WO2022190574A1 - 高速度鋼焼結体、及び高速度鋼焼結体の製造方法 - Google Patents

高速度鋼焼結体、及び高速度鋼焼結体の製造方法 Download PDF

Info

Publication number
WO2022190574A1
WO2022190574A1 PCT/JP2021/048038 JP2021048038W WO2022190574A1 WO 2022190574 A1 WO2022190574 A1 WO 2022190574A1 JP 2021048038 W JP2021048038 W JP 2021048038W WO 2022190574 A1 WO2022190574 A1 WO 2022190574A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
base material
speed steel
layer
powder
Prior art date
Application number
PCT/JP2021/048038
Other languages
English (en)
French (fr)
Inventor
隆徳 大瀧
裕彬 本山
Original Assignee
住友電工焼結合金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工焼結合金株式会社 filed Critical 住友電工焼結合金株式会社
Priority to CN202180093987.4A priority Critical patent/CN116847942A/zh
Priority to US18/281,308 priority patent/US20240157478A1/en
Priority to DE112021007267.6T priority patent/DE112021007267T5/de
Priority to JP2022534824A priority patent/JP7330448B2/ja
Publication of WO2022190574A1 publication Critical patent/WO2022190574A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/37Process control of powder bed aspects, e.g. density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • B22F12/13Auxiliary heating means to preheat the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/034Observing the temperature of the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/60Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • B22F2007/068Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts repairing articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/11Use of irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F5/106Tube or ring forms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present disclosure relates to sintered high speed steel bodies and methods of making sintered high speed steel bodies.
  • This application claims priority based on PCT/JP2021/10160 of the international application dated March 12, 2021, and incorporates all the descriptions described in the international application.
  • Patent Document 1 discloses a method for manufacturing mold parts.
  • This mold component manufacturing method includes a step of forming a built-up portion on the first surface of the base material of the mold component.
  • the build-up portion is formed by laminating a plurality of solidified layers.
  • the base material is composed of die steel.
  • the powder is composed of SUS420J2.
  • the high speed steel sintered body of the present disclosure is a base material; a solidified layer continuously provided on the surface of the base material,
  • the base material is made of high speed steel
  • the solidified layer is made of high-speed steel having a composition different from that of the high-speed steel forming the base material,
  • the boundary between the base material and the solidified layer is not visible in an observation image obtained by enlarging the cross section crossing the surface by 200 times.
  • the method for producing a high speed steel sintered body of the present disclosure includes: Equipped with a step of producing a build-up portion composed of high-speed steel on a base material composed of high-speed steel,
  • the step of producing the built-up portion includes laminating a solidified layer in which the powder layer is solidified by repeating the step of producing a powder layer and the step of irradiating the powder layer with a laser beam,
  • the step of creating the powder layer includes laying a powder composed of high speed steel on the first surface, The first surface is the surface of the base material or the surface of each of the solidified layers,
  • the step of irradiating the laser beam is performed while the temperature of the first surface is heated to 130° C. or higher.
  • FIG. 1 is an explanatory diagram of a high-speed steel sintered body according to Embodiment 1.
  • FIG. FIG. 2A is a photograph showing an enlarged example of region A in FIG. 1 is a photograph showing an enlarged cross section of the solidified layer in 1.
  • FIG. 2B is an enlarged photograph showing an example of region B in FIG. 1 is a photograph showing an enlarged cross section of the vicinity of the joint between the base material and the solidified layer in 1.
  • FIG. FIG. 2C is a photograph showing an enlarged example of region C in FIG. 1 is a photograph showing an enlarged cross section of the base material in 1.
  • FIG. FIG. 3 is a cross-sectional view for explaining a method for manufacturing a high speed steel sintered body.
  • FIG. 4 is a cross-sectional view schematically showing a built-up portion produced by the method for producing a high-speed steel sintered body.
  • FIG. 5 is a graph showing the relationship between the height of the powder layer, the height of the modeled object, and the energy density of the laser beam.
  • FIG. 6 shows sample no. 101 is a photograph showing an enlarged cross section near the boundary between the base material and the solidified layer in 101.
  • FIG. 7 shows sample no. 112 is a photograph showing an enlarged cross section near the boundary between the base material and the solidified layer at 112.
  • One object of the present disclosure is to provide a high-speed steel sintered body in which cracks are less likely to occur between the base material and the solidified layer.
  • One object of the present disclosure is to provide a method for producing a high-speed steel sintered body that can produce a build-up portion made of high-speed steel on a base material made of high-speed steel without cracking. one.
  • the manufacturing method of the high-speed steel sintered body of the present disclosure can produce a built-up portion made of high-speed steel on a base material made of high-speed steel without cracking.
  • a high-speed steel sintered body is a base material; a solidified layer continuously provided on the surface of the base material,
  • the base material is made of high speed steel
  • the solidified layer is made of high-speed steel having a composition different from that of the high-speed steel forming the base material,
  • the boundary between the base material and the solidified layer is not visible in an observation image obtained by enlarging the cross section crossing the surface by 200 times.
  • the high-speed steel sintered body is composed of high-speed steel with different compositions between the base material and the solidified layer, the boundary is not visible. That is, in the high-speed steel sintered body, although the base material and the solidified layer are made of high-speed steel with different compositions, the base material and the solidified layer have good compatibility. Therefore, in the high-speed steel sintered body, cracks are less likely to occur between the base material and the solidified layer.
  • the high-speed steel sintered body is suitable for mold parts and the like.
  • the carbon content in the base material may be 0.5% by mass or more and 0.9% by mass or less.
  • the composition of the base material may contain any one of the following element groups (1) to (3) in addition to carbon, and the balance may be iron and unavoidable impurities.
  • (1) 0.2% by mass to 4.0% by mass of vanadium, 3% by mass to 15% by mass of chromium, and 0.5% by mass to 4% by mass of molybdenum
  • (2) 0.2% by mass
  • the above form has good compatibility between the base material and the solidified layer.
  • a content of carbon in the solidified layer may be 0.5% by mass or more and 1.5% by mass or less.
  • the composition of the solidified layer is, in addition to carbon, more than 0% by mass and 1.0% by mass or less of manganese, 1% by mass or more and 3% by mass or less of vanadium, 3% by mass or more and 5.5% by mass or less of chromium, and 4% by mass. % or more and 6 mass % or less of molybdenum and 5 mass % or more and 7.5 mass % or less of tungsten, and the balance may be iron and unavoidable impurities.
  • the above form has good compatibility between the base material and the solidified layer.
  • a method for manufacturing a high-speed steel sintered body includes: Equipped with a step of producing a build-up portion composed of high-speed steel on a base material composed of high-speed steel,
  • the step of producing the built-up portion includes laminating a solidified layer in which the powder layer is solidified by repeating the step of producing a powder layer and the step of irradiating the powder layer with a laser beam,
  • the step of creating the powder layer includes laying powder composed of high speed steel on a first surface, the first surface being the surface of the base material or the surface of each of the consolidated layers. can be,
  • the step of irradiating the laser beam is performed while the temperature of the first surface is heated to 130° C. or higher.
  • the powder layer is irradiated with a laser beam while the temperature of the first surface is heated to 130 ° C. or higher, thereby solidifying the high-speed steel sintered body without cracking. Layers and thus build-ups can be made in a base material consisting of high speed steel. Therefore, the method for producing a high-speed steel sintered compact is suitable for a method for producing mold parts and the like.
  • the martensite transformation start temperature of the base material may be equal to or higher than the martensite transformation start temperature of the powder.
  • the carbon content in the base material may be 0.5% by mass or more and 0.9% by mass or less.
  • a base material whose C content satisfies the above range is likely to improve compatibility with the solidified layer. Therefore, it is easy to form a crack-free solidified layer on this base material.
  • a content of carbon in the powder may be 0.5% by mass or more and 1.5% by mass or less.
  • a powder whose C content satisfies the above range is likely to improve compatibility with the base material. Therefore, by using this powder, it is easy to form a crack-free solidified layer on the base material.
  • the temperature of the first surface may be set to the martensitic transformation start temperature of the powder or higher.
  • the temperature of the first surface may be equal to or higher than the martensitic transformation finish temperature of the base material.
  • the energy density of the laser light irradiated to the n-th powder layer is equal to or lower than the energy density of the laser light irradiated to the n-1 powder layer
  • the n-th powder layer may be a powder layer from the second powder layer to the final powder layer.
  • the above configuration facilitates improving the bondability between the base material and the first solidified layer.
  • the above configuration facilitates improvement in bondability between the solidified layers on the base material side. Therefore, the above configuration facilitates improving the bondability between the base material and the build-up portion.
  • the height of the n-th powder layer is set to be equal to or higher than the height of the n-1-th powder layer
  • the n-th powder layer may be a powder layer from the second powder layer to the final powder layer.
  • the above configuration facilitates improving the bondability between the base material and the first solidified layer. Therefore, the above configuration facilitates improving the bondability between the base material and the build-up portion. In addition, the above configuration can reduce the number of repetitions of the step of producing the powder layer and the step of irradiating the laser beam while suppressing the deterioration of the bondability between the solidified layers, so that high-speed steel sintering It is easy to improve the productivity of the body.
  • the power of the laser light may be over 300W.
  • a laser beam with an output of more than 300 W tends to efficiently combine powder layers.
  • a high-speed steel sintered body 1 of an embodiment will be described with reference to FIGS. 1 and 2A to 2C.
  • a high-speed steel sintered body 1 of this embodiment includes a base material 2 and a solidified layer 30 .
  • the solidified layer 30 constitutes the build-up portion 3 .
  • the base material 2 exemplifies a part of the mold component 10 .
  • the solidified layer 30 is the built-up portion 3 formed on the surface 21 of the base material 2 so as to expand the base material 2 .
  • the base material 2 is made of high speed steel.
  • the solidified layer 30 is continuously provided on the surface 21 of the base material 2 .
  • the solidified layer 30 is composed of high speed steel.
  • the mold part 10 is taken as an example of the high-speed steel sintered body 1 .
  • the shape of the base material 2 is not particularly limited.
  • the high-speed steel sintered body 1 is the mold component 10.
  • the shape of the base material 2 is cylindrical as shown in FIG. Although omitted, it has a cylindrical shape.
  • the base material 2 shown in FIG. 1 is provided with a through hole 20 along the longitudinal direction of the base material 2 .
  • a core rod (not shown) is inserted through the through hole 20 .
  • the base material 2 shown in FIG. 1 is fitted into a hole of a die (not shown) at the tip located on the upper side of the paper surface of FIG.
  • the shape of the surface 21 of the base material 2 located on the upper side of the paper surface of FIG. 1 is annular. Although illustration is omitted, the shape of the surface of the cylindrical base material is circular.
  • the material of the base material 2 is high speed steel.
  • the Ms point of the base material 2 is, for example, higher than the Ms point of the solidified layer 30 described later.
  • the Ms point is the martensitic transformation start temperature. That is, the Ms point of the base material 2 may be the same as the Ms point of the solidified layer 30 or may be higher than the Ms point of the solidified layer 30 . Since the Ms point of the base material 2 is equal to or higher than the Ms point of the solidified layer 30, the solidified layer 30 on the base material 2 has no cracks.
  • the Ms point of the base material 2 is, for example, 100° C. or higher and 420° C. or lower, further 100° C. or higher and 390° C. or lower, and particularly 100° C. or higher and 370° C. or lower.
  • the Mf point of the base material 2 is, for example, 0° C. or higher and 190° C. or lower, further 0° C. or higher and 170° C. or lower, and particularly 0° C. or higher and 150° C. or lower.
  • the Mf point is the martensitic transformation finish temperature. The Ms point of the solidified layer 30 will be described later.
  • the composition of the high-speed steel forming the base material 2 is, for example, any one of the following composition (1) to composition (3).
  • (1) It contains C (carbon), V (vanadium), Cr (chromium), and Mo (molybdenum), and the balance consists of Fe (iron) and unavoidable impurities.
  • (2) It contains C, Mn (manganese), V, Cr, Mo, and Si (silicon), and the balance consists of Fe and unavoidable impurities.
  • the content of C in the base material 2 is, for example, 0.5% by mass or more and 0.9% by mass or less.
  • the base material 2 whose C content satisfies the above range is excellent in compatibility with the solidified layer 30 . Therefore, cracks are unlikely to exist in the solidified layer 30 on the base material 2 . This is because, in the manufacturing process, it is easy to form the solidified layer 30 without cracks on the base material 2 whose C content satisfies the above range.
  • the content of C in the base material 2 is 0.55% by mass or more and 0.85% by mass or less, and particularly 0.6% by mass or more and 0.8% by mass or less.
  • the contents of Mn, V, Cr, Mo, W, and Si in the base material 2 are, for example, as follows.
  • the content of Mn is, for example, 0.2% by mass or more and 1.0% by mass or less, further 0.2% by mass or more and 0.7% by mass or less, and particularly 0.2% by mass or more and 0.5% by mass. % or less.
  • the content of V is, for example, 0.2% by mass or more and 4.0% by mass or less, further 0.2% by mass or more and 3.8% by mass or less, and particularly 0.2% by mass or more and 3.5% by mass. % or less.
  • the Cr content is, for example, 3% by mass or more and 15% by mass or less, further 3% by mass or more and 10% by mass or less, and particularly 3% by mass or more and 6% by mass or less.
  • the content of Mo is, for example, 0.5% by mass or more and 4% by mass or less, further 0.5% by mass or more and 3.5% by mass or less, and particularly 1.0% by mass or more and 3.5% by mass or less.
  • the W content is, for example, 0.5% by mass or more and 5% by mass or less, further 1.0% by mass or more and 4% by mass or less, and particularly 1.5% by mass or more and 3% by mass or less.
  • the Si content is, for example, more than 0% by mass and 2.5% by mass or less, further 0.1% by mass or more and 2.0% by mass or less, and particularly 0.2% by mass or more and 1.5% by mass or less. is.
  • the contents of Mn, V, Cr, Mo, W, and Si respectively satisfy the above ranges, the compatibility between the base material 2 and the solidified layer 30 is good.
  • the composition of the base material 2 can be obtained by analyzing the cross section of the base material 2 by energy dispersive X-ray spectroscopy (EDX).
  • EDX energy dispersive X-ray spectroscopy
  • the shape of the solidified layer 30 is not particularly limited.
  • the shape of the solidified layer 30 may be similar to the shape of the base material 2 or may be different from the shape of the base material 2 .
  • the shape of the solidified layer 30 is, for example, the same shape as part of the base material 2 .
  • the shape of the solidified layer 30 is cylindrical.
  • the material of the solidified layer 30 is high speed steel.
  • the Ms point of the solidified layer 30 is equal to or lower than the Ms point of the base material 2 as described above.
  • the Ms point of the solidified layer 30 is, for example, 100° C. or higher and 300° C. or lower, further 100° C. or higher and 250° C. or lower, and particularly 100° C. or higher and 200° C. or lower.
  • the Mf point of the solidified layer 30 is, for example, -110°C or higher and 180°C or lower, further -100°C or higher and 165°C or lower, and particularly -90°C or higher and 150°C or lower.
  • the composition of the high speed steel forming the solidified layer 30 and the composition of the high speed steel forming the base material 2 may be the same or different. Even if the composition of the base material 2 and the composition of the solidified layer 30 are different, the base material 2 and the solidified layer 30 are familiar to the extent that the boundary between the base material 2 and the solidified layer 30 is not visually recognized as described later. Accordingly, cracks are less likely to occur between the base material 2 and the solidified layer 30 .
  • the composition of the high-speed steel constituting the solidified layer 30 may be any one of the compositions (1) to (3) described above, or may be any one of the compositions (1) to (3) described above. may be In addition to the compositions (1) to (3) described above, the composition of the high-speed steel constituting the solidified layer 30 contains, for example, C, Mn, V, Cr, Mo, and W, and the balance is Fe and unavoidable Impurities.
  • the C content in the solidified layer 30 may be the same as or different from the C content in the base material 2 .
  • the content of C in the solidified layer 30 is, for example, 0.5% by mass or more and 1.5% by mass or less. Cracks are unlikely to exist in the solidified layer 30 in which the C content satisfies the above range. This is because the solidified layer 30 having no cracks can be easily produced by satisfying the above range for the C content in the later-described powder forming the solidified layer 30 in the manufacturing process.
  • the content of C in the solidified layer 30 is 0.5% by mass or more and 1.2% by mass or less, and particularly 0.5% by mass or more and 1.0% by mass or less.
  • the content of Mn, V, Cr, Mo, W, and Si in the solidified layer 30 The amounts are as described above.
  • the composition of the high-speed steel constituting the solidified layer 30 contains C, Mn, V, Cr, Mo, and W
  • the contents of Mn, V, Cr, Mo, and W in the solidified layer 30 are, for example, It is as follows.
  • the content of Mn is, for example, more than 0% by mass and 1.0% by mass or less, further 0.1% by mass or more and 0.8% by mass or less, and particularly 0.2% by mass or more and 0.5% by mass or less.
  • the content of V is, for example, 1% by mass or more and 3% by mass or less, further 1.2% by mass or more and 2.8% by mass or less, and particularly 1.5% by mass or more and 2.5% by mass or less.
  • the Cr content is, for example, 3% by mass or more and 5.5% by mass or less, further 3.5% by mass or more and 5% by mass or less, and particularly 4.0% by mass or more and 4.8% by mass or less. .
  • the content of Mo is, for example, 4% by mass or more and 6% by mass or less, further 4.2% by mass or more and 5.7% by mass or less, and particularly 4.5% by mass or more and 5.5% by mass or less.
  • the W content is, for example, 5% by mass or more and 7.5% by mass or less, further 5.2% by mass or more and 7.2% by mass or less, and particularly 5.5% by mass or more and 7.0% by mass or less. is.
  • composition of the solidified layer 30 can be obtained by analyzing the cross section of the solidified layer 30 by EDX.
  • FIG. 2A is a photograph showing an example of a cross section of the solidified layer 30 in the high speed steel sintered body of this embodiment.
  • FIG. 2B is a photograph showing an example of a cross section in the vicinity of the joint between the solidified layer 30 and the base material 2 in the high-speed steel sintered body of this embodiment.
  • 2C is a photograph showing an example of a cross section of the base material 2.
  • FIG. The cross-sections of FIGS. 2A to 2C are cross-sections that intersect the surface 21 of the base material 2 .
  • the surface 21 is a region of the outer surface of the base material 2 to which the solidified layer 30 is bonded.
  • the cross-section is a cross-section formed by cutting across both the base material 2 and the solidified layer 30 .
  • FIGS. 2A to 2C are observation images observed with an optical microscope at a magnification of 200 times.
  • the upper portions of Figures 2A and 2B are similarly patterned.
  • the upper portion of FIG. 2B and the lower portion of FIG. 2B are patterned differently.
  • the lower part of FIG. 2B and FIG. 2C have the same pattern.
  • the patterns in the upper portions of FIGS. 2A and 2B do not have granular portions as shown in FIG.
  • the lower part of FIG. 2B and FIG. 2C have the same pattern.
  • the lower portion of FIG. 2B and the pattern of FIG. 2C are patterns in which a plurality of granular portions are scattered and a plurality of fine lines cross each other. Both the granular portion and the plurality of thin line portions are carbides. From these pattern differences, it can be understood that there is a boundary between the solidified layer 30 and the base material 2 between the upper and lower portions of FIG. 2B. However, as shown in FIG. 2B, the boundary between solidified layer 30 and base material 2 is not visible.
  • a boundary is a location where at least one of composition and texture changes.
  • the term "not visually recognized” as used herein means that the boundary line cannot be seen when the photograph is visually observed.
  • Fig. 6 shows a photograph in which the boundaries can be visually recognized.
  • FIG. 6 shows a sample No. which is not the present embodiment and will be described later.
  • 101 is a photograph showing a cross section near the boundary between the solidified layer 30 and the base material 2 in the sintered body of high-speed steel No. 101.
  • FIG. Similar to FIG. 2B, the photograph of FIG. 6 is an observation image observed with an optical microscope at a magnification of 200 times. In FIG.
  • the surface 21 of the base material 2, ie the boundary between the solidified layer 30 and the base material 2 is visible as a boundary line. This boundary extends linearly in the horizontal direction of the drawing. As is clear from the comparison between FIG. 2B and FIG. 6, the boundary is not visible in the high-speed steel sintered body of this embodiment shown in FIG. 2B. That is, the high-speed steel sintered body 1 has good compatibility between the base material 2 and the solidified layer 30 . Therefore, in the high-speed steel sintered body 1 , cracks are less likely to occur between the base material 2 and the solidified layer 30 .
  • the high-speed steel sintered body 1 is suitable for mold parts 10 and the like.
  • the composition of the solidified layer 30 closer to the base material 2 becomes a gradient composition. This is because the components of the base material 2 diffuse toward the solidified layer 30 during the formation process of the solidified layer 30 . Specifically, a portion closer to the base material 2 in the solidified layer 30 contains more components of the base material 2 . Therefore, the composition of the portion of the solidified layer 30 near the base material 2 differs from the composition of the portion of the solidified layer 30 far from the base material 2 . Between the base material 2 and the solidified layer 30 joined to the surface 21 of the base material 2, and between the solidified layers 30 in the built-up portion 3, an observation image observed at a magnification of 200 times as described above. Boundaries are not visible.
  • FIG. 7 shows a photograph in which cracks exist between the base material 2 and the solidified layer 30 .
  • FIG. 7 shows a sample No. which is not the present embodiment and will be described later.
  • 112 is a photograph showing a cross section near the boundary between the solidified layer 30 and the base material 2 in the sintered body of high-speed steel No. 112.
  • FIG. The photograph of FIG. 7 is an observation image observed with an optical microscope at a magnification of 500 times.
  • cracks are present at the boundary between the solidified layer 30 and the base material 2 .
  • the cracks in FIG. 7 are the darkened areas between the solidified layer 30 and the base material 2 .
  • the crack is magnified 500 times so that the crack can be easily seen. Judging from the size of the cracks in FIG. 7, it is clear that the cracks are observed even in the image observed at a magnification of 200 times.
  • no crack exists between the base material 2 and the solidified layer 30 in the high-speed steel sintered body of this embodiment shown in FIG. 2B.
  • no cracks are present in the solidified layer 30 in the high-speed steel sintered body of this embodiment.
  • the manufacturing method of the high-speed steel sintered body of the present embodiment includes a step of forming the built-up portion 3 on the base material 2 .
  • the base material 2 is made of high speed steel.
  • the step of creating the powder layer involves padding the first surface 4 with powder of high speed steel.
  • the first surface 4 is the surface 21 of the base material 2 or the surface 31 of each of the solidified layers 30 .
  • One of the characteristics of the manufacturing method of the high-speed steel sintered body of the present embodiment is that the step of irradiating the laser beam is performed while the first surface 4 is heated to a specific temperature. Each step will be described in detail below. In the following description, a method for manufacturing a mold component is used as an example of the method for manufacturing the high-speed steel sintered body of the present embodiment.
  • Step of producing build-up portion In the step of producing the built-up portion 3, the step of producing a powder layer and the step of irradiating the powder layer with a laser beam are repeated, so that a powder layer is formed on the base material 2 as shown by the two-dot chain line in FIG. A solidified layer 30 is laminated. A plurality of laminated solidified layers 30 constitute the built-up portion 3 . That is, the mold component 10 in which the base material 2 and the build-up portion 3 are joined is manufactured through the step of producing the build-up portion 3 . The number of repetitions can be selected as appropriate.
  • a metal powder additive manufacturing apparatus can be used for manufacturing the padding portion 3 .
  • a metal powder additive manufacturing apparatus is also called a metal 3D printer.
  • the base material 2 is the second mold component.
  • the second mold part is a used mold part in which the first mold part is partially worn.
  • the first mold part is a part that constitutes a powder metallurgy mold used for compression molding of raw material powder.
  • the first mold part is a mold part in the initial state or in the initial state.
  • a mold part in its initial state is an unused mold part.
  • the mold part in its initial state is a sintered body composed of high speed steel.
  • the material of the mold component in the initial state is the same as the material of the base material 2 described above.
  • the mold component corresponding to the initial state is the mold component 10 manufactured by the manufacturing method of the high speed steel sintered body of this embodiment.
  • the portion indicated by the solid line in FIG. 3 is the second mold component.
  • the first mold component is the combination of the part indicated by the solid line and the part indicated by the two-dot chain line in FIG.
  • the first mold part is, for example, a punch, as shown in FIG. 3, or a die, not shown.
  • the first mold component is a punch
  • the end faces of the punch are worn by compression molding of raw material powder.
  • the base material 2 is in this worn state. That is, the length of the base material 2 is shorter than the length of the first mold part.
  • the length of the base material 2 is, for example, 50 mm or more and 200 mm or less, further 50 mm or more and 150 mm or less, and particularly 50 mm or more and 100 mm or less, although it depends on the size of the mold for powder metallurgy.
  • the shape of the base material 2 is the same as the shape of the base material 2 described above.
  • the material of the base material 2 is the same as the material of the base material 2 described above. Since the material of the base material 2 is the same as the material of the base material 2 described above, it is easy to form the solidified layer 30 without cracks in the base material 2 and, by extension, the built-up portion 3 .
  • the step of creating the powder layer includes laying the powder over the first surface 4 .
  • the first surface 4 is the surface 21 of the base material 2 or the surface 31 of each of the solidified layers 30 .
  • the first mold component is a punch
  • the surface 21 of the base material 2 is the end face of the punch.
  • the surface 31 of the solidified layer 30 is, as shown in FIG.
  • the method of spreading the powder can be appropriately selected according to the size of the powder and the height of the powder layer. For example, the powder may be spread so that individual particles constituting the powder form one powder layer without stacking, or the powder may be spread so that the particles are stacked.
  • the material of the powder is the same as the material of the solidified layer 30 described above.
  • the composition of this powder is maintained at the composition of the solidified layer 30 . Since the material of the powder is the same as the material of the solidified layer 30 described above, it is easy to form the solidified layer 30 without cracks in the base material 2 and, by extension, the built-up portion 3 .
  • the average particle size of the powder is, for example, 10 ⁇ m or more and 100 ⁇ m or less.
  • a powder whose average particle diameter satisfies the above range is easy to handle and easy to shape the powder layer and the solidified layer 30 .
  • the average particle size of the powder is further 20 ⁇ m or more and 60 ⁇ m or less, particularly 20 ⁇ m or more and 50 ⁇ m or less.
  • the average particle size means the particle size at which the cumulative volume is 50% in the volume particle size distribution measured by a laser diffraction particle size distribution analyzer.
  • the shape of the powder is preferably spherical.
  • the powder is preferably gas-atomized powder produced by a gas-atomization method, for example.
  • the height of the powder layer can be selected as appropriate. The higher the height of the individual powder layers, the higher the height of the individual solidified layers 30 .
  • the height of each solidified layer 30 is less than the height of each powder layer. This is because the solidified layer 30 is formed by melting and then solidifying the powder layer.
  • the height of each powder layer may be the same.
  • the height of at least one powder layer may vary.
  • the height of the n-th powder layer is equal to or higher than the height of the (n ⁇ 1)-th powder layer.
  • the n-th powder layer is each powder layer from the second powder layer to the final powder layer. That is, from the first powder layer to the final powder layer, as the number of powder layers increases, the height of the powder layer is made equal to or higher than the height of the powder layer one before. Satisfying this requirement facilitates improving the bondability between the base material 2 and the first solidified layer 30 . Therefore, it is easy to improve the bondability between the base material 2 and the built-up portion 3 .
  • the height of the solidified layer 30 of a certain layer is equal to or greater than the height of the solidified layer 30 immediately before the certain layer.
  • the range in which the height of the powder layer is increased as the number of powder layers increases is the same as all powder layers from the first powder layer to the final powder layer. good. Further, the range may be a plurality of continuous powder layers selected from the first powder layer to the final powder layer.
  • the selected continuous powder layers are, for example, any one of the following three patterns.
  • the first pattern is the first to m1th powder layers.
  • the second pattern is the m2 -th to m3- th powder layers.
  • the third pattern is the powder layers from the m1th layer to the last layer.
  • the m1th powder layer is a powder layer in the middle between the first layer and the last layer.
  • the m2 -th powder layer is a powder layer in the middle between the first layer and the m3- th layer.
  • the m3- th powder layer is a powder layer in the middle between the m2 -th layer and the last layer.
  • the heights of the powder layers are as follows.
  • the height of the powder layers from the 1st layer to the m1th layer is increased as the number of layers increases.
  • the height of the powder layers from the (m 1 +1 )th layer to the final layer is the same as the height of the m1th powder layer.
  • the heights of the powder layers are as follows.
  • the height of the powder layers from the 1st layer to the m2th layer is uniform.
  • the height of the m 2 +1 th to m 3 th powder layers is greater than the height of the m 2 th powder layer, and is increased as the number of layers increases.
  • the height of the powder layers from the m 3 +1-th layer to the final layer is the same as the height of the m 3 -th powder layer.
  • the height of the powder layer is as follows.
  • the height of the powder layers from the 1st layer to the m1th layer is uniform.
  • the height of the powder layers from the m 1 +1-th layer to the final layer is greater than the height of the m 1 -th powder layer, and is increased as the number of layers increases.
  • the powder layer has a uniform height
  • the powder layer has the same height
  • the rate of increase is given by ⁇ (t A ⁇ t A ⁇ 1 )/t A ⁇ 1 ⁇ 100.
  • t A is the powder bed height of a layer.
  • t A-1 is the height of the powder layer one before a layer.
  • the rate of increase in the height of the powder layer gradually decreases as the number of layers increases.
  • the m1 - th powder layer is, for example, a powder layer that is 1/5 or more and 1/2 or less of the total number of layers, although it depends on the total number of powder layers. For example, when the total number of layers is 30, the m1 - th powder layer is the 6th to 15th powder layers. Further, the m 2nd layer depends on the total number of layers of the powder layer, but for example, the total number of layers is 1/5 or more and 2/5 or less, and the m 3rd layer is a powder layer although it depends on the total number of laminations, it is, for example, 3/5 or more and 4/5 or less of the total number of laminations. For example, when the total number of layers is 30, the m2 layer powder layer is the 6th layer or more and the 12th layer or less, and the m3th layer powder layer is the 18th layer or more and 24th layer or less. is.
  • each powder layer is, for example, 0.02 mm or more and 0.08 mm or less, further 0.03 mm or more and 0.07 mm or less, and particularly 0.04 mm or more and 0.05 mm or less.
  • Step of irradiating laser light In the step of irradiating the laser beam, the solidified layer 30 is produced by irradiating the powder layer with the laser beam and solidifying the powder layer. A laser beam scans over the powder layer. By scanning the laser light, the entire powder layer is irradiated with the laser light. The irradiation of the laser light melts the particles forming the powder layer and bonds the particles to each other.
  • the temperature of the first surface 4 on which the powder layer is produced is heated to 130°C or higher. That is, when the first solidified layer 30 is produced, the temperature of the surface 21 of the base material 2 is heated to 130° C. or higher.
  • the temperature of the surface 31 of the solidified layer 30 on which the powder layers are formed is heated to 130° C. or higher.
  • the base material 2 can be restored to a mold component corresponding to the initial state.
  • the restored mold part equivalent to the initial state that is, the mold part 10 manufactured by the manufacturing method of the high-speed steel sintered compact of the present embodiment has improved wear state and can be reused. Therefore, the manufacturing method of the high-speed steel sintered body of the present embodiment can reduce the cost of the mold component 10 compared to the case where the mold component in the initial state is manufactured from scratch.
  • the temperature of the first surface 4 is, for example, 150° C. or higher, particularly 200° C. or higher.
  • the upper limit of the temperature of the first surface 4 is practically 300°C. That is, the temperature of the first surface 4 is 130° C. or higher and 300° C. or lower, further 150° C. or higher and 300° C. or lower, and further 200° C. or higher and 300° C. or lower.
  • the temperature of the first surface 4 can be measured with a temperature sensor.
  • the temperature sensor is, for example, an infrared temperature sensor.
  • the heating of the first surface 4 can be performed by a temperature control device.
  • the temperature control device has a heat source 110 and a temperature control section that controls the heat generation state of the heat source 110 . Illustration of the temperature control unit is omitted.
  • the heat source 110 is, for example, a resistance heating element or a high-temperature fluid flow path.
  • a hot fluid is, for example, steam.
  • the heat source 110 is built into the table 100 on which the base material 2 is placed. Depending on the position of the first surface 4 of the solidified layer 30, the output of the heat source 110 may be gradually increased in the process of repeating the step of forming the powder layer and the step of irradiating the laser beam.
  • the position of the first surface 4 of the solidified layer 30 is moved away from the table 100 . Therefore, by gradually increasing the output of the heat source 110, the temperature of the first surface 4 of the solidified layer 30 can be easily increased to 130° C. or higher.
  • the temperature of the first surface 4 is, for example, the Ms point of the powder or higher. Moreover, the temperature of the first surface 4 is, for example, the Mf point or higher of the base material 2 . The temperature of the first surface 4 satisfies both the Ms point of the powder and the Mf point of the base material 2, for example. When the temperature of the first surface 4 satisfies at least one of the Ms point of the powder or higher and the Mf point of the base material 2 or higher, the solidified layer 30 without cracks can be easily produced.
  • the energy density of the laser light is not particularly limited as long as the powder layers can be bonded, and can be appropriately selected.
  • the energy density of laser light is the amount of energy input per unit volume in the irradiation area of laser light.
  • E is the energy density of laser light (J/mm 3 ).
  • P is the power (W) of the laser light.
  • v is the scanning speed (mm/s) of the laser beam.
  • s is the scanning pitch (mm) of the laser light.
  • t is the height (mm) of the powder layer.
  • the energy density of the laser light irradiated to each powder layer may be the same.
  • the energy density of the laser light with which at least one powder layer is irradiated may differ from the energy density of the laser light with which the other powder layers are irradiated.
  • the energy density of laser light is made different, for example, the following requirements may be satisfied.
  • the requirement is that the energy density of the laser beam applied to the n-th powder layer should be less than or equal to the energy density of the laser beam applied to the (n-1)th powder layer.
  • the n-th powder layer referred to here is the same as the n-th powder layer described above regarding the height of the powder layer. That is, as the number of powder layers increases from the first powder layer to the final powder layer, the energy density of the laser beam irradiated to the powder layer is increased to that of the laser beam irradiated to the previous powder layer. Less than the energy density of light. Satisfying this requirement facilitates improving the bondability between the base material 2 and the first solidified layer 30 . In addition, it is easy to improve the bondability between the solidified layers 30 of the base material 2 . Therefore, it is easy to improve the bondability between the base material 2 and the built-up portion 3 .
  • the range in which the energy density of the laser light is decreased as the number of powder layers increases is the first powder layer to the final powder layer.
  • the range may be a plurality of continuous powder layers selected from the first powder layer to the final powder layer.
  • the selected continuous powder layers are any one of the three patterns mentioned in the description of the powder layer height.
  • the significance of the m1- th layer to the m3 - th layer is the same as that described in the description of the height of the powder layer.
  • the energy density of laser light is as follows.
  • the energy density of the laser beam irradiated to the first to m1-th powder layers is decreased as the number of layers increases.
  • the energy density of the laser light irradiated to the m 1 +1-th to the final powder layers is the same as the energy density of the laser light irradiated to the m 1 -th powder layer.
  • the energy density of the laser light is as follows.
  • the energy density of the laser light irradiated to the first to m2 -th powder layers is uniform.
  • the energy density of the laser light irradiated to the powder layers m 2 +1 to m 3 is less than the energy density of the laser light irradiated to the powder layers m 2 , and the number of layers increases. Make smaller as you go.
  • the energy density of the laser light irradiated to the m 3 +1-th to the final powder layers is the same as the energy density of the laser light irradiated to the m 3 -th powder layer.
  • the energy density of the laser light is as follows.
  • the energy density of the laser light irradiated to the first to m1-th powder layers is uniform.
  • the energy density of the laser light irradiated to the m 1 +1-th to the last powder layers is less than the energy density of the laser light irradiated to the m 1 -th powder layer, and decreases as the number of layers increases. do.
  • uniform energy density of laser light and “same energy density of laser light” refer to a case where the rate of decrease in energy density of laser light, which will be described later, is less than 7.5%. In other words, when the rate of decrease is 7.5% or more, it is said that "the energy density of the laser beam becomes small".
  • the rate of descent is indicated by the absolute value of ⁇ (E A -E A-1 )/E A-1 ⁇ 100.
  • EA is the energy density of laser light with which a powder layer of a certain layer is irradiated.
  • E A-1 is the energy density of the laser beam irradiated to the powder layer one before a certain layer. It is preferable that the rate of decrease in the energy density of the laser light gradually decreases as the number of layers increases.
  • the energy density of the laser light is, for example, 10 J/mm 3 or more and 300 J/mm 3 or less.
  • a laser beam having an energy density of 10 J/mm 3 or more facilitates formation of a crack-free solidified layer 30 .
  • a laser beam having an energy density of 300 J/mm 3 or less can suppress excessive melting of the powder layer. Therefore, the solidified layer 30 can be easily produced, and the shape accuracy of the solidified layer 30 can be easily maintained.
  • the energy density of the laser beam is 10 J/mm 3 or more and 200 J/mm 3 or less, and particularly 10 J/mm 3 or more and 180 J/mm 3 or less.
  • the laser light output is, for example, over 300 W.
  • a laser beam with an output power greater than 300 W tends to efficiently bond the powder layers.
  • the output power of the laser light is also 350 W or higher, particularly 400 W or higher.
  • the upper limit of the laser light output is, for example, 550 W or less.
  • a laser beam with an output of 550 W or less can suppress excessive melting of the powder layer. That is, the output of the laser light is more than 300 W and 550 W or less, further 350 W or more and 520 W or less, and particularly 400 W or more and 500 W or less.
  • the output of the laser light irradiated to each powder layer may be the same.
  • the power of the laser light with which at least one powder layer is irradiated may differ from the power of the laser light with which the other powder layers are irradiated.
  • the scanning speed of the laser light is, for example, 300 mm/s or more and 1000 mm/s or less.
  • the scanning speed of the laser beam is 300 mm/s or more, the powder layer can be sufficiently melted.
  • the scanning speed of the laser beam is 1000 mm/s or less, excessive dissolution of the powder layer can be suppressed.
  • the scanning speed of the laser beam is 320 mm/s or more and 800 mm/s or less, and particularly 350 mm/s or more and 700 mm/s or less.
  • the scanning speed of the laser light irradiated to each powder layer may be the same.
  • the scanning speed of the laser light irradiated to at least one powder layer may differ from the scanning speed of the laser light irradiated to the other powder layers.
  • the scanning pitch of the laser light is, for example, 0.05 mm or more and 0.3 mm or less.
  • the scanning pitch of the laser light is 0.05 mm or more, excessive melting of the powder layer can be suppressed.
  • the scanning pitch of the laser light is 0.3 mm or less, the entire powder layer can be sufficiently melted.
  • the scanning pitch of the laser light is 0.08 mm or more and 0.25 mm or less, and particularly 0.1 mm or more and 0.2 mm or less.
  • the type of laser light is, for example, solid-state laser or gas laser.
  • Solid-state lasers are, for example, fiber lasers and YAG (Yttrium Aluminum Garnet) lasers.
  • a fiber laser is suitable because it can reduce the laser spot diameter and obtain a high output.
  • a fiber laser is, for example, a Yb fiber laser.
  • a gas laser is, for example, a CO2 laser.
  • the manufacturing method of the high-speed steel sintered body of the present embodiment may include a step of pretreating the base material 2 before the step of producing the padding portion 3 .
  • the first surface 4 is produced by removing a predetermined region including the worn portion of the base material 2 by machining.
  • the predetermined area is, for example, an end portion of a predetermined length including the worn end face if the first mold component described above is a punch.
  • the end surface exposed by removing the predetermined area becomes the first surface 4 with small surface roughness.
  • the first surface 4 is preferably a flat surface.
  • the surface roughness of the first surface 4 is, for example, 1 ⁇ m or less in maximum height roughness Rz conforming to JIS B 0601:2013.
  • Machining includes, for example, cutting such as milling, electric discharge machining such as wire cutting, and grinding such as surface polishing.
  • the manufacturing method of the high-speed steel sintered body of the present embodiment may include a step of post-treating the build-up portion 3 after the step of producing the build-up portion 3 .
  • Post-processing is, for example, at least one of heat treatment and finishing.
  • the heat treatment transforms the structure of the build-up portion 3 and removes stress.
  • the number of times the heat treatment is performed is, for example, a plurality of times. Specifically, it is twice or three times.
  • the built-up portion 3 After laser irradiation, the built-up portion 3 is cooled to room temperature. The period until this cooling corresponds to the quenching process. Cooling to room temperature is slow cooling. Therefore, at the time of cooling to room temperature, the structure of the built-up portion 3 contains martensite and retained austenite. Therefore, the main heat treatment is performed from the tempering treatment.
  • the first heat treatment and the second heat treatment are tempering treatments.
  • the first heat treatment transforms the retained austenite of the build-up portion 3 into martensite.
  • the second heat treatment can temper and stabilize the martensitic structure generated in the first heat treatment.
  • the structure of the built-up portion 3 and the structure of the base material 2 can be made into a similar martensitic structure. Since the structure of the padding portion 3 and the structure of the base material 2 are the same martensite structure, the mechanical properties of the entire mold component 10 can be homogenized.
  • the heating temperature for these tempering treatments is, for example, 530°C or higher and 630°C or lower, further 540°C or higher and 620°C or lower, and particularly 550°C or higher and 615°C or lower.
  • the holding time at the heating temperature is, for example, 1 hour or more and 4 hours or less, further 1 hour or more and 3 hours or less, and particularly 1 hour or more and 2 hours or less.
  • the mold part 10 is cooled to a temperature equal to or lower than the Ms point of the build-up portion 3 .
  • the third heat treatment is a treatment to remove stress.
  • the heating temperature is, for example, about 30° C. to 50° C. lower than the heating temperature of the tempering treatment.
  • the heating temperature is 480° C. or higher and 600° C. or lower.
  • the holding time at the heating temperature is, for example, the same as the holding time of the tempering treatment. After being held at the heating temperature, the mold part 10 is cooled to room temperature.
  • finishing corrects the dimensional error of the padding portion 3 .
  • the first mold component is a punch
  • finishing is applied to the end surface, the outer peripheral surface, and the inner peripheral surface of the padding portion 3 .
  • the end face of the padding portion 3 constitutes the surface on which the raw material powder is compression-molded.
  • the outer peripheral surface of the padding portion 3 is in sliding contact with the inner peripheral surface of the through hole of the die.
  • the inner peripheral surface of the padding portion 3 is in sliding contact with the outer peripheral surface of the core rod. Finishing is, for example, machining similar to pretreatment. When the heat treatment is performed, for example, finishing is performed after the heat treatment.
  • Sample No. 1 to sample no. 3 Sample no. 1 to sample no. As 3, a high speed steel sintered body was manufactured in the same manner as the method for manufacturing a high speed steel sintered body of the above-described embodiment.
  • a base material and powder were prepared.
  • a cylindrical member was prepared as the base material of each sample.
  • the base material of each sample is a sintered body made of high speed steel.
  • the composition of the high-speed steel forming the base metal of each sample is different as shown in Table 1. "-" shown in Table 1 means that the element is not included.
  • the first surface was formed by removing the tip of the base material by wire cutting perpendicular to the axis of the base material. After that, the first surface of the base material was subjected to surface grinding so that the maximum height roughness Rz of the first surface was 1 ⁇ m or less.
  • the first surface of the base material has an outer diameter of 23.96 mm and an inner diameter of 14.99 mm.
  • the powder for each sample consisted of high speed steel.
  • the compositions of the high speed steels constituting the powders of each sample were the same as shown in Table 2.
  • the composition of the base material and powder of each sample was determined by EDX.
  • the Ms points of the compositions shown in Table 2 are measured values based on the created TTT (Time-Temperature-Transformation) diagram.
  • the Mf points of the compositions shown in Table 2 are values obtained at the Ms point of -215°C.
  • the Ms point of the composition shown in Table 1 is the value obtained at the calculated value +166°C.
  • Ms point (° C.) 550 - 350 x (% by mass of C) - 40 x (% by mass of Mn) - 35 x (% by mass of V) - 20 x (% by mass of Cr) - 17 x (% by mass of Ni) - 10 x (% by mass of Mo) - 10 x (% by mass of Cu) - 10 x (% by mass of W) + 15 x (% by mass of Co) - 10 x (% by mass of Si) is.
  • the above 166° C. is obtained as follows.
  • the measured value of the Ms point of the composition shown in Table 2 is 135°C.
  • the calculated value of the Ms point of the composition shown in Table 2 based on the above formula is -31°C.
  • the difference between this measured value and calculated value is 166°C. Therefore, the Ms point of the composition shown in Table 1 was obtained by adding this difference to the calculated value.
  • the Mf points shown in Table 1 are values obtained at the Ms point of -215°C.
  • Step of producing build-up portion By repeating the step of forming a powder layer and the step of irradiating with a laser beam, and stacking solidified layers obtained by solidifying the powder layer, a built-up portion was formed on the base material.
  • a metal 3D printer equipped with a temperature control device was used to produce the build-up portion.
  • OPM350L manufactured by Sodick Co., Ltd. was used as the metal 3D printer.
  • a heat source incorporated in a table on which the base material is placed was adjusted so that the temperature of the first surface of the base material and the temperature of the first surface of each solidified layer could be heated to 130° C. or higher.
  • the number of repetitions of the step of forming the powder layer and the step of irradiating the laser light was 30 times.
  • the first powder layer was irradiated with laser light while the temperature of the first surface of the base material was heated to 150° C. by a heat source.
  • the second and subsequent powder layers were irradiated with laser light while the temperature of the first surface of each solidified layer on which the powder layers were spread was heated to 150° C. by a heat source.
  • each powder of the 1st to 30th layers in each sample was used so that the inner diameter of the solidified layer was the same as the inner diameter of the base material, and the outer diameter of the solidified layer was smaller than the outer diameter of the base material. laid down layers.
  • Table 3 shows the height of each powder layer from the 1st layer to the 30th layer in each sample, the rate of increase in the height of the powder layer, the height of the modeled object, and the laser beam conditions.
  • the build height is the total height of the solidified layer. That is, the height of the thirtieth layer of the modeled object is the height of the built-up portion.
  • the laser beam conditions are power, scanning pitch, scanning speed, energy density, and rate of decrease in energy density.
  • the energy densities shown in Table 3 are rounded to the first decimal place.
  • the rate of increase in powder layer height and the rate of decrease in energy density shown in Table 3 are rounded off to the second decimal place.
  • the height of each powder layer from the 1st layer to the 30th layer in each sample, the height of the modeled object, and the energy density of the laser beam are shown as a graph in FIG.
  • the horizontal axis of FIG. 5 is the layer number corresponding to the stacking order of each solidified layer.
  • the vertical axis on the left side of FIG. 5 is the energy density (J/mm 3 ) of the laser light.
  • the vertical axis on the right side of FIG. 5 is the height (mm) of the powder layer and the height (mm) of the modeled object.
  • a solid line and black circles in FIG. 5 indicate the energy density.
  • the dotted line and crosses in FIG. 5 indicate the height of the powder layer.
  • a dashed line and a black diamond mark in FIG. 5 indicate the height of
  • Sample No. 101 to sample no. 103 Sample no. 101 to sample no. 103, except that the temperature of the first surface of the base material and the temperature of the first surface of each solidified layer were heated to 120° C. when irradiating each powder layer with a laser beam. 1 to sample no. A metal part was produced in the same manner as in 3.
  • Sample No. 111 to sample no. 113 Sample no. 111 to sample no. Sample No. 113, except that the first surface of the base material and the first surface of each solidified layer were not heated when each powder layer was irradiated with laser light. 1 to sample no. A metal part was produced in the same manner as in 3. The temperatures of the first surface of the base material and the first surface of each solidified layer were both room temperature, specifically 30°C.
  • sample No. FIG. 2A shows a photograph of the built-up portion in the high-speed steel sintered body of No. 1.
  • sample no. No cracks were observed in the built-up portion of the high-speed steel sintered body of No. 1.
  • illustration is omitted, sample No. 2 and sample no.
  • Sample No. 3 was added to the built-up portion of the high-speed steel sintered body of No. 3.
  • no cracks were observed.
  • illustration is omitted, sample No. 101 to sample no. 103, and sample no. 111 to sample no. Cracks were observed in the built-up portion of the high-speed steel sintered body of No. 113.
  • FIG. 2B shows a photograph of the vicinity of the joint between the base material and the first solidified layer in the high-speed steel sintered body of sample No. 1.
  • FIG. 6 shows a photograph of the vicinity of the boundary in the high-speed steel sintered body of No. 101.
  • the high-speed steel sintered body No. 3 is sample No. 3. Similar to 1, the boundary is not visible.
  • FIG. In the high-speed steel sintered body of 101 the above boundary can be visually recognized. Although illustration is omitted, sample No. 102 and sample no.
  • the high speed steel sintered body of No. 103 is sample No. As with 101, the boundaries are visible. Also, although illustration is omitted, sample No. 111 to sample no. 113 can visually recognize the boundary.
  • FIG. 7 shows a photograph of the vicinity of the boundary in the high-speed steel sintered body of No. 112.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Powder Metallurgy (AREA)
  • Laser Beam Processing (AREA)

Abstract

母材と、前記母材の表面の上に連続して設けられた固化層と、を備え、前記母材は、高速度鋼で構成されており、前記固化層は、前記母材を構成する高速度鋼とは組成が異なる高速度鋼で構成されており、前記表面に交差する断面を200倍に拡大した観察像において、前記母材と前記固化層との境界が視認されない、高速度鋼焼結体。

Description

高速度鋼焼結体、及び高速度鋼焼結体の製造方法
 本開示は、高速度鋼焼結体、及び高速度鋼焼結体の製造方法に関する。
 本出願は、2021年03月12日付の国際出願のPCT/JP2021/10160に基づく優先権を主張し、前記国際出願に記載された全ての記載内容を援用するものである。
 特許文献1は、金型部品の製造方法を開示している。この金型部品の製造方法は、金型部品の母材の第一面に肉盛り部を作製する工程を備えている。肉盛り部を作製する工程では、母材の第一面の上に粉末を層状に敷き詰める工程と、その粉末の層にレーザを照射することで溶融し凝固させた層を形成する工程と、を繰り返している。この繰り返しによって、肉盛り部は複数の固化層が積層されて構成されている。母材は、ダイス鋼で構成されている。粉末は、SUS420J2で構成されている。
国際公開第2018/225803号
 本開示の高速度鋼焼結体は、
 母材と、
 前記母材の表面の上に連続して設けられた固化層と、を備え、
 前記母材は、高速度鋼で構成されており、
 前記固化層は、前記母材を構成する高速度鋼とは組成が異なる高速度鋼で構成されており、
 前記表面に交差する断面を200倍に拡大した観察像において、前記母材と前記固化層との境界が視認されない。
 本開示の高速度鋼焼結体の製造方法は、
 高速度鋼で構成されている母材に高速度鋼で構成される肉盛り部を作製する工程を備え、
 前記肉盛り部を作製する工程は、粉末層を作製する工程と前記粉末層にレーザ光を照射する工程とを繰り返すことで、前記粉末層が固化した固化層を積層することを含み、
 前記粉末層を作製する工程は、第一面の上に高速度鋼で構成されている粉末を敷き詰めることを含み、
 前記第一面は、前記母材の表面又は前記固化層の各々の表面であり、
 前記レーザ光を照射する工程は、前記第一面の温度を130℃以上に加熱した状態で行われる。
図1は、実施形態1に係る高速度鋼焼結体の説明図である。 図2Aは、図1の領域Aの一例を拡大して示す写真であり、かつ試料No.1における固化層の断面を拡大して示す写真である。 図2Bは、図1の領域Bの一例を拡大して示す写真であり、かつ試料No.1における母材と固化層との接合箇所近傍の断面を拡大して示す写真である。 図2Cは、図1の領域Cの一例を拡大して示す写真であり、かつ試料No.1における母材の断面を拡大して示す写真である。 図3は、高速度鋼焼結体の製造方法を説明する断面図である。 図4は、高速度鋼焼結体の製造方法によって作製される肉盛り部を模式的に示す断面図である。 図5は、粉末層の高さ及び造形物の高さとレーザ光のエネルギー密度との関係を示すグラフである。 図6は、試料No.101における母材と固化層との境界近傍の断面を拡大して示す写真である。 図7は、試料No.112における母材と固化層との境界近傍の断面を拡大して示す写真である。
 [本開示が解決しようとする課題]
 高速度鋼で構成されている母材に高速度鋼で構成される固化層、延いては肉盛り部を作製することが望まれている。しかし、高速度鋼で構成される母材と高速度鋼で構成される固化層との間に亀裂が生じることなく、固化層、延いては肉盛り部を母材に作製する最適な製造方法は、検討されていなかった。
 本開示は、母材と固化層との間に亀裂が生じ難い高速度鋼焼結体を提供することを目的の一つとする。本開示は、亀裂が生じることなく高速度鋼で構成される肉盛り部を高速度鋼で構成されている母材に作製できる高速度鋼焼結体の製造方法を提供することを目的の一つとする。
 [本開示の効果]
 本開示の高速度鋼焼結体は、母材と固化層との間に亀裂が生じ難い。
 本開示の高速度鋼焼結体の製造方法は、亀裂が生じることなく高速度鋼で構成される肉盛り部を高速度鋼で構成されている母材に作製できる。
 《本開示の実施形態の説明》
 最初に本開示の実施態様を列記して説明する。
 (1)本開示の一態様に係る高速度鋼焼結体は、
 母材と、
 前記母材の表面の上に連続して設けられた固化層と、を備え、
 前記母材は、高速度鋼で構成されており、
 前記固化層は、前記母材を構成する高速度鋼とは組成が異なる高速度鋼で構成されており、
 前記表面に交差する断面を200倍に拡大した観察像において、前記母材と前記固化層との境界が視認されない。
 上記高速度鋼焼結体は、母材と固化層とは組成が異なる高速度鋼で構成されているものの、上記境界が視認されない。即ち、上記高速度鋼焼結体は、母材と固化層とは組成が異なる高速度鋼で構成されているものの、母材と固化層との馴染みが良い。そのため、上記高速度鋼焼結体は、母材と固化層との間に亀裂が生じ難い。上記高速度鋼焼結体は、金型部品などに好適である。
 (2)上記高速度鋼焼結体の一形態として、
 前記母材と前記固化層との間に亀裂が存在していなくてもよい。
 上記形態は、破壊の起点となる亀裂が存在していないため、亀裂の伝播による破断が生じ難い。
 (3)上記高速度鋼焼結体の一形態として、
 前記母材における炭素の含有量は、0.5質量%以上0.9質量%以下であってもよい。
 上記形態は、母材と固化層との馴染み性がよいため、母材と固化層との間に亀裂が生じ難い。
 (4)上記(3)の高速度鋼焼結体の一形態として、
 前記母材の組成は、炭素に加えて以下の元素群(1)から元素群(3)のいずれか1つを含有し、残部が鉄及び不可避不純物であってもよい。
 (1)0.2質量%以上4.0質量%以下のバナジウム、3質量%以上15質量%以下のクロム、及び0.5質量%以上4質量%以下のモリブデン
 (2)0.2質量%以上1.0質量%以下のマンガン、0.2質量%以上4.0質量%以下のバナジウム、3質量%以上15質量%以下のクロム、0.5質量%以上4質量%以下のモリブデン、及び0質量%超2.5質量%以下のケイ素
 (3)0.2質量%以上1.0質量%以下のマンガン、0.2質量%以上4.0質量%以下のバナジウム、3質量%以上15質量%以下のクロム、0.5質量%以上4質量%以下のモリブデン、0.5質量%以上5質量%以下のタングステン、及び0質量%超2.5質量%以下のケイ素
 上記形態は、母材と固化層との馴染み性がよい。
 (5)上記高速度鋼焼結体の一形態として、
 前記固化層における炭素の含有量は、0.5質量%以上1.5質量%以下であってもよい。
 上記形態は、母材と固化層との馴染み性がよいため、母材と固化層との間に亀裂が生じ難い。
 (6)上記(5)の高速度鋼焼結体の一形態として、
 前記固化層の組成は、炭素に加えて0質量%超1.0質量%以下のマンガン、1質量%以上3質量%以下のバナジウム、3質量%以上5.5質量%以下のクロム、4質量%以上6質量%以下のモリブデン、及び5質量%以上7.5質量%以下のタングステンを含有し、残部が鉄及び不可避不純物であってもよい。
 上記形態は、母材と固化層との馴染み性がよい。
 (7)本開示の一態様に係る高速度鋼焼結体の製造方法は、
 高速度鋼で構成されている母材に高速度鋼で構成される肉盛り部を作製する工程を備え、
 前記肉盛り部を作製する工程は、粉末層を作製する工程と前記粉末層にレーザ光を照射する工程とを繰り返すことで、前記粉末層が固化した固化層を積層することを含み、
 前記粉末層を作製する工程は、第一面の上に高速度鋼で構成されている粉末を敷き詰めることを含み、前記第一面は、前記母材の表面又は前記固化層の各々の表面であり、
 前記レーザ光を照射する工程は、前記第一面の温度を130℃以上に加熱した状態で行われる。
 上記高速度鋼焼結体の製造方法は、第一面の温度を130℃以上に加熱した状態で粉末層にレーザ光を照射することで、亀裂が生じることなく高速度鋼で構成される固化層、延いては肉盛り部を高速度鋼で構成されている母材に作製できる。よって、上記高速度鋼焼結体の製造方法は、金型部品の製造方法などに好適である。
 (8)上記高速度鋼焼結体の製造方法の一形態として、
 前記母材のマルテンサイト変態開始温度が、前記粉末のマルテンサイト変態開始温度以上であってもよい。
 上記母材には、亀裂のない固化層、延いては肉盛り部を作製し易い。
 (9)上記高速度鋼焼結体の製造方法の一形態として、
 前記母材における炭素の含有量は、0.5質量%以上0.9質量%以下であってもよい。
 Cの含有量が上記範囲を満たす母材は、固化層との馴染み性を向上し易い。そのため、この母材には、亀裂のない固化層を作製し易い。
 (10)上記高速度鋼焼結体の製造方法の一形態として、
 前記粉末における炭素の含有量は、0.5質量%以上1.5質量%以下であってもよい。
 Cの含有量が上記範囲を満たす粉末は、母材との馴染み性を向上し易い。そのため、この粉末を用いることで、亀裂のない固化層を母材に作製し易い。
 (11)上記高速度鋼焼結体の製造方法の一形態として、
 前記レーザ光を照射する工程において、前記第一面の温度を前記粉末のマルテンサイト変態開始温度以上としてもよい。
 上記の構成は、亀裂のない固化層を作製し易い。
 (12)上記高速度鋼焼結体の製造方法の一形態として、
 前記レーザ光を照射する工程において、前記第一面の温度を前記母材のマルテンサイト変態終了温度以上としてもよい。
 上記の構成は、亀裂のない固化層を作製し易い。
 (13)上記高速度鋼焼結体の製造方法の一形態として、
 前記レーザ光を照射する工程において、第n層目の前記粉末層に照射する前記レーザ光のエネルギー密度を前記n-1層目の前記粉末層に照射する前記レーザ光のエネルギー密度以下とし、
 前記第n層目の前記粉末層は、第2層目の前記粉末層から最終層目の粉末層であってもよい。
 上記の構成は、母材と第1層目の固化層との接合性を向上し易い。その上、上記の構成は、母材側の固化層同士の接合性を向上し易い。そのため、上記の構成は、母材と肉盛り部との接合性を向上し易い。
 (14)上記高速度鋼焼結体の製造方法の一形態として、
 前記粉末層を作製する工程において、第n層目の前記粉末層の高さを第n-1層目の前記粉末層の高さ以上とし、
 前記第n層目の前記粉末層は、第2層目の前記粉末層から最終層目の粉末層であってもよい。
 上記の構成は、母材と第1層目の固化層との接合性を向上し易い。そのため、上記の構成は、母材と肉盛り部との接合性を向上し易い。その上、上記の構成は、各固化層同士の接合性の低下を抑制しつつ、粉末層を作製する工程とレーザ光を照射する工程とを繰り返す回数を少なくし易いため、高速度鋼焼結体の生産性を向上し易い。
 (15)上記高速度鋼焼結体の製造方法の一形態として、
 前記レーザ光の出力が、300W超であってもよい。
 出力が300W超であるレーザ光は、粉末層を効率的に結合させ易い。
 《本開示の実施形態の詳細》
 本開示の実施形態の詳細を、以下に説明する。図中の同一符号は同一名称物を示す。
 《実施形態》
 〔高速度鋼焼結体〕
 図1及び図2Aから図2Cを参照して、実施形態の高速度鋼焼結体1を説明する。本形態の高速度鋼焼結体1は、母材2と固化層30とを備える。固化層30は、肉盛り部3を構成する。図1では、母材2は金型部品10の一部を例示している。固化層30は、母材2を拡張するように母材2の表面21上に形成された肉盛り部3である。母材2は、高速度鋼で構成されている。固化層30は、母材2の表面21の上に連続して設けられている。固化層30は、高速度鋼で構成されている。本形態の高速度鋼焼結体1の特徴の一つは、母材2と固化層30とが異なる組成の高速度鋼で構成されている場合であっても、特定の断面観察像において、母材2と固化層30との境界が視認されない点にある。以下、各構成の詳細を説明する。以下の説明は、高速度鋼焼結体1として金型部品10を例に行う。
  [母材]
 母材2の形状は、特に限定されない。本形態のように高速度鋼焼結体1が金型部品10であり、例えば、金型部品10がパンチの場合、母材2の形状は、図1に示すような円筒状、又は図示は省略しているものの円柱状である。図1に示す母材2は、母材2の長手方向に沿った貫通孔20が設けられている。この貫通孔20は、図示を省略するコアロッドが挿通される。図1に示す母材2は、図1の紙面上側に位置する先端部が図示を省略するダイの孔に嵌合される。図1の紙面上側に位置する母材2の表面21の形状は、円環状である。図示は省略するものの、円柱状の母材の表面の形状は、円形状である。
 母材2の材質は、高速度鋼である。母材2のMs点は、例えば、後述する固化層30のMs点以上である。Ms点とは、マルテンサイト変態開始温度のことである。即ち、母材2のMs点は、固化層30のMs点と同じであってもよいし、固化層30のMs点よりも高くてもよい。母材2のMs点が固化層30のMs点以上であることで、母材2上の固化層30には亀裂が存在しない。製造過程で、Ms点が固化層30のMs点以上である母材2には、亀裂のない固化層30、延いては肉盛り部3を作製し易いからである。母材2のMs点は、例えば、100℃以上420℃以下であり、更に100℃以上390℃以下であり、特に100℃以上370℃以下である。また、母材2のMf点は、例えば、0℃以上190℃以下であり、更に0℃以上170℃以下であり、特に0℃以上150℃以下である。Mf点は、マルテンサイト変態終了温度である。固化層30のMs点は後述する。
 母材2を構成する高速度鋼の組成は、例えば、以下の組成(1)から組成(3)のいずれか1つである。
 (1)C(炭素)、V(バナジウム)、Cr(クロム)、及びMo(モリブデン)を含有し、残部がFe(鉄)及び不可避的不純物からならなる。
 (2)C、Mn(マンガン)、V、Cr、Mo、及びSi(ケイ素)を含有し、残部がFe及び不可避的不純物からなる。
 (3)C、Mn、V、Cr、Mo、W(タングステン)、及びSiを含有し、残部がFe及び不可避的不純物からなる。
 母材2におけるCの含有量は、例えば、0.5質量%以上0.9質量%以下である。Cの含有量が上記範囲を満たす母材2は、固化層30との馴染み性に優れる。そのため、母材2上の固化層30には亀裂が存在し難い。製造過程で、Cの含有量が上記範囲を満たす母材2に、亀裂のない固化層30を作製し易いからである。母材2におけるCの含有量は、更に0.55質量%以上0.85質量%以下であり、特に0.6質量%以上0.8質量%以下である。
 母材2におけるMn、V、Cr、Mo、W、及びSiの含有量は、例えば、次の通りである。
 Mnの含有量は、例えば、0.2質量%以上1.0質量%以下であり、更に0.2質量%以上0.7質量%以下であり、特に0.2質量%以上0.5質量%以下である。
 Vの含有量は、例えば、0.2質量%以上4.0質量%以下であり、更に0.2質量%以上3.8質量%以下であり、特に0.2質量%以上3.5質量%以下である。
 Crの含有量は、例えば、3質量%以上15質量%以下であり、更に3質量%以上10質量%以下であり、特に3質量%以上6質量%以下である。
 Moの含有量は、例えば、0.5質量%以上4質量%以下であり、更に0.5質量%以上3.5質量%以下であり、特に1.0質量%以上3.5質量%以下である。
 Wの含有量は、例えば、0.5質量%以上5質量%以下であり、更に1.0質量%以上4質量%以下であり、特に1.5質量%以上3質量%以下である。
 Siの含有量は、例えば、0質量%超2.5質量%以下であり、更に0.1質量%以上2.0質量%以下であり、特に0.2質量%以上1.5質量%以下である。Mn、V、Cr、Mo、W、及びSiの含有量がそれぞれ上記範囲を満たすことで、母材2と固化層30との馴染み性がよい。
 母材2の組成は、エネルギー分散型X線分光法(EDX)によって母材2の断面を分析することで求めることができる。
  [固化層]
 固化層30の形状は、特に限定されない。固化層30の形状は、母材2の形状と同様の形状であってもよいし、母材2の形状とは異なる形状であってもよい。本形態のように金型部品10がパンチである場合、固化層30の形状は、例えば、母材2の一部と同様の形状である。具体的には、固化層30の形状は、円筒状である。
 固化層30の材質は、高速度鋼である。固化層30のMs点は、上述したように母材2のMs点以下である。固化層30のMs点は、例えば、100℃以上300℃以下であり、更に100℃以上250℃以下であり、特に100℃以上200℃以下である。また、固化層30のMf点は、例えば、-110℃以上180℃以下であり、更に-100℃以上165℃以下であり、特に-90℃以上150℃以下である。
 固化層30を構成する高速度鋼の組成と母材2を構成する高速度鋼の組成とは、同じであってもよいし異なっていてもよい。母材2の組成と固化層30の組成とが異なっていても、後述するように母材2と固化層30との境界が視認されいない程度に母材2と固化層30とが馴染んでいることによって、母材2と固化層30との間に亀裂が生じ難い。例えば、固化層30を構成する高速度鋼の組成は、上述した組成(1)から組成(3)のいずれか1つであってもよいし、上述した組成(1)から組成(3)以外であってもよい。上述した組成(1)から組成(3)以外として、固化層30を構成する高速度鋼の組成は、例えば、C、Mn、V、Cr、Mo、及びWを含有し、残部がFe及び不可避不純物である。
 固化層30におけるCの含有量は、母材2におけるCの含有量と同じであってもよいし異なっていてもよい。固化層30におけるCの含有量は、例えば、0.5質量%以上1.5質量%以下である。Cの含有量が上記範囲を満たす固化層30には亀裂が存在し難い。製造過程で、固化層30を形成する後述の粉末におけるCの含有量が上記範囲を満たすことで、亀裂のない固化層30を作製し易いからである。固化層30におけるCの含有量は、更に0.5質量%以上1.2質量%以下であり、特に0.5質量%以上1.0質量%以下である。
 固化層30を構成する高速度鋼の組成が上述した組成(1)から組成(3)のいずれか1つである場合、固化層30におけるMn、V、Cr、Mo、W、及びSiの含有量は、上述の通りである。固化層30を構成する高速度鋼の組成がC、Mn、V、Cr、Mo、及びWを含有する場合、固化層30におけるMn、V、Cr、Mo、及びWの含有量は、例えば、次の通りである。
 Mnの含有量は、例えば、0質量%超1.0質量%以下であり、更に0.1質量%以上0.8質量%以下であり、特に0.2質量%以上0.5質量%以下である。
 Vの含有量は、例えば、1質量%以上3質量%以下であり、更に1.2質量%以上2.8質量%以下であり、特に1.5質量%以上2.5質量%以下である。
 Crの含有量は、例えば、3質量%以上5.5質量%以下であり、更に3.5質量%以上5質量%以下であり、特に4.0質量%以上4.8質量%以下である。
 Moの含有量は、例えば、4質量%以上6質量%以下であり、更に4.2質量%以上5.7質量%以下であり、特に4.5質量%以上5.5質量%以下である。
 Wの含有量は、例えば、5質量%以上7.5質量%以下であり、更に5.2質量%以上7.2質量%以下であり、特に5.5質量%以上7.0質量%以下である。
 Mn、V、Cr、Mo、及びWの含有量がそれぞれ上記範囲を満たすことで、母材2と固化層30との馴染み性がよい。
 固化層30の組成は、EDXによって固化層30の断面を分析することで求めることができる。
  [観察像]
 図2Aは、本形態の高速度鋼焼結体における固化層30の断面の一例を示す写真である。図2Bは、本形態の高速度鋼焼結体における固化層30と母材2との接合箇所近傍の断面の一例を示す写真である。図2Cは、母材2の断面の一例を示す写真である。図2Aから図2Cの断面は、母材2の表面21に交差する断面である。表面21とは、母材2の外面のうち、固化層30が接合される領域である。断面は、母材2と固化層30の両方にまたがる切断面で構成された断面である。図2Aから図2Cの写真は、光学顕微鏡によって200倍の倍率で観察した観察像である。図2Aと図2Bの上方部分とは同様の模様になっている。図2Bの上方部分と図2Bの下方部分とは異なる模様になっている。図2Bの下方部分と図2Cとは同じ模様になっている。
 具体的には、図2Aと図2Bの上方部分の模様は、図2Cに示すような粒状の部分が見られず、複数の細い線同士が交差した模様になっている。一方、図2Bの下方部分と図2Cとは同じ模様になっている。具体的には、図2Bの下方部分と図2Cの模様は、複数の粒状の部分が点在している上に、複数の細い線同士が交差した模様になっている。上記粒状の部分及び上記複数の細い線の部分はいずれも、炭化物である。これらの模様の違いから、図2Bの上方部分と下方部分との間に固化層30と母材2との境界が存在することが理解できる。しかし、図2Bに示されるように、固化層30と母材2との境界は視認されない。ここでいう境界とは、組成及び組織の少なくとも一方が変わる箇所である。ここでいう視認されてないとは、上記写真を目視した際、上記境界となる線が見えないことをいう。境界を視認できる写真を図6に示す。図6は、本形態ではない後述する試料No.101の高速度鋼焼結体における固化層30と母材2との境界近傍の断面を示す写真である。図6の写真は、図2Bと同様、光学顕微鏡によって200倍の倍率で観察した観察像である。図6では、母材2の表面21、即ち固化層30と母材2との間の境界が境界線として視認できる。この境界は、紙面左右方向に線状に延びている。図2Bと図6との比較からも明らかなように、図2Bに示す本形態の高速度鋼焼結体は、上記境界が視認されない。即ち、高速度鋼焼結体1は、母材2と固化層30との馴染みが良い。そのため、高速度鋼焼結体1は、母材2と固化層30との間に亀裂が生じ難い。高速度鋼焼結体1は、金型部品10などに好適である。
 母材2と固化層30が異なる組成の高速度鋼で構成される場合、固化層30における母材2に近い側の組成は傾斜組成になる。固化層30の形成過程で、母材2の成分が固化層30側に拡散するからである。具体的には、固化層30における母材2に近い箇所ほど母材2の成分を多く含有する。そのため、固化層30における母材2に近い箇所の組成と固化層30における母材2から遠い箇所とは組成とが異なる。母材2と母材2の表面21に接合された固化層30との間、及び肉盛り部3における固化層30同士の間には、上述のように200倍の倍率で観察された観察像では境界が視認されない。
 また、図2Bに示すように、本形態の高速度鋼焼結体1における母材2と固化層30との間には亀裂が存在していない。高速度鋼焼結体1は、破壊の起点となる亀裂が存在していないため、亀裂の伝播による破断が生じ難い。母材2と固化層30との間に亀裂が存在している写真を図7に示す。図7は、本形態ではない後述する試料No.112の高速度鋼焼結体における固化層30と母材2との境界近傍の断面を示す写真である。図7の写真は、光学顕微鏡によって500倍の倍率で観察した観察像である。図7では、固化層30と母材2との境界には亀裂が存在している。図7の亀裂は、固化層30と母材2との間に黒く示されている領域である。図7では、亀裂がわかり易いように500倍に拡大している。図7の亀裂のサイズからすると、200倍の倍率で観察した観察像であっても亀裂が認められることは明らかである。図2Bと図7との比較から明らかなように、図2Bに示す本形態の高速度鋼焼結体は、母材2と固化層30との間に亀裂が存在していない。そして、図2Aに示すように、本形態の高速度鋼焼結体における固化層30にも亀裂が存在していない。
 〔高速度鋼焼結体の製造方法〕
 図3及び図4を参照して、本形態の高速度鋼焼結体の製造方法を説明する。本形態の高速度鋼焼結体の製造方法は、母材2の上に肉盛り部3を作製する工程を備える。母材2は、高速度鋼で構成されている。肉盛り部3を作製する工程は、粉末層を作製する工程と粉末層にレーザ光を照射する工程とを繰り返すことで、図4の二点鎖線で示すように粉末層が結合した固化層30を積層する。粉末層を作製する工程は、第一面4に高速度鋼からなる粉末を敷き詰めることを含む。第一面4は、母材2の表面21又は固化層30の各々の表面31である。本形態の高速度鋼焼結体の製造方法の特徴の一つは、レーザ光を照射する工程が、第一面4の温度を特定の温度に加熱した状態で行われる点にある。以下、各工程を詳細に説明する。以下の説明は、本形態の高速度鋼焼結体の製造方法として金型部品の製造方法を例に行う。
  [肉盛り部を作製する工程]
 肉盛り部3を作製する工程は、粉末層を作製する工程と粉末層にレーザ光を照射する工程とが繰り返されることで、図4の二点鎖線で示すように、母材2に粉末層が結合した固化層30が積層される。この積層された複数の固化層30が肉盛り部3を構成する。即ち、肉盛り部3を作製する工程を経ることで、母材2と肉盛り部3とが接合された金型部品10が製造される。繰り返す回数は、適宜選択できる。母材2と肉盛り部3とを異なる組成の高速度鋼で構成する場合、母材2と肉盛り部3との接合箇所の近傍では、母材2の成分が固化層30側に拡散することによって傾斜組成になる。肉盛り部3における母材2の表面21に近い箇所ほど母材2の成分を多く含有する。肉盛り部3における母材2の表面21から遠い箇所は、粉末の組成の通りの組成となる。そのため、母材2の表面21に近い固化層30の組成と母材2の表面21から遠い固化層30の組成との違いが顕著になる。肉盛り部3の作製には、金属粉末積層造形装置が利用できる。金属粉末積層造形装置は、金属3Dプリンタとも呼ばれる。
   (母材)
 母材2は、第二の金型部品である。第二の金型部品とは、第一の金型部品の一部が摩耗した状態の使用済みの金型部品である。第一の金型部品は、原料粉末の圧縮成形に用いられる粉末冶金用の金型を構成する部品である。第一の金型部品とは、初期状態又は初期状態相当の金型部品である。初期状態の金型部品とは、未使用の金型部品である。初期状態の金型部品は、高速度鋼で構成された焼結体である。初期状態の金型部品の材質は、上述した母材2の材質の通りである。初期状態相当の金型部品とは、本形態の高速度鋼焼結体の製造方法により製造された金型部品10である。図3の実線で示す部分が第二の金型部品である。図3の実線で示す部分と二点鎖線で示す部分とを合わせた部分が第一の金型部品である。第一の金型部品は、例えば、図3に示すようなパンチ、又は図示は省略しているもののダイである。例えば、第一の金型部品がパンチの場合、パンチの端面は、原料粉末を圧縮成形することで摩耗する。この摩耗した状態のものが母材2である。即ち、母材2の長さは、第一の金型部品の長さよりも短い。母材2の長さは、粉末冶金用の金型のサイズにもよるものの、例えば、50mm以上200mm以下であり、更に50mm以上150mm以下であり、特に50mm以上100mm以下である。
 母材2の形状は、上述した母材2の形状の通りである。母材2の材質は、上述した母材2の材質の通りである。母材2の材質が上述した母材2の材質の通りであることで、母材2に対して亀裂のない固化層30、延いては肉盛り部3を作製し易い。
   (粉末層を作製する工程)
 粉末層を作製する工程では、第一面4の上に粉末を敷き詰めることを含む。第一面4は、母材2の表面21又は固化層30の各々の表面31である。例えば、第一の金型部品がパンチの場合、母材2の表面21とは、パンチの端面である。固化層30の表面31とは、図4に示すように、母材2の表面21に作製された固化層30のうち、母材2の表面21側とは反対側の面である。粉末の敷き詰め方は、粉末の大きさ及び粉末層の高さに応じて適宜選択できる。例えば、粉末を構成する個々の粒子が積み重なることなく1層の粉末層を構成するように粉末が敷き詰められてもよいし、粒子が積み重なるように粉末が敷き詰められてもよい。
 粉末の材質は、上述した固化層30の材質の通りである。この粉末の組成は、固化層30の組成に維持される。粉末の材質が上述した固化層30の材質の通りであることで、母材2に対して亀裂のない固化層30、延いては肉盛り部3を作製し易い。
 粉末の平均粒径は、例えば、10μm以上100μm以下である。平均粒径が上記範囲を満たす粉末は、取り扱い易く、粉末層及び固化層30を造形し易い。粉末の平均粒径は、更に20μm以上60μm以下であり、特に20μm以上50μm以下である。平均粒子径とは、レーザ回折式粒度分布測定装置により測定した体積粒度分布における累積体積が50%となる粒子径を意味する。
 粉末の形状は、真球状が好ましい。粉末は、例えば、ガスアトマイズ法により製造されたガスアトマイズ粉が好ましい。
 粉末層の高さは、適宜選択できる。個々の粉末層の高さが高いほど、個々の固化層30の高さが高くなる。個々の固化層30の高さは、個々の粉末層の高さよりも低くなる。固化層30は、粉末層が溶融してから固化することにより形成されるからである。各粉末層の高さは同一としてもよい。少なくとも1つの粉末層の高さが異なってもよい。
 粉末層の高さを異ならせる場合、例えば、次の要件を満たしてもよい。その要件とは、第n層目の粉末層の高さを第n-1層目の粉末層の高さ以上とする。第n層目の粉末層とは、第2層目の粉末層から最終層目の粉末層の各々である。即ち、第1層目の粉末層から最終層目の粉末層まで、粉末層の層数が増えるにつれて、粉末層の高さを1つ前の粉末層の高さ以上とする。この要件を満たすことで、母材2と第1層目の固化層30との接合性を向上し易い。そのため、母材2と肉盛り部3との接合性を向上し易い。その上、各固化層30同士の接合性の低下を抑制しつつ、粉末層を作製する工程とレーザ光を照射する工程とを繰り返す回数を少なくし易いため、金型部品10の生産性を向上し易い。この要件を満たす場合、図4に示すように、ある層の固化層30の高さは、ある層の1つ前の固化層30の高さ以上となる。
 上記要件を満たす一例として、例えば、粉末層の層数が増えるにつれて粉末層の高さを高くする範囲は、第1層目の粉末層から最終層目の粉末層までの全ての粉末層としてもよい。また、上記範囲は、第1層目の粉末層から最終層目の粉末層までの中から選択される連続した複数の粉末層であってもよい。選択される連続した複数の粉末層は、例えば、以下の3つのパターンのいずれか1つである。
 第1パターンは、第1層目から第m層目の粉末層である。
 第2パターンは、第m層目から第m層目の粉末層である。
 第3パターンは、第m層目から最終層目の粉末層である。
 第m層目の粉末層は、第1層目と最終層目との間の途中の粉末層である。
 第m層目の粉末層は、第1層目と第m層目との間の途中の粉末層である。
 第m層目の粉末層は、第m層目と最終層目との間の途中の粉末層である。
 連続する複数の粉末層が第1層目から第m層目の粉末層である場合、粉末層の高さは次の通りである。第1層目から第m層目の粉末層の高さは、層数が増えるにつれて高くする。第m+1層目から最終層目の粉末層の高さは、第m層目の粉末層の高さと同じとする。
 連続する複数の粉末層が第m層目から第m層目の粉末層である場合、粉末層の高さは次の通りである。第1層目から第m層目の粉末層の高さは一様である。第m+1層目から第m層目の粉末層の高さは、第m層目の粉末層の高さ超であり、かつ層数が増えるにつれて高くする。第m+1層目から最終層目の粉末層の高さは、第m層目の粉末層の高さと同じとする。
 連続する複数の粉末層が第m層目から最終層目の粉末層である場合、粉末層の高さは次の通りである。第1層目から第m層目の粉末層の高さは一様である。第m+1層目から最終層目の粉末層の高さは、第m層目の粉末層の高さ超であり、かつ層数が増えるにつれて高くする。
 ここでいう「粉末層の高さが一様」及び「粉末層の高さが同じ」とは、後述する粉末層の高さの上昇率が3.0%未満である場合をいう。即ち、上記上昇率が3.0%以上である場合、「粉末層の高さが高くなる」という。上記上昇率は、{(t-tA-1)/tA-1}×100で示される。tとは、ある層の粉末層の高さである。tA-1とは、ある層の1つ前の粉末層の高さである。粉末層の高さの上昇率は、層数が増えるにつれて徐々に小さくなることが好ましい。
 第m層目の粉末層は、粉末層の総積層数にもよるが、例えば、総積層数の1/5層目以上1/2層目以下の粉末層である。例えば、総積層数が30である場合、第m層目の粉末層は、6層目以上15層目以下の粉末層である。また、第m層目は、粉末層の総積層数にもよるが、例えば、総積層数の1/5層目以上2/5層目以下であり、第m層目は、粉末層の総積層数にもよるが、例えば、総積層数の3/5層目以上4/5層目以下である。例えば、総積層数が30である場合、第m層目の粉末層は、6層目以上12層目以下であり、第m層目の粉末層は、18層目以上24層目以下である。
 各粉末層の高さは、例えば、0.02mm以上0.08mm以下であり、更に0.03mm以上0.07mm以下であり、特に0.04mm以上0.05mm以下である。
   (レーザ光を照射する工程)
 レーザ光を照射する工程では、粉末層にレーザ光が照射されることで粉末層が固化した固化層30を作製する。レーザ光は粉末層上を走査する。レーザ光が走査されることで、粉末層全体にわたってレーザ光が照射される。レーザ光の照射により、粉末層を構成する粒子が溶融して粒子同士が互いに結合する。
 この工程では、粉末層が作製される第一面4の温度を130℃以上に加熱した状態とする。即ち、第1層目の固化層30を作製する際、母材2の表面21の温度を130℃以上に加熱した状態とする。第2層目以降の固化層30を作製する際、粉末層が作製される固化層30の表面31の温度を130℃以上に加熱した状態とする。第一面4の温度が130℃以上に加熱された状態でレーザ光が粉末層に照射されることで、亀裂のない固化層30を作製できる。言い換えると、高速度鋼で構成されている肉盛り部3を高速度鋼で構成されている母材2上に作製できる。この肉盛り部3を作製する工程によって、母材2を初期状態相当の金型部品に復元できる。復元された初期状態相当の金型部品、即ち、本形態の高速度鋼焼結体の製造方法によって製造された金型部品10は、摩耗状態が改善されているため、再利用できる。そのため、本形態の高速度鋼焼結体の製造方法は、初期状態の金型部品を一から作製する場合に比較して、金型部品10のコストを低減できる。第一面4の温度は、例えば、更に150℃以上であり、特に200℃以上である。第一面4の温度の上限は、実用上、300℃である。即ち、第一面4の温度は、130℃以上300℃以下であり、更に150℃以上300℃以下であり、更に200℃以上300℃以下である。第一面4の温度は、温度センサで測定できる。温度センサは、例えば、赤外線温度センサである。
 第一面4の加熱は、温度調整装置によって行える。温度調整装置は、発熱源110と発熱源110の発熱状態を制御する温度制御部とを有する。温度制御部の図示は省略する。発熱源110は、例えば抵抗発熱体や高温流体の流路である。高温流体は、例えばスチームである。発熱源110は、母材2が載置されるテーブル100に内蔵されている。固化層30の第一面4の位置によっては、粉末層を作製する工程とレーザ光を照射する工程とを繰り返す過程で、発熱源110の出力を徐々に高くするとよい。固化層30が積層されるたびに、固化層30の第一面4の位置がテーブル100から離れる。そのため、発熱源110の出力を徐々に高くすることで、固化層30の第一面4の温度を130℃以上に高め易い。
 第一面4の温度は、例えば、粉末のMs点以上である。また、第一面4の温度は、例えば、母材2のMf点以上である。第一面4の温度は、例えば、粉末のMs点以上及び母材2のMf点以上の両方を満たす。第一面4の温度が粉末のMs点以上及び母材2のMf点以上の少なくとも一方を満たすことで、亀裂のない固化層30を作製し易い。
 レーザ光のエネルギー密度は、粉末層を結合できれば特に限定されず適宜選択できる。レーザ光のエネルギー密度とは、レーザ光の照射領域での単位体積あたりに投入されるエネルギー量のことである。レーザ光のエネルギー密度は、E=P/(v×s×t)によって算出される値である。Eは、レーザ光のエネルギー密度(J/mm)である。Pは、レーザ光の出力(W)である。vは、レーザ光の走査速度(mm/s)である。sは、レーザ光の走査ピッチ(mm)である。tは、粉末層の高さ(mm)である。
 各粉末層に照射されるレーザ光のエネルギー密度は同一としてもよい。少なくとも1つの粉末層に照射されるレーザ光のエネルギー密度が他の粉末層に照射されるレーザ光のエネルギー密度と異なってもよい。
 レーザ光のエネルギー密度を異ならせる場合、例えば、次の要件を満たしてもよい。その要件とは第n層目の粉末層に照射するレーザ光のエネルギー密度を第n-1層目の粉末層に照射するレーザ光のエネルギー密度以下とする。ここでいう第n層目の粉末層とは、粉末層の高さについて上述した第n層目の粉末層と同じである。即ち、第1層目の粉末層から最終層目の粉末層まで、粉末層の層数が増えるにつれて、粉末層に照射されるレーザ光のエネルギー密度を1つ前の粉末層に照射されるレーザ光のエネルギー密度以下とする。この要件を満たすことで、母材2と第1層目の固化層30との接合性を向上し易い。その上、母材2の固化層30同士の接合性を向上し易い。そのため、母材2と肉盛り部3との接合性を向上し易い。
 上記要件を満たす一例として、例えば、粉末層の層数が増えるにつれてレーザ光のエネルギー密度を小さくする範囲は、第1層目の粉末層から最終層目の粉末層までの全ての粉末層とする。また、上記範囲は、第1層目の粉末層から最終層目の粉末層までの中から選択される連続した複数の粉末層であってもよい。選択される連続した複数の粉末層は、粉末層の高さの説明で述べた3つのパターンのいずれか1つである。第m層目から第m層目の意義は、粉末層の高さの説明で述べたものと同じである。
 連続する複数の粉末層が第1層目から第m層目の粉末層である場合、レーザ光のエネルギー密度は次の通りである。第1層目から第m層目の粉末層に照射するレーザ光のエネルギー密度は、層数が増えるにつれて小さくする。第m+1層目から最終層目の粉末層に照射するレーザ光のエネルギー密度は、第m層目の粉末層に照射するレーザ光のエネルギー密度と同じとする。
 連続する複数の粉末層が第m層目から第m層目の粉末層である場合、レーザ光のエネルギー密度は次の通りである。第1層目から第m層目の粉末層に照射するレーザ光のエネルギー密度は一様である。第m+1層目から第m層目の粉末層に照射するレーザ光のエネルギー密度は、第m層目の粉末層に照射するレーザ光のエネルギー密度未満であり、かつ層数が増えるにつれて小さくする。第m+1層目から最終層目の粉末層に照射するレーザ光のエネルギー密度は、第m層目の粉末層に照射するレーザ光のエネルギー密度と同じとする。
 連続する複数の粉末層が第m層目から最終層目の粉末層である場合、レーザ光のエネルギー密度は次の通りである。第1層目から第m層目の粉末層に照射するレーザ光のエネルギー密度は一様である。第m+1層目から最終層目の粉末層に照射するレーザ光のエネルギー密度は、第m層目の粉末層に照射するレーザ光のエネルギー密度未満であり、かつ層数が増えるにつれて小さくする。
 ここでいう「レーザ光のエネルギー密度が一様」及び「レーザ光のエネルギー密度が同じ」とは、後述するレーザ光のエネルギー密度の下降率が7.5%未満である場合をいう。即ち、上記下降率が7.5%以上である場合、「レーザ光のエネルギー密度が小さくなる」という。上記下降率は、{(E-EA-1)/EA-1}×100の絶対値で示される。Eとは、ある層の粉末層に照射するレーザ光のエネルギー密度である。EA-1とは、ある層の1つ前の粉末層に照射されるレーザ光のエネルギー密度である。レーザ光のエネルギー密度の下降率は、層数が増えるにつれて徐々に小さくなることが好ましい。
 レーザ光のエネルギー密度は、例えば、10J/mm以上300J/mm以下である。エネルギー密度が10J/mm以上であるレーザ光は、亀裂のない固化層30を作製し易い。エネルギー密度が300J/mm以下であるレーザ光は、粉末層を過度に溶解させることを抑制できる。そのため、固化層30を作製し易く、固化層30の形状精度を維持し易い。レーザ光のエネルギー密度は、更に10J/mm以上200J/mm以下であり、特に10J/mm以上180J/mm以下である。
 レーザ光の出力は、例えば、300W超である。出力が300W超であるレーザ光は、粉末層を効率的に結合させ易い。レーザ光の出力は、更に350W以上であり、特に400W以上である。レーザ光の出力の上限は、例えば、550W以下である。出力が550W以下であるレーザ光は、粉末層を過度に溶解させることを抑制できる。即ち、レーザ光の出力は、300W超550W以下であり、更に350W以上520W以下であり、特に400W以上500W以下である。各粉末層に照射されるレーザ光の出力は同一でもよい。少なくとも1つの粉末層に照射されるレーザ光の出力が他の粉末層に照射されるレーザ光の出力と異なってもよい。
 レーザ光の走査速度は、例えば、300mm/s以上1000mm/s以下である。レーザ光の走査速度が300mm/s以上であることで、粉末層を十分に溶融させられる。レーザ光の走査速度1000mm/s以下がであることで、粉末層が過度に溶解することを抑制できる。レーザ光の走査速度は、更に320mm/s以上800mm/s以下であり、特に350mm/s以上700mm/s以下である。各粉末層に照射されるレーザ光の走査速度は同一でもよい。少なくとも1つの粉末層に照射されるレーザ光の走査速度が他の粉末層に照射されるレーザ光の走査速度と異なってもよい。
 レーザ光の走査ピッチは、例えば、0.05mm以上0.3mm以下である。レーザ光の走査ピッチが0.05mm以上であることで、粉末層が過度に溶解することを抑制できる。レーザ光の走査ピッチが0.3mm以下であることで、粉末層全体を十分に溶融させられる。レーザ光の走査ピッチは、更に0.08mm以上0.25mm以下であり、特に0.1mm以上0.2mm以下である。
 レーザ光の種類は、例えば、固体レーザ又は気体レーザである。固体レーザは、例えば、ファイバレーザ、YAG(Yttrium Aluminum Garnet)レーザである。ファイバレーザは、レーザスポット径を小さくしたり、高い出力が得られることから好適である。ファイバレーザは、例えば、Ybファイバレーザである。気体レーザは、例えば、COレーザである。
  [前処理する工程]
 本形態の高速度鋼焼結体の製造方法は、肉盛り部3を作製する工程の前に、母材2を前処理する工程を備えていてもよい。前処理は、機械加工によって母材2の摩耗箇所を含む所定領域を除去することで第一面4を作製する。所定領域とは、例えば、上述した第一の金型部品がパンチであれば、摩耗した端面を含む所定長さの端部である。所定領域の除去によって露出した端面が表面粗さの小さい第一面4となる。第一面4は、平坦面であることが好ましい。第一面4の表面粗さは、例えば、JIS B 0601:2013に準拠される最大高さ粗さRzで1μm以下である。機械加工は、例えば、フライス加工などの切削加工、ワイヤーカットなどの放電加工、平面研磨などの研削加工である。
  [後処理する工程]
 本形態の高速度鋼焼結体の製造方法は、肉盛り部3を作製する工程の後に、肉盛り部3を後処理する工程を備えていてもよい。後処理は、例えば、熱処理及び仕上げ加工の少なくとも一方である。
   (熱処理)
 熱処理は、肉盛り部3の組織を変態させたり、応力を除去したりする。熱処理を行う回数は、例えば複数回である。具体的には、2回、又は3回である。
 レーザの照射後、肉盛り部3は室温に冷却される。この冷却されるまでの間が、焼入れ処理に相当する。室温までの冷却は、徐冷である。そのため、室温まで冷却した時点では、肉盛り部3の組織はマルテンサイトと残留オーステナイトとが存在している。よって、本熱処理は焼戻し処理から行われる。1回目の熱処理及び2回目の熱処理は、焼戻し処理である。1回目の熱処理は、肉盛り部3の残留オーステナイトをマルテンサイト変態させる。2回目の熱処理は、1回目の熱処理で生じたマルテンサイト組織を焼戻して安定化させることができる。これらの焼戻し処理によって、肉盛り部3の組織と母材2の組織とを同様のマルテンサイト組織にすることができる。肉盛り部3の組織と母材2の組織とが同様のマルテンサイト組織であることで、金型部品10の全体の機械的特性を均質化することができる。
 これらの焼戻し処理の加熱温度は、例えば、530℃以上630℃以下であり、更に540℃以上620℃以下であり、特に550℃以上615℃以下である。加熱温度での保持時間は、例えば、1時間以上4時間以下であり、更に1時間以上3時間以下であり、特に1時間以上2時間以下である。保持した後、金型部品10を肉盛り部3のMs点以下の温度にまで冷却する。
 3回目の熱処理は、応力を除去する処理である。加熱温度は、例えば、焼き戻し処理の加熱温度よりも30℃~50℃程度低い温度とする。加熱温度は、480℃以上600℃以下である。加熱温度での保持時間は、例えば、焼き戻し処理の保持時間と同様である。金型部品10は、加熱温度に保持した後、室温にまで冷却する。
   (仕上げ加工)
 仕上げ加工は、肉盛り部3の寸法誤差を補正する。例えば、第一の金型部品がパンチの場合、仕上げ加工は、肉盛り部3の端面、外周面、及び内周面に施す。この場合、肉盛り部3の端面が原料粉末を圧縮成形する面を構成する。肉盛り部3の外周面がダイの貫通孔の内周面と摺接される。肉盛り部3の内周面がコアロッドの外周面と摺接される。仕上げ加工は、例えば、前処理と同様の機械加工である。上記熱処理を行う場合、仕上げ加工は、例えば、上記熱処理の後に行う。
 《試験例》
 〔試料No.1から試料No.3〕
 試料No.1から試料No.3として、上述した実施形態の高速度鋼焼結体の製造方法と同様にして、高速度鋼焼結体を製造した。
  [準備する工程]
 母材と粉末とを準備した。各試料の母材には、円筒状の部材を用意した。各試料の母材は、高速度鋼で構成された焼結体である。各試料の母材を構成する高速度鋼の組成は、表1に示しているように異なる。表1に示す「-」は、当該元素を含んでいないことを意味する。本例では、母材の先端部をワイヤーカットにより母材の軸に垂直に切断して除去することによって第一面を形成した。その後、母材の第一面を平面研削加工することによって、第一面の最大高さ粗さRzを1μm以下とした。母材の第一面の外径は23.96mmであり、内径は14.99mmである。各試料の粉末は、高速度鋼で構成されている。各試料の粉末を構成する高速度鋼の組成は、表2に示しているように、互いに同一とした。各試料の母材及び粉末の組成は、EDXによって求めた。
 表2に示す組成のMs点は、作成したTTT(Time-Temperature-Transformation)線図に基づく実測値である。表2に示す組成のMf点は、Ms点-215℃で求めた値である。表1に示す組成のMs点は、算出値+166℃で求めた値である。算出値は、「金属工学シリーズ1改訂 構成金属材料とその熱処理 昭和56年6月10日第3刷発行(一部改定)」の第103頁に記載の組成からMs点を推定する式に基づいて求めた値である。上記式は、Ms点(℃)=550-350×(Cの質量%)-40×(Mnの質量%)-35×(Vの質量%)-20×(Crの質量%)-17×(Niの質量%)-10×(Moの質量%)-10×(Cuの質量%)-10×(Wの質量%)+15×(Coの質量%)-10×(Siの質量%)である。上記166℃は、次のようにして求めたものである。表2に示す組成のMs点の実測値は、135℃である。表2に示す組成のMs点の上記式に基づく算出値は、-31℃である。この実測値と算出値との差分が166℃である。よって、この差分を算出値に加算して表1に示す組成のMs点を求めた。表1に示すMf点は、Ms点-215℃で求めた値である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
  [肉盛り部を作製する工程]
 粉末層を作製する工程とレーザ光を照射する工程とを繰り返して粉末層が固化した固化層を積層することによって、母材に肉盛り部を作製した。肉盛り部の作製には、温度調整装置を備える金属3Dプリンタを用いた。金属3Dプリンタは、株式会社ソディック製のOPM350Lを使用した。母材の第一面の温度及び各固化層の第一面の温度を130℃以上に加熱できるように、母材が載置されるテーブルに内蔵される発熱源を調整した。
 本例では、粉末層を作製する工程とレーザ光を照射する工程とを繰り返す回数は30回とした。本例では、第1層目の粉末層へのレーザ光の照射は、発熱源によって母材の第一面の温度を150℃に加熱した状態で行った。第2層目以降の粉末層へのレーザ光の照射は、発熱源によって各粉末層が敷き詰められる各固化層の第一面の温度を150℃に加熱した状態で行った。
 本例では、固化層の内径が母材の内径と同一となり、固化層の外径が母材の外径よりも小さくなるように、各試料における第1層目から第30層目の各粉末層を敷き詰めた。各試料における第1層目から第30層目の各粉末層の高さ、粉末層の高さの上昇率、造形物の高さ、及びレーザ光の条件は、表3に示す通りである。造形物の高さとは、固化層の合計高さである。即ち、第30層目の造形物の高さが肉盛り部の高さである。レーザ光の条件とは、出力、走査ピッチ、走査速度、エネルギー密度、及びエネルギー密度の下降率である。表3に示すエネルギー密度は、小数点第一位を四捨五入している。表3に示す粉末層の高さの上昇率、及びエネルギー密度の下降率は、小数点第二位を四捨五入している。各試料における第1層目から第30層目の各粉末層の高さ、造形物の高さ、及びレーザ光のエネルギー密度は、図5にグラフとして示す。図5の横軸は、各固化層の積層順に対応した層番号である。図5の左側の縦軸は、レーザ光のエネルギ密度(J/mm)である。図5の右側の縦軸は、粉末層の高さ(mm)及び造形物の高さ(mm)である。図5の実線及び黒丸印は、エネルギー密度を示す。図5の点線及びバツ印は、粉末層の高さを示す。図5の破線及び黒菱形印は、造形物の高さを示す。
Figure JPOXMLDOC01-appb-T000003
 〔試料No.101から試料No.103〕
 試料No.101から試料No.103として、各粉末層にレーザ光を照射する際、母材の第一面の温度及び各固化層の第一面の温度を120℃に加熱した点を除き、試料No.1から試料No.3と同様にして、金属部品を製造した。
 〔試料No.111から試料No.113〕
 試料No.111から試料No.113として、各粉末層にレーザ光を照射する際、母材の第一面及び各固化層の第一面を加熱しなかった点を除き、試料No.1から試料No.3と同様にして、金属部品を製造した。母材の第一面及び各固化層の第一面の温度はいずれも室温、具体的には30℃とした。
 〔肉盛り部の亀裂の有無〕
 各試料の高速度鋼焼結体における肉盛り部の亀裂の有無を目視にて調べた。
 代表して、試料No.1の高速度鋼焼結体における肉盛り部の写真を図2Aに示す。図2Aに示すように、試料No.1の高速度鋼焼結体における肉盛り部には亀裂が見られなかった。図示は省略しているものの、試料No.2及び試料No.3の高速度鋼焼結体における肉盛り部には、試料No.1と同様、亀裂が見られなかった。一方、図示は省略しているものの、試料No.101から試料No.103、及び試料No.111から試料No.113の高速度鋼焼結体における肉盛り部には、亀裂が見られた。
 〔境界の視認性〕
 各試料の高速度鋼焼結体における母材と第1層目の固化層との境界を確認した。代表して、試料No.1の高速度鋼焼結体における母材と1層目の固化層との接合箇所近傍の写真を図2Bに示し、試料No.101の高速度鋼焼結体における上記境界近傍の写真を図6に示す。
 図2Bに示すように、試料No.1の高速度鋼焼結体は、上記境界が視認されない。図示は省略しているものの、試料No.2及び試料No.3の高速度鋼焼結体は、試料No.1と同様、上記境界が視認されない。一方、図6に示すように、試料No.101の高速度鋼焼結体は、上記境界を視認できる。図示は省略しているものの、試料No.102及び試料No.103の高速度鋼焼結体は、試料No.101と同様、上記境界を視認できる。また、図示は省略しているものの、試料No.111から試料No.113は、上記境界を視認できる。
 〔接合箇所の亀裂の有無〕
 各試料の高速度鋼焼結体における母材と固化層との接合箇所の亀裂の有無を調べた。代表して、試料No.112の高速度鋼焼結体における上記境界近傍の写真を図7に示す。
 図示は省略しているものの、試料No.1から試料No.3の高速度鋼焼結体における上記接合箇所には、亀裂が見られなかった。一方、図7に示すように、試料No.112の高速度鋼焼結体における上記境界には亀裂が見られた。図示は省略しているものの、試料No.111及び試料No.113の高速度鋼焼結体における上記境界には、試料No.112と同様、亀裂が見られた。また、図示は省略しているものの、試料No.101から試料No.103の高速度鋼焼結体における上記境界には、亀裂が見られた。
 本発明は、これらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 1 高速度鋼焼結体
 10 金型部品
 2 母材、20 貫通孔、21 表面
 3 肉盛り部、30 固化層、31 表面
 4 第一面
 100 テーブル、110 発熱源

Claims (15)

  1.  母材と、
     前記母材の表面の上に連続して設けられた固化層と、を備え、
     前記母材は、高速度鋼で構成されており、
     前記固化層は、前記母材を構成する高速度鋼とは組成が異なる高速度鋼で構成されており、
     前記表面に交差する断面を200倍に拡大した観察像において、前記母材と前記固化層との境界が視認されない、
    高速度鋼焼結体。
  2.  前記母材と前記固化層との間に亀裂が存在していない、請求項1に記載の高速度鋼焼結体。
  3.  前記母材における炭素の含有量は、0.5質量%以上0.9質量%以下である、請求項1又は請求項2に記載の高速度鋼焼結体。
  4.  前記母材の組成は、炭素に加えて以下の元素群(1)から元素群(3)のいずれか1つを含有し、残部が鉄及び不可避不純物である、請求項3に記載の高速度鋼焼結体。
     (1)0.2質量%以上4.0質量%以下のバナジウム、3質量%以上15質量%以下のクロム、及び0.5質量%以上4質量%以下のモリブデン
     (2)0.2質量%以上1.0質量%以下のマンガン、0.2質量%以上4.0質量%以下のバナジウム、3質量%以上15質量%以下のクロム、0.5質量%以上4質量%以下のモリブデン、及び0質量%超2.5質量%以下のケイ素
     (3)0.2質量%以上1.0質量%以下のマンガン、0.2質量%以上4.0質量%以下のバナジウム、3質量%以上15質量%以下のクロム、0.5質量%以上4質量%以下のモリブデン、0.5質量%以上5質量%以下のタングステン、及び0質量%超2.5質量%以下のケイ素
  5.  前記固化層における炭素の含有量は、0.5質量%以上1.5質量%以下である、請求項1から請求項4のいずれか1項に記載の高速度鋼焼結体。
  6.  前記固化層の組成は、炭素に加えて0質量%超1.0質量%以下のマンガン、1質量%以上3質量%以下のバナジウム、3質量%以上5.5質量%以下のクロム、4質量%以上6質量%以下のモリブデン、及び5質量%以上7.5質量%以下のタングステンを含有し、残部が鉄及び不可避不純物である、請求項5に記載の高速度鋼焼結体。
  7.  高速度鋼で構成されている母材に高速度鋼で構成される肉盛り部を作製する工程を備え、
     前記肉盛り部を作製する工程は、粉末層を作製する工程と前記粉末層にレーザ光を照射する工程とを繰り返すことで、前記粉末層が固化した固化層を積層することを含み、
     前記粉末層を作製する工程は、第一面の上に高速度鋼で構成されている粉末を敷き詰めることを含み、前記第一面は、前記母材の表面又は前記固化層の各々の表面であり、
     前記レーザ光を照射する工程は、前記第一面の温度を130℃以上に加熱した状態で行われる、
    高速度鋼焼結体の製造方法。
  8.  前記母材のマルテンサイト変態開始温度が、前記粉末のマルテンサイト変態開始温度以上である、請求項7に記載の高速度鋼焼結体の製造方法。
  9.  前記母材における炭素の含有量は、0.5質量%以上0.9質量%以下である、請求項7又は請求項8に記載の高速度鋼焼結体の製造方法。
  10.  前記粉末における炭素の含有量は、0.5質量%以上1.5質量%以下である、請求項7から請求項9のいずれか1項に記載の高速度鋼焼結体の製造方法。
  11.  前記レーザ光を照射する工程において、前記第一面の温度を前記粉末のマルテンサイト変態開始温度以上とする、請求項7から請求項10のいずれか1項に記載の高速度鋼焼結体の製造方法。
  12.  前記レーザ光を照射する工程において、前記第一面の温度を前記母材のマルテンサイト変態終了温度以上とする、請求項7から請求項11のいずれか1項に記載の高速度鋼焼結体の製造方法。
  13.  前記レーザ光を照射する工程において、第n層目の前記粉末層に照射する前記レーザ光のエネルギー密度を前記n-1層目の前記粉末層に照射する前記レーザ光のエネルギー密度以下とし、
     前記第n層目の前記粉末層は、第2層目の前記粉末層から最終層目の粉末層である、請求項7から請求項12のいずれか1項に記載の高速度鋼焼結体の製造方法。
  14.  前記粉末層を作製する工程において、第n層目の前記粉末層の高さを第n-1層目の前記粉末層の高さ以上とし、
     前記第n層目の前記粉末層は、第2層目の前記粉末層から最終層目の粉末層である、請求項7から請求項13のいずれか1項に記載の高速度鋼焼結体の製造方法。
  15.  前記レーザ光の出力が、300W超である、請求項7から請求項14のいずれか1項に記載の高速度鋼焼結体の製造方法。
PCT/JP2021/048038 2021-03-12 2021-12-23 高速度鋼焼結体、及び高速度鋼焼結体の製造方法 WO2022190574A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180093987.4A CN116847942A (zh) 2021-03-12 2021-12-23 高速钢烧结体以及高速钢烧结体的制造方法
US18/281,308 US20240157478A1 (en) 2021-03-12 2021-12-23 High-speed steel sintered body and method of manufacturing high-speed steel sintered body
DE112021007267.6T DE112021007267T5 (de) 2021-03-12 2021-12-23 Sinterkörper aus Schnellarbeitsstahl und Verfahren zur Herstellung eines Schnellarbeitsstahl-Sinterkörpers
JP2022534824A JP7330448B2 (ja) 2021-03-12 2021-12-23 高速度鋼焼結体、及び高速度鋼焼結体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/010160 WO2022190376A1 (ja) 2021-03-12 2021-03-12 金型部品の製造方法
JPPCT/JP2021/010160 2021-03-12

Publications (1)

Publication Number Publication Date
WO2022190574A1 true WO2022190574A1 (ja) 2022-09-15

Family

ID=82799063

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2021/010160 WO2022190376A1 (ja) 2021-03-12 2021-03-12 金型部品の製造方法
PCT/JP2021/048038 WO2022190574A1 (ja) 2021-03-12 2021-12-23 高速度鋼焼結体、及び高速度鋼焼結体の製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010160 WO2022190376A1 (ja) 2021-03-12 2021-03-12 金型部品の製造方法

Country Status (5)

Country Link
US (1) US20240157478A1 (ja)
JP (2) JP7116935B1 (ja)
CN (1) CN116847942A (ja)
DE (1) DE112021007267T5 (ja)
WO (2) WO2022190376A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000017369A (ja) * 1998-07-06 2000-01-18 Riken Corp 耐摩耗性焼結合金及びその製造方法
JP2016155155A (ja) * 2015-02-25 2016-09-01 住友重機械ハイマテックス株式会社 工具材の製造方法及び工具
WO2018230421A1 (ja) * 2017-06-15 2018-12-20 住友電工焼結合金株式会社 造形物の製造方法、及び造形物
JP2019136799A (ja) * 2018-02-07 2019-08-22 住友重機械ハイマテックス株式会社 工具材の製造方法及び工具材

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007060964A1 (de) * 2007-12-14 2009-06-18 Sieber Forming Solutions Gmbh Verfahren und Vorrichtung zur Herstellung von ringförmigen, rotationssymmetrischen Werkstücken aus Metall- und/oder Keramikpulver
JP7185212B2 (ja) * 2018-02-07 2022-12-07 住友重機械ハイマテックス株式会社 工具材の再生方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000017369A (ja) * 1998-07-06 2000-01-18 Riken Corp 耐摩耗性焼結合金及びその製造方法
JP2016155155A (ja) * 2015-02-25 2016-09-01 住友重機械ハイマテックス株式会社 工具材の製造方法及び工具
WO2018230421A1 (ja) * 2017-06-15 2018-12-20 住友電工焼結合金株式会社 造形物の製造方法、及び造形物
JP2019136799A (ja) * 2018-02-07 2019-08-22 住友重機械ハイマテックス株式会社 工具材の製造方法及び工具材

Also Published As

Publication number Publication date
JPWO2022190574A1 (ja) 2022-09-15
WO2022190376A1 (ja) 2022-09-15
US20240157478A1 (en) 2024-05-16
DE112021007267T5 (de) 2023-12-28
JP7330448B2 (ja) 2023-08-22
JPWO2022190376A1 (ja) 2022-09-15
JP7116935B1 (ja) 2022-08-12
CN116847942A (zh) 2023-10-03

Similar Documents

Publication Publication Date Title
JP5579839B2 (ja) 粉末焼結積層用金属粉末、それを用いた三次元形状造形物の製造方法および得られる三次元形状造形物
WO2019220917A1 (ja) 積層造形熱間工具およびその製造方法、ならびに、積層造形熱間工具用金属粉末
CN114134427B (zh) 造型用的不锈钢粉末
CN112805105B (zh) 制造铝合金零件的方法
WO2018230421A1 (ja) 造形物の製造方法、及び造形物
CN112805106B (zh) 制造铝合金零件的方法
KR20210118132A (ko) 적어도 지르코늄 및 마그네슘을 포함하는 알루미늄 합금으로 부품을 제조하는 방법
Lashgari et al. Additive manufacturing of bulk metallic glasses: Fundamental principle, current/future developments and applications
JP2017186653A (ja) 三次元形状造形物及びその製造方法
KR20180122026A (ko) 티타늄, 알루미늄, 니오븀, 바나듐 및 몰리브덴의 bcc 재료, 및 그로부터 제조된 제품
Gong et al. Laser energy density dependence of performance in additive/subtractive hybrid manufacturing of 316L stainless steel
CN111655874A (zh) 工具材料的再生方法及工具材料
JP4640216B2 (ja) 金属光造形用金属粉末
JP3633607B2 (ja) 金属光造形用金属粉末とその製造方法及び金属光造形による三次元形状造形物の製造方法並びに金属光造形物
JP6692339B2 (ja) 金属粉末積層造形用の金属粉末材料
WO2022190574A1 (ja) 高速度鋼焼結体、及び高速度鋼焼結体の製造方法
JP3687667B2 (ja) 金属光造形用金属粉末
WO2017203717A1 (ja) 積層造形用の金属粉末、積層造形物の製造方法及び積層造形物
Saewe et al. Feasibility investigation for laser powder bed fusion of high-speed steels
WO2022124359A1 (ja) 粉末から作製された造形体
JP2022144437A (ja) Fe基合金及び金属粉末
JP7361332B2 (ja) 金属積層造形物の製造方法及び金属積層造形物
Badi Effect of Process Parameters on the Quality of 17-4 PH Samples Produced by Directed Energy Deposition
KR102668192B1 (ko) 조형용 스테인레스강 분말
Mutua 3D Additive Manufacturing, Microstructure, and Mechanical Properties of High Performance Materials

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022534824

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21930419

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180093987.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18281308

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112021007267

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21930419

Country of ref document: EP

Kind code of ref document: A1