WO2019124904A1 - 미생물 검출용 미세유체 종이칩, 이의 제조방법 및 이를 이용한 미생물 검출방법 - Google Patents

미생물 검출용 미세유체 종이칩, 이의 제조방법 및 이를 이용한 미생물 검출방법 Download PDF

Info

Publication number
WO2019124904A1
WO2019124904A1 PCT/KR2018/016003 KR2018016003W WO2019124904A1 WO 2019124904 A1 WO2019124904 A1 WO 2019124904A1 KR 2018016003 W KR2018016003 W KR 2018016003W WO 2019124904 A1 WO2019124904 A1 WO 2019124904A1
Authority
WO
WIPO (PCT)
Prior art keywords
chloro
bromo
paper
beta
reagent
Prior art date
Application number
PCT/KR2018/016003
Other languages
English (en)
French (fr)
Inventor
권찬호
김재훈
Original Assignee
주식회사 바이오맥스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 바이오맥스 filed Critical 주식회사 바이오맥스
Priority to US16/771,583 priority Critical patent/US20200298233A1/en
Publication of WO2019124904A1 publication Critical patent/WO2019124904A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/12Specific details about manufacturing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0819Microarrays; Biochips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • B01L2300/126Paper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/161Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
    • B01L2300/165Specific details about hydrophobic, oleophobic surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0406Moving fluids with specific forces or mechanical means specific forces capillary forces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2304/00Chemical means of detecting microorganisms
    • C12Q2304/20Redox indicators
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2334/00O-linked chromogens for determinations of hydrolase enzymes, e.g. glycosidases, phosphatases, esterases
    • C12Q2334/50Indoles
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2334/00O-linked chromogens for determinations of hydrolase enzymes, e.g. glycosidases, phosphatases, esterases
    • C12Q2334/50Indoles
    • C12Q2334/525-Bromo-4-chloro-3-indolyl, i.e. BCI

Definitions

  • the present invention relates to a microfluidic chip for detecting microorganisms, a method for producing the microfluidic chip, and a method for detecting microorganisms using the microfluidic chip. More particularly, the present invention relates to a microfluidic chip for detecting a microorganism in which a hydrophilic paper medium containing a lytic reagent composition and a coloring reagent is sequentially laminated A microfluidic chip, a method for producing the microfluidic chip, and a method for detecting microorganisms using the microfluidic chip.
  • the technology that is mainly used for the detection of food microorganisms uses the conventional culture method using the microorganism selective medium for each food, but it requires culture time in the enrichment culture and the selective culture medium and disadvantages requiring troublesome work and labor .
  • ATP measurement method or antibody-based immunological detection method has been developed for this purpose.
  • ATP measurement is a sensitive and easy method, but specificity analysis is impossible.
  • Immunological detection method has high specificity but low sensitivity and uses antibody, which has disadvantages such as high price and limited product storage and distribution.
  • the present invention has been conceived to solve the above problems. It is an object of the present invention to provide a method for detecting microorganisms, which can easily and quickly detect microorganisms through specific coloring using a chromogenic substrate reacting with specific enzymes of the microorganisms, A paper-based microfluidic paper chip for microbial detection capable of efficiently detecting microbes in an inexpensive and small space.
  • the present invention provides a method for producing a color filter, comprising the steps of: laminating a coloring layer composed of a hydrophilic material paper containing a lysis reagent composition and a hydrophilic material paper containing a chromogenic reagent A microfluidic paper chip for detecting microorganisms is provided.
  • the present invention also provides a microfluidic chip for microbial detection, characterized in that an outer layer made of paper made of hydrophilic material is further laminated on the fogging layer or below the coloring layer.
  • microfluidic chip for microbial detection wherein an oxidized layer made of paper made of hydrophilic material containing an oxidation reagent is further laminated between the fogging layer and the coloring layer.
  • the present invention also provides a microfluidic chip for microbial detection, characterized in that a fluid channel is formed by printing a hydrophobic substance on the rim of the paper of the hydrophilic material to form a barrier.
  • the microfluidic paper chip for microorganism detection is characterized in that the hydrophilic paper is a chromatography paper or a filter paper.
  • microorganism is wherein the microorganism is Salmonella (Salmonella), Bacillus (Bacillus), Listeria monocytogenes (Listeria), Vibrio (Vibrio), Campylobacter (Campylobacter), Staphylococcus aureus (Staphylococcus aureus), coliforms (Eshcerchia Coliform), Escherichia coli (E .
  • microfluidic chip is at least one selected from the group consisting of a microfluidic chip and a microfluidic chip.
  • the lysis reagent composition can be prepared by mixing Tergitol NP-9, Tergitol NP-10, Tergitol NP-40, Triton X-100, Tween 80, BMT, SB3-8, SB3-10, SB3-14, 16.
  • the lysis reagent composition may further comprise microbes for microbial detection, characterized by further comprising C7BzO (3 - [[3- (4-heptylphenyl) -3-hydroxypropyl] -dimethylazanyyl] propane- A fluid paper chip is provided.
  • the microbiological paper chip for microorganism detection is characterized in that the lysis reagent composition further comprises a silica bead.
  • the chromogenic reagent may also be a 5-bromo-4-chloro-3-indenyl-beta-L-arabinopyranoside, a 5-bromo-4- D-glucuronic acid, 5-bromo-4-chloro-3-indenyl-alpha-D-maltotrioside, 5-bromo-4- Acetyl-beta-D-glucosaminylide, 5-bromo-4-chloro-3-indenyl-N-acetyl-beta -D-galactosaminide, 5-bromo-4-chloro-3-indenyl-alpha-DN-acetylneuramic acid, 5-bromo- 5-bromo-4-chloro-3-indenyl-choline phosphate, 5-bromo-4-chloro-3-indenyl-beta-D-cellrobioside, Alpha-L-fucopyranoside, 5-bromo-4-chlor
  • the chromogenic reagent is a mixture of potassium ferriccyanide (K 3 Fe (CN) 6 ) and potassium ferrocyanide (K 4 Fe (CN) 6 ), a mixture of FeCl 2 and FeCl 3 and FeSO 4 and FeCl 2
  • the microfluidic chip is at least one selected from the group consisting of a microfluidic chip and a mixture.
  • the present invention also provides a method for detecting microorganisms using microfluidic chip for microorganism detection.
  • microfluidic chip of the present invention it is possible to easily and quickly detect the microorganism through specific coloring using a chromogenic substrate that reacts with a specific enzyme of the microorganism, and it is possible to detect microorganisms in a small space at low cost and high efficiency This is possible.
  • FIG. 1 shows SDS-PAGE images for confirming the lytic effect of five kinds of microorganisms for food according to the type of lysis reagent
  • FIG. 2 is a graph showing the results of measurement of the lytic effect of five food microorganisms by the BCA assay according to the type of lysis reagent,
  • FIG. 3 is a graph showing the degree of color development of Vibrio vulnificus according to the type of chromogenic reagent
  • FIG. 4 is a graph showing the degree of color development of Salmonella spp. Depending on the type of chromogenic reagent,
  • FIG. 5 is a photograph of the result of coloring reaction test of magenta-caprylate according to the type of microorganism for food
  • FIG. 6 is a graph showing the degree of color development of enterohemorrhagic Escherichia coli O157 according to the kind of chromogenic reagent
  • FIG. 7 is a graph showing the degree of color development of Escherichia coli according to the kind of chromogenic reagent
  • FIG. 9 is a graph showing the degree of color development of Staphylococcus aureus according to the type of chromogenic reagent
  • FIG. 10 is a photograph of the result of color development reaction test according to the concentration of the oxidation reagent of magenta-beta-galactopyranoside,
  • FIG. 11 is a photograph of the result of color development reaction test according to the concentration of the oxidation reagent of X-beta-glucopyranoside,
  • FIG. 12 is a photograph of the result of color development reaction test according to the concentration of the oxidation reagent of X-Phosphate,
  • FIG. 13 is a photograph of the result of color development reaction test according to the concentration of the oxidation reagent of magenta-caprylate,
  • FIG. 14 is a photograph of the result of color development reaction test according to the concentration of the oxidation reagent of X-beta-glucuronide,
  • FIG. 15 is a photograph of the result of color development reaction test according to the concentration of oxidizing reagent of Aldol-myo-inositol-1-phosphate,
  • FIG. 16 is a photograph showing the result of a color reaction test according to the kind and concentration of the oxidizing reagent of the magenta-beta-galactopyranoside upon detection of Vibrio bacteria,
  • FIG. 17 is a photograph of the result of the color reaction test according to the kind and concentration of the oxidizing reagent of the magenta-caprylate upon detection of Salmonella,
  • FIG. 18 is a photograph showing the result of color development reaction test according to the kind and concentration of the oxidation reagent of X-phosphate when detecting Staphylococcus bacteria,
  • FIG. 19 is a photograph showing the result of color reaction test according to the kind and concentration of the oxidizing reagent of Aldol-myo-inositol phosphate in the detection of listeria bacterium,
  • FIG. 20 is a photograph of the result of color development reaction test according to the kind and concentration of the oxidation reagent of Magenta-beta-galactopyranoside in the detection of intestinal hemorrhagic Escherichia coli,
  • FIG. 21 is a view showing an example of a drawing of a paper medium produced by printing with a wax print (the black portion in the drawing is a wax coated hydrophobic portion, the white portion in the drawing shows a hydrophilic portion not coated with the wax)
  • FIG. 22 is a view showing a component A for assembling a microfluidic chip, an assembling process B and an appearance C of the completed chip after assembly,
  • Fig. 23 is a photograph of the result of color development reaction test according to paper thickness (top: detection of intestinal hemorrhagic Escherichia coli, bottom: detection of Staphylococcus aureus)
  • FIG. 24 is a photograph of the result of color development reaction test according to paper pore size (upper: detection of intestinal hemorrhagic Escherichia coli, lower: staphylococcus aureus)
  • 25 is a photograph (top: detection of intestinal hemorrhagic Escherichia coli, bottom: detection of Staphylococcus aureus) of a color reaction test result according to the size of a hydrophilic region of a paper medium,
  • FIG. 26 is a photograph of a result of a color reaction test for the kind and concentration of an oxidizing reagent of E. coli,
  • FIG. 27 is a photograph of a color reaction test result for the kind and concentration of the oxidation reagent of hemorrhagic Escherichia coli,
  • FIG. 28 is a photograph of a result of a color reaction test for the concentration of Magenta-beta-galactopyranoside in enterohemorrhagic Escherichia coli,
  • FIG. 29 is a photograph of the result of a color reaction test for the concentration of X-beta-glucuronide in E. coli,
  • FIG. 30 is a photograph of a result of a coloring reaction test for the concentration of Magenta-beta-galactopyranosdie against 0.1 M X-beta-glucuronide in enterohemorrhagic Escherichia coli,
  • FIG. 31 is a photograph of a result of a color reaction test for the concentration of Magenta-beta-galacto-pyranoside against 0.1 M X-beta-glucuronide in a general E. coli,
  • FIG. 32 is a photograph of a color-reaction test result for a paper-based microfluidic device for detecting intestinal hemorrhagic Escherichia coli,
  • FIG. 33 is a photograph of the result of a color reaction test for the kind and concentration of Oxidation reagent of Vibrio bacteria,
  • FIG. 34 is a photograph of the results of a color reaction test for the concentration of X-beta-glucopyranoside in Vibrio bacteria
  • 35 is a photograph of a color reaction test result for a paper-based microfluidic device for detecting Vibrio bacteria
  • FIG. 36 is a photograph of Salmone-alpha-glucopyranoside coloring reaction test results on the kind and concentration of the oxidation reagent of Salmonella,
  • FIG. 37 is a photograph of a result of a color reaction test for the concentration of salmonella-alpha-glucopyranoside in Salmonella
  • FIG. 38 is a photograph of a result of a color reaction test for the concentration of X-phosphate of Salmonella
  • FIG. 39 is a photograph of the result of a color reaction test for the concentration of X-phosphate on 0.2 M Salmone-alpha-glucopyranoside of Salmonella,
  • FIG. 40 is a photograph of a color reaction test result for a paper-based microfluidic device for detecting Salmonella
  • FIG. 41 is a photograph of the result of color development reaction test of Aldol-myo-Inositol-Phosphate against the kind and concentration of Oxidation reagent of Listeria monocytogenes,
  • Figure 42 is a photograph of the result of a color reaction test for the concentration of Aldol-myo-Inositol-phosphate of Listeria monocytogenes,
  • Figure 43 is a photograph of the result of a color reaction test for the concentration of Aldol-myo-Inositol-phosphate of Listeria monocytogenes,
  • FIG. 45 is a photograph of X-Phosphate coloring reaction test results for the kind and concentration of the oxidizing reagent of Staphylococcus aureus,
  • FIG. 47 is a photograph of a result of a color reaction test for the concentration of X-phosphate of Staphylococcus aureus
  • FIG. 49 is a photograph of a result of a color reaction test for a paper-based microfluidic device for staphylococcal detection.
  • the present invention relates to a microfluidic microfluidic device for microbial detection, in which a lyophilic layer containing a lysis reagent composition and a color layer composed of a paper of hydrophilic material containing a chromogenic reagent are sequentially laminated Chip.
  • the microfluidic chip for microorganism detection is a device for confirming whether a target microorganism exists in the sample to be detected only by a simple operation of injecting a sample to be detected. More specifically, when a sample to be detected is injected into the microfluidic chip for microorganism detection, the lysis reagent composition contained in the microfluidic layer progresses the microbial reaction of the microorganism, and the specific color development The reagent (Chromogenic reagent) reacts with an enzyme present in the microorganism to be detected, so that the chromogenic reaction proceeds, and the result is shown.
  • an outer layer made of paper made of hydrophilic material may be further laminated on the fountain solution layer or below the coloring layer. Since the outer layer is further laminated, a microscopic space in which the reaction occurs can be secured, so that the reaction can be more stable and the soluble layer or the coloring layer can be protected from contamination of the external material.
  • the paper is made of a hydrophilic material, there is no particular limitation on its kind, and preferably a chromatographic paper or a filter paper can be used
  • the thickness of the paper is not particularly limited, but may be in the range of 100 to 1000 mu m, preferably 200 to 500 mu m, and most preferably 300 to 500 mu m for a stable color reaction. have.
  • the thickness of the paper is less than 100 ⁇ , the enzyme present in the microorganism reacts with the coloring reagent and may not provide a sufficient space for the chromogenic reaction. If the thickness exceeds 1000 ⁇ , the thickness of the chip becomes too thick The amount of reagent used may be increased and it may take a long time for the detection result to appear.
  • the paper is preferably a porous paper, and the pore size of the paper may be 3 to 30 ⁇ , preferably 5 to 30 ⁇ , and most preferably 7 to 25 ⁇ .
  • the paper made of the hydrophilic material may have a fluid channel formed by printing a hydrophobic substance on a rim to form a barrier.
  • the hydrophobic substance is not particularly limited as long as it is a substance that can be printed on paper made of hydrophilic material to control the diffusion of the aqueous fluid.
  • the hydrophobic substance is preferably a hydrophobic component such as wax or photosensitive polymer, It can be a wax.
  • the microfluidic chip of the present invention can confirm the presence of the target microorganism in the process of being sequentially absorbed into the soluble layer and the coloring layer and moved, A constant flow of fluid through the top and bottom must be induced. Therefore, the paper of the hydrophilic material constituting the fusing layer, the coloring layer and the outer layer is coated with a hydrophobic material such as a wax or a photosensitive polymer except for a hydrophilic region of the same shape, and is formed into a hydrophobic region So that the injected sample to be detected is absorbed into the peripheral portion of each layer and does not spread, and can be easily transferred to each layer sequentially.
  • a hydrophobic material such as a wax or a photosensitive polymer except for a hydrophilic region of the same shape
  • the outer layer may be a layer of a hydrophilic material coated with wax on the rim, which serves as an inlet for injecting a sample to be detected.
  • it is a paper layer of a hydrophilic material containing a lysis reagent composition as a layer to which a lysis phenomenon of a microorganism existing in a sample to be detected injected into the fungus layer is induced.
  • the lytic reagent composition contained in the lytic layer can be used without limitation as long as it is a composition of a lysis buffer commonly used in the art, and preferably includes surfactant, cationic detergent, A composition comprising anionic detergent, nonionic detergent may be used.
  • a composition of a lysis buffer commonly used in the art preferably includes surfactant, cationic detergent,
  • a composition comprising anionic detergent, nonionic detergent may be used.
  • the coloring layer includes a chromogenic reagent for a microorganism inherent in microorganisms contained in the microorganism. Therefore, when a target microorganism exists in the sample to be detected, a specific coloring reaction proceeds do.
  • the kind of the microorganism to be detected is not particularly limited, and a chromogenic reagent capable of performing a specific chromogenic reaction with an inherent enzyme existing in the microorganism is appropriately selected,
  • the microfluidic chip according to the present invention is not limited to the types of microorganisms that can be detected.
  • the chromogenic reagent used can be a unique chromogenic reagent for two target enzymes mainly possessed by microorganisms.
  • the chromogenic reagent is composed of a chromophore and an inherent substrate that exhibit chromaticity. When it is cleaved by enzyme, it shows unique color.
  • the chromosomes cut by the enzymes are represented by intrinsic colors such as yellow, red, blue, and purple.
  • the two enzymes can be combined so that each microorganism can be detected through cross-validation, Various microorganisms can be distinguished and detected through color.
  • a coloring reagent can be constructed so that there is no confusion due to crossing because the coloring reagent to be used is different.
  • beta-glucosidase the target enzyme of Listeria monocytogenes
  • the coloring reagent for this purpose is 5-Bromo-6-chloro-3-indolyl- ⁇ -D-glucopyranoside
  • Aldol® 484 ⁇ -D-glucopyranoside which is orange in the case of Vibrio bacteria, can be used to distinguish detection by color difference as well as by other cross-complementing enzymes.
  • microfluidic chip of the present invention can be used for quantitative analysis as well as qualitative analysis by color reaction. Specifically, it is possible to perform quantitative analysis by analyzing and standardizing the difference in chromaticity according to the number of microorganisms. have.
  • the chromogenic reagent is a 5-bromo-4-chloro-3-indenyl-beta-L-arabinopyranoside, a 5-bromo- Bromo-4-chloro-3-indenyl-alpha-D-maltotrioside, 5-bromo-4-chloro-3- N-acetyl-beta-D-glucosamides, 5-bromo-4-chloro-3-indolylcarboxamide, Beta-D-galactosaminide, 5-bromo-4-chloro-3-indenyl-alpha-DN-acetylneuramic acid, 5-bromo-4- Alpha-L-arabinofuranoside, 5-bromo-4-chloro-3-indenyl-beta-D-cellrobioside, 5-bromo- Alpha-D-fucopyranoside, 5-bromo-4-chloro-3-indenyl-alpha
  • MRSA Methysil Resistant strains
  • the microfluidic chip of the present invention may further include a layer of paper made of a hydrophilic material containing an oxidation reagent between the second layer and the third layer.
  • the oxidation reagent may play a role of promoting the chromophore oxidation of the chromogenic reagent when the microorganism is detected to improve the detection rate.
  • the outer layer made of paper made of a hydrophilic material below the coloring layer is a layer that reflects the color development phenomenon induced by the reaction of the enzyme-coloring reagent in the coloring layer, Like the outer layer, the hydrophilic paper itself coated with wax can be used as it is.
  • the microfluidic paper chip of the present invention may include a cast capable of bonding the soluble layer and the color-developing layer after they are laminated.
  • a hole for injecting a sample to be detected may be formed on the upper surface of the cast, and a hole for observing the color reaction may be formed on the lower surface of the cast.
  • A printing a hydrophobic material on a plurality of paper cores made of a hydrophilic material to form a hydrophobic barrier; (b) absorbing a lysis reagent composition in a hydrophilic region of a piece of paper on which the hydrophobic substance is printed, and drying the hydrophobic region; (c) absorbing a chromogenic reagent in a hydrophilic region of another piece of paper on which the hydrophobic substance is printed, and drying the hydrophilic region; And (d) laminating the paper on which the hydrophobic substance is printed, the paper on which the lytic reagent composition is absorbed, the paper on which the coloring reagent is absorbed, and the paper on which the hydrophobic substance is printed, in this order.
  • a paper chip manufacturing method is provided.
  • the present invention also provides a method for detecting microorganisms using microfluidic chip for microorganism detection.
  • Lysis reagent composition for microbial detection
  • SDS Tergitol NP-9, Tergitol NP-10, Tergitol NP-40, Triton X-100, 1-Butyl-3-methylimidazolium thiocyanate (BMT), Tween 80, 3- [Dimethyl sulfonate (SB3-10), 3- [Dimethyl (tetradecyl) ammonio] propane-1-sulfonate (SB3-8), 3- (Dodecyldimethylammonio) propane-
  • the bacteria lysis effect of the SB3 strain was very good.
  • the most prominent feature was the lysis effect of E. coli O157: H5, Salmonella, and Vibrio, a Gram-negative bacterium with a thin peptidoglycan layer on the cell wall.
  • peptidoglycan In the case of Listeria and Staphylococcus, which are thick gram positive strains, the lysis effect was slightly lower.
  • SB3-14 showed the best bacterial lytic effect and showed the best bacterial lysis effect at a concentration of 1% except for Vibrio vulnificus. .
  • a commercially available lysis buffer 50 mM Tris pH 8.0, 0.1% Triton X-100, 0.1 mg lysozyme
  • B-PER buffer a product of Thermo
  • lysis reagent of the present invention alone is compared with the silica bead.
  • a composition comprising (i) 1% SB3-14 and 0.1% C7BzO using a phosphate buffer (PSB) as a basic buffer, as a lytic reagent composition for five food microorganisms;
  • PSB phosphate buffer
  • the total amount of proteins contained in the supernatant was analyzed by BCA assay, and the lytic effect of the five food microorganisms by the lytic reagent composition was analyzed.
  • normal lysis buffer and commercial product B-per
  • the usual lytic buffer was prepared by adding 0.1% Trioton X-100 and 100 mg Lysozyme to 50 mM Tri-HCl (pH 8.0) as the basic buffer.
  • the commercial product was a B-PER TM Bacterial Protein Extraction Reagent manufactured by Thermo fischer Respectively.
  • Example 1 of the present invention As shown in FIG. 2, when the bacterial lysis effect according to each condition was compared, it was found that the lytic reagent composition developed in Example 1 of the present invention was more effective than the conventional lysis buffer or commercially available product, lysis, and the addition of Silica bead showed a better lysis effect.
  • the bacterial reagent composition to be applied to five food-harmful microorganisms was composed of 1% (v / v) of SB3-14 and 0.1% (v / v) of Phosphate Buffer (PSB) ) C7BzO, and it was decided to add silica bead to give higher synergy effect.
  • PSB Phosphate Buffer
  • the coloring reagent was dissolved to 100 mM, and the stock solution was added to a final concentration of 10 mM to test the color reaction.
  • lipase activity was tested for selective detection of food-borne microorganisms. As a result, no lipase activity was observed in other food microorganisms, and staphylococcus and salmonella showed color reaction.
  • the magenta-caprylate (purple) was selected as a chromogenic substrate for the detection of Salmonella because the salmonella appeared strongly in the speed and so on.
  • Escherichia coli O157 exhibited a specific color reaction only for magenta-beta-galactopyranoside (purple) under the above conditions.
  • an oxidation reagent was developed. To this end, 1.5 ml of each of the microorganisms cultured under the above conditions was centrifuged to collect the bacterial cells, and 0.5 ml of the lysis reagent composition prepared in Example 2 was added thereto to prepare a suspension. After that, a crushing reaction was performed on an ultrasonic sonicator for each reaction time.
  • the coloring reagents include Magenta-beta-galactopyranoside for Vibrio, Magenta-caprylate for Salmonella, X-phosphate for Staphylococcus, Aldol-myo-inositol phosphate for Listeria, Magenta-beta -galactopyranoside.
  • the addition of the oxidizing reagent promoted the coloring reaction rather than the addition of the oxidizing reagent.
  • the addition of the oxidizing reagent did not affect the coloring reaction or decreased the coloring reaction .
  • FeCl 2 / FeCl 3 and FeSO 4 / FeCl 3 in addition to potassium ferriccyanide (K 3 Fe (CN) 6 ) / potassium ferrocyanide (K 4 Fe (CN) 6 ), potassium ferriccyanide 4 Fe (CN) 6 ) or potassium ferricyanide (K 3 Fe (CN) 6 ) / potassium ferrocyanide (K 4 Fe (CN) 6 ) is preferable as oxidation reagent Respectively.
  • the paper medium used as the raw material of the microfluidic chip was Whatman's chromatography paper No. 1, chromatography paper 3MM, filter paper grade 4, filter paper No. 595, and Hyundai Micro's filter paper No. 100 and No. 22 .
  • the printer to print the wax was a Colorqube 8870 from Xerox, and the HP330D from Misung was used as a heating device.
  • the thickness and pore size of each paper medium are shown in Table 11 below.
  • Cross 3 an economical layout design program, was used to create the design.
  • the design was designed by layering the hydrophobic partial layer and the hydrophilic layer of the paper microfluidic device and then removing the corresponding overlap of the hydrophobic part.
  • the size of the printing paper was set to 200 X 200 (mm).
  • the print quality was set to " photo " to sufficiently place the solid wax.
  • the printed paper was heated in a heater for a certain period of time.
  • sweep fur or aluminum foil was used to prevent contamination by wax and other materials remaining in the heater.
  • An object having a certain weight was placed on the aluminum foil so that a constant heat could be applied to the entire paper.
  • FIG. 1 A drawing of the paper medium produced according to the above method is shown in Fig.
  • the portion indicated by black in each small square is coated with wax to be a hydrophobic portion, and the white circle portion represents a hydrophilic portion as the paper medium itself.
  • the wax-printed paper medium prepared according to the above method was cut into individual small squares and microfluidic paper chips were used.
  • the microfluidic paper chips were produced by laminating the cut paper media in five layers in total
  • Each layer was made to exhibit the following composition and function.
  • the first layer was used as the injection layer (Inlet layer) into which the sample to be detected was injected, without any treatment on the paper medium.
  • the second layer was prepared by absorbing a lysis reagent composition prepared in Example 2 into a hydrophilic region of a paper medium and then drying the microparticles.
  • the third layer is an oxidation layer to which an oxidation reagent is added to promote the oxidation of the chromophore in the chromogenic reaction of the chromogenic reagent when the microorganism is detected.
  • the oxidation reagent selected in Example 4 is absorbed in the hydrophilic region of the paper medium And dried.
  • the fourth layer is a coloring layer that performs a coloring action so that a specific coloring reaction may occur when microorganisms to be detected exist in the sample.
  • Each of the coloring reagents selected in Example 3 is absorbed into a hydrophilic region of the paper medium Dried.
  • the fifth layer is an outer layer which can be visually confirmed as to whether or not the microorganism to be detected by the experimenter is visible due to the detection result by the color development reaction, and is used without any treatment on the paper medium.
  • the paper media of the first to fifth layers are respectively prepared and stacked in this order, a hole through which a sample can be injected into an upper end portion, and a hole through which a coloring result is observed at a lower end portion are formed.
  • the microfluidic paper chip of the final shape was prepared.
  • Whatman filter grade 595 thickness 160 ⁇ m
  • Whatman chromatography paper No. 1 180 ⁇ m
  • Whatman chromatography 3 mm 340 ⁇ m
  • microfluidic chip was prepared according to the method (2). Specifically,
  • the second layer was prepared by adding 1% (v / v) of SB3-14 and 0.1% (v / v) of phosphate buffered saline buffer (PSB) to the hydrophilic region of each paper medium
  • PSB phosphate buffered saline buffer
  • the third layer was prepared by sufficiently absorbing 10 mM of an oxidizing reagent (K 3 Fe (CN) 6 ) / K 4 Fe (CN) 6 ) in the hydrophilic region of each of the paper media.
  • the fourth layer was prepared by sufficiently absorbing 50 mM of Magenta-beta-galactopyranoside or X-phosphate as a coloring reagent in the hydrophilic region of each paper medium, followed by drying.
  • the paper media of the first layer to the fifth layer prepared according to the above method were sequentially laminated to prepare microfluidic chip chips. Then, 50 ⁇ l of a culture medium of E. coli was added to a paper chip using Magenta-beta-galactopyranoside as a coloring reagent And 50 ⁇ l of Staphylococcus aureus was injected into the paper chip using X-phosphate as a coloring reagent through the first layer and the reaction was carried out at 37 ° C for 30 minutes.
  • the purpose of this study was to evaluate the degree of color reaction according to the size of the paper hydrophilic region in the paper medium for the microfluidic chip chip for the detection of microorganisms.
  • the paper medium was wax-coated with a paper material having a hydrophilic area diameter of 4, 6, or 8 mm, and the same procedure as in the above (3) was performed using Whatman chromatography 3MM (paper thickness: 340 ⁇ m / pore size: 12 ⁇ m) The color reaction was observed by the method.
  • the amount of reagent required depends on the size of the hydrophilic region. For 4 mm, 3 ⁇ l of lysis reagent, oxidation reagent and chromogenic reagent were required, and 5 ⁇ l for 6 mm and 10 ⁇ l for 8 mm. In addition, the amount of sample required varies depending on the size of the hydrophilic region, which requires at least 20, 50, and 100 ⁇ l of the sample amount, respectively.
  • paper pattern of appropriate hydrophilic area was determined as 6mm hydrophilic paper size. Because the quantity of reagent required, especially chromogenic reagent, is expensive reagent compared to other reagents, It is recommended to use as small a quantity of reagent as possible. Because the size of the hydrophilic region is appropriate for the amount of sample required, the diameter of the microfluidic chip for single detection is determined to be 6 mm.
  • a composition for the development of an oxidation reagent for accelerating the oxidation of the chromophore in the chromogenic reaction of the chromogenic substrate was investigated.
  • 1.5 ml of intestinal hemorrhagic Escherichia coli cultured under the above conditions was centrifuged, and the bacterial cells were collected, suspended in 0.5 ml of phosphate buffer solution, and used as a sample.
  • potassium ferricyanide (K3Fe (CN) 6) and potassium ferrocyanide (K 4 Fe (CN) 6 ) as the oxidation reagent were prepared on a paper prepared with FeCl 2 and FeCl 3 and FeSO 4 and FeCl 2 , And then dried in a 40 ° C dryer for 30 minutes.
  • the oxidation reaction to X-beta-glucuronide did not promote the oxidation reaction by the oxidation reagent and inhibited the color reaction at concentrations of 50 mM or more.
  • the concentration of the coloring reagent optimized for detection of Magenta-beta-galactopyranoside as a coloring reagent for detecting intestinal hemorrhagic Escherichia coli was examined.
  • the concentration of the optimized coloring reagent when X-beta-glucuronide was used to distinguish between intestinal hemorrhagic Escherichia coli and color development was examined for E. coli.
  • 1.5 ml of intestinal hemorrhagic Escherichia coli cultured under the above conditions was centrifuged, and the bacterial cells were collected, suspended in 0.5 ml of phosphate buffer, and used as a sample.
  • the concentration of the magenta-beta-galactopyroanoside may be preferably 25 to 200 mM, and most preferably 100 mM.
  • the concentration of X-beta-glucuronide can be preferably 25 to 200 mM, and most preferably 100 mM.
  • the concentration ratio of the two coloring reagents for the proper detection of enterohemorrhagic Escherichia coli was examined with reference to the above results. To do this, 5 ⁇ l of each sample is loaded onto a pre-fabricated paper with 100 mM X-beta-glucuronide as a pattern and dried in a 40 ° C dryer for 30 minutes. After that, 5 ⁇ l of each sample was mixed with Magenta-beta-galactopyroanoside in the same manner as above and then dried in a 40 ° C dryer for 30 minutes.
  • the most suitable ratio of the two coloring reagents was 100 mM X-beta-glucuronide + 10 mM Magenta-beta- galactopyroanoside .
  • Escherichia coli reacts to both substrates in color and is detected as blue.
  • Escherichia coli a food-borne microorganism, is detected as purple. Respectively.
  • Each of the papers was stacked in the order of Inlet - Lysis reagent - Oxidation - Chromogenic reagent - Outlet, and the microorganisms 50 ⁇ l of the suspension was incubated at 37 ° C for 30 min. After that, the color reaction of the paper-based microfluidic device for the detection of enterohemorrhagic Escherichia coli was examined.
  • a composition for developing an oxidation reagent was investigated. For this purpose, 1.5 ml of the cultured Vibrio bacteria was centrifuged to collect the bacterial cells, suspended in 0.5 ml of phosphate buffer, and used as a sample.
  • potassium ferriccyanide (K 3 Fe (CN) 6 ) and potassium ferrocyanide (K 4 Fe (CN) 6 ) were prepared as the oxidation reagent and prepared with FeCl 2 and FeCl 3 and FeSO 4 and FeCl 2 After loading 5 ⁇ l, it is dried in a 40 ° C dryer for 30 minutes.
  • X-beta-glucopyranoside was used as a colorimetric reagent for the detection of Vibrio bacteria.
  • 1.5 ml of the cultured Vibrio bacteria was centrifuged to collect the bacterial cells, suspended in 0.5 ml of phosphate buffer, and used as a sample.
  • the concentration of X-beta-glucopyranoside As shown in Fig. 34, when the Vibrio germ was detected, the coloring reaction characteristics were observed depending on the concentration of X-beta-glucopyranoside. As the concentration of X-beta-glucopyranoside increases, the degree of chromogenic reaction increases. 100 mM, the concentration of X-beta-glucopyranoside may be preferably 25 to 200 mM, and most preferably 100 mM.
  • a microfluidic chip made of 100 mM X-beta-glucopyranoside for the detection of Vibrio bacteria was subjected to a colorimetric test to perform a colorimetric test on microorganisms for other foods including Vibrio bacteria.
  • Oxidation reagent for use in manufacturing microfluidic paper chips for the Vibrio microorganism detection 10 mM potassium ferriccyanide (K 3 Fe (CN) 6) , and potassium ferrocyanide (K 4 Fe (CN ) 6) 5 ⁇ l on a paper produced with a pattern And then dried in a 40 ° C dryer for 30 minutes.
  • Each of the papers was stacked in the order of Inlet - Lysis reagent - Oxidation - Chromogenic reagent - Outlet, and the microorganisms After incubation at 37 ° C for 30 min, 50 ⁇ l of the suspension was injected and the color reaction of the paper - based microfluidic device for the detection of vibriocytes was examined.
  • a composition for developing an oxidation reagent was investigated.
  • 1.5 ml of Salmonella cultured under the above conditions was centrifuged, and the bacterial cells were collected, suspended in 0.5 ml of phosphate buffer, and used as a sample.
  • potassium ferriccyanide (K 3 Fe (CN) 6 ) and potassium ferrocyanide (K 4 Fe (CN) 6 ) were prepared as the oxidation reagent and prepared with FeCl 2 and FeCl 3 and FeSO 4 and FeCl 2 After loading 5 ⁇ l, it is dried in a 40 ° C dryer for 30 minutes.
  • Each of the papers was stacked in the order of Inlet - lysis reagent - oxidation - chromogenic reagent - 5th layer (Outlet), and then the prepared salmonella After incubation at 37 ° C for 30 minutes, 50 ⁇ l of each suspension was added and tested for color reaction according to the type and concentration of the oxidation reagent.
  • the oxidation reaction to Salmone-alpha-glucopyranoside used for detecting Salmonella was characterized.
  • the oxidation reagent did not promote the color reaction.
  • the concentration of chromogenic substrate optimized for detection of Salmone-alpha-glucopyranoside and X-phosphate was investigated as a chromogenic substrate for the detection of Salmonella. For this, 1.5 ml of Salmonella cultured under the above conditions was centrifuged, and the bacterial cells were recovered, suspended in 0.5 ml of phosphate buffer, and used as a sample.
  • Oxidation reagent for use in manufacturing microfluidic paper chips for Salmonella detection 10 mM potassium ferriccyanide (K 3 Fe (CN) 6) , and potassium ferrocyanide (K 4 Fe (CN ) 6) 5 ⁇ l on a paper produced with a pattern And then dried in a 40 ° C dryer for 30 minutes.
  • Each of the papers was stacked in the order of Inlet - lysis reagent - oxidation - chromogenic reagent - 5th layer (Outlet), and then the prepared salmonella After incubation at 37 ° C for 30 minutes, 50 ⁇ l of each bacterial strain was injected and then the chromogenic reaction was tested according to the type and concentration of the chromogenic reagent.
  • the concentration of Salmone-alpha-glucopyranoside can be preferably 25 to 300 mM, and most preferably 200 mM.
  • the concentration of X-phosphate can be preferably 25 to 100 mM, and most preferably 50 mM.
  • Each of the papers was stacked in the order of Inlet - lysis reagent - oxidation - chromogenic reagent - 5th layer (Outlet), and then the prepared salmonella 50 ⁇ l of each suspension was incubated at 37 ° C for 30 minutes. Then, the color development reaction was tested according to the mixing of the two coloring substrates.
  • each sample is loaded onto a previously prepared pattern of 200 mM Salmone-alpha-glucopyranoside and dried in a 40 ° C dryer for 30 minutes. Then, 5 ⁇ l of 50 mM X-phosphate is loaded onto the same paper and dried again in a 40 ° C dryer for 30 minutes.
  • Oxidation reagent for use in manufacturing microfluidic paper chips for Salmonella detection 10 mM potassium ferriccyanide (K 3 Fe (CN) 6) , and potassium ferrocyanide (K 4 Fe (CN ) 6) 5 ⁇ l on a paper produced with a pattern And then dried in a 40 ° C dryer for 30 minutes.
  • Each of the papers was stacked in the order of Inlet - Lysis reagent - Oxidation - Chromogenic reagent - Outlet, and the microorganisms After incubation at 37 ° C for 30 min, 50 ⁇ l of suspension was injected into each well, and the color reaction of paper-based microfluidic device for the detection of Salmonella was examined.
  • a composition for developing an oxidation reagent was investigated. For this, bacterial cells were recovered by centrifuging 1.5 ml of the Listeria bacterium cultured under the above conditions, suspended in 0.5 ml of phosphate buffer, and used as a sample.
  • K 3 Fe (CN) 6 potassium ferrocyanide
  • K 4 Fe (CN) 6 potassium ferrocyanide
  • the oxidation reaction for Aldol-myo-Inositol-phosphate used for detecting Listeria was characterized.
  • the best coloring reaction was promoted for 10 mM FeCl 2 / FeCl 3 in the oxidation reagent.
  • the concentration of chromogenic substrate optimized for color detection was examined using Aldol-myo-Inositol-phosphate as a chromogenic substrate for detection of Listeria.
  • bacterial cells were recovered by centrifuging 1.5 ml of the Listeria bacterium cultured under the above conditions, suspended in 0.5 ml of phosphate buffer, and used as a sample.
  • Microfluidic chip for detection of listeria bacterium Oxidation reagent used in the chip preparation is loaded with 5 ⁇ l of each sample on 10 mm FeCl 2 and FeCl 3 patterned paper and dried in a 40 ° C dryer for 30 minutes.
  • the characteristics of the color reaction according to the concentration of Aldol-myo-Inositol-phosphate in the detection of listeria bacterium were found. As the concentration of Aldol-myo-Inositol-phosphate increases, the degree of color reaction decreases sharply.
  • the inositol-phosphate concentration can be preferably 1 to 10 mM, and most preferably 7.5 mM.
  • Microfluidic chip for detection of listeria bacterium Oxidation reagent used in the chip preparation is loaded with 5 ⁇ l of each sample on 10 mm FeCl 2 and FeCl 3 patterned paper and dried in a 40 ° C dryer for 30 minutes.
  • Each of the papers was stacked in the order of Inlet - Lysis reagent - Oxidation - Chromogenic reagent - Outlet, and the microorganisms 50 ⁇ l of the suspension was injected at 37 ° C for 30 min. After that, the color reaction of the paper-based microfluidic device for the detection of listeria was examined.
  • a composition for developing an oxidation reagent was investigated in order to accelerate the oxidation of the chromophore in the chromogenic reaction of the chromogenic substrate.
  • 1.5 ml of the staphylococci cultured under the above conditions was centrifuged, and the bacterial cells were recovered, suspended in 0.5 ml of phosphate buffer, and used as a sample.
  • potassium ferriccyanide (K 3 Fe (CN) 6 ) and potassium ferrocyanide (K 4 Fe (CN) 6 ) were prepared as the oxidation reagent and prepared with FeCl 2 and FeCl 3 and FeSO 4 and FeCl 2 After loading 5 ⁇ l, it is dried in a 40 ° C dryer for 30 minutes.
  • the oxidation reaction characteristic of X-phosphate used for detecting Staphylococcus aureus was found.
  • the best coloring reaction was promoted in 10 mM potassium ferriccyanide (K 3 Fe (CN) 6 ) and potassium ferrocyanide (K 4 Fe (CN) 6 ) in the oxidation reagent.
  • the concentration of chromogenic substrate optimized for the detection of color development of Magenta-beta-galactopyranoside and X-phosphate was investigated as a chromogenic substrate for staphylococci detection.
  • 1.5 ml of the staphylococci cultured under the above conditions was centrifuged, and the bacterial cells were collected, suspended in 0.5 ml of phosphate buffer, and used as a sample.
  • Oxidation reagent for use in manufacturing microfluidic paper chips for staphylococci detection 10 mM potassium ferriccyanide (K 3 Fe (CN) 6) , and potassium ferrocyanide (K 4 Fe (CN ) 6) 5 ⁇ l on a paper produced with a pattern And then dried in a 40 ° C dryer for 30 minutes.
  • the concentration of magenta-beta-galactopyranoside As shown in FIG. 46, when the staphylococci were detected, the characteristics of the coloring reaction depending on the concentration of the magenta-beta-galactopyranoside were found. As the concentration of magenta-beta-galactopyranoside increases, the degree of chromogenic reaction increases. The optimal concentration was determined to be 100 mM since it showed the most suitable coloring reaction at the concentration of magenta-beta-galactopyroanoside of 100 mM or more.
  • the concentration of X-phosphate can be preferably 25 to 100 mM, and most preferably 50 mM.
  • a microfluidic chip made of 100 mM Magenta-beta-galactopyranoside and 25 mM X-phosphate for staphylococci detection was subjected to color development test for microorganisms for staphylococci and other foods.
  • Oxidation reagent for use in manufacturing microfluidic paper chips for staphylococci detection 10 mM potassium ferriccyanide (K 3 Fe (CN) 6) , and potassium ferrocyanide (K 4 Fe (CN ) 6) 5 ⁇ l on a paper produced with a pattern And then dried in a 40 ° C dryer for 30 minutes.
  • Each of the papers was stacked in the order of Inlet - Lysis reagent - Oxidation - Chromogenic reagent - Outlet, and the microorganisms After incubation at 37 ° C for 30 min, 50 ⁇ l of the suspension was injected and the color reaction of the paper - based microfluidic device for staphylococci detection was investigated.
  • Fig. 49 it was confirmed that the target blue color of the staphylococcus was detected. In contrast, in the case of other strains, it was not colored like Vibrio and Listeria, or pink in the case of intestinal hemorrhagic Escherichia coli Salmonella was detected in light blue.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Clinical Laboratory Science (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Fluid Mechanics (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Toxicology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 미생물 검출용 미세유체 종이칩, 이의 제조방법 및 이를 이용한 미생물 검출방법에 관한 것으로, 보다 상세하게는 용균 시약 조성물 및 발색 시약이 포함된 친수성 종이 매체가 순차적으로 적층된 형태의 미생물 검출용 미세유체 종이칩, 이의 제조방법 및 이를 이용한 미생물 검출방법에 관한 것이다. 이러한 본 발명의 미생물 검출을 위해 해당 미생물을 용균시키는 용균 시약 조성물과 그리고 발색단의 산화를 촉진하기 위한 산화 시약 조성물 그리고 해당 미생물이 가지는 특정 효소와 반응하는 발색 시약(chromogenic substrate)을 이용하여 특유의 발색을 통해 쉽고 빠른 미생물의 검출이 가능하며, 가격이 저렴하고 적은 공간에서 효율적으로 미생물을 검출할 수 있는 종이 기반의 미생물 검출용 미세유체 종이칩을 제공한다.

Description

[규칙 제26조에 의한 보정 27.12.2018] 미생물 검출용 미세유체 종이칩, 이의 제조방법 및 이를 이용한 미생물 검출방법
본 발명은 미생물 검출용 미세유체 종이칩, 이의 제조방법 및 이를 이용한 미생물 검출방법에 관한 것으로, 보다 상세하게는 용균 시약 조성물 및 발색 시약이 포함된 친수성 종이 매체가 순차적으로 적층된 형태의 미생물 검출용 미세유체 종이칩, 이의 제조방법 및 이를 이용한 미생물 검출방법에 관한 것이다.
식품위해 인자들에 대한 높은 식품 안정성 요구의 증가에 따라 식품의 제조, 생산, 유통 등의 과정에서 발생할 수 있는 식품위해 인자들에 대한 신속하고 정확한 모니터링에 대한 요구가 높아지고 있다. 특히 식중독을 일으킬 수 있는 식품위해미생물에 대한 신속하고 정확한 검출법은 식품안전뿐만 아니라 의료, 보건, 환경 등의 다양한 분야에서 꼭 필요한 기술이다.
현재 식품위해미생물을 검출하는 검출법으로는 전통적인 미생물 배지를 이용한 검출부터 PCR 이나 면역학적 방법 등을 이용한 다양한 미생물 검출 기술들이 사용되고 있으며, DNA chip 이나 미세유체장치(Microfluidics), DNA array 등과 같은 새로운 기술을 통해 보다 빠르고 정확한 검출을 위한 연구 방법이 개발되고 있다.
식품위해미생물 검출 현장에서 주로 사용되고 있는 기술은 각각의 식품위해미 생물의 선택 배지를 이용한 전통적인 배양법을 이용하고 있으나 이는 증균 배양 및 선택배지에서의 배양시간을 요구하고 있으며 번거로운 작업과 노동력을 요구하는 단점이 있다.
시간과 번거로운 작업 등을 줄이기 위한 방법으로 개발된 기술로 PCR이나 DNA chip, 각종 미세유체장치 및 DNA array에 의한 방법들이 개발되었거나 개발되고 있으나 이러한 기술들은 대부분 비싼 기기나 시약들과 검출을 위해서는 전문적인 기술과 지식이 요구되는 단점이 있다.
이러한 전문검사기술의 단점을 보완하기 위한 기술로 현장형 검출 기술의 개발에 대한 중요성이 제기됨에 따라 이를 위해 ATP 측정법이나 항체기반의 면역학적 검출법이 개발되었다. 그러나 ATP 측정법은 민감도가 높고 간편한 측정법이지만 특이성 분석이 불가능하며 면역학적 검출법은 특이성은 높으나 민감도가 낮고 항체를 사용하므로 높은 가격과 제한적인 제품 보관 및 유통 등의 단점이 있다.
따라서, 현장형 검출 기술로써 식품위해미생물 검출 현장에서 경제적인 모니터링이 가능하면서도 높은 특이도와 민감도를 갖으며 저렴한 검출 비용과 상온에서의 제품 보관 및 유통이 가능한 제품이 필요하고, 현재 식품위해미생물 검출 현장에서는 많은 시료에 대해서 각각 다른 식품위해미생물 검출을 시도하고 있으므로 다중 검출에 대한 요구도 증가하고 있으나 현재 현장형 검출 기술로써 다중 검출이 가능한 제품은 전무한 상태이다.
본 발명은 상기 문제를 해결하고자 안출된 것으로, 미생물 검출을 위해 해당 미생물이 가지는 특정 효소와 반응하는 발색 시약(chromogenic substrate)을 이용하여 특유의 발색을 통해 쉽고 빠른 미생물의 검출이 가능하며, 가격이 저렴하고 적은 공간에서 효율적으로 미생물을 검출할 수 있는 종이 기반의 미생물 검출용 미세유체 종이칩을 제공하고자 한다.
상기 과제 해결을 위하여 본 발명은, 용균 시약(Lysis reagent) 조성물이 포함된 친수성 재질의 종이로 이루어진 용균층 및 발색 시약(Chromogenic reagent)이 포함된 친수성 재질의 종이로 이루어진 발색층이 순차적으로 적층된 미생물 검출용 미세유체 종이칩을 제공한다.
또한, 상기 용균층 위에 또는 상기 발색층 아래에 친수성 재질의 종이로 이루어진 외곽층을 더 적층된 것을 특징으로 하는 미생물 검출용 미세유체 종이칩을 제공한다.
또한, 상기 용균층과 상기 발색층 사이에 산화 시약(Oxidation reagent)이 포함된 친수성 재질의 종이로 이루어진 산화층이 더 적층된 것을 특징으로 하는 미생물 검출용 미세유체 종이칩을 제공한다.
또한, 상기 친수성 재질의 종이의 테두리에 소수성 물질을 프린팅하여 장벽을 형성함에 의해 유체채널을 형성한 것을 특징으로 하는 미생물 검출용 미세유체 종이칩을 제공한다.
또한, 상기 친수성 재질의 종이는 크로마토그래피 페이퍼 또는 필터 페이퍼인 것을 특징으로 하는 미생물 검출용 미세유체 종이칩을 제공한다.
또한, 상기 미생물은 상기 미생물은 살모넬라 (Salmonella), 바실러스 (Bacillus), 리스테리아(Listeria), 비브리오 (Vibrio), 캠필로박터(Campylobacter), 포도상구균(Staphylococcus aureus), 대장균군(Eshcerchia Coliform), 대장균(E. coli), 시겔라균(Shigella, Legionella), 엔테로박터(Enterobacter sakazakii), 시트로박터(Citrobacter), 프로테우스(Preteus), 메티실린 내성균(MRSA) 및 장출혈성 대장균(E.coli O157) 로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는 미생물 검출용 미세유체 종이칩을 제공한다.
또한, 상기 용균 시약(Lysis reagent) 조성물은 Tergitol NP-9, Tergitol NP-10, Tergitol NP-40, Triton X-100, Tween 80, BMT, SB3-8, SB3-10, SB3-14 및 SB3-16로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는 미생물 검출용 미세유체 종이칩을 제공한다.
또한, 상기 용균 시약(Lysis reagent) 조성물은 C7BzO (3-[[3-(4-heptylphenyl)-3-hydroxypropyl]-dimethylazaniumyl]propane-1-sulfonate)를 더 포함하는 것을 특징으로 하는 미생물 검출용 미세유체 종이칩을 제공한다.
또한, 상기 용균 시약(Lysis reagent) 조성물은 실리카 비드(silica bead)를 더 포함하는 것을 특징으로 하는 미생물 검출용 미세유체 종이칩을 제공한다.
또한, 상기 발색 시약(Chromogenic reagent)은 5-브로모-4-클로로-3-인독실-베타-L-아라비노피라노사이드, 5-브로모-4-클로로-3-인독실-베타-D-글루쿠론산, 5-브로모-4-클로로-3-인독실-알파-D-말토트리오사이드, 5-브로모-4-클로로-3-인독실-N-아세틸-베타-D-갈락토사미니드, 5-브로모-4-클로로-3-인독실-N-아세틸-베타-D-글루코사미니드, 5-브로모-4-클로로-3-인독실-N-아세틸-베타-D-갈락토사미니드, 5-브로모-4-클로로-3-인독실-알파-D-N-아세틸뉴라믹산, 5-브로모-4-클로로-3-인독실-알파-L-아라미노푸라노사이드, 5-브로모-4-클로로-3-인독실-베타-D-셀로비오사이드, 5-브로모-4-클로로-3-인독실-콜린 포스페이트, 5-브로모-4-클로로-3-인독실-알파-D-퓨코피라노사이드, 5-브로모-4-클로로-3-인독실-알파-L-퓨코파리노사이드, 5-브로모-4-클로로-3-인독실-알파-D-갈락토피라노사이드, 5-브로모-4-클로로-3-인독실-베타-D-갈락토피라노사이드, 5-브로모-4-클로로-3-인독실-알파-D-글루코피라노사이드, 5-브로모-4-클로로-3-인독실-베타-D-글루코피라노사이드, 5-브로모-4-클로로-3-인독실-미오-이노시톨-1-포스페이트, 5-브로모-4-클로로-3-인독실-알파-D-만노피라노사이드, 5-브로모-4-클로로-3-인독실-베타-D-만노피라노사이드, 5-브로모-4-클로로-3-인독실-알파-D-자일로피라노사이드, 5-브로모-4-클로로-3-인독실 부틸레이트, 5-브로모-4-클로로-3-인독실 카프릴레이트, 5-브로모-4-클로로-3-인독실 노나노네이트, 5-브로모-4-클로로-3-인독실 올레이트, 5-브로모-4-클로로-3-인독실 팔미테이트, 5-브로모-4-클로로-3-인독실 포스페이트, 5-브로모-4-클로로-3-인독실 설페이트, 5-브로모-4-클로로-3-인독실-1-아세테이트, 5-브로모-4-클로로-3-인독실-3-아세테이트, 6-클로로-3-인독실-N-아세틸-베타-D-글루코사미니드, 6-클로로-3-인독실-알파-D-만노피라노사이드, 6-클로로-3-인독실-베타-D-만노피라노사이드, 6-클로로-3-인독실실-미오-이노시톨-1-포스페이트, 6-클로로-3-인독실-N-아세틸-베타-D-갈락토사미니드, 6-클로로-3-인독실-베타-D-셀로비오사이드, 6-클로로-3-인독실-알파-D-갈락토피라노사이드, 6-클로로-3-인독실-베타-D-갈락토피라노사이드, 6-클로로-3-인독실-알파-D-글루코피라노사이드, 6-클로로-3-인독실-베타-D-글루코피라노사이드, 6-클로로-3-인독실-베타-D-글루쿠론산, 6-클로로-3-인독실 부틸레이트, 6-클로로-3-인독실 카프릴레이트, 6-클로로-3-인독실 노나노네이트, 6-클로로-3-인독실 올레이트, 6-클로로-3-인독실 팔미테이트, 6-클로로-3-인독실 포스페이트, 6-클로로-3-인독실 설페이트, 6-클로로-3-인독실-1-아세테이트, 5-브로모-6-클로로-3-인독실-N-아세틸-베타-D-글루코사미니드, 5-브로모-6-클로로-3-인독실-베타-D-푸코피라노사이드, 5-브로모-6-클로로-3-인독실-알파-D-갈락토피라노사이드, 5-브로모-6-클로로-3-인독실-베타-D-갈락토피라노사이드, 5-브로모-6-클로로-3-인독실-알파-D-글루코피라노사이드, 5-브로모-6-클로로-3-인독실-베타-D-글루쿠론산, 5-브로모-6-클로로-3-인독실-알파-D-글루코피라노사이드, 5-브로모-6-클로로-3-인독실-미오-이노시톨-1-포스페이트, 5-브로모-6-클로로-3-인독실 부틸레이트, 5-브로모-6-클로로-3-인독실 카프릴레이트, 5-브로모-6-클로로-3-인독실 노나노네이트, 5-브로모-6-클로로-3-인독실 팔미테이트, 5-브로모-6-클로로-3-인독실 콜린 포스페이트, 5-브로모-6-클로로-3-인독실 포스페이트, 5-브로모-6-클로로-3-인독실 설페이트, 5-브로모-6-클로로-3-인독실-3-아세테이트, 알돌 518 베타-D-갈락토피라노사이드, 알돌 518 알파-D-갈락토피라노사이드, 알돌 518 알파-D-글루코피라노사이드, 알돌 518 베타-D-글루코피라노사이드, 알돌 518 베타-D-글루쿠로산, 알돌 518 미오-이노시톨-1-포스페이트, 알돌 515 카프릴레이트, 알돌 515 팔미테이트, 알돌 515 포스페이트 및 알돌 515 아세테이트로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는 미생물 검출용 미세유체 종이칩을 제공한다.
또한, 상기 산화 시약(Chromogenic reagent)은 potassium ferriccyanide (K3Fe(CN)6)와 potassium ferrocyanide (K4Fe(CN)6)의 혼합물, FeCl2와 FeCl3의 혼합물 및 FeSO4와 FeCl2의 혼합물로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는 미생물 검출용 미세유체 종이칩을 제공한다.
또한, (a) 친수성 재질로 이루어진 복수의 종이의 테두리를 소수성 물질을 프린팅하여 소수성 장벽을 형성하게 만드는 단계, (b) 상기 소수성 물질이 프린트된 한장의 종이의 친수성 영역에 용균 시약(Lysis reagent) 조성물을 흡수시킨 후 건조하는 단계, (c) 상기 소수성 물질이 프린트된 다른 한장의 종이의 친수성 영역에 발색 시약(Chromogenic reagent)을 흡수시킨 후 건조하는 단계 및 (d) 상기 소수성 물질이 프린트된 종이-상기 용균 시약 조성물이 흡수된 종이-상기 발색 시약이 흡수된 종이-상기 소수성 물질이 프린트된 종이를 순서대로 적층하는 단계를 포함하는 미생물 검출용 미세유체 종이칩 제조방법을 제공한다.
또한, 상기 미생물 검출용 미세유체 종이칩을 이용하여 미생물을 검출하는 방법을 제공한다.
이러한 본 발명의 미세유체 종이칩을 이용하면 미생물이 가지는 특정 효소와 반응하는 발색 시약(chromogenic substrate)을 이용하여 특유의 발색을 통해 쉽고 빠른 미생물의 검출이 가능하며, 적은 공간에서 저비용 고효율로 미생물 검출이 가능하다.
도 1은 용균 시약(Lysis reagent)의 종류에 따른 식품위해미생물 5종의 용균 효과를 확인을 위한 SDS-PAGE 사진
도 2는 용균 시약(Lysis reagent)의 종류에 따른 식품위해미생물 5종의 용균 효과를 BCA assay로 측정한 결과를 나타낸 그래프,
도 3은 발색 시약(Chromogenic reagent)의 종류에 따른 비브리오 불니피쿠스(Vibrio vulnificus)의 발색 정도를 관찰한 도면,
도 4는 발색 시약(Chromogenic reagent)의 종류에 따른 살모넬라속(Salmonella spp.)의 발색 정도를 관찰한 도면,
도 5는 식품위해미생물 종류에 따른 Magenta-caprylate의 발색 반응 테스트 결과 사진,
도 6는 발색 시약(Chromogenic reagent)의 종류에 따른 장출혈성대장균(Escherichia coli O157)의 발색 정도를 관찰한 도면,
도 7은발색 시약(Chromogenic reagent)의 종류에 따른 일반 대장균(Escherichia coli)의 발색 정도를 관찰한 도면,
도 8은발색 시약(Chromogenic reagent)의 종류에 따른 리스테리아 모노사이토젠스(Listeria monocytogenes)의 발색 정도를 관찰한 도면,
도 9은 발색 시약(Chromogenic reagent)의 종류에 따른 스타필로코쿠스 아우레우스(Staphylococcus aureus)의 발색 정도를 관찰한 도면,
도 10는 Magenta-beta-galactopyranoside의 산화 시약의 농도에 따른 발색 반응 테스트 결과 사진,
도 11은 X-beta-glucopyranoside의 산화 시약의 농도에 따른 발색 반응 테스트 결과 사진,
도 12은 X-Phosphate의 산화 시약의 농도에 따른 발색 반응 테스트 결과 사진,
도 13는 Magenta-caprylate의 산화 시약의 농도에 따른 발색 반응 테스트 결과 사진,
도 14은 X-beta-glucuronide의 산화 시약의 농도에 따른 발색 반응 테스트 결과 사진,
도 15는 Aldol-myo-inositol-1-phosphate의 산화 시약의 농도에 따른 발색 반응 테스트 결과 사진,
도 16는 비브리오균의 검출 시 Magenta-beta-galactopyranoside의 산화 시약의 종류와 농도에 따른 발색 반응 테스트 결과 사진,
도 17은 살모넬라균 검출 시 Magenta-caprylate의 산화 시약의 종류와 농도에 따른 발색 반응 테스트 결과 사진,
도 18은 스타필로코쿠스균 검출 시 X-phosphate의 산화 시약의 종류와 농도에 따른 발색 반응 테스트 결과 사진,
도 19은 리스테리아균 검출 시 Aldol-myo-inositol phosphate의 산화 시약의 종류와 농도에 따른 발색 반응 테스트 결과 사진,
도 20는 장출혈성대장균 검출 시 Magenta-beta-galactopyranoside의 산화 시약의 종류와 농도에 따른 발색 반응 테스트 결과 사진,
도 21은 왁스 프린트로 프린팅하여 제작된 종이 매체의 도안의 예시를 나타낸 도면(도안에서 검정색 부분은 왁스 코팅되어 소수성 부분, 도면에서 하얀색 부분은 왁스가 코팅되지 않은 친수성 부분을 나타낸다),
도 22은 미세유체 종이칩 제작을 위한 구성 부품(A), 조립과정(B) 및 조립 후 완성된 칩의 외관(C)을 나타낸 도면,
도 23는 종이 두께에 따른 발색 반응 테스트 결과 사진(상: 장출혈성 대장균 검출, 하: 스타필로코쿠스 아우레우스 검출),
도 24은 종이 기공 크기에 따른 발색 반응 테스트 결과 사진(상: 장출혈성 대장균 검출, 하: 스타필로코쿠스 아우레우스 검출),
도 25는 종이매체의 친수성 영역의 크기에 따른 발색 반응 테스트 결과 사진(상: 장출혈성 대장균 검출, 하: 스타필로코쿠스 아우레우스 검출),
도 26는 일반 대장균의 Oxidation reagent의 종류와 농도에 대한 발색 반응 테스트 결과 사진,
도 27은 출혈성 대장균의 Oxidation reagent의 종류와 농도에 대한 발색 반응 테스트 결과 사진,
도 28은 장출혈성 대장균의 Magenta-beta-galactopyranoside의 농도에 대한 발색 반응 테스트 결과 사진,
도 29은 일반 대장균의 X-beta-glucuronide의 농도에 대한 발색 반응 테스트 결과 사진,
도 30는 장출혈성 대장균의 0.1 M X-beta-glucuronide에 대한 Magenta-beta-galactopyranosdie의 농도에 대한 발색 반응 테스트 결과 사진,
도 31은 일반 대장균의 0.1 M X-beta-glucuronide에 대한 Magenta-beta-galacto-pyranoside의 농도에 대한 발색 반응 테스트 결과 사진,
도 32은 장출혈성대장균 검출을 위한 종이기반 미세유동장치에 대한 발색 반응 테스트 결과 사진,
도 33는 비브리오균의 Oxidation reagent의 종류와 농도에 대한 발색 반응 테스트 결과 사진,
도 34은 비브리오균의 X-beta-glucopyranoside의 농도에 대한 발색 반응 테스트 결과 사진,
도 35는 비브리오균 검출을 위한 종이기반 미세유동장치에 대한 발색 반응 테스트 결과 사진,
도 36는 살모넬라균의 Oxidation reagent의 종류와 농도에 대한 Salmone-alpha-glucopyranoside 발색 반응 테스트 결과 사진,
도 37은 살모넬라균의 Salmone-alpha-glucopyranoside의 농도에 대한 발색 반응 테스트 결과 사진,
도 38은 살모넬라균의 X-phosphate의 농도에 대한 발색 반응 테스트 결과 사진,
도 39은 살모넬라균의 0.2 M Salmone-alpha-glucopyranoside 에 대한 X-phosphate의 농도에 대한 발색 반응 테스트 결과 사진,
도 40는 살모넬라균 검출을 위한 종이기반 미세유동장치에 대한 발색 반응 테스트 결과 사진,
도 41은 리스테리아균의 Oxidation reagent의 종류와 농도에 대한 Aldol-myo-Inositol-Phosphate의 발색 반응 테스트 결과 사진,
도 42은 리스테리아균의 Aldol-myo-Inositol-phosphate의 농도에 대한 발색 반응 테스트 결과 사진,
도 43는 리스테리아균의 Aldol-myo-Inositol-phosphate의 농도에 대한 발색 반응 테스트 결과 사진,
도 44은 리스테리아 검출을 위한 종이기반 미세유동장치에 대한 발색 반응 테스트 결과 사진,
도 45는 포도상구균의 Oxidation reagent의 종류와 농도에 대한 X-Phosphate의 발색 반응 테스트 결과 사진,
도 46는 포도상구균의 Magenta-beta-galactopyranosdie 농도에 대한 발색 반응 테스트 결과 사진,
도 47은 포도상구균의 X-phosphate의 농도에 대한 발색 반응 테스트 결과 사진,
도 48은 포도상구균의 0.1 M Magenta-beta-galactopyranoside 에 대한 X-phosphate의 농도에 대한 발색 반응 테스트 결과 사진,
도 49은 포도상구균 검출을 위한 종이기반 미세유동장치에 대한 발색 반응 테스트 결과 사진.
이하 바람직한 실시예를 통하여 본 발명을 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 만 한다. 따라서, 본 명세서에 기재된 실시예의 구성은 본 발명의 가장 바람직한 일실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
본 발명은 용균 시약(Lysis reagent) 조성물이 포함된 친수성 재질의 종이로 이루어진 용균층 및 발색 시약(Chromogenic reagent)이 포함된 친수성 재질의 종이로 이루어진 발색층이 순차적으로 적층된 미생물 검출용 미세유체 종이칩을 개시한다.
본 발명에서 제공하는 상기 미생물 검출용 미세유체 종이칩은 검출 대상 시료를 주입하는 간단한 조작만으로 목적하는 미생물이 상기 검출 대상 시료에 존재하는지 여부를 확인할 수 있는 장치이다. 보다 구체적으로는, 상기 미생물 검출용 미세유체 종이칩에 검출대상 시료를 주입하면 용균층에 포함된 용균 시약(Lysis reagent) 조성물에 의해 미생물의 용균 반응이 진행이 되며, 발색부에 포함된 특정 발색 시약(Chromogenic reagent)이 검출 대상 미생물에 존재하는 효소와 반응하여 발색 반응을 진행하게 되어, 그 결과가 나타나게 된다.
본 발명에서 상기 용균층 위에 또는 상기 발색층 아래에 친수성 재질의 종이로 이루어진 외곽층을 더 적층될 수도 있다. 외곽층이 더 적층됨으로써 반응이 일어나는 미세 공간이 확보되어 반응이 더 안정적일 수 있으며, 외부 물질의 오염으로부터 용균층 또는 발색층이 보호될 수 있다.
본 발명에서 상기 종이는 친수성 재질로 이루어진 종이라면 그 종류에 특별한 제한이 없으며, 바람직하게는 크로마토그래피 페이퍼 또는 필터 페이퍼가 이용이 될 수 있다
본 발명에서 상기 종이의 두께는 특별히 제한되지 않지만 안정성 있는 발색반응을 위해서는 그 두께가 100~1000㎛일 수 있으며, 바람직하게는 200~500㎛일 수 있으며, 가장 바람직하게는 300~500㎛일 수 있다. 종이의 두께가 100㎛ 미만인 경우에는 미생물에 존재하는 효소와 발색 시약이 반응하여 발색 반응을 진행할 수 있는 충분한 공간이 제공이 되지 않을 수 있으며, 1000㎛를 초과하는 경우에는 칩의 두께가 너무 두꺼워져 시약의 사용량이 증가될 수 있으며 검출 결과가 나타나기까지 지나치게 오랜 시간이 소요될 수 있다.
본 발명에서 상기 종이는 다공성 종이인 것이 바람직하며, 이 때 종이의 기공 크기는 3~30㎛일 수 있고, 바람직하게는 5~30㎛일 수 있고, 가장 바람직하게는 7~25㎛일 수 있다.
본 발명에서 상기 친수성 재질로 이루어진 종이는 테두리에 소수성 물질을 프린팅하여 장벽을 형성함에 의해 유체채널이 형성된 것일 수 있다. 본 발명에서 상기 소수성 물질은 친수성 재질의 종이에 프린팅되어 수성 유체의 확산을 제어할 수 있는 물질이라면 그 종류가 특별히 제한되지 않으며, 바람직하게는 왁스나 감광성 폴리머 등의 소수성 성분일 수 있고, 가장 바람직하게는 왁스일 수 있다.
본 발명의 상기 미세유체 종이칩은 주입된 검출 대상 시료가 순차적으로 용균층 및 발색층으로 흡수되어 이동이 되는 과정에서 대상 미생물의 존재 여부가 발색반응을 통해 확인이 될 수 있기 때문에, 종이칩의 상하를 관통하는 일정한 유체의 흐름이 유도될 수 있어야 한다. 따라서, 용균층, 발색층 및 외곽층을 구성하는 상기 친수성 재질의 종이는 각각 동일한 형상의 친수성 영역을 제외하고는 그 테두리가 왁스 또는 감광성 폴리머와 같은 소수성 물질로 코팅이 되어 소수성 영역으로 형성이 될 수 있으며, 이에 따라 주입된 검출 대상 시료가 각 층의 주변부로 흡수되어 퍼지지 않고, 순차적으로 각 층으로 용이하게 전달이 될 수 있다.
본 발명에서 상기 외곽층은 검출 대상 시료가 주입이 되는 주입구(inlet) 기능을 하는 층으로서, 테두리에 왁스가 코팅된 친수성 재질의 종이 그 자체를 이용할 수 있다.
본 발명에서 상기 용균층으로 주입된 검출 대상 시료에 존재하는 미생물의 용균(Lysis) 현상이 유도가 되는 층으로서, 용균 시약(Lysis reagent) 조성물이 포함되어 있는 친수성 재질의 종이층이다.
본 발명에서 상기 용균층에 포함된 용균 시약 조성물은 당업계에서 통상적으로 이용되는 용균 버퍼(lysis buffer)의 조성이라면 제한없이 이용이 될 수 있으며, 바람직하게는 계면활성제, 양이온성 세제(detergent), 음이온성 세제, 비이온성 세제를 포함하는 조성물이 이용될 수 있다. 본 발명에서 상기 계면활성제 및 세제의 비제한적인 예시로는 Tergitol NP-9, Tergitol NP-10, Tergitol NP-40, Triton X-100, Tween 80, BMT, SB3-8, SB3-10, SB3-14, SB3-16 등을 들 수 있다.
본 발명에서 상기 발색층은 용균층에서 용균된 미생물이 포함하고 있는 미생물 고유 효소에 대한 발색 시약을 포함하고 있어, 상기 검출 대상 시료에 목적하는 대상 미생물이 존재할 경우 특유의 발색반응이 진행되는 기능을 한다.
따라서, 본 발명의 상기 미생물 검출용 미세유체 종이칩은 검출대상 미생물의 종류가 특별히 제한되지 않으며, 미생물 내부에 존재하는 고유의 효소와 특이적인 발색반응을 진행할 수 있는 발색 시약을 적절히 선택하여 상기 제3층부에 적용할 수 있다면, 본 발명에 따른 상기 미세유체 종이칩을 이용하여 검출이 가능한 미생물의 종류에는 제한이 없다.
이때 사용되는 발색 시약은 미생물이 주요하게 갖는 2가지의 목표 효소에 대해 고유의 발색 시약을 사용할 수 있으며, 상기 발색 시약은 발색을 나타내는 발색단(chromophore)과 고유의 기질로 구성되어 있는데 미생물에 존재하는 효소에 의해서 절단되면 고유의 색을 나타내게 된다. 효소에 의해서 절단되어 나타나는 발색단은 노란색, 빨간색, 파란색, 보라색 등의 고유의 색으로 나타내는데 이때 2가지 효소에 의해서 교차 검증을 통해 각각의 미생물이 검출 가능하도록 조합할 수 있으며, 이에 따라 생성되는 고유의 색을 통해서 다양한 미생물들을 구분하여 검출할 수 있다.
예를 들면, 리스테리아균의 경우에는 파란색을 나타내는 발색 시약인 5-Bromo-4-chloro-3-indolyl-myo-inositol-1-phosphate와 빨간색을 나타내는 5-Bromo-6-chloro-3-indolyl-β-D-glucopyranoside을 이용하므로 리스테리아균 검출 시 보라색으로 검출이 되게 되고 이는 검출 균수의 농도에 따라서 색이 증가하므로 이를 통해 정성 및 정량 검출이 가능하다.
검출하고자 하는 복수의 미생물들 중 에서 목표로 하는 효소가 중복되는 경우에는 사용하는 발색 시약을 달리하므로 교차에 의한 혼동이 없도록 발색 시약을 구성할 수 있다. 예를 들면 리스테리아균의 목표 효소인 beta-glucosidase는 비브리오균에 경우에도 같은 목표 효소이므로 이를 위한 발색 시약은 빨간색을 나타내는 발색 시약인 5-Bromo-6-chloro-3-indolyl-β-D-glucopyranoside을 이용할 수 있고, 비브리오균의 경우에는 오렌지색을 나타내는 Aldol® 484 β-D-glucopyranoside를 이용하여 다른 교차 보완되는 효소에 의한 차이뿐 아니라 발색의 차이로도 검출을 구별할 수 있다.
또한, 본 발명의 미세유체 종이칩에 의할 경우 색반응에 의한 정성분석뿐 아니라 정량분석이 가능할 수 있으며, 구체적으로는 미생물의 균수에 따른 색도의 차이를 분석하여 표준화 함으로써 정량적인 분석이 가능할 수 있다.
바람직하게는, 본 발명에서 상기 발색 시약은 상기 발색 시약(Chromogenic reagent)은 5-브로모-4-클로로-3-인독실-베타-L-아라비노피라노사이드, 5-브로모-4-클로로-3-인독실-베타-D-글루쿠론산, 5-브로모-4-클로로-3-인독실-알파-D-말토트리오사이드, 5-브로모-4-클로로-3-인독실-N-아세틸-베타-D-갈락토사미니드, 5-브로모-4-클로로-3-인독실-N-아세틸-베타-D-글루코사미니드, 5-브로모-4-클로로-3-인독실-N-아세틸-베타-D-갈락토사미니드, 5-브로모-4-클로로-3-인독실-알파-D-N-아세틸뉴라믹산, 5-브로모-4-클로로-3-인독실-알파-L-아라미노푸라노사이드, 5-브로모-4-클로로-3-인독실-베타-D-셀로비오사이드, 5-브로모-4-클로로-3-인독실-콜린 포스페이트, 5-브로모-4-클로로-3-인독실-알파-D-퓨코피라노사이드, 5-브로모-4-클로로-3-인독실-알파-L-퓨코파리노사이드, 5-브로모-4-클로로-3-인독실-알파-D-갈락토피라노사이드, 5-브로모-4-클로로-3-인독실-베타-D-갈락토피라노사이드, 5-브로모-4-클로로-3-인독실-알파-D-글루코피라노사이드, 5-브로모-4-클로로-3-인독실-베타-D-글루코피라노사이드, 5-브로모-4-클로로-3-인독실-미오-이노시톨-1-포스페이트, 5-브로모-4-클로로-3-인독실-알파-D-만노피라노사이드, 5-브로모-4-클로로-3-인독실-베타-D-만노피라노사이드, 5-브로모-4-클로로-3-인독실-알파-D-자일로피라노사이드, 5-브로모-4-클로로-3-인독실 부틸레이트, 5-브로모-4-클로로-3-인독실 카프릴레이트, 5-브로모-4-클로로-3-인독실 노나노네이트, 5-브로모-4-클로로-3-인독실 올레이트, 5-브로모-4-클로로-3-인독실 팔미테이트, 5-브로모-4-클로로-3-인독실 포스페이트, 5-브로모-4-클로로-3-인독실 설페이트, 5-브로모-4-클로로-3-인독실-1-아세테이트, 5-브로모-4-클로로-3-인독실-3-아세테이트, 6-클로로-3-인독실-N-아세틸-베타-D-글루코사미니드, 6-클로로-3-인독실-알파-D-만노피라노사이드, 6-클로로-3-인독실-베타-D-만노피라노사이드, 6-클로로-3-인독실실-미오-이노시톨-1-포스페이트, 6-클로로-3-인독실-N-아세틸-베타-D-갈락토사미니드, 6-클로로-3-인독실-베타-D-셀로비오사이드, 6-클로로-3-인독실-알파-D-갈락토피라노사이드, 6-클로로-3-인독실-베타-D-갈락토피라노사이드, 6-클로로-3-인독실-알파-D-글루코피라노사이드, 6-클로로-3-인독실-베타-D-글루코피라노사이드, 6-클로로-3-인독실-베타-D-글루쿠론산, 6-클로로-3-인독실 부틸레이트, 6-클로로-3-인독실 카프릴레이트, 6-클로로-3-인독실 노나노네이트, 6-클로로-3-인독실 올레이트, 6-클로로-3-인독실 팔미테이트, 6-클로로-3-인독실 포스페이트, 6-클로로-3-인독실 설페이트, 6-클로로-3-인독실-1-아세테이트, 5-브로모-6-클로로-3-인독실-N-아세틸-베타-D-글루코사미니드, 5-브로모-6-클로로-3-인독실-베타-D-푸코피라노사이드, 5-브로모-6-클로로-3-인독실-알파-D-갈락토피라노사이드, 5-브로모-6-클로로-3-인독실-베타-D-갈락토피라노사이드, 5-브로모-6-클로로-3-인독실-알파-D-글루코피라노사이드, 5-브로모-6-클로로-3-인독실-베타-D-글루쿠론산, 5-브로모-6-클로로-3-인독실-알파-D-글루코피라노사이드, 5-브로모-6-클로로-3-인독실-미오-이노시톨-1-포스페이트, 5-브로모-6-클로로-3-인독실 부틸레이트, 5-브로모-6-클로로-3-인독실 카프릴레이트, 5-브로모-6-클로로-3-인독실 노나노네이트, 5-브로모-6-클로로-3-인독실 팔미테이트, 5-브로모-6-클로로-3-인독실 콜린 포스페이트, 5-브로모-6-클로로-3-인독실 포스페이트, 5-브로모-6-클로로-3-인독실 설페이트, 5-브로모-6-클로로-3-인독실-3-아세테이트, 알돌 518 베타-D-갈락토피라노사이드, 알돌 518 알파-D-갈락토피라노사이드, 알돌 518 알파-D-글루코피라노사이드, 알돌 518 베타-D-글루코피라노사이드, 알돌 518 베타-D-글루쿠로산, 알돌 518 미오-이노시톨-1-포스페이트, 알돌 515 카프릴레이트, 알돌 515 팔미테이트, 알돌 515 포스페이트, 알돌 515 아세테이트로 이루어진 군에서 선택된 1종 이상일 수 있으며, 이를 통해 검출할 수 있는 미생물은 식품위해미생물로서 살모넬라 (Salmonella), 바실러스 (Bacillus), 리스테리아(Listeria), 비브리오 (Vibrio), 캠필로박터(Campylobacter), 포도상구균(Staphylococcus aureus), 대장균군(Eshcerchia Coliform), 대장균(E. coli), 시겔라균(Shigella, Legionella), 엔테로박터(Enterobacter sakazakii), 시트로박터(Citrobacter), 프로테우스(Preteus), 메티실린 내성균(MRSA), 장출혈성 대장균(E.coli O157) 로 이루어진 군에서 선택된 1종 이상일 수 있다.
본 발명의 미세유체 종이칩은 상기 제2층부 및 제3층부 사이에 산화 시약(Oxidation reagent)이 포함된 친수성 재질로 이루어진 종이가 추가로 적층이 될 수 있다.
상기 산화 시약은 미생물 검출 시 발색 시약의 발색단 산화를 촉진하여 검출 속도를 향상시키는 역할을 할 수 있다.
본 발명에서 상기 상기 발색층 아래에 친수성 재질의 종이로 이루어진 외곽층은 발색층에서 효소-발색 시약의 반응에 의해 유도된 발색 현상이 반영이 되는 층으로서, 상기 용균층 위에 친수성 재질의 종이로 이루어진 외곽층과 마찬가지로 테두리가 왁스로 코팅된 친수성 재질의 종이 그 자체가 그대로 이용이 될 수 있다.
본 발명의 상기 미세유체 종이칩은 상기 용균층 및 발색층이 적층된 후 이들을 고정하여 결합할 수 있는 캐스트를 포함할 수 있다. 상기 캐스트의 상면부에는 검출 대상 시료를 주입할 수 있는 홀(hole)이 형성이 될 수 있으며, 상기 캐스트의 하면부에는 발색 반응 여부를 관찰할 수 있는 홀(hole)이 형성이 될 수 있다.
본 발명은 또한 (a) 친수성 재질로 이루어진 복수의 종이의 테두리를 소수성 물질을 프린팅하여 소수성 장벽을 형성하게 만드는 단계; (b) 상기 소수성 물질이 프린트된 한장의 종이의 친수성 영역에 용균 시약(Lysis reagent) 조성물을 흡수시킨 후 건조하는 단계; (c) 상기 소수성 물질이 프린트된 다른 한장의 종이의 친수성 영역에 발색 시약(Chromogenic reagent)을 흡수시킨 후 건조하는 단계; 및 (d) 상기 소수성 물질이 프린트된 종이-상기 용균 시약 조성물이 흡수된 종이-상기 발색 시약이 흡수된 종이-상기 소수성 물질이 프린트된 종이를 순서대로 적층하는 단계를 포함하는 미생물 검출용 미세유체 종이칩 제조방법을 제공한다.
본 발명은 또한 상기 미생물 검출용 미세유체 종이칩을 이용하여 미생물을 검출하는 방법을 제공한다.
이하, 본 발명을 실시예를 통하여 상세히 설명한다.
실시예 1
미생물 분양 및 배양
식품위해미생물 검출을 위한 표준 균주로 활용하기 위하여 국내 미생물 분양기관을 이용하여 분양신청 분양받아 활용하였다. 이때 분양받은 식품위해미생물과 분양기관을 하기 표 1에 나타내었으며, 각각의 미생물의 배양 배지를 하기 표 2에 나타내었다.
[표 1]
Figure PCTKR2018016003-appb-I000001
[표 2]
Figure PCTKR2018016003-appb-I000002
실시예 2
미생물 검출을 위한 용균 시약(Lysis reagent) 조성물의 개발
상기 실시예 1에서 배양한 식품위해미생물 5종에 대한 효과적인 용균 시약(lysis reagent) 탐색하기 위해 다양한 detergent에 대한 박테리아 용균 효과를 광학밀도 (Optical density; O.D.)를 측정함으로 테스트하였다.
용균 시약(lysis reagent)를 탐색하기 위해 음이온 detergent인 Sodium dodecyl sulfate(SDS)를, 비이온 (non-ionic) detergent인 Tergitol NP-9 등을 비롯한 5종을, 양이온 detergent로 Tween 80 등을 비롯한 5종을, 및 양쪽성 detergent로는 3-[Dimethyl(n-octyl)ammonio]propane-1-sulfonate를 비롯한 5종에 대해 총 16종의 detergent 에 대해 테스트하였다(결과 미도시).
(1) 용균 디터전트(lysis degergent) 종류에 따른 박테리아 용균 효과 테스트
이 중에서 용균 효과가 우수한 것으로 나타난 SDS, Tergitol NP-9, Tergitol NP-10, Tergitol NP-40, Triton X-100, 1-Butyl-3-methylimidazolium Thiocyanate (BMT), Tween 80, 3-[Dimethyl(n-octyl)ammonio]propane-1-sulfonate (SB3-8), 3-(Dodecyldimethylammonio)propane-1-sulfonate (SB3-10), 3-[Dimethyl (tetradecyl)ammonio]propane-1-sulfonate (SB3-14), 3-(Hexadecyldimethyl ammonio)propane-1-sulfonate (SB3-16) 의 10 종류의 detergent에 대한 박테리아 용균 효과를 광학밀도 (Optical density; O.D.)를 측정하여 테스트하였다.
구체적으로, 상기 식품위해미생물 5종을 각각의 액체 배지에 전-배양한 후 접종량 1%(v/v)로 접종하여 24시간 키운 후 배양액의 O.D. 를 측정하여 이의 O.D. 값이 1.5 정도의 수치가 되도록 Phosphate Salt buffer (PSB)로 희석한 후 여기에 상기 10 종류의 detergent를 1%가 되도록 첨가한 후 10 분 후에 O.D. 값을 측정하여 용균 시약의 종류에 따른 용균 효과를 테스트하였고, 이에 대한 결과를 하기 표 3 및 표 4에 나타내었다.
[표 3]
Figure PCTKR2018016003-appb-I000003
[표 4]
Figure PCTKR2018016003-appb-I000004
상기 표 3 및 표 4를 참조하면, SB3 씨리즈의 박테리아 용균 효과가 굉장히 좋은 것으로 나타났다. 특징적인 것은 세포벽에 peptidoglycan 층이 얇은 그람 음성균인 장출혈성 대장균(E. coli O157:H5), 살모넬라균(Salmonella), 비브리오균(Vibrio)의 경우에는 더욱 lysis 효과가 좋은 것으로 나타났으나 세포벽에 peptidoglycan 층이 두꺼운 그람 양성균인 리스테리아균(Listeria)과 포도상구균(Staphylococcus)의 경우에는 약간 lysis 효과가 낮게 나타나는 결과를 보여주었다.
SB3 씨리즈 중에서 3-[Dimethyl (tetradecyl)ammonio]propane-1-sulfonate (SB3-14)가 가장 좋은 박테리아 용균 효과를 보여주었다.
(2) 용균 디터전트(lysis degergent) 종류에 따른 박테리아 용균 효과 테스트
SB3 씨리즈 중에서 3-[Dimethyl (tetradecyl)ammonio]propane-1-sulfonate (SB3-14)가 가장 좋은 bacterial lysis 효과를 보여 주었다. 그러나 농도를 1 %로 하여 측정한 결과이므로 10 종류의 detergent 중에서 비교적 좋은 lysis 효과를 보여준 Triton X-100과 SB3 씨리즈 중에서 SB3-8을 제외한 SB3-10, SB3-14, SB3-16의 농도에 따른 lysis 효과를 테스트하였다. 하기 표 5 및 표 6에 나타내었다.
[표 5]
Figure PCTKR2018016003-appb-I000005
[표 6]
Figure PCTKR2018016003-appb-I000006
상기 표 5 및 표 6을 참조하면, SB3-14가 가장 좋은 박테리아 용균 효과를 보여주며, 비브리오균(Vibrio vulnificus)을 제외하고는 1 %의 농도에서 가장 좋은 용균(bacterial lysis) 효과를 나타내는 것을 알 수 있다.
(3) 용균 디터전트 첨가제에 대한 용균 효과 테스트
상기 결과에서 우수한 용균 효과를 나타낸 1%의 SB3-14에 대해, 용균 효과를 증진시킬 수 있는 첨가제로 Lysozyme, C7BzO 와 Silica bead(200 mesh)의 효과를 평가해 보았다. 이에 대한 결과를 하기 표 7, 표 8 및 표9에 나타내었다.
[표 7]
Figure PCTKR2018016003-appb-I000007
상기 표 7를 참조하면, C7BzO 와 Silica bead를 1 %(v/v)의 SB3-14에 첨가했을 때 lysis 효과가 가장 높게 증가되는 것으로 나타났다.
한편, 이에 따라 C7BzO 의 첨가 농도에 따른 lysis 증진 효과를 조사하였다. 이에 대한 결과를 하기 표 8에 나타내었다.
[표 8]
Figure PCTKR2018016003-appb-I000008
상기 표 8을 참조하면, 1%(v/v)의 SB3-14에 C7BzO 0.1%(v/v)를 첨가하였을 때 가장 좋은 lysis 효과를 증진시킬 수 있는 것으로 나타났다.
한편, 이 중에서 그람 음성균에 비해 그람 양성균의 lysis 정도가 낮으므로 보다 효과적인 bacterial lysis를 위해서 그람 양성균인 포도상구균과 리스테리아균에 대해서 실리카 비드 첨가할 때에 bacterial lysis에 미치는 영향에 대해서 조사하였다. 이에 대한 결과를 하기 표 9에 나타내었다.
[표 9]
Figure PCTKR2018016003-appb-I000009
상기 표 9을 참조하면, 그람 양성균인 포도상구균과 리스테리아균에 대해서 실리카 비드 첨가할 때에 bacterial lysis에 상당한 시너지 효과가 나타나는 것을 확인할 수 있었다.
(4) 용균 시약 조성물의 용균 효과 테스트
(가) SDS-PAGE를 이용한 lysis reagent 조성물의 bacterial lysis 효과 확인 테스트
상기 결과에 따라, 식품위해미생물 5 종에 대한 최종 lysis 조성물인 인산염 완충액 (Phosphate saline buffer; PSB)을 기본 버퍼로 하여 1% SB3-14와 0.1 % C7BzO를 넣은 조성물에 대한 bacterial lysis 효과를 확인하기 위하여, 각각의 미생물을 24시간 배양한 후에 이를 원심분리기로 다운하여 세포를 모은 후 여기에 lysis reagent 0.5 ml 을 첨가한 후 다시 원심분리한 후 상등액을 20 ml 씩 단백질 전기영동을 하여 SDS-PAGE를 통해 bacterial lysis 효과를 확인하여 보았다.
한편 식품위해미생물 5 종에 대한 lysis reagent 조성물에 따른 bacterial lysis 효과를 확인하기 위하여, 기존에 통상적으로 사용되는 lysis buffer (50 mM Tris pH 8.0, 0.1 % Triton X-100, 0.1 mg lysozyme)와 상업적으로 사용되는 Thermo사 제품인 B-PER buffer 를 구입하여 비교 테스트하였다. 이때 silica bead 를 넣었을 때와 넣지 않았을 때도 상호 비교하였다.
이에 대한 결과를 도 1에 나타내었다.
도 1에 나타낸 바와 같이, 단순 인산완충액을 사용하였을 때에는 비브리오균을 제외하고 모든 식품위해 미생물의 lysis가 일어나지 않았다. 기존 통상적인 사용되는 lysis buffer의 경우와 상용 B-PER buffer의 경우에 비해 개발한 lysis reagent 조성이 보다 많은 단백질의 추출되었음을 확인할 수 있었다. 특히 음성균에 비해 양성균에서 보다 뚜렷한 bacterial lysis 효과가 좋다는 것을 확인하였으며, 본 발명의 lysis reagent 만을 사용한 것과 silica bead를 첨가한 것을 비교한 결과 첨가한 것이 보다 좋은 lysis 효과가 있는 것을 확인하였다.
(나) Bicinchoninic acid (BCA) assay 를 이용한 lysis reagent 조성물의 bacterial lysis 효과 확인 테스트
또한 상기 결과에 따라, 식품위해미생물 5 종에 대한 용균 시약 조성물로서 (i) 인산염 완충액(Phosphate saline buffer; PSB)을 기본 버퍼로 하여 1% SB3-14 및 0.1% C7BzO을 포함하는 조성물; 또는 인산염 완충액(Phosphate saline buffer; PSB)을 기본 버퍼로 하여 1% SB3-14, 0.1% C7BzO 및 1%의 silica bead를 넣은 조성물의 박테리아 용균 효과를 확인하기 위하여 5종의 미생물을 24시간 배양한 후에 이를 원심분리기로 다운하여 세포를 모은 후 여기에 상기 용균 시약 조성물 0.5ml 을 첨가한 후 다시 원심분리한 후 상등액을 회수하였다.
상등액에 포함된 단백질의 총량을 BCA assay를 통해 분석함으로 용균 시약 조성물에 의한 식품위해미생물 5종의 용균 효과를 분석하였다.
대조군으로는 일반 용균 버퍼(normal lysis buffer)와 상용 제품(B-per)를 사용하였다. 일반 용균버퍼는 50mM Tri-HCl (pH 8.0)를 기본 버퍼로 하여 0.1% Trioton X-100과 100mg Lysozyme이 첨가하여 사용하였고 상용제품은 Thermo fischer 사에서 제작된 B-PER™ Bacterial Protein Extraction Reagent를 사용하였다.
이에 대한 결과를 도 2에 나타내었다.
도 2에 나타낸 바와 같이, 각 조건에 따른 bacterial lysis 효과를 비교한 결과 기존 사용되는 일반 lysis buffer나 상용화되어 판매되고 있는 제품에 비해 본 발명의 실시예 1에서 개발한 상기 용균 시약 조성물이 보다 효과적인 bacterial lysis를 보이는 것으로 나타났으며, Silica bead를 첨가하는 것이 보다 좋은 lysis 효과가 있는 것으로 나타났다.
이상의 결과를 통해 식품위해미생물 5 종에 대해 적용하기 위한 용균 시약 조성물은 인산염 완충액 (Phosphate saline buffer; PSB)을 기본 버퍼로 하여 1%(v/v)의 SB3-14와 0.1%(v/v)의 C7BzO를 포함하는 것으로 최종 결정하였고 보다 높은 시너지 효과를 주기 위해서는 silica bead를 첨가하여 사용하는 것으로 결정하였다.
실시예 3
1. 미생물 검출을 위한 발색 시약(Chromogenic reagent)의 선정
미생물에 따른 발색 시약 선정을 위해 발색 시약으로 9가지를 구입하여 활용하였다. 그 리스트를 하기 표 10에 나타내었다.
[표 10]
Figure PCTKR2018016003-appb-I000010
상기의 발색 시약은 물에 대한 용해도가 낮으므로 X-Phosphate를 제외한 모든 발색 시약은 Dimethyl sulfoxide(DMSO)에 녹여서 사용하였고 X-phosphate 만을 3차 증류수에 녹여서 사용하였다.
5종의 식품위해미생물에 대한 발색 시약의 발색반응을 검출하기 위해서 상기의 발색 시약을 100 mM이 되도록 녹인 후 이를 stock solution으로 하고 최종 농도가 10 mM이 되도록 첨가하여 발색반응을 테스트하였다.
5종의 식품위해미생물은 24시간 전배양한 균주를 접종량 1 %로 접종하여 상기 배지에서 24 시간 배양한 후 상기의 균수와 유사하도록 O.D. 를 측정하여 균수를 일정하게 하여 발색 반응 테스트에 이용하였다.
구체적으로, 각 미생물에 대한 발색 반응 테스트를 위해 상기의 조건에서 배양한 각 미생물 배양액 1.5 ml을 원심 분리하여 bacterial cell을 회수한 후 여기에 상기 실시예 2에서 제조한 용균 시약 조성물 0.5 ml을 넣어 현탁액을 조성한 후 이를 초음파기(sonicator) 또는 볼텍스 믹서로 5-10 분 동안 파쇄 반응을 시켰다.
파쇄 반응 후에 다시 원심분리한 후 상등액을 96 well plate 상에 0.1 ml 씩 넣고 여기에 미리 준비해 놓은 각각의 발색 시약의 100 mM stock solution을 10ml씩 넣은 후 37 °C 에서 30 분간 반응시킨 후에 발색 반응 여부를 검출하였다.
이에 대한 결과를 도 3 내지 도 9에 나타내었다.
도 3에 나타낸 바와 같이, 비브리오균(Vibrio vulnificus)의 경우 상기의 조건에서 Magenta-beta-galactopyranoside, Salmon-alpha-glucospyranoside, Magenta-beta-glucopyranoside 및 X-alpha-glucospyranoside에 대해 각각 특유의 발색 반응이 나타났다. 이 중에서 비브리오균 검출을 위한 발색 시약으로는 Magenta-beta-galactopyranoside (보라색)과 X-beta-glucospyranoside (파란색)을 선정하였다.
도 4에 나타낸 바와 같이, 살모넬라균(Salmonella spp.)의 경우 상기의 조건에서 X-phosphate와 Salmon-alpha-glucospyranoside 에 대해 각각 특유의 강한 발색 반응이 나타났다. 두 개의 강한 발색 반응이 나타난 기질 중에서 살모넬라균 검출을 위한 발색 시약으로는 X-phosphate (파란색)와 Salmon-alpha-glucospyranoside (자주색)을 선정하였다.
도 5에 나타낸 바와 같이, 식품위해미생물의 선별 검출을 위해서 lipase 활성 반응을 테스트한 결과 다른 식품위해미생물에는 lipase 활성 반응이 나타나지 않았으며 포도상구균과 살모넬라균의 경우 발색 반응이 나타났으나 반응 강도와 속도 등에 있어서 살모넬라균이 강하게 나타나므로 Magenta-caprylate(보라색)를 살모넬라균 검출을 위한 발색기질로 선정하였다.
도 6에 나타낸 바와 같이, 장출혈성대장균(Escherichia coli O157)의 경우 상기의 조건에서 Magenta-beta-galactopyranoside(자주색)에 대해서만 각각 특유의 발색 반응이 나타났다.
도 7에 나타낸 바와 같이, 일반 대장균의 경우 상기의 조건에서 X-beta-glucouronide(하늘색)에 대해 특유의 발색 반응을 나타났다.
도 8에 나타낸 바와 같이, 리스테리아균의 경우 상기의 조건에서 Aldol-myo-inositol-1-phosphate(갈색)에 대해 특유의 발색 반응이 나타났다.
도 9에 나타낸 바와 같이, 포도상구균(Staphylococcus aureus)의 경우 상기의 조건에서 Magenta-beta-galactopyranoside와 X-phosphate 그리고 Salmon-alpha-glucospyranoside 에 대해 각각 특유의 발색 반응이 나타났다. 이 중에서 포도상구균 검출을 위한 발색 시약으로는 Magenta-beta-galactopyranoside (보라색)과 X-phosphate (파란색)를 선정하였다.
2. 발색 시약(Chromogenic reagent)의 농도에 따른 발색반응 테스트
상기 선정된 발색 시약의 농도에 대한 발색 반응 테스트를 위해 상기의 조건에서 배양한 식품위해미생물 1.5 ml을 원심 분리하여 bacterial cell을 회수한 후 여기에 lysis reagent 조성물 0.5 ml을 넣어 현탁액을 조성한 후 이를 초음파기(sonicator) 또는 볼텍스 믹서로 5-10 분 동안 파쇄 반응을 시킨다. 파쇄 반응 후에 다시 원심분리한 후 상등액을 96 well plate 상에 0.1 ml씩 넣고 여기에 미리 준비해 놓은 발색 시약의 100, 50, 40, 30, 20, 10, 5, 1 mM stock solution을 10 μl씩 넣은 후 37 °C 에서 30 분간 반응시킨 후에 발색 반응 여부를 아래와 같이 검출하였다.
이에 대한 결과를 도 10 내지 도 15에 나타내었다.
도 10에 나타낸 바와 같이, 비브리오균의 경우에는 Magenta-beta-galactopyranoside의 농도가 100 mM일 때 최종농도가 5~10 mM일 때 강한 발색 반응이 나타났으며 바람직하게는 10 mM일 때 가장 강한 발색 반응이 나타났다. 포도상구균의 경우에는 Magenta-beta-galactopyranoside의 농도가 100 mM일 때 최종농도가 4~10 mM일 때 강한 발색 반응이 나타났으며 바람직하게는 10 mM일 때 가장 강한 발색 반응이 나타났다. 장출혈성대장균의 경우에는 40 mM 일 때 최종농도가 3~10 mM일 때 강한 발색 반응이 나타났으며 바람직하게는 3~4 mM일 때 가장 강한 발색 반응이 나타났다.
도 11에 나타낸 바와 같이, X-beta-glucopyranoside의 농도가 100 mM일 때 최종농도가 5~10 mM일 때 강한 발색 반응이 나타났으며 바람직하게는 10 mM일 때 가장 강한 발색 반응이 나타났다.
도 12에 나타낸 바와 같이, 살모넬라균 및 포도상규균 모두에서 X-phosphate의 농도가 100 mM일 때 최종농도가 5~10 mM일 때 강한 발색 반응이 나타났으며 바람직하게는 10 mM일 때 가장 강한 발색 반응이 나타났다.
도 13에 나타낸 바와 같이, Magenta-caprylate의 농도가 100 mM일 때 최종농도가 5~10 mM일 때 강한 발색 반응이 나타났으며 바람직하게는 10 mM일 때 가장 강한 발색 반응이 나타났다.
도 14에 나타낸 바와 같이, X-beta-glucuronide의 농도가 100 mM일 때 최종농도가 5~10 mM일 때 강한 발색 반응이 나타났으며 바람직하게는 10 mM일 때 가장 강한 발색 반응이 나타났다.
도 15에 나타낸 바와 같이, Aldol-myo-inositol-1-phosphate의 농도가 40 mM일 때 최종농도가 2~4 mM일 때 강한 발색 반응이 나타났으며 바람직하게는 4 mM일 때 가장 강한 발색 반응이 나타났다.
실시예 4
미생물 검출을 위한 산화 시약(Oxidation reagent)의 선정
미생물 검출 시 발색 시약의 발색 반응 과정에서 발색단의 산화를 촉진하기 위해서 산화 시약(oxidation reagent)을 개발하고자 하였다. 이를 위해서 상기의 조건에서 배양한 각각의 미생물 5종의 배양액 1.5 ml을 원심 분리하여 bacterial cell을 회수한 후 여기에 상기 실시예 2에서 제조한 용균 시약(lysis reagent) 조성물 0.5 ml을 넣어 현탁액을 조성한 후 이를 초음파기(sonicator)에서 반응시간 별로 파쇄 반응을 수행하였다.
파쇄 반응 후에 다시 원심분리한 후 상등액을 96 well plate 상에 0.1 ml 씩 넣고 여기에 미리 준비한 각각의 발색 시약을 각각 10 ㎕ 씩 넣고 여기에 산화 시약(oxidation reagent)으로 potassium ferriccyanide (K3Fe(CN)6) 및 potassium ferrocyanide (K4Fe(CN)6); FeCl2 및 FeCl3; 그리고 FeSO4 및 FeCl2를 농도별로 첨가한 후 37 °C 에서 30 분간 반응시킨 후에 산화 시약(oxidation reagent)의 농도에 따른 발색반응을 테스트하였다. 상기 발색 시약으로는 비브리오균의 경우 Magenta-beta-galactopyranoside, 살모넬라균의 경우 Magenta-caprylate, 포도상구균의 경우 X-phosphate, 리스테리아균의 경우 Aldol-myo-inositol phosphate, 장출혈성 대장균의 경우 Magenta-beta-galactopyranoside를 이용하였다.
이에 대한 결과를 도 16 내지 도 20에 나타내었다.
도 16 내지 도 20에 나타낸 바와 같이, 산화 시약을 첨가하는 것이 첨가하지 않는 것보다 발색 반응을 촉진하는 결과도 있었지만 대부분 첨가하는 경우에 발색 반응에 영향을 주지 않거나 오히려 발색 반응을 감소시키는 결과를 얻었다.
Magenta-beta-glucopyranoside, Magenta-beta-galactopyranoside 또는 X-phosphate의 경우에는 potassium ferriccyanide (K3Fe(CN)6)와 potassium ferrocyanide (K4Fe(CN)6)를 첨가하는 경우 특히 발색 반응을 촉진하는 것으로 나타났다. 이때 각각 최종 농도가 0.2와 2.5 그리고 0.5 mM일 때 가장 좋은 발색 반응 결과를 얻을 수 있었다.
potassium ferriccyanide (K3Fe(CN)6)/potassium ferrocyanide (K4Fe(CN)6) 외에 FeCl2/FeCl3 그리고 FeSO4/FeCl3의 경우에는 potassium ferriccyanide (K3Fe(CN)6)/potassium ferrocyanide (K4Fe(CN)6) 과 유사하거나 발색반응을 떨어뜨리는 결과를 얻었으므로 산화 시약으로는 potassium ferriccyanide (K3Fe(CN)6)/potassium ferrocyanide (K4Fe(CN)6)가 바람직할 것으로 판단하였다.
그러나 Aldol-myo-inositol-phosphate를 발색 시약으로 이용한 리스테리아균 검출의 경우에는 potassium ferriccyanide (K3Fe(CN)6)/potassium ferrocyanide (K4Fe(CN)6)가 발색 반응을 감소시키는 결과를 나타내었다. 이는 첨가하는 potassium ferriccyanide (K3Fe(CN)6)/potassium ferrocyanide (K4Fe(CN)6)가 발색 반응을 일으키는 효소의 활성을 급격하게 저해하는 것으로 보인다. 따라서 리스테리아균 검출 시에는 산화 시약으로 FeCl2 / FeCl3 또는 FeSO4 / FeCl3를 이용하는 것이 바람직할 것으로 판단하였다.
실시예 5
고체 왁스 프린팅 기술을 이용한 미세유체 종이칩의 제작
(1) 왁스 프린팅된 종이매체의 제작
미세유체 종이칩의 원재료로 사용된 종이매체는 Whatman사의 chromatography paper No.1, chromatography paper 3MM, filter paper Grade 4, filter paper No.595와 Hyundai Micro사의 filter paper No.100과 No.22가 사용되었다. 왁스를 인쇄할 프린터는 Xerox사의 Colorqube 8870이 사용되었고, 가열 장비로서 Misung사의 HP330D가 사용되었다. 상기 각 종이매체의 두께 및 기공크기를 하기 표 11에 나타내었다.
[표 11]
Figure PCTKR2018016003-appb-I000011
도안의 제작에는 경제형 레이아웃 디자인 프로그램인 “Clewin 3”이 사용되었다. 도안은 종이 미세유체 장치의 소수성 부분 레이어와 친수성 레이어를 겹친 후, 소수성 부분의 해당 겹친 부분을 제거함으로써 디자인 되었다.
제작된 도안을 종이매체에 인쇄할 때, 인쇄 용지의 크기는 200 X 200(mm)로 설정하였다. 고체왁스를 충분히 얹기 위하여 인쇄 품질을 “사진”으로 설정하였다.
인쇄된 종이를 가열기에서 일정 시간동안 가열하였다. 가열할 때에는 가열기에 남아있는 왁스 및 기타 물질들에 의한 오염을 막기 위하여, 스윕퍼 혹은 알루미늄 호일을 사용하였다. 종이 전체에 일정한 열이 가해질 수 있도록, 알루미늄 호일 위에 어느 정도의 중량을 가진 물체를 올려놓았다.
상기 방법에 따라 제조된 종이매체의 도안을 도 21에 나타내었다.
도 21를 참조하면, 각각의 작은 정사각형에서 검정색으로 표시된 부분이 왁스로 코팅이 되어 소수성인 부분이며, 하얀색 원 부분은 종이매체 그 자체로서 친수성 부분을 나타낸다.
(2) 미세유체 종이칩의 제작
상기 방법에 따라 제조된 왁스 프린팅 된 종이매체를 각각의 작은 정사각형으로 절단한 후 미세유체 종이칩 제작이 이용하였다. 미세유체 종이칩은 상기 절단된 종이매체를 총 5개의 층으로 적층하여 제작하였다
각각의 층은 다음과 같은 구성 및 기능을 나타내도록 제조하였다.
제1층은 검출하고자 하는 시료가 주입되는 주입층(Inlet층)으로서 상기 종이매체에 아무런 처리를 하지 않고 그대로 이용하였다.
제2층은 시료에 존재하는 미생물을 용균시키는 작용을 하는 용균층으로서, 상기 실시예 2에서 제조된 용균 시약(Lysis reagent) 조성물을 종이매체의 친수성 영역에 흡수시킨 후 건조하여 제작하였다.
제3층은 미생물 검출 시 발색 시약의 발색 반응 과정에서 발색단의 산화를 촉진하기 위해서 산화 시약(oxidation reagent)이 첨가된 산화층으로서, 상기 실시예 4에서 선정된 산화 시약을 종이매체의 친수성 영역에 흡수시킨 후 건조하여 제작하였다.
제4층은 시료에 검출하고자 하는 미생물이 존재할 경우 특유의 발색반응이 나타날 수 있도록 발색 작용을 하는 발색층으로서, 상기 실시예 3에서 선정된 각각의 발색 시약을 종이매체의 친수성 영역에 흡수시킨 후 건조하여 제작하였다.
제5층은 상기 발색반응에 의한 검출결과가 나타나 실험자가 검출하고자 하는 미생물의 존재 여부를 육안으로 확인할 수 있는 외곽층으로서, 상기 종이매체에 아무런 처리를 하지 않고 그대로 이용하였다.
상기 제1층 내지 제5층의 종이매체를 각각 준비한 후 이들을 순서대로 적층하고, 상단부에 시료를 주입할 수 있는 홀(hole)과 하단부에 발색 결과를 관찰할 수 있는 홀(hole)이 형성된 캐스터에 상기 적층된 종이매체를 장착하여 최종 형태의 미세유체 종이칩을 제작하였다.
상기 미세유체 종이칩의 조립 과정 및 완성된 최종 형태를 도 22에 나타내었다.
(3) 종이매체의 두께에 따른 발색 반응 평가
미세유체 종이칩 제조에 사용되는 종이매체의 두께에 따른 발색 반응의 영향을 평가하기 위하여 Whatman filter grade 595(두께 160 μm), Whatman chromatography paper No.1 (180 μm) 및 Whatman chromatography 3mm(340 μm)를 이용하여 상기 (1)방법에 따라 종이매체를 제조하였다. 이 때, 왁스가 코팅되지 않은 친수성 영역의 직경은 3mm로 제작하였다.
이후, 상기 (2)번 방법에 따라 미세유체 종이칩을 제작하였다. 구체적으로,
(i) 제1층으로 왁스 코팅된 상기 각각의 종이매체를 준비하였다.
(ii) 제2층은 상기 각각의 종이매체의 친수성 영역에 인산염 완충액 (Phosphate saline buffer; PSB)을 기본 버퍼로 하여 1%(v/v)의 SB3-14와 0.1%(v/v)의 C7BzO를 포함하는 용균 시약(lysis reagent) 조성물을 충분히 흡수시킨 후 건조하여 준비하였다.
(iii) 제3층은 상기 각각의 종이매체의 친수성 영역에 10mM의 산화 시약(K3Fe(CN)6)/ K4Fe(CN)6)을 충분히 흡수시킨 후 건조하여 준비하였다.
(iv) 제4층은 상기 각각의 종이매체의 친수성 영역에 발색 시약으로 50mM의 Magenta-beta-galactopyranoside 또는 X-phosphate를 각각 충분히 흡수시킨 후 건조하여 준비하였다.
(v) 제1층으로 왁스 코팅된 상기 각각의 종이매체를 준비하였다.
상기 방법에 따라 준비된 제1층 내지 제5층의 종이매체를 순차적으로 적층하여 미세유체 종이칩을 제작한 후, 발색 시약으로 Magenta-beta-galactopyranoside을 이용한 종이칩에는 장출혈성대장균 배양액 50 ㎕ 를 제1층을 통해 주입하였으며, 발색시약으로 X-phosphate를 이용한 종이칩에는 포도상구균 배양액 50 ㎕ 를 제1층을 통해 주입하고 37℃에서 30분간 반응을 진행하였다.
이에 대한 결과를 도 23에 나타내었다.
도 23에 나타낸 바와 같이, 종이매체의 두께와 관계없이 모두 예상했던 발색반응이 모두 관찰이 되는 것을 확인할 수 있었다. 다만, 발색 반응의 정도는 종이매체의 두께가 두꺼울수록 안정적인 것을 확인할 수 있었다. 이는 종이의 두께가 증가할수록 각각의 세포 용균 반응과 산화 반응 그리고 발색 반응이 일어날 수 있는 반응 공간을 어느 정도 안정적으로 제공할 수 있기 때문인 것으로 판단되었다. 따라서 가장 두꺼운 Whatman 3mm (340 μm)를 활용하기로 하였다.
(4) 종이매체의 기공 크기(pore size)에 따른 발색 반응 평가
미세유체 종이칩 제조에 사용되는 종이매체의 기공 크기에 따른 발색 반응의 영향을 평가하기 위하여 Hyundai No. 100(3 μm)과 Hyundai No. 22(14 μm) 그리고 Whatman filter grade No.4(23 μm)를 이용하였다. 구체적인 실험 방법은 상기 (3)과 동일하게 실시하였다.
이에 대한 결과를 도 24에 나타내었다.
도 24에 나타낸 바와 같이, 기공 크기가 너무 작은 경우에는(Hyundai No. 100) 발색 반응이 제대로 이루어지지 않았으며 이외의 경우에는 모두 적절한 발색 반응이 이루어짐을 확인하였다. 따라서 기공 크기가 7-23 μm의 경우 적절한 기공 크기인 것으로 판단되었다. 따라서 향후 적절한 두께와 기공 크기를 가지고 있는 Whatman 3MM (종이두께-340 μm/기공크기-12μm)를 주요한 종이 재질로 정해 이를 이용한 미세유체 종이칩을 제조하도록 하였다. 이때 맨 밑에 검출 부위의 종이는 반응에 최종 확인을 위한 부분이므로 종이 기공 크기가 종이 재료 중에서 가장 큰 Whatman filter grade 4 (종이두께: 205 μm/기공크기: 3μm)을 이용하기로 하였다.
(5) 종이매체의 친수성 영역 직경에 따른 발색 반응 평가
미생물의 검출을 위한 미세유체 종이칩 제조를 위한 종이매체 중에서 종이 친수성 영역의 크기에 따른 발색반응의 정도를 평가하고자 하였다.
Whatman chromatography 3MM (종이두께: 340 μm/기공크기: 12μm)를 주요한 종이 재질로 정하고 여기에 친수성 영역의 지름이 4, 6 또는 8mm가 되도록 종이매체를 왁스 코팅한 후 상기 (3)의 방법과 동일한 방법으로 발색 반응을 관찰하였다.
이에 대한 결과를 도 25에 나타내었다.
도 25에 나타낸 바와 같이, 친수성 영역의 크기에 상관없이 모두 적절한 발색 반응이 나타났다. 친수성 영역의 크기에 따라서 필요한 시약의 양이 다른데 4mm의 경우에는 lysis reagent, oxidation reagent 그리고 chromogenic reagent 가 각각 3 ㎕ 씩 소요되었으며 6mm의 경우에는 5 ㎕ 씩 8mm의 경우에는 10 ㎕ 씩 필요로 하였다. 또한, 친수성 영역의 크기에 따라서 필요로 하는 시료의 양이 다른데 각각 20, 50 와 100 ㎕ 의 시료 양을 적어도 필요로 한다.
이에 따라서 적절한 친수성 영역의 종이 패턴으로 6mm의 친수성 영영의 크기의 종이 패턴으로 결정하였는데 이는 소요되는 시약의 양, 특히 chromogenic reagent는 다른 시약의 비해서 고가의 시약이므로 경제적인 종이기반 미세유동장치 개발을 위해서는 되도록 적은 양의 시약을 사용하는 것이 좋으며 친수성 영역의 크기는 필요로 하는 시료의 양도 적절하기 때문에 단일 검출을 위한 미세유체 종이칩은 지름이 6mm로 결정하였다.
실시예 6
미세유체 종이칩을 이용한 장출혈성 대장균 및 일반 대장균의 검출 평가
(가) Oxidation reagent의 종류와 농도에 따른 미세유체 종이칩의 발색 테스트
장출혈성 대장균 검출을 위한 미세유체 종이칩 제조를 위해서 적절한 Oxidation reagent의 종류와 농도를 실시예 4를 근거로 조사하였다.
장출혈성 대장균 또는 일반 대장균 검출 시 발색 기질의 발색 반응 시 발색단의 산화를 촉진하기 위해서 oxidation reagent를 개발하기 위한 조성물을 조사하였다. 이를 위해서 상기의 조건에서 배양한 장출혈성 대장균 또는 일반 대장균을 1.5ml을 원심 분리하여 bacterial cell을 회수한 후 이를 0.5 ml의 인산완충용액으로 현탁한 후 이를 시료로 사용하였다.
Oxidation reagent로 potassium ferriccyanide (K3Fe(CN)6)와 potassium ferrocyanide (K4Fe(CN)6)를 FeCl2와 FeCl3, 그리고 FeSO4와 FeCl2를 농도별로 미리 준비한 패턴으로 제작한 종이 위에 5 ㎕ 씩 로딩한 후 이를 40 °C 건조기에서 30 분 동안 건조시킨다.
Oxidation reagent 이외에도 미세유체 종이칩 조립에 필요한 상기 조건에서 개발한 lysis reagent 와 해당 chromogenic reagent를 각각 미리 준비한 패턴으로 제작한 종이 위에 5 ㎕ 씩 로딩한 후 이를 40 °C 건조기에서 30분 동안 건조시킨다.
이를 제1층(Inlet)-제2층(lysis reagent)-제3층(oxidation)-제4층(chromogenic reagent)-제5층(Outlet) 순서로 각각의 종이를 쌓은 후 여기에 미리 준비한 장출혈성 대장균 또는 일반 대장균 현탁액 50 ㎕ 씩 주입하여 37 °C 에서 30분간 반응시킨 후에 oxidation reagent의 종류와 농도에 따른 발색반응을 테스트하였다.
이에 대한 결과를 도 26 및 도 27에 나타내었다.
도 26 및 도 27에 나타낸 바와 같이, 장출혈성 대장균(E. coli: O157)을 검출하기 위해서 사용되는 두 개의 chromogenic reagent인 Magenta-beta-galactopyroanoside와 X-beta- glucuronide에 대한 oxidation 반응의 특징을 알 수 있었다. Magenta-beta- galactopyroanoside의 경우에는 10 mM의 potassium ferriccyanide (K3Fe(CN)6)와 potassium ferrocyanide (K4Fe(CN)6)에서 가장 좋은 발색 반응을 나타내었다.
X-beta-glucuronide에 대한 oxidation 반응은 oxidation reagent에 의한 산화를 촉진하는 반응이 일어나지 않으며 50 mM 이상의 농도에서 오히려 발색반응을 저해하는 것으로 나타났다.
(나) Chromogenic reagent의 종류와 농도에 따른 미세유체 종이칩의 발색 테스트
장출혈성 대장균 검출을 위한 미세유체 종이칩 제조를 위해서 적절한 발색 시약(chromogenic reagent)의 종류와 농도를 실시예 3을 근거로 조사하였다.
장출혈성 대장균 검출을 위한 발색 시약으로 Magenta-beta-galactopyranoside의 발색 검출 시 최적화된 발색 시약의 농도를 조사하였다. 또한, 장출혈성 대장균과 발색 검출의 구별하기 위해 사용되는 X-beta-glucuronide의 발색 검출 시 최적화된 발색 시약의 농도를 일반 대장균에 대해 조사하였다. 이를 위해서 상기의 조건에서 배양한 장출혈성 대장균 또는 일반 대장균을 1.5 ml을 원심 분리하여 bacterial cell을 회수한 후 이를 0.5 ml의 인산완충용액으로 현탁한 후 이를 시료로 사용하였다.
장출혈성 대장균 검출을 위해 해당 발색 시약에 대해 최적화된 발색 시약의 농도를 조사하기 위해서 5, 10, 25, 50, 100 과 200 mM 의 발색 시약을 각각 패턴으로 제작한 종이 위에 5 ㎕ 씩 로딩한 후 이를 40 °C 건조기에서 30 분 동안 건조시킨다.
장출혈성 대장균 검출을 위한 미세유체 종이칩 제조 시 이용되는 Oxidation reagent로 10 mM potassium ferriccyanide (K3Fe(CN)6)와 potassium ferrocyanide (K4Fe(CN)6)를 패턴으로 제작한 종이 위에 5 ㎕ 씩 로딩한 후 이를 40 °C 건조기에서 30 분 동안 건조시킨다.
이외에도 미세유체 종이칩 조립에 필요한 상기 조건에서 개발한 lysis reagent 를 각각 미리 준비한 패턴으로 제작한 종이 위에 5 ㎕ 씩 로딩한 후 이를 40 °C 건조기에서 30분 동안 건조시킨다.
이를 제1층(Inlet)-제2층(lysis reagent)-제3층(oxidation)-제4층(chromogenic reagent)-제5층(Outlet) 순서로 각각의 종이를 쌓은 후 여기에 미리 준비한 장출혈성 대장균 또는 일반 대장균 현탁액 50 ㎕ 씩 주입하여 37 °C 에서 30분간 반응시킨 후에 chromogenic reagent의 종류(Magenta-beta-galactopyroanoside 및 X-beta-glucuronide)와 농도에 따른 발색반응을 테스트하였다.
이에 대한 결과를 도 28 및 도 29에 나타내었다.
도 28에 나타낸 바와 같이, 장출혈성 대장균(E. coli: O157)을 검출 시 Magenta-beta-galactopyroanoside의 농도에 따른 발색 반응의 특징을 알 수 있었다. Magenta-beta-galactopyroanoside의 농도가 증가할수록 발색 반응의 정도가 증가함을 확인할 수 있었다. 따라서 Magenta-beta-galactopyroanoside 농도는 바람직하게는 25~200 mM 일 수 있으며 가장 바람직하게는 100 mM 일 수 있다.
또한, 도 29에 나타낸 바와 같이, 일반 대장균(E. coli)을 검출 시에 X-beta-glucuronide의 농도에 따른 발색 반응에 대해 조사한 결과, X-beta-glucuronide의 농도가 증가할수록 발색 반응의 정도가 증가하다가 200mM 농도에서 발색 반응 정도가 오히려 감소하였다. 따라서 X-beta-glucuronide 농도는 바람직하게는 25~200 mM 일 수 있으며 가장 바람직하게는 100 mM 일 수 있다.
(다) Magenta-beta-galactopyroanoside 및 X-beta-glucuronide 혼합 농도에 따른 미세유체 종이칩의 발색 테스트
한편 상기 결과들을 참조하여 장출혈성 대장균의 적절한 검출을 위한 이 두 가지 발색 시약의 농도 혼합 비율을 조사하였다. 이를 위해서 100 mM X-beta-glucuronide를 패턴으로 미리 제작한 종이 위에 5 ㎕ 씩 로딩한 후 이를 40 °C 건조기에서 30 분 동안 건조시킨다. 이후에 같은 종이 위에 농도를 달리하여 아래와 같이 Magenta-beta-galactopyroanoside를 혼합하여 패턴으로 미리 제작한 종이 위에 5 ㎕ 씩 로딩한 후 이를 다시 40 °C 건조기에서 30분 동안 건조시킨다.
이를 제1층(Inlet)-제2층(lysis reagent)-제3층(oxidation)-제4층(chromogenic reagent)-제5층(Outlet) 순서로 각각의 종이를 쌓은 후 여기에 미리 준비한 장출혈성 대장균 또는 일반 대장균 현탁액 50 ㎕ 씩 주입하여 37 °C 에서 30분간 반응시킨 후에 두 가지 발색 시약의 혼합에 따른 발색 반응을 테스트하였다.
이에 대한 결과를 도 30 및 도 31에 나타내었다.
도 30 및 도 31에 나타낸 바와 같이, 장출혈성 대장균(E. coli: O157)을 검출 시 가장 적절한 두 가지 발색 시약의 혼합비는 100 mM X-beta-glucuronide + 10 mM Magenta-beta- galactopyroanoside 가 가장 적합한 것으로 결정되었다.
일반 대장균과 장출혈성 대장균의 발색에 따른 구분을 위해서 매우 중요한데 일반대장균은 두 개의 기질에 모두 발색 반응하여 청색으로 검출되고 식품위해미생물인 장출혈성 대장균은 보라색으로 검출됨으로 두 가지 혼동되기 쉬운 미생물을 쉽게 구분하여 검출하기 위한 것이다.
(라) 장출혈성 대장균(E. coli : O157)을 위한 미세유체 종이칩의 발색 테스트
장출혈성 대장균 검출을 위한 100 mM X-beta-glucuronide와 10 mM Magenta-beta- galactopyroanoside 로 만든 미세유체 종이칩의 발색 테스트를 수행하여 장출혈성 대장균을 비롯한 다른 식품위해미생물에 대한 발색 테스트를 수행하였다.
이를 위해서 100 mM X-beta-glucuronide를 패턴으로 미리 제작한 종이 위에 5 ㎕ 씩 로딩한 후 이를 40 °C 건조기에서 30 분 동안 건조시킨다. 이후에 같은 종이 위에 10 mM Magenta-beta- galactopyroanoside 를 같은 종이 위에 5 ㎕ 씩 로딩한 후 이를 다시 40 °C 건조기에서 30 분 동안 건조시킨다.
장출혈성 대장균 검출을 위한 미세유체 종이칩 제조 시 이용되는 Oxidation reagent로 10 mM potassium ferriccyanide (K3Fe(CN)6)와 potassium ferrocyanide (K4Fe(CN)6)를 패턴으로 제작한 종이 위에 5 ㎕ 씩 로딩한 후 이를 40 °C 건조기에서 30 분 동안 건조시킨다.
이외에도 미세유체 종이칩 조립에 필요한 상기 조건에서 개발한 lysis reagent 를 각각 미리 준비한 패턴으로 제작한 종이 위에 5 ㎕ 씩 로딩한 후 이를 40 °C 건조기에서 30 분 동안 건조시킨다.
이를 제1층(Inlet)-제2층(lysis reagent)-제3층(oxidation)-제4층(chromogenic reagent)-제5층(Outlet) 순서로 각각의 종이를 쌓은 후 여기에 미리 준비한 미생물 현탁액 50 ㎕ 씩 주입하여 37 °C 에서 30 분간 반응시킨 후에 장출혈성 대장균 검출을 위한 종이기반 미세유동장치에 대한 발색 반응을 조사하였다.
이에 대한 결과를 도 32에 나타내었다.
도 32에 나타낸 바와 같이, 장출혈성 대장균에 대해 목표로 했던 분홍색의 발색 검출이 나타남을 확인 할 수 있었으며 이에 대비해서 일반 대장균은 목표로 했던 청색으로 발색 검출됨을 확인할 수 있었다.
실시예 7
미세유체 종이칩을 이용한 비브리오균의 검출 평가
(가) Oxidation reagent의 종류와 농도에 따른 미세유체 종이칩의 발색 테스트
비브리오균 검출을 위한 미세유체 종이칩 제조를 위해서 적절한 Oxidation reagent의 종류와 농도를 실시예 4를 근거로 조사하였다.
비브리오균 검출 시 발색 기질의 발색 반응 시 발색단의 산화를 촉진하기 위해서 oxidation reagent를 개발하기 위한 조성물을 조사하였다. 이를 위해서 상기의 조건에서 배양한 비브리오균을 1.5ml을 원심 분리하여 bacterial cell을 회수한 후 이를 0.5 ml의 인산완충용액으로 현탁한 후 이를 시료로 사용하였다.
Oxidation reagent로 potassium ferriccyanide (K3Fe(CN)6)와 potassium ferrocyanide (K4Fe(CN)6)를 FeCl2와 FeCl3, 그리고 FeSO4와 FeCl2를 농도별로 미리 준비한 패턴으로 제작한 종이 위에 5 ㎕ 씩 로딩한 후 이를 40 °C 건조기에서 30 분 동안 건조시킨다.
Oxidation reagent 이외에도 미세유체 종이칩 조립에 필요한 상기 조건에서 개발한 lysis reagent 와 해당 chromogenic reagent를 각각 미리 준비한 패턴으로 제작한 종이 위에 5 ㎕ 씩 로딩한 후 이를 40 °C 건조기에서 30분 동안 건조시킨다.
이를 제1층(Inlet)-제2층(lysis reagent)-제3층(oxidation)-제4층(chromogenic reagent)-제5층(Outlet) 순서로 각각의 종이를 쌓은 후 여기에 미리 준비한 비브리오균 현탁액 50 ㎕ 씩 주입하여 37 °C 에서 30 분간 반응시킨 후에 oxidation reagent의 종류와 농도에 따른 발색반응을 테스트하였다.
이에 대한 결과를 도 33에 나타내었다.
도 33에 나타낸 바와 같이, 비브리오균을 검출하기 위해서 사용되는 X-beta-glucopyranoside 에 대한 oxidation 반응의 특징을 알 수 있었다. Magenta-beta- galactopyroanoside의 경우에는 10mM의 FeCl2/FeCl3 에서 가장 좋은 발색 반응을 나타내었다.
(나) Chromogenic reagent의 종류와 농도에 따른 미세유체 종이칩의 발색 테스트
비브리오균 검출을 위한 미세유체 종이칩 제조를 위해서 적절한 발색 시약(chromogenic reagent)의 종류와 농도를 실시예 3을 근거로 조사하였다.
비브리오균 검출을 위한 발색 시약으로 X-beta-glucopyranoside를 이용하여 발색 검출 시 최적화된 발색 시약의 농도를 조사하였다. 이를 위해서 상기의 조건에서 배양한 비브리오균을 1.5ml을 원심 분리하여 bacterial cell을 회수한 후 이를 0.5 ml의 인산완충용액으로 현탁한 후 이를 시료로 사용하였다.
비브리오균 검출을 위해 해당 발색 시약에 대해 최적화된 발색 시약의 농도를 조사하기 위해서 5, 10, 25, 50, 100 과 200 mM 의 발색 기질을 각각 패턴으로 제작한 종이 위에 5 ㎕ 씩 로딩한 후 이를 40 °C 건조기에서 30 분 동안 건조시킨다.
비브리오균 검출을 위한 미세유체 종이칩 제조 시 이용되는 Oxidation reagent로 10 mM FeCl2와 FeCl3를 패턴으로 제작한 종이 위에 5 ㎕ 씩 로딩한 후 이를 40 °C 건조기에서 30 분 동안 건조시킨다.
이외에도 미세유체 종이칩 조립에 필요한 상기 조건에서 개발한 lysis reagent 를 각각 미리 준비한 패턴으로 제작한 종이 위에 5 ㎕ 씩 로딩한 후 이를 40 °C 건조기에서 30분 동안 건조시킨다.
이를 제1층(Inlet)-제2층(lysis reagent)-제3층(oxidation)-제4층(chromogenic reagent)-제5층(Outlet) 순서로 각각의 종이를 쌓은 후 여기에 미리 준비한 비브리오균 현탁액 50 ㎕ 씩 주입하여 37 °C 에서 30분간 반응시킨 후에 chromogenic reagent의 종류와 농도에 따른 발색반응을 테스트하였다.
이에 대한 결과를 도 34에 나타내었다.
도 34에 나타낸 바와 같이, 비브리오균 검출 시 X-beta-glucopyranoside의 농도에 따른 발색 반응의 특징을 알 수 있었다. X-beta-glucopyranoside의 농도가 증가할수록 발색 반응의 정도가 증가함을 확인할 수 있었다. 100 mM 이상에서 비슷한 발색 정도를 보여줌에 따라서 X-beta-glucopyranoside 농도는 바람직하게는 25~200 mM 일 수 있으며 가장 바람직하게는 100 mM 일 수 있다.
(다) 비브리오균(Vibrio)을 위한 미세유체 종이칩의 발색 테스트
비브리오균 검출을 위한 100 mM X-beta-glucopyranoside로 만든 미세유체 종이칩의 발색 테스트를 수행하여 비브리오균을 비롯한 다른 식품위해미생물에 대한 발색 테스트를 수행하였다.
이를 위해서 100 mM X-beta-glucopyranoside 를 패턴으로 미리 제작한 종이 위에 5 ㎕ 씩 로딩한 후 이를 40 °C 건조기에서 30 분 동안 건조시킨다.
비브리오균 검출을 위한 미세유체 종이칩 제조 시 이용되는 Oxidation reagent로 10 mM potassium ferriccyanide (K3Fe(CN)6)와 potassium ferrocyanide (K4Fe(CN)6)를 패턴으로 제작한 종이 위에 5 ㎕ 씩 로딩한 후 이를 40 °C 건조기에서 30 분 동안 건조시킨다.
이외에도 미세유체 종이칩 조립에 필요한 상기 조건에서 개발한 lysis reagent 를 각각 미리 준비한 패턴으로 제작한 종이 위에 5 ㎕ 씩 로딩한 후 이를 40 °C 건조기에서 30 분 동안 건조시킨다.
이를 제1층(Inlet)-제2층(lysis reagent)-제3층(oxidation)-제4층(chromogenic reagent)-제5층(Outlet) 순서로 각각의 종이를 쌓은 후 여기에 미리 준비한 미생물 현탁액 50 ㎕ 씩 주입하여 37 °C 에서 30분간 반응시킨 후에 비브리오균 검출을 위한 종이기반 미세유동장치에 대한 발색 반응을 조사하였다.
이에 대한 결과를 도 35에 나타내었다.
도 35에 나타낸 바와 같이, 비브리오균에 대해 목표로 했던 하늘색의 발색 검출이 나타남을 확인 할 수 있었다. 리스테리아균에서도 하늘색의 발색 검출이 되었지만 그람 양성균인 리스테리아균은 증균배양 시 그람 양성균을 선택적으로 저해하는 저해인자를 통해 생육 억제가 가능하므로 비브리오균 검출 시 문제되지 않을 것으로 판단된다.
실시예 8
미세유체 종이칩을 이용한 살모넬라균의 검출 평가
(가) Oxidation reagent의 종류와 농도에 따른 미세유체 종이칩의 발색 테스트
살모넬라균 검출을 위한 미세유체 종이칩 제조를 위해서 적절한 Oxidation reagent의 종류와 농도를 실시예 4를 근거로 조사하였다.
살모넬라균 검출 시 발색 기질의 발색 반응 시 발색단의 산화를 촉진하기 위해서 oxidation reagent를 개발하기 위한 조성물을 조사하였다. 이를 위해서 상기의 조건에서 배양한 살모넬라균을 1.5ml을 원심 분리하여 bacterial cell을 회수한 후 이를 0.5 ml의 인산완충용액으로 현탁한 후 이를 시료로 사용하였다.
Oxidation reagent로 potassium ferriccyanide (K3Fe(CN)6)와 potassium ferrocyanide (K4Fe(CN)6)를 FeCl2와 FeCl3, 그리고 FeSO4와 FeCl2를 농도별로 미리 준비한 패턴으로 제작한 종이 위에 5 ㎕ 씩 로딩한 후 이를 40 °C 건조기에서 30 분 동안 건조시킨다.
Oxidation reagent 이외에도 미세유체 종이칩 조립에 필요한 상기 조건에서 개발한 lysis reagent 와 해당 chromogenic reagent를 각각 미리 준비한 패턴으로 제작한 종이 위에 5 ㎕ 씩 로딩한 후 이를 40 °C 건조기에서 30분 동안 건조시킨다.
이를 제1층(Inlet)-제2층(lysis reagent)-제3층(oxidation)-제4층(chromogenic reagent)-제5층(Outlet) 순서로 각각의 종이를 쌓은 후 여기에 미리 준비한 살모넬라균 현탁액 50 ㎕ 씩 주입하여 37 °C 에서 30분간 반응시킨 후에 oxidation reagent의 종류와 농도에 따른 발색반응을 테스트하였다.
이에 대한 결과를 도 36에 나타내었다.
도 36에 나타낸 바와 같이, 살모넬라균을 검출하기 위해서 사용되는 Salmone-alpha-glucopyranoside 에 대한 oxidation 반응의 특징을 알 수 있었다. Salmone-alpha-glucopyranoside의 경우에는 oxidation reagent에 대해 발색 반응을 촉진하는 결과를 얻지 못했다.
(나) Chromogenic reagent의 종류와 농도에 따른 미세유체 종이칩의 발색 테스트
살모넬라균 검출을 위한 미세유체 종이칩 제조를 위해서 적절한 발색기질(chromogenic reagent)의 종류와 농도를 실시예 3을 근거로 조사하였다.
살모넬라균 검출을 위한 발색 기질로 Salmone-alpha-glucopyranoside와 X-phosphate의 발색 검출 시 최적화된 발색기질의 농도를 조사하였다. 이를 위해서 상기의 조건에서 배양한 살모넬라균을 1.5 ml을 원심 분리하여 bacterial cell을 회수한 후 이를 0.5 ml의 인산완충용액으로 현탁한 후 이를 시료로 사용하였다.
살모넬라균 검출을 위해 해당 발색기질에 대해 최적화된 발색기질의 농도를 조사하기 위해서 5, 10, 25, 50, 100 과 200 mM 의 발색 기질을 각각 패턴으로 제작한 종이 위에 5 ㎕ 씩 로딩한 후 이를 40 °C 건조기에서 30 분 동안 건조시킨다.
살모넬라균 검출을 위한 미세유체 종이칩 제조 시 이용되는 Oxidation reagent로 10 mM potassium ferriccyanide (K3Fe(CN)6)와 potassium ferrocyanide (K4Fe(CN)6)를 패턴으로 제작한 종이 위에 5 ㎕ 씩 로딩한 후 이를 40 °C 건조기에서 30 분 동안 건조시킨다.
이외에도 미세유체 종이칩 조립에 필요한 상기 조건에서 개발한 lysis reagent 를 각각 미리 준비한 패턴으로 제작한 종이 위에 5 ㎕ 씩 로딩한 후 이를 40 °C 건조기에서 30분 동안 건조시킨다.
이를 제1층(Inlet)-제2층(lysis reagent)-제3층(oxidation)-제4층(chromogenic reagent)-제5층(Outlet) 순서로 각각의 종이를 쌓은 후 여기에 미리 준비한 살모넬라균 50 ㎕ 씩 주입하여 37 °C 에서 30분간 반응시킨 후에 chromogenic reagent의 종류와 농도에 따른 발색반응을 테스트하였다.
이에 대한 결과를 도 37 및 도 38에 나타내었다.
도 37에 나타낸 바와 같이, 살모넬라균을 검출 시 Salmone-alpha-glucopyranoside의 농도에 따른 발색 반응의 특징을 조사한 결과, Salmone-alpha-glucopyranoside의 농도가 증가할수록 발색 반응의 정도가 증가함을 확인할 수 있었다. 200 mM 에서 가장 좋은 발색 검출을 보여줌에 따라서 Salmone-alpha-glucopyranoside 농도는 바람직하게는 25~300 mM 일 수 있으며 가장 바람직하게는 200 mM 일 수 있다.
또한, 도 38에 나타낸 바와 같이, 살모넬라균 검출 시에 X-phosphate의 농도에 따른 발색 반응에 대해 조사한 결과, X-phosphate의 농도가 증가할수록 발색 반응의 정도가 증가하다가 100 mM 이상의 농도에서 발색 반응 정도가 오히려 감소하였다. 이에 따라서 X-phosphate 농도는 바람직하게는 25~100 mM 일 수 있으며 가장 바람직하게는 50 mM 일 수 있다.
(다) Salmone-alpha-glucopyranoside 및 X-phosphate 혼합 농도에 따른 미세유체 종이칩의 발색 테스트
살모넬라균 검출을 위한 미세유체 종이칩 제조 시에 이러한 결과들을 참조하여 살모넬라균의 적절한 검출을 위한 이 두 가지 발색기질 농도의 혼합 비율을 조사하였다. 이를 위해서 200 mM Salmone-alpha-glucopyranoside를 패턴으로 미리 제작한 종이 위에 5 ㎕ 씩 로딩한 후 이를 40 °C 건조기에서 30 분 동안 건조시킨다. 이후에 같은 종이 위에 농도를 달리하여 아래와 같이 X-phosphate를 혼합하여 패턴으로 미리 제작한 종이 위에 5 ㎕ 씩 로딩한 후 이를 다시 40 °C 건조기에서 30분 동안 건조시킨다.
이를 제1층(Inlet)-제2층(lysis reagent)-제3층(oxidation)-제4층(chromogenic reagent)-제5층(Outlet) 순서로 각각의 종이를 쌓은 후 여기에 미리 준비한 살모넬라균 현탁액 50 ㎕ 씩 주입하여 37 °C 에서 30분간 반응시킨 후에 두 가지 발색기질의 혼합에 따른 발색 반응을 테스트하였다.
이에 대한 결과를 도 39에 나타내었다.
도 39에 나타낸 바와 같이, 살모넬라균 검출 시 가장 적절한 두 가지 발색기질의 혼합비는 200 mM Salmone-alpha-glucopyranoside / 50 mM X-phosphate 가 가장 적합한 것으로 결정되었다.
이는 두 가지 발색 기질을 이용함으로 선택배지에 의해서 선택도를 높이겠지만 보다 특이도 높이기 위한 이중 검출 발색 반응으로 청색으로 검출하게 함으로 살모넬라균의 검출을 보다 정확하게 구분하여 검출하기 위한 것이다.
(라) 살모넬라균(Salmonella)을 위한 미세유체 종이칩의 발색 테스트
살모넬라균 검출을 위한 200 mM Salmone-alpha-glucopyranoside와 50 mM X-phosphate 로 만든 미세유체 종이칩의 발색 테스트를 수행하여 살모넬라균을 비롯한 다른 식품위해미생물에 대한 발색 테스트를 수행하였다.
이를 위해서 200 mM Salmone-alpha-glucopyranoside를 패턴으로 미리 제작한 종이 위에 5 ㎕ 씩 로딩한 후 이를 40 °C 건조기에서 30 분 동안 건조시킨다. 이후에 같은 종이 위에 50 mM X-phosphate 를 같은 종이 위에 5 ㎕ 씩 로딩한 후 이를 다시 40 °C 건조기에서 30분 동안 건조시킨다.
살모넬라균 검출을 위한 미세유체 종이칩 제조 시 이용되는 Oxidation reagent로 10 mM potassium ferriccyanide (K3Fe(CN)6)와 potassium ferrocyanide (K4Fe(CN)6)를 패턴으로 제작한 종이 위에 5 ㎕ 씩 로딩한 후 이를 40 °C 건조기에서 30 분 동안 건조시킨다.
이외에도 미세유체 종이칩 조립에 필요한 상기 조건에서 개발한 lysis reagent 를 각각 미리 준비한 패턴으로 제작한 종이 위에 5 ㎕ 씩 로딩한 후 이를 40 °C 건조기에서 30분 동안 건조시킨다.
이를 제1층(Inlet)-제2층(lysis reagent)-제3층(oxidation)-제4층(chromogenic reagent)-제5층(Outlet) 순서로 각각의 종이를 쌓은 후 여기에 미리 준비한 미생물 현탁액 50 ㎕ 씩 주입하여 37 °C 에서 30분간 반응시킨 후에 살모넬라균 검출을 위한 종이기반 미세유동장치에 대한 발색 반응을 조사하였다.
이에 대한 결과를 도 40에 나타내었다.
도 40에 나타낸 바와 같이, 살모넬라균에 대해 목표로 했던 분홍색의 청색 검출이 나타남을 확인 할 수 있었으며 이에 대비해서 다른 균의 경우에는 비브리오균과 포도상구균 같이 발색되지 않거나 장출혈성 대장균이나 리스테리아균과 같이 분홍색으로 나타났다.
실시예 9
미세유체 종이칩을 이용한 리스테리아균의 검출 평가
(가) Oxidation reagent의 종류와 농도에 따른 미세유체 종이칩의 발색 테스트
리스테리아균 검출을 위한 미세유체 종이칩 제조를 위해서 적절한 Oxidation reagent의 종류와 농도를 실시예 4를 근거로 조사하였다.
리스테리아균 검출 시 발색 기질의 발색 반응 시 발색단의 산화를 촉진하기 위해서 oxidation reagent를 개발하기 위한 조성물을 조사하였다. 이를 위해서 상기의 조건에서 배양한 리스테리아균을 1.5ml을 원심 분리하여 bacterial cell을 회수한 후 이를 0.5 ml의 인산완충용액으로 현탁한 후 이를 시료로 사용하였다.
xidation reagent로 potassium ferriccyanide (K3Fe(CN)6)와 potassium ferrocyanide (K4Fe(CN)6)를 FeCl2와 FeCl3, 그리고 FeSO4와 FeCl2를 농도별로 미리 준비한 패턴으로 제작한 종이 위에 5 ㎕ 씩 로딩한 후 이를 40 °C 건조기에서 30 분 동안 건조시킨다.
Oxidation reagent 이외에도 미세유체 종이칩 조립에 필요한 상기 조건에서 개발한 lysis reagent 와 해당 chromogenic reagent를 각각 미리 준비한 패턴으로 제작한 종이 위에 5 ㎕ 씩 로딩한 후 이를 40 °C 건조기에서 30분 동안 건조시킨다.
이를 제1층(Inlet)-제2층(lysis reagent)-제3층(oxidation)-제4층(chromogenic reagent)-제5층(Outlet) 순서로 각각의 종이를 쌓은 후 여기에 미리 준비한 리스테리아균 현탁액 50 ㎕ 씩 주입하여 37 °C 에서 30분간 반응시킨 후에 oxidation reagent의 종류와 농도에 따른 발색반응을 테스트하였다.
이에 대한 결과를 도 41에 나타내었다.
도 41에 나타낸 바와 같이, 리스테리아균을 검출하기 위해서 사용되는 Aldol-myo-Inositol- phosphate 에 대한 oxidation 반응의 특징을 알 수 있었다. Aldol-myo-Inositol-phosphate의 경우에는 oxidation reagent 중에서 10mM FeCl2/FeCl3에 대해 가장 좋은 발색 반응을 촉진하는 결과를 얻었다.
(나) Chromogenic reagent의 종류와 농도에 따른 미세유체 종이칩의 발색 테스트
리스테리아균 검출을 위한 미세유체 종이칩 제조를 위해서 적절한 발색기질(chromogenic reagent)의 종류와 농도를 실시예 3을 근거로 조사하였다.
리스테리아균 검출을 위한 발색 기질로 Aldol-myo-Inositol-phosphate를 이용하여 발색 검출 시 최적화된 발색기질의 농도를 조사하였다. 이를 위해서 상기의 조건에서 배양한 리스테리아균을 1.5ml을 원심 분리하여 bacterial cell을 회수한 후 이를 0.5 ml의 인산완충용액으로 현탁한 후 이를 시료로 사용하였다.
리스테리아균 검출을 위해 해당 발색기질에 대해 최적화된 발색기질의 농도를 조사하기 위해서 5, 10, 25, 50, 100 과 200 mM 의 발색 기질을 각각 패턴으로 제작한 종이 위에 5 ㎕ 씩 로딩한 후 이를 40 °C 건조기에서 30 분 동안 건조시킨다.
리스테리아균 검출을 위한 미세유체 종이칩 제조 시 이용되는 Oxidation reagent로 10 mM FeCl2와 FeCl3를 패턴으로 제작한 종이 위에 5 ㎕ 씩 로딩한 후 이를 40 °C 건조기에서 30 분 동안 건조시킨다.
이외에도 미세유체 종이칩 조립에 필요한 상기 조건에서 개발한 lysis reagent 를 각각 미리 준비한 패턴으로 제작한 종이 위에 5 ㎕ 씩 로딩한 후 이를 40 °C 건조기에서 30분 동안 건조시킨다.
이를 제1층(Inlet)-제2층(lysis reagent)-제3층(oxidation)-제4층(chromogenic reagent)-제5층(Outlet) 순서로 각각의 종이를 쌓은 후 여기에 미리 준비한 리스테리아균 현탁액 50 ㎕ 씩 주입하여 37 °C 에서 30분간 반응시킨 후에 chromogenic reagent의 종류와 농도에 따른 발색반응을 테스트하였다.
이에 대한 결과를 도 42에 나타내었다.
도 42에 나타낸 바와 같이, 리스테리아균 검출 시 Aldol-myo-Inositol-phosphate의 농도에 따른 발색 반응의 특징을 알 수 있었다. Aldol-myo-Inositol-phosphate의 농도가 증가할수록 발색 반응의 정도가 급격하게 감소함을 확인할 수 있었다.
한편, 10 mM 이하에서 발색이 나타남으로 최적의 Aldol-myo-Inositol-phosphate 농도를 보다 자세하게 알아보기 위해서 10 mM 이하의 농도에 대한 발색 반응 테스트를 다시 조사하였다.
이에 대한 결과를 도 43에 나타내었다.
도 43에 나타낸 바와 같이, 10 mM 이하에서 발색이 나타남으로 최적의 Aldol-myo-Inositol-phosphate 농도를 보다 자세하게 알아보기 위해서 10 mM 이하의 농도에 대한 발색 반응 테스트를 다시 조사한 결과, Aldol-myo-Inositol-phosphate 농도는 바람직하게는 1~10 mM 일 수 있으며 가장 바람직하게는 7.5 mM 일 수 있다.
(다) 리스테리아균(Listeria)을 위한 미세유체 종이칩의 발색 테스트
리스테리아균 검출을 위한 7.5 mM Aldol-myo-Inositol-phosphate 로 만든 미세유체 종이칩의 발색 테스트를 수행하여 리스테리아균을 비롯한 다른 식품위해미생물에 대한 발색 테스트를 수행하였다.
이를 위해서 7.5 mM Aldol-myo-Inositol-phosphate 를 패턴으로 미리 제작한 종이 위에 5 ㎕ 씩 로딩한 후 이를 40 °C 건조기에서 30 분 동안 건조시킨다.
리스테리아균 검출을 위한 미세유체 종이칩 제조 시 이용되는 Oxidation reagent로 10 mM FeCl2와 FeCl3 를 패턴으로 제작한 종이 위에 5 ㎕ 씩 로딩한 후 이를 40 °C 건조기에서 30 분 동안 건조시킨다.
이외에도 미세유체 종이칩 조립에 필요한 상기 조건에서 개발한 lysis reagent 를 각각 미리 준비한 패턴으로 제작한 종이 위에 5 ㎕ 씩 로딩한 후 이를 40 °C 건조기에서 30분 동안 건조시킨다.
이를 제1층(Inlet)-제2층(lysis reagent)-제3층(oxidation)-제4층(chromogenic reagent)-제5층(Outlet) 순서로 각각의 종이를 쌓은 후 여기에 미리 준비한 미생물 현탁액 50 ㎕ 씩 주입하여 37 °C 에서 30분간 반응시킨 후에 리스테리아균 검출을 위한 종이기반 미세유동장치에 대한 발색 반응을 조사하였다.
이에 대한 결과를 도 44에 나타내었다.
도 44에 나타낸 바와 같이, 목표했던 바대로 다른 균들은 모두 발색 반응이 일어나지 않았지만 리스테리아균에 대해 분홍색의 발색 검출이 나타남을 확인 할 수 있었다.
실시예 10
미세유체 종이칩을 이용한 포도상구균의 검출 평가
(가) Oxidation reagent의 종류와 농도에 따른 미세유체 종이칩의 발색 테스트
포도상구균 검출을 위한 미세유체 종이칩 제조를 위해서 적절한 Oxidation reagent의 종류와 농도를 실시예 4를 근거로 조사하였다.
포도상구균 검출 시 발색 기질의 발색 반응 시 발색단의 산화를 촉진하기 위해서 oxidation reagent를 개발하기 위한 조성물을 조사하였다. 이를 위해서 상기의 조건에서 배양한 포도상구균을 1.5ml을 원심 분리하여 bacterial cell을 회수한 후 이를 0.5 ml의 인산완충용액으로 현탁한 후 이를 시료로 사용하였다.
Oxidation reagent로 potassium ferriccyanide (K3Fe(CN)6)와 potassium ferrocyanide (K4Fe(CN)6)를 FeCl2와 FeCl3, 그리고 FeSO4와 FeCl2를 농도별로 미리 준비한 패턴으로 제작한 종이 위에 5 ㎕ 씩 로딩한 후 이를 40 °C 건조기에서 30 분 동안 건조시킨다.
Oxidation reagent 이외에도 미세유체 종이칩 조립에 필요한 상기 조건에서 개발한 lysis reagent 와 해당 chromogenic reagent를 각각 미리 준비한 패턴으로 제작한 종이 위에 5 ㎕ 씩 로딩한 후 이를 40 °C 건조기에서 30분 동안 건조시킨다.
이를 제1층(Inlet)-제2층(lysis reagent)-제3층(oxidation)-제4층(chromogenic reagent)-제5층(Outlet) 순서로 각각의 종이를 쌓은 후 여기에 미리 준비한 포도상구균 현탁액 50 ㎕ 씩 주입하여 37 °C 에서 30분간 반응시킨 후에 oxidation reagent의 종류와 농도에 따른 발색반응을 테스트하였다.
이에 대한 결과를 도 45에 나타내었다.
도 45에 나타낸 바와 같이, 포도상구균을 검출하기 위해서 사용되는 X-phosphate 에 대한 oxidation 반응의 특징을 알 수 있었다. X-phosphate 의 경우에는 oxidation reagent 중에서 10mM의 potassium ferriccyanide (K3Fe(CN)6)와 potassium ferrocyanide (K4Fe(CN)6)에 대해 가장 좋은 발색 반응을 촉진하는 결과를 얻었다.
(나) Chromogenic reagent의 종류와 농도에 따른 미세유체 종이칩의 발색 테스트
포도상구균 검출을 위한 미세유체 종이칩 제조를 위해서 적절한 발색기질(chromogenic reagent)의 종류와 농도를 실시예 3을 근거로 조사하였다.
포도상구균 검출을 위한 발색 기질로 Magenta-beta-galactopyranoside와 X-phosphate의 발색 검출 시 최적화된 발색기질의 농도를 조사하였다. 이를 위해서 상기의 조건에서 배양한 포도상구균을 1.5 ml을 원심 분리하여 bacterial cell을 회수한 후 이를 0.5 ml의 인산완충용액으로 현탁한 후 이를 시료로 사용하였다.
포도상구균 검출을 위해 해당 발색기질에 대해 최적화된 발색기질의 농도를 조사하기 위해서 5, 10, 25, 50, 100 과 200 mM 의 발색 기질을 각각 패턴으로 제작한 종이 위에 5 ㎕ 씩 로딩한 후 이를 40 °C 건조기에서 30 분 동안 건조시킨다.
포도상구균 검출을 위한 미세유체 종이칩 제조 시 이용되는 Oxidation reagent로 10 mM potassium ferriccyanide (K3Fe(CN)6)와 potassium ferrocyanide (K4Fe(CN)6)를 패턴으로 제작한 종이 위에 5 ㎕ 씩 로딩한 후 이를 40 °C 건조기에서 30 분 동안 건조시킨다.
이외에도 미세유체 종이칩 조립에 필요한 상기 조건에서 개발한 lysis reagent 를 각각 미리 준비한 패턴으로 제작한 종이 위에 5 ㎕ 씩 로딩한 후 이를 40 °C 건조기에서 30분 동안 건조시킨다.
이를 제1층(Inlet)-제2층(lysis reagent)-제3층(oxidation)-제4층(chromogenic reagent)-제5층(Outlet) 순서로 각각의 종이를 쌓은 후 여기에 미리 준비한 포도상구균 50 ㎕ 씩 주입하여 37 °C 에서 30분간 30분간 반응시킨 후에 chromogenic reagent의 종류와 농도에 따른 발색반응을 테스트하였다.
이에 대한 결과를 도 46 및 도 47에 나타내었다.
도 46에 나타낸 바와 같이, 포도상구균을 검출 시 Magenta-beta-galactopyranoside의 농도에 따른 발색 반응의 특징을 알 수 있었다. Magenta-beta-galactopyranoside의 농도가 증가할수록 발색 반응의 정도가 증가함을 확인할 수 있었다. 100 mM 이상의 Magenta-beta-galactopyroanoside 농도에서 가장 적합한 발색 반응을 보여주었으므로 최적 농도를 100 mM로 결정하였다.
도 47에 나타낸 바와 같이, 포도상구균 검출 시에 X-phosphate의 농도에 따른 발색 반응에 대해 조사한 결과, X-phosphate의 농도가 증가할수록 발색 반응의 정도가 증가하다가 100 mM 이상의 농도에서 발색 반응 정도가 오히려 감소하였다. 이에 따라서 X-phosphate 농도는 바람직하게는 25~100 mM 일 수 있으며 가장 바람직하게는 50 mM 일 수 있다.
(다) Magenta-beta-galactopyranoside 및 X-phosphate 혼합 농도에 따른 미세유체 종이칩의 발색 테스트
포도상구균 검출을 위한 미세유체 종이칩 제조 시에 이러한 결과들을 참조하여 포도상구균의 적절한 검출을 위한 이 두 가지 발색기질 농도의 혼합 비율을 조사하였다. 이를 위해서 100 mM Magenta-beta-galactopyranoside를 패턴으로 미리 제작한 종이 위에 5 ㎕ 씩 로딩한 후 이를 40 °C 건조기에서 30 분 동안 건조시킨다. 이후에 같은 종이 위에 농도를 달리하여 아래와 같이 X-phosphate를 혼합하여 패턴으로 미리 제작한 종이 위에 5 ㎕ 씩 로딩한 후 이를 다시 40 °C 건조기에서 30 분 동안 건조시킨다.
이를 제1층(Inlet)-제2층(lysis reagent)-제3층(oxidation)-제4층(chromogenic reagent)-제5층(Outlet) 순서로 각각의 종이를 쌓은 후 여기에 미리 준비한 포도상구균 현탁액 50 ㎕ 씩 주입하여 37 °C 에서 30분간 반응시킨 후에 두 가지 발색기질의 혼합에 따른 발색 반응을 테스트하였다.
이에 대한 결과를 도 48에 나타내었다.
도 48에 나타낸 바와 같이, 포도상구균 검출 시 가장 적절한 두 가지 발색기질의 혼합비는 100 mM Magenta-beta-galactopyranoside / 25 mM X-phosphate 가 가장 적합한 것으로 결정되었다.
이는 두 가지 발색 기질을 이용함으로 선택배지에 의해서 선택도를 높이겠지만 보다 특이도 높이기 위한 이중 검출 발색 반응으로 청색으로 검출하게 함으로 포도상구균의 검출을 보다 정확하게 구분하여 검출하기 위한 것이다.
(라) 포도상구균(Staphylococcus)을 위한 미세유체 종이칩의 발색 테스트
- 포도상구균 검출을 위한 100 mM Magenta-beta-galactopyranoside 와 25 mM X-phosphate 로 만든 미세유체 종이칩의 발색 테스트를 수행하여 포도상구균을 비롯한 다른 식품위해미생물에 대한 발색 테스트를 수행하였다.
이를 위해서 100 mM Magenta-beta-galactopyranoside 를 패턴으로 미리 제작한 종이 위에 5 ㎕ 씩 로딩한 후 이를 40 °C 건조기에서 30 분 동안 건조시킨다. 이후에 같은 종이 위에 25 mM X-phosphate 를 같은 종이 위에 5 ㎕ 씩 로딩한 후 이를 다시 40 °C 건조기에서 30분 동안 건조시킨다.
포도상구균 검출을 위한 미세유체 종이칩 제조 시 이용되는 Oxidation reagent로 10 mM potassium ferriccyanide (K3Fe(CN)6)와 potassium ferrocyanide (K4Fe(CN)6)를 패턴으로 제작한 종이 위에 5 ㎕ 씩 로딩한 후 이를 40 °C 건조기에서 30 분 동안 건조시킨다.
이외에도 미세유체 종이칩 조립에 필요한 상기 조건에서 개발한 lysis reagent 를 각각 미리 준비한 패턴으로 제작한 종이 위에 5 ㎕ 씩 로딩한 후 이를 40 °C 건조기에서 30분 동안 건조시킨다.
이를 제1층(Inlet)-제2층(lysis reagent)-제3층(oxidation)-제4층(chromogenic reagent)-제5층(Outlet) 순서로 각각의 종이를 쌓은 후 여기에 미리 준비한 미생물 현탁액 50 ㎕ 씩 주입하여 37 °C 에서 30분간 반응시킨 후에 포도상구균 검출을 위한 종이기반 미세유동장치에 대한 발색 반응을 조사하였다.
이에 대한 결과를 도 49에 나타내었다.
도 49에 나타낸 바와 같이, 포도상구균에 대해 목표로 했던 분홍색의 청색 검출이 나타남을 확인 할 수 있었으며 이에 대비해서 다른 균의 경우에는 비브리오균과 리스테리아균 같이 발색되지 않거나 장출혈성 대장균의 경우는 분홍색으로 살모넬라균의 경우는 하늘색으로 검출되었다.
이상에서 설명한 본 발명의 바람직한 실시예들은 기술적 과제를 해결하기 위해 개시된 것으로, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 사상 및 범위 안에서 다양한 수정, 변경, 부가 등이 가능할 것이며, 이러한 수정 변경 등은 이하의 특허청구범위에 속하는 것으로 보아야 할 것이다.

Claims (13)

  1. 용균 시약(Lysis reagent) 조성물이 포함된 친수성 재질의 종이로 이루어진 용균층; 및
    발색 시약(Chromogenic reagent)이 포함된 친수성 재질의 종이로 이루어진 발색층;
    이 순차적으로 적층된 미생물 검출용 미세유체 종이칩.
  2. 제1항에 있어서,
    상기 용균층 위에 또는 상기 발색층 아래에 친수성 재질의 종이로 이루어진 외곽층을 더 적층된 것을 특징으로 하는 미생물 검출용 미세유체 종이칩.
  3. 제1항에 있어서,
    상기 용균층과 상기 발색층 사이에 산화 시약(Oxidation reagent)이 포함된 친수성 재질의 종이로 이루어진 산화층이 더 적층된 것을 특징으로 하는 미생물 검출용 미세유체 종이칩.
  4. 제1항에 있어서,
    상기 친수성 재질의 종이의 테두리에 소수성 물질을 프린팅하여 장벽을 형성함에 의해 유체채널을 형성한 것을 특징으로 하는 미생물 검출용 미세유체 종이칩.
  5. 제1항에 있어서,
    상기 친수성 재질의 종이는 크로마토그래피 페이퍼 또는 필터 페이퍼인 것을 특징으로 하는 미생물 검출용 미세유체 종이칩.
  6. 제1항에 있어서,
    상기 미생물은 상기 미생물은 살모넬라 (Salmonella), 바실러스 (Bacillus), 리스테리아(Listeria), 비브리오 (Vibrio), 캠필로박터(Campylobacter), 포도상구균(Staphylococcus aureus), 대장균군(Eshcerchia Coliform), 대장균(E. coli), 시겔라균(Shigella, Legionella), 엔테로박터(Enterobacter sakazakii), 시트로박터(Citrobacter), 프로테우스(Preteus), 메티실린 내성균(MRSA) 및 장출혈성 대장균(E.coli O157) 로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는 미생물 검출용 미세유체 종이칩.
  7. 제1항에 있어서,
    상기 용균 시약(Lysis reagent) 조성물은 Tergitol NP-9, Tergitol NP-10, Tergitol NP-40, Triton X-100, Tween 80, BMT, SB3-8, SB3-10, SB3-14 및 SB3-16로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는 미생물 검출용 미세유체 종이칩.
  8. 제7항에 있어서,
    상기 용균 시약(Lysis reagent) 조성물은 C7BzO (3-[[3-(4-heptylphenyl)-3-hydroxypropyl]-dimethylazaniumyl]propane-1-sulfonate)를 더 포함하는 것을 특징으로 하는 미생물 검출용 미세유체 종이칩.
  9. 제8항에 있어서,
    상기 용균 시약(Lysis reagent) 조성물은 실리카 비드(silica bead)를 더 포함하는 것을 특징으로 하는 미생물 검출용 미세유체 종이칩.
  10. 제1항에 있어서,
    상기 발색 시약(Chromogenic reagent)은 5-브로모-4-클로로-3-인독실-베타-L-아라비노피라노사이드, 5-브로모-4-클로로-3-인독실-베타-D-글루쿠론산, 5-브로모-4-클로로-3-인독실-알파-D-말토트리오사이드, 5-브로모-4-클로로-3-인독실-N-아세틸-베타-D-갈락토사미니드, 5-브로모-4-클로로-3-인독실-N-아세틸-베타-D-글루코사미니드, 5-브로모-4-클로로-3-인독실-N-아세틸-베타-D-갈락토사미니드, 5-브로모-4-클로로-3-인독실-알파-D-N-아세틸뉴라믹산, 5-브로모-4-클로로-3-인독실-알파-L-아라미노푸라노사이드, 5-브로모-4-클로로-3-인독실-베타-D-셀로비오사이드, 5-브로모-4-클로로-3-인독실-콜린 포스페이트, 5-브로모-4-클로로-3-인독실-알파-D-퓨코피라노사이드, 5-브로모-4-클로로-3-인독실-알파-L-퓨코파리노사이드, 5-브로모-4-클로로-3-인독실-알파-D-갈락토피라노사이드, 5-브로모-4-클로로-3-인독실-베타-D-갈락토피라노사이드, 5-브로모-4-클로로-3-인독실-알파-D-글루코피라노사이드, 5-브로모-4-클로로-3-인독실-베타-D-글루코피라노사이드, 5-브로모-4-클로로-3-인독실-미오-이노시톨-1-포스페이트, 5-브로모-4-클로로-3-인독실-알파-D-만노피라노사이드, 5-브로모-4-클로로-3-인독실-베타-D-만노피라노사이드, 5-브로모-4-클로로-3-인독실-알파-D-자일로피라노사이드, 5-브로모-4-클로로-3-인독실 부틸레이트, 5-브로모-4-클로로-3-인독실 카프릴레이트, 5-브로모-4-클로로-3-인독실 노나노네이트, 5-브로모-4-클로로-3-인독실 올레이트, 5-브로모-4-클로로-3-인독실 팔미테이트, 5-브로모-4-클로로-3-인독실 포스페이트, 5-브로모-4-클로로-3-인독실 설페이트, 5-브로모-4-클로로-3-인독실-1-아세테이트, 5-브로모-4-클로로-3-인독실-3-아세테이트, 6-클로로-3-인독실-N-아세틸-베타-D-글루코사미니드, 6-클로로-3-인독실-알파-D-만노피라노사이드, 6-클로로-3-인독실-베타-D-만노피라노사이드, 6-클로로-3-인독실실-미오-이노시톨-1-포스페이트, 6-클로로-3-인독실-N-아세틸-베타-D-갈락토사미니드, 6-클로로-3-인독실-베타-D-셀로비오사이드, 6-클로로-3-인독실-알파-D-갈락토피라노사이드, 6-클로로-3-인독실-베타-D-갈락토피라노사이드, 6-클로로-3-인독실-알파-D-글루코피라노사이드, 6-클로로-3-인독실-베타-D-글루코피라노사이드, 6-클로로-3-인독실-베타-D-글루쿠론산, 6-클로로-3-인독실 부틸레이트, 6-클로로-3-인독실 카프릴레이트, 6-클로로-3-인독실 노나노네이트, 6-클로로-3-인독실 올레이트, 6-클로로-3-인독실 팔미테이트, 6-클로로-3-인독실 포스페이트, 6-클로로-3-인독실 설페이트, 6-클로로-3-인독실-1-아세테이트, 5-브로모-6-클로로-3-인독실-N-아세틸-베타-D-글루코사미니드, 5-브로모-6-클로로-3-인독실-베타-D-푸코피라노사이드, 5-브로모-6-클로로-3-인독실-알파-D-갈락토피라노사이드, 5-브로모-6-클로로-3-인독실-베타-D-갈락토피라노사이드, 5-브로모-6-클로로-3-인독실-알파-D-글루코피라노사이드, 5-브로모-6-클로로-3-인독실-베타-D-글루쿠론산, 5-브로모-6-클로로-3-인독실-알파-D-글루코피라노사이드, 5-브로모-6-클로로-3-인독실-미오-이노시톨-1-포스페이트, 5-브로모-6-클로로-3-인독실 부틸레이트, 5-브로모-6-클로로-3-인독실 카프릴레이트, 5-브로모-6-클로로-3-인독실 노나노네이트, 5-브로모-6-클로로-3-인독실 팔미테이트, 5-브로모-6-클로로-3-인독실 콜린 포스페이트, 5-브로모-6-클로로-3-인독실 포스페이트, 5-브로모-6-클로로-3-인독실 설페이트, 5-브로모-6-클로로-3-인독실-3-아세테이트, 알돌 518 베타-D-갈락토피라노사이드, 알돌 518 알파-D-갈락토피라노사이드, 알돌 518 알파-D-글루코피라노사이드, 알돌 518 베타-D-글루코피라노사이드, 알돌 518 베타-D-글루쿠로산, 알돌 518 미오-이노시톨-1-포스페이트, 알돌 515 카프릴레이트, 알돌 515 팔미테이트, 알돌 515 포스페이트 및 알돌 515 아세테이트로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는 미생물 검출용 미세유체 종이칩.
  11. 제3항에 있어서,
    상기 산화 시약(Chromogenic reagent)은 potassium ferriccyanide (K3Fe(CN)6)와 potassium ferrocyanide (K4Fe(CN)6)의 혼합물, FeCl2와 FeCl3의 혼합물 및 FeSO4와 FeCl2의 혼합물로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는 미생물 검출용 미세유체 종이칩.
  12. (a) 친수성 재질로 이루어진 복수의 종이의 테두리를 소수성 물질을 프린팅하여 소수성 장벽을 형성하게 만드는 단계;
    (b) 상기 소수성 물질이 프린트된 한장의 종이의 친수성 영역에 용균 시약(Lysis reagent) 조성물을 흡수시킨 후 건조하는 단계;
    (c) 상기 소수성 물질이 프린트된 다른 한장의 종이의 친수성 영역에 발색 시약(Chromogenic reagent)을 흡수시킨 후 건조하는 단계; 및
    (d) 상기 소수성 물질이 프린트된 종이-상기 용균 시약 조성물이 흡수된 종이-상기 발색 시약이 흡수된 종이-상기 소수성 물질이 프린트된 종이를 순서대로 적층하는 단계를 포함하는 미생물 검출용 미세유체 종이칩 제조방법.
  13. 제1항 내지 제12항 중 어느 한 항에 따른 미생물 검출용 미세유체 종이칩을 이용하여 미생물을 검출하는 방법.
PCT/KR2018/016003 2017-12-19 2018-12-17 미생물 검출용 미세유체 종이칩, 이의 제조방법 및 이를 이용한 미생물 검출방법 WO2019124904A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/771,583 US20200298233A1 (en) 2017-12-19 2018-12-17 Microfluidic paper chip for detecting micro-organism, method for preparing the same and method for detecting micro-organism using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20170175505 2017-12-19
KR10-2017-0175505 2017-12-19

Publications (1)

Publication Number Publication Date
WO2019124904A1 true WO2019124904A1 (ko) 2019-06-27

Family

ID=66992733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/016003 WO2019124904A1 (ko) 2017-12-19 2018-12-17 미생물 검출용 미세유체 종이칩, 이의 제조방법 및 이를 이용한 미생물 검출방법

Country Status (3)

Country Link
US (1) US20200298233A1 (ko)
KR (1) KR102245743B1 (ko)
WO (1) WO2019124904A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111551544A (zh) * 2020-05-06 2020-08-18 东南大学 一种基于纸基微流控芯片的二价铜离子快检装置及检测方法
CN111595843A (zh) * 2020-05-20 2020-08-28 中国科学院新疆理化技术研究所 一种用于阵列化比色分析的粘性采样检测纸的制备方法和用途
JP7503384B2 (ja) 2020-01-09 2024-06-20 栄研化学株式会社 レジオネラ属菌鑑別用発色培地

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102200199B1 (ko) * 2019-11-12 2021-01-08 주식회사 티맥 소수성 물질을 적용한 블롯팅 멤브레인, 이의 제조방법 및 이를 포함하는 블롯팅 기기
KR102574893B1 (ko) 2021-11-02 2023-09-04 가천대학교 산학협력단 Vre(반코마이신 내성 장구균)의 신속한 스크리닝을 위한 마이크로 디바이스
CN113984753B (zh) * 2021-11-04 2022-12-02 长春美泰仪器有限公司 甲醛检测试纸及其制备方法和甲醛检测系统
WO2023228142A1 (en) * 2022-05-27 2023-11-30 Papyrus Diagnostics Private Limited A device and method for phenotypic detection of antimicrobial resistance to drugs using paper microfluidics
CN115228520B (zh) * 2022-07-01 2023-06-13 南京工业大学 一种热熔胶膜一体成型组装的三维纸芯片制作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030100104A1 (en) * 1997-12-12 2003-05-29 Jeffrey Scott R. Sensor device for detecting microorganisms, and method therefor
US20100190204A1 (en) * 2007-03-22 2010-07-29 Nanologix, Inc. Detection and Identification of Microorganisms on Transparent Permeable Membranes
US20120238008A1 (en) * 2011-03-15 2012-09-20 Colorado State University Research Foundation Rapid Detection of Pathogens Using Paper Devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030100104A1 (en) * 1997-12-12 2003-05-29 Jeffrey Scott R. Sensor device for detecting microorganisms, and method therefor
US20100190204A1 (en) * 2007-03-22 2010-07-29 Nanologix, Inc. Detection and Identification of Microorganisms on Transparent Permeable Membranes
US20120238008A1 (en) * 2011-03-15 2012-09-20 Colorado State University Research Foundation Rapid Detection of Pathogens Using Paper Devices

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HWANG CHEOL HWAN ET AL.: "Paper-based neuraminidase assay sensor for detection of Influenza Viruses", KOREAN CHEM. ENG. RES., vol. 54, no. 3, 2016, pages 380 - 386, XP055620469 *
JOKERST, J. C.: "Development of a Paper-Based Analytical Device for ColorimetricDetection of Select Foodborne Pathogens", ANALYTICAL CHEMISTRY, vol. 84, no. 6, 7 February 2012 (2012-02-07), pages 2900 - 2907, XP055620470 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7503384B2 (ja) 2020-01-09 2024-06-20 栄研化学株式会社 レジオネラ属菌鑑別用発色培地
CN111551544A (zh) * 2020-05-06 2020-08-18 东南大学 一种基于纸基微流控芯片的二价铜离子快检装置及检测方法
CN111595843A (zh) * 2020-05-20 2020-08-28 中国科学院新疆理化技术研究所 一种用于阵列化比色分析的粘性采样检测纸的制备方法和用途

Also Published As

Publication number Publication date
US20200298233A1 (en) 2020-09-24
KR102245743B1 (ko) 2021-04-28
KR20190074231A (ko) 2019-06-27

Similar Documents

Publication Publication Date Title
WO2019124904A1 (ko) 미생물 검출용 미세유체 종이칩, 이의 제조방법 및 이를 이용한 미생물 검출방법
WO2011157222A1 (zh) 淋巴瘤融合基因的联合检测方法及其诊断试剂盒
WO2018212508A2 (ko) 핵산 추출용 카트리지 및 핵산 추출 방법
WO2010143871A9 (ko) 재설계 유전자 회로를 이용한 다양한 효소 활성의 탐색 및 정량 방법
WO2020218831A1 (ko) 신규한 등온 단일 반응용 프로브 세트 및 이의 용도
WO2015167278A1 (en) A protein secretory factor with high secretory efficiency and an expression vector comprising the same
WO2023058884A1 (ko) 암 진단용 바이오마커 및 이의 용도
WO2015199387A2 (ko) 가용성 단백질 발현량 및 활성이 증대된 헬리코박터 파일로리 유래 α-1,3 푸코실 전달효소의 유전자와 단백질 및 α-1,3 푸코실올리고당 생산에의 응용
WO2018070652A1 (ko) 당화혈색소 정량분석용 키트
CN1330666C (zh) 低氧-诱导因子1αHIF-1α变体和鉴定HIF-1α调节剂的方法
WO2020105873A1 (ko) 인간 알파코로나바이러스 전장유전체 증폭을 통한 진단키트 및 전장 유전체 서열 확인 방법
WO2011120398A1 (zh) 白血病融合基因的联合检测方法及其诊断试剂盒
WO2022145985A1 (ko) 이동형 진단 구조물
WO2016122058A1 (ko) 세포성점균을 이용한 인간 페닐알라닌 수산화효소의 활성분석 방법
WO2017146400A1 (en) Compound and composition for detecting phosgene and diethyl chlorophosphate
WO2019135477A2 (ko) 다복제유전자를 이용한 쯔쯔가무시병의 진단방법
WO2019132444A1 (ko) 마그네슘 이온의 검출을 통하여 메티실린 내성 황색포도상구균(mrsa)의 감염을 진단하기 위한 키트
WO2022005023A1 (ko) 중뇌 오가노이드, 이의 고속 및 대량 제조 방법, 이를 이용한 신경독성물질 스크리닝 방법 및 도파민성 신경세포 관련 질환 치료제 스크리닝 방법
WO2012177089A9 (ko) 클로렐라의 종간 및 종 내의 균주 특이적 마이크로새틀라이트 분자 마커
WO2020036329A1 (ko) 미토콘드리아 내 nad(p)h 검출을 위한 형광 프로브 및 이를 이용한 검출방법
WO2020122679A1 (en) Method for detecting a target analyte in a sample using an s-shaped function for a slope data set
WO2022065949A1 (ko) 인돌리진 골격체 기반 ph 측정용 형광 화합물 및 이의 용도
WO2011149305A9 (ko) 이중 실시간 중합효소연쇄반응법을 이용한 결핵균과 항산성비결핵균의 검출 방법
WO2023075569A1 (ko) 분할된 t7 프로모터를 이용한 등온 단일 반응용 프로브 세트 및 이의 용도
WO2019103475A2 (ko) 실시간 중합 효소 연쇄 반응을 이용한 hla 대립유전자 검사 키트

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18891815

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18891815

Country of ref document: EP

Kind code of ref document: A1