用1mol/L稀盐酸调pH值至5-7。过滤,滤饼依次用纯化水(100mL)和甲醇(100mL)冲洗。在60℃条件下真空干燥8小时,得到白色化合物固体63.9g,收率98%。
5)称取步骤4)得到化合物63.9(51.5mmol)加入1L三口烧瓶内,然后向反应瓶中加入甲苯(400mL),搅拌均匀,再依次加入甲烷磺酸(27.8克,300mmol)、Fmoc-NH 2(66.8克,300mmol)。将反应液升温至110℃继续搅拌3小时。将反应液冷却至室温,加入碳酸钠(31.8g,300mmol),然后旋蒸除去溶剂。向残余物中加入甲醇(400mL)和甲苯(100mL),升温至90℃,搅拌溶清。将反应液自然冷却至室温析晶。过滤。滤饼用甲醇和乙腈混合溶剂(1∶1,100mL)冲洗,50℃真空干燥5小时,得到白色固体化合物98.2g,收率90%。白色固体即为 氨基树脂型载体1
Figure PCTCN2018079288-appb-000046
实施例5氨基树脂型液相载体1的合成(以化合物2进行合成)
Figure PCTCN2018079288-appb-000047
与实施例4的方法相同,区别仅在于采用化合物2
Figure PCTCN2018079288-appb-000048
作为起始原料,称取化合物2
Figure PCTCN2018079288-appb-000049
12.2g(54mmol)加入1L三口烧瓶内,然后向反应瓶 中加入THF(200mL)和甲醇(100mL),搅拌均匀。将反应液升温至60℃后,缓慢加入硼氢化钠(4.6g,100mmol),加完后保持温度继续搅拌4小时。TLC(乙酸乙酯∶正己烷=1∶2,紫外灯显色)监控反应。原料消耗完后,将反应液冰浴冷却至10℃以下。在充分搅拌的条件下,缓慢滴加1mol/L稀盐酸(100mL),滴加完后,减压浓缩除去THF,向剩余反应液加入纯化水(450mL),并用1mol/L稀盐酸调pH值至5-7。过滤,CH 2C 12萃取3遍(3×200mL),合并有机相,再依次加0.05mol/L HCl溶液洗(2×200ml),饱和NaHCO 3溶液洗涤2遍(2×200ml),饱和NaCl溶液洗1遍(1×200ml),最后用无水Na 2SO 4干燥。将有机相浓缩,采用二氯甲烷和石油醚混合溶剂重结晶得到白色化合物固体1a
Figure PCTCN2018079288-appb-000050
10.7g,收率95%。
实施例6氨基树脂型液相载体2的合成
Figure PCTCN2018079288-appb-000051
1)称取化合物3
Figure PCTCN2018079288-appb-000052
9.2g(41mmol)加入1L三口烧瓶内,然后向反应瓶中加入THF(100mL)和甲醇(100mL),搅拌均匀。将反应液升温至60℃后,缓慢加入硼氢化钠(3.8g,100mmol),加完后保持温度继续搅拌4小时。TLC(乙酸乙酯∶正己烷=1∶2,紫外灯显色)监控反应。原料消耗完后,将反应液冰浴冷却至10℃以下。在充分搅拌的条件下,缓慢滴加1mol/L稀盐酸(100mL),滴加完后,减压浓缩除去THF,向剩余反应液加入纯化水(200mL),并用1mol/L稀盐酸调pH值至5-7。过滤,CH 2C 12萃取3遍(3×200mL),合并有机相,再依次加0.05mol/L HCl溶液洗(2×200ml),饱和NaHCO 3溶液洗涤2遍(2×200ml),饱和NaCl溶液洗1遍(1×200ml),最后用无水Na 2SO 4干燥。将有机相浓缩,采用二氯甲烷和石油醚混合溶剂重结晶得到白色化合物固体3a
Figure PCTCN2018079288-appb-000053
8.5g,收率99%。
2)将化合物3a
Figure PCTCN2018079288-appb-000054
8.5克(40.6mmol)、NBS(N-溴代丁二酰亚胺)56.9克(320mmol)、BPO(过氧化苯甲酰)2.4克(10mmol)和300ml四氯甲烷加入到500ml的反应瓶中,加热回流反应,HPLC监控反应,化合物3a反应完即可停止反应。待反应液回至室温后,过滤除去溶剂,用甲醇重结晶得到淡黄色固体化合物3b 19.4克,收率91%。
3)取化合物3b 19.4克(36.9mmol)和化合物
Figure PCTCN2018079288-appb-000055
51.6克(200mmol)加入1L三口烧瓶内,然后向反应瓶中加入DMF(500mL),搅拌均匀,再加入碳酸钾27.6克(200mmol)。将反应液升温至80℃继续搅拌16小时。HPLC监控反应。原料消耗完后,将反应液冰浴冷却至10℃以下。在充分搅拌条件下,向反应液中缓慢滴加1mol/L稀盐酸(200mL),和纯化水(500mL),滴加完后继续搅拌半小时。过滤,滤饼依次用纯化水(100mL)和甲醇(100mL)冲洗。在60℃条件下真空干燥5小时,得到类白色化合物 3c
Figure PCTCN2018079288-appb-000056
43.7克,收率96%。
4)称取化合物3c 43.6g(35.4mmol)加入1L三口烧瓶内,然后向反应瓶中加入THF(100mL)和甲醇(100mL),搅拌均匀。将反应液升温至60℃后,缓慢加入硼氢化钠(6.8g,180mmol),加完后保持温度继续搅拌4小时。TLC(乙酸乙酯∶正己烷=1∶2,紫外灯显色)监控反应。原料消耗完后,将反应液冰浴冷却至10℃以下。在充分搅拌的条件下,缓慢滴加1mol/L稀盐酸(100mL),滴加完后,减压浓缩除去THF,向剩余反应液加入纯化水(300mL),并用1mol/L稀盐酸调pH值至5-7。过滤,滤饼依次用纯化水(100mL)和甲醇(100mL)冲洗。在60℃条件下真空干燥8小时,得到白色化合物固体42.9g,收率98%。
5)称取步骤4)得到化合物42.9(34.7mmol)加入1L三口烧瓶内,然后向反应瓶中加入甲苯(200mL),搅拌均匀,再依次加入甲烷磺酸(18.6克,200mmol)、Fmoc-NH 2(44.6克,200mmol)。将反应液升温至110℃继续搅拌3小时。将反应液冷却至室温,加入碳酸钠(21.9g,200mmol),然后旋蒸除去溶剂。向残余物中加入甲醇(400mL)和甲苯(100mL),升温至90℃,搅拌溶清。将反应液自然冷却至室温析晶。过滤。滤饼用甲醇和乙腈混合溶剂(1∶1,100mL)冲洗,50℃真空干燥5小时,得到白色固体化合物68.5g,收率93%。白色固体即为氨基树脂型载体2
Figure PCTCN2018079288-appb-000057
质谱结果参见附图4.
实施例7氨基型树脂活化
称取氨基树脂型化合物2 68.5g(32.3mmol)加入1L三口烧瓶内,向反应 瓶中加入甲苯(200mL)和乙醇(200mL),搅拌均匀,再加入氢氧化钠(5.9g,150mmol)。将反应液升温至110℃继续搅拌16小时。向反应液中依次加水(300mL)、正己烷(200mL)乙酸乙酯(200mL),搅拌15分钟后,过滤。滤饼用纯化水(200mL×2)洗涤两次,得到的滤液静置分层后收集有机相,将有机相在45℃条件下浓缩至干。将滤饼与浓缩后残余物合并,用甲醇与乙腈混合溶剂(1∶1,200mL)打浆两次。过滤,滤饼在45℃条件下真空干燥5小时,得到白色固体化合物活化氨基树脂型载体
2
Figure PCTCN2018079288-appb-000058
39.1克,收率98%。白色固体化合物可以直接用于接肽。
实施例8Wang树脂型载体1用于合成多肽
Figure PCTCN2018079288-appb-000059
特定肽Ac-Ser-Asp-Ala-Ala-Val-Asp-Thr-Ser-Ser-Glu-Ile-Thr-Thr-Lys-Asp-Leu-Lys-Glu-Lys-Lys-Glu-Val-Val-Glu-Glu-Ala-Glu-Asn 1-COOH(胸腺法新肽序)的合成。
偶联第一个氨基酸(Fmoc-Asn(Trt) 1-OH)
称取Wang树脂型载体1(10.4g,15mmol)加入250mL三口烧瓶内,向反应瓶中加入氯仿(100mL),再依次加入HOBt(9.8g.72mmol)、Fmoc-Asn(Trt)-OH(43.1g,72mmol)、DMAP(0.9g.8mmol)。搅拌溶清。加入EDC·HCl(13.9g,72mmol),在室温条件下继续搅拌3小时。TLC (DCM∶MeOH∶HAc=100∶1∶0.5)监控反应。反应完全后,反应液在30℃条件下,减压浓缩至成粘稠物,向粘稠物中加入甲醇(60mL),搅拌2小时。过滤,滤饼用甲醇(20mL×3)冲洗三次。将滤饼在40℃条件下真空干燥5小时,得到化合物A 43.1g,收率95%)。
偶联第二个氨基酸(Fmoc-Glu 2(OtBu)-OH)
称取化合物A(43.1g,14.2mmol)加入100mL三口烧瓶内,向反应瓶中加入氯仿(50mL),搅拌溶清,再加入DBU(9.9g,65mmol)。将反应液冰浴冷却至5℃以下,缓慢滴加二乙胺(9.5g,130mmol),控温不超过5℃。滴加完后,将反应液升至室温继续搅拌2小时。TLC(DCM∶MeOH∶HAc=100∶1∶0.5)监控反应。反应完全后,将反应液在30℃条件下减压浓缩至成粘稠物,向粘稠物中加入乙腈(20mL),搅拌30分钟。过滤,滤饼用甲醇(10mL×2)冲洗两次。将滤饼在40℃条件下真空干燥2小时,得到类白色固体29.7克,收率99%。
将上述固体加入100mL三口烧瓶内,向反应瓶中加入氯仿(20mL),再依次加入HOBt(9.5g,70mmol)、Fmoc-Glu(OtBu)-OH(30.8g,70mmol)。搅拌溶清。将反应液冷却至0℃。加入EDC·HCl(19.2g,100mmol),在0-10℃条件下继续搅拌3小时。TLC(DCM∶MeOH∶HAc=100∶1∶0.5)监控反应。反应完全后,反应液在30℃减条件下,减压浓缩至成粘稠物,向粘稠物中加入甲醇(20mL),搅拌2小时。过滤,滤饼用甲醇(10mL×3)冲洗三次。将滤饼在40℃条件下真空干燥3小时,得到化合物B。
重复Fmoc-Glu(OtBu)-OH的偶联反应条件,按照肽序依次偶联完Fmoc-Ala-OH、Fmoc-Glu(OtBu)-OH、Fmoc-Glu(OtBu)-OH、Fmoc-Val-OH、Fmoc-Val-OH、Fmoc-Glu(OtBu)-OH、Fmoc-Lys(Boc)-OH、Fmoc-Lys(Boc)-OH、Fmoc-Lys(Boc)-OH、Fmoc-Glu(OtBu)-OH、Fmoc-Lys(Boc)-OH Fmoc-Leu-OH、Fmoc-Asp(OtBu)-OH、Fmoc-Lys(Boc)-OH、Fmoc-Thr(tBu)-OH、Fmoc-Thr(tBu)-OH、Fmoc-Ile-OH、Fmoc-Glu(OtBu)-OH、Fmoc-Ser(tBu)-OH、Fmoc-Ser(tBu)-OH、Fmoc-Thr(tBu)-OH、Fmoc-Asp(OtBu)-OH、Fmoc-Val-OH、Fmoc-Ala-OH、Fmoc-Ala-OH、Fmoc-Asp(OtBu)-OH、Ac-Ser(tBu)-OH得到连有肽的载体化合物P 238.7克,合成收率81%。
将上述的白色固体化合物P(238g)加入裂解液中(TFA∶EDT∶TIS∶H 2O= 91∶3∶3∶3,1000mL),室温搅拌2小时。然后将反应液缓慢倒入冰冻乙醚(5L)中,搅拌30分钟后,冰箱中静置1小时。离心,用乙醚(50mL×3)洗涤三次。得到的沉降物在30℃条件下干燥2小时,再用甲醇(10mL)打浆2小时,过滤,滤饼弃去,滤液40℃旋干后得到白色固体(144.1g,纯度90.2%,裂解收率99%)。经HPLC制备得到精肽101.8克,纯度99.5%以上,最大单杂小于0.1%,总收率54.1%。
实施例9氨基树脂型载体2用于合成多肽
Figure PCTCN2018079288-appb-000060
肽序Ac-Ser-Asp-Ala-Ala-Val-Asp-Thr-Ser-Ser-Glu-Ile-Thr-Thr-Lys-Asp-Leu-Lys-Glu-Lys-Lys-Glu-Val-Val-Glu-Glu-Ala-Glu-Asn1-COOH(胸腺法新肽序)的合成。
称取活化了的氨基树脂(实施例7中得到的树脂)2(18.5克,15mmol)加入到500mL三口烧瓶内,向反应瓶中加入氯仿(200,再依次加入HOBt(9.8g.72mmol)、Fmoc-Asp-OtBu(29.6g,72mmol)。搅拌溶清。加入EDC·HCl(13.9g,72mmol),在室温条件下继续搅拌3小时。TLC(DCM∶MeOH∶HAc=100∶1∶0.5)监控反应。反应完全后,反应液在30℃条件下,减压浓缩至成粘稠物,向粘稠物中加入甲醇(60mL),搅拌2小时。过滤,滤饼用甲醇(20mL×3)冲洗三次。将滤饼在40℃条件下真空干燥5小时,得到化合物A 51.6克97%)
偶联第二个氨基酸(Fmoc-Glu 2(OtBu)-OH)
称取化合物A(43.1g,14.5mmol)加入100mL三口烧瓶内,向反应瓶中加入氯仿(50mL),搅拌溶清,再加入DBU(10.2g,70mmol)。将反应液冰浴冷却至5℃以下,缓慢滴加二乙胺(9.5g,130mmol),控温不超过5℃。滴加完后,将反应液升至室温继续搅拌2小时。TLC(DCM∶MeOH∶HAc=100∶1∶0.5)监控反应。反应完全后,将反应液在30℃条件下减压浓缩至成粘稠物,向粘稠物中加入乙腈(20mL),搅拌30分钟。过滤,滤饼用甲醇(10mL×2)冲洗两次。将滤饼在40℃条件下真空干燥2小时,得到类白色固体38.6克,收率99%。
将上述固体加入100mL三口烧瓶内,向反应瓶中加入氯仿(20mL),再依次加入HOBt(9.5g,70mmol)、Fmoc-Glu(OtBu)-OH(30.8g,70mmol)。搅拌溶清。将反应液冷却至0℃。加入EDC·HCl(19.2g,100mmol),在0-10℃条件下继续搅拌3小时。TLC(DCM∶MeOH∶HAc=100∶1∶0.5)监控反应。反应完全后,反应液在30℃减条件下,减压浓缩至成粘稠物,向粘稠物中加入甲醇(20mL),搅拌2小时。过滤,滤饼用甲醇(10mL×3)冲洗三次。将滤饼在40℃条件下真空干燥3小时,得到化合物B。
重复Fmoc-Glu(OtBu)-OH的偶联反应条件,按照肽序依次偶联完Fmoc-Ala-OH、Fmoc-Glu(OtBu)-OH、Fmoc-Glu(OtBu)-OH、Fmoc-Val-OH、Fmoc-Val-OH、Fmoc-Glu(OtBu)-OH、Fmoc-Lys(Boc)-OH、、Fmoc-Lys(Boc)-OH、Fmoc-Lys(Boc)-OH、Fmoc-Glu(OtBu)-OH、、Fmoc-Lys(Boc)-OH Fmoc-Leu-OH、Fmoc-Asp(OtBu)-OH、Fmoc-Lys(Boc)-OH、Fmoc-Thr(tBu)-OH、Fmoc-Thr(tBu)-OH、Fmoc-Ile-OH、Fmoc-Glu(OtBu)-OH、Fmoc-Ser(tBu)-OH、Fmoc-Ser(tBu)-OH、Fmoc-Thr(tBu)-OH、Fmoc-Asp(OtBu)-OH、Fmoc-Val-OH、Fmoc-Ala-OH、Fmoc-Ala-OH、 Fmoc-Asp(OtBu)-OH、Ac-Ser(tBu)-OH得到连有肽的载体化合物P 249.8克,合成收率83%。
将上述的白色固体化合物P(249.3g)加入裂解液中(TFA∶∶EDT∶TIS∶H 2O=91∶3∶3∶3,1000mL),室温搅拌2小时。然后将反应液缓慢倒入冰冻乙醚(5L)中,搅拌30分钟后,冰箱中静置1小时。离心,用乙醚(50mL×3)洗涤三次。得到的沉降物在30℃条件下干燥2小时,再用甲醇(10mL)打浆2小时,过滤,滤饼弃去,滤液40℃旋干后得到白色固体(144.1g,纯度90.2%,裂解收率99%)。经HPLC制备得到精肽108.3克,纯度99.5%以上,最大单杂小于0.1%,总收率59.6%。
专利CN 103497245中报道的固相合成方法总收率42%,合成规模只有5.2克精肽。无论从合成规模和收率采用液相载体合成具有明显优势。具有很大的工业化优势。

Claims (10)

  1. 一种作为多肽液相载体的环酮化合物,其结构如式I或II所示:
    Figure PCTCN2018079288-appb-100001
    其中,X选自H、F、Cl、Br、I或带有羟基、氨基、羧基、卤素的基团。
  2. 根据权利要求1所述的所述环酮化合物,X选自H、F、Cl、Br、I、
    Figure PCTCN2018079288-appb-100002
  3. 根据权利要求1所述的所述环酮化合物,式I化合物优选为
    Figure PCTCN2018079288-appb-100003
    Figure PCTCN2018079288-appb-100004
  4. 根据权利要求1所述的所述环酮化合物,式II化合物优选为
    Figure PCTCN2018079288-appb-100005
  5. 权利要求1-3任一项所述环酮化合物的制备方法,其中式I化合物制备方法包括以下步骤:
    1)以化合物1
    Figure PCTCN2018079288-appb-100006
    或化合物2
    Figure PCTCN2018079288-appb-100007
    为起始原料进行氢化反应获化合物1a
    Figure PCTCN2018079288-appb-100008
    任选地,2)化合物1a与功能性官能团偶联得到液相合成载体;
    优选地,其中步骤1)为化合物1
    Figure PCTCN2018079288-appb-100009
    或化合物2
    Figure PCTCN2018079288-appb-100010
    在还原剂作用下进行回流反应至完全获得1a
    Figure PCTCN2018079288-appb-100011
    更优选地,所述还原剂选自硼氢化钠、氢化铝锂、硼烷;
    优选地,其中步骤2)包括以下步骤:
    2-1)进行卤代反应;
    2-2)偶联功能性官能团;
    更优选地,步骤2-1)在N-溴代丁二酰亚胺、过氧化苯甲酰条件下进行反应获得卤代产物;
    更优选地,步骤2-2)步骤2-1)所得卤代产物与化合物5、对羟甲基苯酚、对羟乙基苯酚、对羟丙基苯酚、对羟丁基苯酚、对羟戊基苯酚或对羟己基苯酚中的一种在碱性条件下进行偶联。优选地,所述碱性条件为在碳酸钾和DMF条件下。
  6. 权利要求1-2,4任一项所述环酮化合物的制备方法,其中式II化合物制备方法包括以下步骤:
    1)以化合物3
    Figure PCTCN2018079288-appb-100012
    为起始原料进行氢化反应获化合物3a
    Figure PCTCN2018079288-appb-100013
    任选地,2)化合物3a与功能性官能团偶联得到液相合成载体;
    优选地,其中步骤1)为化合物3在还原剂作用下进行回流反应至完全获得3a;更优选地,所述还原剂选自硼氢化钠、氢化铝锂、硼烷;
    优选地,步骤2)包括以下步骤:
    2-1)进行卤代反应;
    2-2)偶联功能性官能团;
    更优选地,步骤2-1)在N-溴代丁二酰亚胺、过氧化苯甲酰条件下进行反应获得卤代产物;
    更优选地,步骤2-2)步骤2-1)所得卤代产物与化合物5
    Figure PCTCN2018079288-appb-100014
    对羟甲基苯酚、对羟乙基苯酚、对羟丙基苯酚、对羟丁基苯酚、对羟戊基苯酚或 对羟己基苯酚中的一种在碱性条件下进行偶联。优选地,所述碱性条件为在碳酸钾和DMF条件下。
  7. 权利要求1-4任一项所述的环酮化合物作为液相合成载体的用途。
  8. 权利要求1-4任一项所述的环酮化合物用于在液相中合成多肽链的用途。
  9. 一种多肽的合成方法,其权利要求1-4任一项所述的环酮化合物作为液相合成载体,在权利要求1-4任一项所述的环酮化合物的官能团上依次偶联氨基酸。
  10. 一种胸腺法新的合成方法,其以式I或式II所示化合物作为液相合成载体,偶联Fmoc-Asn(Trt) 1-OH、脱除氨基保护基、按此方法依次偶联Fmoc-Glu(OtBu)-OH、Fmoc-Ala-OH、Fmoc-Glu(OtBu)-OH、Fmoc-Glu(OtBu)-OH、Fmoc-Val-OH、Fmoc-Val-OH、Fmoc-Glu(OtBu)-OH、Fmoc-Lys(Boc)-OH、Fmoc-Lys(Boc)-OH、Fmoc-Lys(Boc)-OH、Fmoc-Glu(OtBu)-OH、Fmoc-Lys(Boc)-OH Fmoc-Leu-OH、Fmoc-Asp(OtBu)-OH、Fmoc-Lys(Boc)-OH、Fmoc-Thr(tBu)-OH、Fmoc-Thr(tBu)-OH、Fmoc-Ile-OH、Fmoc-Glu(OtBu)-OH、Fmoc-Ser(tBu)-OH、Fmoc-Ser(tBu)-OH、Fmoc-Thr(tBu)-OH、Fmoc-Asp(OtBu)-OH、Fmoc-Val-OH、Fmoc-Ala-OH、Fmoc-Ala-OH、Fmoc-Asp(OtBu)-OH、Ac-Ser(tBu)-OH脱除保护基后,裂解液相合成载体,纯化得到胸腺法新。
PCT/CN2018/079288 2017-12-29 2018-03-16 一种用于多肽液相合成载体的化合物及其制备方法和用途 WO2019127921A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711473560.9 2017-12-29
CN201711473560.9A CN109988213B (zh) 2017-12-29 2017-12-29 一种用于多肽液相合成载体的化合物及其制备方法和用途

Publications (1)

Publication Number Publication Date
WO2019127921A1 true WO2019127921A1 (zh) 2019-07-04

Family

ID=67064974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/079288 WO2019127921A1 (zh) 2017-12-29 2018-03-16 一种用于多肽液相合成载体的化合物及其制备方法和用途

Country Status (2)

Country Link
CN (1) CN109988213B (zh)
WO (1) WO2019127921A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114315538A (zh) * 2021-12-31 2022-04-12 杭州澳赛诺生物科技有限公司 一种作为多肽液相合成载体的苄醇酚醚类化合物及其制备方法与应用
CN115368221A (zh) * 2022-08-02 2022-11-22 成都圣诺生物科技股份有限公司 小分子载体及其制备方法和其在多肽合成中的应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104987382A (zh) * 2015-06-30 2015-10-21 济南康和医药科技有限公司 一种二肽片段液固结合制备胸腺法新的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103497245B (zh) * 2013-06-25 2015-05-13 深圳翰宇药业股份有限公司 一种合成胸腺法新的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104987382A (zh) * 2015-06-30 2015-10-21 济南康和医药科技有限公司 一种二肽片段液固结合制备胸腺法新的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OTSUBO T. ET AL.: "2, 3, 6, 7-Tetramethyl and 2, 3:6, 7-bis(trimethylene) derivatives of 1, 4, 5, 8-tetrachalcogenonaphthalenes: a study on their charge-transfer complexes and radical cation salts", SYNTHETIC METALS, vol. 27, no. 3-4, 31 December 1988 (1988-12-31), pages 509 - 514, XP024160461, ISSN: 0379-6779 *
SCHNEIDER R. S .: "Nonbenzenoid aromatic dicyclopenta[a, f]naphthalene dianions", TETRAHEDRON LETTERS, vol. 10, no. 38, 31 December 1969 (1969-12-31), pages 3249 - 3252, XP055623659, ISSN: 0040-4039 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114315538A (zh) * 2021-12-31 2022-04-12 杭州澳赛诺生物科技有限公司 一种作为多肽液相合成载体的苄醇酚醚类化合物及其制备方法与应用
CN114315538B (zh) * 2021-12-31 2023-10-20 杭州澳赛诺生物科技有限公司 一种作为多肽液相合成载体的苄醇酚醚类化合物及其制备方法与应用
CN115368221A (zh) * 2022-08-02 2022-11-22 成都圣诺生物科技股份有限公司 小分子载体及其制备方法和其在多肽合成中的应用
CN115368221B (zh) * 2022-08-02 2023-05-23 成都圣诺生物科技股份有限公司 小分子载体及其制备方法和其在多肽合成中的应用

Also Published As

Publication number Publication date
CN109988213B (zh) 2021-09-17
CN109988213A (zh) 2019-07-09

Similar Documents

Publication Publication Date Title
EP2421887B1 (en) Method for the manufacture of degarelix
CN109134602B (zh) 一种高效的前列腺特异性膜抗原配体psma-617的固相制备方法
JP2017521487A (ja) ガニレリクス前駆体、及びそれを用いた酢酸ガニレリクスの製造方法
CN109575109B (zh) 片段缩合制备地加瑞克的方法
KR20100036326A (ko) 프람린타이드의 생산 방법
WO2019127921A1 (zh) 一种用于多肽液相合成载体的化合物及其制备方法和用途
CN114315538B (zh) 一种作为多肽液相合成载体的苄醇酚醚类化合物及其制备方法与应用
WO2019127919A1 (zh) 一种用于多肽液相合成载体的化合物及其制备方法和用途
CN112585153B (zh) 一种化合物或其盐及其制备方法与应用
WO2021109297A1 (zh) 一种依特卡肽中间体及依特卡肽的合成方法
WO2019127920A1 (zh) 一种液相球形载体及其制备方法和应用
CN110642936B (zh) 一种制备特立帕肽的方法
CN114478708B (zh) 一种加尼瑞克的片段固相合成方法
WO2021103458A1 (zh) 一种地加瑞克的固相合成方法
WO2021026800A1 (zh) 醋酸地加瑞克的合成方法
CN110386964B (zh) 一种亮丙瑞林的固液合成方法
CN113801190A (zh) 寡肽-1盐酸盐的制备方法
WO2017113502A1 (zh) 一种长链化合物的制备方法
CN106749542B (zh) 一种夫替瑞林的合成方法
CN116573992B (zh) 一种非经典固相合成载体及其制备方法与应用
CN116655745B (zh) 一种中间体在制备布舍瑞林中的用途
CN117683114A (zh) 一种胸腺法新的制备方法
CN109251150B (zh) 一种2,3-二氨基丙酸甲酯的制备方法
CN114085269B (zh) 一种Hoshinoamide A的全固相合成方法
CN109810169B (zh) 一种Reltecimod的液相制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18895936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18895936

Country of ref document: EP

Kind code of ref document: A1