WO2019124233A1 - 樹脂組成物、成形体、及び熱膨張性微小球 - Google Patents

樹脂組成物、成形体、及び熱膨張性微小球 Download PDF

Info

Publication number
WO2019124233A1
WO2019124233A1 PCT/JP2018/046015 JP2018046015W WO2019124233A1 WO 2019124233 A1 WO2019124233 A1 WO 2019124233A1 JP 2018046015 W JP2018046015 W JP 2018046015W WO 2019124233 A1 WO2019124233 A1 WO 2019124233A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermally expandable
expandable microspheres
weight
resin composition
resin
Prior art date
Application number
PCT/JP2018/046015
Other languages
English (en)
French (fr)
Inventor
匠 江部
勝志 三木
Original Assignee
松本油脂製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松本油脂製薬株式会社 filed Critical 松本油脂製薬株式会社
Priority to US16/954,576 priority Critical patent/US11773237B2/en
Priority to SE2050913A priority patent/SE545557C2/en
Priority to JP2019526012A priority patent/JP6619541B2/ja
Priority to CN201880082585.2A priority patent/CN111511821B/zh
Priority to KR1020207020489A priority patent/KR20200093062A/ko
Publication of WO2019124233A1 publication Critical patent/WO2019124233A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/18In situ polymerisation with all reactants being present in the same phase
    • B01J13/185In situ polymerisation with all reactants being present in the same phase in an organic phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/46Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length
    • B29C44/50Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length using pressure difference, e.g. by extrusion or by spraying
    • B29C44/505Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length using pressure difference, e.g. by extrusion or by spraying extruding the compound through a flat die
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/32Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof from compositions containing microballoons, e.g. syntactic foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/01Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/18Homopolymers or copolymers of nitriles
    • C08L33/20Homopolymers or copolymers of acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L35/06Copolymers with vinyl aromatic monomers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/38Feeding the material to be shaped into a closed space, i.e. to make articles of definite length
    • B29C44/44Feeding the material to be shaped into a closed space, i.e. to make articles of definite length in solid form
    • B29C44/445Feeding the material to be shaped into a closed space, i.e. to make articles of definite length in solid form in the form of expandable granules, particles or beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2021/00Use of unspecified rubbers as moulding material
    • B29K2021/003Thermoplastic elastomers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • B29K2105/048Expandable particles, beads or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • B29K2105/165Hollow fillers, e.g. microballoons or expanded particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/002Panels; Plates; Sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/024Preparation or use of a blowing agent concentrate, i.e. masterbatch in a foamable composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/026Crosslinking before of after foaming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/22Expandable microspheres, e.g. Expancel®
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2307/00Characterised by the use of natural rubber
    • C08J2307/02Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2309/02Copolymers with acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2311/00Characterised by the use of homopolymers or copolymers of chloroprene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2321/00Characterised by the use of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/16Ethene-propene or ethene-propene-diene copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/18Homopolymers or copolymers of nitriles
    • C08J2333/20Homopolymers or copolymers of acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2335/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Derivatives of such polymers
    • C08J2335/06Copolymers with vinyl aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2339/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Derivatives of such polymers
    • C08J2339/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • C08J2339/06Homopolymers or copolymers of N-vinyl-pyrrolidones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2353/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2353/02Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers of vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • C08J2423/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/16Ethene-propene or ethene-propene-diene copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2431/00Characterised by the use of copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, or carbonic acid, or of a haloformic acid
    • C08J2431/02Characterised by the use of omopolymers or copolymers of esters of monocarboxylic acids
    • C08J2431/04Homopolymers or copolymers of vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/18Spheres

Definitions

  • the present invention relates to a resin composition, a molded body, and thermally expandable microspheres.
  • thermally expandable microcapsules are characterized by being expanded by heating, they are used in a wide range of applications as a designability imparting agent such as foamed ink and wallpaper, or as a lightening agent such as resin and paint. In particular, many developments have been made in reducing the weight of resins.
  • Such a thermally expandable microsphere has a thermoplastic resin as an outer shell, and an expanding agent is contained in the inside, and usually, as a thermoplastic resin, a vinylidene chloride copolymer, an acrylonitrile copolymer, an acrylic acid An ester-based copolymer is used. Moreover, as an expansion agent, hydrocarbons, such as isobutane and isopentane, are mainly used. (See Patent Document 1)
  • Patent Document 2 uses a thermoplastic resin obtained from components containing 80% by weight or more of a nitrile monomer, 20% by weight or less of a non-nitrile monomer, and 0.1 to 1% by weight of a crosslinking agent.
  • thermally expandable microspheres contained therein thermally expandable microspheres in which the non-nitrile monomer is selected from methacrylic acid esters and acrylic acid esters are disclosed, and the obtained thermally expandable microspheres have a temperature of 140 ° C. or lower It has excellent heat resistance without expansion, and the expansion temperature is also 160 to 180 ° C.
  • Patent Document 3 discloses thermally expandable microspheres comprising an outer shell composed of a polymer obtained by polymerizing a mixture of monomers and a foaming agent enclosed in the outer shell, and the obtained thermally expandable microspheres The spheres are described as having high heat resistance, good foamability in a high temperature range, and can be used for extrusion processing and injection molding processing of various types of resins.
  • the object of the present invention is to provide a resin composition which suppresses the occurrence of a burr on the surface of a molded product, a molded product obtained by molding the resin composition, and thermally expandable microspheres which can be suitably used for the resin composition. It is to be.
  • the present inventors are a resin containing at least 1 sort (s) of base resin and thermally expandable microspheres chosen from rubber, an olefin resin, and a thermoplastic elastomer. It has been found that by using thermally expandable microspheres, which are thermoplastic resins obtained by polymerizing an outer shell of a predetermined polymerizable component, in the composition, it is possible to obtain a molded article in which the burr is suppressed. Achieved.
  • the resin composition of the present invention comprises at least one base resin selected from rubber, an olefin resin, and a thermoplastic elastomer, and thermally expandable microspheres, and the thermally expandable microspheres are thermoplastic.
  • a polymer comprising an outer shell made of resin and a foaming agent contained therein and vaporized when heated, and the thermoplastic resin contains N-substituted maleimide and a nitrile monomer essentially containing methacrylonitrile. It is a resin composition which is a polymer of the organic component.
  • the resin composition of the present invention further satisfy at least one selected from the following 1) to 6).
  • the base resin is an olefin elastomer.
  • the polymerizable component satisfies the following condition 1.
  • Condition 1 The weight ratio of methacrylonitrile and N-substituted maleimide in the polymerizable component has a relationship of the following formula (I). (Weight ratio of N-substituted maleimide) / (weight ratio of methacrylonitrile) ⁇ 0.33 Formula (I) 3)
  • the thermally expandable microspheres are evaluated under the following condition 2, the following (a) to (e) are simultaneously satisfied.
  • a thermally expandable microsphere is classified with a sieve of 25 ⁇ m, 32 ⁇ m, 38 ⁇ m, 45 ⁇ m, 53 ⁇ m, and thermally expandable having at least one resin particle inside the outer shell occupied in the classified thermally expandable microsphere A if the number fraction of microspheres is 0 to 10%, B if it is more than 10 to 30%, C if it is more than 30 to 70%, D if it is more than 70 to 90%, more than 90 to 100% If you evaluate the case E, (A) Evaluation of any of A to C for thermally expandable microspheres having a particle diameter of 45 to 53 ⁇ m. (B) Evaluation of any of A to C for thermally expandable microspheres having a particle diameter of 38 to 45 ⁇ m.
  • the blowing agent contains a hydrocarbon having 8 carbon atoms.
  • the blowing agent further contains at least one selected from hydrocarbons having 4 to 7 carbon atoms.
  • the blowing agent further contains at least one selected from hydrocarbons having 9 or more carbon atoms.
  • the thermally expandable microspheres of the present invention are composed of an outer shell made of a thermoplastic resin, and a foaming agent which is contained therein and vaporized when heated, and the thermoplastic resin is N-substituted maleimide, methacryloyl and the like. It is a thermally expandable microsphere which is a polymer of a polymerizable component containing a nitrile monomer having a nitrile as its essential component and satisfying the following condition 1.
  • Condition 1 The weight ratio of methacrylonitrile and N-substituted maleimide in the polymerizable component has a relationship of the following formula (I). (Weight ratio of N-substituted maleimide) / (weight ratio of methacrylonitrile) ⁇ 0.33 Formula (I)
  • thermally expandable microspheres of the present invention further satisfy at least one selected from the above 3) to 6).
  • the heat-expandable microspheres of the present invention are preferably molding heat-expandable microspheres.
  • the wet powdery thermally expandable microspheres of the present invention include the thermally expandable microspheres and a liquid compound.
  • the resin composition of the present invention is preferably a masterbatch.
  • the molded article of the present invention is formed by molding the above-mentioned resin composition or a mixture containing the above-mentioned resin composition as a masterbatch and a matrix resin.
  • the molded article of the present invention is preferably formed by extruding the above resin composition or a mixture containing the above resin composition as a masterbatch and a matrix resin.
  • the molded object of this invention is a sealing material for building materials, a sealing material for motor vehicles, a wallpaper, a shoe sole, or a floor material.
  • the resin composition of the present invention can provide a molded article in which the burr is suppressed.
  • the molded article of the present invention has suppressed burrs and has an excellent appearance.
  • By using the thermally expandable microspheres of the present invention it is possible to obtain a molded article in which the burr is suppressed.
  • Example 2-1 The electron micrograph which observed the surface of the molded object obtained in Example 2-1.
  • the resin composition of the present invention is a composition essentially comprising at least one base resin selected from rubber, an olefin resin, and a thermoplastic elastomer, and specific thermally expandable microspheres. Each component will be described in detail below.
  • the base resin is at least one selected from rubber, olefin resins, and thermoplastic elastomers.
  • the rubber include natural rubber, isoprene rubber, butadiene rubber, styrene butadiene rubber, chloroprene rubber, acrylonitrile butadiene rubber, ethylene- ⁇ -olefin copolymer rubber, ethylene- ⁇ -olefin-nonconjugated diene copolymer rubber, halogen Fluorinated ethylene- ⁇ -olefin-nonconjugated diene copolymer rubber, sulfonated ethylene- ⁇ -olefin-nonconjugated diene copolymer rubber, maleated ethylene- ⁇ -olefin-nonconjugated diene copolymer rubber, butyl rubber, isobutylene Diene rubber such as isoprene rubber; hydrogenated nitrile rubber, urethane rubber, silicone rubber, chlor
  • olefin resin for example, ethylene-vinyl alcohol copolymer, ethylene-vinyl acetate copolymer, silane crosslinkable ethylene-vinyl acetate copolymer, ethylene-methyl (meth) acrylate copolymer, ethylene-ethyl (meth ) Acrylate copolymer, ethylene-butyl (meth) acrylate copolymer, ethylene-methacrylic acid copolymer, low density polyethylene (LDPE), silane crosslinkable low density polyethylene, low density linear low density polyethylene (L- LDPE), silane crosslinkable linear low density polyethylene, high density polyethylene (HDPE), silane crosslinkable high density polyethylene, chlorinated polyethylene, polyethylene based resins such as polyethylene modified with carboxylic acid anhydride such as maleic anhydride Polypropylene, silane crosslinkable polypropylene Emissions, Poripurepiren resins such as polypropylene denatured with a carb
  • silane crosslinkability refers to a state in which a silane coupling agent is grafted to an olefin resin.
  • the silane coupling agent is hydrolyzed to develop a silanol group.
  • the crosslinked silanol groups are condensed to form crosslinks, mechanical properties such as strength, chemical properties such as solvent resistance, and thermal properties such as heat resistance can be improved.
  • the thermoplastic elastomer may be a mixture of a polymer consisting of a hard segment and a polymer consisting of a soft segment, a copolymer of a polymer consisting of a hard segment and a polymer consisting of a soft segment, and the like.
  • thermoplastic elastomers include urethane elastomers, styrene elastomers, olefin elastomers, polyamide elastomers, polyester elastomers, nitrile elastomers, and vinyl chloride elastomers.
  • generated by reaction with diisocyanates and short chain diols etc. which are chain extenders can be mentioned, for example.
  • the soft segment include polymer diols such as polyester diols, polyether diols and polycarbonate diols, and the urethane elastomer is a block copolymer composed of polyurethane and polymer diol.
  • urethane-based elastomers “Lesamine” manufactured by Dainichi Seika Co., Ltd., “Milactolan” manufactured by Tosoh Corp., “Elastlan” manufactured by BASF Japan Ltd., “Esteen” manufactured by Nippon Lubrisol Co., Ltd., DIC Covestropolymer Co., Ltd. "Desmopan” and “Texin” manufactured by Showa Kasei Kogyo Co., Ltd., and the like.
  • a styrenic elastomer as a hard segment, the segment etc. which consist of polystyrenes can be mentioned, for example.
  • the soft segment for example, a segment made of polybutadiene, hydrogenated polybutadiene, polyisoprene, hydrogenated polyisoprene, etc. can be mentioned.
  • styrene-based elastomer for example, styrene-butadiene-styrene (SBS) copolymer, styrene-isoprene-styrene (SIS) copolymer, styrene-ethylene-butylene-styrene (SEBS) copolymer, styrene And block copolymers such as ethylene-propylene-styrene (SEPS) copolymer and styrene-butadiene-butylene-styrene (SBBS) copolymer.
  • SBS styrene-butadiene-styrene
  • SIS styrene-isoprene-styrene
  • SEBS styrene-ethylene-butylene-styrene
  • SEPS ethylene-propylene-styrene
  • SBBS styrene-
  • Examples of commercially available styrene-based elastomers include “TAFBRENE”, “ASABLEN”, “TAFTEC”, “SOE” manufactured by Asahi Kasei Co., Ltd., “Elastomer AR” manufactured by Aron Kasei Co., Ltd., manufactured by Kuraray Co., Ltd. "Septon”, “Hybler”, JSR Corporation “JSR TR”, “JSR SIS”, Showa Kasei Kogyo Co., Ltd. "Maxilon", Shinko Kasei Co., Ltd. "Tribrene”, “Superaribrene”, Sumitomo Chemical Co., Ltd. "Esporex SB series” manufactured by Riken Technos Co., Ltd., “Leostomer”, “Actymer”, “High-performance Alloy Actymer”, “Actymer G” and the like can be mentioned.
  • examples of hard segments include segments made of polypropylene, copolymers of propylene and ethylene, polyethylene, and the like.
  • the soft segment for example, polyethylene, copolymer of ethylene and a small amount of a diene component (for example, ethylene-propylene copolymer (EPM), ethylene-propylene-diene copolymer (EPDM), EPDM Segment etc. which are partially cross-linked by adding an organic peroxide.
  • EPM ethylene-propylene copolymer
  • EPDM ethylene-propylene-diene copolymer
  • mixture or copolymer of the polymer as the olefin elastomer may be graft modified with an unsaturated hydroxy monomer and a derivative thereof, an unsaturated carboxylic acid monomer and a derivative thereof or the like.
  • olefin-based elastomers examples include “Santoprene” and “Vistamaxx” manufactured by Exxon Mobil Co., Ltd., “Excelink” manufactured by JSR Co., Ltd., “Maxilon” manufactured by Showa Kasei Kogyo Co., Ltd., and “Espo Rex TPE series, Dow Chemical Japan Ltd. "engage”, Prime Polymer Co., Ltd. "prime TPO”, Mitsui Chemical Co., Ltd. "Milastomer”, Mitsubishi Chemical Co., Ltd. “Zelas”, “Thermo Run”, Riken Technos Co., Ltd. There may be mentioned “multi-use leostomer”, “Actymer”, “Trinity” and the like.
  • base resins at least one selected from diene-based rubbers, polyethylene-based resins, polypropylene-based resins, urethane-based elastomers, olefin-based elastomers, and styrene-based elastomers in consideration of stably producing the resin composition.
  • a diene type rubber ethylene rubber, ethylene-vinyl acetate copolymer, ethylene-methyl (meth) acrylate copolymer, ethylene-ethyl (meth) acrylate copolymer, ethylene-butyl (meth) acrylate copolymer
  • LDPE linear low density polyethylene
  • HDPE high density polyethylene
  • polypropylene polybutene, polyisobutylene, polymethylpentene, urethane elastomer, olefin elastomer, styrene elastomer
  • the base resin preferably has a melting point or a softening point equal to or lower than the expansion start temperature of the heat-expandable microspheres.
  • the resin composition is a masterbatch, in consideration of stably producing a masterbatch, among the above-mentioned base resins, diene rubbers, polyethylene resins, polypropylene resins, urethane elastomers, olefin elastomers, At least one selected from styrene-based elastomers is preferable, and diene-based rubber, ethylene-vinyl acetate copolymer, ethylene-methyl (meth) acrylate copolymer, ethylene-ethyl (meth) acrylate copolymer, ethylene -Butyl (meth) acrylate copolymer, low density polyethylene (LDPE), polypropylene, olefin based elastomer, urethane based elastomer, at least one selected
  • An ethylene- ⁇ -olefin-nonconjugated diene copolymer rubber is a random copolymer of ethylene, an ⁇ -olefin and a nonconjugated diene.
  • ⁇ -olefins include propylene, 1-butene, 1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1- Examples include decene, 1-undecene, 1-dodecene and the like. Among these, propylene, 1-hexene and 1-octene are preferable, and propylene is more preferable.
  • ⁇ -olefins can be used alone or in combination of two or more.
  • the molar ratio of ethylene to ⁇ -olefin is not particularly limited, but is preferably 40/60 to 95/5, more preferably 50/50 to 85/15, still more preferably 60/40 to 80/20.
  • non-conjugated dienes 1,4-hexadiene, 3-methyl-1,4-hexadiene, 1,7-octadiene, 1,9-decadiene, 5-ethylidene-2-norbornene, 5-isopropylidene-2-norbornene And 5-isobutenyl-2-norbornene, cyclopentadiene, dicyclopentadiene, norbornadiene and the like.
  • 5-ethylidene-2-norbornene and dicyclopentadiene are preferable.
  • These nonconjugated dienes can be used alone or in combination of two or more.
  • the melting point or softening point of at least one selected from an olefin resin and a thermoplastic elastomer stably reduces the weight of the resin composition.
  • the base resin contains at least one selected from an olefin resin and a thermoplastic elastomer
  • the melting point or softening point of at least one selected from an olefin resin and a thermoplastic elastomer stably reduces the weight of the resin composition.
  • the base resin contains at least one selected from an olefin resin and a thermoplastic elastomer
  • the melting point or softening point of at least one selected from an olefin resin and a thermoplastic elastomer stably reduces the weight of the resin composition.
  • the melting point or softening point of the olefin resin and the thermoplastic elastomer is the masterbatch when the base resin contains at least one selected from an olefin resin and a thermoplastic elastomer.
  • the temperature is preferably lower than the expansion start temperature (Ts) of the heat expandable microspheres so as not to expand the heat expandable microspheres at the time of production.
  • Ts expansion start temperature
  • the melting point or softening point of the base resin is not particularly limited, but is preferably 40 to 100 ° C., more preferably 50 to 90 ° C., still more preferably 55 ° to 85 ° C., particularly preferably 60 It is ⁇ 80 ° C.
  • the tensile fracture stress of the olefin resin and the thermoplastic elastomer can reduce the weight of the molded product, and the occurrence of surface burrs on the surface of the molded product.
  • the tensile fracture stress is 1 MPa.
  • the Mooney viscosity of the rubber is not particularly limited in that it can reduce the weight of the molded product and suppress the occurrence of surface burrs on the molded product, but is measured according to JIS K6300.
  • the Mooney viscosity ML (1 + 4) at 100 ° C. (hereinafter sometimes simply referred to as Mooney viscosity) is preferably 5 to 120, more preferably 10 to 105, still more preferably 20 to 95, particularly preferably 30 to 85, Most preferably, it is 35-80.
  • the SP value of the base resin is not particularly limited in terms of suppressing the occurrence of surface burrs on the surface of the molded product, but is preferably 7 to 20 (cal / cm 3 ) 1/2 , more preferably 7.5 to 17 (Cal / cm 3 ) 1/2 , more preferably 8 to 15 (cal / cm 3 ) 1/2 . If the SP value of the base resin is outside the above range, the compatibility with the thermally expandable microspheres may be low, and the thermally expandable microspheres may easily stay near the surface of the molded body.
  • the thermally expandable microspheres at the time of molding expand, the strength in the vicinity of the surface of the molded product becomes low, and when it is discharged from the molding machine, the surface of the molded product becomes scraped by rubbing with the discharge port. Not only the appearance of the molded product is impaired, but also the molded product may become brittle due to scraping, and the molded product may not be stably formed.
  • Thermally expandable microspheres are an essential component of the resin composition of the present invention.
  • the thermally expandable microspheres as shown in FIG. 3, have a thermal expansion comprising an outer shell (shell) 11 made of a thermoplastic resin, and a foaming agent (core) 12 which is contained therein and is vaporized by heating.
  • the thermally expandable microspheres have a core-shell structure, and the thermally expandable microspheres exhibit thermally expandable properties (properties in which the whole microspheres expand upon heating) as the whole microspheres.
  • the thermoplastic resin is obtained by polymerizing a polymerizable component.
  • the thermoplastic resin is a polymer of a polymerizable component.
  • the polymerizable component is a component that becomes a thermoplastic resin that forms an outer shell of thermally expandable microspheres by polymerizing.
  • the polymerizable component is a component which is essentially a monomer component and may contain a crosslinking agent.
  • the monomer component means a radically polymerizable monomer having one polymerizable double bond, and is a component capable of addition polymerization.
  • a crosslinking agent means the radically polymerizable monomer which has 2 or more of polymerizable double bonds, and is a component which introduce
  • the polymerizable component contains N-substituted maleimide from the viewpoint of exerting the effects of the present invention.
  • N-substituted maleimide for example, N-phenyl maleimide, N-cyclohexyl maleimide, N-benzyl maleimide, N-tert-butyl maleimide, N-ethyl maleimide, N- (2-hydroxyethyl) maleimide, N-methoxycarbonyl maleimide , N-methyl maleimide, N- (2-chlorophyll) maleimide, N-lauroyl maleimide and the like.
  • N-phenyl maleimide or N-cyclohexyl maleimide is preferable from the viewpoint of improving heat resistance and foaming ratio.
  • the N-substituted maleimide may be used alone or in combination of two or more.
  • the weight proportion of the N-substituted maleimide in the polymerizable component is not particularly limited, but is preferably 5 to 45% by weight.
  • the upper limit of the weight ratio of N-substituted maleimide to the polymerizable component is more preferably 40% by weight, still more preferably 35% by weight, particularly preferably 33% by weight, and most preferably 30% by weight.
  • the lower limit of the weight ratio of the N-substituted maleimide is more preferably 7% by weight, still more preferably 9% by weight, particularly preferably 11% by weight, and most preferably 14% by weight.
  • the weight ratio of the N-substituted maleimide is less than 5% by weight, the heat resistance of the heat expandable microspheres is lowered, and the outer shell of the heat expandable microspheres is shrunk and contained at the time of molding of the molded body.
  • the lightweight molded product not be formed because the foaming agent vaporizes and escapes to the outside of the thermally expandable microspheres, but the vaporized foaming agent that has escaped from the thermally expandable microspheres makes it possible to Since the pores and the like appear in the vicinity of the surface, the strength in the vicinity of the surface of the molded body is lowered, and the discharge port of the molding machine and the molded body may be rubbed to generate a crease on the surface of the molded body.
  • the thermally expandable microspheres may be expanded, making it impossible to stably produce the masterbatch.
  • the weight ratio is more than 45% by weight, the expansibility of the thermally expandable microspheres may be low, and the molded body may not be reduced in weight.
  • the polymerizable component contains a nitrile monomer from the viewpoint of the gas barrier properties of the thermally expandable microspheres.
  • nitrile monomers include acrylonitrile, methacrylonitrile, ⁇ -chloroacrylonitrile, ⁇ -ethoxyacrylonitrile, fumaronitrile and the like.
  • the nitrile monomers may be used alone or in combination of two or more.
  • the polymerizable component is converted to a thermoplastic resin, all of which constitute the shell of heat expandable microspheres, but among nitrile monomers, methacrylonitrile
  • a thermoplastic resin all of which constitute the shell of heat expandable microspheres, but among nitrile monomers, methacrylonitrile
  • the resin does not contain, a part of minute resin particles made of thermoplastic resin is generated, and in the obtained thermally expandable microspheres, a phenomenon in which the resin particles exist inside the outer shell etc. (hereinafter referred to as the phenomenon) Is a polynuclearization of thermally expandable microspheres, and the thermally expandable microspheres obtained by the same phenomenon may be referred to as polynuclear particles.
  • FIG. 1 An example of such a thermally expandable microsphere in which multinucleation has occurred is shown in FIG. This is because, by not including methacrylonitrile, the polymerization reaction rate of the polymerizable component is increased, and the time for which the polymer of the polymerizable component is dissolved in the remaining polymerizable component and the contained blowing agent is shortened.
  • the polymer Before the polymer is formed as a thermoplastic resin which is an outer shell of thermally expandable microspheres, it is presumed that the polymer particles are precipitated as resin particles 13 inside the thermally expandable microspheres.
  • the thickness of the shell of the thermally expandable microspheres becomes thinner than in theory, so that the heat resistance and the expansibility of the thermally expandable microspheres may be reduced. Not only can the molded body be reduced in weight, but also the shell of the thermally expandable microspheres shrinks during molding of the molded body, and the contained foaming agent vaporizes and escapes to the outside of the thermally expandable microspheres.
  • the nitrile monomer essentially contains methacrylonitrile from the viewpoint of suppressing the polynuclearization of the thermally expandable microspheres.
  • the weight ratio of the nitrile monomer to the polymerizable component is not particularly limited, it is preferably more than 50% by weight.
  • the upper limit of the weight ratio of the nitrile monomer in the polymerizable component is preferably 94 wt%, more preferably 90 wt%, still more preferably 87 wt%, and particularly preferably 84 wt%.
  • the lower limit of the weight ratio of the nitrile monomer in the polymerizable component is more preferably 55% by weight, still more preferably 60% by weight, particularly preferably 64% by weight, and most preferably 67% by weight.
  • the weight ratio of methacrylonitrile in the nitrile monomer is not particularly limited, but is preferably 5 to 60% by weight.
  • the upper limit of the weight ratio of methacrylonitrile to the nitrile monomer is more preferably 45% by weight, still more preferably 32% by weight, particularly preferably 29% by weight, and most preferably 24% by weight.
  • the lower limit of the weight ratio of methacrylonitrile to the nitrile monomer is more preferably 7% by weight, still more preferably 8% by weight, and most preferably 9% by weight.
  • the weight ratio of methacrylonitrile is less than 5% by weight, multinucleation of thermally expandable microspheres occurs, the heat resistance and the expansibility of the thermally expandable microspheres may decrease, and the weight of the molded product can not be reduced.
  • the outer shell of the thermally expandable microspheres shrinks at the time of molding of the molded body, and the contained foaming agent is vaporized, and the thermally expandable microspheres are released to the outside, and the vaporized foaming agent that has escaped As a result, pores and the like appear in the vicinity of the surface of the molded product, so the strength in the vicinity of the surface of the molded product is lowered, and the discharge port of the molding machine and the molded product are rubbed. It may occur.
  • the weight ratio of methacrylonitrile in the polymerizable component is not particularly limited, but is preferably 3 to 40% by weight.
  • the upper limit of the weight ratio of methacrylonitrile to the polymerizable component is more preferably 35% by weight, still more preferably 30% by weight, particularly preferably 28% by weight, and most preferably 24% by weight.
  • the lower limit of the weight ratio of methacrylonitrile in the polymerizable component is more preferably 5% by weight, still more preferably 6% by weight, particularly preferably 10% by weight, and most preferably 12% by weight.
  • the heat-expandable microspheres may be multinucleated, the heat resistance and the expandability of the heat-expandable microspheres may be reduced, and the weight of the molded product can not be reduced.
  • the outer shell of the thermally expandable microspheres shrinks during molding of the molded body, and the contained foaming agent is vaporized, and the thermally expandable microspheres are released to the outside, and the vaporized blowing agent that has escaped Since the pores and the like appear in the vicinity of the surface of the molded product, the strength in the vicinity of the surface of the molded product is reduced, and the discharge port of the molding machine and the molded product are rubbed, so that the surface of the molded product is scratched. There is something to do. On the other hand, when it is more than 40% by weight, the expansibility is lowered, and the weight of the molded product may not be reduced.
  • the nitrile monomer contains acrylonitrile in addition to methacrylonitrile, the heat resistance and the expansibility of the thermally expandable microspheres can be further enhanced, and the surface roughness of the molded body is suppressed more effectively. It is preferable because the weight of the molded body can be reduced.
  • the total weight ratio of N-substituted maleimide and methacrylonitrile in the polymerizable component is not particularly limited, but is preferably 8 to 60% by weight.
  • the upper limit of the total of the weight ratio of N-substituted maleimide and methacrylonitrile in the polymerizable component is (1) 50 wt%, (2) 46 wt%, (3) 40 wt%, (4) 36 wt%, (5) Preferred in the order of 32% by weight (the larger the value in the parenthesis, the better).
  • the lower limit of the total of the weight ratio of N-substituted maleimide and methacrylonitrile in the polymerizable component is (1) 10 wt%, (2) 15 wt%, (3) 18 wt%, (4) 20 wt% % And (5) 21% by weight is preferable (the larger the value in the parentheses is, the more preferable).
  • the weight ratio is less than 8% by weight, the heat resistance of the thermally expandable microspheres is lowered, the outer shell of the thermally expandable microspheres shrinks at the time of molding of the molded body, and the contained foaming agent is vaporized, Not only can the lightweight molded product be molded because the thermally expandable microspheres come out of the outside, but it is not only possible to form a lightweight molded product, but also vacancies etc. are generated near the surface of the molded product by the vaporized foaming agent that has slipped from the thermally expandable microspheres.
  • the strength in the vicinity of the surface of the molded product is reduced, and the discharge port of the molding machine and the molded product are scraped, which may cause burrs on the surface of the molded product.
  • it exceeds 60% by weight the expansibility decreases, and the molded body may not be reduced in weight.
  • the polymerizable component contains an N-substituted maleimide and a nitrile monomer essentially containing methacrylonitrile, and satisfies the following condition 1 It is.
  • condition 1 the polynuclearization of the thermally expandable microspheres is suppressed, the expandable properties and the heat resistance are satisfied, and the thermally expandable microspheres capable of suppressing the penetration of the molded body are obtained.
  • the weight ratio of N-substituted maleimide and methacrylonitrile in the polymerizable component has a relationship of the following formula (I). (Proportion of polymerized amount of N-substituted maleimide) / (proportion of weight of methacrylonitrile) ⁇ 0.33 Formula (I)
  • the numerical value of the formula (I) is preferably 0.33 or more.
  • the upper limit of the numerical value of Formula (I) is (1) 7, (2) 6.69, (3) 5.0, (4) 4.0, (5) 3.67, (6) 3.0. Preferred in order (the larger the value in parentheses is, the better).
  • the lower limit of the numerical value of the formula (I) is preferably in the order of (1) 0.35, (2) 0.5, (3) 0.7, (4) 0.8 (the numerical value in parentheses is large So desirable).
  • the heat resistance of the thermally expandable microspheres is lowered, and the outer shell of the thermally expandable microspheres is shrunk at the time of molding of the molded product, and the contained foaming agent is vaporized, Not only can the lightweight molded product be molded because the thermally expandable microspheres come out of the outside, but it is not only possible to form a lightweight molded product, but also vacancies etc. are generated near the surface of the molded product by the vaporized foaming agent that has slipped from the thermally expandable microspheres. As a result, the strength in the vicinity of the surface of the molded product is reduced, and the discharge port of the molding machine and the molded product are scraped, which may cause burrs on the surface of the molded product.
  • the polymerizable component may further contain a (meth) acrylic acid ester-based monomer from the viewpoint of easily controlling the expansion behavior.
  • (meth) acrylic means acrylic or methacrylic.
  • the (meth) acrylic acid ester monomer is not particularly limited, but methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate ) Acrylate, 2-ethylhexyl (meth) acrylate, stearyl (meth) acrylate, lauryl (meth) acrylate, phenyl (meth) acrylate, isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, benzyl (meth) acrylate and the like .
  • the weight ratio of the (meth) acrylic acid ester monomer in the polymerizable component is not particularly limited, but preferably less than 40% by weight, more preferably 0 to 20% by weight, and still more preferably 0.5 to 15%. % By weight, particularly preferably 0.8 to 7% by weight.
  • the weight ratio is 40% by weight or more, the heat resistance and gas barrier properties of the thermally expandable microspheres decrease, so the vaporized foaming agent included in the thermally expandable microspheres is thermally expanded at the time of molding of the molded body.
  • the outer shell of the functional microspheres shrinks and the contained foaming agent vaporizes and escapes to the outside of the thermally expandable microspheres.
  • the polymerizable component may contain other monomers in addition to the above-mentioned N-substituted maleimide, nitrile monomer, and (meth) acrylic acid ester monomer, as long as the effects of the present invention are not inhibited.
  • halogen-containing monomers (meth) acrylic acid amide-based monomers, styrene-based monomers; vinyl ester-based monomers such as vinyl acetate, vinyl propionate, and vinyl butyrate; ethylene, Ethylenically unsaturated monoolefin type monomers such as propylene and isobutylene; Vinyl ether type monomers such as vinyl methyl ether, vinyl ethyl ether, vinyl isobutyl ether; Vinyl ketone type monomers such as vinyl methyl ketone; N-vinylcarbazole, N-vinyl monomers such as N-vinylpyrrolidone; vinyl naphthalene salt, N-methylol (meth) acrylamide, N, N-dimethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylate, Vinyl glycidyl ether, propenyl glycid, (meth)
  • the halogen-containing monomer is not particularly limited, and examples thereof include vinyl chloride and vinylidene chloride.
  • the (meth) acrylic acid amide-based monomer is not particularly limited, and examples thereof include acrylamide, substituted acrylamide, methacrylamide, and substituted methacrylamide.
  • the styrene-based monomer is not particularly limited, and examples thereof include styrene, ⁇ -methylstyrene, vinyltoluene, t-butylstyrene, p-nitrostyrene and chloromethylstyrene.
  • the polymerizable component preferably contains substantially no carboxyl group-containing monomer.
  • the carboxyl group-containing monomer include acrylic acid, methacrylic acid, crotonic acid, maleic acid, itaconic acid and the like.
  • the polymerization ratio of the carboxyl group-containing monomer in the polymerizable component is preferably 5% by weight or less, more preferably 3% by weight or less, and more preferably 1% by weight, substantially free of the carboxyl group-containing monomer. % Or less, more preferably 0.3% by weight or less, particularly preferably less than 0.1% by weight, and most preferably 0% by weight.
  • the polymerizable component may contain a crosslinking agent as described above.
  • a decrease in retention (encapsulation retention) at the time of thermal expansion of the contained foaming agent is suppressed, and the thermal expansion is effectively performed only. Without, it is possible to control the surface roughness of the molded body.
  • the crosslinking agent is not particularly limited.
  • aromatic divinyl compounds such as divinylbenzene; allyl methacrylate, triacryl formal, triallyl isocyanate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tri Ethylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, polytetramethylene glycol diacrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,6 9-nonanediol di (meth) acrylate, PEG # 200 di (meth) acrylate, PEG # 400 di (meth) acrylate, PEG # 600 di (meth) acrylate, trimethylolpropane tri (meth) Crylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra
  • polyfunctional acrylate compounds having two or more acrylate groups are preferable in terms of enhancing the expansibility and heat resistance of the thermally expandable microspheres.
  • the above crosslinking agents may be used alone or in combination of two or more.
  • the molecular weight of the crosslinking agent is not particularly limited, but is preferably 140 to 35,000, more preferably 200 to 25,000, still more preferably 250 to 10,000, particularly preferably 298 to 5,000, and most preferably 300 to 3,500.
  • the molecular weight of the crosslinking agent is 35000 or less, the retention of the contained foaming agent is improved at the time of thermal expansion, and the expansivity tends to be improved.
  • the molecular weight of the crosslinking agent is 140 or more, the heat resistance of the thermally expandable microspheres tends to be improved.
  • the crosslinking agent may be absent, the amount thereof is not particularly limited, and is preferably 0 to 4.0 parts by weight, more preferably 0.02 to 2 parts by weight with respect to 100 parts by weight of the monomer component. And particularly preferably 0.05 to 1.5 parts by weight.
  • the amount of the crosslinking agent is more than 4.0 parts by weight, the expansibility of the thermally expandable microspheres may be reduced, and the molded body may not be reduced in weight.
  • the foaming agent is a component that is vaporized by heating, and by being contained in the outer shell made of thermoplastic resin of thermally expandable microspheres, the thermally expandable microspheres are thermally expandable as whole microspheres (microspheres (microspheres). The whole comes to show the property of swelling by heating.
  • the foaming agent is not particularly limited.
  • propane (iso) butane, (iso) pentane, (iso) hexane, (iso) heptane, (iso) octane, (iso) nonane, (iso) decane, (iso ) Hydrocarbons having 3 to 13 carbon atoms such as undecane, (iso) dodecane, (iso) tridecane and the like; hydrocarbons having 13 carbon atoms and 20 or less carbon atoms such as (iso) hexadecane and (iso) eicosane; pseudocumene, petroleum ether, Hydrocarbons such as petroleum fractions such as normal paraffins and isoparaffins having an initial boiling point of 150 to 260 ° C.
  • foaming agents may be used alone or in combination of two or more.
  • the blowing agent may be linear, branched or alicyclic and is preferably aliphatic.
  • the foaming agent is a substance that is vaporized by heating, but when a substance having a boiling point lower than the softening point of the thermoplastic resin is contained as the foaming agent, the vapor pressure sufficient for expansion at the expansion temperature of the thermally expandable microspheres It is preferable because it can be generated and can give a high expansion ratio.
  • a substance having a boiling point higher than the softening point of the thermoplastic resin may be contained together with a substance having a boiling point lower than the softening point of the thermoplastic resin as a foaming agent.
  • the proportion of the substance having a boiling point higher than the softening point of the thermoplastic resin in the foaming agent is not particularly limited. Is preferably at most 95 wt%, more preferably at most 80 wt%, even more preferably at most 70 wt%, particularly preferably at most 65 wt%, particularly more preferably at most 50 wt%, most preferably less than 30 wt%.
  • Tmax maximum expansion temperature
  • hydrocarbon (a) there is another way of thinking about the blowing agent, and at least one kind selected from hydrocarbon having 8 or less carbon atoms (hereinafter sometimes referred to as hydrocarbon (a)) may be essential, and carbonization of 8 carbon atoms is possible. Hydrogen may be required.
  • the foaming agent preferably contains a hydrocarbon having 8 carbon atoms.
  • the carbon number of the hydrocarbon (a) is preferably 4 to 8, more preferably 5 to 8, particularly preferably 8.
  • the hydrocarbon (a) may be linear, branched or alicyclic and is preferably aliphatic.
  • hydrocarbon (a) examples include hydrocarbons such as (iso) butane, (iso) pentane, (iso) hexane, (iso) heptane, (iso) octane and the like. These hydrocarbons (a) may be used alone or in combination of two or more. It is preferable that the hydrocarbon (a) used as the foaming agent is composed of two or more types, because it becomes thermally expandable microspheres having a sufficient expansion ratio.
  • the foaming agent further contains at least one selected from hydrocarbons having 9 or more carbon atoms (hereinafter, may be referred to as hydrocarbon (b)) together with hydrocarbon (a), at the time of molding of a molded article or a master At the time of production of the batch, it is possible to suppress the expansion of the thermally expandable microspheres, and it is preferable because the molded body can be effectively reduced in weight.
  • the carbon number of the hydrocarbon (b) is preferably 10 or more, more preferably 12 or more, still more preferably 14 or more, and particularly preferably 16 or more.
  • the upper limit of the carbon number of the hydrocarbon (b) is preferably 25.
  • the hydrocarbon (b) may be linear, branched or alicyclic and is preferably aliphatic.
  • hydrocarbon (b) for example, linear such as nonane, isononane, decane, isodecane, dodecane, tridecane, tetradecane, tetradecane, pentadecane, hexadecane, heptadecane, octadecane, nanodecane, eicosane, henicosane, docosane, trichosan, tetracosane, pentacosane, etc.
  • linear such as nonane, isononane, decane, isodecane, dodecane, tridecane, tetradecane, tetradecane, pentadecane, hexadecane, heptadecane, octadecane, nanodecane, eicosane, henicosane, docosane, trichosan, tetracosan
  • Hydrocarbons isododecane, 3-methylundecane, isotridecane, 4-methyldodecane, isotetradecane, isopentadecane, isohexadecane, 2,2,4,4,6,8,8-heptamethylnonane, isoheptadecane, isooctadecane, isonanodecane 2,6,10,14-Tetramethylpentadecane, isoeicosane, 2,2,4,4,6,6,8,8,10-nonamethylundecane, isoheoicosane, isodocosan, isotricoco Branched hydrocarbons such as isotetracosane and isopentacosane; cyclododecane, cyclotridecane, hexylcyclohexane, heptylcyclohexane, n-octylcyclohexane, cyclopenta
  • the weight ratio of the hydrocarbon (a) in the foaming agent is not particularly limited, but preferably 50% by weight or more, more preferably 60% by weight or more, more preferably 75% by weight or more, and particularly preferably 85% by weight or more of the blowing agent. % Or more, most preferably 90% by weight or more.
  • the upper limit of the weight ratio of hydrocarbon (a) is 100% by weight.
  • hydrocarbon (a) When one or more kinds of hydrocarbon (a) are used in combination, at least one kind (a-1) selected from hydrocarbons having 4 to 7 carbon atoms in hydrocarbon (a), and 8 carbon atoms
  • the weight ratio (a-1) / (a-2) of the hydrocarbon (a-2) is not particularly limited in terms of improving the expansibility and heat resistance of the thermally expandable microspheres, but it is 80/20- 0/100 is preferable, 70/30 to 20/80 is more preferable, 60/40 to 30/70 is more preferable, and 55/45 to 40/60 is particularly preferable.
  • At least one kind (a-1) selected from hydrocarbons having 4 to 7 carbon atoms is at least one kind selected from hydrocarbons having 4, 5, 6 and 7 carbon atoms
  • hydrocarbons having 8 carbon atoms (A-2) is at least one selected from hydrocarbons having 8 carbon atoms. If (a-1) / (a-2) is out of the above range, the thermally expandable microspheres expand during molding, and the shell constituting the thermally expandable microspheres becomes thin, so the external pressure received during molding In some cases, the thermally expandable microspheres can not withstand, and the thermally expandable microspheres may shrink or collapse.
  • the weight ratio of the hydrocarbon (b) is not particularly limited, but preferably 50% by weight or less, more preferably 40% by weight or less in the blowing agent, more preferably Is 30% by weight or less, particularly preferably 20% by weight or less, and most preferably 10% by weight or less.
  • the lower limit value of the weight ratio of hydrocarbon (b) is 0% by weight. If the weight ratio of hydrocarbon (b) is more than 50% by weight with respect to the foaming agent, the heat resistance of the thermally expandable microspheres is improved, but the expansibility is reduced and the weight reduction of the molded product can not be achieved. is there.
  • the foaming agent is at least one selected from hydrocarbons having 4 to 7 carbon atoms, (a-1), hydrocarbons having 8 carbon atoms (a-2), and at least one selected from hydrocarbons having 9 or more carbon atoms.
  • the species (b) it is possible to achieve both heat resistance and expansion, to suppress the expansion of the thermally expandable microspheres at the time of production of the master batch or at the time of molding of the molded product, and at the time of molding of the molded product. It is preferable because it can form a lightweight molded article having a high foaming ratio while suppressing the surface roughness of the molded article.
  • the inclusion rate of the foaming agent contained in the heat expandable microspheres is not particularly limited, but it is preferably 1 to 45% by weight, preferably 3 to 35% by weight, more preferably to the weight of the heat expandable microspheres. Is 5 to 30% by weight, particularly preferably 8 to 25% by weight. If the inclusion rate is less than 1% by weight, the effect of the blowing agent may not be obtained. On the other hand, if the inclusion ratio exceeds 45% by weight, the thickness of the shell of the thermally expandable microspheres becomes thin, which not only lowers the heat resistance but also causes the vaporized foaming agent to come out to the outside.
  • the strength in the vicinity of the surface is lowered due to the pores and the like developed by the vaporized foaming agent that has escaped from the thermally expandable microspheres, so that the discharge port of the molding machine and the molded body are rubbed, so that burrs are generated on the surface of the molded body There is something to do.
  • the average particle size of the thermally expandable microspheres is not particularly limited, but preferably 1 to 100 ⁇ m, more preferably 2 to 70 ⁇ m, still more preferably 3 to 50 ⁇ m, particularly preferably 7 to 40 ⁇ m, and most preferably 10 to 35 ⁇ m. is there.
  • the average particle size is smaller than 1 ⁇ m, the expansion performance of the thermally expandable microspheres may be lowered.
  • the average particle diameter is larger than 100 ⁇ m, the expanded thermally expandable microspheres increase the unevenness of the surface of the molded product and the strength in the vicinity of the surface of the molded product decreases. As a result of rubbing, burrs may occur on the surface of the molded body.
  • the evaluation method of the average particle diameter of a thermally expandable microsphere is described in the Example.
  • the coefficient of variation CV of the particle size distribution of the thermally expandable microspheres is not particularly limited, but is preferably 50% or less, more preferably 45% or less, and particularly preferably 40% or less.
  • the coefficient of variation CV is calculated by the following formulas (1) and (2).
  • the maximum expansion ratio of the thermally expandable microspheres is not particularly limited, but (1) 15 times or more, (2) 25 times or more, (3) 40 times or more, (4) 50 times or more, (5) 60 times or more , (6) 70 times or more is preferable (the larger the numerical value in parentheses is, the more preferable).
  • the upper limit value of the maximum expansion ratio is preferably 250 times.
  • the maximum expansion ratio of the thermally expandable microspheres is less than 15 times, the molded article may not be sufficiently reduced in weight.
  • the maximum expansion ratio is more than 250 times, the surface of the molded product becomes rough due to the expanded thermally expandable microspheres, and the strength in the vicinity of the surface of the molded product is reduced. The rubbing of the body may cause bruises on the surface of the molded body.
  • the evaluation method of the maximum expansion ratio of thermally expandable microspheres is described in an Example.
  • the expansion start temperature (Ts) of the thermally expandable microspheres is not particularly limited as long as it is higher than the melting point or softening point of the base resin, but is preferably 135 ° C. or more, more preferably 140 ° C. or more, still more preferably 150 ° C. or more Particularly preferably, it is 160 ° C. or more, and most preferably 165 ° C. or more.
  • the upper limit value of the expansion start temperature is preferably 190 ° C.
  • the maximum expansion temperature (Tmax) of the thermally expandable microspheres is not particularly limited, but is preferably 173 to 240 ° C., more preferably 175 to 210 ° C., still more preferably 180 to 205 ° C., particularly preferably 180 to 200 ° C. It is.
  • the maximum expansion temperature of the thermally expandable microspheres exceeds 240 ° C.
  • the heat resistance of the thermally expandable microspheres becomes high, the thermally expandable microspheres do not expand sufficiently at the time of molding, and the molded body can not be reduced in weight Sometimes.
  • the evaluation method of the expansion start temperature and the maximum expansion temperature of the thermally expandable microspheres is described in the examples.
  • Method of producing thermally expandable microspheres In the method of producing thermally expandable microspheres, the step of polymerizing the polymerizable component in the aqueous dispersion medium in which the oily mixture containing the polymerizable component and the foaming agent described above is dispersed (hereinafter referred to as polymerization step) Manufacturing method).
  • polymerization step it is preferable to polymerize the polymerizable component in the presence of a polymerization initiator, using an oily mixture containing a polymerization initiator.
  • the polymerization initiator is not particularly limited, and peroxides, azo compounds and the like can be mentioned.
  • peroxides include peroxydicarbonates such as diisopropyl peroxydicarbonate, di-sec-butylperoxydicarbonate, di-2-ethylhexylperoxydicarbonate, and dibenzylperoxydicarbonate; lauroyl peroxide , Diacyl peroxides such as benzoyl peroxide; ketone peroxides such as methyl ethyl ketone peroxide and cyclohexanone peroxide; peroxyketals such as 2,2-bis (t-butylperoxy) butane; cumene hydroperoxide, t-butyl Hydroperoxides such as hydroperoxides; dialkyl peroxides such as dicumyl peroxide, di-t-butyl peroxide, etc .; t-hexylperoxypivalate, t It can be exemplified peroxyester such as butyl peroxy isobutyrate.
  • azo compound for example, 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2'-azobisisobutyronitrile, 2,2'-azobis (2,4- Dimethylvaleronitrile), 2,2'-azobis (2-methylpropionate), 2,2'-azobis (2-methylbutyronitrile), 1,1'-azobis (cyclohexane-1-carbonitrile), etc.
  • These polymerization initiators may be used alone or in combination of two or more.
  • an oil-soluble polymerization initiator soluble in the monomer component is preferable.
  • the weight proportion of the polymerization initiator is preferably 0.05 to 10% by weight, more preferably 0.1 to 8% by weight, and most preferably 0.2 to 5 parts by weight, based on 100 parts by weight of the polymerizable component. It is weight%.
  • the weight ratio is less than 0.05% by weight, the polymerization of the polymerizable component becomes insufficient, the retention of the foaming agent decreases, and the vaporized foaming agent escapes to the outside of the thermally expandable microspheres, which is lightweight Not only the molded product can not be molded, but the strength in the vicinity of the surface of the molded product is lowered due to the pores and the like developed in the vicinity of the surface of the molded product due to the vaporized foaming agent which has escaped. By rubbing, burrs may occur on the surface of the molded body. When the said weight ratio exceeds 10 weight%, heat resistance and an expansibility may fall and a molded object can not be reduced in weight.
  • an aqueous suspension in which an oily mixture is dispersed in an aqueous dispersion medium is prepared, and the polymerizable components are polymerized.
  • the aqueous dispersion medium is a medium containing water as a main component such as ion-exchanged water in which the oily mixture is dispersed, and may further contain an alcohol such as methanol, ethanol or propanol, or a hydrophilic organic solvent such as acetone. Good.
  • the hydrophilicity in the present invention means being in a state of being freely miscible with water.
  • the amount of the aqueous dispersion medium used is not particularly limited, but it is preferable to use 100 to 1000 parts by weight of the aqueous dispersion medium with respect to 100 parts by weight of the polymerizable component.
  • the aqueous dispersion medium may further contain an electrolyte.
  • the electrolyte include sodium chloride, magnesium chloride, calcium chloride, sodium sulfate, magnesium sulfate, ammonium sulfate, sodium carbonate and the like. These electrolytes may be used alone or in combination of two or more.
  • the content of the electrolyte is not particularly limited, but preferably 0.1 to 50 parts by weight with respect to 100 parts by weight of the aqueous dispersion medium.
  • the aqueous dispersion medium is a water-soluble 1, 1 -substituted compound having a structure in which a hydrophilic functional group selected from a hydroxyl group, a carboxylic acid (salt) group and a phosphonic acid (salt) group and a hetero atom are bonded to the same carbon atom , Potassium dichromate, alkali metal nitrites, metal (III) halides, boric acid, water-soluble ascorbic acids, water-soluble polyphenols, water-soluble vitamin Bs and water-soluble phosphonic acids (salts) It may contain at least one water soluble compound.
  • water solubility means that 1 g or more is dissolved in 100 g of water.
  • the amount of the water-soluble compound contained in the aqueous dispersion medium is not particularly limited, but preferably 0.0001 to 1.0 parts by weight, more preferably 0.0003 to 100 parts by weight of the polymerizable component.
  • the amount is 0.1 parts by weight, particularly preferably 0.001 to 0.05 parts by weight.
  • the amount of the water soluble compound is too small, the effect of the water soluble compound may not be sufficiently obtained.
  • the amount of the water-soluble compound is too large, the polymerization rate may be decreased, or the residual amount of the polymerizable component as the raw material may be increased.
  • the aqueous dispersion medium may contain, in addition to the electrolyte and the water-soluble compound, a dispersion stabilizer and a dispersion stabilizer adjuvant.
  • the dispersion stabilizer is not particularly limited, and examples thereof include calcium triphosphate, magnesium pyrophosphate obtained by a double decomposition method, calcium pyrophosphate, colloidal silica, alumina sol, magnesium hydroxide and the like. These dispersion stabilizers may be used alone or in combination of two or more.
  • the compounding amount of the dispersion stabilizer is preferably 0.1 to 30 parts by weight, more preferably 0.5 to 20 parts by weight with respect to 100 parts by weight of the polymerizable component.
  • the dispersion stabilizing adjuvant is not particularly limited, and, for example, a polymer type dispersion stabilizing adjuvant, a cationic surfactant, an anionic surfactant, an amphoteric surfactant, an interface such as a nonionic surfactant, etc. Activators can be mentioned. These dispersion stabilizing adjuvants may be used alone or in combination of two or more.
  • the aqueous dispersion medium is prepared, for example, by mixing a dispersion stabilizer and / or a dispersion stabilizer adjuvant and the like with water-soluble compounds, if necessary, in water (ion-exchanged water).
  • the pH of the aqueous dispersion medium at the time of polymerization is appropriately determined depending on the type of water-soluble compound, dispersion stabilizer, and dispersion stabilizer adjuvant.
  • polymerization may be performed in the presence of sodium hydroxide, sodium hydroxide and zinc chloride.
  • the oily mixture is suspended and dispersed in an aqueous dispersion medium so that spherical oil droplets of a predetermined particle size are prepared.
  • a method of suspending and dispersing the oily mixture for example, a method of stirring with a homomixer (for example, manufactured by Primix Inc.) or the like, or a stationary dispersing apparatus such as a static mixer (for example, manufactured by Noritake Engineering Co., Ltd.) is used.
  • a homomixer for example, manufactured by Primix Inc.
  • a stationary dispersing apparatus such as a static mixer (for example, manufactured by Noritake Engineering Co., Ltd.)
  • General dispersion methods such as method, membrane suspension method, ultrasonic dispersion method and the like can be mentioned.
  • suspension polymerization is initiated by heating the dispersion in which the oily mixture is dispersed in the aqueous dispersion medium as spherical oil droplets.
  • the stirring may be carried out, for example, to such an extent that the floating of the monomer and the sedimentation of the thermally expandable microspheres after polymerization can be prevented.
  • the polymerization temperature is freely set according to the type of polymerization initiator, but is preferably controlled in the range of 30 to 100 ° C., more preferably 40 to 90 ° C.
  • the time for maintaining the reaction temperature is preferably about 1 to 20 hours.
  • the initial pressure of polymerization is not particularly limited, but it is in the range of 0 to 5 MPa, more preferably 0.1 to 3 MPa in gauge pressure.
  • a metal salt may be added to the slurry (polymerized dispersion containing thermally expandable microspheres) after polymerization to form an ionic crosslink with a carboxyl group, and it is an organic compound containing a metal.
  • the metal salt is preferably a divalent or higher valent metal cation, and examples thereof include Al, Ca, Mg, Fe, Ti, Cu and the like. Although water solubility is preferable from the viewpoint of ease of addition, it may be water insoluble.
  • the metal-containing organic compound is preferably water-soluble in view of surface treatment efficiency, and is preferably an organic compound containing a metal belonging to Periodic Table 3 to 12 because heat resistance is further improved.
  • the obtained slurry is filtered by a centrifuge, a pressing press, a vacuum dehydrator, etc., and a cake-like product having a moisture content of 10 to 50% by weight, preferably 15 to 45% by weight, more preferably 20 to 40% by weight
  • the cake-like material is dried by a tray dryer, an indirect heating dryer, a fluid dryer, a vacuum dryer, a vibrating dryer, a flash dryer or the like, and the water content is 6% by weight or less, preferably 3% by weight or less It is.
  • the cake may be washed again with water and / or redispersed and then refiltered and dried.
  • the slurry may be dried by a spray drier, a fluid drier or the like to obtain a dry powder.
  • thermally expandable microspheres it is preferable that the ratio of multinucleation of thermally expandable microspheres having at least one resin particle on the inner side of the shell thereof be as low as possible.
  • thermally expandable microspheres having an average particle size of 1 to 100 ⁇ m preferably 2 to 70 ⁇ m, more preferably 3 to 50 ⁇ m, particularly preferably 7 to 40 ⁇ m, most preferably 10 to 35 ⁇ m
  • various sieves with different openings openings: 25 ⁇ m, 32 ⁇ m, 38 ⁇ m, 45 ⁇ m, 53 ⁇ m
  • the evaluation criteria for the proportion of multinuclear particles are A if the proportion of the number of multinuclear particles in the thermally expandable microspheres classified is 0 to 10%, B if more than 10% to 30% If C is more than 30% to 70%, D if more than 70% to 90%, and E if more than 90% to 100%, at the same time the evaluations of (a) to (e) below will be satisfied preferable.
  • A Thermally expandable microspheres having a particle diameter of 45 to 53 ⁇ m (that is, passed through an aperture of 53 ⁇ m and did not pass through an aperture of 45 ⁇ m) A to C (preferably either A or B) More preferably, in the evaluation of A) (b) thermally expandable microspheres having a particle diameter of 38 to 45 ⁇ m (that is, having passed 45 ⁇ m openings and not having 38 ⁇ m openings) any of A to C (preferably Evaluation of either A or B, more preferably A) (c) for thermally expandable microspheres with a particle diameter of 32-38 ⁇ m (ie, passed through 38 ⁇ m mesh and not 32 ⁇ m mesh) A or Evaluation of B (preferably A) (d) A or B (preferably A) for thermally expandable microspheres having a particle diameter of 25 to 32 ⁇ m (that is, passed through an opening 32 ⁇ m and not passing an opening 25 ⁇ m) Evaluation of (e) Evaluation of A for thermally expandable microspheres having a particle diameter of
  • the proportion of the thermally expandable microspheres having resin particles is small, and since the thermoplastic resin originally constitutes the outer shell to be constituted, the outer shell of the obtained thermally expandable microspheres is obtained. Thickness is less than the theoretical value, and its heat resistance and expansivity are high. Also, in some cases, almost none of the thermally expandable microspheres remain on the sieve, but in this case, it can be judged that almost all the thermally expandable microspheres have passed through the sieve.
  • the heat-expandable microspheres of the present invention are heat-resistant and heat-resistant, since the outer shell thereof is a polymer of a polymerizable monomer containing an N-substituted maleimide and a nitrile monomer essentially containing methacrylonitrile.
  • the thermally expandable microspheres of the present invention are suitable for a resin composition containing at least one base resin selected from rubber, an olefin resin, and a thermoplastic elastomer, or a molding application for molding a molded body is there.
  • wet powdery thermally expandable microspheres of the present invention are wet expandable thermally expandable microspheres containing the thermally expandable microspheres described above and a liquid compound described later.
  • wet powdery thermally expandable microspheres when making or using a resin composition, it is possible to suppress powdering of thermally expandable microspheres which are powder, and also, thermal expansion in the resin composition It is possible to improve the dispersibility of the functional microspheres, which is preferable.
  • the content of the liquid compound in the wet powdery thermally expandable microspheres is not particularly limited with respect to 100 parts by weight of the thermally expandable microspheres, but is preferably 0.5 to 60 parts by weight, more preferably 1 to 50 Parts by weight, more preferably 2 to 40 parts by weight, particularly preferably 3 to 30 parts by weight, most preferably 5 to 20 parts by weight.
  • the content of the liquid compound is less than 0.5 parts by weight, powdering of the thermally expandable microspheres may not be suppressed.
  • it is more than 60 parts by weight the wet powder state of the thermally expandable microspheres may become uneven.
  • the method for producing wet powdery thermally expandable microspheres is not particularly limited as long as the thermally expandable microspheres can be made into a wet powdery state by a liquid compound, but for example, the thermally expandable microspheres together with the liquid compound , Shaking and / or stirring.
  • Rocking and / or stirring can be performed using a general powder mixer, for example, a ribbon mixer, a countershaft rotor mixer, a Henschel mixer, a tumbler mixer, a planetary mixer, a super mixer ( Kawata Co., Ltd.
  • High Speed Mixer (Fukae Co., Ltd.), Negram Machine (manufactured by Seishin Enterprise Co., Ltd.), and SV Mixer (manufactured by Shinko Environmental Solutions Co., Ltd.), etc. may be mentioned.
  • the resin composition of the present invention is a composition essentially comprising the base resin described above and thermally expandable microspheres.
  • the content of each component is not particularly limited, but the content of the thermally expandable microspheres is preferably 0.25 to 15 parts by weight, more preferably 0.5 to 15 parts by weight with respect to 100 parts by weight of the base resin. 12 parts by weight, more preferably 1 to 10 parts by weight, particularly preferably 1.5 to 8 parts by weight. If the number of the thermally expandable microspheres is less than 0.25 parts by weight, the molded product may not be sufficiently lightweight.
  • the molded product becomes brittle, and the discharge port of the molding machine and the molded product may be rubbed to cause burrs on the surface of the molded product.
  • the molded body may be broken halfway, and the molded body may not be continuously molded.
  • the content of the thermally expandable microspheres is preferably 25 to 300 parts by weight, more preferably 100 parts by weight of the base resin. Is preferably 25 to 250 parts by weight, more preferably 40 to 235 parts by weight, particularly preferably 65 to 200 parts by weight, and most preferably 90 to 186 parts by weight. If the amount of the heat-expandable microspheres is less than 25 parts by weight as described above, it may be uneconomical because a large amount of masterbatch must be added to reduce the weight of the molded product.
  • the base resin When the amount is more than 300 parts by weight, the base resin is reduced, and the viscosity of the mixture of the thermally expandable microspheres and the base resin is increased, and the thermally expandable microspheres are generated by the frictional heat generated at the time of production of the masterbatch. May expand, and the dimensions of the masterbatch may not be stable, or may be interrupted at the time of masterbatch production, or the masterbatch may not be stably produced.
  • the resin composition of the present invention may further contain, if necessary, a chemical blowing agent, a stabilizer, a filler, a plasticizer, a lubricant, a softener, a wetting agent, and a colorant, in addition to the thermally expandable microspheres and the base resin. It may contain various additives such as an antistatic agent, a rubber vulcanization / crosslinking agent, and a vulcanization accelerator. In that case, various additives may be added as a third component to the thermally expandable microspheres and the base resin.
  • the chemical foaming agent is not particularly limited, but, for example, inorganic chemical foaming agents such as ammonium carbonate, sodium bicarbonate, anhydrous sodium nitrate and the like; dinitrosopentamethylenetetramine, N, N'-dimethyl-N, N'- Organic chemical foaming agents such as dinitrosotephthalamide, benzenesulfonyl hydrazide, p, p'-oxybis (benzenesulfonyl hydrazide), azodicarbamide, etc. can be mentioned. Further, together with these chemical foaming agents, foaming assistants such as urea type, organic acid type and metal salt type may be used in combination. These chemical blowing agents and blowing aids may be used alone or in combination of two or more.
  • inorganic chemical foaming agents such as ammonium carbonate, sodium bicarbonate, anhydrous sodium nitrate and the like
  • dinitrosopentamethylenetetramine N, N'-dimethyl-
  • Stabilizers include antioxidants such as phenolic stabilizers, sulfur stabilizers, phosphorus stabilizers, organotin stabilizers, lead stabilizers, calcium-zinc stabilizers, calcium-zinc stabilizers, etc. And UV stabilizers, light stabilizers such as hindered amine stabilizers, and hydrotalcites. These stabilizers may be used alone or in combination of two or more.
  • the filler is not particularly limited, but may be an inorganic filler or an organic filler.
  • inorganic fillers include glass fibers (including those coated with metals), carbon fibers (including those coated with metals), potassium titanate, silicon carbide, silicon nitride, ceramic fibers, metal fibers, and aramids.
  • Fiber barium sulfate, calcium sulfate, calcium silicate, calcium carbonate, magnesium carbonate, antimony trioxide, zinc oxide, titanium oxide, magnesium oxide, magnesium oxide, iron oxide, molybdenum disulfide, magnesium hydroxide, aluminum hydroxide, mica, talc, kaolin And fillers made of pyrophyllite, bentonite, sericite, zeolite, wollastonite, alumina, clay, ferrite, graphite, gypsum, glass beads, glass balloons, quartz and the like.
  • organic fillers for example, vegetable fibers of cellulose, kenaf, and fusuma; animal fibers such as wool and silk; aramid fibers, phenol fibers, polyester fibers, acrylic fibers, and polyolefins such as polyethylene and polypropylene Synthetic fibers such as polyvinyl-based fibers, polyvinyl alcohol fibers, polyvinyl chloride fibers, fluorocarbon resin fibers; Regenerated fibers such as rayon; Semi-synthetic fibers such as cellulose acetate; Wood powder, bamboo powder, okara, rice husk, fruit Examples of the filler include shell powder, monosaccharides, polysaccharides such as starch, and the like. These fillers may be used alone or in combination of two or more.
  • the plasticizer is not particularly limited.
  • diisononyl furolate DINP
  • dioctyl phthalate DOP
  • dibutyl phthalate DBP
  • butyl octyl phthalate BOP
  • diisononyl adipate DINA
  • trioctyl trimetate TOTM tricresyl phosphate
  • TCP tributyl acetyl citrate
  • epoxidized soybean oil epoxidized linseed oil and the like
  • DINP diisononyl furolate
  • DOP dioctyl phthalate
  • DBP dibutyl phthalate
  • BOP butyl octyl phthalate
  • DINA diisononyl adipate
  • TOTM trioctyl trimetate
  • TCP tricresyl phosphate
  • ATBC tributyl acetyl citrate
  • the lubricant is not particularly limited, but metal stearates such as calcium stearate, magnesium stearate, barium stearate, lead stearate, zinc stearate, calcium laurate, barium laurate, zinc laurate, calcium ricinoleate; paraffin wax Hydrocarbon waxes such as liquid paraffin; amide waxes such as stearic acid amide, oleic acid amide, erucic acid amide, methylenebisstearic acid amide, ethylenebisstearic acid amide; stearic acid monoglyceride, stearyl stearate, butyl stearate Ester-based waxes such as stearic acid; fatty acid-based waxes such as stearic acid; higher alcohol-based waxes such as stearyl alcohol; modified products of polytetrafluoroethylene and the like.
  • metal stearates such as calcium stearate, magnesium stearate, barium ste
  • a softener or a moistening agent one that can be mixed with a base resin to soften a base resin, mixed with the above-mentioned thermally expandable microspheres, can suppress powdering of thermally expandable microspheres
  • a liquid compound capable of producing wet powdery thermally expandable microspheres for example, alkylene glycol, polyalkylene glycol, glycerin, process oil, fluid Organic liquid compounds such as paraffin oil, naphthenic oil, aroma oil, oils and fats; inorganic liquid compounds such as silicone oil, and organic liquid compounds are preferable from the viewpoint of achieving the effects of the present invention, process oil, silicone oil, Liquid paraffin is more preferred.
  • the colorant is not particularly limited, and examples thereof include carbon black, titanium oxide, kaolin, chromium yellow, phthalocyanine blue, red lead and the like.
  • the antistatic agent is not particularly limited, and examples thereof include anionic antistatic agents and nonionic antistatic agents.
  • sulfur such as powder sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur and the like; inorganic vulcanizing agents such as sulfur chloride, selenium and tellurium; morpholine disulfide, alkylphenol disulfides, thiuram disulfides, dithiocarbamine Sulfur-containing organic compounds such as acid salts; 1,1-di-t-butylperoxy-3,3,5-trimethylcyclohexane, di-t-butyl peroxide, dicumyl peroxide, t-butylcumyl peroxide, 2,5 And organic peroxides such as -dimethyl-2,5-di (t-butylperoxy) hexane and 1,3-bis- (t-butylperoxy-isopropyl) benzene.
  • inorganic vulcanizing agents such as sulfur chloride, selenium and tellurium; morpholine disulfide, alkylphenol disulfides, thiura
  • the vulcanization accelerator include aldehyde ammonias such as hexamethylenetetramine; guanidines such as diphenyl guanidine, di (o-tolyl) guanidine and o-tolyl piguanide; thiocarbanilide, di (o- Thioureas such as tolyl) thiourea, N, N'-diethylthiourea, dilaurylthiourea, etc .; Thiazoles such as mercaptobenzothiazole, dibenzothiazole disulfide, N, N'-di (ethylthiocarbamoylthio) benzothiazole; Nt -Sulfenamides such as -butyl 2-benzothiazylsulfenamide; Thiurams such as tetramethylthiuram disulfide, tetraethylthiuram disulfide, tetrabutyl
  • the resin composition of the present invention can be produced by mixing and dispersing (preferably uniformly dispersing) the base resin and the thermally expandable microspheres.
  • the additives described above may be mixed.
  • a method for producing a resin composition for example, 1) The thermally expandable microspheres, the base resin and, if necessary, the additives are controlled to be lower than the expansion start temperature of the thermally expandable microspheres and the melting point and / or the softening point of the base resin. While mixing the base resin and the thermally expandable microspheres, a method of producing a resin composition (premix).
  • the pre-kneaded product prepared in 3) above is further shaped to a desired shape at a temperature lower than the expansion start temperature of the thermally expandable microspheres and higher than the melting point and / or the softening point of the base resin.
  • the method for producing the resin composition is not particularly limited, but it is preferable to use a kneader, a roll, a mixing roll, a mixer, a single-screw extruder, a twin-screw extruder, a multi-screw extruder or the like for mixing.
  • a kneader such as a roll, a kneader, a pressure kneader, or a Banbury mixer.
  • the mixture is kneaded while controlling the temperature as necessary so as not to reach the temperature, to produce a pre-kneaded product.
  • the obtained pre-kneaded product is put into an extruder such as a single screw extruder, a twin screw extruder, a multi-screw extruder or the like to produce a resin composition in the form of a strand.
  • an extruder such as a single screw extruder, a twin screw extruder, a multi-screw extruder or the like to produce a resin composition in the form of a strand.
  • the thickness of the obtained strand can be adjusted by the diameter of the strand die and / or the winding speed of the strand.
  • a masterbatch is manufactured by making the obtained strand into a desired length with a cutter. The strand is cut by a cutting machine immediately after the strand is extruded from the extruder, and the cut master batch is cooled, or after the strand is extruded by an extruder, it is cooled, and thereafter The method etc.
  • the shape of the cross section of the master batch is appropriately determined depending on the application etc. to be used, and there are, for example, a circle, an ellipse, a polygon and the like.
  • a sheet-like resin composition having desired dimensions can be produced by introducing the pre-kneaded material into a roll such as a biaxial roll and adjusting the rotation speed of the roll, the roll interval, and the like.
  • the obtained masterbatch and matrix resin are lower than the expansion start temperature of the thermally expandable microspheres, if necessary, in a ribbon mixer or countershaft rotor mixer, and the base resin of the masterbatch or matrix resin And a method of obtaining a resin composition by mixing while controlling so as to be a temperature lower than the melting point and / or the softening point of
  • the true specific gravity is not particularly limited, but preferably 0.65 to 1.5, more preferably 0.70 to 1.3, and still more preferably 0.75 to 1 .0. If the true specific gravity is lower than 0.65, the thermally expandable microspheres are expanded, and the dimensions of the manufactured masterbatch may not be stable, or may be interrupted during production, or the masterbatch It can not be stably manufactured. Furthermore, when molding a molded product using a masterbatch, the thermally expandable microspheres are expanded, so the outer shell of the thermally expandable microspheres becomes thin, and the heat resistance and the retention of the foaming agent decrease.
  • the foaming agent contained inside When the foaming agent contained inside is vaporized, it escapes from the shell of the heat-expandable microspheres and shrinks and becomes hot, so it is not possible to form a lightweight molded product. Not only that the strength in the vicinity of the surface of the molded product is reduced due to the pores or the like developed by the vaporized foaming agent, so that the discharge port of the molding machine and the molded product are rubbed, so that the surface of the molded product is scratched. There is. On the other hand, when the true specific gravity is more than 1.5, the pores in the inside of the molded product obtained using the resin composition may be dispersed unevenly. The evaluation method of the true specific gravity of the masterbatch is described in the examples.
  • the base resin is melted and / or heated by heating at a temperature higher than the melting point and / or softening point of the base resin and near the maximum expansion temperature of the thermally expandable microspheres.
  • the foam can be manufactured by softening and expanding the thermally expandable microspheres.
  • the foaming ratio of the foam produced by heating the masterbatch under the above conditions is preferably 10 to 120 times, more preferably 15 to 100 times, still more preferably 20 to 85 times, particularly preferably 25 to 75 times It is. If the expansion ratio of the foam is less than 10 times, the molded product obtained using the masterbatch can not be sufficiently reduced in weight.
  • the molded article of the present invention may be one obtained by molding the resin composition as it is, or, when the resin composition is a masterbatch, one obtained by molding a mixture containing a masterbatch and a matrix resin.
  • the molded body may be molded by adding and / or including the above-mentioned additive to the above-mentioned resin composition or the above-mentioned mixture of masterbatch and matrix resin, as necessary.
  • the method for producing a molded body includes the step of molding the above-mentioned resin composition at a temperature close to the maximum expansion temperature of the thermally expandable microspheres contained in the resin composition.
  • the molding method is not particularly limited, but extrusion molding such as a modified mold is preferable for the resin composition of the present invention. Besides extrusion molding, injection molding, calendar molding, inflation molding, hollow molding, kneading molding, compression molding, vacuum molding, thermoforming and the like can be mentioned.
  • the resin composition of the present invention is a polymer of a polymerizable monomer in which the outer shell of the thermally expandable microspheres contained contains an N-substituted maleimide and a nitrile monomer essentially containing methacrylonitrile. Therefore, the heat resistance and the retention of the contained foaming agent are high, and in the extrusion forming for a long molding time, the shrinkage of the thermally expandable microspheres can be suppressed, and the generation of the burrs on the surface of the molded body is effectively suppressed. It is preferable because the weight of the molded body can be reduced.
  • the method for producing a molded body will be described by taking, as an example, the step of producing a molded body by extrusion molding.
  • a cylinder part is equipped with a heater and a thermocouple, and the raw material supply port for supplying a resin composition is equipped. Inside the cylinder, a screw is provided to further melt and / or soften the resin composition and move it from the material supply port in the extrusion direction while kneading.
  • the resin composition supplied into the cylinder is heated in the cylinder to a temperature (the molding temperature of the molded body) which is above the melting point or softening point of the base resin and which is the maximum expansion temperature of the thermally expanded microspheres contained.
  • a molten and / or softened kneaded product is obtained, which can be molded into a desired shape, and extruded through a die equipped with a heater and a thermocouple to obtain a molded product.
  • the molding temperature of the molded body refers to the temperature of the melted and / or softened kneaded material when the melted and / or softened kneaded material moves in the cylinder of the molding machine.
  • the molding temperature of the molded body is preferably 160 to 210 ° C., more preferably 170 to 210 ° C., still more preferably 175 to 205 ° C., particularly preferably 180 to 200 ° C., most preferably from the viewpoint of the expansion ratio of the molded body. It is 185 to 195 ° C. If the temperature is less than 160 ° C., the expansion of the thermally expandable microspheres may be insufficient and a target magnification may not be obtained.
  • the shell of the thermally expandable microspheres shrinks, the contained foaming agent is vaporized, and it escapes from the shell of the thermally expandable microspheres, so that it is lightweight
  • the air bubbles and the like caused by the vaporized agent appear in the vicinity of the surface of the compact, so the strength in the vicinity of the surface of the compact decreases and the discharge port and the compact of the molding machine By rubbing, burrs may occur on the surface of the molded body.
  • a vent when a vent is provided in the extrusion molding machine in the manufacturing process of a molded object, it is desirable to perform shaping
  • the time from the injection of the molding composition into the raw material supply port to the extrusion from the die can be adjusted by the number of rotations of the screw.
  • the number of rotations of the screw may be appropriately set according to the equipment and the type of base resin, etc., but the time (retention time) from the injection of the molding composition into the raw material supply port to the extrusion from the die is 0. It is preferably 5 to 20 minutes, more preferably 0.7 to 15 minutes, still more preferably 0.7 to 10 minutes, and particularly preferably 1 to 7 minutes. If the residence time is less than 0.5 minutes, heating may be insufficient and the expandable microspheres may not expand sufficiently, and a molded product having a desired expansion ratio may not be obtained.
  • the molded body extruded from the die is usually cooled by a cooling facility such as air cooling, water cooling, rolls or the like to form a desired lightweight molded body.
  • a cooling facility such as air cooling, water cooling, rolls or the like to form a desired lightweight molded body.
  • general equipment such as cooling equipment and take-up equipment can be used.
  • the expansion ratio of the molded article of the present invention is preferably 1.2 to 3 times, more preferably 1.3 to 2.7 times.
  • the strength of the obtained molded product is lowered, and the discharge port of the molding machine and the molded product are rubbed, so that the surface of the molded product may be scratched.
  • the evaluation method of the foaming ratio of a molded object is demonstrated in the Example.
  • the average cell diameter inside the molded product which is the diameter of the cells formed inside the molded product by thermally expanded microspheres, is preferably 30 to 300 ⁇ m, more preferably 50 to 200 ⁇ m, still more preferably 70 to 150 ⁇ m.
  • the expansion ratio of the resulting compact may be low.
  • the cell diameter of the molded body is larger than 300 ⁇ m, the strength of the obtained molded body is lowered, and the discharge port of the molding machine and the molded body are rubbed, whereby the surface of the molded body may be scratched.
  • the evaluation method of the average bubble diameter inside a molded object is demonstrated by the Example.
  • the molded product of the present invention is, for example, lightweight, has heat insulation and sound insulation, and has a good appearance, so sealing materials for building materials such as window frame sealing materials for buildings and packings for doors, glass run for automobiles, Automotive sealing materials such as body seals, automotive interior materials such as instrument panels and door trims, automotive exterior materials for vehicles such as bumpers, architectural wallpaper, floor coverings of buildings, shoe soles, transfer rolls, paper feed rolls, etc.
  • sealing materials for building materials such as window frame sealing materials for buildings and packings for doors, glass run for automobiles
  • Automotive sealing materials such as body seals, automotive interior materials such as instrument panels and door trims, automotive exterior materials for vehicles such as bumpers, architectural wallpaper, floor coverings of buildings, shoe soles, transfer rolls, paper feed rolls, etc.
  • Is suitable for industrial rolls such as rolls for office automation equipment, rolls for iron making, rolls for paper making, rolls for electric wires for printing, or rolls for industrial use, and in particular, sealing materials for building materials, sealing materials for automobiles, wallpaper, shoe soles Or particularly suitable for
  • the rubber products of the present invention are automotive parts such as hoses and weather strips, and various vehicle parts; electric and electronic parts such as electric wires, electric wire joints, sealing materials, and gaskets; gaskets for construction; water sealing sheets for construction; Civil engineering and construction parts such as water blocking sheets; Rolls for OA equipment such as charging rolls, transfer rolls, developing rolls, paper feeding rolls; Rolls for iron making, rolls for paper making, wire rolls for printing, industrial rolls, etc. It can be suitably used in various fields such as rolls for general industrial parts.
  • the rubber product of the present invention is preferably a weather strip, a printing blanket rubber, an automotive water hose, an air hose, a roofing sheet, a wire covering, or a shoe sole.
  • thermally expandable microspheres used in the following and the molded articles formed in the examples and comparative examples were evaluated in the following manner.
  • the thermally expandable microspheres may be simply referred to as microspheres
  • the wet powder-like thermally expandable microspheres in a wet powder state may be referred to as wet powder-like microspheres
  • the compact may be referred to as a foamed compact.
  • Microtrac particle size distribution analyzer (model 9320-HRA) manufactured by Nikkiso Co., Ltd. was used, and D50 value by volume-based measurement was defined as an average particle diameter.
  • the displacement start temperature in the positive direction was taken as the expansion start temperature (Ts), and the temperature at which the maximum displacement amount was shown was measured as the maximum expansion temperature (Tmax).
  • the expansion ratio of the thermally expandable microspheres was measured by the following measurement method.
  • a flat box with a bottom of 12 cm long, 13 cm wide and 9 cm high is made of aluminum foil, into which 1.0 g of heat expandable microspheres are uniformly placed, and placed in a gear-type oven at a predetermined temperature The mixture was heated for 4 minutes to obtain expanded hollow particles.
  • the true specific gravity of the hollow particles obtained by heating the unheated thermally expandable microspheres and the thermally expandable microspheres is treated with isopropyl alcohol in an atmosphere at an environmental temperature of 25 ° C. and a relative humidity of 50%. It measured by the method (Archimedes method).
  • a volumetric flask with a volume of 100 ml was emptied, and after drying, the volumetric flask weight (WB 1 ) was weighed.
  • the weight (WB 2 ) of the filled measuring flask with 100 ml of isopropyl alcohol was weighed.
  • a 100-ml volumetric flask was emptied, and after drying, the volumetric flask weight (WS 1 ) was weighed.
  • the expansion ratio (E1) is obtained by dividing the true specific gravity (d 0 ) of the unheated thermally expandable microspheres by the true specific gravity (d 1 ) of the hollow particles obtained by heating the thermally expandable microspheres. Calculated.
  • the maximum expansion ratio (E1max) of the thermally expandable microspheres corresponds to the expansion ratio at maximum expansion.
  • the thermally expandable microspheres are fractionated according to particle size using a sonic classifier (SW-20-AT type hand shifter, manufactured by Tsutsui Rikakai Kikai Co., Ltd.), and the inner side of each fraction is more than the outer shell
  • the thermally expandable microspheres (polynuclear particles) having at least one resin particle in each were observed as follows. First, in order to divide into each fraction, a plastic nylon mesh sieve (mesh size: 25 ⁇ m, 32 ⁇ m, 38 ⁇ m, 45 ⁇ m, 53 ⁇ m) of JIS ⁇ 200 mm was prepared.
  • the receiver stack the receiver from the bottom, the 25 ⁇ m sieve, the 32 ⁇ m sieve, the 38 ⁇ m sieve, the 45 ⁇ m sieve, and the 53 ⁇ m sieve in this order, and finally place the sound generator on top. And assembled the classification device.
  • 25 g of thermally expandable microspheres were weighed and placed on a sieve with a mesh size of 53 ⁇ m, and classification processing was performed for 15 minutes while changing the sound wave frequency to 50 Hz, 60 Hz, and 50 Hz in order.
  • the sound wave frequency can be changed in the range of 50 to 300 Hz because it has an optimum value depending on the number of sieve stages, the sieve openings, and the characteristics of the sample, and is not limited to the above.
  • the criteria for evaluating the percentage of polynuclear particles are: 0 to 5 cases (ie 0 to 10%) A, 6 to 15 cases (ie 10% to 30%) B, 16 to 35 C for 36-45 cases (i.e. for 70% to 90%) cases (i.e., more than 30% to 70%), D cases for 46 to 50 cases (i.e., more than 90% to 100 cases).
  • the sieve was evaluated as passing.
  • the true specific gravity (d 4 ) of the foam is measured in the same manner as the method for measuring the true specific gravity of hollow particles obtained by heating the above-mentioned unheated thermally expandable microspheres and thermally expandable microspheres. Carried out.
  • the foaming ratio (E2) was calculated by dividing the true specific gravity (d 3 ) of the unheated master batch by the true specific gravity (d 4 ) of the foam obtained by heating the master batch.
  • the expansion ratio (E2max) of the master batch corresponds to the expansion ratio at maximum expansion of the master batch.
  • the molding stability of molded body was evaluated in three steps on the basis of the following criteria when molding was performed for 45 minutes. Good: Good for molding without breakage of the molded product even once for 45 minutes, and no tearing of the end of the molded product or adhesion to the molded product. Fair: The molded body can not be broken even once for 45 minutes, but tearing of the end of the molded body or adhesion to the molded body is observed, and it is defective. X: The molded body is cut once in 45 minutes, and the molded body can not be molded continuously, which is defective.
  • the aqueous dispersion medium and the oily mixture were mixed, and the resulting mixture was dispersed with a homomixer (manufactured by Primix, TK homomixer) at 10000 rpm for 1 minute to prepare a suspension.
  • the suspension was transferred to a 1.5 liter pressure reactor, purged with nitrogen, and brought to an initial reaction pressure of 0.3 MPa, and polymerized at a polymerization temperature of 60 ° C. for 20 hours while stirring at 80 rpm.
  • the heat-expandable microspheres obtained by filtering and drying the polymerization solution obtained after the polymerization were used as microspheres 1.
  • the physical properties of the resulting microspheres 1 are shown in Table 1.
  • Example 1-1 100 parts by weight of base resin (1) (styrene-based elastomer, manufactured by Aron Kasei Co., Ltd., AR-SC-65, specific gravity 0.90, softening point 66 ° C.), 3 parts by weight of microspheres 1 and 0.3 weight Parts of the process oil were mixed beforehand with a ribbon mixer to obtain a resin composition. At this time, the thermally expandable microspheres contained in the resin composition were wet powdery thermally expandable microspheres in a wet powder state.
  • base resin (1) styrene-based elastomer, manufactured by Aron Kasei Co., Ltd., AR-SC-65, specific gravity 0.90, softening point 66 ° C.
  • the obtained resin composition is supplied from the raw material supply port of a Labo Plastomill (ME-25, a twin screw extruder manufactured by Toyo Seiki Co., Ltd.) which is an extrusion molding machine, and the temperature of the kneaded material in the cylinder is 190 ° C., T
  • the temperature of the die (width 150 mm, lip thickness 1.0 mm) is set to 190 ° C., and the molten mixture is extruded at a screw rotation speed of 45 rpm (retention time 4.5 minutes) to obtain a plate-like compact (width 148 mm, thickness 1.0 mm) Obtained.
  • the physical properties of the formed body were evaluated for specific gravity of the obtained formed body, expansion ratio of the formed body, average cell diameter inside the formed body, state of the surface of the formed body, and stable formability of the formed body. The results are shown in Table 3.
  • Examples 1-2 to 1-20, comparative examples 1-1 to 1-5 In Examples 1-2 to 1-20 and Comparative Examples 1-1 to 1-5, in Example 1-1, as shown in Tables 4 to 7, the compounding conditions of the resin composition, the molding temperature of the molded body, the screw rotation Resin compositions and molded articles were obtained in the same manner as in the example except that the numbers were changed.
  • the thermally expandable microspheres contained in the resin compositions in Examples 1-2 to 1-20 were wet powdery thermally expandable microspheres in the wet powder state, as in Example 1-1.
  • Production Example 2-1 Melt-kneading 2.8 kg of base resin (2) (Ethylene-vinyl acetate copolymer, Tosoh Co., Ltd., Ultracene 720, specific gravity 0.947, melting point 67 ° C.) using a pressure kneader with a capacity of 10 L When the kneading temperature reached 80 ° C., 4.2 kg of the microspheres 1 obtained in Production Example 1 were blended and uniformly mixed to obtain a pre-kneaded product.
  • base resin (2) Ethylene-vinyl acetate copolymer, Tosoh Co., Ltd., Ultracene 720, specific gravity 0.947, melting point 67 ° C.
  • the obtained pre-kneaded product is supplied from the raw material supply port of a twin-screw extruder with a cylinder diameter of 40 mm, and the kneaded product is formed into strands so that the strand diameter becomes 2.5 to 4.0 mm at an extrusion temperature of 70 ° C.
  • the extruded strand was pelletized to a length of 2.0 to 4.0 mm to obtain a master batch (MB1). Physical properties of the obtained masterbatch are shown in Table 6.
  • Production Examples 2-2 to 2-15, Production Comparative Examples 2-1 to 2-5 are the same as in Production Example 2-1 except that the mixing conditions and production conditions of the master batch are changed as shown in Tables 6 to 7, respectively. Were obtained in the same manner as in Production Example 1 to obtain MBs 2 to 20. Further, its physical properties were evaluated and are shown in Tables 8 to 10.
  • Production Example 2-16 100 parts by weight of ethylene propylene non-covalent diene copolymer rubber (EPDM) having a Mooney viscosity ML (1 + 4) at 100 ° C. measured according to JIS K 6300 using a pressure kneader of 100 parts by weight and microspheres 2 300 parts by weight and 100 parts by weight of process oil were kneaded until the kneading temperature reached 75 ° C. to obtain a pre-kneaded product.
  • the obtained pre-kneaded product is supplied from the raw material supply port of a single bore extruder with a cylinder diameter of 40 mm, and the kneaded product is extruded in a strand shape so that the strand diameter becomes 3.0 to 5.5 mm at an extrusion temperature of 80 ° C.
  • the resulting strand was pelletized to a length of 2.0 to 4.0 mm to obtain a master batch (MB21).
  • the true specific gravity of the obtained masterbatch was 0.95
  • the expansion ratio (E2max) of the foam was 60 times
  • the production stability of the masterbatch was good.
  • the obtained pre-kneaded product is supplied from the raw material supply port of a single bore extruder with a cylinder diameter of 40 mm, and the kneaded product is extruded in a strand shape so that the strand diameter becomes 3.0 to 5.5 mm at an extrusion temperature of 80 ° C.
  • the resulting strand was pelletized to a length of 2.0 to 4.0 mm to obtain a master batch (MB22).
  • the true specific gravity of the obtained masterbatch was 0.93
  • the expansion ratio (E2max) of the foam was 40 times
  • the production stability of the masterbatch was good.
  • the obtained pre-kneaded product is supplied from the raw material supply port of a single bore extruder with a cylinder diameter of 40 mm, and the kneaded product is extruded in a strand shape so that the strand diameter becomes 3.0 to 5.5 mm at an extrusion temperature of 80 ° C.
  • the resulting strand was pelletized to a length of 2.0 to 4.0 mm to obtain a master batch (MB23).
  • the true specific gravity of the obtained masterbatch was 0.95
  • the expansion ratio (E2max) of the foam was 53 times
  • the production stability of the masterbatch was good.
  • Example 2-1 100 parts by weight of a matrix resin (base resin (5) (olefin elastomer, manufactured by ExxonMobil, Santoprene 8201-60, specific gravity 0.95), and 5 parts by weight of MB1 are mixed beforehand with a ribbon mixer, and a resin composition I got
  • the obtained resin composition is supplied from the raw material supply port of Labo Plastomill (ME-25, single screw extruder manufactured by Toyo Seiki Co., Ltd.) which is an extrusion molding machine, and the temperature of the kneaded material in the cylinder is 185 ° C., strand
  • the temperature of the die (strand die nozzle diameter 3.0 mm) was adjusted to 185 ° C., and the molten mixture was extruded at a screw rotation speed of 45 rpm (retention time 4 minutes) to obtain a strand-shaped compact (strand diameter 3.0 mm).
  • the physical properties of the formed body were evaluated for specific gravity of the obtained formed body, expansion ratio of the formed body, average
  • Example 2-2 to 2-22 Comparative Examples 2-1 to 2-4
  • Tables 11 to 13 in Example 2-1 the compounding conditions of the resin composition, the molding temperature of the molded body, the screw rotation Resin compositions and molded articles were obtained in the same manner as in the example except that the numbers were changed.
  • the evaluation of the physical properties of the compact about the specific gravity of the compact, the expansion ratio of the compact, the average cell diameter inside the compact, the state of the surface of the compact, and the stable formability of the compact did. The results are shown in Tables 8-10.
  • Example 3-1 100 parts by weight of matrix resin (base resin (6) (high density polyethylene, manufactured by Nippon Polyethylene Co., Ltd., Novatec HD HE121, specific gravity 0.938, melting point 127 ° C.) and 5 parts by weight of MB1 are mixed beforehand with a ribbon mixer , The resin composition was obtained.
  • base resin (6) high density polyethylene, manufactured by Nippon Polyethylene Co., Ltd., Novatec HD HE121, specific gravity 0.938, melting point 127 ° C.
  • the obtained resin composition is supplied from the raw material supply port of a Labo Plastomill (ME-25, single screw extruder manufactured by Toyo Seiki Co., Ltd.) which is an extrusion molding machine, and the temperature of the kneaded material in the cylinder is 180 ° C., strand
  • the temperature of the die (strand die nozzle diameter 3.0 mm) was set to 180 ° C., and the molten mixture was extruded at a screw rotational speed of 45 rpm (retention time: 5 minutes) to obtain a strand-like compact (strand diameter 3.0 mm).
  • the physical properties of the formed body were evaluated for specific gravity of the obtained formed body, expansion ratio of the formed body, average cell diameter inside the formed body, state of the surface of the formed body, and stable formability of the formed body. The results are shown in Table 11.
  • Examples 3-2 to 3-19, Comparative examples 3-1 to 3-4 In Examples 3-2 to 3-19 and Comparative Examples 3-1 to 3-4, as shown in Tables 14 to 16 in Example 3-1, the compounding conditions of the resin composition, the molding temperature of the molded product, the screw rotation Resin compositions and molded articles were obtained in the same manner as in the example except that the numbers were changed.
  • evaluation of the physical properties of the compact with respect to the specific gravity of the compact, the expansion ratio of the compact, the average cell diameter inside the compact, the state of the surface of the compact, and the stable formability of the compact did. The results are shown in Tables 11-13.
  • Example 4-1 First, 2.5 parts by weight of the microspheres 1 obtained in Production Example 1-1 and 0.3 parts by weight of a process oil were mixed by a ribbon mixer to obtain wet powder microspheres 1. 100 parts by weight of the obtained wet powdery microspheres 1 and ethylene propylene non-conjugated diene copolymer rubber (EPDM) having a Mooney viscosity ML (1 + 4) of 100 measured at 100 ° C. according to JIS K 6300 is 54 100 parts by weight of calcium, 30 parts by weight of process oil, 3 parts by weight of dithiocarbamate vulcanization accelerator Sancera PZ as a vulcanization accelerator, 0.4 parts by weight of sulfur are kneaded at 125 ° C.
  • EPDM ethylene propylene non-conjugated diene copolymer rubber
  • the resin composition was a pre-kneaded product. Expansion of the obtained pre-kneaded product was not confirmed.
  • the obtained pre-kneaded material is supplied from the raw material supply port of the extrusion molding machine, and the temperature of the kneaded material in the cylinder is extruded at 125 ° C. from the die of the extrusion molding machine to obtain a predetermined cross-sectional shape. It vulcanized so that it might become vulcanized conditions of 170 ° C x 13 min in a vulcanization way, and a molded object was obtained.
  • the physical properties of the formed body were evaluated for specific gravity of the obtained formed body, expansion ratio of the formed body, average cell diameter inside the formed body, state of the surface of the formed body, and stable formability of the formed body. The results are shown in Table 14.
  • Examples 4-2 to 4-15, comparative examples 4-1 to 4-3 In Examples 4-2 to 4-15 and Comparative Examples 4-1 to 4-3, as shown in Tables 14 to 16 in Example 4-1, the compounding conditions, the kneading conditions, the molding conditions, and the addition conditions of the resin composition Each resin composition and each molded article were obtained in the same manner as in the example except that the vulcanization conditions were changed. With respect to the obtained nuclear compact, the evaluation of the physical properties of the compact about the specific gravity of the compact, the expansion ratio of the compact, the average cell diameter inside the compact, the state of the surface of the compact, and the stable formability of the compact did. The results are shown in Tables 14-15.
  • Examples 4-1, 4-4, 4-7 to 4-8, 4-14, and Comparative Examples 4-1 to 4-3 the base resin (EPDM), calcium carbonate does not contain microspheres.
  • the specific gravities of the moldings prepared using the compounding amounts shown in Tables 17 to 19 for process oil, vulcanization accelerator and sulfur are 1.4, and Examples 4-1, 4-4, 4-7 to 4-8 In Examples 4 to 14 and Comparative Examples 4-1 to 4-3, the base resin, calcium carbonate, process oil, vulcanization accelerator, and sulfur are shown in Tables 17 to 19 without containing microspheres.
  • the specific gravity of the molded article prepared by the compounding amount was 1.3.
  • EPDM, NR, NBR, and CR are abbreviations of ethylene propylene non-covalent diene copolymer rubber (EPDM), natural rubber (NR), acrylonitrile butadiene rubber (NBR), chloroprene rubber (CR), respectively. Represents.
  • EPDM ethylene propylene non-covalent diene copolymer rubber
  • NR natural rubber
  • NBR acrylonitrile butadiene rubber
  • CR chloroprene rubber
  • thermoplastic resin forming the outer shell of the heat-expandable microspheres contains N-substituted maleimide and a nitrile monomer essentially containing methacrylonitrile. It can be seen that in the molded article of the example obtained using the resin composition which is the polymer of the polymerizable component contained, penetration of the surface of the molded article is suppressed (see FIG. 1).
  • thermoplastic resin forming the outer shell of the thermally expandable microspheres contained therein is a polymer of a polymerizable component not containing a nitrile monomer essentially containing N-substituted maleimide and methacrylonitrile
  • burrs are generated on the surface of the compact (see FIG. 2).
  • a resin composition wherein the thermoplastic resin forming the outer shell of the thermally expandable microspheres contained therein is a polymer of a polymerizable component comprising N-substituted maleimide and a nitrile monomer essentially containing methacrylonitrile. It was also confirmed that the molded product of the example obtained by using the product has a high expansion ratio of the molded product and is also excellent in stable moldability of the molded product.
  • the resin composition of the present invention can be suitably used in various fields such as automobiles and various vehicle parts, electric / electronic parts, civil engineering / building parts, rolls for OA equipment, industrial rolls and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

成形時の成形体表面に発生するささくれを抑制できる樹脂組成物、該樹脂組成物を成形してなる成形体及び樹脂組成物に好適に用いることができる熱膨張性微小球を提供する。 本発明の樹脂組成物は、熱可塑性樹脂からなる外殻とそれに内包されかつ加熱することによって気化する発泡剤とから構成される熱膨張性微小球、ゴム、オレフィン系樹脂、及び熱可塑性エラストマーから選ばれる少なくとも1種の基材樹脂を含有し、前記熱可塑性樹脂がN-置換マレイミドとメタクリロニトリルを必須とするニトリル系単量体とを含む重合性成分の重合体である。

Description

樹脂組成物、成形体、及び熱膨張性微小球
 本発明は、樹脂組成物、成形体、及び熱膨張性微小球に関する。
 熱膨張性マイクロカプセル(熱膨張性微小球)は、加熱により膨張する特徴を有することから、発泡インクや壁紙等の意匠性付与剤や、樹脂、塗料等の軽量化剤として、幅広い用途に利用されており、特に樹脂の軽量化においては、数多くの開発が行われている。
 このような熱膨張性微小球は、熱可塑性樹脂を外殻とし、その内部に膨張剤が内包されており、通常、熱可塑性樹脂としては塩化ビニリデン系共重合体、アクリロニトリル共重合体、アクリル酸エステル系共重合体が用いられている。また、膨張剤としてはイソブタンやイソペンタン等の炭化水素が主に使用されている。(特許文献1参照)
 近年では、耐熱性の高い熱膨張性微小球が検討されている。たとえば、特許文献2には、ニトリル系モノマー80%重量以上、非ニトリル系モノマー20重量%以下および架橋剤0.1~1重量%含有する成分から得られる熱可塑性樹脂を用いて、膨張剤を内包した熱膨張性微小球において、非ニトリル系モノマーがメタクリル酸エステル類およびアクリル酸エステル類から選択される熱膨張性微小球が開示されており、得られる熱膨張性微小球は140℃以下では膨張せずに耐熱性に優れ、膨張温度も160~180℃となっている。
 同様に、高い耐熱性を持つ熱膨張性微小球として、ニトリル系単量体(I)、分子内に1つの不飽和二重結合とカルボキシル基を有する単量体(II)、分子内に2以上の重合性二重結合を有する単量体(III)および、必要により、単量体(I)、(II)、(III)と異なり且つ共重合可能な単量体(IV)からなる単量体混合物を重合して得られた重合体からなる外殻および該外殻内に封入された発泡剤からなる熱膨張性微小球が特許文献3に開示されており、得られる熱膨張性微小球は耐熱性が高く、高温領域において良好な発泡性を示し、様々な種類の樹脂の押出加工、射出成形加工に用いることが出来ると記載されている。
日本国特公昭42-26524号公報 日本国特開平9-19635号公報 国際公開第2003/099955号
 ところが、特許文献2のような熱膨張性微小球と基材樹脂とを含んだ組成物を用いて押出成形を行ったとしても、熱膨張性微小球の耐熱性が足りず、成形体を軽量化できないだけでなく、成形体表面の樹脂がめくれたり、毛羽立ったりと、いわゆる、ささくれた状態になり、成形体の外観を著しく損なうことが確認された。
 また、一方、特許文献3のような熱膨張性微小球と基材樹脂とを含んだ組成物を用いて押出成形を行った場合、基材樹脂中で熱膨張性微小球が膨張し、成形体を軽量化できることは確認されたが、成形体表面がささくれた状態となり、成形体の外観を著しく損なうだけでなく、発生したささくれにより成形体が脆くなり、成形途中で成形体が切れ安定的に成形できない問題が発生することが確認された。
 このように、基材樹脂と熱膨張性微小球とを含んだ樹脂組成物であって、押出成形にて成形される成形体表面のささくれにより起因する外観不良を抑制する成形体が製造可能な樹脂組成物はこれまでなかった。
 本発明の目的は、成形体表面のささくれの発生を抑制する樹脂組成物、該樹脂組成物を成形してなる成形体及び該樹脂組成物に好適に用いることができる熱膨張性微小球を提供することである。
 本発明者らは、上記課題を解決するために鋭意検討を行った結果、ゴム、オレフィン系樹脂、及び熱可塑性エラストマーから選ばれる少なくとも1種の基材樹脂と熱膨張性微小球とを含む樹脂組成物において、外殻が所定の重合性成分を重合することにより得られる熱可塑性樹脂である熱膨張性微小球を用いることにより、ささくれが抑制された成形体を得られることを見出し、本発明に達成した。
 すなわち、本発明の樹脂組成物は、ゴム、オレフィン系樹脂、及び熱可塑性エラストマーから選ばれる少なくとも1種の基材樹脂と熱膨張性微小球とを含み、前記熱膨張性微小球が、熱可塑性樹脂からなる外殻と、それに内包されかつ加熱することによって気化する発泡剤とから構成され、前記熱可塑性樹脂がN-置換マレイミドとメタクリロニトリルを必須とするニトリル系単量体とを含む重合性成分の重合体である、樹脂組成物である。
 本発明の樹脂組成物は、次の1)~6)から選ばれる少なくとも一つをさらに満足すると好ましい。
1)前記基材樹脂がオレフィン系エラストマーである。
2)前記重合性成分が、下記条件1を満たす。
条件1:前記重合性成分に占めるメタクリロニトリルおよびN-置換マレイミドの重量割合が、下記式(I)の関係を有する。
(N-置換マレイミドの重量割合)÷(メタクリロニトリルの重量割合)≧0.33  式(I)
3)前記熱膨張性微小球が下記条件2にて評価したときに下記(a)~(e)を同時に満たす。
条件2:熱膨張性微小球を25μm、32μm、38μm、45μm、53μmのふるいで分級し、分級した熱膨張性微小球に占める外殻よりも内部側に樹脂粒を少なくとも1個有する熱膨張性微小球の個数割合が0~10%の場合はA、10超~30%の場合はB、30超~70%の場合はC、70超~90%の場合はD、90超~100%の場合はEと評価したとき、
(a)粒子径45~53μmの熱膨張性微小球ではA~Cのいずれかの評価。
(b)粒子径38~45μmの熱膨張性微小球ではA~Cのいずれかの評価。
(c)粒子径32~38μmの熱膨張性微小球ではAまたはBの評価。
(d)粒子径25~32μmの熱膨張性微小球ではAまたはBの評価。
(e)粒子径25μm未満の熱膨張性微小球ではAの評価。
4)前記発泡剤が、炭素数8の炭化水素を含む。
5)前記発泡剤が、さらに炭素数4~7の炭化水素から選ばれる少なくとも1種を含む。
6)前記発泡剤が、さらに炭素数9以上の炭化水素から選ばれる少なくとも1種を含む。
 本発明の熱膨張性微小球は、熱可塑性樹脂からなる外殻と、それに内包されかつ加熱することによって気化する発泡剤とから構成され、前記熱可塑性樹脂が、N-置換マレイミドと、メタクリロニトリルを必須とするニトリル系単量体とを含み、かつ下記条件1を満たす重合性成分の重合体である熱膨張性微小球である。
条件1:前記重合性成分に占めるメタクリロニトリルおよびN-置換マレイミドの重量割合が、下記式(I)の関係を有する。
(N-置換マレイミドの重量割合)÷(メタクリロニトリルの重量割合)≧0.33  式(I)
 本発明の熱膨張性微小球は、前記3)~6)から選ばれる少なくとも一つをさらに満足すると好ましい。
 本発明の熱膨張性微小球は、成形用熱膨張性微小球であると好ましい。
 本発明の湿粉状熱膨張性微小球は、上記熱膨張性微小球と、液状化合物とを含む。
 本発明の樹脂組成物は、マスターバッチであると好ましい。
 本発明の成形体は上記樹脂組成物、またはマスターバッチである上記樹脂組成物とマトリックス樹脂を含む混合物を成形してなるものである。
 本発明の成形体は上記樹脂組成物、またはマスターバッチである上記樹脂組成物とマトリックス樹脂を含む混合物を押出成形してなるものであると好ましい。
 本発明の成形体が、建材用シール材、自動車用シール材、壁紙、靴底、又は床材であると好ましい。
 本発明樹脂組成物は、ささくれが抑制された成形体を得ることができる。
 本発明の成形体は、ささくれが抑制され、優れた外観を有する。
 本発明の熱膨張性微小球を用いれば、ささくれが抑制された成形体を得るこができる。
実施例2-1で得られる成形体の表面を観察した電子顕微鏡写真。 比較例2-2で得られる成形体の表面を観察した電子顕微鏡写真。 熱膨張性微小球の一例を示す概略図である。 熱膨張性微小球が多核化した状態の一例を示す概略図である。
 本発明の樹脂組成物は、ゴム、オレフィン系樹脂、及び熱可塑性エラストマーから選ばれる少なくとも1種の基材樹脂と特定の熱膨張性微小球とを必須に含む組成物である。以下に各成分を詳細に説明する。
〔基材樹脂〕
 基材樹脂は、ゴム、オレフィン系樹脂、及び熱可塑性エラストマーから選ばれる少なくとも1種である。
 ゴムとしてはたとえば、天然ゴム、イソプレンゴム、ブタジエンゴム、スチレンブタジエンゴム、クロロプレンゴム、アクリロニトリルブタジエンゴム、エチレン-α-オレフィン共重合体ゴム、エチレン-α-オレフィン-非共役ジエン共重合体ゴム、ハロゲン化エチレン-α-オレフィン-非共役ジエン共重合体ゴム、スルフォン化エチレン-α-オレフィン-非共役ジエン共重合体ゴム、マレイン化エチレン-α-オレフィン-非共役ジエン共重合体ゴム、ブチルゴム、イソブチレンイソプレンゴム等のジエン系ゴム;水素添加ニトリルゴム、ウレタンゴム、シリコーンゴム、クロロスルフォン化ポリエチレン、塩素化ポリエチレン、アクリルゴム、エピクロロヒドリンゴム、フッ素ゴム、多硫化ゴム、プロピレンオキシドゴム等の非ジエン系ゴム等が挙げられる。
 オレフィン系樹脂としてはたとえば、エチレン-ビニルアルコール共重合体、エチレン-酢酸ビニル共重合体、シラン架橋性エチレン-酢酸ビニル共重合体、エチレン-メチル(メタ)アクリレート共重合体、エチレン-エチル(メタ)アクリレート共重合体、エチレン-ブチル(メタ)アクリレート共重合体、エチレン-メタクリル酸共重合体、低密度ポリエチレン(LDPE)、シラン架橋性低密度ポリエチレン、低密度直鎖状低密度ポリエチレン(L-LDPE)、シラン架橋性直鎖状低密度ポリエチレン、高密度ポリエチレン(HDPE)、シラン架橋性高密度ポリエチレン、塩素化ポリエチレン、無水マレイン酸等の無水カルボン酸にて変性させたポリエチレン等のポリエチレン系樹脂;ポリプロピレン、シラン架橋性ポリプロピレン、無水マレイン酸等の無水カルボン酸にて変性させたポリプロピレン等のポリプレピレン系樹脂;ポリブテン、ポリイソブチレン、ポリメチルペンテン、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)等の樹脂が挙げられる。以下では、アクリレート又はメタクリレートを合わせて(メタ)アクリレートということもあり、(メタ)アクリレートは、アクリレート又はメタクリレートを意味するものとする。
 ここでシラン架橋性とはシランカップリング剤がオレフィン系樹脂にグラフトした状態のことである。シラン架橋性のオレフィン系樹脂は水分と接触することで、シランカップリング剤が加水分解し、シラノール基が発現する。その後、発現したシラノール基が縮合することで架橋される為、強度等の機械特性や耐溶剤性等の化学的特性、耐熱性等の熱的特性等を向上させることができる。
 熱可塑性エラストマーは、ハードセグメントからなる重合体とソフトセグメントからなる重合体との混合物や、ハードセグメントからなる重合体とソフトセグメントからなる重合体との共重合物等を挙げることができる。
 熱可塑性エラストマーとしてはたとえば、ウレタン系エラストマー、スチレン系エラストマー、オレフィン系エラストマー、ポリアミド系エラストマー、ポリエステル系エラストマー、ニトリル系エラストマー、塩化ビニル系エラストマー等が挙げられる。
 ウレタン系エラストマーは、ハードセグメントとしては、たとえばジイソシアナート類と鎖延長剤である短鎖ジオール類等との反応により生成するポリウレタンを挙げることができる。また、ソフトセグメントとしては、たとえば、ポリエステルジオール類、ポリエーテルジオール類、ポリカーボネートジオール類等のポリマージオールが挙げられ、ウレタン系エラストマーはポリウレタンとポリマージオールより構成されるブロック共重合体である。
 ウレタン系エラストマーとしては、大日精化株式会社製「レザミン」、東ソー株式会社製「ミラクトラン」、BASFジャパン株式会社製「エラストラン」、日本ループリゾール株式会社製「エステン」、DICコベストロポリマー株式会社製「Desmopan」、[Texin」、昭和化成工業株式会社製「マキシロン」等を挙げることができる。
 スチレン系エラストマーは、ハードセグメントとしては、たとえば、ポリスチレンからなるセグメント等を挙げることができる。また、ソフトセグメントとしては、たとえば、ポリブタジエン、水素添加されたポリブタジエン、ポリイソプレン、水素添加されたポリイソプレンからなるセグメント等を挙げることができる。このようなスチレン系エラストマーとしては、たとえば、スチレン-ブタジエン-スチレン(SBS)共重合体、スチレン-イソプレン-スチレン(SIS)共重合体、スチレン-エチレン-ブチレン-スチレン(SEBS)共重合体、スチレン-エチレン-プロピレン-スチレン(SEPS)共重合体、スチレン-ブタジエン-ブチレン-スチレン(SBBS)共重合体等のブロック共重合体を挙げることができる。
 スチレン系エラストマーの市販品としては、たとえば、旭化成株式会社製「タフブレン」、「アサブレン」、「タフテック」、「S.O.E.」、アロン化成株式会社製「エラストマーAR」、クラレ株式会社製「セプトン」、「ハイブラー」、JSR株式会社製「JSR TR」、「JSR SIS」、昭和化成工業株式会社製「マキシロン」、神興化成株式会社製「トリブレン」、「スーパトリブレン」、住友化学株式会社製「エスポレックスSBシリーズ」、リケンテクノス株式会社製「レオストマー」、「アクティマー」、「高機能アロイアクティマー」、「アクティマーG」等を挙げることができる。
 オレフィン系エラストマーは、ハードセグメントとしては、たとえば、ポリプロピレンやプロピレン-エチレンの共重合体、ポリエチレン等からなるセグメント等を挙げることができる。また、ソフトセグメントとしては、たとえば、ポリエチレンや、エチレンと共に少量のジエン成分を共重合したもの(たとえば、エチレン-プロピレン-共重合体(EPM)、エチレン-プロピレン-ジエン共重合体(EPDM)、EPDMに有機過酸化物を添加することにより部分架橋したもの等)からなるセグメント等を挙げることができる。
 また、オレフィン系エラストマーとしての重合体の混合物や共重合物は、不飽和ヒドロキシ単量体およびその誘導体、不飽和カルボン酸単量体およびその誘導体等でグラフト変性されたものでもよい。
 オレフィン系エラストマーの市販品としては、たとえば、エクソンモービル株式会社製「Santoprene」、「Vistamaxx」、JSR株式会社製「エクセリンク」、昭和化成工業株式会社製「マキシロン」、住友化学株式会社製「エスポレックスTPEシリーズ」、ダウケミカル日本株式会社製「エンゲージ」、プライムポリマー株式会社製「プライムTPO」、三井化学株式会社製「ミラストマー」、三菱ケミカル株式会社製「ゼラス」、「サーモラン」、リケンテクノス株式会社製「マルチユースレオストマー」、「アクティマー」、「トリニティー」等を挙げることができる。
 これら基材樹脂の中でも、樹脂組成物を安定的に製造することを考慮すると、ジエン系ゴム、ポリエチレン系樹脂、ポリプロピレン系樹脂、ウレタン系エラストマー、オレフィン系エラストマー、スチレン系エラストマーから選択された少なくとも1種であれば好ましく、ジエン系ゴム、エチレン-酢酸ビニル共重合体、エチレン-メチル(メタ)アクリレート共重合体、エチレン-エチル(メタ)アクリレート共重合体、エチレン-ブチル(メタ)アクリレート共重合体、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(L-LDPE)、高密度ポリエチレン(HDPE)、ポリプロピレン、ポリブテン、ポリイソブチレン、ポリメチルペンテン、ウレタン系エラストマー、オレフィン系エラストマー、スチレン系エラストマーから選択された少なくとも1種であればより好ましく、天然ゴム、ブタジエンゴム、スチレンブタジエンゴム、アクリロニトリルブタジエンゴム、エチレン-α-オレフィン-非共役ジエン共重合体ゴム、エチレン-酢酸ビニル共重合体、エチレン-メチル(メタ)アクリレート共重合体、エチレン-エチル(メタ)アクリレート共重合体、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(L-LDPE)、高密度ポリエチレン(HDPE)、ポリプロピレン、オレフィン系エラストマー、スチレン系エラストマーから選択された少なくとも1種であればさらに好ましい。
 基材樹脂は、熱膨張性微小球の膨張開始温度以下の融点または軟化点を有するものがよい。
 樹脂組成物がマスターバッチである場合、マスターバッチを安定的に製造することを考慮すると、上記基材樹脂の中でも、ジエン系ゴム、ポリエチレン系樹脂、ポリプロピレン系樹脂、ウレタン系エラストマー、オレフィン系エラストマー、スチレン系エラストマーから選択された少なくとも1種であれば好ましく、ジエン系ゴム、エチレン-酢酸ビニル共重合体、エチレン-メチル(メタ)アクリレート共重合体、エチレン-エチル(メタ)アクリレート共重合体、エチレン-ブチル(メタ)アクリレート共重合体、低密度ポリエチレン(LDPE)、ポリプロピレン、オレフィン系エラストマー、ウレタン系エラストマー、スチレン系エラストマーから選択された少なくとも1種であればより好ましく、天然ゴム、ブタジエンゴム、スチレンブタジエンゴム、アクリロニトリルブタジエンゴム、エチレン-α-オレフィン-非共役ジエン共重合体ゴム、エチレン-酢酸ビニル共重合体、エチレン-メチル(メタ)アクリレート共重合体、エチレン-エチル(メタ)アクリレート共重合体、低密度ポリエチレン(LDPE)、ポリプロピレン、オレフィン系エラストマー、スチレン系エラストマーから選択された少なくとも1種であればさらに好ましい。
 また、樹脂組成物がマスターバッチである場合、樹脂組成物とマトリックス樹脂とを含む混合物を調製し、得られた混合物を成形して、成形体が得られるが、ここで用いられるマトリックス樹脂は、上記基材樹脂から選ばれる少なくとも1つの成分であればよい。
 エチレン-α-オレフィン-非共役ジエン共重合体ゴムは、エチレンと、α-オレフィンと、非共役ジエンとのランダム共重合体である。α-オレフィンとしては、プロピレン、1-ブテン、1-ペンテン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン等が挙げられる。これらの中でも、プロピレン、1-ヘキセン、1-オクテンが好ましく、プロピレンがより好ましい。これらのα-オレフィンは、1種又は2種以上を併用することができる。エチレンとα-オレフィンとのモル比(エチレン/α-オレフィン)は、特に限定はないが、40/60~95/5であると好ましく、より好ましくは50/50~85/15、さらに好ましくは60/40~80/20である。非共役ジエンとしては、1,4-ヘキサジエン、3-メチル-1,4-ヘキサジエン、1,7-オクタジエン、1,9-デカジエン、5-エチリデン-2-ノルボルネン、5-イソプロピリデン-2-ノルボルネン、5-イソブテニル-2-ノルボルネン、シクロペンタジエン、ジシクロペンタジエン、ノルボルナジエン等が挙げられる。これらの中でも、5-エチリデン-2-ノルボルネン、ジシクロペンタジエンが好ましい。これらの非共役ジエンは、1種又は2種以上を併用することができる。
 基材樹脂がオレフィン系樹脂及び熱可塑性エラストマーから選ばれる少なくとも1種を含む場合、オレフィン系樹脂及び熱可塑性エラストマーから選ばれる少なくとも1種の融点または軟化点は、安定的に樹脂組成物を軽量化する観点から、特に限定はないが、好ましくは55~200℃、より好ましくは65~180℃、特に好ましくは105~170℃であり、最も好ましくは110~160℃である。
 また、樹脂組成物がマスターバッチである場合、基材樹脂がオレフィン系樹脂及び熱可塑性エラストマーから選ばれる少なくとも1種を含む場合において、オレフィン系樹脂及び熱可塑性エラストマーの融点または軟化点は、マスターバッチ製造時に熱膨張性微小球を膨張させないよう、熱膨張性微小球の膨張開始温度(Ts)よりも低いほうが好ましい。マスターバッチである場合、基材樹脂の融点または軟化点は、特に限定はないが、40~100℃が好ましく、より好ましくは50~90℃、さらに好ましくは55℃~85℃、特に好ましくは60~80℃である。
 基材樹脂がオレフィン系樹脂及び熱可塑性エラストマーから選ばれる少なくとも1種を含む場合、オレフィン系樹脂及び熱可塑性エラストマーの引っ張り破壊応力は、成形体を軽量化でき、かつ成形体の表面のささくれの発生を抑制する点で、特に限定はないが、120MPa以下であることが好ましく、より好ましくは2~80MPa、さらに好ましくは5~65MPa、特に好ましくは5~50Mpaである。引っ張り破壊応力の最小値は1MPaである。
 基材樹脂がゴムを含む場合、ゴムのムーニー粘度は、成形体を軽量化でき、かつ成形体の表面のささくれの発生を抑制する点から、特に限定はないが、JIS K6300に準拠して測定した100℃のムーニー粘度ML(1+4)(以下、単にムーニー粘度ということがある)は、好ましくは5~120、より好ましくは10~105、さらに好ましくは20~95、特に好ましくは30~85、最も好ましくは35~80である。
 基材樹脂のSP値は成形体の表面のささくれの発生を抑制する点で、特に限定はないが、7~20(cal/cm1/2が好ましく、より好ましくは7.5~17(cal/cm1/2、さらに好ましくは8~15(cal/cm1/2である。基材樹脂のSP値が上記範囲外であると、熱膨張性微小球との相溶性が低くなり、熱膨張性微小球が成形体表面付近にとどまりやすくなることがある。そのため、成形時の熱膨張性微小球が膨張した際に、成形体の表面付近の強度が低くなり、成形機から吐出する際に吐出口との擦れにより成形体の表面がささくれ状になり、成形体の外観を損なうだけでなく、ささくれにより成形体が脆くなり成形体が切れてしまい、安定的に成形体を成形できないこともある。
〔熱膨張性微小球〕
 熱膨張性微小球は、本発明の樹脂組成物の必須成分である。熱膨張性微小球は、図3に示すように、熱可塑性樹脂からなる外殻(シェル)11と、それに内包され且つ加熱することによって気化する発泡剤(コア)12とから構成される熱膨張性微小球である。この熱膨張性微小球はコア-シェル構造をとっており、熱膨張性微小球は微小球全体として熱膨張性(微小球全体が加熱により膨らむ性質)を示す。熱可塑性樹脂は、重合性成分を重合して得られる。熱可塑性樹脂は、重合性成分の重合体である。
 重合性成分は、重合することによって、熱膨張性微小球の外殻を形成する熱可塑性樹脂となる成分である。重合性成分は単量体成分を必須とし架橋剤を含むことがある成分である。単量体成分は重合性二重結合を1つ有するラジカル重合性単量体を意味し、付加重合可能な成分である。また、架橋剤は重合性二重結合を2つ以上有するラジカル重合性単量体を意味し、橋掛け構造を熱可塑性樹脂に導入する成分である。
 重合性成分は、本発明の効果を発揮させる点から、N-置換マレイミドを含む。N-置換マレイミドとしては、たとえばN-フェニルマレイミド、N-シクロヘキシルマレイミド、N-ベンジルマレイミド、N-tert-ブチルマレイミド、N-エチルマレイミド、N-(2-ヒドロキシエチル)マレイミド、N-メトキシカルボニルマレイミド、N-メチルマレイミド、N-(2-クロロフィル)マレイミド、N-ラウロイルマレイミド等が挙げられる。
 これらのN-置換マレイミドの中でも、耐熱性および発泡倍率を高める点から、N-フェニルマレイミドまたはN-シクロヘキシルマレイミドが好ましい。
 N-置換マレイミドは1種又は2種以上を併用してもよい。
 重合性成分に占めるN-置換マレイミドの重量割合は、特に限定はないが、好ましくは5~45重量%である。重合性成分に占めるN-置換マレイミドの重量割合の上限は、より好ましくは40重量%、さらに好ましくは35重量%、特に好ましくは33重量%、最も好ましくは30重量%である。一方、N-置換マレイミドの重量割合の下限は、より好ましくは7重量%、さらに好ましくは9重量%、特に好ましくは11重量%、最も好ましくは14重量%である。N-置換マレイミドの重量割合が5重量%よりも低い場合は、熱膨張性微小球の耐熱性が低くなり、成形体の成形時に、熱膨張性微小球の外殻が収縮し、内包された発泡剤が気化して、熱膨張性微小球の外部へ抜け出てしまうため、軽量な成形体を成形することができないだけでなく、熱膨張性微小球より抜け出た気化した発泡剤により成形体の表面付近に空孔等が発現するため、成形体表面付近の強度が低下してしまい、成形機の吐出口と成形体がこすれることで、成形体の表面にささくれが発生することがある。また、熱膨張性微小球と基材樹脂とからなるマスターバッチの製造時に、熱膨張性微小球が膨張してしまい、安定的にマスターバッチを製造できなくなることがある。一方、該重量割合が45重量%よりも多い場合は熱膨張性微小球の膨張性が低くなり、成形体を軽量化できないことがある。
 さらに、重合性成分は、熱膨張性微小球のガスバリア性の点から、ニトリル系単量体を含む。ニトリル系単量体としては、アクリロニトリル、メタクリロニトリル、α-クロルアクリロニトリル、α-エトキシアクリロニトリル、フマロニトリル等が挙げられる。
 ニトリル系単量体は1種または2種以上併用してもよい。
 重合性成分の重合の際に、重合性成分が熱可塑性樹脂に変換され、そのすべてが熱膨張性微小球の外殻を構成することが好ましいが、ニトリル系単量体の中でも、メタクリロニトリルを含まない場合、熱可塑性樹脂からなる微小な樹脂粒が一部生成し、得られた熱膨張性微小球において、この樹脂粒が外殻よりも内部側等に存在する現象(以下、同現象を熱膨張性微小球の多核化、同現象で得られる熱膨張性微小球を多核粒子ということがある。)が起こる。その一例となる多核化が発生した熱膨張性微小球を図4に示す。
 これは、メタクリロニトリルを含まないことにより、重合性成分の重合反応速度が速くなり、重合性成分の重合体の、残存する重合性成分および含まれる発泡剤へ溶けている時間が短くなるため、前記重合体が熱膨張性微小球の外殻である熱可塑性樹脂として構成される前に、熱膨張性微小球の内部に樹脂粒13として析出してしまうためであると推測される。
 このように、熱膨張性微小球の多核化が起こると、熱膨張性微小球の外殻の厚みが理論よりも薄くなるため、熱膨張性微小球の耐熱性や膨張性が低下することがあり、成形体を軽量化できないだけでなく、成形体の成形時に熱膨張性微小球の外殻が収縮し、内包している発泡剤が気化して、熱膨張性微小球の外部へ抜け出てしまい、抜け出た気化した発泡剤により、成形体の表面付近に空孔等が発現するため、成形体の表面付近の強度が、低下してしまい、成形機の吐出口と成形体がこすれることで、成形体の表面にささくれが発生すると考えられる。
 熱膨張性微小球の多核化を抑制する点から、ニトリル系単量体は、メタクリロニトリルを必須に含む。
 重合性成分に占めるニトリル系単量体の重量割合は、特に限定はないが、好ましくは50重量%超である。重合性成分に占めるニトリル系単量体の重量割合の上限は、好ましくは94重量%、より好ましくは90重量%、さらに好ましくは87重量%、特に好ましくは84重量%である。一方、重合性成分に占めるニトリル系単量体の重量割合の下限は、より好ましくは55重量%、さらに好ましくは60重量%、特に好ましくは64重量%、最も好ましくは67重量%である。
 ニトリル系単量体に占めるメタクリロニトリルの重量割合は、特に限定はないが、好ましくは5~60重量%である。ニトリル系単量体に占めるメタクリロニトリルの重量割合の上限は、より好ましくは45重量%、さらに好ましくは32重量%、特に好ましくは29重量%、最も好ましくは24重量%である。一方ニトリル系単量体に占めるメタクリロニトリルの重量割合の下限は、より好ましくは7重量%、さらに好ましくは8重量%、最も好ましくは9重量%である。メタクリロニトリルの重量割合が5重量%よりも低い場合、熱膨張性微小球の多核化が起こり、熱膨張性微小球の耐熱性や膨張性が低下することがあり、成形体を軽量化できないだけでなく、成形体の成形時に熱膨張性微小球の外殻が収縮し、内包している発泡剤が気化して、熱膨張性微小球の外部へ抜け出てしまい、抜け出た気化した発泡剤により、成形体の表面付近に空孔等が発現するため、成形体の表面付近の強度が、低下してしまい、成形機の吐出口と成形体がこすれることで、成形体の表面にささくれが発生することがある。
 重合性成分に占めるメタクリロニトリルの重量割合は、特に限定はないが、好ましくは3~40重量%である。重合性成分に占めるメタクリロニトリルの重量割合の上限は、より好ましくは35重量%、さらに好ましくは30重量%、特に好ましくは28重量%、最も好ましくは24重量%である。一方、重合性成分に占めるメタクリロニトリルの重量割合の下限は、より好ましくは5重量%、さらに好ましくは6重量%、特に好ましくは10重量%、最も好ましくは12重量%である。メタクリロニトリルの重量割合が3重量%より低い場合、熱膨張性微小球の多核化が起こり、熱膨張性微小球の耐熱性や膨張性が低下することがあり、成形体を軽量化できないだけでなく、成形体の成形時に熱膨張性微小球の外殻が収縮し、内包している発泡剤が気化して、熱膨張性微小球の外部へ抜け出てしまい、抜け出た気化した発泡剤により、成形体の表面付近に空孔等が発現するため、成形体の表面付近の強度が、低下してしまい、成形機の吐出口と成形体がこすれることで、成形体の表面にささくれが発生することがある。一方、40重量%超の場合、膨張性が低下し、成形体を軽量化できないことがある。
 ニトリル系単量体がメタクリロニトリルの他にアクリロニトリルを含むと、熱膨張性微小球の耐熱性および膨張性をさらに高めることができ、成形体の表面のささくれを抑制しつつ、より効果的に成形体を軽量化できるため、好ましい。
 熱膨張性微小球の耐熱性の点より、重合性成分に占めるN-置換マレイミドとメタクリロニトリルの重量割合の合計は、特に限定はないが、好ましくは8~60重量%である。重合性成分に占めるN-置換マレイミドとメタクリロニトリルの重量割合の合計の上限は、(1)50重量%、(2)46重量%、(3)40重量%、(4)36重量%、(5)32重量%の順で好ましい(括弧内の数値が大きくなるほど好ましい)。一方、重合性成分に占めるN-置換マレイミドとメタクリロニトリルの重量割合の合計の下限は、(1)10重量%、(2)15重量%、(3)18重量%、(4)20重量%、(5)21重量%の順で好ましい(括弧内の数値が大きくなるほど好ましい)。該重量割合が8重量%より小さくなると熱膨張性微小球の耐熱性が低くなり、成形体の成形時に、熱膨張性微小球の外殻が収縮し、内包された発泡剤が気化して、熱膨張性微小球の外部へ抜け出てしまうため、軽量な成形体を成形することができないだけでなく、熱膨張性微小球より抜け出た気化した発泡剤により成形体の表面付近に空孔等が発現するため、成形体表面付近の強度が低下してしまい、成形機の吐出口と成形体がこすれることで、成形体の表面にささくれが発生することがある。一方、60重量%を超えると膨張性が低下し、成形体を軽量化できないことがある。
 また、重合性成分は、本発明の効果を発揮させる点から、重合性成分が、N-置換マレイミドとメタクリロニトリルを必須とするニトリル系単量体とを含み、かつ下記条件1を満たすものである。条件1を満たすことにより、熱膨張性微小球の多核化を抑制しつつ、膨張性と耐熱性を満足し、成形体のささくれを抑制できる熱膨張性微小球となる。
条件1:重合性成分に占めるN-置換マレイミドおよびメタクリロニトリルの重量割合が、下記式(I)の関係を有する。
 (N-置換マレイミドの重合量割合)÷(メタクリロニトリルの重量割合)≧0.33  式(I)
 式(I)の数値は、0.33以上が好ましい。式(I)の数値の上限は、(1)7、(2)6.69、(3)5.0、(4)4.0、(5)3.67、(6)3.0の順で好ましい(括弧内の数値が大きくなるほど好ましい)。一方、式(I)の数値の下限は、(1)0.35、(2)0.5、(3)0.7、(4)0.8の順で好ましい(括弧内の数値が大きくなるほど好ましい)。
 該数値が0.33より低いと、熱膨張性微小球の耐熱性が低くなり、成形体の成形時に、熱膨張性微小球の外殻が収縮し、内包された発泡剤が気化して、熱膨張性微小球の外部へ抜け出てしまうため、軽量な成形体を成形することができないだけでなく、熱膨張性微小球より抜け出た気化した発泡剤により成形体の表面付近に空孔等が発現するため、成形体表面付近の強度が低下してしまい、成形機の吐出口と成形体がこすれることで、成形体の表面にささくれが発生することがある。
 重合性成分は、膨張挙動をコントロールしやすくなる点から、(メタ)アクリル酸エステル系単量体をさらに含んでもよい。なお、本発明では、(メタ)アクリルは、アクリル又はメタクリルを意味する。
 (メタ)アクリル酸エステル系単量体としては、特に限定はないが、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ステアリル(メタ)アクリレート、ラウリル(メタ)アクリレート、フェニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート等が挙げられる。
 重合性成分に占める(メタ)アクリル酸エステル系単量体の重量割合は、特に限定はないが、好ましくは40重量%未満、より好ましくは0~20重量%、さらに好ましくは0.5~15重量%、特に好ましくは0.8~7重量%である。該重量割合が40重量%以上の場合、熱膨張性微小球の耐熱性、ガスバリア性が低下するため、熱膨張性微小球に内包された気化した発泡剤が、成形体の成形時に、熱膨張性微小球の外殻が収縮し、内包された発泡剤が気化して、熱膨張性微小球の外部へ抜け出てしまうため、軽量な成形体を成形することができないだけでなく、熱膨張性微小球より抜け出た気化した発泡剤により成形体の表面付近に空孔等が発現するため、成形体表面付近の強度が低下してしまい、成形機の吐出口と成形体がこすれることで、成形体の表面にささくれが発生することがある。
 重合性成分は、本発明の効果を阻害しない範囲で、上記のN-置換マレイミド、ニトリル系単量体、(メタ)アクリル酸エステル系単量体以外の他の単量体を含んでもよい。当該単量体としては、ハロゲン含有単量体、(メタ)アクリル酸アミド系単量体、スチレン系単量体;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル等のビニルエステル系単量体;エチレン、プロピレン、イソブチレン等のエチレン不飽和モノオレフイン系単量体;ビニルメチルエーテル、ビニルエチルエーテル、ビニルイソブチルエーテル等のビニルエーテル系単量体;ビニルメチルケトン等のビニルケトン系単量体;N-ビニルカルバゾール、N-ビニルピロリドン等のN-ビニル系単量体;ビニルナフタリン塩、N-メチロール(メタ)アクリルアミド、N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリレート、ビニルグリシジルエーテル、プロペニルグリシジルエーテル、グリシジル(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、4-ヒドロキシブチルアクリレートグリシジルエーテル、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、p-ヒドロキシスチレン等を挙げることができる。
 ハロゲン含有単量体としては、特に限定はないが、塩化ビニル、塩化ビニリデン等が挙げられる。
 (メタ)アクリル酸アミド系単量体としては、特に限定はないが、アクリルアミド、置換アクリルアミド、メタクリルアミド、置換メタクリルアミド等が挙げられる。
 スチレン系単量体としては、特に限定はないが、スチレン、α-メチルスチレン、ビニルトルエン、t-ブチルスチレン、p-ニトロスチレン、クロロメチルスチレン等が挙げられる。
 重合性成分は、実質的にカルボキシル基含有単量体を含まないことが好ましい。カルボキシル基含有単量体としては、たとえばアクリル酸、メタクリル酸、クロトン酸、マレイン酸、イタコン酸等が挙げられる。重合性成分としてガルボキシル基含有単量体を含んだ場合、熱膨張性微小球の耐熱性を効果的に高めることができるが、基材樹脂との相溶性が低くなるために、熱膨張性微小球が成形体表面付近にとどまりやすくなることがある。そのため、成形時に熱膨張性微小球が膨張した際に、成形体の表面付近の強度が低下し、成形機から吐出する際に吐出口との擦れにより成形体の表面がささくれ状になり、成形体の外観を損なうだけでなく、ささくれにより成形体が脆くなり、成形体が成形途中で切れてしまい、安定的に成形体を成形できないこともある。
 実質的にカルボキシル基含有単量体を含まないとは、重合性成分中のカルボキシル基含有単量体の重合割合が好ましくは5重量%以下、より好ましくは3重量%以下、より好ましくは1重量%以下、さらに好ましくは0.3重量%以下、特に好ましくは0.1重量%未満、最も好ましくは0重量%である。
 重合性成分は、前述のとおり、架橋剤を含んでいてもよい。架橋剤を用いて重合することにより、得られる熱膨張性微小球では、内包された発泡剤の熱膨張時における保持率(内包保持率)の低下が抑制され、効果的に熱膨張させるだけでなく、成形体表面のささくれを抑制することができる。
 架橋剤としては、特に限定はないが、たとえば、ジビニルベンゼン等の芳香族ジビニル化合物;メタクリル酸アリル、トリアクリルホルマール、トリアリルイソシアネート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジアクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、PEG#200ジ(メタ)アクリレート、PEG#400ジ(メタ)アクリレート、PEG#600ジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスルトールトリ(メタ)アクリレート、ペンタエリスルトールテトラアクリレート、ジペンタエリスルトールヘキサアクリレート、2-ブチル-2-エチル-1,3-プロパンジオールジアクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート等の多官能(メタ)アクリレート化合物等を挙げることができる。なかでも、熱膨張性微小球の膨張性および耐熱性を高める点で、アクリレート基を2つ以上有する多官能アクリレート系化合物が好ましい。上記架橋剤は、1種又は2種以上を併用してもよい。
 架橋剤の分子量は、特に限定はないが、140~35000であると好ましく、より好ましくは200~25000、さらに好ましくは250~10000、特に好ましくは298~5000で、最も好ましくは300~3500ある。架橋剤の分子量が35000以下であると、熱膨張時において、内包された発泡剤の保持性が向上し、膨張性が向上する傾向がある。また、架橋剤の分子量が140以上であると、熱膨張性微小球の耐熱性が向上する傾向がある。
 架橋剤はなくてもよいが、その量については特に限定はなく、単量体成分100重量部に対して0~4.0重量部であると好ましく、さらに好ましくは0.02~2重量部、特に好ましくは0.05~1.5重量部である。架橋剤が4.0重量部より多いと、熱膨張性微小球の膨張性が低下し、成形体を軽量化できないことがある。
 発泡剤は、加熱することで気化する成分であり、熱膨張性微小球の熱可塑性樹脂からなる外殻に内包されることによって、熱膨張性微小球は微小球全体として熱膨張性(微小球全体が加熱により膨らむ性質)を示すようになる。
 発泡剤は、特に限定されないが、たとえば、プロパン、(イソ)ブタン、(イソ)ペンタン、(イソ)ヘキサン、(イソ)ヘプタン、(イソ)オクタン、(イソ)ノナン、(イソ)デカン、(イソ)ウンデカン、(イソ)ドデカン、(イソ)トリデカン等の炭素数3~13の炭化水素;(イソ)ヘキサデカン、(イソ)エイコサン等の炭素数13超で20以下の炭化水素;プソイドクメン、石油エーテル、初留点150~260℃および/または蒸留範囲70~360℃であるノルマルパラフィンやイソパラフィン等の石油分留物等の炭化水素;それらのハロゲン化物;ハイドロフルオロエーテル等の含弗素化合物;テトラアルキルシラン;加熱により熱分解してガスを生成する化合物等を挙げることができる。これらの発泡剤は、1種または2種以上を併用してもよい。上記発泡剤は、直鎖状、分岐状、脂環状のいずれでもよく、脂肪族であるものが好ましい。
 発泡剤は、加熱することによって気化する物質であるが、発泡剤として熱可塑性樹脂の軟化点以下の沸点を有する物質を内包すると、熱膨張性微小球の膨張温度において膨張に十分な蒸気圧を発生させることが可能で、高い発泡倍率を付与することが可能であるために好ましい。この場合、発泡剤として熱可塑性樹脂の軟化点以下の沸点を有する物質と共に、熱可塑性樹脂の軟化点超の沸点を有する物質を内包していてもよい。
 また、発泡剤として熱可塑性樹脂の軟化点超の沸点を有する物質を内包する場合、熱可塑性樹脂の軟化点超の沸点を有する物質が発泡剤に占める割合については、特に限定はないが、好ましくは95重量%以下、より好ましくは80重量%以下、さらに好ましくは70重量%以下、特に好ましくは65重量%以下、特により好ましくは50重量%以下、最も好ましくは30重量%未満である。熱可塑性樹脂の軟化点超の沸点を有する物質の割合が、95重量%を超えると最大膨張温度(Tmax)は高くなるが発泡倍率が低下し、成形体を軽量化できなくなる。
 発泡剤については、別の考え方があり、炭素数8以下の炭化水素から選ばれる少なくとも1種(以下、炭化水素(a)ということがある。)を必須としていてもよく、炭素数8の炭化水素を必須としてもよい。熱膨張性微小球の膨張性と耐熱性を向上させる点から、発泡剤が炭素数8の炭化水素を含むと好ましい。
 炭化水素(a)の炭素数は、好ましくは4~8、さらに好ましくは5~8、特に好ましくは8である。炭化水素(a)は、直鎖状、分岐状、脂環状のいずれでもよく、脂肪族であるものが好ましい。炭化水素(a)としては、たとえば、たとえば、(イソ)ブタン、(イソ)ペンタン、(イソ)ヘキサン、(イソ)ヘプタン、(イソ)オクタン等の炭化水素を挙げることができる。これらの炭化水素(a)は、1種または2種以上を併用してもよい。
 発泡剤として用いる炭化水素(a)が2種類以上からなると、十分な発泡倍率を有する熱膨張性微小球となるために好ましい。
 発泡剤は、炭化水素(a)とともに、炭素数9以上の炭化水素から選ばれる少なくとも1種(以下、炭化水素(b)ということがある。)をさらに含有すると、成形体の成形時またはマスターバッチの製造時に、熱膨張性微小球の膨張を抑制することが可能となり、効率的に成形体を軽量化できるため好ましい。
 炭化水素(b)の炭素数は、好ましくは10以上、より好ましくは12以上であり、さらに好ましくは14以上であり、特に好ましくは16以上である。また、炭化水素(b)の炭素数の上限値は、好ましくは25である。炭化水素(b)は、直鎖状、分岐状、脂環状のいずれでもよく、脂肪族であるものが好ましい。炭化水素(b)としては、たとえば、ノナン、イソノナン、デカン、イソデカン、ドデカン、トリデカン、テトラデカン、ペンタデカン、ヘキサデカン、ヘプタデカン、オクタデカン、ナノデカン、エイコサン、ヘンエイコサン、ドコサン、トリコサン、テトラコサン、ペンタコサン等の直鎖状炭化水素;イソドデカン、3-メチルウンデカン、イソトリデカン、4-メチルドデカン、イソテトラデカン、イソペンタデカン、イソヘキサデカン、2,2,4,4,6,8,8-ヘプタメチルノナン、イソヘプタデカン、イソオクタデカン、イソナノデカン、2,6,10,14-テトラメチルペンタデカン、イソエイコサン、2,2,4,4,6,6,8,8,10-ノナメチルウンデカン、イソヘンエイコサン、イソドコサン、イソトリコサン、イソテトラコサン、イソペンタコサン等の分岐状炭化水素;シクロドデカン、シクロトリデカン、ヘキシルシクロヘキサン、ヘプチルシクロヘキサン、n-オクチルシクロヘキサン、シクロペンタデカン、ノニルシクロヘキサン、デシルシクロヘキサン、ペンタデシルシクロヘキサン、ヘキサデシルシクロヘキサン、ヘプタデシルシクロヘキサン、オクタデシルシクロヘキサン等の脂環状炭化水素等を挙げることができる。これらの炭化水素(b)は、1種または2種以上を併用してもよい。
 発泡剤における炭化水素(a)の重量割合については、特に限定はないが、好ましくは発泡剤の50重量%以上、さらに好ましくは60重量%以上、より好ましくは75重量%以上、特に好ましくは85量%以上であり、最も好ましくは90重量%以上である。炭化水素(a)の重量割合の上限値は、100重量%である。
 炭化水素(a)の重量割合が発泡剤に対して50重量%より低くなると、熱膨張性微小球の発泡倍率が低くなり、成形体を軽量化できないことがある。
 炭化水素(a)について、1種または2種以上併用する場合、炭化水素(a)における炭素数が4~7の炭化水素から選ばれる少なくとも1種(a-1)と、炭素数が8の炭化水素(a-2)の重量比(a-1)/(a-2)は、熱膨張性微小球の膨張性と耐熱性を向上させる点において、特に限定はないが、80/20~0/100が好ましく、70/30~20/80がより好ましく、60/40~30/70がさらに好ましく、55/45~40/60が特に好ましい。炭素数が4~7の炭化水素から選ばれる少なくとも1種(a-1)は、炭素数4、5、6、および7の炭化水素より選ばれる少なくとも1種であり、炭素数8の炭化水素(a-2)は炭素数8の炭化水素より選ばれる少なくとも1種である。
 (a-1)/(a-2)が上記範囲外の場合、成形時に熱膨張性微小球が膨張してしまい、熱膨張性微小球を構成する外殻が薄くなるため、成形時に受ける外圧に熱膨張性微小球が耐え切れず、熱膨張性微小球が収縮または潰れてしまうことがある。これにより、軽量な成形体を成形することができないだけでなく、熱膨張性微小球の収縮または潰れの際に、内包している発泡剤が気化し、熱膨張性微小球の外部へ抜け出てしまい、抜け出た気化した発泡剤により成形体の表面付近に空孔等が発現するため、成形体表面付近の強度が低下してしまい、成形機の吐出口と成形体がこすれることで、成形体の表面にささくれが発生することがある。また、マスターバッチ製造時では、熱膨張性微小球が膨張してしまい、マスターバッチを安定的に製造できないことがある。
 発泡剤が炭化水素(b)をさらに含む場合、炭化水素(b)の重量割合については、特に限定はないが、好ましくは発泡剤における50重量%以下、より好ましくは40重量%以下、さらに好ましくは30重量%以下、特に好ましくは20重量%以下であり、最も好ましくは10重量%以下である。炭化水素(b)の重量割合の下限値は、0重量%である。炭化水素(b)の重量割合が発泡剤に対して50重量%超であると、熱膨張性微小球の耐熱性は向上するが、膨張性が低下し、成形体の軽量化ができないことがある。
 発泡剤が炭素数4~7の炭化水素から選ばれる少なくとも1種(a-1)と、炭素数8の炭化水素(a-2)と、さらに炭素数9以上の炭化水素から選ばれる少なくとも1種(b)とを含むと、耐熱性および膨張性を両立することができ、マスターバッチの製造時または成形体の成形時の熱膨張性微小球の膨張を抑制でき、かつ成形体の成形時に成形体表面のささくれを抑制しつつ、発泡倍率の高い、軽量な成形体を成形できるため、好ましい。
 熱膨張性微小球に内包された発泡剤の内包率については特に限定されないが、熱膨張性微小球の重量に対して、好ましくは1~45重量%、好ましくは3~35重量%、さらに好ましくは5~30重量%、特に好ましくは8~25重量%である。内包率が1重量%未満であると、発泡剤の効果が得られないことがある。一方、内包率が45重量%を超えると熱膨張性微小球の外殻の厚みが薄くなることで、耐熱性が低下するだけでなく、気化した発泡剤が外部へ抜ける原因となり、成形体の表面付近の強度が、熱膨張性微小球より抜け出た気化した発泡剤により発現する空孔等により低下するため、成形機の吐出口と成形体がこすれることで、成形体の表面にささくれが発生することがある。
 熱膨張性微小球の平均粒子径については特に限定されないが、好ましくは1~100μm、より好ましくは2~70μm、さらに好ましくは3~50μm、特に好ましくは7~40μm、最も好ましくは10~35μmである。平均粒子径が1μmより小さい場合、熱膨張性微小球の膨張性能が低くなることがある。一方、平均粒子径が100μmより大きい場合、膨張した熱膨張性微小球により、成形体の表面の凹凸が大きくなり、成形体の表面付近の強度が低下するため、成形機の吐出口と成形体がこすれることで、成形体の表面にささくれが発生することがある。なお、熱膨張性微小球の平均粒子径の評価方法は、実施例に記載する。
 熱膨張性微小球の粒度分布の変動係数CVは、特に限定されないが、好ましくは50%以下、さらに好ましくは45%以下、特に好ましくは40%以下である。変動係数CVは、以下に示す計算式(1)及び(2)で算出される。
Figure JPOXMLDOC01-appb-M000001
(式中、sは粒子径の標準偏差、<x>は平均粒子径、xはi番目の粒子径、nは粒子の数である。)
 熱膨張性微小球の最大発泡倍率は、特に限定されないが、(1)15倍以上、(2)25倍以上、(3)40倍以上、(4)50倍以上、(5)60倍以上、(6)70倍以上の順で好ましい(括弧内の数値が大きくなるほど好ましい)。一方、最大発泡倍率の上限値は、好ましくは250倍である。熱膨張性微小球の最大発泡倍率が15倍未満であると、成形品を十分に軽量化できないことがある。一方、最大発泡倍率が250倍超であると、膨張した熱膨張性微小球により、成形体表面の凹凸が大きくなり、成形体の表面付近の強度が低下するため、成形機の吐出口と成形体がこすれることで、成形体の表面にささくれが発生することがある。なお、熱膨張性微小球の最大発泡倍率の評価方法は実施例に記載する。
 熱膨張性微小球の膨張開始温度(Ts)は、基材樹脂の融点または軟化点より高ければ特に限定はされないが、好ましくは135℃以上、より好ましくは140℃以上、さらに好ましくは150℃以上、特に好ましくは160℃以上、最も好ましくは165℃以上である。一方、膨張開始温度の上限値は、好ましくは190℃である。
 熱膨張性微小球の最大膨張温度(Tmax)は、特に限定はないが、好ましくは173~240℃、より好ましくは175~210℃、さらに好ましくは180~205℃、特に好ましくは180~200℃である。熱膨張性微小球の最大膨張温度が173℃未満であると十分な耐熱性が得られず、成形体の成形時に、熱膨張性微小球の外殻が収縮し、内包している発泡剤が気化して、熱膨張性微小球の外部へ抜け出てしまうため、軽量な成形体を成形することができないだけでなく、熱膨張性微小球より抜け出た気化した発泡剤により成形体の表面付近に空孔等が発現するため、成形体の表面付近の強度が低下してしまい、成形機の吐出口と成形体がこすれることで、成形体の表面にささくれが発生することがある。一方、熱膨張性微小球の最大膨張温度が240℃を超えると、熱膨張性微小球の耐熱性が高くなり、成形時に熱膨張性微小球が十分に膨張せず、成形体を軽量化できないことがある。
 なお、熱膨張性微小球の膨張開始温度および最大膨張温度の評価方法は実施例に記載する。
〔熱膨張性微小球の製造方法〕
 熱膨張性微小球の製造方法は、上記で説明した重合性成分および発泡剤を含有する油性混合物を分散させた水性分散媒中で、重合性成分を重合させる工程(以下、重合工程ということがある)を含む製造方法である。
 重合工程では、重合開始剤を含有する油性混合物を用いて、重合性成分を重合開始剤の存在下で重合させることが好ましい。
 重合開始剤としては、特に限定はないが、過酸化物やアゾ化合物等を挙げることができる。
 過酸化物としては、たとえば、ジイソプロピルパーオキシジカーボネート、ジ-sec-ブチルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、ジベンジルパーオキシジカーボネート等のパーオキシジカーボネート;ラウロイルパーオキサイド、ベンゾイルパーオキサイド等のジアシルパーオキサイド;メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド等のケトンパーオキサイド;2,2-ビス(t-ブチルパーオキシ)ブタン等のパーオキシケタール;クメンハイドロパーキサイド、t-ブチルハイドロパーオキサイド等のハイドロパーオキサイド;ジクミルパーオキサイド、ジ-t-ブチルパーオキサイド等のジアルキルパーオキサイド;t-ヘキシルパーオキシピバレート、t-ブチルパーオキシイソブチレート等のパーオキシエステルを挙げることができる。
 アゾ化合物としては、たとえば、2,2′-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2′-アゾビスイソブチロニトリル、2,2′-アゾビス(2,4-ジメチルバレロニトリル)、2,2′-アゾビス(2-メチルプロピオネート)、2,2′-アゾビス(2-メチルブチロニトリル)、1,1‘-アゾビス(シクロヘキサン-1-カルボニトリル)等を挙げることができる。これらの重合開始剤は、1種または2種以上を併用してもよい。重合開始剤としては、単量体成分に対して可溶な油溶性の重合開始剤が好ましい。
 重合開始剤の重量割合については、重合性成分100重量部に対して、好ましくは0.05~10重量%であり、さらに好ましくは0.1~8重量%、最も好ましくは0.2~5重量%である。当該重量割合が0.05重量%未満である場合、重合性成分の重合が不十分となり、発泡剤の保持性が低下し、気化した発泡剤が熱膨張性微小球の外部へ抜け、軽量な成形体を成形できないだけでなく、抜け出た気化した発泡剤による成形体の表面付近に発現する空孔等により、成形体の表面付近の強度が低下するため、成形機の吐出口と成形体がこすれることで、成形体の表面にささくれが発生することがある。当該重量割合が10重量%を超える場合、耐熱性および膨張性が低下し、成形体を軽量化できないことがある。
 熱膨張性微小球の製造方法では、油性混合物を水性分散媒中に分散させた水系懸濁液を調製し、重合性成分を重合させる。
 水性分散媒は、油性混合物を分散させるイオン交換水等の水を主成分とする媒体であり、メタノール、エタノール、プロパノール等のアルコールや、アセトン等の親水性有機性の溶媒をさらに含有してもよい。本発明における親水性とは、水に任意に混和できる状態であることを意味する。水性分散媒の使用量については、特に限定はないが、重合性成分100重量部に対して、100~1000重量部の水性分散媒を使用するのが好ましい。
 水性分散媒は、電解質をさらに含有してもよい。電解質としては、たとえば、塩化ナトリウム、塩化マグネシウム、塩化カルシウム、硫酸ナトリウム、硫酸マグネシウム、硫酸アンモニウム、炭酸ナトリウム等を挙げることができる。これらの電解質は、1種又は2種以上を併用してもよい。電解質の含有量については、特に限定はないが、水性分散媒100重量部に対して0.1~50重量部含有するのが好ましい。
 水性分散媒は、水酸基、カルボン酸(塩)基及びホスホン酸(塩)基から選ばれる親水性官能基とヘテロ原子とが同一の炭素原子に結合した構造を有する水溶性1,1-置換化合物類、重クロム酸カリウム、亜硝酸アルカリ金属塩、金属(III)ハロゲン化物、ホウ酸、水溶性アスコルビン酸類、水溶性ポリフェノール類、水溶性ビタミンB類及び水溶性ホスホン酸(塩)類から選ばれる少なくとも1種の水溶性化合物を含有してもよい。なお、本発明における水溶性とは、水100gあたり1g以上溶解する状態であることを意味する。
 水性分散媒中に含まれる水溶性化合物の量については、特に限定はないが、重合性成分100重量部に対して、好ましくは0.0001~1.0重量部、さらに好ましくは0.0003~0.1重量部、特に好ましくは0.001~0.05重量部である。水溶性化合物の量が少なすぎると、水溶性化合物による効果が十分に得られないことがある。また、水溶性化合物の量が多すぎると、重合速度が低下したり、原料である重合性成分の残存量が増加したりすることがある。
 水性分散媒は、電解質や水溶性化合物以外に、分散安定剤や分散安定補助剤を含有していてもよい。
 分散安定剤としては、特に限定はないが、たとえば、第三リン酸カルシウム、複分解生成法により得られるピロリン酸マグネシウム、ピロリン酸カルシウムや、コロイダルシリカ、アルミナゾル、水酸化マグネシウム等を挙げることができる。これらの分散安定剤は、1種又は2種以上を併用してもよい。
 分散安定剤の配合量は、重合性成分100重量部に対して、好ましくは0.1~30重量部、さらに好ましくは0.5~20重量部である。
 分散安定補助剤としては、特に限定はないが、たとえば、高分子タイプの分散安定補助剤、カチオン性界面活性剤、アニオン性界面活性剤、両性イオン界面活性剤、ノニオン性界面活性剤等の界面活性剤を挙げることができる。これらの分散安定補助剤は、1種又は2種以上を併用してもよい。
 水性分散媒は、例えば、水(イオン交換水)に、水溶性化合物とともに、必要に応じて分散安定剤及び/又は分散安定補助剤等を配合して調製される。重合時の水性分散媒のpHは、水溶性化合物、分散安定剤、分散安定補助剤の種類によって適宜決められる。
 熱膨張性微小球の製造方法では、水酸化ナトリウムや、水酸化ナトリウム及び塩化亜鉛の存在下で重合を行ってもよい。
 本発明の製造方法では、所定粒子径の球状油滴が調製されるように油性混合物を水性分散媒中に懸濁分散させる。
 油性混合物を懸濁分散させる方法としては、例えば、ホモミキサー(例えば、プライミクス株式会社製)等により攪拌する方法や、スタティックミキサー(例えば、株式会社ノリタケエンジニアリング社製)等の静止型分散装置を用いる方法、膜懸濁法、超音波分散法等の一般的な分散方法を挙げることができる。
 次いで、油性混合物が球状油滴として水性分散媒に分散された分散液を加熱することにより、懸濁重合を開始する。重合反応中は、分散液を攪拌するのが好ましく、その攪拌は、例えば、単量体の浮上や重合後の熱膨張性微小球の沈降を防止できる程度に緩く行えばよい。
 重合温度は、重合開始剤の種類によって自由に設定されるが、好ましくは30~100℃、さらに好ましくは40~90℃の範囲で制御される。反応温度を保持する時間は、1~20時間程度が好ましい。重合初期圧力については特に限定はないが、ゲージ圧で0~5MPa、さらに好ましくは0.1~3MPaの範囲である。
 熱膨張性微小球の製造方法では、重合後のスラリー(熱膨張性微小球含有分散液)に金属塩を添加し、カルボキシル基とイオン架橋を形成させてもよく、金属を含有する有機化合物で表面処理してもよい。
 金属塩は、2価以上の金属カチオンが好ましく、例えばAl、Ca、Mg、Fe、Ti、Cu等が挙げられる。添加のしやすさから、水溶性が好ましいが、非水溶性でも構わない。金属含有有機化合物は、表面処理効率より、水溶性であると好ましく、周期表3~12に属する金属を含有する有機化合物であると、耐熱性がさらに向上するため好ましい。
 得られたスラリーを遠心分離機、加圧プレス機、真空脱水機等により濾過し、含水率10~50重量%、好ましくは15~45重量%、更に好ましくは20~40重量%のケーキ状物とし、ケーキ状物を、棚型乾燥機、間接加熱乾燥機、流動乾燥機、真空乾燥機、振動乾燥機、気流乾燥機等により乾燥し、含水率6重量%以下、好ましくは3重量%以下である。
 イオン性物質の含有量を低減させる目的で、ケーキ状物を水洗及び/又は再分散後に再濾過し、乾燥させても構わない。また、スラリーを噴霧乾燥機、流動乾燥機等により乾燥し、乾燥粉体を得てもよい。
 熱膨張性微小球については、その外殻よりも内部側に樹脂粒を少なくとも1個有する熱膨張性微小球の多核化の割合が少ないほど好ましい。平均粒子径が1~100μm(好ましくは2~70μm、さらに好ましくは3~50μm、特に好ましくは7~40μm、最も好ましくは10~35μm)である熱膨張性微小球について、このことを確認するために、たとえば、実施例で詳しく説明するように、目開きが異なる各種ふるい(目開き:25μm、32μm、38μm、45μm、53μm)を用意し、熱膨張性微小球を分級して、各分画試料中の多核粒子の割合を評価する方法がある。
 この評価方法で、多核粒子の割合の評価基準を、分級した熱膨張性微小球に占める多核粒子の個数割合が、0~10%の場合はA、10%超~30%の場合はB、30%超~70%の場合はC、70%超~90%の場合はD、90%超~100%の場合はEとしたとき、下記(a)~(e)の評価を同時に満足すると好ましい。
(a)粒子径45~53μmの(すなわち、目開き53μmを通過し、目開き45μmを通過しなかった)熱膨張性微小球ではA~Cのいずれか(好ましくはAまたはBのいずれか、より好ましくはA)の評価
(b)粒子径38~45μmの(すなわち、目開き45μmを通過し、目開き38μmを通過しなかった)熱膨張性微小球ではA~Cのいずれか(好ましくはAまたはBのいずれか、より好ましくはA)の評価
(c)粒子径32~38μmの(すなわち、目開き38μmを通過し、目開き32μmを通過しなかった)熱膨張性微小球ではAまたはB(好ましくはA)の評価
(d)粒子径25~32μmの(すなわち、目開き32μmを通過し、目開き25μmを通過しなかった)熱膨張性微小球ではAまたはB(好ましくはA)の評価
(e)粒子径25μm未満の(すなわち、目開き25μmを通過した)熱膨張性微小球ではAの評価
 なお、上記分級した熱膨張性微小球に占める多核粒子の個数割合の評価方法は、実施例に記載する。
 上記好ましい場合には、樹脂粒を有する熱膨張性微小球の割合が小さく、本来、熱可塑性樹脂が構成すべき外殻を構成するようになるので、得られた熱膨張性微小球の外殻の厚みが理論値よりも薄くなりにくく、その耐熱性、膨張性が高い。
 また、ふるい上に熱膨張性微小球がほとんど残存していない場合もあるが、この場合、該ふるいを熱膨張性微小球がほぼすべて通過したと判断できる。
 本発明の熱膨張性微小球は、その外殻が、N―置換マレイミドとメタクリロニトリルを必須に含むニトリル系単量体とを含む重合性単量体の重合体であるため、耐熱性および内包している発泡剤の保持性が高く、熱膨張性微小球の収縮を抑制でき、ゴム、オレフィン系樹脂、及び熱可塑性エラストマーから選ばれる少なくとも1種の基材樹脂を含む樹脂組成物の成分として使用することで、従来の熱膨張性微小球では達成できなかった、表面のささくれが抑制され、外観が良好な樹脂組成物、又は成形体が作成でき、さらに、軽量な成形体が作成可能である。よって、本発明の熱膨張性微小球は、ゴム、オレフィン系樹脂、及び熱可塑性エラストマーから選ばれる少なくとも1種の基材樹脂を含む樹脂組成物、又は成形体を成形する成形用途に、好適である。
〔湿粉状熱膨張性微小球〕
 本発明の湿粉状熱膨張性微小球は、前述の熱膨張性微小球と、後述する液状化合物とを含む湿粉状態の熱膨張性微小球である。湿粉状熱膨張性微小球を使用することで、樹脂組成物を作成又は使用する際に、粉体である熱膨張性微小球の粉立ちを抑制でき、また、樹脂組成物中の熱膨張性微小球の分散性を向上させることができ、好ましい。
 湿粉状熱膨張性微小球における、液状化合物の含有量は熱膨張性微小球100重量部に対して、特に限定は無いが、好ましくは0.5~60重量部、より好ましくは1~50重量部、さらに好ましくは2~40重量部、特に好ましくは3~30重量部、最も好ましくは5~20重量部である。液状化合物の含有量が0.5重量部未満であると、熱膨張性微小球の粉立ちを抑制できないことがある。一方、60重量部超であると、熱膨張性微小球の湿粉状態が不均一になることがある。
 湿粉状熱膨張性微小球を製造する方法としては、液状化合物によって熱膨張性微小球を湿粉状態とすることができれば、特に限定はないが、たとえば、熱膨張性微小球を液状化合物とともに、揺動及び/又は攪拌する方法が挙げられる。揺動及び/又は攪拌は、一般的な粉体混合機を用いて行うことができ、たとえば、リボン型ミキサーや、副軸ローター型混合機、ヘンシェルミキサー、タンブラーミキサー、プラネタリーミキサー、スーパーミキサー(株式会社カワタ製)ハイスピードミキサー(株式会社深江製)、ニューグラムマシン(株式会社セイシン企業製)、及びSVミキサー(株式会社神鋼環境ソリューション社製)等が挙げられる。
〔樹脂組成物およびその製造方法〕
 本発明の樹脂組成物は、上記で説明した基材樹脂と、熱膨張性微小球を必須とする組成物である。それぞれの成分の含有量は、特に限定はないが、基材樹脂100重量部に対して、熱膨張性微小球の含有量は好ましくは0.25~15重量部、より好ましくは0.5~12重量部、さらに好ましくは1~10重量部、特に好ましくは1.5~8重量部である。
 上記で熱膨張性微小球が0.25重量部未満の場合は、成形体を十分に軽量できないことがある。また、熱膨張性微小球が15重量部超の場合は、成形体が脆くなり、成形機の吐出口と成形体がこすれることで、成形体の表面にささくれが発生することがある。また、成形体が途中で切れてしまい、連続して成形体を成形できないこともある。
 本発明の樹脂組成物がマスターバッチである場合は、特に限定はないが、基材樹脂100重量部に対して、熱膨張性微小球の含有量は、好ましくは25~300重量部、より好ましくは25~250重量部、さらに好ましくは40~235重量部、特に好ましくは65~200重量部、最も好ましくは90~186重量部である。
 上記で熱膨張性微小球が25重量部未満の場合、成形体を軽量化する際にマスターバッチを多く添加しなければならなくなる為、非経済的になることがある。また、300重量部超の場合、基材樹脂が少なくなるため、熱膨張性微小球と基材樹脂の混練物の粘度が大きくなり、マスターバッチの製造時に生じる摩擦熱により、熱膨張性微小球が膨張してしまい、マスターバッチの寸法が安定しないことがあったり、マスターバッチ製造時に途切れてしまうことがあったりなど、マスターバッチを安定的に製造できなくなることがある。
 本発明の樹脂組成物は、熱膨張性微小球と基材樹脂以外にも、必要に応じて、化学発泡剤、安定剤、充填剤、可塑剤、滑剤、軟化剤、湿化剤、着色剤、帯電防止剤、ゴム加硫・架橋剤、加硫促進剤等の各種添加剤を含有していてもよい。その場合、熱膨張性微小球および基材樹脂に対して、第三成分として各種添加剤を添加してもよい。
 化学発泡剤としては、特に限定はないが、たとえば、炭酸アンモニウム、重炭酸ナトリウム、無水硝酸ナトリウム等の無機系化学発泡剤;ジニトロソペンタメチレンテトラミン、N,N´-ジメチル-N,N´-ジニトロソテレフタルアミド、ベンゼンスルフォニルヒドラジド、p,p´-オキシビス(ベンゼンスルフォニルヒドラジド)、アゾジカルボアミド等の有機系化学発泡剤等を挙げることができる。また、これらの化学発泡剤とともに、尿素系、有機酸系、金属塩系等の発泡助剤を併用してもよい。これらの化学発泡剤および発泡助剤は、1種または2種以上を併用することができる。
 安定剤としては、フェノール系安定剤、硫黄系安定剤、リン系安定剤、有機スズ系安定剤、鉛系安定剤、カルシウム-亜鉛系安定剤、カルシウム-亜鉛系安定剤等の酸化防止剤や、紫外線吸収剤、ヒンダードアミン系安定剤などの光安定剤や、ハイドロタルサイトが挙げられる。これら安定剤は、1種または2種以上を併用してもよい。
 充填剤としては、特に限定はないが、無機系充填剤でも有機系充填剤でもよい。無機系充填剤としては、たとえば、ガラス繊維(金属を被覆したものを含む)、炭素繊維(金属を被覆したものを含む)、チタン酸カリウム、炭化珪素、窒化珪素、セラミック繊維、金属繊維、アラミド繊維、硫酸バリウム、硫酸カルシウム、珪酸カルシウム、炭酸カルシウム、炭酸マグネシウム、三酸化アンチモン、酸化亜鉛、酸化チタン、酸化マグネシウム、酸化鉄、二硫化モリブデン、水酸化マグネシウム、水酸化アルミニウム、マイカ、タルク、カオリン、パイロフィライト、ベントナイト、セリサイト、ゼオライト、ウォラストナイト、アルミナ、クレー、フェライト、黒鉛、石膏、ガラスビーズ、ガラスバルーン、石英等からなる充填剤が挙げられる。また、有機系充填剤としては、たとえば、セルロース、ケナフ、フスマの植物繊維類;羊毛、絹等の動物繊維類;アラミド繊維、フェノール繊維、ポリエステル系繊維、アクリル系繊維、ポリエチレンやポリプロピレン等のポリオレフィン系繊維、ポリビニルアルコール系繊維、ポリ塩化ビニル系繊維、フッ素樹脂系繊維等の合成繊維類;レーヨン等の再生繊維;セルロースアセテート等の半合成繊維;木粉、竹粉、おから、籾殻、果実殻粉、単糖類、でんぷん等の多糖類等からなる充填剤が挙げられる。
 これらの充填剤は、1種または2種以上を併用してもよい。
 可塑剤としては、特に限定はないが、たとえば、フラル酸ジイソノニル(DINP)、ジオクチルフタレート(DOP)、ジブチルフタレート(DBP)、ブチルオクチルフタレート(BOP)、アジピン酸ジイソノニル(DINA)、トリメット酸トリオクチル(TOTM)、リン酸トリクレシル(TCP)、アセチルクエン酸トリブチル(ATBC)、エポキシ化大豆油、エポキシ化亜麻仁油等等を挙げることができる。
 滑剤としては、特に限定はないが、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸バリウム、ステアリン酸鉛、ステアリン酸亜鉛、ラウリン酸カルシウム、ラウリン酸バリウム、ラウリン酸亜鉛、リシノール酸カルシウム等の金属石鹸;パラフィンワックス、流動パラフィン等の炭化水素系ワックス;ステアリン酸アミド、オレイン酸アミド、エルカ酸アミド、メチレンビスステアリン酸アミド、エチレンビスステアリン酸アミド等のアミド系ワックス;ステアリン酸モノグリセリド、ステアリルステアレート、ステアリン酸ブチル等のエステル系ワックス;ステアリン酸等の脂肪酸系ワックス;ステアリルアルコール等の高級アルコール系ワックス;ポリテトラフルオロエチレンの変性物等が挙げられる。
 軟化剤又は湿化剤としては、基材樹脂と混合して基材樹脂を軟化させることができるもの、前述の熱膨張性微小球と混合して、熱膨張性微小球の粉立ちを抑制できる湿粉状熱膨張性微小球(以下、湿粉状微小球ということがある)を作成できる液状化合物であれば、特に限定はなく、たとえば、アルキレングリコール、ポリアルキレングリコール、グリセリン、プロセスオイル、流動パラフィン、ナフテン系オイル、アロマ系オイル、油脂類等の有機系液状化合物;シリコーンオイル等の無機系液状化合物が挙げられ、本願効果を奏する点から有機系液状化合物が好ましく、プロセスオイル、シリコーンオイル、流動パラフィンがより好ましい。
 着色剤としては、特に限定はないが、たとえば、カーボンブラック、酸化チタン、カオリン、クロム黄、フタロシアニンブルー、赤鉛等が挙げられる。
 帯電防止剤としては、特に限定はないが、たとえば、アニオン系帯電防止剤、非イオン系帯電防止剤等が挙げられる。
 ゴム加硫・架橋剤としては、粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄等の硫黄;塩化イオウ、セレン、テルル等の無機系加硫剤;モルホリンジスルフィド、アルキルフェノールジスルフィド類、チウラムジスルフィド類、ジチオカルバミン酸塩等の含硫黄有機化合物;1,1-ジ-t-ブチルペルオキシ-3,3,5-トリメチルシクロヘキサン、ジ-t-ブチルペルオキシド、ジクミルペルオキシド、t-ブチルクミルペルオキシド、2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサン、1,3-ビス-(t-ブチルペルオキシ-イソプロピル)ベンゼン等の有機過酸化物類等が挙げられる。これらの加硫・架橋剤は、1種又は2種以上を併用してもよい。
 加硫促進剤としては、具体的には、ヘキサメチレンテトラミン等のアルデヒドアンモニア類;ジフェニルグアニジン、ジ(o-トリル)グアニジン、o-トリルーピグアニド等のグアニジン類;チオカルバニリド、ジ(o-トリル)チオウレア、N,N’-ジエチルチオウレア、ジラウリルチオウレア等のチオウレア類;メルカプトベンゾチアゾール、ジベンゾチアゾールジスルフィド、N,N’-ジ(エチルチオカルバモイルチオ)ベンゾチアゾール等のチアゾール類;N-t-ブチル-2-ベンゾチアジルスルフェンアミド等のスルフェンアミド類;テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラブチルチウラムジスルフィド等のチウラム類;ジメチルチオカルバミン酸亜鉛、ジメチルジチオカルバミン酸ナトリウム、ジメチルジチオカルバミン酸銅、ジメチルチオカルバミン酸テルル、ジメチルチオカルバミン酸鉄等のカルバミン酸塩類;ブチルチオキサントゲン酸亜鉛等のキサントゲン酸塩類等が挙げられる。これらの加硫促進剤は、1種又は2種以上を併用してもよい。
 本発明の樹脂組成物は、基材樹脂および熱膨張性微小球を混合して、分散(好ましくは均一分散)することによって製造できる。ここで、上記で説明した添加剤を混合してもよい。樹脂組成物の製造方法としては、たとえば、
1)熱膨張性微小球と基材樹脂と必要に応じて添加剤を、熱膨張性微小球の膨張開始温度および基材樹脂の融点及び/又は軟化点よりも低い温度となるように制御しつつ、基材樹脂と熱膨張性微小球を混合し、樹脂組成物(予備混合物)を製造する方法。
2)上記1)にて製造した予備混合物を、熱膨張性微小球の膨張開始温度よりも低くかつ、基材樹脂の融点及び/又は軟化点よりも高い温度で混練し、必要に応じて所望の形状に造形した、熱膨張性微小球と基材樹脂の樹脂組成物(マスターバッチ)を製造する方法。
3)基材樹脂を膨張膨張性微小球の膨張開始温度よりも低くかつ、基材樹脂の融点及び/又は軟化点よりも高い温度にて、あらかじめ混練し、次いで、熱膨張性微小球および必要に応じて添加剤を添加し、膨張開始温度よりも低くかつ、基材樹脂の融点及び/又は軟化点よりも高い温度にて混練して、樹脂組成物(予備混練物)を製造する方法。
4)上記3)にて調製した予備混練物を、さらに熱膨張性微小球の膨張開始温度よりも低くかつ、基材樹脂の融点及び/又は軟化点よりも高い温度にて所望の形状に造形した、熱膨張性微小球と基材樹脂の樹脂組成物(マスターバッチ)を製造する方法。
5)上記2)または4)にて製造したマスターバッチとマトリックス樹脂(基材樹脂)を、熱膨張性微小球の膨張開始温度とマスターバッチに含まれる基材樹脂およびマトリックス樹脂の融点及び/又は軟化点よりも低い温度となるように制御しつつ、マスターバッチとマトリックス樹脂を混合し、樹脂組成物を製造する方法。
などが挙げられる。
 樹脂組成物を製造する方法の例としては、特に限定はないが、ニーダー、ロール、ミキシングロール、ミキサー、単軸押出機、二軸押出機、多軸押出機等により混合することが好ましい。
 樹脂組成物を製造する方法の例としては、基材樹脂をロール、ニーダー、加圧ニーダー、バンバリーミキサー等の混練機で基材樹脂の融点及び/又は軟化点よりも高い温度かつ、温度熱膨張膨張性微小球の膨張開始温度よりも低い温度、好ましくは10℃以上低い温度にて、あらかじめ混練させ、次いで、熱膨張性微小球を添加し、熱膨張性微小球の膨張開始温度よりも高い温度にならないよう、必要に応じて温度を制御しつつ混練し、予備混練物を製造する。
 得られた予備混練物を単軸押出機、二軸押出機、多軸押出機等の押出機に投入して樹脂組成物をストランド状に製造する。この際、得られたストランドの太さはストランドダイの径及び/またはストランド状物の巻き取り速度によって調整することができる。また、得られたストランドを裁断機によって所望の長さにすることでマスターバッチを製造する。ストランドの裁断の方法は、ストランドが押出機より押出された直後に、裁断機にて裁断し、裁断したマスターバッチを冷却する方法や、ストランドを押出機にて押出した後に、冷却し、その後に裁断機にて裁断する方法等が挙げられる。
 マスターバッチの断面の形状は、使用する用途等によって適宜決められるが、たとえば、円形、楕円形、多角形等がある。
 また、予備混練物を、二軸ロール等のロールに投入して、ロールの回転速度や、ロール間隔等を調整する事で、所望の寸法となるシート状の樹脂組成物も製造できる。
 得られたマスターバッチとマトリックス樹脂とをリボン型ミキサーや副軸ローター型混合機にて、必要に応じて熱膨張性微小球の膨張開始温度よりも低くかつ、マスターバッチやマトリックス樹脂の基材樹脂の融点及び/又は軟化点よりも低い温度となるように制御しつつ混合して、樹脂組成物を得る方法が挙げられる。
 樹脂組成物がマスターバッチの場合、真比重は、特に限定はないが、好ましくは0.65~1.5、より好ましくは0.70~1.3、さらにこのましくは0.75~1.0である。真比重が0.65より低い場合、熱膨張性微小球が膨張しており、製造したマスターバッチの寸法が安定しないことがあったり、製造途中で途切れてしまうことがあったりなど、マスターバッチを安定的に製造できなくなることがある。さらに、マスターバッチを使用して、成形体を成形する際、熱膨張性微小球が膨張しているため、熱膨張性微小球の外殻が薄くなり、耐熱性や発泡剤の保持性が低下しており、内包された発泡剤が気化した際に、熱膨張性微小球の外殻より外部へ抜け出てしまい、収縮してヘタってしまうため、軽量な成形体を成形することができないだけでなく、成形体の表面付近の強度が、気化した発泡剤により発現する空孔等により低下するため、成形機の吐出口と成形体がこすれることで、成形体の表面にささくれが発生することがある。一方、真比重が1.5超の場合、樹脂組成物を用いて得られた成形体内部の空孔が、不均一に分散してしまうことがある。マスターバッチの真比重の評価方法は実施例に記載する。
 樹脂組成物がマスターバッチの場合、基材樹脂の融点及び/又は軟化点よりも高く、熱膨張性微小球の最大膨張温度付近の温度にて加熱することにより、基材樹脂を溶融及び/又は軟化させ、かつ熱膨張性微小球を膨張させ、発泡体を製造することができる。
 マスターバッチを上記条件にて加熱して製造した、発泡体の発泡倍率は、好ましくは10~120倍、より好ましくは15~100倍、さらに好ましくは20~85倍、特に好ましくは25~75倍である。発泡体の発泡倍率が10倍よりも低いと、マスターバッチを使用して得られた成形体を十分に軽量化できない。一方、発泡倍率が120倍超の場合、マスターバッチを使用して得られた成形体表面の凹凸が大きくなり、成形体表面付近の強度が低くなり、成形機の吐出口と成形体がこすれることで、成形体の表面にささくれが発生することがある。発泡体の発泡倍率の評価方法は実施例に記載する。
〔成形体及びその製造方法〕
 本発明の成形体は、樹脂組成物をそのまま成形したものでもよく、樹脂組成物がマスターバッチの場合は、マスターバッチとマトリックス樹脂を含む混合物を成形したものでもよい。
 また、成形体は必要に応じて、前述の樹脂組成物または前述のマスターバッチとマトリックス樹脂の混合物に、さらに前述の添加剤を添加及び/又は含有させて、成形したものでもよい。
 成形体の製造方法は、前述の樹脂組成物を、樹脂組成物に含有される熱膨張性微小球の最大膨張温度に近い温度で成形する工程を含むものである。成形する方法としては、特に限定はないが、本発明の樹脂組成物は異型などの押出成形が好適である。押出成形の他には、射出成形、カレンダー成形、インフレーション成形、中空成形、混練成形、圧縮成形、真空成形、熱成形等挙げられる。
 本発明の樹脂組成物は、含まれる熱膨張性微小球の外殻が、N―置換マレイミドとメタクリロニトリルを必須に含むニトリル系単量体とを含む重合性単量体の重合体であるため、耐熱性および内包している発泡剤の保持性が高く、成形時間が長い押出成形において、熱膨張性微小球の収縮を抑制でき、成形体表面のささくれ発生を抑制しつつ、効果的に成形体を軽量化できるため好ましい。
 成形体の製造方法について、押出成形により成形体を製造する工程を例に挙げて説明する。使用する押出成形機としては、シリンダー部にヒーター及び熱電対を備えており、樹脂組成物を供給するための原料供給口を装備している。シリンダー内部には樹脂組成物をさらに溶融及び/軟化させて、混練しながら原料供給口から押出し方向へ移動させるためのスクリューが設置されている。
 シリンダー内に供給された樹脂組成物はシリンダー内で基材樹脂の融点又は軟化点以上でかつ含有される熱膨張成微小球の最大膨張温度に近い温度(成形体の成形温度)に加熱されることにより溶融及び/又は軟化した混練物となり、目的の形状に成形可能となり、ヒーターおよび熱電対を備えたダイを経て、押出成形され、成形体が得られる。
 ここで、成形体の成形温度とは、溶融及び/又は軟化した混練物が成形機のシリンダー内を移動する時の溶融及び/又は軟化した混練物の温度をいう。
 成形体の成形温度は、成形体の発泡倍率の点から、160~210℃が好ましく、より好ましくは170~210℃、さらに好ましくは175~205℃、特に好ましくは180~200℃、最も好ましくは185~195℃である。該温度が160℃未満の場合、熱膨張性微小球の膨張が不十分となり、目標の倍率が得られないことがある。一方、該温度が210℃超の場合、熱膨張性微小球の外殻が収縮し、内包された発泡剤が気化して、熱膨張性微小球の外殻より外部へ抜け出てしまうため、軽量な成形体を成形することができないだけでなく、成形体の表面付近に気化した剤による空孔等が発現するため、成形体表面付近の強度がり低下し、成形機の吐出口と成形体がこすれることで、成形体の表面にささくれが発生することがある。
 また、成形体の製造工程おいて押出成形機にベントが設けられている場合、ベントを閉じた状態で成形を行うことが望ましい。ベントを開放した状態では、ベントより溶融混練物が押出され、軽量な成形体が得られにくいことがある。
 また、押出成形においては、ダイ直前に設けられたベントに真空ポンプ等を接続し、排気して、混練時に発生したボイドを抜くことも可能である。
 成形体の製造工程において、成形用組成物を原料供給口に投入してからダイより押出されるまでの時間はスクリューの回転数により調整することができる。スクリューの回転数は、設備および基材樹脂の種類等により適宜設定すればよいが、成形用組成物を原料供給口に投入してからダイより押出されるまでの時間(滞留時間)は0.5~20分が好ましく、より好ましくは0.7~15分、さらに好ましくは0.7~10分、特に好ましくは1~7分である。該滞留時間が0.5分未満であると、加熱が不十分となり膨張性微小球が十分に膨張せず、所望の発泡倍率の成形体が得られないことがある。一方、該滞留時間が20分より長くなると、作業効率が低下し生産性に問題が生じることがある。
 ダイより押出された成形体は、通常、空冷、水冷、ロール等の冷却設備にて冷却され、所望の軽量な成形体となる。本発明においては、冷却設備、引取設備等の一般的な設備を使用できる。
 本発明の成形体の発泡倍率は、好ましくは1.2~3倍、より好ましくは1.3~2.7倍である。発泡倍率が3倍超であると、得られた成形体の強度が低くなり、成形機の吐出口と成形体がこすれることで、成形体の表面にささくれが発生することがある。なお、成形体の発泡倍率の評価方法は、実施例で説明する。
 本発明の成形体において、熱膨張成微小球によって成形体内部に造孔された気泡径である成形体内部の平均気泡径は、好ましくは30~300μm、より好ましくは50~200μm、さらに好ましくは70~150μmである。成形体内部の平均気泡径が30μmよりも小さい場合は、得られた成形体の発泡倍率が低くなることがある。一方、成形体の気泡径が300μmよりも大きい場合、得られた成形体の強度が低くなり、成形機の吐出口と成形体がこすれることで、成形体の表面にささくれが発生することがある。なお、成形体内部の平均気泡径の評価方法は、実施例で説明する。
 本発明の成形体は、例えば、軽量で断熱性、遮音性を持ち、外観も良好であるため、建築物の窓枠シール材や扉のパッキン等の建材用シール材や、自動車用のグラスランやボディシール等の自動車用シール材、インパネやドアトリム等の自動車用内装材、バンパー等の動車の自動車用外装材、建築物の壁紙、建築物の床材、靴底、転写ロールや給紙ロール等のOA機器用ロール、製鉄用ロール、製紙用ロール、印刷用電線ロール、または工業用ロール等の工業用ロールの用途に好適であり、特に建材用シール材、自動車用シール材、壁紙、靴底、または床材に特に好適である。
 本発明のゴム製品は、ホース類、ウェザーストリップ等の自動車や各種車両部品;電線、電線ジョイント、シール材、ガスケット等の電気・電子部品;建築用ガスケット、建築用止水シ-ト、土木用止水シ-ト等の土木・建築部品;帯電ロール、転写ロール、現像ロール、給紙ロール等のOA機器用ロール;製鉄用ロール、製紙用ロール、印刷用電線ロール、工業用ロール等の工業用ロール;一般産業用部品等の各種分野に好適に利用できる。
 本発明のゴム製品が、ウェザーストリップ、印刷用ブランケットゴム、自動車用水系ホース、エアー系ホース、ルーフィングシート、電線の被覆材、または靴底であると好ましい。
 以下に、本発明の成形体の製造方法の実施例について、具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。以下の実施例及び比較例において、断りのない限り、「%」とは「重量%」を意味するものである。
 また、以下で用いる熱膨張性微小球、実施例及び比較例で成形した成形体について次に示す要領で物性の評価を行った。熱膨張性微小球を単に微小球、湿粉状態の湿粉状熱膨張性微小球を湿粉状微小球、成形体を発泡成形体とそれぞれいうことがある。
〔平均粒子径と粒度分布の測定〕
 測定装置として、日機装株式会社のマイクロトラック粒度分布計(型式9320-HRA)を使用し、体積基準測定によるD50値を平均粒子径とした。
〔膨張開始温度(Ts)および最大膨張温度(Tmax)の測定〕
 測定装置として、DMA(DMA Q800型、TA instruments社製)を使用した。微小球0.5mgを直径6.0mm(内径5.65mm)、深さ4.8mmのアルミカップに入れ微小球層の上部にアルミ蓋(直径5.6mm、0.1mm)をのせて試料を準備した。その試料に上から加圧子により0.01Nの力を加えた状態でサンプル高さを測定した。加圧子により0.01Nの力を加えた状態で、20℃から300℃まで10℃/minの昇温速度で加熱し、加圧子の垂直方向における変位量を測定した。正方向への変位開始温度を膨張開始温度(Ts)とし、最大変位量を示したときの温度を最大膨張温度(Tmax)として測定した。
〔熱膨張性微小球の最大発泡倍率の測定〕
 熱膨張性微小球の発泡倍率は、以下の測定方法で測定した。
 アルミ箔で縦12cm、横13cm、高さ9cmの底面の平らな箱を作成し、その中に熱膨張性微小球1.0gを均一になるように入れ、ギア式オーブン中に入れ、所定温度で4分間加熱し、膨張した中空粒子を得た。
 次に、未加熱の熱膨張性微小球および熱膨張性微小球を加熱して得られた中空粒子の真比重を環境温度25℃、相対湿度50%の雰囲気下においてイソプロピルアルコールを用いた液浸法(アルキメデス法)により測定した。
 具体的には、容量100mlのメスフラスコを空にし、乾燥後、メスフラスコ重量(WB)を秤量した。秤量したメスフラスコにイソプロピルアルコールをメニスカスまで正確に満たした後、イソプロピルアルコール100mlの充満されたメスフラスコの重量(WB)を秤量した。
 また、容量100mlのメスフラスコを空にし、乾燥後、メスフラスコ重量(WS)を秤量した。秤量したメスフラスコに約50mlの粒子(未加熱の熱膨張性微小球または熱膨張性微小球を加熱して得られた中空粒子)を充填し、粒子の充填されたメスフラスコの重量(WS)を秤量した。そして、粒子の充填されたメスフラスコに、イソプロピルアルコールを気泡が入らないようにメニスカスまで正確に満たした後の重量(WS)を秤量した。そして、得られたWB、WB、WS、WSおよびWSを下式に導入して、粒子それぞれの真比重(d)を計算した。
d={(WS-WS)×(WB-WB)/100}/{(WB-WB)-(WS-WS)}
 ここで、熱膨張性微小球を加熱して得られた中空粒子の真比重(d)で未加熱の熱膨張性微小球の真比重(d)を割ることにより発泡倍率(E1)を算出した。熱膨張性微小球の最大発泡倍率(E1max)は、最大膨張時の発泡倍率に相当する。
〔多核粒子の割合の評価〕
 熱膨張性微小球を音波分級機(SW-20-AT形ハンドシフター、筒井理化学器械株式会社製)を使用して、粒子径ごとに分画し、各分画における、外殻よりも内部側に樹脂粒を少なくとも1個有する熱膨張性微小球(多核粒子)を、それぞれ以下のようにして観察した。
 まず、各分画に分けるために、JISφ200mmのプラスチック製ナイロン網ふるい(目開き:25μm、32μm、38μm、45μm、53μm)を用意した。そして、下から受器、目開き25μmふるい、目開き32μmふるい、目開き38μmふるい、目開き45μmふるい、目開き53μmふるいの順番に重ね合わせ、最後に、最上部に音波発生機を載置して、分級装置を組み立てた。
 次に、熱膨張性微小球を25g秤取し、目開き53μmのふるいの上に配置した後、音波周波数を順番に50Hz、60Hz、50Hzに変化させながら、それぞれ15分間分級処理を行った。なお、音波周波数は、ふるいの段数、ふるいの目開き、試料の特性により最適値があるため、50~300Hzの範囲で変化させることができ、上記に限定されるものではない。
 分級処理後の各分画の試料を回収し、試料1重量部とエポキシ樹脂(エポキシ系接着剤:アラルダイトラピッド、ハンツマン・アドバンスド・マテリアルズ社製)2重量部を混合し、20~25℃にて24時間硬化させた。その後に、得られた硬化物をミクロトーム(Leica社製 RM2235)でスライスした。次いで、スライスされた断面を電子顕微鏡(倍率300倍)にて観察し、各分画試料中の多核粒子の割合を評価した。
 評価は、電子顕微鏡で観察される熱膨張性微小球50個を無作為に選び、そのうちの多核粒子の個数を数えて行った。多核粒子の割合の評価基準は、0~5個の場合(すなわち0~10%の場合)をA、6~15個の場合(すなわち10%超~30%の場合)をB、16~35個の場合(すなわち30%超~70%の場合)をC、36~45個の場合(すなわち70%超~90%の場合)をD、46~50個の場合(すなわち90%超~100%の場合)をEとして、それぞれを評価した。
 また、ふるい上に熱膨張性微小球がほとんど残存していない場合は、ふるいを通過と評価した。
〔マスターバッチの真比重の測定〕
 マスターバッチの真比重(d)は、上記未加熱の熱膨張性微小球および熱膨張性微小球を加熱して得られた中空粒子の真比重の測定方法と同様にして、測定を実施した。
〔発泡体の発泡倍率の測定〕
 マスターバッチの発泡倍率は以下の方法で実施した。
 上記膨張した中空粒子の作成方法と同様に、アルミ箔で縦12cm、横13cm、高さ9cmの底面の平らな箱を作成し、その中にマスターバッチ0.5gを均一になるように入れ、ギア式オーブン中に入れ、所定温度で4分間加熱し、マスターバッチが発泡した発泡体を得た。
 次に、発泡体の真比重(d)を上記未加熱の熱膨張性微小球および熱膨張性微小球を加熱して得られた中空粒子の真比重の測定方法と同様にして、測定を実施した。ここで、マスターバッチを加熱して得られた発泡体の真比重(d)で未加熱のマスターバッチの真比重(d)を割ることにより発泡倍率(E2)を算出した。マスターバッチの発泡倍率(E2max)は、マスターバッチの最大発泡時の発泡倍率に相当する。
〔マスターバッチの製造安定性〕
 マスターバッチを45分間連続して製造した際の、製造安定性を以下の基準で3段階評価を実施した。
○:45分間一度も途切れず、寸法も安定して製造可能、良好。
△:45分間一度も途切れることはないが、寸法が安定せず、やや不良。
×:45分間で一度は途切れてしまい、さらに寸法も安定せず、不良。
〔成形体表面の状態〕
 成形体の表面のささくれの有無を目視にて判断し、以下の基準での4段階評価を実施した。
◎:成形体表面にささくれが認められず、良好。
○:成形体表面に小さいささくれが若干数認められるが、問題ないレベル。
△:成形体表面にささくれが多く認められ、不良。
×:成形体表面に大きなささくれが多く認められ、不良。
〔成形体の成形安定性〕
 成形体の成形を45分間実施した際の、成形安定性を以下の基準で3段階評価を実施した。
○:45分間一度も成形体が切れることなく、かつ成形体の端部の裂けまたは成形体への付着物が認められず成形可能、良好。
△:45分間一度も成形体がきれることは無いが、成形体の端部の裂けまたは成形体への付着物が認められ、不良。
×:45分間で一度は成形体が切れてしまい、連続して成形体を成形できず、不良。
〔成形体内部の平均気泡径〕
 成形体を切断して、走査式電子顕微鏡(株式会社キーエンス社製、VE-8800)を用いて、加速電圧20kV、倍率30倍の条件で撮影し、電子顕微鏡写真を得た。その電子顕微鏡写真を用いて、任意の視野(3mm×3mm)中の気泡径を測定し、気泡の平均気泡径を算出し、成形体内部の平均気泡径とした。
〔成形体の比重および成形体の発泡倍率〕
 精密比重計AX200(島津製作所社製)を用いた液浸法により、成形体の比重(D1)を測定した。次に基材樹脂のみ、又は微小球を含まずに基材樹脂と添加剤の混合物又は混練物を成形したベース成形体の比重(D2)を測定した。成形体の発泡倍率は下記式より算出した。
 成形体の発泡倍率(倍)=D2/D1
〔製造例1-1〕
 イオン交換水600gに、塩化ナトリウム150g、シリカ有効成分20重量%であるコロイダルシリカ65g、ポリビニルピロリドン1g及びエチレンジアミン四酢酸・4Na塩0.2gを加え、pHを3に調整し、水性分散媒を調製した。
 これとは別に、N-フェニルマレイミド55g、メタクリロニトリル25g、アクリロニトリル160g、イソボルニルメタクリレート8.5g、PEG#200ジアクリレート1.5g、2,2’-アゾビス(2,4-ジメチルバレロニトリル)1.5g、イソペンタン32.5g、イソオクタン35g、イソドデカン5gを混合して油性混合物を調整した。
 水性分散媒と油性混合物を混合し、得られた混合物をホモミキサー(プライミクス社製、TKホモミキサー)により10000rpmで1分間分散して、懸濁液を調製した。この懸濁液を容量1.5リットルの加圧反応器に移して窒素置換をしてから反応初期圧0.3MPaにし、80rpmで攪拌しつつ重合温度60℃で20時間重合した。重合後に得られた重合液を濾過、乾燥して得られた熱膨張性微小球を微小球1とした。得られた微小球1の物性を表1に示す。
〔製造例1-2~1-15、製造比較例1-1~1-5〕
 製造例1-2~1-15、製造比較例1-1~1-5では、製造例1-1において、表1~2に示すように反応条件をそれぞれ変更する以外は、製造例1と同様にして、微小球2~20を得た。更にその物性を評価し、表1~2に示した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
〔実施例1-1〕
 100重量部の基材樹脂(1)(スチレン系エラストマー、アロン化成株式会社製、AR-SC-65、比重0.90、軟化点66℃)、3重量部の微小球1及び0.3重量部のプロセスオイルをあらかじめリボンミキサーにて混合し、樹脂組成物を得た。このとき、樹脂組成物に含まれる熱膨張性微小球は、湿粉状態の湿粉状熱膨張性微小球であった。
 得られた樹脂組成物を押出成形機であるラボプラストミル(東洋精機社製ME-25、2軸押出機)の原料供給口から供給し、シリンダー内での混練物の温度を190℃、Tダイ(幅150mm、リップ厚み1.0mm)の温度を190℃とし、スクリュー回転数45rpm(滞留時間4.5分)で溶融混合物を押出し、板状成形体(幅148mm、厚み1.0mm)を得た。
 得られた成形体の比重、成形体の発泡倍率、成形体内部の平均気泡径、成形体表面の状態、及び成形体の安定成形性についての成形体の物性の評価を実施した。その結果を表3に示す。
〔実施例1-2~1-20、比較例1-1~1-5〕
 実施例1-2~1-20、比較例1-1~1-5では実施例1-1において、表4~7に示すように樹脂組成物の配合条件、成形体の成形温度、スクリュー回転数をそれぞれ変更する以外は、実施例と同様にして各樹脂組成物および各成形体を得た。実施例1-2~1-20における樹脂組成物に含まれるそれぞれの熱膨張性微小球は実施例1-1同様、湿粉状態の湿粉状熱膨張性微小球であった。得られた各成形体について、成形体の比重、成形体の発泡倍率、成形体内部の平均気泡径、成形体表面の状態、及び成形体の安定成形性についての成形体の物性の評価を実施した。その結果を表3~5に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
〔製造例2-1〕
 容量10Lの加圧ニーダーを用いて、基材樹脂(2)(エチレン-酢酸ビニル共重合体、東ソー株式会社製、ウルトラセン720、比重0.947、融点67℃)2.8kgを溶融混練し、混練温度が80℃に到達したときに、製造例1で得られた微小球1を4.2kg配合して均一に混合し、予備混練物とした。
 次に、得られた予備混練物をシリンダー口径40mmの二軸押出機の原料供給口から供給し、押出温度70℃でストランド径が2.5~4.0mmとなるよう混練物をストランド状に押出し、得られたストランドを長さが2.0~4.0mmとなるようペレタイズし、マスターバッチ(MB1)を得た。得られたマスターバッチの物性を表6に示す。
〔製造例2-2~2-15、製造比較例2-1~2-5〕
 製造例2-2~2-15、製造比較例2-1~2-5では、製造例2-1において、表6~7に示すようにマスターバッチの配合条件、製造条件をそれぞれ変更する以外は、製造例1と同様にして、MB2~20を得た。更にその物性を評価し、表8~10に示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
〔製造例2-16〕
 加圧ニーダーを用いて、JIS K6300に準拠して測定した100℃のムーニー粘度ML(1+4)が40であるエチレンプロピレン非共有ジエン共重合体ゴム(EPDM)を100重量部と、微小球2を300重量部、プロセスオイル100重量部を混練温度が75℃に到達するまで混練し、予備混練物を得た。
 次に、得られた予備混練物をシリンダー口径40mmの一軸押出機の原料供給口から供給し、押出温度80℃でストランド径が3.0~5.5mmとなるよう混練物をストランド状に押出し、得られたストランドを長さが2.0~4.0mmとなるようペレタイズし、マスターバッチ(MB21)を得た。得られたマスターバッチの真比重は0.95、発泡体の発泡倍率(E2max)は60倍、マスターバッチの製造安定性は良好であった。
〔製造例2-17〕
 加圧ニーダーを用いて、JIS K6300に準拠して測定した100℃のムーニー粘度ML(1+4)が40であるエチレンプロピレン非共有ジエン共重合体ゴム(EPDM)を100重量部と、微小球11を250重量部、プロセスオイル100重量部を混練温度が75℃に到達するまで混練し、予備混練物を得た。
 次に、得られた予備混練物をシリンダー口径40mmの一軸押出機の原料供給口から供給し、押出温度80℃でストランド径が3.0~5.5mmとなるよう混練物をストランド状に押出し、得られたストランドを長さが2.0~4.0mmとなるようペレタイズし、マスターバッチ(MB22)を得た。得られたマスターバッチの真比重は0.93、発泡体の発泡倍率(E2max)は40倍、マスターバッチの製造安定性は良好であった。
〔製造例2-18〕
 加圧ニーダーを用いて、JIS K6300に準拠して測定した100℃のムーニー粘度ML(1+4)が40であるエチレンプロピレン非共有ジエン共重合体ゴム(EPDM)を100重量部と、微小球15を300重量部、プロセスオイル100重量部を混練温度が75℃に到達するまで混練し、予備混練物を得た。
 次に、得られた予備混練物をシリンダー口径40mmの一軸押出機の原料供給口から供給し、押出温度80℃でストランド径が3.0~5.5mmとなるよう混練物をストランド状に押出し、得られたストランドを長さが2.0~4.0mmとなるようペレタイズし、マスターバッチ(MB23)を得た。得られたマスターバッチの真比重は0.95、発泡体の発泡倍率(E2max)は53倍、マスターバッチの製造安定性は良好であった。
〔実施例2-1〕
 100重量部のマトリックス樹脂(基材樹脂(5)(オレフィン系エラストマー、ExxonMobil社製、Santoprene 8201-60、比重0.95)、5重量部のMB1をあらかじめリボンミキサーにて混合し、樹脂組成物を得た。
 得られた樹脂組成物を押出成形機であるラボプラストミル(東洋精機社製ME-25、1軸押出機)の原料供給口から供給し、シリンダー内での混練物の温度を185℃、ストランドダイ(ストランドダイのノズル口径3.0mm)の温度を185℃とし、スクリュー回転数45rpm(滞留時間4分)で溶融混合物を押出し、ストランド状成形体(ストランド径3.0mm)を得た。
 得られた成形体の比重、成形体の発泡倍率、成形体内部の平均気泡径、成形体表面の状態、及び成形体の安定成形性についての成形体の物性の評価を実施した。その結果を表8に示す。
〔実施例2-2~2-22、比較例2-1~2-4〕
 実施例2-2~2-22、比較例2-1~2-4では実施例2-1において、表11~13に示すように樹脂組成物の配合条件、成形体の成形温度、スクリュー回転数をそれぞれ変更する以外は、実施例と同様にして各樹脂組成物および各成形体を得た。得られた核成形体について、成形体の比重、成形体の発泡倍率、成形体内部の平均気泡径、成形体表面の状態、及び成形体の安定成形性についての成形体の物性の評価を実施した。その結果を表8~10に示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
〔実施例3-1〕
 100重量部のマトリックス樹脂(基材樹脂(6)(高密度ポリエチレン、日本ポリエチレン社製、ノバテックHD HE121、比重0.938、融点127℃)、5重量部のMB1をあらかじめリボンミキサーにて混合し、樹脂組成物を得た。
 得られた樹脂組成物を押出成形機であるラボプラストミル(東洋精機社製ME-25、1軸押出機)の原料供給口から供給し、シリンダー内での混練物の温度を180℃、ストランドダイ(ストランドダイのノズル口径3.0mm)の温度を180℃とし、スクリュー回転数45rpm(滞留時間:5分)で溶融混合物を押出し、ストランド状成形体(ストランド径3.0mm)を得た。
 得られた成形体の比重、成形体の発泡倍率、成形体内部の平均気泡径、成形体表面の状態、及び成形体の安定成形性についての成形体の物性の評価を実施した。その結果を表11に示す。
〔実施例3-2~3-19、比較例3-1~3-4〕
 実施例3-2~3-19、比較例3-1~3-4では実施例3-1において、表14~16に示すように樹脂組成物の配合条件、成形体の成形温度、スクリュー回転数をそれぞれ変更する以外は、実施例と同様にして各樹脂組成物および各成形体を得た。得られた核成形体について、成形体の比重、成形体の発泡倍率、成形体内部の平均気泡径、成形体表面の状態、及び成形体の安定成形性の成形体についての物性の評価を実施した。その結果を表11~13に示す。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
〔実施例4-1〕
 まず、製造例1-1で得られた2.5重量部の微小球1と、プロセスオイル0.3重量部をリボンミキサーにて混合して、湿粉状微小球1を得た。
 得られた湿粉状微小球1と、JIS K6300に準拠して測定した100℃のムーニー粘度ML(1+4)が54であるエチレンプロピレン非共役ジエン共重合体ゴム(EPDM)を100重量部、炭酸カルシウムを100重量部、プロセスオイル30重量部、加硫促進剤としてジチオカルバメート系加硫促進剤サンセラーPZを3重量部、硫黄0.4重量部、をバンバリーミキサーにて、125℃で3分間混練し、予備混練物である樹脂組成物を得た。得られた予備混練物の膨張は確認されなかった。
 得られた予備混練物を押出成形機の原料供給口から供給し、シリンダー内での混練物の温度を125℃で、押出成形機のダイから所定の断面形状をとなるよう押出し、その後、加硫路にて170℃×13minの加硫条件になるよう加硫し、成形体を得た。
 得られた成形体の比重、成形体の発泡倍率、成形体内部の平均気泡径、成形体表面の状態、及び成形体の安定成形性についての成形体の物性の評価を実施した。その結果を表14に示す。
〔実施例4-2~4-15、比較例4-1~4-3〕
 実施例4-2~4-15、比較例4-1~4-3では実施例4-1において、表14~16に示すように樹脂組成物の配合条件、混練条件、成形条件、及び加硫条件を変更する以外は、実施例と同様にして各樹脂組成物および各成形体を得た。得られた核成形体について、成形体の比重、成形体の発泡倍率、成形体内部の平均気泡径、成形体表面の状態、及び成形体の安定成形性についての成形体の物性の評価を実施した。その結果を表14~15に示す。なお、実施例4-1、4-4、4-7~4-8、4-14、比較例4-1~4-3において、微小球を含まず、基材樹脂(EPDM)、炭酸カルシウム、プロセスオイル、加硫促進剤、硫黄を表17~19で示す配合量で作成した成形体の比重は1.4であり、実施例4-1、4-4、4-7~4-8、4-14、比較例4-1~4-3以外の実施例においては、微小球を含まず、基材樹脂、炭酸カルシウム、プロセスオイル、加硫促進剤、硫黄を表17~19で示す配合量で作成した成形体の比重は1.3であった。また、表17~19において、EPDM、NR、NBR、CRの略称は、それぞれエチレンプロピレン非共有ジエン共重合体ゴム(EPDM)、天然ゴム(NR)、アクリロニトリルブタジエンゴム(NBR)、クロロプレンゴム(CR)を表す。
 実施例4-1~4-15は、バンバリーミキサーにて混合した混練物の膨張は確認されなかった。一方、比較例4-1~4-3は混練後の予備混練物の膨張が確認され、さらに、押出成形機から押出された樹脂組成物の表面はささくれが確認された。
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
 表1~15では、表16に示す略号が用いられている。
Figure JPOXMLDOC01-appb-T000017
 表3~4、表8~15からわかるように、含有する熱膨張性微小球の外殻をなす熱可塑性樹脂が、N-置換マレイミドとメタクリロニトリルを必須とするニトリル系単量体とを含む重合性成分の重合体である樹脂組成物を用いて得られた実施例の成形体は、成形体表面のささくれが抑制されていることが分かる(図1参照)。一方、含有する熱膨張性微小球の外殻をなす熱可塑性樹脂が、N-置換マレイミドとメタクリロニトリルを必須とするニトリル系単量体を含まない重合性成分の重合体である樹脂組成物を用いて得られた比較例の成形体は、成形体表面にささくれが発生していることが分かる(図2参照)。
 さらに、含有する熱膨張性微小球の外殻をなす熱可塑性樹脂が、N-置換マレイミドとメタクリロニトリルを必須とするニトリル系単量体とを含む重合性成分の重合体である樹脂組成物を用いて得られた実施例の成形体は、成形体の発泡倍率が高く、成形体の安定成形性も優れていることも確認された。
 本発明の樹脂組成物は、自動車や各種車両部品、電気・電子部品、土木・建築部品、OA機器用ロール、工業用ロール等の各種分野に好適に利用できる。
 11 熱可塑性樹脂からなる外殻
 12 発泡剤
 13 熱可塑性樹脂からなる樹脂粒

Claims (18)

  1.  ゴム、オレフィン系樹脂、及び熱可塑性エラストマーから選ばれる少なくとも1種の基材樹脂と熱膨張性微小球とを含み、
    前記熱膨張性微小球が、熱可塑性樹脂からなる外殻と、それに内包されかつ加熱することによって気化する発泡剤とから構成され、
    前記熱可塑性樹脂が、N-置換マレイミドと、メタクリロニトリルを必須とするニトリル系単量体とを含む重合性成分の重合体である、
    樹脂組成物。
  2.  前記熱可塑性エラストマーがオレフィン系エラストマーである、請求項1に記載の樹脂組成物。
  3.  前記重合性成分が、下記条件1を満たす、請求項1又は2に記載の樹脂組成物。
    条件1:前記重合性成分に占めるN-置換マレイミドおよびメタクリロニトリルの重量割合が、下記式(I)の関係を有する。
    (N-置換マレイミドの重量割合)÷(メタクリロニトリルの重量割合)≧0.33  式(I)
  4.  前記熱膨張性微小球が下記条件2にて評価したときに下記(a)~(e)を同時に満たす、請求項1~3のいずれかに記載の樹脂組成物。
    条件2:熱膨張性微小球を25μm、32μm、38μm、45μm、53μmのふるいで分級し、分級した熱膨張性微小球に占める外殻よりも内部側に樹脂粒を少なくとも1個有する熱膨張性微小球の個数割合が0~10%の場合はA、10超~30%の場合はB、30超~70%の場合はC、70超~90%の場合はD、90超~100%の場合はEと評価したとき、
    (a)粒子径45~53μmの熱膨張性微小球ではA~Cのいずれかの評価。
    (b)粒子径38~45μmの熱膨張性微小球ではA~Cのいずれかの評価。
    (c)粒子径32~38μmの熱膨張性微小球ではAまたはBの評価。
    (d)粒子径25~32μmの熱膨張性微小球ではAまたはBの評価。
    (e)粒子径25μm未満の熱膨張性微小球ではAの評価。
  5.  前記発泡剤が、炭素数8の炭化水素を含む、請求項1~4のいずれかに記載の樹脂組成物。
  6.  前記発泡剤が、さらに炭素数4~7の炭化水素から選ばれる少なくとも1種を含む、請求項5に記載の樹脂組成物。
  7.  前記発泡剤が、さらに炭素数9以上の炭化水素から選ばれる少なくとも1種を含む、請求項6に記載の樹脂組成物。
  8.  マスターバッチである、請求項1~7のいずれかに記載の樹脂組成物。
  9.  熱可塑性樹脂からなる外殻と、それに内包されかつ加熱することによって気化する発泡剤とから構成される熱膨張性微小球であって、
    前記熱可塑性樹脂が、N-置換マレイミドと、メタクリロニトリルを必須とするニトリル系単量体とを含み、かつ下記条件1を満たす重合性成分の重合体である、
    熱膨張性微小球。
    条件1:前記重合性成分に占めるN-置換マレイミドおよびメタクリロニトリルの重量割合が、下記式(I)の関係を有する。
    (N-置換マレイミドの重量割合)÷(メタクリロニトリルの重量割合)≧0.33  式(I)
  10.  前記熱膨張性微小球が下記条件2で評価したときに、下記(a)~(e)を同時に満たす、請求項9に記載の熱膨張性微小球。
    条件2:熱膨張性微小球を25μm、32μm、38μm、45μm、53μmのふるいで分級し、分級した熱膨張性微小球に占める外殻よりも内部側に樹脂粒を少なくとも1個有する熱膨張性微小球の個数割合が0~10%の場合はA、10超~30%の場合はB、30超~70%の場合はC、70超~90%の場合はD、90超~100%の場合はEと評価したとき、
    (a)粒子径45~53μmの熱膨張性微小球ではA~Cのいずれかの評価。
    (b)粒子径38~45μmの熱膨張性微小球ではA~Cのいずれかの評価。
    (c)粒子径32~38μmの熱膨張性微小球ではAまたはBの評価。
    (d)粒子径25~32μmの熱膨張性微小球ではAまたはBの評価。
    (e)粒子径25μm未満の熱膨張性微小球ではAの評価。
  11.  前記発泡剤が、炭素数8の炭化水素を含む、請求項9又は10に記載の熱膨張性微小球。
  12.  前記発泡剤が、さらに炭素数4~7の炭化水素から選ばれる少なくとも1種を含む、請求項11に記載の熱膨張性微小球。
  13.  前記発泡剤が、さらに炭素数9以上の炭化水素から選ばれる少なくとも1種を含む、請求項12に記載の熱膨張性微小球。
  14.  成形用熱膨張性微小球である、請求項9~13のいずれかに記載の熱膨張性微小球。
  15.  請求項9~14のいずれかに記載の熱膨張性微小球と、液状化合物とを含む湿粉状熱膨張性微小球。
  16.  請求項1~7のいずれかに記載の樹脂組成物、または請求項8に記載の樹脂組成物とマトリックス樹脂を含む混合物を成形してなる、成形体。
  17.  請求項1~7のいずれかに記載の樹脂組成物、または請求項8に記載の樹脂組成物とマトリックス樹脂を含む混合物を押出成形してなる、請求項16に記載の成形体。
  18.  建材用シール材、自動車用シール材、壁紙、靴底又は床材である、請求項16又は請求項17に記載の成形体。
PCT/JP2018/046015 2017-12-21 2018-12-14 樹脂組成物、成形体、及び熱膨張性微小球 WO2019124233A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/954,576 US11773237B2 (en) 2017-12-21 2018-12-14 Resin composition, molded article and heat-expandable microspheres
SE2050913A SE545557C2 (en) 2017-12-21 2018-12-14 Resin composition comprising at least one base resin and heat-expandable microspheres, molded article and heat-expandable microspheres
JP2019526012A JP6619541B2 (ja) 2017-12-21 2018-12-14 樹脂組成物、成形体、及び熱膨張性微小球
CN201880082585.2A CN111511821B (zh) 2017-12-21 2018-12-14 树脂组合物、成形体和热膨胀性微球
KR1020207020489A KR20200093062A (ko) 2017-12-21 2018-12-14 수지 조성물, 성형체, 및 열팽창성 미소구

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-244648 2017-12-21
JP2017244648 2017-12-21

Publications (1)

Publication Number Publication Date
WO2019124233A1 true WO2019124233A1 (ja) 2019-06-27

Family

ID=66994747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046015 WO2019124233A1 (ja) 2017-12-21 2018-12-14 樹脂組成物、成形体、及び熱膨張性微小球

Country Status (6)

Country Link
US (1) US11773237B2 (ja)
JP (1) JP6619541B2 (ja)
KR (1) KR20200093062A (ja)
CN (1) CN111511821B (ja)
SE (1) SE545557C2 (ja)
WO (1) WO2019124233A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022023347A1 (en) * 2020-07-29 2022-02-03 Elringklinger Ag Functional sealing element with filter portion

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102377879B1 (ko) * 2020-10-16 2022-03-23 박성계 폐 hdpe 재활용 신발 라스트 조성물을 이용한 재활용 신발 라스트의 제조방법
CN112724453A (zh) * 2020-12-23 2021-04-30 快思瑞科技(上海)有限公司 母粒材料、发泡母粒制备方法及工程塑料制备方法
CN113493671A (zh) * 2021-06-30 2021-10-12 快思瑞科技(上海)有限公司 单组分聚硫密封胶组合物、单组分聚硫密封胶及制备方法
CN113372873A (zh) * 2021-06-30 2021-09-10 快思瑞科技(上海)有限公司 双组分聚硫密封胶组合物、双组分聚硫密封胶及制备方法
US20230240836A1 (en) * 2022-01-31 2023-08-03 Alcon Inc. Adjustable intraocular lenses and methods of post operatively adjusting intraocular lenses
US20230390976A1 (en) * 2022-06-02 2023-12-07 Nano And Advanced Materials Institute Limited Master batch composition for a weight-reduced plastic product and method of manufacturing the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04178442A (ja) * 1990-11-09 1992-06-25 Matsumoto Yushi Seiyaku Co Ltd 中空微粒子組成物
WO1999046320A1 (fr) * 1998-03-13 1999-09-16 Matsumoto Yushi-Seiyaku Co., Ltd. Microcapsules thermo-expansibles et leur procede d'utilisation
WO2007058379A1 (ja) * 2005-11-21 2007-05-24 Matsumoto Yushi-Seiyaku Co., Ltd. 熱膨張性微小球、その製造方法および用途
JP2008255294A (ja) * 2007-04-09 2008-10-23 Kaneka Corp 発泡性熱可塑性樹脂粒子およびその製造方法
WO2008142849A1 (ja) * 2007-05-21 2008-11-27 Matsumoto Yushi-Seiyaku Co., Ltd. 熱膨張性微小球の製造方法およびその応用
WO2009050863A1 (ja) * 2007-10-16 2009-04-23 Matsumoto Yushi-Seiyaku Co., Ltd. 熱膨張性微小球、その製造方法および用途
CN101550215A (zh) * 2008-04-03 2009-10-07 航天材料及工艺研究所 马来酰亚胺改性聚甲基丙烯酰亚胺泡沫及其制备方法
JP2016050295A (ja) * 2014-09-02 2016-04-11 松本油脂製薬株式会社 樹脂組成物及びその利用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL302030A (ja) 1962-12-21 1900-01-01
US3615972A (en) 1967-04-28 1971-10-26 Dow Chemical Co Expansible thermoplastic polymer particles containing volatile fluid foaming agent and method of foaming the same
JP2894990B2 (ja) 1996-06-14 1999-05-24 松本油脂製薬株式会社 耐熱性と耐溶剤性に優れた熱膨張性マイクロカプセル
KR100868512B1 (ko) 2002-05-24 2008-11-12 마쓰모토유시세이야쿠 가부시키가이샤 열팽창성 마이크로 캡슐 및 그 이용
JP5107718B2 (ja) * 2005-10-20 2012-12-26 松本油脂製薬株式会社 熱膨張性微小球およびその製造方法
JP5438246B2 (ja) 2012-01-25 2014-03-12 松本油脂製薬株式会社 熱膨張性微小球、その製造方法および用途
US11746204B2 (en) * 2016-02-19 2023-09-05 Matsumoto Yushi-Seiyaku Co., Ltd. Heat-expandable microspheres and applications thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04178442A (ja) * 1990-11-09 1992-06-25 Matsumoto Yushi Seiyaku Co Ltd 中空微粒子組成物
WO1999046320A1 (fr) * 1998-03-13 1999-09-16 Matsumoto Yushi-Seiyaku Co., Ltd. Microcapsules thermo-expansibles et leur procede d'utilisation
WO2007058379A1 (ja) * 2005-11-21 2007-05-24 Matsumoto Yushi-Seiyaku Co., Ltd. 熱膨張性微小球、その製造方法および用途
JP2008255294A (ja) * 2007-04-09 2008-10-23 Kaneka Corp 発泡性熱可塑性樹脂粒子およびその製造方法
WO2008142849A1 (ja) * 2007-05-21 2008-11-27 Matsumoto Yushi-Seiyaku Co., Ltd. 熱膨張性微小球の製造方法およびその応用
WO2009050863A1 (ja) * 2007-10-16 2009-04-23 Matsumoto Yushi-Seiyaku Co., Ltd. 熱膨張性微小球、その製造方法および用途
CN101550215A (zh) * 2008-04-03 2009-10-07 航天材料及工艺研究所 马来酰亚胺改性聚甲基丙烯酰亚胺泡沫及其制备方法
JP2016050295A (ja) * 2014-09-02 2016-04-11 松本油脂製薬株式会社 樹脂組成物及びその利用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022023347A1 (en) * 2020-07-29 2022-02-03 Elringklinger Ag Functional sealing element with filter portion

Also Published As

Publication number Publication date
KR20200093062A (ko) 2020-08-04
CN111511821A (zh) 2020-08-07
CN111511821B (zh) 2022-09-20
US20200332085A1 (en) 2020-10-22
SE545557C2 (en) 2023-10-24
JPWO2019124233A1 (ja) 2019-12-19
US11773237B2 (en) 2023-10-03
SE2050913A1 (en) 2020-07-20
JP6619541B2 (ja) 2019-12-11

Similar Documents

Publication Publication Date Title
WO2019124233A1 (ja) 樹脂組成物、成形体、及び熱膨張性微小球
CN107849286B (zh) 硫化成形用橡胶组合物、其制造方法及用途
KR20160117581A (ko) 마스터배치 및 그 용도
KR20210033943A (ko) 열팽창성 미소구 및 그 용도
CN112739780A (zh) 树脂组合物及其成型体
US10941267B2 (en) Heat-expandable microspheres and application thereof
CN110997773B (zh) 当在薄层中使用时具有改进的膨胀行为的新型泡沫
JP2009167352A (ja) 樹脂成形体の表面物性改良剤、その製造方法及び用途
JP6955853B2 (ja) 発泡成形用組成物、発泡成形体及び発泡成形用熱膨張性微小球
JP6767739B2 (ja) 発泡成形体の製造方法
JP2022010375A (ja) 発泡成形用マスターバッチ及び発泡成形体
JP4974538B2 (ja) Epdm発泡体及びその製造方法
JP7008890B1 (ja) 発泡成形用マスターバッチ、及びその用途
JP2023147938A (ja) 発泡成形体及び発泡成形体の製造方法
JP2006257334A (ja) 導電性ゴム組成物、導電性スポンジゴム用組成物、導電性スポンジゴム、及び導電性スポンジゴム用組成物の製造方法
WO2023234162A1 (ja) 中空粒子含有エラストマー組成物及びその製造方法
KR101210794B1 (ko) 우수한 고온 신장률을 갖는 고배율 엘라스토머 발포체 조성물
JP6026072B1 (ja) 熱膨張性微小球及びその用途
JP2023167232A (ja) 発泡硬化性組成物
KR20200034073A (ko) 백색도가 향상된 복합발포제를 포함하는 수지 조성물
CN107523067A (zh) 具有无卤素聚合物层的纤维结构

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019526012

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18890952

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207020489

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18890952

Country of ref document: EP

Kind code of ref document: A1