WO2019124296A1 - 積層造形物およびその製造方法、ならびに、積層造形用金属粉末 - Google Patents

積層造形物およびその製造方法、ならびに、積層造形用金属粉末 Download PDF

Info

Publication number
WO2019124296A1
WO2019124296A1 PCT/JP2018/046299 JP2018046299W WO2019124296A1 WO 2019124296 A1 WO2019124296 A1 WO 2019124296A1 JP 2018046299 W JP2018046299 W JP 2018046299W WO 2019124296 A1 WO2019124296 A1 WO 2019124296A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
laminate
maraging steel
metal powder
Prior art date
Application number
PCT/JP2018/046299
Other languages
English (en)
French (fr)
Inventor
範英 福澤
坂巻 功一
洋佑 中野
孝介 桑原
志保 福元
斉藤 和也
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to CN201880077295.9A priority Critical patent/CN111448020B/zh
Priority to US16/767,111 priority patent/US11643711B2/en
Priority to JP2019538284A priority patent/JP6610984B2/ja
Priority to SG11202005032TA priority patent/SG11202005032TA/en
Priority to EP18890957.6A priority patent/EP3730236B1/en
Publication of WO2019124296A1 publication Critical patent/WO2019124296A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/007Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/78Combined heat-treatments not provided for above
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a laminate-molded product that can be used, for example, in mold parts such as molds and ejector pins, other tool products, structural parts, and the like, and a method of manufacturing the same.
  • the present invention also relates to a metal powder for laminate molding that can be used for the production of these laminate-molded articles.
  • additive manufacturing is an additive manufacturing technique, also commonly referred to as 3D printing.
  • a powder spray method in which a metal powder is irradiated and melted while being melted, and a metal powder spread on a stage is irradiated with a heat source and melted to solidify it.
  • a powder bed method in which work is repeated and laminated.
  • a difficult-to-process metal material can be used.
  • the difficult-to-process metal material is exclusively a high-strength metal material, it is possible to produce a metal product having a complicated shape and a long durable life.
  • Maraging steel is a high strength metal material.
  • the maraging steel is, for example, an age-hardened super-strength steel obtained by adding an age-hardening element such as Co, Mo, Ti or Al to a steel containing about 18% by mass of Ni. And since maraging steel is excellent also in toughness, it is effective in the life improvement of these products by using maraging steel for materials of various tools and structural parts. And the lamination-molded article produced by said lamination-modeling method using maraging steel for a metal material is proposed (patent document 1, 2).
  • the laminated molded article made of maraging steel can be expected to have high strength and excellent toughness, while being able to cope with complicated product shapes. However, among those actually laminated and formed, there were some that did not achieve sufficient toughness corresponding to the component composition of maraging steel.
  • An object of the present invention is to provide a laminate shaped article excellent in toughness and a method of manufacturing the same for a laminate shaped article made of maraging steel. And it provides the metal powder for lamination modeling which can be used for manufacture of these lamination molding things.
  • the present invention is a laminate shaped article made of maraging steel containing 0.1 to 5.0% by mass of Ti, and surface analysis of distribution of Ti concentration of a cross section parallel to the laminate direction of the laminate shaped article described above
  • a linear Ti-concentrated portion having a Ti concentration B of (1.5 ⁇ A) or more with respect to the average Ti concentration A of the cross section is a laminate shaped article having a length of 15 ⁇ m or less.
  • the hardness of the layered product can be set to 40 to 60 HRC.
  • metal powder made of maraging steel containing 0.1 to 5.0% by mass of Ti is spread on the stage, and the metal powder spread on the stage is irradiated while scanning the heat source.
  • a lamination molding process which repeatedly performs the work of: heating the metal powder with a heat source output of 50 to 330 W and a scanning speed of 480 to 3000 mm. It is a manufacturing method of the laminate-molded article made into seconds. And it can be set as the manufacturing method of the lamination three-dimensional object which performs further the heat treatment process which includes solution treatment and aging treatment to the article formed at the above-mentioned lamination modeling process.
  • the present invention is a maraging steel containing 0.1 to 5.0% by mass of Ti, and is a metal powder for laminate molding having a median diameter D50 of 200 ⁇ m or less.
  • the above-mentioned maraging steel preferably has a Co content of 0 to 20% by mass.
  • the above-mentioned maraging steel is, for example, by mass%, C: 0.1% or less, Ni: 14 to 22%, Co: 0 to 20%, Mo: 0.1 to 15.0%, Ti: 0.1 to 5.0%, Al: 3.0% or less, balance of Fe and impurities.
  • the toughness of the laminate-molded article made of maraging steel can be improved.
  • Elemental mapping image (a) of Ti when a cross section parallel to the lamination direction of the laminate-molded product of the invention example and the comparative example is analyzed by EPMA (electron beam microanalyzer) and this image (a) is binarized (B) of FIG.
  • Elemental mapping image (a) of Ti when a cross section parallel to the lamination direction of the laminate-molded product after the heat treatment process of the present invention example and comparative example is analyzed by EPMA, and an image obtained by binarizing this image (a) It is a figure which shows (b).
  • Elemental mapping image (a) of Ti when a cross section parallel to the laminating direction of the layered product after the heat treatment step of the present invention example is analyzed by EPMA (a) and an image (b) obtained by binarizing this image (a) And FIG.
  • the feature of the present invention is found that the deterioration of the toughness of the laminate shaped article made of maraging steel is caused due to the relationship between Ti in its component composition and the special manufacturing process of the laminate shaping method. It is at the point.
  • each requirement of the present invention will be described together with its preferable one.
  • the laminate of the present invention is made of maraging steel containing 0.1 to 5.0% by mass of Ti.
  • Ti is an element that imparts strength to maraging steel by forming Ni 3 Ti, which is a strengthening phase, in the structure after aging treatment.
  • the Ti content is set to 0.1 to 5.0% by mass.
  • it is 0.5 mass% or more. More preferably, it is 1.0 mass% or more. More preferably, it is 1.5 mass% or more.
  • the layered object of the present invention is (1.5 ⁇ A) or more with respect to the average Ti concentration A of the cross section when the distribution of the Ti concentration in the cross section parallel to the stacking direction is subjected to surface analysis
  • the linear Ti-concentrated portion having a Ti concentration B of not more than 15 .mu.m.
  • Ni 3 Ti is formed more than other portions. And since the shape of this often formed Ni 3 Ti also becomes “linear”, it is considered that this promotes the propagation of cracks during use. As a result, in the case of a laminate-molded article made of maraging steel, it is considered that the toughness thereof in the direction (that is, the scanning direction of the heat source) orthogonal to that of the laminate direction is deteriorated particularly by containing Ti.
  • the linear Ti segregation described above it is effective to reduce the linear Ti segregation described above.
  • the heat treatment step of the solution treatment and the aging treatment it is effective to reduce the linear Ni 3 Ti. That is, before the heat treatment step, the “length” of linear Ti segregation distributed in a cross section parallel to the stacking direction of the layered product is reduced (the Ti concentration of the cross section is leveled).
  • the “length” of the linear Ni 3 Ti distributed in the cross section parallel to the lamination direction of the layered object is reduced (the shape of Ni 3 Ti is made isotropic) It is.
  • the average Ti concentration A of the cross section is The length of the linear Ti-rich portion having a Ti concentration B of (1.5 ⁇ A) or more is 15 ⁇ m or less. And preferably, it is less than 10 ⁇ m.
  • said "linear Ti concentration part” is a continuous elongate Ti concentration part.
  • the “linear Ti-concentrated portion” is, for example, the “Ti-concentrated portion” which is the length of the straight line or the curved line. “Length” can be confirmed as a form that is approximately three times longer than the maximum width in the direction perpendicular to the longitudinal direction of the straight line or curve.
  • the above-mentioned “the length of the linear Ti-rich portion is 15 ⁇ m or less” regulates the length of the continuous elongated Ti-thick portion to 15 ⁇ m or less.
  • a dotted Ti-concentrated portion which is not linear as described above may be present.
  • the dotted Ti-concentrated portion can be a Ti-concentrated portion other than the above-mentioned "linear Ti-concentrated portion".
  • the point-like Ti-enriched portion is unlikely to be a path promoting the propagation of the above-mentioned cracks regardless of the size due to its substantially isotropic shape, so the degree of influence to deteriorate the toughness of the layered object is small .
  • an EPMA electron beam microanalyzer
  • an EPMA electron beam microanalyzer
  • a cross section parallel to the stacking direction of the layered object is collected from the position of the central portion of the layered object.
  • the fact that the above-mentioned cross section is "a cross section parallel to the stacking direction" can be confirmed from the specification of the layered three-dimensional object, the stacking trace in the layered three-dimensional object, and the like.
  • the average Ti concentration of this cross section is obtained by EPMA analysis of the area of 800 ⁇ m long ⁇ 800 ⁇ m wide with magnification of ⁇ 100 at equally spaced positions of 400 points each in the vertical and horizontal directions (total of 160000 points). I can know A. Then, it is possible to obtain an element mapping image showing the distribution of Ti-concentrated parts having a Ti concentration B of (1.5 ⁇ A) or more with respect to the average Ti concentration A (FIG. 1 (a)). . At this time, by subjecting this elemental mapping image to a binarization process using the above critical value of the Ti concentration B as a threshold value, the Ti-enriched portion can be clearly viewed (FIG. 1 (b)).
  • the length of the linear Ti-concentrated portion can be confirmed.
  • the Ti-enriched portion is displayed as a set of pixels at each analysis position (black point group), and it is “linear” that each pixel is However, confirmation can be made by “adjacent” in the vertical, horizontal and diagonal directions.
  • the “linear Ti-rich portion” of the present invention is confirmed in one or more of the above 800 ⁇ m ⁇ 800 ⁇ m regions, the “linear Ti-rich portion” of the present invention
  • the fact that the length is 15 ⁇ m or less can also be said to be “a linear Ti-concentrated portion having a length of more than 15 ⁇ m is less than 1.0 per area of 800 ⁇ m long ⁇ 800 ⁇ m wide”.
  • the “less than 1.0” includes the case of “0”.
  • the layered object of the present invention is preferably made of maraging steel having a Co content of 0 to 20% by mass.
  • Co is an element having the effect of improving the strength and toughness of the product.
  • the layered object of the present invention can contain Co as a selective element. Preferably it is 0.1 mass% or more. More preferably, it is 0.2 mass% or more. More preferably, it is 0.3% by mass or more.
  • the upper limit thereof is preferably 20% by mass.
  • the toughness is improved by suppressing the linear Ti-concentrated portion in the tissue. Therefore, in this respect, in the present invention, the content of Co, which is a toughness improving element, can be limited to a low level. Preferably, it can be limited to 15% by mass or less. More preferably, it can be limited to 10% by mass or less, still more preferably 5% by mass or less.
  • the laminate of the present invention is preferably, by mass%, C: 0.1% or less, Ni: 14 to 22%, Co: 0 to 20%, Mo: 0.1 to 15.0% , Ti: 0.1 to 5.0%, Al: 3.0% or less, and the balance of Fe and impurities.
  • C is an element regulated normally in order to obtain the high toughness low carbon martensitic structure which is the characteristic of maraging steel. Therefore, in the present invention, C is preferably limited to 0.1% by mass or less. The amount is more preferably limited to 0.08% by mass or less, still more preferably 0.05% by mass or less.
  • Ni is a basic element necessary for forming maraging steel, which forms an intermetallic compound with Ti, Mo and the like to contribute to the improvement of strength. Therefore, the content of Ni is preferably 14% by mass or more. More preferably, it is 15 mass% or more, More preferably, it is 16 mass% or more. However, when the amount of Ni is too large, the austenitic structure is stabilized and it is difficult to form a martensitic structure. Therefore, it is preferable to make content of Ni into 22 mass% or less. More preferably, it is 20 mass% or less, more preferably 19 mass% or less.
  • Mo 0.1 to 15.0 mass%
  • Mo is an element having the effect of improving the strength of maraging steel by forming Ni 3 Mo, which is an intermetallic compound, at the time of aging treatment, thereby precipitation strengthening or solid solution strengthening the metal structure. Therefore, it is preferable to make content of Mo into 0.1 mass% or more. More preferably, it is 0.5 mass% or more, More preferably, it is 1.0 mass% or more. However, when Mo is too large, a coarse intermetallic compound is formed with Fe, and the toughness of the maraging steel decreases. Therefore, the content of Mo is preferably 15.0% by mass or less. More preferably, it is 10.0 mass% or less, More preferably, it is 5.0 mass% or less.
  • Al is an element which can be used as a deoxidizer in the melting process of a maraging steel material. And, if there is too much Al in the maraging steel after melting, non-metallic inclusions increase in the metallographic structure, and the toughness of the maraging steel decreases. Therefore, it is preferable to make content of Al into 3.0 mass% or less. More preferably, it is 1.0 mass% or less, more preferably 0.5 mass% or less. In addition, when Al is contained in maraging steel, Al forms an intermetallic compound with Ni, and has the effect of carrying out the precipitation strengthening of metal structure. Therefore, when it contains Al, content of Al can be 0.01 mass% or more. More preferably, it is 0.03 mass% or more, More preferably, it is 0.05 mass% or more.
  • a component composition which selectively contains the above-described element species and the balance of which is Fe and impurities can be a basic component composition.
  • the layered object of the present invention is, for example, an operation of laying metal powder made of maraging steel containing 0.1 to 5.0% by mass of Ti on a stage, and metal powder laid on the stage
  • the heat source output when irradiating the above-described metal powder while scanning the heat source is 50 to 330 W, It is possible to produce by the manufacturing method of the laminate-molded article which makes scanning speed 480-3000 mm / second.
  • the method for producing the above-mentioned layered product is, in particular, based on the conventionally known powder bed method. For example, a predetermined metal powder is spread on a stage, and the metal powder spread on this stage is irradiated while scanning a heat source to partially melt and solidify the metal powder in the scanning direction of the heat source. An article is formed by a lamination molding process repeated repeatedly on the upper side.
  • a heat source described above for example, a laser or an electron beam can be used.
  • the metal powder made of maraging steel containing 0.1 to 5.0% by mass of Ti as the predetermined metal powder, and the condition at the time of the irradiation of the above-mentioned heat source is the following special
  • the linear Ti concentration part (Ti segregation) in the formed article can be suppressed, and the toughness of a laminate-molded article can be improved.
  • the output of the heat source is too high, the molten portion of the metal during irradiation of the heat source becomes deep, and strong segregation occurs during solidification, and as a result, a long "linear Ti-rich portion" is easily formed.
  • the output of the heat source is too low, the metal powder can not be melted sufficiently, and many voids derived from the gaps of the metal powder are formed in the solidified product. Therefore, it is preferable to set the output of the heat source to 50 to 330 W. More preferably, it is 100 W or more. More preferably, it is 150 W or more, still more preferably 200 W or more, and particularly preferably 250 W or more.
  • the metal powder can not obtain sufficient heat, so the metal powder is not sufficiently melted, and as a result, many of the above-mentioned voids are present in the solidified product It becomes easy to be formed.
  • the scanning speed of the heat source is too slow, the molten part of the metal during irradiation of the heat source becomes deep, and as a result, a long "linear Ti-concentrated part" tends to be formed. If the scanning speed of the heat source is too slow, excessive heat is given to the metal powder, and the flow of the molten metal becomes active, and when the gas is taken in, bubbles are likely to be mixed in the shaped object after solidification.
  • the scanning speed it is preferable to set the scanning speed to 480 to 3000 mm / sec. More preferably, it is 500 mm / sec or more. More preferably, it is 800 mm / sec or more. More preferably, it is 2000 mm / second or less. More preferably, it is 1500 mm / sec or less.
  • the scanning pitch can be set to 0.02 to 0.20 mm.
  • the scanning pitch is the distance between adjacent beam irradiation positions (the distance between the center positions of beams) for the heat source to be scanned. If the scanning pitch is too large, it will be difficult to melt the spread over the entire surface of the metal powder when the heat source is irradiated, which may also be a factor in the formation of voids inside the shaped object after solidification. When the scanning pitch is too small, the molten part of the metal being irradiated with the heat source becomes deep, and a long "linear Ti-concentrated part" is easily formed. Therefore, it is preferable to set the scanning pitch to 0.02 to 0.20 mm. More preferably, it is 0.05 mm or more. More preferably, it is 0.15 mm or less.
  • lamination thickness per scan refers to the "thickness of each metal powder layer" that is laid when laminating and forming.
  • the lamination thickness per scan it is preferable to set the lamination thickness per scan to 10 to 200 ⁇ m. More preferably, it is 20 ⁇ m or more. More preferably, it is 30 ⁇ m or more. Moreover, More preferably, it is 100 micrometers or less. More preferably, it is 80 ⁇ m or less, still more preferably 60 ⁇ m or less.
  • the atmosphere at the time of the layered manufacturing process can be, for example, an inert atmosphere such as argon gas or nitrogen gas.
  • a reduced pressure environment including vacuum
  • the laminate-molded article of the present invention contains, for example, 0.1 to 5.0% by mass of Ti having a median diameter D50 (50% particle size of cumulative particle size distribution based on volume) of 200 ⁇ m or less
  • a step of laying metal powder made of steel in a layer, and a step of forming a solidified layer by successively melting and solidifying the laid metal powder by a scanning heat source, and laying the metal powder in a layer It is possible to produce by the manufacturing method of the laminate-molded article which repeatedly forms the above-mentioned process of forming the solidification layer, and forms a plurality of layer solidification layers.
  • Setting D50 of the above-mentioned metal powder to 200 ⁇ m or less is preferable in that the metal powder can be evenly spread.
  • the diameter of the above-mentioned scanning heat source can be specified, for example, by the width of the focus of the heat source.
  • a heat treatment process including solution treatment and aging treatment on the article formed in the above-described lamination molding process.
  • Maraging steel is usually used as a product after solution treatment and aging treatment.
  • solution treatment high toughness due to the low carbon martensitic structure can be obtained.
  • various intermetallic compounds are precipitated in the structure, and for example, the hardness is adjusted to 40 to 60 HRC to obtain more excellent high strength and high toughness. it can.
  • it is 42 HRC or more.
  • it is preferably 55 HRC or less, more preferably 50 HRC or less, and further preferably 48 HRC or less.
  • said solution treatment is a more preferable process for elimination of the Ti concentration part (Ti segregation) formed in the structure
  • the solution treatment temperature is preferably 800 ° C. or more. More preferably, it is 830 ° C. or higher. And more preferably 900 ° C. or more, still more preferably 950 ° C. or more, particularly preferably 1000 ° C. or more.
  • the solution treatment temperature is preferably set to 1200 ° C. or less. The temperature is more preferably 1100 ° C. or less, still more preferably 1050 ° C. or less.
  • solution treatment time (maintenance time in solution treatment temperature) shall be 10 minutes or more. More preferably, it is 30 minutes or more, More preferably, it is 45 minutes or more. By lengthening the solution treatment time, the elimination effect of Ti segregation is improved. However, if the solution treatment time is too long, the grain size of the prior austenite is coarsened. Therefore, the solution treatment time is preferably 120 minutes or less. More preferably, it is 100 minutes or less, More preferably, it is 80 minutes or less.
  • the aging temperature is preferably 400 ° C. or higher.
  • the temperature is more preferably 450 ° C. or more, still more preferably 500 ° C. or more, still more preferably 550 ° C. or more.
  • the aging treatment temperature is preferably 700 ° C. or less.
  • the temperature is more preferably 650 ° C. or less, still more preferably 640 ° C. or less, still more preferably 630 ° C. or less.
  • the aging treatment time (maintenance time in aging treatment temperature) into 60 minutes or more. More preferably, it is 100 minutes or more, more preferably 150 minutes or more.
  • the aging treatment time is preferably 600 minutes or less. More preferably, it is 400 minutes or less, More preferably, it is 200 minutes or less.
  • a metal powder of maraging steel with a D50 of 35.6 ⁇ m and having the component composition of Table 1 was prepared by gas atomization. And the lamination forming process by a powder bed method was implemented using this metal powder, and the article which consists of a lamination formation thing of length 15 mm x width 60 mm x height 15 mm was produced.
  • EOS-M290 manufactured by EOS was used for additive manufacturing. The atmosphere at the time of modeling was argon gas. Table 2 shows the conditions of the layered manufacturing process.
  • the laminate molded article of condition 1 was 37.0 HRC
  • the laminate molded article of condition 2 was 37.8 HRC.
  • the cross section parallel to the stacking direction of each of these layered objects was subjected to surface analysis by the following EPMA, and the distribution state of the Ti concentration in the cross section was examined.
  • a cross section parallel to the stacking direction of the layered object was collected from the position of the central portion of the layered object.
  • FIG. 1 (a) is an elemental mapping image of Ti in a region obtained by surface analysis by the above-mentioned EPMA with respect to the layered product of conditions 1 and 2.
  • FIG. 1 (a) if it is an original color image, the Ti concentration B (value under 3. Condition 1) is greater than the value determined by the equation (1.5 ⁇ A) with respect to the above average Ti concentration A.
  • the Ti-enriched portion consisting of 08% by mass or more and 2.99% by mass or more under condition 2) is indicated by a point-like or linear distribution different in color tone from the surroundings (portion of Ti concentration A).
  • FIG. 1B is an image in which the shape of the Ti-rich portion is clarified by subjecting the element mapping image of FIG.
  • FIG. 1 (b) a black point group (set of pixels) dispersed on a white background is a Ti-enriched portion. Then, as shown in FIG. 1 (b), a linear Ti-concentrated portion (encircled portion) having a length of 21 ⁇ m, which is a collection of adjacent pixels, was observed in the layered object under condition 2.
  • a dot-like Ti-enriched portion with a particle diameter of 10 ⁇ m was recognized (rounded portion), but a linear Ti-enriched portion with a length exceeding 15 ⁇ m It was not done.
  • the heat treatment process of the solution treatment and the aging treatment was performed on the article formed of the laminate-molded product of the conditions 1 and 2 manufactured in Example 1.
  • As solution treatment holding was performed at 850 ° C. for 1 hour, and furnace cooling was performed.
  • As aging treatment holding was performed at 600 ° C. for 3 hours and air cooling was performed.
  • the hardness after the heat treatment step was 45.9 HRC for the laminate shaped article under condition 1 and 47.3 HRC for the laminate shaped article under condition 2.
  • a cross section parallel to the laminating direction is an EPMA in the same manner as Example 1.
  • the surface analysis was performed by the following method, and the distribution of Ti concentration in the cross section was examined.
  • Fig.2 (a) is an element mapping image of Ti of the area
  • FIG. 2A if it is an original color image, the Ti concentration B (3.21 mass% or more in condition 1 and 3.00 mass% or more in condition 2) with respect to the above average Ti concentration A.
  • the Ti-enriched portion composed of is represented by a dot-like or linear distribution different in color tone from the surroundings (portion of Ti concentration A).
  • FIG.2 (b) is the image which performed the binarization process which made the threshold value the threshold value of said Ti density
  • FIG. 2 (b) as for the Ti-condensed part of the laminate-molded product under condition 1, several small dots having a diameter of less than 10 ⁇ m were confirmed. And although a Ti concentration part with a length of 8 micrometers was checked (circled part), a linear Ti concentration part over 15 micrometers in length was not recognized about a linear thing. On the other hand, in the laminate-molded product of condition 2, a linear Ti-concentrated portion (circled portion) having a length of 22 ⁇ m, which is a large collection of adjacent pixels, was observed.
  • the toughness of the direction (scanning direction of a laser) orthogonal to the lamination direction was investigated about the lamination-molded article obtained by performing the above-mentioned heat treatment process.
  • the toughness was examined by taking Charpy test pieces from the above-mentioned laminate-molded product so that the length direction of the notch matches the lamination direction, and carried out a 5U notch Charpy test according to JIS Z 2242.
  • the impact value of the laminate-molded product of condition 2 was 19.7 J / cm 2 .
  • the impact value of the laminate-molded product of condition 1 is 21.6 J / cm 2 and is 20.0 J / cm 2 or more.
  • the layered product of Condition 1 had sufficient toughness to be used as various tool products and structural parts.
  • a heat treatment process of solution treatment and aging treatment different from that of Example 2 was performed on the article formed of the laminate-molded article of condition 1 produced in Example 1.
  • the solution treatment was maintained at 1020 ° C. for 1 hour, and furnace cooled. Then, in the aging treatment, holding was performed at 600 ° C. for 3 hours, and air cooling was performed.
  • the hardness after the heat treatment step was 45.4 HRC.
  • FIG. 3A is an elemental mapping image of Ti in the region obtained by the surface analysis by the above-mentioned EPMA.
  • FIG.3 (b) is the image which performed the binarization process of the same point as Example 1 with respect to the element mapping image of Fig.3 (a).
  • a linear Ti-enriched portion with a length of 8 ⁇ m was confirmed in the laminate-molded product under condition 1 (circled portion), but a length exceeding 15 ⁇ m was not recognized.

Abstract

マルエージング鋼でなる積層造形物について、靭性に優れた積層造形物とその製造方法、および、積層造形用金属粉末を提供する。 0.1~5.0質量%のTiを含有するマルエージング鋼でなる積層造形物であり、上記の積層造形物の積層方向に平行な断面のTi濃度の分布を面分析したときに、この断面の平均のTi濃度Aに対して、(1.5×A)以上のTi濃度Bを有する線状のTi濃化部の長さが15μm以下の積層造形物である。 また、0.1~5.0質量%のTiを含有するマルエージング鋼でなる金属粉末を用いた積層造形物の製造方法において、積層造形時の熱源出力を50~330W、走査速度を480~3000mm/秒とする積層造形物の製造方法である。 そして、0.1~5.0質量%のTiを含有するマルエージング鋼でなり、メジアン径D50が200μm以下の積層造形用金属粉末である。

Description

積層造形物およびその製造方法、ならびに、積層造形用金属粉末
 本発明は、例えば、金型、押出し(エジェクター)ピンといった金型用部品や、その他の工具製品、構造部品等に用いることができる積層造形物と、その製造方法に関する。また、本発明は、これら積層造形物の製造に用いることができる積層造形用金属粉末に関する。
 最近、複雑な形状を有する金属製品(部品)をニアネットシェイプで容易に形成できる手段として、積層造形法が注目されている。積層造形法とは、一般的には3Dプリンティングとも呼ばれる、付加製造技術(additive manufacturing)のことである。そして、積層造形法の種類として、例えば、金属粉末に熱源を照射して溶かしながら積層していくパウダースプレー法や、ステージ上に敷き詰めた金属粉末に熱源を照射して溶融し、これを凝固させる作業を繰り返して積層していくパウダーベッド法がある。
 積層造形法によれば、複雑な形状を有する金属製品を、従来の機械加工工程を大きく省略して作製できるので、難加工性の金属材料を用いることができる。そして、難加工性の金属材料は、専ら、高強度の金属材料でもあるので、複雑な形状を有して、かつ耐久寿命の長い金属製品を作製することができる。
 高強度の金属材料として、マルエージング鋼がある。マルエージング鋼とは、例えば、18質量%程度のNiを含有した鋼に、Co、Mo、Ti、Al等の時効硬化元素を添加した時効硬化型の超強力鋼である。そして、マルエージング鋼は、靭性にも優れることから、マルエージング鋼を各種工具や構造部品の材料に用いることで、これら製品の寿命向上に有効である。そして、マルエージング鋼を金属材料に用いて、上記の積層造形法によって作製した積層造形物が提案されている(特許文献1、2)。
国際公開第11/149101号パンフレット 中国特許出願公開第106825566号明細書
 マルエージング鋼でなる積層造形物は、複雑な製品形状に対応できた上で、高強度や優れた靭性が期待できる。しかし、実際に積層造形されたものの中には、マルエージング鋼の成分組成に対して、それに見合う程の十分な靭性を達成しないものがあった。
 本発明の目的は、マルエージング鋼でなる積層造形物について、靭性に優れた積層造形物とその製造方法を提供するものである。そして、これら積層造形物の製造に用いることができる積層造形用金属粉末を提供するものである。
 本発明は、0.1~5.0質量%のTiを含有するマルエージング鋼でなる積層造形物であり、上記の積層造形物の積層方向に平行な断面のTi濃度の分布を面分析したときに、この断面の平均のTi濃度Aに対して、(1.5×A)以上のTi濃度Bを有する線状のTi濃化部の長さが15μm以下の積層造形物である。そして、この積層造形物について、硬さを40~60HRCとすることができる。
 また、本発明は、0.1~5.0質量%のTiを含有するマルエージング鋼でなる金属粉末をステージ上に敷き詰める作業と、このステージ上に敷き詰めた金属粉末に熱源を走査しながら照射する作業とを繰り返し行う積層造形工程によって物品を形成する積層造形物の製造方法において、上記の金属粉末に熱源を走査しながら照射するときの熱源出力を50~330W、走査速度を480~3000mm/秒とする積層造形物の製造方法である。
 そして、上記の積層造形工程で形成された物品に、さらに、溶体化処理および時効処理を含む熱処理工程を行う積層造形物の製造方法とすることができる。
 そして、本発明は、0.1~5.0質量%のTiを含有するマルエージング鋼でなり、メジアン径D50が200μm以下の積層造形用金属粉末である。
 本発明の場合、上記のマルエージング鋼は、好ましくは、Coの含有量が0~20質量%である。そして、上記のマルエージング鋼は、例えば、質量%で、C:0.1%以下、Ni:14~22%、Co:0~20%、Mo:0.1~15.0%、Ti:0.1~5.0%、Al:3.0%以下、残部Feおよび不純物の成分組成でなる。
 本発明によれば、マルエージング鋼でなる積層造形物の靭性を向上させることができる。
本発明例および比較例の積層造形物の積層方向に平行な断面をEPMA(電子線マイクロアナライザー)で分析したときのTiの元素マッピング画像(a)と、この画像(a)を二値化処理した画像(b)とを示す図である。 本発明例および比較例の熱処理工程後の積層造形物の積層方向に平行な断面をEPMAで分析したときのTiの元素マッピング画像(a)と、この画像(a)を二値化処理した画像(b)とを示す図である。 本発明例の熱処理工程後の積層造形物の積層方向に平行な断面をEPMAで分析したときのTiの元素マッピング画像(a)と、この画像(a)を二値化処理した画像(b)とを示す図である。
 本発明の特徴は、マルエージング鋼でなる積層造形物の靭性の劣化が、その成分組成中のTiと、積層造形法という特別な製造工程との関係に起因して、生じていることを見いだした点にある。以下、本発明の各要件について、その好ましい要件も合わせて、説明する。
(1)本発明の積層造形物は、0.1~5.0質量%のTiを含有するマルエージング鋼でなるものである。
 マルエージング鋼にとって、Tiは、時効処理後の組織中に強化相であるNiTiを形成して、マルエージング鋼に強度を付与する元素である。但し、Ti含有量が多すぎると、凝固時の組織中に顕著なTi偏析が生じて、かつ、この顕著なTi偏析が時効処理後の組織中にまで残留して、マルエージング鋼の靭性が劣化する。よって、本発明では、Ti含有量を0.1~5.0質量%とする。好ましくは0.5質量%以上である。より好ましくは1.0質量%以上である。さらに好ましくは1.5質量%以上である。また、好ましくは4.0質量%以下である。より好ましくは3.0質量%以下である。さらに好ましくは2.5質量%以下である。
(2)本発明の積層造形物は、その積層方向に平行な断面のTi濃度の分布を面分析したときに、この断面の平均のTi濃度Aに対して、(1.5×A)以上のTi濃度Bを有する線状のTi濃化部の長さが15μm以下のものである。
 上述の通り、マルエージング鋼のTi含有量を5.0質量%以下とすることで、組織中のTi偏析を軽減して、マルエージング鋼の靭性を確保することができる。しかし、これが積層造形物となると、マルエージング鋼のTi含有量が上記の5.0質量%以下に抑えられていても、積層造形法という特別な製造工程に起因して、その成分組成に見合う程の十分な靭性を達成しないものがあった。
 つまり、本発明に係る0.1~5.0質量%のTiを含んだマルエージング鋼であっても、その凝固時の組織中には少なからずTi偏析を生じ得るところ、これが積層造形法によるものであると、凝固組織が積層方向に伸長して形成されやすい。よって、マルエージング鋼中の合金元素が濃化した最終凝固部も積層方向に沿った長い形状となりやすく、この合金元素が濃化した最終凝固部が“線状の”偏析となる。
 そして、積層造形されたマルエージング鋼の物品には、後に溶体化処理および時効処理の熱処理工程が行われて、組織中のTiがNiTiの強化相を形成するところ、Tiが濃化した偏析部では、NiTiが他の部位よりも多く形成される。そして、この多く形成されたNiTiの形状も“線状”となるため、これが使用中における亀裂の伝播を助長すると考えられる。その結果、マルエージング鋼でなる積層造形物の場合、それがTiを含有することで、特に、その積層方向と直交する方向(言わば、熱源の走査方向)の靭性が劣化しやすくなると考えられる。
 そこで、Tiを含有するマルエージング鋼でなる積層造形物の靭性を向上させるためには、上記の線状のTi偏析を軽減することが有効である。そして、溶体化処理および時効処理の熱処理工程後においては、線状を呈したNiTiを減らすことが有効である。すなわち、上記の熱処理工程前においては、積層造形物の積層方向に平行な断面に分布する線状のTi偏析の“長さ”を縮小する(断面のTi濃度を平準化する)ことである。また、上記の熱処理工程後においては、積層造形物の積層方向に平行な断面に分布する線状のNiTiの“長さ”を縮小する(NiTiの形状を等方的にする)ことである。そして、本発明においては、上記の熱処理工程の前または後において、積層造形物の積層方向に平行な断面のTi濃度の分布を面分析したときに、この断面の平均のTi濃度Aに対して、(1.5×A)以上のTi濃度Bを有する線状のTi濃化部の長さが15μm以下である。そして、好ましくは10μm未満である。
 なお、上記の「線状のTi濃化部」とは、連続する細長い形のTi濃化部のことである。そして、このTi濃化部の細長い形が直線状や曲線状であるときに、上記の「線状のTi濃化部」は、例えば、この直線や曲線の長さである「Ti濃化部の長さ」が、直線や曲線の長手方向に垂直な方向の最大幅の凡そ3倍以上長い形態として確認できる。そして、上記の「線状のTi濃化部の長さが15μm以下」とは、上記の連続する細長い形のTi濃化部について、その長さを15μm以下に規制するものである。これは、上記の長さが「0μm」の場合(つまり、連続する細長い形のTi濃化部自体がない場合)も含んでいる。
 一方、本発明の積層造形物の積層方向に平行な断面には、上記の線状ではない、点状のTi濃化部は存在していてもよい。この点状のTi濃化部は、上記の「線状のTi濃化部」以外のTi濃化部とすることができる。点状のTi濃化部は、その略等方的な形状によって、大きさによらず、上述した亀裂の伝播を助長する経路となり難いことから、積層造形物の靭性を劣化させる影響度が小さい。
 上記の「線状のTi濃化部の長さ」を測定するための、断面のTi濃度分布の「面分析」には、例えば、EPMA(電子線マイクロアナライザー)を利用することができる。まず、積層造形物の中心部の位置から、この積層造形物の積層方向に平行な断面を採取する。このとき、上記の断面が「積層方向に平行な断面であること」は、積層造形物の仕様や積層造形物中の積層跡等から確認することができる。そして、この断面について、倍率100倍の縦800μm×横800μmの領域を、縦横それぞれ400点の等間隔の位置(計160000点の位置)で、EPMA分析することで、この断面の平均のTi濃度Aを知ることができる。そして、この平均のTi濃度Aに対して、(1.5×A)以上のTi濃度Bを有するTi濃化部の分布状況を示す元素マッピング画像を得ることができる(図1(a))。このとき、この元素マッピング画像を、上記のTi濃度Bの臨界値を閾値として二値化処理することで、Ti濃化部を明確に視認することができる(図1(b))。そして、この二値化された画像から、線状のTi濃化部の長さを確認することができる。
 なお、この二値化された画像において、Ti濃化部は、各分析位置の画素の集合(黒色の点群)で表示されているところ、これが「線状」であることは、それぞれの画素が、縦、横、斜めで“隣接している”ことで確認が可能である。
 本発明に係る「線状のTi濃化部」を、上記の縦800μm×横800μmの領域の一つまたは二つ以上で確認したときに、本発明の「線状のTi濃化部の長さが15μm以下である」というのは、「長さが15μmを超える線状のTi濃化部が、縦800μm×横800μmの領域当たり、1.0個未満である」と言うこともできる。この「1.0個未満」は、「0個」の場合も含んでいる。
(3)本発明の積層造形物は、好ましくは、Coの含有量が0~20質量%であるマルエージング鋼でなるものである。
 マルエージング鋼にとって、Coは、製品の強度および靭性の向上効果を有する元素である。この点において、本発明の積層造形物には、選択元素として、Coを含有させることができる。好ましくは0.1質量%以上である。より好ましくは0.2質量%以上である。さらに好ましくは0.3質量%以上である。
 一方で、Coは、高価な元素である。そして、多すぎると、積層造形物の硬度上昇に伴って、靭性を劣化させる元素である。よって、Coを含有する場合であっても、その上限は20質量%とすることが好ましい。なお、本発明の積層造形物は、上述の通り、その組織中の線状のTi濃化部を抑制していることで、靭性が改善されている。よって、この点において、本発明では、靭性の向上元素であるCoの含有量を、低く制限することができる。好ましくは15質量%以下に制限することができる。より好ましくは10質量%以下に、さらに好ましくは5質量%以下に制限することができる。
(4)本発明の積層造形物は、好ましくは、質量%で、C:0.1%以下、Ni:14~22%、Co:0~20%、Mo:0.1~15.0%、Ti:0.1~5.0%、Al:3.0%以下、残部Feおよび不純物の成分組成でなるものである。
・C:0.1質量%以下
 Cは、通常、マルエージング鋼の特徴である高靭性の低炭素マルテンサイト組織を得るために規制される元素である。よって、本発明において、Cは0.1質量%以下に制限することが好ましい。より好ましくは0.08質量%以下に、さらに好ましくは0.05質量%以下に制限する。
・Ni:14~22質量%
 Niは、TiやMo等と金属間化合物を形成して強度の向上に寄与する、マルエージング鋼として成立させるために必要な根幹的元素である。よって、Niの含有量は、14質量%以上とすることが好ましい。より好ましくは15質量%以上、さらに好ましくは16質量%以上である。
 但し、Niが多すぎると、オーステナイト組織が安定化して、マルテンサイト組織が形成され難くなる。よって、Niの含有量は、22質量%以下とすることが好ましい。より好ましくは20質量%以下、さらに好ましくは19質量%以下である。
・Mo:0.1~15.0質量%
 Moは、時効処理時に金属間化合物であるNiMoを形成して、金属組織を析出強化または固溶強化し、マルエージング鋼の強度向上の効果を有する元素である。よって、Moの含有量は、0.1質量%以上とすることが好ましい。より好ましくは0.5質量%以上、さらに好ましくは1.0質量%以上である。
 但し、Moが多すぎると、Feと粗大な金属間化合物を形成して、マルエージング鋼の靭性が低下する。よって、Moの含有量は、15.0質量%以下とすることが好ましい。より好ましくは10.0質量%以下、さらに好ましくは5.0質量%以下である。
・Al:3.0質量%以下
 Alは、マルエージング鋼材料の溶製工程における脱酸剤として利用できる元素である。そして、溶製後のマルエージング鋼中のAlが多すぎると、金属組織に非金属介在物が増加して、マルエージング鋼の靭性が低下する。よって、Alの含有量は、3.0質量%以下とすることが好ましい。より好ましくは1.0質量%以下、さらに好ましくは0.5質量%以下である。
 なお、マルエージング鋼にAlを含有させた場合、AlはNiと金属間化合物を形成して、金属組織を析出強化する効果を有する。よって、Alを含有する場合、Alの含有量は、0.01質量%以上とすることができる。より好ましくは0.03質量%以上、さらに好ましくは0.05質量%以上である。
 本発明に係るマルエージング鋼では、上記の元素種を選択的に含み、残部がFeおよび不純物でなる成分組成を基本的な成分組成とすることができる。
(5)本発明の積層造形物は、例えば、0.1~5.0質量%のTiを含有するマルエージング鋼でなる金属粉末をステージ上に敷き詰める作業と、このステージ上に敷き詰めた金属粉末に熱源を走査しながら照射する作業とを繰り返し行う積層造形工程によって物品を形成する積層造形物の製造方法において、上記の金属粉末に熱源を走査しながら照射するときの熱源出力を50~330W、走査速度を480~3000mm/秒とする積層造形物の製造方法によって作製することが可能である。
 上記の積層造形物の製造方法は、特に、従来知られるパウダーベッド法に基づくものである。例えば、所定の金属粉末をステージ上に敷き詰めて、このステージ上に敷き詰めた金属粉末に熱源を走査しながら照射し、部分的に金属粉末を溶融させて、凝固させる作業を、熱源の走査方向の上方に重ねて繰り返し行う積層造形工程によって物品を形成するものである。上記の熱源には、例えば、レーザーや電子ビームを利用できる。
 そして、上記の所定の金属粉末に、0.1~5.0質量%のTiを含有するマルエージング鋼でなる金属粉末を用いて、かつ、上記の熱源の照射時の条件を下記の特別なものに調整することで、形成された物品中における線状のTi濃化部(Ti偏析)を抑制でき、積層造形物の靭性を改善することができる。
 まず、熱源の出力が高すぎると、熱源を照射中の金属の溶融部が深くなって、凝固時に強い偏析が生じ、その結果、長い「線状のTi濃化部」が形成されやすくなる。しかし、熱源の出力が低すぎると、金属粉末を十分に溶融できなくなり、凝固後の造形物中には、金属粉末の隙間に由来する空孔が多く形成されてしまう。したがって、熱源の出力を50~330Wとすることが好ましい。より好ましくは100W以上である。さらに好ましくは150W以上、よりさらに好ましくは200W以上、特に好ましくは250W以上である。
 次に、熱源の走査速度が速すぎると、金属粉末が十分な熱を得られないことによって、金属粉末が十分に溶融せず、その結果、凝固後の造形物中に上記の空孔が多く形成されやすくなる。しかし、熱源の走査速度が遅すぎると、熱源を照射中の金属の溶融部が深くなって、その結果、長い「線状のTi濃化部」が形成されやすくなる。また、熱源の走査速度が遅すぎると、金属粉末に過剰な熱が与えられて、溶湯の流動が盛んになり、これがガスを巻き込むことで、凝固後の造形物に気泡が混入しやすい。よって、走査速度を480~3000mm/秒とすることが好ましい。より好ましくは500mm/秒以上である。さらに好ましくは800mm/秒以上である。また、より好ましくは2000mm/秒以下である。さらに好ましくは1500mm/秒以下である。
 そして、上記の積層造形物の製造方法では、さらに、走査ピッチを0.02~0.20mmとすることが可能である。走査ピッチとは、走査する熱源について、隣合うビーム照射位置の離間距離(ビームの中心位置の間隔)のことである。走査ピッチが大きくなりすぎると、熱源の照射時に、敷き詰められた金属粉末を全面で溶融することが難しくなって、これも凝固後の造形物の内部に空孔が形成される要因となり得る。そして、走査ピッチが小さくなりすぎると、熱源を照射中の金属の溶融部が深くなって、長い「線状のTi濃化部」が形成されやすくなる。よって、走査ピッチを0.02~0.20mmとすることが好ましい。より好ましくは0.05mm以上である。また、より好ましくは0.15mm以下である。
 なお、一走査あたりの積層厚さが大きすぎると、熱源の照射時に、敷き詰められた金属粉末の全体に熱が伝わり難くなって、金属粉末が十分に溶融しなくなる。「一走査あたりの積層厚さ」とは、積層造形するときに敷き詰めた「一層毎の金属粉末層の厚さ」のことである。そして、一走査あたりの積層厚さが小さすぎると、所定の積層造形物の大きさにするまでの積層数が多くなって、積層造形工程に要する時間が長くなる。よって、一走査あたりの積層厚さを10~200μmとすることが好ましい。より好ましくは20μm以上である。さらに好ましくは30μm以上である。また、より好ましくは100μm以下である。さらに好ましくは80μm以下、よりさらに好ましくは60μm以下である。
 積層造形工程時の雰囲気は、例えば、アルゴンガス等の不活性雰囲気や、窒素ガスとすることができる。また、減圧環境下(真空を含む)にすることもできる。特に、熱源に電子ビームを利用するときに、造形時の雰囲気を減圧環境下(真空を含む)にすることが好ましい。
 そして、本発明の積層造形物は、例えば、メジアン径D50(体積基準の累積粒度分布の50%粒径)が200μm以下である、0.1~5.0質量%のTiを含有するマルエージング鋼からなる金属粉末を層状に敷き詰める工程と、この敷き詰められた金属粉末を走査熱源によって逐次溶融し、凝固することで凝固層を形成する工程とを備え、上記の金属粉末を層状に敷き詰める工程と上記の凝固層を形成する工程とを繰り返して複数の層状の凝固層を形成する積層造形物の製造方法によって、作製することが可能である。
 上記の金属粉末のD50を200μm以下とすることで、金属粉末を均等に敷き詰められる点で好ましい。より好ましくは100μm以下、さらに好ましくは75μm以下、よりさらに好ましくは50μm以下である。なお、下限については、例えば、走査熱源を照射中に金属粉末が飛散し難いという点で、10μmが好ましい。より好ましくは20μmである。
 上記の走査熱源には、やはり、レーザーや電子ビームを利用できる。そして、この走査熱源の直径を、上記の金属粉末のD50よりも大きくすることで、金属粉末の集合を均等に溶融できる点で好ましい。このとき、上記の走査熱源の直径は、例えば、その熱源のフォーカスの幅で特定することができる。
(6)上記の積層造形工程で形成された物品には、さらに、溶体化処理および時効処理を含む熱処理工程を行うことが好ましい。
 マルエージング鋼は、通常、溶体化処理および時効処理が行われてから、製品として使用される。溶体化処理を行うことで、低炭素マルテンサイト組織による高靭性を得ることができる。そして、この後に時効処理を行うことで、各種の金属間化合物を組織中に析出させて、例えば、硬さを40~60HRCに調整して、より優れた高強度と高靭性とを得ることができる。好ましくは42HRC以上である。また、好ましくは55HRC以下、より好ましくは50HRC以下、さらに好ましくは48HRC以下である。そして、本発明のマルエージング鋼でなる積層造形物の場合、上記の溶体化処理は、積層造形工程で組織中に形成されたTi濃化部(Ti偏析)の解消にとって、より好ましい処理である。
 溶体化処理温度は、800℃以上とすることが好ましい。より好ましくは830℃以上である。そして、さらに好ましくは900℃以上、よりさらに好ましくは950℃以上、特に好ましくは1000℃以上である。溶体化処理温度を高くすることで、Ti偏析の解消効果が向上する。但し、溶体化処理温度が高くなりすぎると、旧オーステナイト粒が粗大化するため、積層造形物の強度および靭性が低下する。よって、溶体化処理温度は、1200℃以下とすることが好ましい。より好ましくは1100℃以下、さらに好ましくは1050℃以下である。
 そして、溶体化処理時間(溶体化処理温度での維持時間)は、10分以上とすることが好ましい。より好ましくは30分以上、さらに好ましくは45分以上である。溶体化処理時間を長くすることで、Ti偏析の解消効果が向上する。但し、溶体化処理時間が長くなりすぎると、旧オーステナイト粒径が粗大化する。よって、溶体化処理時間は、120分以下とすることが好ましい。より好ましくは100分以下、さらに好ましくは80分以下である。
 時効処理温度は、400℃以上とすることが好ましい。より好ましくは450℃以上、さらに好ましくは500℃以上、よりさらに好ましくは550℃以上である。時効処理温度を高くすることで、NiTiの析出による強度向上の効果が向上する。但し、時効処理温度が高くなりすぎると、金属間化合物が粗大化して、金属間化合物の析出量に見合った強度が十分に得られなくなる。よって、時効処理温度は、700℃以下とすることが好ましい。より好ましくは650℃以下、さらに好ましくは640℃以下、よりさらに好ましくは630℃以下である。600℃以下にすることもできる。
 そして、時効処理時間(時効処理温度での維持時間)は、60分以上とすることが好ましい。より好ましくは100分以上、さらに好ましくは150分以上である。時効処理時間を長くすることで、形成される金属間化合物量が増加する。但し、時効処理時間が長くなりすぎると、金属間化合物が粗大化し、強度が低下する。よって、時効処理時間は、600分以下とすることが好ましい。より好ましくは400分以下、さらに好ましくは200分以下である。
 ガスアトマイズ法によって、表1の成分組成を有するD50が35.6μmのマルエージング鋼の金属粉末を準備した。そして、この金属粉末を用いて、パウダーベッド法による積層造形工程を実施して、縦15mm×横60mm×高さ15mmの積層造形物でなる物品を作製した。積層造形には、EOS社製EOS-M290を使用した。造形時の雰囲気はアルゴンガスとした。表2に積層造形工程の条件を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 以上の積層造形工程によって得た条件1、2の積層造形物の硬さは、条件1の積層造形物が37.0HRC、条件2の積層造形物が37.8HRCであった。そして、これらの積層造形物について、その積層方向に平行な断面を、以下のEPMAによって面分析し、その断面におけるTi濃度の分布状態を調べた。まず、積層造形物の中心部の位置から、この積層造形物の積層方向に平行な断面を採取した。次に、この断面の縦800μm×横800μmの領域を、走査型電子顕微鏡(倍率100倍)で観察して、この観察した領域を、縦横それぞれ400点の等間隔の位置(計160000点の位置)で、EPMAで分析した。その結果、この断面の平均のTi濃度Aは、条件1(本発明例)の積層造形物で2.05質量%、条件2(比較例)の積層造形物で1.99質量%であった。
 図1(a)は、条件1、2の積層造形物について、上記のEPMAによる面分析で得られた領域のTiの元素マッピング画像である。図1(a)において、本来のカラー画像であれば、上記の平均のTi濃度Aに対して、(1.5×A)の式で求められる値以上のTi濃度B(条件1で3.08質量%以上、条件2で2.99質量%以上)でなるTi濃化部は、周囲(Ti濃度Aの部分)と色調の異なる点状や線状の分布で示されている。
 図1(b)は、図1(a)の元素マッピング画像に、上記のTi濃度Bの臨界値を閾値とした二値化処理を行って、Ti濃化部の形状を明確化した画像である。図1(b)において、白地に分散する黒色の点群(画素の集合)がTi濃化部である。そして、図1(b)をもって、条件2の積層造形物には、隣接した画素の集合でなる、長さが21μmの線状のTi濃化部(丸囲み部)が認められた。なお、条件1の積層造形物は、例えば、粒径が10μmの点状のTi濃化部は認められたが(丸囲み部)、長さが15μmを超える線状のTi濃化部は認められなかった。
 実施例1で作製した条件1、2の積層造形物でなる物品に、溶体化処理および時効処理の熱処理工程を行った。溶体化処理としては、850℃で1時間の保持を行い、炉冷した。そして、その後、時効処理として、600℃で3時間の保持を行い、空冷した。熱処理工程後の硬さは、条件1の積層造形物が45.9HRC、条件2の積層造形物が47.3HRCであった。
 そして、以上の熱処理工程を行って得た条件1、2の積層造形物(以下、「積層造形製品」と記す。)について、その積層方向に平行な断面を、実施例1と同じ要領のEPMAによって面分析し、その断面におけるTi濃度の分布状態を調べた。
 上記の分析の結果、断面の平均のTi濃度Aは、条件1の積層造形製品で2.14質量%、条件2の積層造形製品で2.00質量%であった。
 図2(a)は、条件1、2の積層造形製品について、上記のEPMAによる面分析で得られた領域のTiの元素マッピング画像である。図2(a)において、本来のカラー画像であれば、上記の平均のTi濃度Aに対して、Ti濃度B(条件1で3.21質量%以上、条件2で3.00質量%以上)でなるTi濃化部は、周囲(Ti濃度Aの部分)と色調の異なる点状や線状の分布で示されている。そして、図2(b)は、図2(a)の元素マッピング画像に、上記のTi濃度Bの臨界値を閾値とした二値化処理を行った画像である。図2(b)において、条件1の積層造形製品のTi濃化部は、直径が10μmにも満たない程の小さな点状のものが数点確認された。そして、線状のものは、長さが8μmのTi濃化部が確認されたが(丸囲み部)、長さが15μmを超える線状のTi濃化部は認められなかった。これに対して、条件2の積層造形製品には、隣接した画素の大きな集合でなる、長さが22μmの線状のTi濃化部(丸囲み部)が認められた。
 そして、以上の熱処理工程を行って得た積層造形製品について、その積層方向と直交する方向(レーザーの走査方向)の靭性を調べた。靭性の調査は、上記の積層造形製品から、その積層方向にノッチの長さ方向が合うように、シャルピー試験片を採取して、JIS Z 2242に則した5Uノッチシャルピー試験を実施した。その結果、条件2の積層造形製品の衝撃値は19.7J/cmであった。これに対して、条件1の積層造形製品の衝撃値は21.6J/cmであり、20.0J/cm以上であった。条件1の積層造形製品は、各種の工具製品や構造部品として使用するのに十分な靭性を有していた。
 実施例1で作製した条件1の積層造形物でなる物品に、実施例2と別の溶体化処理および時効処理の熱処理工程を行った。溶体化処理は、1020℃で1時間の保持を行い、炉冷した。そして、その後、時効処理では、600℃で3時間の保持を行い、空冷した。熱処理工程後の硬さは45.4HRCであった。
 以上の熱処理工程を行って得た条件1の積層造形製品について、その積層方向に平行な断面を、実施例1と同じ要領のEPMAによって面分析し、その断面におけるTi濃度の分布状態を調べた。その結果、断面の平均のTi濃度Aは2.06質量%であった。そして、このTi濃度Aに対するTi濃度B(つまり、Ti濃化部)は、3.09質量%以上のものとして確認した。
 図3(a)は、上記のEPMAによる面分析で得られた領域のTiの元素マッピング画像である。そして、図3(b)は、図3(a)の元素マッピング画像に、実施例1と同じ要領の二値化処理を行った画像である。図3(b)において、条件1の積層造形製品には、長さが8μmの線状のTi濃化部が確認されたが(丸囲み部)、長さが15μmを超えるものは認められなかった。
 そして、この条件1の積層造形製品に、実施例2と同じ要領の5Uノッチシャルピー試験を実施した。その結果、衝撃値は39.8J/cmであり、30.0J/cm以上であった。条件1の積層造形製品は、各種の工具製品や構造部品として使用するのに十分な靭性を有していた。

 

Claims (11)

  1. 0.1~5.0質量%のTiを含有するマルエージング鋼でなる積層造形物であり、
    前記積層造形物の積層方向に平行な断面のTi濃度の分布を面分析したときに、前記断面の平均のTi濃度Aに対して、(1.5×A)以上のTi濃度Bを有する線状のTi濃化部の長さが15μm以下であることを特徴とする積層造形物。
  2. 硬さが40~60HRCであることを特徴とする請求項1に記載の積層造形物。
  3. 前記マルエージング鋼は、Coの含有量が0~20質量%であることを特徴とする請求項1または2に記載の積層造形物。
  4. 前記マルエージング鋼が、質量%で、C:0.1%以下、Ni:14~22%、Co:0~20%、Mo:0.1~15.0%、Ti:0.1~5.0%、Al:3.0%以下、残部Feおよび不純物の成分組成でなることを特徴とする請求項1または2に記載の積層造形物。
  5. 0.1~5.0質量%のTiを含有するマルエージング鋼でなる金属粉末をステージ上に敷き詰める作業と、該ステージ上に敷き詰めた前記金属粉末に熱源を走査しながら照射する作業とを繰り返し行う積層造形工程によって物品を形成する積層造形物の製造方法において、
    前記金属粉末に熱源を走査しながら照射するときの熱源出力を50~330W、走査速度を480~3000mm/秒とすることを特徴とする積層造形物の製造方法。
  6. 前記積層造形工程で形成された物品に、さらに、溶体化処理および時効処理を含む熱処理工程を行うことを特徴とする請求項5に記載の積層造形物の製造方法。
  7. 前記マルエージング鋼は、Coの含有量が0~20質量%であることを特徴とする請求項5または6に記載の積層造形物の製造方法。
  8. 前記マルエージング鋼が、質量%で、C:0.1%以下、Ni:14~22%、Co;0~20%、Mo:0.1~15.0%、Ti:0.1~5.0%、Al:3.0%以下、残部Feおよび不純物の成分組成でなることを特徴とする請求項5または6に記載の積層造形物の製造方法。
  9. 0.1~5.0質量%のTiを含有するマルエージング鋼でなり、メジアン径D50が200μm以下であることを特徴とする積層造形用金属粉末。
  10. 前記マルエージング鋼は、Coの含有量が0~20質量%であることを特徴とする請求項9に記載の積層造形用金属粉末。
  11. 前記マルエージング鋼が、質量%で、C:0.1%以下、Ni:14~22%、Co:0~20%、Mo:0.1~15.0%、Ti:0.1~5.0%、Al:3.0%以下、残部Feおよび不純物の成分組成でなることを特徴とする請求項9に記載の積層造形用金属粉末。

     
PCT/JP2018/046299 2017-12-18 2018-12-17 積層造形物およびその製造方法、ならびに、積層造形用金属粉末 WO2019124296A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880077295.9A CN111448020B (zh) 2017-12-18 2018-12-17 层叠造型物及其制造方法、以及层叠造型用金属粉末
US16/767,111 US11643711B2 (en) 2017-12-18 2018-12-17 Laminate shaped article, method for manufacturing the same, and metal powder for laminate shaping
JP2019538284A JP6610984B2 (ja) 2017-12-18 2018-12-17 積層造形物およびその製造方法
SG11202005032TA SG11202005032TA (en) 2017-12-18 2018-12-17 Laminate shaped article, method for manufacturing the same, and metal powder for laminate shaping
EP18890957.6A EP3730236B1 (en) 2017-12-18 2018-12-17 Additively manufactured article and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017241300 2017-12-18
JP2017-241300 2017-12-18

Publications (1)

Publication Number Publication Date
WO2019124296A1 true WO2019124296A1 (ja) 2019-06-27

Family

ID=66993422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046299 WO2019124296A1 (ja) 2017-12-18 2018-12-17 積層造形物およびその製造方法、ならびに、積層造形用金属粉末

Country Status (6)

Country Link
US (1) US11643711B2 (ja)
EP (1) EP3730236B1 (ja)
JP (2) JP6610984B2 (ja)
CN (1) CN111448020B (ja)
SG (1) SG11202005032TA (ja)
WO (1) WO2019124296A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022196778A1 (ja) * 2021-03-18 2022-09-22 日立金属株式会社 積層造形用金属粉末およびこれを用いた積層造形物
WO2023182416A1 (ja) * 2022-03-23 2023-09-28 株式会社プロテリアル 積層造形用マルエージング鋼粉末、マルエージング鋼積層造形品、およびその製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113547117B (zh) * 2021-07-09 2023-04-07 华中科技大学 一种激光熔覆合金粉末、钢轨和制备方法
JP7177959B1 (ja) 2021-09-15 2022-11-24 ホヤ レンズ タイランド リミテッド 眼鏡レンズ
JP2023071110A (ja) 2021-11-10 2023-05-22 大同特殊鋼株式会社 溶融凝固成形用Fe基合金及び金属粉末
CN114351048B (zh) * 2021-12-20 2022-08-30 广东省科学院中乌焊接研究所 一种马氏体时效钢粉末及在增材制造中应用
CN116288027B (zh) * 2022-11-29 2023-09-12 清华大学 低密度马氏体时效钢及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07243003A (ja) * 1994-02-28 1995-09-19 Daido Steel Co Ltd 耐ヒートチェック性に優れたマルエージング鋼
JP2001279386A (ja) * 2000-03-31 2001-10-10 Daido Steel Co Ltd 鋳造性に優れたマルエージング鋼およびその製造方法
WO2011149101A1 (ja) 2010-05-25 2011-12-01 パナソニック電工株式会社 粉末焼結積層用金属粉末、それを用いた三次元形状造形物の製造方法および得られる三次元形状造形物
JP2017025392A (ja) * 2015-07-24 2017-02-02 Jx金属株式会社 電子ビーム方式の3dプリンタ用表面処理金属粉およびその製造方法
CN106825566A (zh) 2017-01-11 2017-06-13 华南理工大学 一种激光选区熔化成型马氏体时效钢模具的方法
JP2017128770A (ja) * 2016-01-21 2017-07-27 トヨタ自動車株式会社 金属部材の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4832909A (en) * 1986-12-22 1989-05-23 Carpenter Technology Corporation Low cobalt-containing maraging steel with improved toughness
MY114984A (en) * 1995-01-13 2003-03-31 Hitachi Metals Ltd High hardness martensitic stainless steel with good pitting corrosion resistance
JP6703511B2 (ja) 2017-10-27 2020-06-03 山陽特殊製鋼株式会社 造形用のFe基金属粉末

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07243003A (ja) * 1994-02-28 1995-09-19 Daido Steel Co Ltd 耐ヒートチェック性に優れたマルエージング鋼
JP2001279386A (ja) * 2000-03-31 2001-10-10 Daido Steel Co Ltd 鋳造性に優れたマルエージング鋼およびその製造方法
WO2011149101A1 (ja) 2010-05-25 2011-12-01 パナソニック電工株式会社 粉末焼結積層用金属粉末、それを用いた三次元形状造形物の製造方法および得られる三次元形状造形物
JP2017025392A (ja) * 2015-07-24 2017-02-02 Jx金属株式会社 電子ビーム方式の3dプリンタ用表面処理金属粉およびその製造方法
JP2017128770A (ja) * 2016-01-21 2017-07-27 トヨタ自動車株式会社 金属部材の製造方法
CN106825566A (zh) 2017-01-11 2017-06-13 华南理工大学 一种激光选区熔化成型马氏体时效钢模具的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022196778A1 (ja) * 2021-03-18 2022-09-22 日立金属株式会社 積層造形用金属粉末およびこれを用いた積層造形物
WO2023182416A1 (ja) * 2022-03-23 2023-09-28 株式会社プロテリアル 積層造形用マルエージング鋼粉末、マルエージング鋼積層造形品、およびその製造方法

Also Published As

Publication number Publication date
JP6610984B2 (ja) 2019-11-27
EP3730236B1 (en) 2023-09-27
SG11202005032TA (en) 2020-06-29
CN111448020B (zh) 2022-07-12
CN111448020A (zh) 2020-07-24
US20200399747A1 (en) 2020-12-24
US11643711B2 (en) 2023-05-09
EP3730236A1 (en) 2020-10-28
EP3730236A4 (en) 2021-08-18
JP2020045567A (ja) 2020-03-26
JPWO2019124296A1 (ja) 2019-12-19

Similar Documents

Publication Publication Date Title
WO2019124296A1 (ja) 積層造形物およびその製造方法、ならびに、積層造形用金属粉末
JP6974607B2 (ja) 積層造形熱間工具およびその製造方法、ならびに、積層造形熱間工具用金属粉末
DE102016202885B4 (de) Selektives Lasersinterverfahren
JP5579839B2 (ja) 粉末焼結積層用金属粉末、それを用いた三次元形状造形物の製造方法および得られる三次元形状造形物
CN109963671B (zh) 制造造型制品的方法以及造型制品
KR20180040513A (ko) 적층조형용 Ni계 초합금분말
US20090047165A1 (en) Metal powder for use in an additive method for the production of three-dimensional objects and method using such metal powder
US20220088681A1 (en) Method for manufacturing an aluminum alloy part
CN111491750A (zh) 造型用的不锈钢粉末
WO2020110891A1 (ja) 造形用粉末
JP6378517B2 (ja) 焼結割れ防止性に優れ焼結−時効処理後に高強度が得られる析出硬化型ステンレス鋼粉末およびその焼結体。
US11000894B2 (en) Metal powder material for metal powder lamination molding
US20220001449A1 (en) Ni-BASED ALLOY MEMBER INCLUDING ADDITIVELY MANUFACTURED BODY, METHOD FOR MANUFACTURING Ni-BASED ALLOY MEMBER, AND MANUFACTURED PRODUCT USING Ni-BASED ALLOY MEMBER
JP3997123B2 (ja) 鉄基焼結体形成用の鉄系粉末材料および鉄基焼結体の製造方法
WO2022196778A1 (ja) 積層造形用金属粉末およびこれを用いた積層造形物
JP7306600B1 (ja) 積層造形物およびその製造方法
JP7306601B1 (ja) 積層造形物およびその製造方法
US20230151471A1 (en) Fe-BASED ALLOY FOR MELT-SOLIDIFICATION-SHAPING AND METAL POWDER
WO2024070987A1 (ja) Fe基合金、合金部材、製造物及び合金部材の製造方法
WO2023182416A1 (ja) 積層造形用マルエージング鋼粉末、マルエージング鋼積層造形品、およびその製造方法
JP2022176862A (ja) 高硬度Co不含有マルエージング鋼
US11970760B2 (en) Metal powder
WO2022190574A1 (ja) 高速度鋼焼結体、及び高速度鋼焼結体の製造方法
JP7481406B2 (ja) Fe基合金粉末及び造形体の製造方法
JP2018021236A (ja) 強靭な鋼材、金属粉末積層造形方法、部品、及び3dデータ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019538284

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18890957

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018890957

Country of ref document: EP

Effective date: 20200720