WO2019124197A1 - 活性エネルギー線硬化性剥離型粘着剤組成物および剥離型粘着シート - Google Patents

活性エネルギー線硬化性剥離型粘着剤組成物および剥離型粘着シート Download PDF

Info

Publication number
WO2019124197A1
WO2019124197A1 PCT/JP2018/045784 JP2018045784W WO2019124197A1 WO 2019124197 A1 WO2019124197 A1 WO 2019124197A1 JP 2018045784 W JP2018045784 W JP 2018045784W WO 2019124197 A1 WO2019124197 A1 WO 2019124197A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate
sensitive adhesive
compound
urethane
Prior art date
Application number
PCT/JP2018/045784
Other languages
English (en)
French (fr)
Inventor
俊之 竹田
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to JP2018565907A priority Critical patent/JP7172604B2/ja
Priority to CN201880079190.7A priority patent/CN111465670A/zh
Priority to KR1020207016427A priority patent/KR102557929B1/ko
Publication of WO2019124197A1 publication Critical patent/WO2019124197A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • C09J4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09J159/00 - C09J187/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]

Definitions

  • the present invention is an active energy used for a pressure-sensitive adhesive layer of a peelable pressure-sensitive adhesive sheet for temporary surface protection when processing a workpiece such as a semiconductor wafer, a printed circuit board, a glass processed product, a metal plate or a plastic plate.
  • the present invention relates to a line-curable peelable pressure-sensitive adhesive composition and a peelable pressure-sensitive adhesive sheet.
  • Patent Document 1 describes a pressure-sensitive adhesive sheet for processing a semiconductor wafer which exhibits excellent adhesion to a semiconductor wafer and has stable adhesion properties.
  • Patent Document 1 50 parts by weight of 2-ethylhexyl acrylate, 10 parts by weight of butyl acrylate, 37 parts by weight of vinyl acetate, and 2-hydroxyethyl methacrylate as an adhesive layer of a pressure-sensitive adhesive sheet for semiconductor wafer processing
  • a mixed resin composition is disclosed.
  • acrylic resins having an SP value in a solubility parameter of a specific value or more and urethane (meth) acrylate compounds having a specific number of ethylenically unsaturated groups.
  • the peelable pressure-sensitive adhesive composition is excellent in adhesion characteristics before and after irradiation with active energy rays, and is excellent in contamination resistance to a workpiece.
  • the urethane (meth) acrylate compound (B) has 2 to 20 ethylenically unsaturated groups
  • the ethylenically unsaturated compound (C) has 2 to 10 ethylenically unsaturated groups.
  • a part of life Energy energy ray-curable peelable pressure-sensitive adhesive composition is the first subject matter.
  • a release-type pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer obtained by crosslinking the active energy ray-curable release-type pressure-sensitive adhesive composition of the first aspect with a crosslinking agent (E) is a second aspect.
  • the active energy ray-curable releasable pressure-sensitive adhesive composition of the present invention comprises an acrylic resin (A), a urethane (meth) acrylate compound (B), and an ethylenic non-ethylene resin except the urethane (meth) acrylate compound (B).
  • Saturated compound (C) [hereinafter referred to simply as "ethylenically unsaturated compound (C)"], photopolymerization initiator (D) and crosslinking agent (E), and the solubility parameter of the above acrylic resin (A) Value of 9.9 (cal / cm 3 ) 1/2 or more in the case where the urethane (meth) acrylate compound (B) has 2 to 20 ethylenically unsaturated groups, The unsaturated compound (C) has 2 to 10 ethylenic unsaturated groups, and the total content of the urethane (meth) acrylate compound (B) and the ethylenically unsaturated compound (C) is the above acrylic The amount is 20 to 100 parts by weight with respect to 100 parts by weight of the resin (A).
  • the glass transition temperature of the acrylic resin (A) is -50 to 20 ° C.
  • the adhesive properties when used as a pressure-sensitive adhesive layer are excellent, and Contamination resistance is better.
  • the weight content ratio (B: C) of the urethane (meth) acrylate compound (B) to the ethylenically unsaturated compound (C) is 99.9: 0.1 to 0.
  • the ratio is 1: 99.9, the adhesive properties when used as a pressure-sensitive adhesive layer are excellent, and the contamination resistance to a workpiece is further improved.
  • the urethane (meth) acrylate compound (B) is a reaction product of a hydroxyl group-containing (meth) acrylate compound (b1) and a polyvalent isocyanate compound (b2).
  • the adhesive properties after irradiation with active energy rays are superior.
  • crosslinking agent (E) is an isocyanate crosslinking agent
  • it is excellent in the adhesive property when it is used as an adhesive layer, and the contamination resistance to a workpiece is more excellent. It will be excellent.
  • (meth) acrylic means acrylic or methacrylic
  • (meth) acryloyl means acryloyl or methacryloyl
  • (meth) acrylate means acrylate or methacrylate.
  • the acrylic resin is a resin obtained by polymerizing a polymerization component containing at least one (meth) acrylate monomer.
  • sheet is not particularly distinguished from “film” and “tape”, and is described as including also these.
  • the active energy ray-curable peelable pressure-sensitive adhesive composition of the present invention is generally used as a pressure-sensitive adhesive layer of a peelable pressure-sensitive adhesive sheet on the premise that it is peeled once bonded to a workpiece.
  • the release-type pressure-sensitive adhesive sheet is used in a state in which an active energy ray-curable release-type pressure-sensitive adhesive composition is coated on a substrate sheet, adhered to a member to be processed, and then adhered by irradiation with active energy rays.
  • the agent layer cures to lower the adhesive strength, and the agent layer can be easily peeled off from the workpiece.
  • the active energy ray-curable peelable pressure-sensitive adhesive composition of the present invention comprises an acrylic resin (A), a urethane (meth) acrylate compound (B), an ethylenically unsaturated compound (C), a photopolymerizable initiator (D) And a crosslinking agent (E).
  • A acrylic resin
  • B urethane (meth) acrylate compound
  • C ethylenically unsaturated compound
  • D photopolymerizable initiator
  • E crosslinking agent
  • an acrylic resin is a thermoplastic resin obtained by polymerizing a monomer copolymerizable with a (meth) acrylic acid alkyl ester monomer.
  • the acrylic resin (A) used in the present invention is characterized in that the SP value in the solubility parameter is 9.9 (cal / cm 3 ) 1/2 or more.
  • the SP value of the acrylic resin (A) is made to be equal to or more than the specific value, the SP values of the urethane (meth) acrylate compound (B) and the ethylenically unsaturated compound (C) are close to each other. It becomes excellent in compatibility. Therefore, the components are uniformly mixed in the active energy ray-releasing composition, and the adhesive properties of the pressure-sensitive adhesive layer are excellent, and the contamination resistance to the workpiece is excellent.
  • the SP value in the solubility parameter of the acrylic resin (A) is 9.9 (cal / cm 3 ) 1/2 or more. It is preferably 9.95 (cal / cm 3 ) 1/2 or more, more preferably 9.99 (cal / cm 3 ) 1/2 or more, and particularly preferably 10 (cal / cm 3 ) 1/2 or more.
  • the upper limit of the SP value is usually 20 (cal / cm 3) 1/2 , preferably 18 (cal / cm 3) 1/2, particularly preferably 15 (cal / cm 3) 1 / 2
  • the SP value in the above solubility parameter is determined from the evaporation energy ( ⁇ E) and molar volume ( ⁇ V) and molar ratio of the (meth) acrylic acid alkyl ester type monomer constituting the acrylic resin (A) and the copolymerizable monomer. Specifically, it can be determined by the following equation (1).
  • the glass transition temperature (Tg) of the acrylic resin (A) used in the present invention is preferably -50 to 20 ° C, more preferably -40 to 10 ° C, still more preferably -30 to 0 ° C, particularly preferably It is -20 to 0 ° C.
  • Tg glass transition temperature
  • the said glass transition temperature (Tg) is the value which applied and calculated the glass transition temperature and the weight fraction at the time of making each monomer which comprises acrylic resin (A) into a homopolymer to the formula of the following Fox. It is.
  • the glass transition temperature at the time of using as a homopolymer the monomer which comprises acrylic resin (A) is normally measured by a differential scanning calorimeter (DSC), and JISK7121-1987, and JIS It can measure by the method according to K6240.
  • the weight average molecular weight of the acrylic resin (A) is usually 10,000 to 2,500,000, preferably 100,000 to 2,000,000, particularly preferably 150,000 to 1,500,000, and particularly preferably 200,000 to 1,200,000. If the weight-average molecular weight is too small, the stain resistance to the workpiece tends to be low, and if it is too large, the coating properties tend to be low, and the cost tends to be disadvantageous.
  • the dispersion degree (weight-average molecular weight / number-average molecular weight) of the acrylic resin (A) is preferably 20 or less, particularly preferably 10 or less, further preferably 7 or less, and particularly preferably 5 or less. preferable. If the degree of dispersion is too high, the contamination of the workpiece tends to increase.
  • the lower limit of the degree of dispersion is usually 1.1 from the viewpoint of the production limit.
  • the above-mentioned weight average molecular weight is a weight average molecular weight based on standard polystyrene molecular weight conversion, and a high-performance liquid chromatograph (manufactured by Japan Waters, “Waters 2695 (main body) and“ Waters 2414 (detector) ”), column: Shodex GPC KF-806L (exclusion limit molecular weight: 2 ⁇ 10 7 , separation range: 100 to 2 ⁇ 10 7 , theoretical plate number: 10,000 plates / body, filler material: styrene-divinylbenzene copolymer, filler particle diameter : 10 .mu.m) measured in series, and the number average molecular weight can also be obtained by the same method.
  • the acrylic resin (A) having the characteristics as described above is the kind and content of (meth) acrylic acid alkyl ester-based monomer and copolymerizable monomer which are polymerization components so that the SP value becomes a specific value or more. Can be obtained by adjusting and polymerizing.
  • the carbon number of the alkyl group is usually 1 to 20, preferably 1 to 12, more preferably 1 to 8, and particularly preferably 4 to 8. If the carbon number is too large, the peelability tends to be reduced, and the workpiece tends to be contaminated.
  • methyl (meth) acrylate SPa: 10.560, SPma: 9.933
  • ethyl (meth) acrylate ethyl (meth) acrylate
  • n-butyl (meth) acrylate SPa: 9.769, SPma: 9. 9).
  • SPa in () shows SP value of an acrylate
  • SPma shows SP value of a methacrylate
  • a unit is (cal / cm ⁇ 3 >) ⁇ 1/2 >.
  • (meth) acrylic acid alkyl ester type monomers methyl (meth) acrylate and n-butyl (meth) acrylate are preferably used in view of copolymerizability, adhesive property, ease of handling and availability of raw materials.
  • the content of the above-mentioned acrylic acid alkyl ester-based monomer in the polymerization component is preferably 10 to 99% by weight, particularly preferably 20 to 98% by weight, and further preferably 30 to 95% by weight. If the content is too small, the adhesion before active energy ray irradiation tends to decrease, and if it is too large, the adhesion before active energy ray irradiation tends to be too high.
  • Examples of the copolymerizable monomer include a hydroxyl group-containing monomer, a carboxy group-containing monomer, and other copolymerizable monomers.
  • the hydroxyl group-containing monomer is preferably a hydroxyl group-containing acrylate monomer, and specifically, for example, 2-hydroxyethyl (meth) acrylate (SPa: 13.470), 4-hydroxybutyl (meth) acrylate, 5 Acrylic acid hydroxyalkyl esters such as -hydroxypentyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, 8-hydroxyoctyl (meth) acrylate, caprolactone modified monomers such as caprolactone modified 2-hydroxyethyl (meth) acrylate, diethylene glycol Oxyalkylene modified monomers such as (meth) acrylate, polyethylene glycol (meth) acrylate, etc., primary hydroxyl group-containing mono such as 2-acryloyloxyethyl-2-hydroxyethyl phthalic acid Secondary hydroxyl group-containing monomers such as 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate
  • hydroxyl group-containing monomers may be used alone or in combination of two or more.
  • primary hydroxyl group-containing monomers are preferable in that they are excellent in reactivity with a crosslinking agent (E) described later, and in particular, 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) Acrylate is preferred.
  • the content of the hydroxyl group-containing monomer in the polymerization component is usually 0.1 to 40% by weight, preferably 0.2 to 30% by weight, and more preferably 0.5 to 20% by weight. If the content is too large, crosslinking proceeds before the drying step, which tends to cause problems in the coatability. If the content is too small, the degree of crosslinking decreases and the contamination of the workpiece tends to increase. Tend to be
  • carboxy group-containing monomer examples include (meth) acrylic acid (SPa: 14.040), acrylic acid dimer, crotonic acid, maleic acid, maleic anhydride, fumaric acid, citraconic acid, glutaconic acid, itaconic acid, and acrylamide. N-glycolic acid, cinnamic acid and the like can be mentioned. Among them, (meth) acrylic acid is preferably used in view of copolymerizability. These may be used alone or in combination of two or more.
  • the content of the above-mentioned carboxy group-containing monomer in the polymerization component is usually 0.01 to 30% by weight, preferably 0.03 to 20% by weight, more preferably 0.05 to 10% by weight.
  • the content is too large, the workpiece tends to be deteriorated.
  • the pot life at the time of coating tends to be short.
  • the acrylic resin (A) used in the present invention may appropriately contain other copolymerizable monomers as copolymerizable monomers in addition to the above-mentioned hydroxyl group-containing monomer and carboxy group-containing monomer.
  • the other copolymerizable monomers include: acetoacetyl group-containing monomers such as 2- (acetoacetoxy) ethyl (meth) acrylate and allylacetoacetate; glycidyl (meth) acrylate, allyl glycidyl (meth) acrylate and the like Of glycidyl group-containing monomers; carboxylic acid vinyl ester monomers such as vinyl acetate, vinyl propionate, vinyl stearate and vinyl benzoate; phenyl (meth) acrylate, benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, phenyl diethylene glycol ( Monomers containing an aromatic ring such as meta)
  • the content of the other copolymerizable monomer in the polymerization component is usually 40% by weight or less, preferably 30% by weight or less, and more preferably 25% by weight or less. If the amount of the other copolymerizable monomer is too large, the tackiness tends to be deteriorated.
  • An acrylic resin (A) having an SP value of a specific value or more can be obtained by appropriately selecting and polymerizing the (meth) acrylic acid alkyl ester-based monomer and the polymerizable monomer. However, it is preferable to select each monomer so that the said acrylic resin (A) becomes a thing which does not contain a radically polymerizable group in a side chain from the stability point at the time of superposition
  • the acrylic resin (A) As a polymerization method for obtaining the said acrylic resin (A), it can carry out suitably by conventionally well-known methods, such as solution radical polymerization, suspension polymerization, block polymerization, and emulsion polymerization. Among these, solution radical polymerization is preferable because the acrylic resin (A) can be produced safely and stably with an arbitrary monomer composition.
  • organic solvent used for the above polymerization reaction examples include aromatic hydrocarbons such as toluene and xylene, aliphatic hydrocarbons such as hexane, esters such as ethyl acetate and butyl acetate, n-propyl alcohol, isopropyl alcohol And aliphatic alcohols such as acetone, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone.
  • aromatic hydrocarbons such as toluene and xylene
  • aliphatic hydrocarbons such as hexane
  • esters such as ethyl acetate and butyl acetate
  • n-propyl alcohol isopropyl alcohol
  • aliphatic alcohols such as acetone, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone.
  • azo-type polymerization initiators such as azobisisobutyronitrile and azobisdimethylvaleronitrile which are usual radical polymerization initiators, benzoyl peroxide, lauroyl peroxide, di-tert-butyl peroxide
  • peroxide-based polymerization initiators such as cumene hydroperoxide and the like.
  • the acrylic resin (A) used in the present invention can be obtained.
  • the urethane (meth) acrylate compound (B) used in the present invention is a compound having a urethane bond and a (meth) acryloyl group.
  • the urethane (meth) acrylate compound (B) is a urethane (meth) acrylate compound (B1) which is a reaction product of a hydroxyl group-containing (meth) acrylate compound (b1) and a polyvalent isocyanate compound (b2).
  • a urethane (meth) acrylate compound (B2) which is a reaction product of a hydroxyl group-containing (meth) acrylate compound (b1), a polyvalent isocyanate compound (b2) and a polyol compound (b3). May be Especially in this invention, it is preferable to use a urethane (meth) acrylate type compound (B1) at the point of the peelability after active energy ray irradiation.
  • the urethane (meth) acrylate compound (B) may be used alone or in combination of two or more.
  • hydroxyl group-containing (meth) acrylate compound (b1) compounds having one hydroxyl group are preferable and, for example, an ethylenically unsaturated group such as glycerin di (meth) acrylate, 2-hydroxy-3-acryloyl-oxypropyl methacrylate and the like Hydroxyl group-containing (meth) acrylate compound containing two: pentaerythritol tri (meth) acrylate, caprolactone modified pentaerythritol tri (meth) acrylate, ethylene oxide modified pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) Three ethylenically unsaturated groups such as acrylate, caprolactone modified dipentaerythritol penta (meth) acrylate, ethylene oxide modified dipentaerythritol penta (meth) acrylate Hydroxyl group-containing containing above
  • a hydroxyl group-containing (meth) acrylate compound (b1) containing three or more ethylenic unsaturated groups is preferable, and pentaerythritol tri (meth) acrylate and dipentamer are preferable. Particular preference is given to erythritol penta (meth) acrylate.
  • polyvalent isocyanate compound (b2) examples include aromatic compounds such as tolylene diisocyanate, diphenylmethane diisocyanate, polyphenylmethane polyisocyanate, modified diphenylmethane diisocyanate, xylylene diisocyanate, tetramethyl xylylene diisocyanate, phenylene diisocyanate and naphthalene diisocyanate.
  • polystyrene resin e.g., polystyrene resin
  • aliphatic polyisocyanates such as hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate and lysine triisocyanate
  • hydrogenated diphenylmethane diisocyanate hydrogenated xylylene diisocyanate
  • isophorone diisocyanate cycloaliphatic such as norbornene diisocyanate Based polyisocyanates
  • These polyhydric isocyanate compounds (b2) can be used
  • aliphatic diisocyanates such as hexamethylene diisocyanate, trimethylhexamethylene diisocyanate and lysine diisocyanate, hydrogenated diphenylmethane diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate, norbornene from the viewpoint of excellent reactivity and versatility.
  • Alicyclic diisocyanates such as diisocyanates are preferred, and isophorone diisocyanate, hydrogenated diphenylmethane diisocyanate, hydrogenated xylylene diisocyanate, hexamethylene diisocyanate are more preferred, and isophorone diisocyanate and hexamethylene diisocyanate are more preferred.
  • the polyol compound (b3) may be a compound containing two or more hydroxyl groups, and examples thereof include aliphatic polyols, alicyclic polyols, polyether polyols, polyester polyols, polycarbonate polyols, and polyolefin polyols, Examples thereof include polybutadiene-based polyols, polyisoprene-based polyols, (meth) acrylic-based polyols, and polysiloxane-based polyols.
  • aliphatic polyols examples include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, trimethylene glycol, dimethylolpropane, neopentyl glycol, 2,2-diethyl-1,3-propanediol, 2-butyl- 2-ethyl-1,3-propanediol, 1,4-tetramethylenediol, 1,3-tetramethylenediol, 2-methyl-1,3-trimethylenediol, 1,5-pentamethylenediol, 1,6 -Hexamethylenediol, 3-methyl-1,5-pentamethylenediol, 2,4-diethyl-1,5-pentamethylenediol, pentaerythritol diacrylate, 1,9-nonanediol, 2-methyl-1,8 -2 hydroxides such as octanediol Aliphatic alcohols containing, sugar alcohols such as
  • alicyclic polyol examples include cyclohexanediols such as 1,4-cyclohexanediol and cyclohexyldimethanol, hydrogenated bisphenols such as hydrogenated bisphenol A, and tricyclodecanedimethanol.
  • polyether-based polyol examples include, for example, an alkylene structure-containing polyether-based polyol such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polybutylene glycol, polypentamethylene glycol, polyhexamethylene glycol, and such polyalkylene glycols A random or block copolymer etc. are mentioned.
  • alkylene structure-containing polyether-based polyol such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polybutylene glycol, polypentamethylene glycol, polyhexamethylene glycol, and such polyalkylene glycols A random or block copolymer etc. are mentioned.
  • polyester-based polyol examples include condensation polymers of polyhydric alcohols and polyvalent carboxylic acids; ring-opening polymers of cyclic esters (lactones); three components of polyhydric alcohols, polyvalent carboxylic acids and cyclic esters And the like.
  • polyhydric alcohol examples include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, trimethylene glycol, 1,4-tetramethylenediol, 1,3-tetramethylenediol, 2-methyl-1,3-trimethyldiol.
  • Methylenediol 1,5-pentamethylenediol, neopentyl glycol, 1,6-hexamethylenediol, 3-methyl-1,5-pentamethylenediol, 2,4-diethyl-1,5-pentamethylenediol, glycerin And trimethylolpropane, trimethylolethane, cyclohexanediols (1,4-cyclohexanediol, etc.), bisphenols (bisphenol A, etc.), sugar alcohols (xylitol, sorbitol, etc.) and the like.
  • polyvalent carboxylic acids examples include aliphatic dicarboxylic acids such as malonic acid, maleic acid, fumaric acid, succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid and dodecanedioic acid; -Alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid; and aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, 2,6-naphthalenedicarboxylic acid, paraphenylene dicarboxylic acid, trimellitic acid and the like.
  • aliphatic dicarboxylic acids such as malonic acid, maleic acid, fumaric acid, succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid and dodecanedioic acid
  • -Alicyclic dicarboxylic acids such as cycl
  • cyclic ester examples include propiolactone, ⁇ -methyl- ⁇ -valerolactone, ⁇ -caprolactone and the like. These polyhydric alcohols, polyhydric carboxylic acids and cyclic esters can be used alone or in combination of two or more.
  • polycarbonate-based polyol examples include a reaction product of a polyhydric alcohol and phosgene; and a ring-opening polymer of a cyclic carbonate (such as an alkylene carbonate).
  • polyhydric alcohol examples include polyhydric alcohols exemplified in the description of the polyester-based polyol, and examples of the alkylene carbonate include ethylene carbonate, trimethylene carbonate, tetramethylene carbonate, hexamethylene carbonate and the like.
  • the polycarbonate-based polyol may be a compound having a carbonate bond in the molecule and having a hydroxy group at the end, and may have an ester bond together with the carbonate bond.
  • polyolefin-based polyol examples include those having a homopolymer or copolymer of ethylene, propylene, butene and the like as a saturated hydrocarbon backbone and having a hydroxyl group at the molecular terminal.
  • polybutadiene-based polyol examples include those having a copolymer of butadiene as a hydrocarbon backbone and having a hydroxyl group at the molecular terminal.
  • the polybutadiene-based polyol may be a hydrogenated polybutadiene polyol in which all or part of the ethylenically unsaturated groups contained in the structure are hydrogenated.
  • polyisoprene-based polyol examples include those having a copolymer of isoprene as a hydrocarbon backbone and having a hydroxyl group at the molecular terminal.
  • the polyisoprene-based polyol may be a hydrogenated polyisoprene polyol in which all or part of the ethylenically unsaturated groups contained in the structure are hydrogenated.
  • Examples of the (meth) acrylic polyol include those having at least two hydroxy groups in the molecule of the polymer or copolymer of (meth) acrylic acid ester, and as such (meth) acrylic acid ester, For example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, hexyl (meth) acrylate, octyl (meth) acrylate, (meth) acrylic Examples thereof include (meth) acrylic acid alkyl esters such as 2-ethylhexyl acid, decyl (meth) acrylate, dodecyl (meth) acrylate and octadecyl (meth) acrylate.
  • polysiloxane-based polyol examples include dimethylpolysiloxane polyol and methylphenylpolysiloxane polyol.
  • the polyol compounds (b3) may be used alone or in combination of two or more.
  • aliphatic polyols and alicyclic polyols are preferable in terms of cost, and polyester polyols, polyether polyols and polycarbonate polyols are preferable in terms of versatility.
  • the weight average molecular weight of the polyol compound (b3) is usually 60 to 10,000, preferably 100 to 8,000, and more preferably 150 to 6,000.
  • the weight average molecular weight of the polyol compound (b3) is too large, the resulting urethane (meth) acrylate compound (B2) and the acrylic resin (A) become difficult to mix uniformly, and the adhesive residue on the workpiece Tends to occur.
  • the weight average molecular weight of the polyol compound (b3) is too small, cracks tend to occur in the pressure-sensitive adhesive layer after irradiation with active energy rays.
  • the urethane (meth) acrylate compound (B) can be produced by reacting the above components by a known reaction means.
  • the above-mentioned hydroxyl group-containing (meth) acrylate compound (b1) and the polyvalent isocyanate compound (b2) can be replaced by the urethane (meth) acrylate compound (B2)
  • the polyol compound (b3) can be further prepared by charging the reactor all at once or separately and subjecting it to a urethane reaction by a known reaction means.
  • a hydroxyl group-containing compound (a compound obtained by reacting the polyol compound (b3) and the polyvalent isocyanate compound (b2) in advance
  • the method of reacting the meta) acrylate compound (b1) is useful in terms of the stability of the urethanation reaction and the reduction of by-products.
  • the urethane (meth) acrylate compound (B) is obtained by terminating the reaction when the residual isocyanate group content of the reaction system becomes 0.5% by weight or less.
  • reaction catalyst for the purpose of promoting the reaction.
  • Organometallic compounds such as tin dilaurate, trimethyltin hydroxide and tetra-n-butyltin, zinc octenoate, tin octenate, tin octylate, cobalt naphthenate, metal salts such as stannous chloride and tin chloride, Triethylamine, benzyldiethylamine, 1,4-diazabicyclo [2,2,2] octane, 1,8-diazabicyclo [5,4,0] undecene, N, N, N ', N'-tetramethyl-1,3- Amine catalysts such as butanediamine, N-ethylmorpholine, etc., bismuth nitrate, bismuth
  • Bismuth-based catalysts such as bismuth salts of organic acids such as bismuth stearate, bismuth oleate, bismuth linoleate, bismuth acetate, bismuth bis bis bis neodecanoate, bismuth disalicylate, bismuth di gallate, bismuth salts of organic acids and the like, inorganic What used together and used 2 or more types of catalysts, such as zirconium type catalysts, such as a zirconium, organic zirconium, a zirconium single-piece
  • dibutyltin dilaurate and 1,8-diazabicyclo [5,4,0] undecene are preferred.
  • an organic solvent having no functional group reactive to an isocyanate group for example, esters such as ethyl acetate and butyl acetate, ketones such as methyl ethyl ketone and methyl isobutyl ketone, and aroma such as toluene and xylene Organic solvents such as family members can be used.
  • esters such as ethyl acetate and butyl acetate
  • ketones such as methyl ethyl ketone and methyl isobutyl ketone
  • aroma such as toluene and xylene Organic solvents such as family members
  • the reaction temperature is usually 30 to 90 ° C., preferably 40 to 80 ° C.
  • the reaction time is usually 2 to 10 hours, preferably 3 to 8 hours.
  • the urethane (meth) acrylate compound (B) thus obtained is required to have 2 to 20 ethylenically unsaturated groups from the viewpoint of releasability after irradiation with active energy rays.
  • the number is preferably 2 to 18, more preferably 4 to 15. If the number of such ethylenically unsaturated groups is too large, the crosslink density after irradiation with active energy rays will be too high, cracks will easily occur in the pressure-sensitive adhesive layer, and if too small, sufficient crosslink density can not be obtained. It becomes difficult to peel off after irradiation.
  • the weight average molecular weight of the urethane (meth) acrylate compound (B) is usually 500 to 10,000, preferably 750 to 8,000, and more preferably 1,000 to 6,000.
  • the weight-average molecular weight is too high, the viscosity of the urethane (meth) acrylate compound (B) increases, the compatibility with the acrylic resin (A) decreases, and the partial pressure-sensitive adhesive layer to the workpiece It tends to cause residue (sticking residue) to occur.
  • the weight-average molecular weight is too low, the urethane (meth) acrylate compound (B) tends to bleed from the pressure-sensitive adhesive sheet to easily cause adhesive residue.
  • said weight average molecular weight is a weight average molecular weight by standard polystyrene molecular weight conversion, Column: ACQUITY APC XT 450 * 1, ACQUITY APC XT in a high performance liquid chromatograph (Waters company make, "ACQUITY APC system") It measures by using two 200 * 1 and ACQUITY APC XT 45 * 2 in series.
  • the SP value in the solubility parameter of the above urethane (meth) acrylate compound (B) is usually 9 to 15 (cal / cm 3 ) 1/2 , preferably 9.5 to 13 (cal / cm 3 ) 1/2 , Particularly preferably, it is 10 to 12 (cal / cm 3 ) 1/2 .
  • SP value of the said urethane (meth) acrylate type compound (B) can be calculated
  • ) of the difference in SP value between the acrylic resin (A) and the urethane (meth) acrylate compound (B) is usually 3 or less, preferably 2 or less More preferably, it is 1 or less, and particularly preferably 0.8 or less.
  • the absolute value of the difference in SP value is outside the above range, the compatibility with the acrylic resin (A) tends to be reduced, and the adhesive properties when it is formed into an adhesive layer tend to be deteriorated.
  • the viscosity at 60 ° C. of the urethane (meth) acrylate compound (B) used in the present invention is preferably 500 to 100,000 mPa ⁇ s, and particularly preferably 1,000 to 50,000 mPa ⁇ s. If the viscosity is out of the above range, the coatability tends to be reduced.
  • the viscosity can be measured by an E-type viscometer.
  • the content of the urethane (meth) acrylate compound (B) is usually 5 to 100 parts by weight, preferably 10 to 80 parts by weight, particularly preferably 100 parts by weight of the acrylic resin (A). Is 20 to 60 parts by weight. If the content of the urethane (meth) acrylate compound (B) is too small, peeling tends to be difficult after irradiation with active energy rays, and if the content of the urethane (meth) acrylate compound (B) is too large, active energy rays After irradiation, the adhesive layer tends to be susceptible to cracking.
  • the ethylenically unsaturated compound (C) used in the present invention is preferably a (meth) acrylate compound, but any compound having an ethylenically unsaturated group can be used without particular limitation.
  • the ethylenic unsaturated compound (C) used by this invention remove
  • the ethylenically unsaturated compound (C) is required to have 2 to 10 ethylenically unsaturated groups in that it is excellent in the peeling property after irradiation with active energy rays.
  • the number is preferably 3 to 9, particularly preferably 4 to 8. If the number of such ethylenically unsaturated groups is too large, the crosslink density after irradiation with active energy rays will be too high, cracks will easily occur in the pressure-sensitive adhesive layer, and if too small, sufficient crosslink density can not be obtained. It becomes difficult to peel off after irradiation.
  • the SP value in the solubility parameter of the above-mentioned ethylenically unsaturated compound (C) is usually 8 to 12 (cal / cm 3 ) 1/2 , preferably 9 to 11.5 (cal / cm 3 ) 1/2 , particularly preferably Is 9.5 to 11 (cal / cm 3 ) 1/2 .
  • SP value of the said ethylenically unsaturated compound (C) can be calculated
  • ) of the difference in SP value between the acrylic resin (A) and the ethylenically unsaturated compound (C) is usually 3 or less, preferably 1 or less, and further, Preferably it is 0.7 or less, especially preferably 0.5 or less.
  • the absolute value of the difference in SP value is outside the above range, the compatibility with the acrylic resin (A) tends to be reduced, and the adhesive properties when it is formed into an adhesive layer tend to be deteriorated.
  • Examples of the above ethylenically unsaturated compound (C) include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di Meta) acrylate, dipropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide modified bisphenol A type di (meth) acrylate, Propylene oxide modified bisphenol A type di (meth) acrylate, cyclohexane dimethanol di (meth) acrylate, ethoxylated cyclohexane dime Nole di (meth) acrylate, dimethylol dicyclopentadi (meth) acrylate, tricyclodecane dimethanol
  • ethylenically unsaturated compound (C) a Michael adduct of (meth) acrylic acid or 2- (meth) acryloyloxyethyl dicarboxylic acid monoester can be used in combination, and such a Michael addition of (meth) acrylic acid is possible.
  • (meth) acrylic acid dimer, (meth) acrylic acid trimer, (meth) acrylic acid tetramer and the like can be mentioned.
  • the above 2- (meth) acryloyloxyethyl dicarboxylic acid monoester is a carboxylic acid having a specific substituent, for example, 2- (meth) acryloyloxyethyl succinic acid monoester, 2- (meth) acryloyloxyethyl phthalic acid Monoester, 2- (meth) acryloyloxyethyl hexahydrophthalic acid monoester, etc. may be mentioned. Furthermore, other oligoester acrylates can also be mentioned.
  • the above-mentioned ethylenically unsaturated compounds (C) may be used alone or in combination of two or more.
  • an ethylenically unsaturated compound having no hydroxyl group is preferable, and pentaerythritol tetra (meth) acrylate and dipentaerythritol hexa (meth) are more preferable because they are excellent in adhesive properties after irradiation with active energy rays.
  • the skeleton of a compound obtained by removing (meth) acrylic acid from the ethylenically unsaturated compound (C) and the hydroxyl group-containing (meth) acrylate compound (the urethane (meth) acrylate compound (B) is the same as each other in terms of excellent compatibility and adhesive properties.
  • the content of the above-mentioned ethylenically unsaturated compound (C) is usually 5 to 100 parts by weight, preferably 10 to 80 parts by weight, particularly preferably 20 to 60 parts by weight per 100 parts by weight of the acrylic resin (A). It is a weight part. If the content of the ethylenically unsaturated compound (C) is too small, peeling tends to be difficult after active energy ray irradiation, and if too large, the contamination resistance to the workpiece after peeling tends to be lowered.
  • the total content of the urethane (meth) acrylate compound (B) and the ethylenically unsaturated compound (C) is an acryl, from the viewpoint of excellent adhesion before irradiation with active energy rays and releasability after irradiation. It is important that the amount is 20 to 100 parts by weight with respect to 100 parts by weight of the resin (A). It is preferably 25 to 90 parts by weight, particularly preferably 30 to 80 parts by weight. When the total content is too small, the adhesion does not easily decrease even when the active energy ray is irradiated, and when the total content is too large, the contamination resistance to the workpiece after irradiation with the active energy ray is reduced.
  • the weight ratio [(B) :( C)] of the urethane (meth) acrylate compound (B) to the ethylenically unsaturated compound (C) is preferably 99.9: 0.1 to 0.1. It is 99.9, more preferably 99: 1 to 1:99, still more preferably 90:10 to 10:90, and particularly preferably 80:20 to 20:80. If the weight content ratio of the urethane (meth) acrylate compound (B) to the ethylenically unsaturated compound (C) is outside the above range, the adhesive properties of the pressure-sensitive adhesive layer tend to be lowered.
  • the photopolymerizable initiator (D) used in the present invention may be any one as long as it generates a radical by the action of light, for example, diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one , Benzyldimethyl ketal, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ketone, 1-hydroxycyclohexyl phenyl ketone, 1- [4- (2-hydroxyethoxy) -phenyl] -2- Hydroxy-2-methyl-1-propan-1-one, 2-methyl-2-morpholino (4-thiomethylphenyl) propan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) ) Butanone, 2-hydroxy-2-methyl-1- [4- (1-methylvinyl) phenyl] propanone oligomer Acetophenones, etc .; benzo
  • auxiliary agent of these photopolymerizable initiators (D) for example, triethanolamine, triisopropanolamine, 4,4'-dimethylaminobenzophenone (Michler's ketone), 4,4'-diethylaminobenzophenone, 2-dimethylamino Ethylbenzoic acid, Ethyl 4-dimethylaminobenzoate, Ethyl 4-dimethylaminobenzoate (n-butoxy), Isoamyl 4-dimethylaminobenzoate, 2-ethylhexyl 4-dimethylaminobenzoate, 2,4-diethylthiooxane It is also possible to use Son, 2,4-diisopropylthioxanthone, etc. in combination. These auxiliary agents can also be used alone or in combination of two or more.
  • the content of the photopolymerization initiator (D) is 0. 0 to the total 100 parts by weight of the acrylic resin (A), the urethane (meth) acrylate compound (B) and the ethylenically unsaturated compound (C). It is preferably 1 to 20 parts by weight, particularly preferably 0.5 to 15 parts by weight, particularly preferably 1 to 10 parts by weight.
  • the content of the photopolymerization initiator (D) is too small, the removability after active energy ray irradiation tends to be reduced, and when it is too large, the stain resistance to the workpiece after the active energy ray irradiation becomes low. Tend.
  • Crosslinking agent (E) As said crosslinking agent (E), an isocyanate type crosslinking agent, an epoxy type crosslinking agent, an aziridine type crosslinking agent, an oxazoline type crosslinking agent, a melamine type crosslinking agent, an aldehyde type crosslinking agent, an amine type crosslinking agent etc. are mentioned, for example. Among these, it is preferable to use an isocyanate-based crosslinking agent from the viewpoint of improving the adhesiveness of the peelable pressure-sensitive adhesive sheet to the substrate sheet and the reactivity with the acrylic resin (A). These crosslinking agents (E) may be used alone or in combination of two or more.
  • isocyanate-based crosslinking agent examples include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hydrogenated tolylene diisocyanate, hydrogenated xylene diisocyanate, hexamethylene diisocyanate, diphenylmethane-4,4-diisocyanate, Isophorone diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, tetramethyl xylylene diisocyanate, 1,5-naphthalene diisocyanate, triphenylmethane triisocyanate, and these polyisocyanate compounds and polyol compounds such as trimethylolpropane Adducts, burettes of these polyisocyanate compounds, isocyanurate and the like can be mentioned.
  • isocyanurate of hexamethylene diisocyanate, 2,4-tolylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate and trimethylol in view of drug resistance and reactivity with functional groups.
  • An adduct with propane, an isocyanurate of 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate, and an adduct of tetramethyl xylylene diisocyanate and trimethylolpropane are preferred.
  • epoxy-based crosslinking agent examples include epoxy resins of bisphenol A epichlorohydrin type, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerin diglycidyl ether, glycerin triglycidyl ether, 1,6-hexanediol diglycidyl ether , Trimethylolpropane triglycidyl ether, sorbitol polyglycidyl ether, polyglycerol polyglycidyl ether, pentaerythritol polyglycidyl erythritol, diglycerol polyglycidyl ether, 1,3'-bis (N, N-diglycidylaminomethyl) cyclohexane, N And N, N ', N'-tetraglycidyl-m-xylene diamine and the like.
  • aziridine-based crosslinking agent examples include, for example, tetramethylolmethane-tri- ⁇ -aziridinyl propionate, trimethylolpropane-tri- ⁇ -aziridinyl propionate, N, N′-diphenylmethane-4,4.
  • examples include '-bis (1-aziridine carboxamide), N, N'-hexamethylene-1,6-bis (1-aziridine carboxamide) and the like.
  • oxazoline-based crosslinking agent examples include, for example, 2,2′-bis (2-oxazoline), 1,2-bis (2-oxazolin-2-yl) ethane, and 1,4-bis (2-oxazoline-2-).
  • melamine-based crosslinking agent examples include hexamethoxymethylmelamine, hexaethoxymethylmelamine, hexapropoxymethylmelamine, hexaptoxymethylmelamine, hexapentyloxymethylmelamine, hexahexyloxymethylmelamine, melamine resins and the like.
  • aldehyde crosslinking agent examples include glyoxal, malondialdehyde, succindialdehyde, maleindialdehyde, glutardialdehyde, formaldehyde, acetaldehyde, benzaldehyde and the like.
  • amine-based crosslinking agent examples include hexamethylenediamine, triethyldiamine, polyethyleneimine, hexamethylenetetramine, diethylenetriamine, triethyltetramine, isophorone diamine, amino resin, polyamide and the like.
  • the content of the above crosslinking agent (E) is usually 0. 0 to the total of 100 parts by weight of the acrylic resin (A), the urethane (meth) acrylate compound (B) and the ethylenically unsaturated compound (C).
  • the amount is preferably 1 to 30 parts by weight, particularly preferably 0.2 to 20 parts by weight, and further preferably 0.3 to 15 parts by weight.
  • the active energy ray-curable peelable pressure-sensitive adhesive composition of the present invention is, for example, a small amount of a monofunctional monomer, an antistatic agent, an antioxidant, a plasticizer, a filler, a pigment, insofar as the effects of the present invention are not impaired.
  • the composition may further contain additives such as a diluent, an anti-aging agent, an ultraviolet light absorber, an ultraviolet light stabilizer, etc. These additives may be used singly or in combination of two or more.
  • an antioxidant is effective to maintain the stability of the pressure-sensitive adhesive layer.
  • the content in the case of blending the antioxidant is not particularly limited, but is preferably 0.01 to 5% by weight with respect to the active energy ray-curable peelable pressure-sensitive adhesive composition.
  • the active energy ray-curable peelable pressure-sensitive adhesive composition of the present invention in addition to the above additives, impurities and the like contained in the raw materials for producing the components of the active energy ray-curable peelable pressure-sensitive adhesive composition, etc. May be contained in a small amount.
  • the active energy ray-curable peelable pressure-sensitive adhesive composition of the present invention has a terpene resin, a rosin resin, a chroman resin, and a phenol resin from the viewpoint that the contamination resistance to the processed member becomes low after irradiation with active energy rays. It is preferable that the resin does not contain a tackifying resin such as a styrene resin or a petroleum resin.
  • the active energy ray-curable peelable pressure-sensitive adhesive composition of the present invention is obtained.
  • the active energy ray-curable peelable pressure-sensitive adhesive composition of the present invention is crosslinked by the crosslinking agent (E), and is suitably used as a pressure-sensitive adhesive layer of a peelable pressure-sensitive adhesive sheet. Then, the peelable pressure-sensitive adhesive sheet is bonded to a member to be processed and then irradiated with an active energy ray to polymerize the urethane (meth) acrylate compound (B) and the ethylenic unsaturated compound (C) to cause adhesion.
  • the agent layer cures to exhibit a releasability due to a decrease in adhesion. When processing various workpieces using this characteristic, it is used for the use which protects the surface of the workpiece temporarily.
  • the peelable pressure-sensitive adhesive sheet will be described.
  • a semiconductor wafer As a to-be-processed member protected by the said peelable adhesive sheet, a semiconductor wafer, a printed circuit board, a glass processed goods, a metal plate, a plastic plate etc. are mentioned, for example.
  • the release-type pressure-sensitive adhesive sheet usually has a substrate sheet, a pressure-sensitive adhesive layer comprising the active energy ray-curable release-type pressure-sensitive adhesive composition of the present invention, and a release film.
  • a method for producing such a peelable pressure-sensitive adhesive sheet first, the concentration of the active energy ray-curable peelable pressure-sensitive adhesive composition of the present invention is adjusted as it is or with an appropriate organic solvent, and directly on the release film or substrate sheet. Apply Thereafter, the film is dried, for example, by heat treatment at 80 to 105 ° C. for 0.5 to 10 minutes, and this is attached to a substrate sheet or a release film to obtain a peelable pressure sensitive adhesive sheet. Furthermore, in order to balance adhesive properties, further aging may be performed after drying.
  • the base sheet examples include polyester resins such as polyethylene naphthalate, polyethylene terephthalate, polybutylene terephthalate, polyethylene terephthalate / isophthalate copolymer; polyolefin resins such as polyethylene, polypropylene and polymethylpentene; polyvinyl fluoride , Polyvinylidene fluoride, polyethylene fluoride such as polytetrafluoroethylene; polyamides such as nylon 6, nylon 6, 6 etc .; polyvinyl chloride, polyvinyl chloride / vinyl acetate copolymer, ethylene-vinyl acetate copolymer, ethylene- Vinyl alcohol copolymer, polyvinyl alcohol, vinyl polymers such as vinylon; Cellulose-based resins such as cellulose triacetate, cellophane; polymethyl methacrylate, polyethyl methacrylate, polyacrylic Acrylic resin such as ethyl and butyl polyacrylate; polystyrene; polycarbon
  • release film for example, those obtained by release treatment of various synthetic resin sheets, paper, woven fabric, non-woven fabric and the like exemplified in the above-mentioned base sheet can be used.
  • a coating method of the said active energy ray-curable peelable adhesive composition if it is a general coating method, it will not be specifically limited, For example, roll coating, die coating, gravure coating, comma coating And screen printing.
  • the thickness of the pressure-sensitive adhesive layer in the release-type pressure-sensitive adhesive sheet is preferably 1 to 200 ⁇ m, and more preferably 10 to 100 ⁇ m.
  • the active energy ray in general, electron rays, proton rays, neutron rays, etc. can be used in addition to electromagnetic rays such as far ultraviolet rays, ultraviolet rays, near ultraviolet rays, rays such as infrared rays, X rays, ⁇ rays etc. It is advantageous to use ultraviolet light in view of the availability and price of the device.
  • the cumulative dose of the ultraviolet light is usually 50 to 3,000 mJ / cm 2 , preferably 100 to 1,000 mJ / cm 2 .
  • the irradiation time also varies depending on the type of light source, the distance between the light source and the pressure-sensitive adhesive layer, the thickness of the pressure-sensitive adhesive layer, and other conditions, but usually a few seconds or even a very short time Good.
  • the adhesive strength of the peelable pressure-sensitive adhesive sheet varies depending on the type of substrate sheet, the type of processed member, etc., but it is preferably 1 to 30 N / 25 mm, more preferably 1 to 20 N / 25 mm before active energy ray irradiation. preferable.
  • the adhesive strength after irradiation with active energy rays is preferably 0.01 to 1 N / 25 mm, and more preferably 0.05 to 0.5 N / 25 mm.
  • the adhesion after active energy ray irradiation is preferably 1 ⁇ 5 or less, more preferably 1/50 or less, of the adhesion before active energy ray irradiation.
  • a release-type pressure-sensitive adhesive sheet using the active energy ray-curable release-type pressure-sensitive adhesive composition of the present invention as a pressure-sensitive adhesive layer is bonded to a member to be processed and temporarily protects the surface of the member to be processed By irradiating the active energy ray, the pressure-sensitive adhesive layer is cured and the adhesive strength is reduced, so that it can be easily peeled off from the workpiece.
  • each component contained in the active energy ray-curable peelable pressure-sensitive adhesive composition of Examples and Comparative Examples is as follows.
  • the composition of the acrylic resin is shown in Table 1 below.
  • Acrylic resin (A-1) In a reactor equipped with a temperature controller, a thermometer, a stirrer, a dropping funnel and a reflux condenser, 29 parts of ethyl acetate is charged, the temperature is raised while stirring, and the internal temperature is stabilized at 78 ° C. A mixture of 91.9 parts of butyl acrylate, 0.1 part of 2-hydroxyethyl methacrylate, 8 parts of acrylic acid and 0.037 parts of azobisisobutyronitrile (AIBN) is added dropwise over 2 hours under reflux It was made to react.
  • AIBN azobisisobutyronitrile
  • Acrylic resin (A-2) In the same manner as in the above acrylic resin (A-1), except that the polymerization component is changed to 70 parts of n-butyl acrylate and 30 parts of 2-hydroxyethyl acrylate, a liquid acrylic resin (A-2) [SP value: 11.065 (cal / cm 3) 1/2, a weight average molecular weight: 700,000, glass transition temperature: -45.1 ° C., resin content: 35.0%, viscosity: 6,000 mPa ⁇ s (25 ° C. ) was obtained.
  • a solution-like acrylic resin (A) was prepared in the same manner as in the acrylic resin (A-1) except that the polymerization components were changed to 69 parts of n-butyl acrylate, 30 parts of methyl acrylate and 1 part of 2-hydroxyethyl acrylate. -3) [SP value: 10.033 (cal / cm 3 ) 1/2 , weight average molecular weight: 600,000, glass transition temperature: -39.6 ° C, resin content: 35.0%, viscosity: 5,000 mPa S (25 ° C.)] was obtained.
  • a solution-like acrylic resin (A) was prepared in the same manner as the acrylic resin (A-1) except that the polymerization components were changed to 59 parts of n-butyl acrylate, 40 parts of methyl acrylate and 1 part of 2-hydroxyethyl acrylate. -4) [SP value: 10.110 (cal / cm 3 ) 1/2 , weight average molecular weight: 700,000, glass transition temperature: -33.6 ° C, resin content: 35.0%, viscosity: 6,000 mPa. S (25 ° C.)] was obtained.
  • the acrylic resin (A-1) is the same as the acrylic resin (A-1) except that the polymerization components are changed to 70 parts of n-butyl acrylate, 20 parts of methyl methacrylate, 0.1 parts of 2-hydroxyethyl methacrylate, and 9.9 parts of acrylic acid.
  • Acrylic resin (A-5) in the form of solution [SP value: 10.163 (cal / cm 3 ) 1/2 , weight average molecular weight: 500,000, glass transition temperature: -24.2 ° C, resin content: 35 The viscosity was 8,000 mPa ⁇ s (25 ° C.)].
  • the acrylic resin (A-1) is the same as the acrylic resin (A-1) except that the polymerization components are changed to 69.8 parts of n-butyl acrylate, 25 parts of methyl methacrylate, 0.2 parts of 2-hydroxyethyl methacrylate, and 5 parts of acrylic acid.
  • a solution-like acrylic resin (A) was prepared in the same manner as in the acrylic resin (A-1) except that the polymerization components were changed to 39 parts of n-butyl acrylate, 60 parts of methyl acrylate and 1 part of 2-hydroxyethyl acrylate. -7) [SP value: 10.270 (cal / cm 3 ) 1/2 , weight average molecular weight: 700,000, glass transition temperature: -21.0 ° C, resin content: 35.0%, viscosity: 10,000 mPa. S (25 ° C.)] was obtained.
  • the acrylic resin (A-1) is the same as the acrylic resin (A-1) except that the polymerization components are changed to 64.85 parts of n-butyl acrylate, 30 parts of methyl methacrylate, 5 parts of 2-hydroxyethyl methacrylate, and 0.15 parts of acrylic acid.
  • [Acrylic resin (A'-1)] An acrylic solution in the same manner as in the acrylic resin (A-1) except that the polymerization component is changed to 92.8 parts of 2-ethylhexyl acrylate, 7 parts of 2-hydroxyethyl acrylate, and 0.2 parts of acrylic acid.
  • Resin (A'-1) [SP value: 9.550 (cal / cm 3 ) 1/2 , weight average molecular weight: 1,000,000, glass transition temperature: -66.7 ° C, resin fraction: 35.0%, Viscosity: 4,000 mPa ⁇ s (25 ° C.)] was obtained.
  • Acrylic resin (A'-2) An acrylic solution in the same manner as in the acrylic resin (A-1) except that the polymerization component is changed to 91.9 parts of 2-ethylhexyl acrylate, 0.1 parts of 2-hydroxyethyl methacrylate, and 8 parts of acrylic acid.
  • Resin (A'-2) [SP value: 9.530 (cal / cm 3 ) 1/2 , weight average molecular weight: 600,000, glass transition temperature: -62.1 ° C., resin fraction: 35.0%, Viscosity: 2,000 mPa ⁇ s (25 ° C.)] was obtained.
  • a solution-like acrylic resin is prepared in the same manner as in the acrylic resin (A-1) except that the polymerization component is changed to 59 parts of n-butyl acrylate, 36 parts of 2-ethylhexyl acrylate and 5 parts of 2-hydroxyethyl acrylate.
  • A'-3 [SP value: 9.770 (cal / cm 3 ) 1/2] , weight average molecular weight: 950,000, glass transition temperature: -59.6 ° C, resin content: 35.0%, viscosity: 3,000 mPa ⁇ s (25 ° C.)] was obtained.
  • the acrylic resin (A-1) is the same as the acrylic resin (A-1) except that the polymerization components are changed to 45.9 parts of n-butyl acrylate, 46 parts of 2-ethylhexyl acrylate, 0.1 parts of 2-hydroxyethyl methacrylate, and 8 parts of acrylic acid.
  • Acrylic resin (A'-4) [SP value: 9.787 (cal / cm 3 ) 1/2 , weight average molecular weight: 550,000, glass transition temperature: -55.4 ° C, resin Minute: 35.0%, viscosity: 1500 mPa ⁇ s (25 ° C.)] was obtained.
  • Composition I contained 45 parts of urethane acrylate (B-1) and 55 parts of dipentaerythritol hexaacrylate (C-1).
  • B-1 urethane Acrylate
  • C-1 dipentaerythritol hexaacrylate
  • [Urethane Acrylate (B-1)] Reactant of isophorone diisocyanate and dipentaerythritol pentaacrylate [ethylenically unsaturated group: 10, SP value: 10.64 (cal / cm 3 ) 1/2 ]
  • Ethylenically unsaturated compound (C-1)] ⁇ Dipentaerythritol hexaacrylate [ethylenically unsaturated group: six, SP value: 10.40 (cal / cm 3 ) 1/2 ]
  • composition of urethane acrylate (B-2) and pentaerythritol tetraacrylate (C-2) [Composition of urethane acrylate (B-2) and pentaerythritol tetraacrylate (C-2)]
  • a flask equipped with a thermometer, a stirrer, a water-cooled condenser, and a nitrogen gas blowing port 19.2 parts of isophorone diisocyanate and 80.8 parts of an acrylic acid adduct of pentaerythritol (hydroxyl value 120 mg KOH / g) are charged, and polymerization is prohibited.
  • composition II weight average molecular weight 1,600.
  • This composition II contained 65 parts of urethane acrylate (B-2) and 35 parts of pentaerythritol tetraacrylate (C-2).
  • composition of urethane acrylate (B-3) and dipentaerythritol hexaacrylate (C-1) In a four-necked flask equipped with a thermometer, a stirrer, a water-cooled condenser, and a nitrogen gas inlet, 16.3 parts of isophorone diisocyanate, 83.7 parts of acrylic acid adduct of dipentaerythritol (hydroxyl value 98 mg KOH / g), polymerization Charge 0.06 parts of 2,6-di-tert-butylcresol as an inhibitor and 0.01 parts of dibutyltin dilaurate as a reaction catalyst, and react at 60 ° C, and when the residual isocyanate group becomes 0.3% or less The reaction was terminated by, to obtain a composition III (weight average molecular weight 5300).
  • composition III contained 37.5 parts of urethane acrylate (B-3) and 12.5 parts of dipentaerythritol hexaacrylate (C-1).
  • B-3 urethane Acrylate
  • C-1 dipentaerythritol hexaacrylate
  • SP value 10.64 (cal / cm 3 ) 1/2
  • Ethylenically unsaturated compound (C-1) ⁇ Dipentaerythritol hexaacrylate [ethylenically unsaturated group: six, SP value: 10.40 (cal / cm 3 ) 1/2 ]
  • Example 1 [Preparation of Active Energy Ray-Curable Peelable Pressure-Sensitive Adhesive Composition] 286 parts (the resin content 35%) of the above acrylic resin (A-1), 50 parts of the composition I [22.5 parts of urethane acrylate (B-1), 27.5 parts of the ethylenically unsaturated compound (C-1) , 2.1 parts of a photopolymerizable initiator (D-1), 9.7 parts (5.4 parts in terms of active ingredient) of a crosslinking agent (E-1), and 30 parts of toluene as a dilution solvent are mixed to activate An energy ray-curable peelable pressure-sensitive adhesive composition was obtained.
  • peelable Pressure-Sensitive Adhesive Sheet After the obtained active energy ray-curable peelable pressure-sensitive adhesive composition is coated on an easy-adhesion polyethylene terephthalate film (film thickness 50 ⁇ m) (“Lumirror T60” manufactured by Toray Industries, Inc.) as a substrate sheet with an applicator After drying at 100 ° C. for 3 minutes, the film is attached to a release film (“SP-PET 38 01-BU” manufactured by Mitsui Chemicals Tosoh Co., Ltd.) and aged at 40 ° C. for 3 days to form a peelable pressure-sensitive adhesive sheet The thickness of the agent layer was 25 ⁇ m). The following evaluation was performed using the obtained peelable pressure-sensitive adhesive sheet.
  • a test piece of 25 mm ⁇ 100 mm in size was prepared from the peelable pressure-sensitive adhesive sheet obtained above, and after peeling off the release film, a stainless steel plate (SUS304BA plate) under an atmosphere of 23 ° C and a relative humidity of 50%.
  • a rubber roller with a mass of 2 kg is reciprocated twice for pressure application and left for 30 minutes in the same atmosphere, then using a 80 W high pressure mercury lamp, 1 lamp, conveyer speed from a height of 18 cm to 5.1 m / min UV irradiation (total dose 200 mJ / cm 2 ) was performed.
  • Haze value The diffuse transmittance and the total light transmittance of the release-type pressure-sensitive adhesive sheet from which the release film has been removed are measured using HAZE MATER NDH 2000 (manufactured by Nippon Denshoku Kogyo Co., Ltd.), and the values of the obtained diffuse transmittance and total light transmittance Was substituted into the following equation to obtain the haze value.
  • haze value is a value including a base material sheet.
  • Haze value (%) (diffuse transmittance / total light transmittance) ⁇ 100 (Evaluation criteria) ⁇ ⁇ ⁇ ... less than 1% ⁇ ... 1% or more, less than 2% ⁇ ⁇ ⁇ ... 2% or more, less than 3% ⁇ ... 3% or more
  • Examples 2 to 14 and Comparative Examples 1 to 9 An active energy ray-curable peelable pressure-sensitive adhesive composition was obtained in the same manner as in Example 1 except that each component was blended as shown in Tables 2 and 3 below.
  • the active energy ray-curable peelable pressure-sensitive adhesive compositions of Examples 2 to 14 and Comparative Examples 1 to 9 obtained were evaluated in the same manner as in Example 1.
  • the evaluation results of Examples 2 to 14 and Comparative Examples 1 to 9 are shown in the following Table 4 together with the evaluation results of Example 1.
  • the active energy ray-curable peelable pressure-sensitive adhesive compositions of Examples 1 to 14 which are in the range have a low haze value when used as a pressure-sensitive adhesive layer of a peelable pressure-sensitive adhesive sheet, so It can be seen that the uniform state is obtained in the adhesive release pressure-sensitive adhesive composition.
  • the peelable pressure-sensitive adhesive sheets using Examples 1 to 14 were excellent in the adhesive properties before and after irradiation with
  • Comparative Examples 1 to 4 using an acrylic resin in which the SP value in the solubility parameter is less than a specific value have high haze values, so that each component is not in a uniform state, and used
  • the peelable pressure-sensitive adhesive sheet was inferior in the adhesive properties and also inferior in the stain resistance to the workpiece.
  • the peelable pressure-sensitive adhesive sheets using Comparative Examples 5 to 9 in which the total content of the urethane (meth) acrylate compound (B) and the ethylenically unsaturated compound (C) is out of the specific range have adhesion characteristics. It was inferior or it was inferior to the contamination resistance with respect to a workpiece.
  • the active energy ray-curable peelable pressure-sensitive adhesive composition of the present invention is suitably used as a temporary adhesive film for surface protection when processing semiconductor wafers, printed circuit boards, glass products, metal plates, plastic plates, etc. Can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

粘着特性および耐汚染性に優れる活性エネルギー線硬化性剥離型粘着剤組成物として、アクリル系樹脂(A)、ウレタン(メタ)アクリレート系化合物(B)、上記ウレタン(メタ)アクリレート系化合物(B)を除くエチレン性不飽和化合物(C)、光重合性開始剤(D)および架橋剤(E)を含有する剥離型粘着剤組成物であって、上記アクリル系樹脂(A)の溶解度パラメータにおけるSP値が9.9(cal/cm31/2以上であり、上記ウレタン(メタ)アクリレート系化合物(B)が、2~20個のエチレン性不飽和基を有し、上記エチレン性不飽和化合物(C)が、2~10個のエチレン性不飽和基を有し、かつ上記ウレタン(メタ)アクリレート系化合物(B)とエチレン性不飽和化合物(C)の合計含有量が、上記アクリル系樹脂(A)100重量部に対して、20~100重量部である活性エネルギー線硬化性剥離型粘着剤組成物を提供する。

Description

活性エネルギー線硬化性剥離型粘着剤組成物および剥離型粘着シート
 本発明は、半導体ウエハ、プリント基板、ガラス加工品、金属板、プラスチック板等の被加工部材を加工する際の一時的な表面保護用の剥離型粘着シートの粘着剤層に使用される活性エネルギー線硬化性剥離型粘着剤組成物および剥離型粘着シートに関するものである。
 従来、上記半導体ウエハからの集積回路の作製や穴開け等の加工工程においては、被加工部材の汚れや損傷を防ぐことを目的として一時的に上記被加工部材の表面を保護するための表面保護用の粘着シートが用いられている。そして、近年では加工技術の微細化や被加工部材の薄膜化等の理由で被加工部材に対して適度な粘着力が求められる一方、表面保護の役目を終えた後には表面保護用の粘着シートを剥離する必要があり、剥離する際には軽い力で糊残りなく剥離できることが求められている。また、近年では半導体ウエハに限らず様々な部材の加工時にも表面保護用の粘着シートが利用されている。
 特許文献1は、半導体ウエハに対して優れた粘着力を示し、安定的な粘着物性を有する半導体ウエハ加工用粘着シートについて記載されている。そして、特許文献1の実施例では、半導体ウエハ加工用粘着シートの粘着剤層として、アクリル酸2-エチルヘキシル50重量部、アクリル酸ブチル10重量部、酢酸ビニル37重量部、メタクリル酸2-ヒドロキシエチル3重量部とを共重合させたアクリル系樹脂、5,000以上の分子量を持つ2~4官能のウレタンアクリレート、1,000以下の分子量を持つ少なくとも1種類以上の3~6官能のアクリレートモノマーを混合した樹脂組成物が開示されている。
特開平10-310748号公報
 上記特許文献1に開示されている樹脂組成物は、紫外線照射前の粘着力が充分ではなく、さらなる改善が求められている。また、上記樹脂組成物は、粘着シートを剥離した際に被加工部材側に残る粘着剤層により、被加工部材が汚染されてしまう傾向があり、さらなる改善が求められている。
 しかるに、本発明者は、かかる事情に鑑み鋭意研究を重ねた結果、溶解度パラメータにおけるSP値が特定の値以上のアクリル系樹脂、特定個数のエチレン性不飽和基を有するウレタン(メタ)アクリレート系化合物およびエチレン性不飽和化合物、光重合性開始剤、架橋剤を含有し、かつ上記ウレタン(メタ)アクリレート系化合物とエチレン性不飽和化合物との合計配合量を特定の範囲とした活性エネルギー線硬化性剥離型粘着剤組成物は、活性エネルギー線照射前および照射後の粘着特性に優れ、また、被加工部材に対する耐汚染性に優れることを見出した。
 即ち、本発明は、アクリル系樹脂(A)、ウレタン(メタ)アクリレート系化合物(B)、上記ウレタン(メタ)アクリレート系化合物(B)を除くエチレン性不飽和化合物(C)、光重合性開始剤(D)および架橋剤(E)を含有する剥離型粘着剤組成物であって、上記アクリル系樹脂(A)の溶解度パラメータにおけるSP値が9.9(cal/cm31/2以上であり、上記ウレタン(メタ)アクリレート系化合物(B)が、2~20個のエチレン性不飽和基を有し、上記エチレン性不飽和化合物(C)が、2~10個のエチレン性不飽和基を有し、かつ上記ウレタン(メタ)アクリレート系化合物(B)とエチレン性不飽和化合物(C)の合計含有量が、上記アクリル系樹脂(A)100重量部に対して、20~100重量部である活性エネルギー線硬化性剥離型粘着剤組成物を第1の要旨とする。また、上記第1の要旨の活性エネルギー線硬化性剥離型粘着剤組成物が架橋剤(E)により架橋された粘着剤層を有する剥離型粘着シートを第2の要旨とする。
 本発明の活性エネルギー線硬化性剥離型粘着剤組成物は、アクリル系樹脂(A)、ウレタン(メタ)アクリレート系化合物(B)、上記ウレタン(メタ)アクリレート系化合物(B)を除くエチレン性不飽和化合物(C)〔以下、単に「エチレン性不飽和化合物(C)」という〕、光重合性開始剤(D)および架橋剤(E)を含有し、上記アクリル系樹脂(A)の溶解度パラメータにおけるSP値が9.9(cal/cm31/2以上であり、上記ウレタン(メタ)アクリレート系化合物(B)が、2~20個のエチレン性不飽和基を有し、上記エチレン性不飽和化合物(C)が、2~10個のエチレン性不飽和基を有し、かつ上記ウレタン(メタ)アクリレート系化合物(B)とエチレン性不飽和化合物(C)の合計含有量が、上記アクリル系樹脂(A)100重量部に対して、20~100重量部である。これにより、アクリル系樹脂(A)とウレタン(メタ)アクリレート系化合物(B)およびエチレン性不飽和化合物(C)の相溶性に優れるため、活性エネルギー線硬化性剥離型粘着剤組成物中で各成分が均一に混じりあった状態になる。そして、この活性エネルギー線硬化性剥離型粘着剤組成物が架橋剤(E)によって架橋された粘着剤を剥離型粘着シートの粘着剤層として用いた場合には、活性エネルギー線照射前および照射後の粘着特性に優れ、また、被加工部材に対する耐汚染性に優れるという効果を奏する。
 また、本発明のなかでも、特に、上記アクリル系樹脂(A)のガラス転移温度が-50~20℃であると、粘着剤層として用いた際の粘着特性により優れ、また、被加工部材に対する耐汚染性がより優れたものとなる。
 さらに、本発明のなかでも、特に、上記ウレタン(メタ)アクリレート系化合物(B)とエチレン性不飽和化合物(C)との重量含有比率(B:C)が99.9:0.1~0.1:99.9であると、粘着剤層として用いた際の粘着特性により優れ、また、被加工部材に対する耐汚染性がより優れたものとなる。
 そして、本発明のなかでも、特に、上記ウレタン(メタ)アクリレート系化合物(B)が、水酸基含有(メタ)アクリレート系化合物(b1)と多価イソシアネート系化合物(b2)との反応物であると、活性エネルギー線照射後の粘着特性により優れたものとなる。
 また、本発明のなかでも、特に、上記架橋剤(E)が、イソシアネート系架橋剤であると、粘着剤層として用いた際の粘着特性により優れ、また、被加工部材に対する耐汚染性がより優れたものとなる。
 以下、本発明を実施するための形態について具体的に説明するが、本発明はこれらに限定されるものではない。
 本発明において、「(メタ)アクリル」とはアクリルあるいはメタクリルを、「(メタ)アクリロイル」とはアクリロイルあるいはメタクリロイルを、「(メタ)アクリレート」とはアクリレートあるいはメタクリレートをそれぞれ意味するものである。
 また、アクリル系樹脂とは、少なくとも1種の(メタ)アクリレート系モノマーを含む重合成分を重合して得られる樹脂である。
 なお、本発明において、「シート」とは、特に「フィルム」、「テープ」と区別するものではなく、これらも含めた意味として記載するものである。
 本発明の活性エネルギー線硬化性剥離型粘着剤組成物は、通常、一度被加工部材と貼り合わせた後に剥離することを前提とする、剥離型粘着シートの粘着剤層として用いられる。上記剥離型粘着シートは、活性エネルギー線硬化性剥離型粘着剤組成物を基材シート上に塗工した状態で用いられ、被加工部材と貼り合せた後、活性エネルギー線を照射することにより粘着剤層が硬化して粘着力が低下し、容易に被加工部材から剥離することができるものである。
 本発明の活性エネルギー線硬化性剥離型粘着剤組成物は、アクリル系樹脂(A)、ウレタン(メタ)アクリレート系化合物(B)、エチレン性不飽和化合物(C)、光重合性開始剤(D)および架橋剤(E)を含有してなるものである。以下、各成分について説明する。
[アクリル系樹脂(A)]
 通常、アクリル系樹脂とは、(メタ)アクリル酸アルキルエステル系モノマーと共重合可能なモノマーを重合させて得られる熱可塑性樹脂である。
 本発明で用いられるアクリル系樹脂(A)は、溶解度パラメータにおけるSP値が9.9(cal/cm31/2以上であることを特徴とする。
 本発明では、アクリル系樹脂(A)のSP値を特定の値以上として、ウレタン(メタ)アクリレート系化合物(B)およびエチレン性不飽和化合物(C)のSP値に近づけているため、互いの相溶性に優れるものとなる。そのため、活性エネルギー線剥離型組成物中で各成分が均一に混じりあった状態となり、粘着剤層とした際の粘着特性に優れ、また、被加工部材に対する耐汚染性に優れるという効果を奏する。
 上記アクリル系樹脂(A)の溶解度パラメータにおけるSP値は、9.9(cal/cm31/2以上である。好ましくは9.95(cal/cm31/2以上、より好ましくは9.99(cal/cm31/2以上、特に好ましくは10(cal/cm31/2以上である。なお、上記SP値の上限は、通常20(cal/cm31/2であり、好ましくは18(cal/cm31/2であり、特に好ましくは15(cal/cm31/2である。SP値が低すぎる場合は、ウレタン(メタ)アクリレート系化合物(B)およびエチレン性不飽和化合物(C)との相溶性が低くなり、粘着剤とした時の粘着特性が低くなる。また、SP値が低すぎる場合は、被加工部材に対する耐汚染性が低くなり、本発明の効果が得られない。
 上記溶解度パラメータにおけるSP値は、アクリル系樹脂(A)を構成する(メタ)アクリル酸アルキルエステル系モノマー、共重合可能なモノマーの蒸発エネルギー(ΔE)とモル容積(ΔV)およびモル比から求めることができ、具体的には、下記式(1)により求めることができる。
Figure JPOXMLDOC01-appb-M000001
 本発明で用いるアクリル系樹脂(A)のガラス転移温度(Tg)は、好ましくは-50~20℃であり、より好ましくは-40~10℃、さらに好ましくは-30~0℃、特に好ましくは-20~0℃である。ガラス転移温度が高すぎると粘着特性が低下する傾向があり、低すぎると被加工部材への汚染が多くなる傾向がある。
 なお、上記ガラス転移温度(Tg)は、アクリル系樹脂(A)を構成するそれぞれのモノマーをホモポリマーとした際のガラス転移温度および重量分率を、下記のFoxの式に当てはめて算出した値である。
 ここで、アクリル系樹脂(A)を構成するモノマーをホモポリマーとした際のガラス転移温度は、通常、示差走査熱量計(DSC)により測定されるものであり、JIS K 7121-1987や、JIS K 6240に準拠した方法で測定することができる。
Figure JPOXMLDOC01-appb-M000002
 上記アクリル系樹脂(A)の重量平均分子量は、通常1万~250万、好ましくは10万~200万、特に好ましくは15万~150万、殊に好ましくは20万~120万である。重量平均分子量が小さすぎると、被加工部材に対する耐汚染性が低くなる傾向があり、大きすぎると塗工性が低下しやすくなる傾向があり、またコストの面で不利となる傾向がある。
 さらに、アクリル系樹脂(A)の分散度(重量平均分子量/数平均分子量)は、20以下であることが好ましく、特には10以下が好ましく、さらには7以下が好ましく、殊には5以下が好ましい。かかる分散度が高すぎると被加工部材への汚染性が増大する傾向がある。なお、分散度の下限は、製造の限界の点から、通常1.1である。
 上記の重量平均分子量は、標準ポリスチレン分子量換算による重量平均分子量であり、高速液体クロマトグラフ(日本Waters社製、「Waters 2695(本体)」と「Waters 2414(検出器)」)に、カラム:Shodex GPC KF-806L(排除限界分子量:2×107、分離範囲:100~2×107、理論段数:10,000段/本、充填剤材質:スチレン-ジビニルベンゼン共重合体、充填剤粒径:10μm)を3本直列にして用いることにより測定されるものであり、数平均分子量も同様の方法によって得られる。
 上記のような特徴を有するアクリル系樹脂(A)は、SP値が特定の値以上となるように重合成分である(メタ)アクリル酸アルキルエステル系モノマー、共重合可能なモノマーの種類や含有量を調整し、重合させることにより得ることができる。
 上記(メタ)アクリル酸アルキルエステル系モノマーとしては、アルキル基の炭素数が、通常1~20、好ましくは1~12、さらには1~8、殊には4~8であることが好ましい。炭素数が大きすぎると、剥離性が低下する傾向にあり、被加工部材を汚染しやすくなる傾向がある。
 具体的には、例えば、メチル(メタ)アクリレート(SPa:10.560、SPma:9.933)、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート(SPa:9.769、SPma:9.447)、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート(SPa:9.221)、n-オクチル(メタ)アクリレート、イソオクチルアクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート等の脂肪族の(メタ)アクリル酸アルキルエステル;シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等の脂環族の(メタ)アクリル酸エステル等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。なお、本明細書において( )内のSPaはアクリレートのSP値を、SPmaはメタクリレートのSP値をそれぞれ示し、単位は、(cal/cm31/2である。
 上記(メタ)アクリル酸アルキルエステル系モノマーのなかでも、共重合性、粘着特性、取り扱いやすさおよび原料入手しやすさの点で、メチル(メタ)アクリレート、n-ブチル(メタ)アクリレートが好ましく用いられる。
 重合成分における上記アクリル酸アルキルエステル系モノマーの含有量は、通常10~99重量%であることが好ましく、特に好ましくは20~98重量%、さらに好ましくは30~95重量%である。かかる含有量が少なすぎると、活性エネルギー線照射前の粘着力が低下しやすくなる傾向にあり、多すぎると活性エネルギー線照射前の粘着力が高くなりすぎる傾向がある。
 上記共重合可能なモノマーとしては、水酸基含有モノマー、カルボキシ基含有モノマー、その他の共重合性モノマー等を挙げることができる。
 上記水酸基含有モノマーは、水酸基含有アクリレート系モノマーであることが好ましく、具体的には、例えば、2-ヒドロキシエチル(メタ)アクリレート(SPa:13.470)、4-ヒドロキシブチル(メタ)アクリレート、5-ヒドロキシペンチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、8-ヒドロキシオクチル(メタ)アクリレート等のアクリル酸ヒドロキシアルキルエステル、カプロラクトン変性2-ヒドロキシエチル(メタ)アクリレート等のカプロラクトン変性モノマー、ジエチレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート等のオキシアルキレン変性モノマー、2-アクリロイロキシエチル-2-ヒドロキシエチルフタル酸等の1級水酸基含有モノマー;2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート等の2級水酸基含有モノマー;2,2-ジメチル2-ヒドロキシエチル(メタ)アクリレート等の3級水酸基含有モノマー等を挙げることができる。これらは単独で用いてもよいし、2種以上を併用してもよい。
 上記水酸基含有モノマーのなかでも、後述の架橋剤(E)との反応性に優れる点で、1級水酸基含有モノマーが好ましく、特には2-ヒドロキシエチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートが好ましい。
 重合成分における上記水酸基含有モノマーの含有量は、通常0.1~40重量%であり、好ましくは0.2~30重量%、より好ましくは0.5~20重量%である。かかる含有量が多すぎると、乾燥工程前に架橋が進行し、塗工性に問題が生じやすくなる傾向があり、少なすぎると架橋度が低下し、被加工部材への汚染性が増大しやすくなる傾向がある。
 上記カルボキシ基含有モノマーとしては、例えば、(メタ)アクリル酸(SPa:14.040)、アクリル酸ダイマー、クロトン酸、マレイン酸、無水マレイン酸、フマル酸、シトラコン酸、グルタコン酸、イタコン酸、アクリルアミドN-グリコール酸、ケイ皮酸等が挙げられる。なかでも共重合性の点で(メタ)アクリル酸が好ましく用いられる。これらは単独で用いてもよいし、2種以上を併用してもよい。
 重合成分における上記カルボキシ基含有モノマーの含有量は、通常0.01~30重量%であり、好ましくは0.03~20重量%、より好ましくは0.05~10重量%である。かかる含有量が多すぎると、被加工部材を変質させやすい傾向があり、少なすぎると塗工時のポットライフが短くなる傾向がある。
 本発明で用いるアクリル系樹脂(A)は、共重合可能なモノマーとして、上記水酸基含有モノマーおよびカルボキシ基含有モノマー以外に、その他の共重合性モノマーを適宜含有してもよい。
 上記その他の共重合性モノマーとしては、例えば、2-(アセトアセトキシ)エチル(メタ)アクリレート、アリルアセトアセテート等のアセトアセチル基含有モノマー;(メタ)アクリル酸グリシジル、(メタ)アクリル酸アリルグリシジル等のグリシジル基含有モノマー;酢酸ビニル、プロピオン酸ビニル、ステアリン酸ビニル、安息香酸ビニル等のカルボン酸ビニルエステルモノマー;フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェニルジエチレングリコール(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、スチレン、α-メチルスチレン等の芳香環を含有するモノマー;ビフェニルオキシエチル(メタ)アクリレート等のビフェニルオキシ構造含有(メタ)アクリル酸エステル系モノマー;エトキシメチル(メタ)アクリルアミド、n-ブトキシメチル(メタ)アクリルアミド、(メタ)アクリロイルモルホリン、ジメチル(メタ)アクリルアミド、ジエチル(メタ)アクリルアミド、ジメチルアミノプロピルアクリルアミド、(メタ)アクリルアミドN-メチロール(メタ)アクリルアミド等の(メタ)アクリルアミド系モノマー;2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート等のアルコキシ基またはオキシアルキレン基を含有するモノマー;アクリロニトリル、メタクリロニトリル、塩化ビニル、塩化ビニリデン、アルキルビニルエーテル、ビニルトルエン、ビニルピリジン、ビニルピロリドン、イタコン酸ジアルキルエステル、フマル酸ジアルキルエステル、アリルアルコール、アクリルクロライド、メチルビニルケトン、アリルトリメチルアンモニウムクロライド、ジメチルアリルビニルケトン等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。
 重合成分における上記その他の共重合性モノマーの含有量としては、通常40重量%以下、好ましくは30重量%以下、より好ましくは25重量%以下である。その他の共重合性モノマーが多すぎると粘着特性が低下しやすくなる傾向がある。
 上記(メタ)アクリル酸アルキルエステル系モノマー、重合可能なモノマーを適宜選択して重合することにより、SP値が特定の値以上のアクリル系樹脂(A)を得ることができる。ただし、上記アクリル系樹脂(A)は、アクリル系樹脂の重合時の安定性の点から側鎖にラジカル重合性基を含有しないものとなるよう各モノマーを選択することが好ましい。
 上記アクリル系樹脂(A)を得るための重合法としては通常、溶液ラジカル重合、懸濁重合、塊状重合、乳化重合等の従来公知の方法により適宜行うことができる。なかでも溶液ラジカル重合が、任意のモノマー組成で安全かつ安定的に、アクリル系樹脂(A)を製造できるため好ましい。
 上記溶液ラジカル重合では、例えば、有機溶剤中に、(メタ)アクリル酸アルキルエステル系モノマー、共重合可能なモノマー等のモノマー成分および重合開始剤を混合あるいは滴下し、還流状態あるいは通常50~98℃で0.1~20時間程度重合すればよい。
 上記重合反応に用いられる有機溶剤としては、例えば、トルエン、キシレン等の芳香族炭化水素類、ヘキサン等の脂肪族炭化水素類、酢酸エチル、酢酸ブチル等のエステル類、n-プロピルアルコール、イソプロピルアルコール等の脂肪族アルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類等が挙げられる。
 上記重合開始剤としては、通常のラジカル重合開始剤であるアゾビスイソブチロニトリル、アゾビスジメチルバレロニトリル等のアゾ系重合開始剤、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、ジ-tert-ブチルパーオキサイド、クメンハイドロパーオキサイド等の過酸化物系重合開始剤等が具体例として挙げられる。
 このようにして、本発明で用いるアクリル系樹脂(A)を得ることができる。
[ウレタン(メタ)アクリレート系化合物(B)]
 本発明で用いられるウレタン(メタ)アクリレート系化合物(B)は、ウレタン結合および(メタ)アクリロイル基を有する化合物である。
 上記ウレタン(メタ)アクリレート系化合物(B)は、水酸基含有(メタ)アクリレート系化合物(b1)と多価イソシアネート系化合物(b2)との反応物であるウレタン(メタ)アクリレート系化合物(B1)であってもよいし、水酸基含有(メタ)アクリレート系化合物(b1)、多価イソシアネート系化合物(b2)およびポリオール系化合物(b3)の反応物であるウレタン(メタ)アクリレート系化合物(B2)であってもよい。なかでも、本発明においては、活性エネルギー線照射後の剥離性の点でウレタン(メタ)アクリレート系化合物(B1)を用いることが好ましい。
 なお、本発明においてウレタン(メタ)アクリレート系化合物(B)は、1種のみを用いてもよいし、2種以上を併用してもよい。
 水酸基含有(メタ)アクリレート系化合物(b1)としては、水酸基を1個有するものが好ましく、例えば、グリセリンジ(メタ)アクリレート、2-ヒドロキシ-3-アクリロイル-オキシプロピルメタクリレート等のエチレン性不飽和基を2個含有する水酸基含有(メタ)アクリレート系化合物;ペンタエリスリトールトリ(メタ)アクリレート、カプロラクトン変性ペンタエリスリトールトリ(メタ)アクリレート、エチレンオキサイド変性ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールペンタ(メタ)アクリレート、エチレンオキサイド変性ジペンタエリスリトールペンタ(メタ)アクリレート等のエチレン性不飽和基を3個以上含有する水酸基含有(メタ)アクリレート系化合物等が挙げられる。これらの水酸基含有(メタ)アクリレート系化合物(b1)は、単独でもしくは2種以上併せて用いることができる。
 これらのなかでも、反応性および汎用性に優れる点で、エチレン性不飽和基を3個以上含有する水酸基含有(メタ)アクリレート系化合物(b1)が好ましく、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレートが特に好ましい。
 上記多価イソシアネート系化合物(b2)としては、例えば、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ポリフェニルメタンポリイソシアネート、変性ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、フェニレンジイソシアネート、ナフタレンジイソシアネート等の芳香族系ポリイソシアネート;ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、リジントリイソシアネート等の脂肪族系ポリイソシアネート;水添化ジフェニルメタンジイソシアネート、水添化キシリレンジイソシアネート、イソホロンジイソシアネート、ノルボルネンジイソシアネート等の脂環式系ポリイソシアネート;あるいはこれらポリイソシアネートの3量体化合物または多量体化合物、アロファネート型ポリイソシアネート、ビュレット型ポリイソシアネート、水分散型ポリイソシアネート(例えば、日本ポリウレタン工業社製の「アクアネート100」、「アクアネート110」、「アクアネート200」、「アクアネート210」等)等が挙げられる。これらの多価イソシアネート系化合物(b2)は、単独でもしくは2種以上併せて用いることができる。
 これらのなかでも、反応性および汎用性に優れる点で、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート等の脂肪族系ジイソシアネート、水添化ジフェニルメタンジイソシアネート、水添化キシリレンジイソシアネート、イソホロンジイソシアネート、ノルボルネンジイソシアネート等の脂環式系ジイソシアネートが好ましく、特に好ましくはイソホロンジイソシアネート、水添化ジフェニルメタンジイソシアネート、水添化キシリレンジイソシアネート、ヘキサメチレンジイソシアネートであり、さらに好ましくは、イソホロンジイソシアネート、ヘキサメチレンジイソシアネートである。
 ポリオール系化合物(b3)としては、水酸基を2個以上含有する化合物であればよく、例えば、脂肪族ポリオール、脂環族ポリオール、ポリエーテル系ポリオール、ポリエステル系ポリオール、ポリカーボネート系ポリオール、ポリオレフィン系ポリオール、ポリブタジエン系ポリオール、ポリイソプレン系ポリオール、(メタ)アクリル系ポリオール、ポリシロキサン系ポリオール等が挙げられる。
 上記脂肪族ポリオールとしては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリメチレングリコール、ジメチロールプロパン、ネオペンチルグリコール、2,2-ジエチル-1,3-プロパンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、1,4-テトラメチレンジオール、1,3-テトラメチレンジオール、2-メチル-1,3-トリメチレンジオール、1,5-ペンタメチレンジオール、1,6-ヘキサメチレンジオール、3-メチル-1,5-ペンタメチレンジオール、2,4-ジエチル-1,5-ペンタメチレンジオール、ペンタエリスリトールジアクリレート、1,9-ノナンジオール、2-メチル-1,8-オクタンジオール等の2個の水酸基を含有する脂肪族アルコール類、キシリトールやソルビトール等の糖アルコール類、グリセリン、トリメチロールプロパン、トリメチロールエタン等の3個以上の水酸基を含有する脂肪族アルコール類等が挙げられる。
 上記脂環族ポリオールとしては、例えば、1,4-シクロヘキサンジオール、シクロヘキシルジメタノール等のシクロヘキサンジオール類、水添ビスフェノールA等の水添ビスフェノール類、トリシクロデカンジメタノール等が挙げられる。
 上記ポリエーテル系ポリオールとしては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリブチレングリコール、ポリペンタメチレングリコール、ポリヘキサメチレングリコール等のアルキレン構造含有ポリエーテル系ポリオールや、これらポリアルキレングリコールのランダム或いはブロック共重合体等が挙げられる。
 上記ポリエステル系ポリオールとしては、例えば、多価アルコールと多価カルボン酸との縮合重合物;環状エステル(ラクトン)の開環重合物;多価アルコール、多価カルボン酸および環状エステルの3種類の成分による反応物等が挙げられる。
 上記多価アルコールとしては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリメチレングリコール、1,4-テトラメチレンジオール、1,3-テトラメチレンジオール、2-メチル-1,3-トリメチレンジオール、1,5-ペンタメチレンジオール、ネオペンチルグリコール、1,6-ヘキサメチレンジオール、3-メチル-1,5-ペンタメチレンジオール、2,4-ジエチル-1,5-ペンタメチレンジオール、グリセリン、トリメチロールプロパン、トリメチロールエタン、シクロヘキサンジオール類(1,4-シクロヘキサンジオール等)、ビスフェノール類(ビスフェノールA等)、糖アルコール類(キシリトールやソルビトール等)等が挙げられる。
 上記多価カルボン酸としては、例えば、マロン酸、マレイン酸、フマル酸、コハク酸、グルタル酸、アジピン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカンジオン酸等の脂肪族ジカルボン酸;1,4-シクロヘキサンジカルボン酸等の脂環式ジカルボン酸;テレフタル酸、イソフタル酸、オルトフタル酸、2,6-ナフタレンジカルボン酸、パラフェニレンジカルボン酸、トリメリット酸等の芳香族ジカルボン酸等が挙げられる。
 上記環状エステルとしては、例えば、プロピオラクトン、β-メチル-δ-バレロラクトン、ε-カプロラクトン等が挙げられる。
 これらの多価アルコール、多価カルボン酸および環状エステルは、それぞれ1種または2種以上を併用して用いることができる。
 上記ポリカーボネート系ポリオールとしては、例えば、多価アルコールとホスゲンとの反応物;環状炭酸エステル(アルキレンカーボネート等)の開環重合物等が挙げられる。
 上記多価アルコールとしては、上記ポリエステル系ポリオールの説明中で例示の多価アルコール等が挙げられ、上記アルキレンカーボネートとしては、例えば、エチレンカーボネート、トリメチレンカーボネート、テトラメチレンカーボネート、ヘキサメチレンカーボネート等が挙げられる。
 なお、ポリカーボネート系ポリオールは、分子内にカーボネート結合を有し、末端がヒドロキシ基である化合物であればよく、カーボネート結合とともにエステル結合を有していてもよい。
 上記ポリオレフィン系ポリオールとしては、飽和炭化水素骨格としてエチレン、プロピレン、ブテン等のホモポリマーまたはコポリマーを有し、その分子末端に水酸基を有するものが挙げられる。
 上記ポリブタジエン系ポリオールとしては、炭化水素骨格としてブタジエンの共重合体を有し、その分子末端に水酸基を有するものが挙げられる。
 ポリブタジエン系ポリオールは、その構造中に含まれるエチレン性不飽和基の全部または一部が水素化された水添化ポリブタジエンポリオールであってもよい。
 上記ポリイソプレン系ポリオールとしては、炭化水素骨格としてイソプレンの共重合体を有し、その分子末端に水酸基を有するものが挙げられる。
 ポリイソプレン系ポリオールは、その構造中に含まれるエチレン性不飽和基の全部または一部が水素化された水添化ポリイソプレンポリオールであってもよい。
 上記(メタ)アクリル系ポリオールとしては、(メタ)アクリル酸エステルの重合体または共重合体の分子内にヒドロキシ基を少なくとも2つ有しているものが挙げられ、かかる(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸オクタデシル等の(メタ)アクリル酸アルキルエステル等が挙げられる。
 上記ポリシロキサン系ポリオールとしては、例えば、ジメチルポリシロキサンポリオールやメチルフェニルポリシロキサンポリオール等が挙げられる。
 上記ポリオール系化合物(b3)は、単独でもしくは2種類以上を併用してもよい。
 これらのなかでも、コストの点では、脂肪族ポリオール、脂環族ポリオールが好ましく、汎用性の点ではポリエステル系ポリオール、ポリエーテル系ポリオール、ポリカーボネート系ポリオールが好ましい。
 上記ポリオール系化合物(b3)の重量平均分子量としては、通常60~10,000であり、好ましくは100~8,000、より好ましくは150~6,000である。ポリオール系化合物(b3)の重量平均分子量が大きすぎると、得られるウレタン(メタ)アクリレート系化合物(B2)とアクリル系樹脂(A)とが均一に混合しにくくなり、被加工部材への糊残りが生じやすくなる傾向がある。また、ポリオール系化合物(b3)の重量平均分子量が小さすぎると、活性エネルギー線照射後に粘着剤層にクラックが発生しやすくなる傾向がある。
 ウレタン(メタ)アクリレート系化合物(B)は、以上のような成分を、公知の反応手段により反応させることで製造することができる。
 通常、ウレタン(メタ)アクリレート系化合物(B1)の場合には、上記水酸基含有(メタ)アクリレート系化合物(b1)と多価イソシアネート系化合物(b2)とを、ウレタン(メタ)アクリレート系化合物(B2)の場合にはさらにポリオール系化合物(b3)を、反応器に一括または別々に仕込み公知の反応手段によりウレタン化反応させて製造することができる。
 また、ウレタン(メタ)アクリレート系化合物(B2)を製造する場合には、ポリオール系化合物(b3)と多価イソシアネート系化合物(b2)とを予め反応させて得られる反応生成物に、水酸基含有(メタ)アクリレート系化合物(b1)を反応させる方法が、ウレタン化反応の安定性や副生成物の低減等の点で有用である。
 上記のウレタン化反応においては、反応系の残存イソシアネート基含有率が0.5重量%以下になる時点で反応を終了させることにより、ウレタン(メタ)アクリレート系化合物(B)が得られる。
 上記水酸基含有(メタ)アクリレート系化合物(b1)と多価イソシアネート系化合物(b2)との反応においては、反応を促進する目的で反応触媒を用いることが好ましく、かかる反応触媒としては、例えば、ジブチル錫ジラウレート、トリメチル錫ヒドロキシド、テトラ-n-ブチル錫等の有機金属化合物、オクテン酸亜鉛、オクテン酸錫、オクチル酸錫、ナフテン酸コバルト、塩化第1錫、塩化第2錫等の金属塩、トリエチルアミン、ベンジルジエチルアミン、1,4-ジアザビシクロ[2,2,2]オクタン、1,8-ジアザビシクロ[5,4,0]ウンデセン、N,N,N’,N’-テトラメチル-1,3-ブタンジアミン、N-エチルモルホリン等のアミン系触媒、硝酸ビスマス、臭化ビスマス、ヨウ化ビスマス、硫化ビスマス等の他、ジブチルビスマスジラウレート、ジオクチルビスマスジラウレート等の有機ビスマス化合物や、2-エチルヘキサン酸ビスマス塩、ナフテン酸ビスマス塩、イソデカン酸ビスマス塩、ネオデカン酸ビスマス塩、ラウリル酸ビスマス塩、マレイン酸ビスマス塩、ステアリン酸ビスマス塩、オレイン酸ビスマス塩、リノール酸ビスマス塩、酢酸ビスマス塩、ビスマスリビスネオデカノエート、ジサリチル酸ビスマス塩、ジ没食子酸ビスマス塩等の有機酸ビスマス塩等のビスマス系触媒、無機ジルコニウム、有機ジルコニウム、ジルコニウム単体等のジルコニウム系触媒、2-エチルヘキサン酸亜鉛/ジルコニウムテトラアセチルアセトナート等の2種類以上の触媒を併用したものが挙げられる。なお、これらの触媒は1種または2種以上組み合わせて使用することができる。
 これらの触媒のなかでも、ジブチル錫ジラウレート、1,8-ジアザビシクロ[5,4,0]ウンデセンが好適である。
 上記ウレタン化反応においては、イソシアネート基に対して反応する官能基を有しない有機溶剤、例えば、酢酸エチル、酢酸ブチル等のエステル類、メチルエチルケトン、メチルイソブチルケトン等のケトン類、トルエン、キシレン等の芳香族類等の有機溶剤を用いることができる。
 また、反応温度は、通常30~90℃、好ましくは40~80℃であり、反応時間は、通常2~10時間、好ましくは3~8時間である。
 このようにして得られるウレタン(メタ)アクリレート系化合物(B)は、活性エネルギー線照射後の剥離性の点から、エチレン性不飽和基を2~20個有することが必要である。好ましくは2~18個、より好ましくは4~15個である。
 かかるエチレン性不飽和基数が多すぎると活性エネルギー線照射後の架橋密度が大きくなりすぎて、粘着剤層にクラックが発生しやすくなり、少なすぎると充分な架橋密度が得られないため、活性エネルギー線照射後に剥離しにくくなる。
 上記ウレタン(メタ)アクリレート系化合物(B)の重量平均分子量は、通常500~10,000、好ましくは750~8,000、より好ましくは1,000~6,000である。かかる重量平均分子量が高すぎるとウレタン(メタ)アクリレート系化合物(B)の粘度が高くなり、アクリル系樹脂(A)との相溶性が低下し、被加工部材への粘着剤層の部分的な残留(糊残り)が生じやすくなる傾向がある。重量平均分子量が低すぎると粘着シートからウレタン(メタ)アクリレート系化合物(B)がブリードして糊残りが生じやすくなる傾向がある。
 なお、上記の重量平均分子量は、標準ポリスチレン分子量換算による重量平均分子量であり、高速液体クロマトグラフ(Waters社製、「ACQUITY APCシステム」)に、カラム:ACQUITY APC XT 450×1本、ACQUITY APC XT 200×1本、ACQUITY APC XT 45×2本を4本直列にして用いることにより測定される。
 上記ウレタン(メタ)アクリレート系化合物(B)の溶解度パラメータにおけるSP値は、通常9~15(cal/cm31/2、好ましくは9.5~13(cal/cm31/2、特に好ましくは10~12(cal/cm31/2である。SP値が上記の範囲外である場合は、アクリル系樹脂(A)、エチレン性不飽和化合物(C)との相溶性が低下し、粘着剤層とした時の粘着特性が低下する傾向がある。なお、上記ウレタン(メタ)アクリレート系化合物(B)のSP値は、分子構造からFedorsによる方法により計算によって求めることができる。
 また、前記アクリル系樹脂(A)とウレタン(メタ)アクリレート系化合物(B)とのSP値の差の絶対値(|(A)-(B)|)は、通常3以下、好ましくは2以下、さらに好ましくは1以下、特に好ましくは0.8以下である。SP値の差の絶対値が上記の範囲外である場合は、アクリル系樹脂(A)との相溶性が低下し、粘着剤層とした時の粘着特性が低下する傾向がある。
 本発明で用いられるウレタン(メタ)アクリレート系化合物(B)の60℃における粘度は、500~100,000mPa・sであることが好ましく、特に好ましくは1,000~50,000mPa・sである。かかる粘度が上記範囲外では、塗工性が低下する傾向がある。なお、粘度はE型粘度計により測定することができる。
 本発明においてウレタン(メタ)アクリレート系化合物(B)の含有量は、通常、アクリル系樹脂(A)100重量部に対して5~100重量部であり、好ましくは10~80重量部、特に好ましくは20~60重量部である。ウレタン(メタ)アクリレート系化合物(B)の含有量が少なすぎると活性エネルギー線照射後に剥離しにくくなる傾向があり、ウレタン(メタ)アクリレート系化合物(B)の含有量が多すぎると活性エネルギー線照射後に粘着剤層にクラックが発生しやすくなる傾向がある。
[エチレン性不飽和化合物(C)]
 本発明で用いるエチレン性不飽和化合物(C)は、(メタ)アクリレート系化合物であることが好ましいが、エチレン性不飽和基を有する化合物であれば、特に限定されずに用いることができる。なお、本発明で用いるエチレン性不飽和化合物(C)は、上記ウレタン(メタ)アクリレート系化合物(B)を除くものである。
 上記エチレン性不飽和化合物(C)は、活性エネルギー線照射後の剥離特性に優れる点で、エチレン性不飽和基の数が2~10個であることが必要である。好ましくは、3~9個、特に好ましくは4~8個である。かかるエチレン性不飽和基数が多すぎると活性エネルギー線照射後の架橋密度が大きくなりすぎて、粘着剤層にクラックが発生しやすくなり、少なすぎると充分な架橋密度が得られないため、活性エネルギー線照射後に剥離しにくくなる。
 上記エチレン性不飽和化合物(C)の溶解度パラメータにおけるSP値は、通常8~12(cal/cm31/2、好ましくは9~11.5(cal/cm31/2、特に好ましくは9.5~11(cal/cm31/2である。SP値が上記の範囲外である場合は、アクリル系樹脂(A)、ウレタン(メタ)アクリレート系化合物(B)との相溶性が低下し、粘着剤とした時の粘着特性が低下する傾向がある。なお、上記エチレン性不飽和化合物(C)のSP値は、分子構造からFedorsによる方法により計算によって求めることができる。
 また、前記アクリル系樹脂(A)とエチレン性不飽和化合物(C)とのSP値の差の絶対値(|(A)-(C)|)は、通常3以下、好ましくは1以下、さらに好ましくは0.7以下、特に好ましくは0.5以下である。SP値の差の絶対値が上記の範囲外である場合は、アクリル系樹脂(A)との相溶性が低下し、粘着剤層とした時の粘着特性が低下する傾向がある。
 上記エチレン性不飽和化合物(C)としては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキサイド変性ビスフェノールA型ジ(メタ)アクリレート、プロピレンオキサイド変性ビスフェノールA型ジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート、エトキシ化シクロヘキサンジメタノールジ(メタ)アクリレート、ジメチロールジシクロペンタンジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、エチレングリコールジグリシジルエーテルジ(メタ)アクリレート、ジエチレングリコールジグリシジルエーテルジ(メタ)アクリレート、フタル酸ジグリシジルエステルジ(メタ)アクリレート、ヒドロキシピバリン酸変性ネオペンチルグリコールジ(メタ)アクリレート、イソシアヌル酸エチレンオキサイド変性ジアクリレート等のエチレン性不飽和基を2個有する化合物;トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリ(メタ)アクリロイルオキシエトキシトリメチロールプロパン、イソシアヌル酸エチレンオキサイド変性トリアクリレート、カプロラクトン変性ペンタエリスリトールトリ(メタ)アクリレート、エチレンオキサイド変性ペンタエリスリトールトリ(メタ)アクリレート、エトキシ化グリセリントリアクリレート等のエチレン性不飽和基を3個有する化合物;ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、グリセリンポリグリシジルエーテルポリ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールペンタ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ペンタエリスリトールテトラ(メタ)アクリレート、エチレンオキサイド変性ジペンタエリスリトールペンタ(メタ)アクリレート、エチレンオキサイド変性ジペンタエリスリトールヘキサ(メタ)アクリレート、エチレンオキサイド変性ペンタエリスリトールテトラ(メタ)アクリレート等のエチレン性不飽和基を4個以上有する化合物等が挙げられる。
 また、エチレン性不飽和化合物(C)としては、(メタ)アクリル酸のミカエル付加物あるいは2-(メタ)アクリロイルオキシエチルジカルボン酸モノエステルも併用可能であり、かかる(メタ)アクリル酸のミカエル付加物としては、(メタ)アクリル酸ダイマー、(メタ)アクリル酸トリマー、(メタ)アクリル酸テトラマー等が挙げられる。
 上記2-(メタ)アクリロイルオキシエチルジカルボン酸モノエステルは、特定の置換基をもつカルボン酸であり、例えば2-(メタ)アクリロイルオキシエチルコハク酸モノエステル、2-(メタ)アクリロイルオキシエチルフタル酸モノエステル、2-(メタ)アクリロイルオキシエチルヘキサヒドロフタル酸モノエステル等が挙げられる。さらに、その他オリゴエステルアクリレートも挙げられる。
 上記のエチレン性不飽和化合物(C)は、単独でもしくは2種以上を併用してもよい。
 これらのなかでも、活性エネルギー線照射後の粘着特性に優れることから、水酸基を有さないエチレン性不飽和化合物が好ましく、より好ましくは、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ペンタエリスリトールテトラ(メタ)アクリレート、エチレンオキサイド変性ジペンタエリスリトールヘキサ(メタ)アクリレート、エチレンオキサイド変性ペンタエリスリトールテトラ(メタ)アクリレートであり、特に好ましくは、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートである。
 また、本発明においては、エチレン性不飽和化合物(C)から(メタ)アクリル酸を除いた化合物の骨格と、前記ウレタン(メタ)アクリレート系化合物(B)の水酸基含有(メタ)アクリレート系化合物(b1)から(メタ)アクリル酸を除いた化合物の骨格とが互いに同一であることが、相溶性および粘着特性に優れる点で好ましい。
 上記エチレン性不飽和化合物(C)の含有量は、通常、アクリル系樹脂(A)100重量部に対して5~100重量部であり、好ましくは10~80重量部、特に好ましくは20~60重量部である。エチレン性不飽和化合物(C)の含有量が少なすぎると活性エネルギー線照射後に剥離しにくくなる傾向があり、多すぎると剥離後の被加工部材に対する耐汚染性が低下する傾向がある。
 本発明においては、活性エネルギー線照射前の粘着力および照射後の剥離性に優れる点から、ウレタン(メタ)アクリレート系化合物(B)とエチレン性不飽和化合物(C)の合計含有量を、アクリル系樹脂(A)100重量部に対して、20~100重量部とすることが重要である。好ましくは25~90重量部、特に好ましくは30~80重量部である。合計含有量が少なすぎる場合は、活性エネルギー線を照射しても粘着力が低下しにくくなり、合計含有量が多すぎる場合は、活性エネルギー線照射後に被加工部材に対する耐汚染性が低くなる。
 また、ウレタン(メタ)アクリレート系化合物(B)とエチレン性不飽和化合物(C)との重量含有比率〔(B):(C)〕は、好ましくは99.9:0.1~0.1:99.9であり、より好ましくは99:1~1:99であり、さらに好ましくは90:10~10:90であり、特に好ましくは80:20~20:80である。ウレタン(メタ)アクリレート系化合物(B)とエチレン性不飽和化合物(C)との重量含有比率が上記の範囲外であると、粘着剤層とした際の粘着特性が低下する傾向がある。
[光重合性開始剤(D)]
 本発明で用いる光重合性開始剤(D)は、光の作用によりラジカルを発生するものであればよく、例えば、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシルフェニルケトン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)ブタノン、2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパノンオリゴマー等のアセトフェノン類;ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾイン類;ベンゾフェノン、o-ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、4-ベンゾイル-4’-メチル-ジフェニルサルファイド、3,3’,4,4’-テトラ(tert-ブチルパーオキシカルボニル)ベンゾフェノン、2,4,6-トリメチルベンゾフェノン、4-ベンゾイル-N,N-ジメチル-N-[2-(1-オキソ-2-プロペニルオキシ)エチル]ベンゼンメタナミニウムブロミド、(4-ベンゾイルベンジル)トリメチルアンモニウムクロリド等のベンゾフェノン類;2-イソプロピルチオキサントン、4-イソプロピルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン、1-クロロ-4-プロポキシチオキサントン、2-(3-ジメチルアミノ-2-ヒドロキシ)-3,4-ジメチル-9H-チオキサントン-9-オンメソクロリド等のチオキサントン類;2,4,6-トリメチルベンゾイル-ジフェニルフォスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等のアシルフォスフォンオキサイド類等が挙げられる。なかでも、アセトフェノン類が好ましく、特に好ましくは1-ヒドロキシシクロヘキシルフェニルケトンである。なお、これら光重合性開始剤(D)は、単独で用いるか、または2種以上を併用することができる。
 また、これら光重合性開始剤(D)の助剤として、例えば、トリエタノールアミン、トリイソプロパノールアミン、4,4’-ジメチルアミノベンゾフェノン(ミヒラーケトン)、4,4’-ジエチルアミノベンゾフェノン、2-ジメチルアミノエチル安息香酸、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸(n-ブトキシ)エチル、4-ジメチルアミノ安息香酸イソアミル、4-ジメチルアミノ安息香酸2-エチルヘキシル、2,4-ジエチルチオキサンソン、2,4-ジイソプロピルチオキサンソン等を併用することも可能である。これらの助剤も単独でもしくは2種以上併せて用いることができる。
 光重合性開始剤(D)の含有量は、アクリル系樹脂(A)、ウレタン(メタ)アクリレート系化合物(B)およびエチレン性不飽和化合物(C)の合計100重量部に対して、0.1~20重量部であることが好ましく、特に好ましくは0.5~15重量部、殊に好ましくは1~10重量部である。光重合性開始剤(D)の含有量が少なすぎると活性エネルギー線照射後の剥離性が低下しやすくなる傾向があり、多すぎると活性エネルギー線照射後に被加工部材に対する耐汚染性が低くなる傾向がある。
[架橋剤(E)]
 上記架橋剤(E)としては、例えば、イソシアネート系架橋剤、エポキシ系架橋剤、アジリジン系架橋剤、オキサゾリン系架橋剤、メラミン系架橋剤、アルデヒド系架橋剤、アミン系架橋剤等が挙げられる。これらのなかでも、剥離型粘着シートの基材シートとの接着性を向上させる点やアクリル系樹脂(A)との反応性の点から、イソシアネート系架橋剤を用いることが好ましい。
 また、これらの架橋剤(E)は、単独で使用してもよいし、2種以上を併用してもよい。
 上記イソシアネート系架橋剤としては、例えば、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、水素化トリレンジイソシアネート、水添化キシレンジイソシアネート、ヘキサメチレンジイソシアネート、ジフェニルメタン-4,4-ジイソシアネート、イソホロンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン、テトラメチルキシリレンジイソシアネート、1,5-ナフタレンジイソシアネート、トリフェニルメタントリイソシアネート、およびこれらのポリイソシアネート化合物とトリメチロールプロパン等のポリオール化合物とのアダクト体、これらポリイソシアネート化合物のビュレット体やイソシアヌレート体等が挙げられる。
 これらのなかでも薬剤耐性や官能基との反応性の点でヘキサメチレンジイソシアネートのイソシアヌレート体、2,4-トリレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネートとトリメチロールプロパンとのアダクト体、2,4-トリレンジイソシアネートおよび2,6-トリレンジイソシアネートのイソシアヌレート体、テトラメチルキシリレンジイソシアネートとトリメチロールプロパンとのアダクト体が好ましい。
 上記エポキシ系架橋剤としては、例えば、ビスフェノールA・エピクロルヒドリン型のエポキシ樹脂、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセリンジグリシジルエーテル、グリセリントリグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ソルビトールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエリスリトール、ジグリセロールポリグリシジルエーテル、1,3’-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’-テトラグリシジル-m-キシレンジアミン等が挙げられる。
 上記アジリジン系架橋剤としては、例えば、テトラメチロールメタン-トリ-β-アジリジニルプロピオネート、トリメチロールプロパン-トリ-β-アジリジニルプロピオネート、N,N’-ジフェニルメタン-4,4’-ビス(1-アジリジンカルボキシアミド)、N,N’-ヘキサメチレン-1,6-ビス(1-アジリジンカルボキシアミド)等が挙げられる。
 上記オキサゾリン系架橋剤としては、例えば、2,2’-ビス(2-オキサゾリン)、1,2-ビス(2-オキサゾリン-2-イル)エタン、1,4-ビス(2-オキサゾリン-2-イル)ブタン、1,8-ビス(2-オキサゾリン-2-イル)ブタン、1,4-ビス(2-オキサゾリン-2-イル)シクロヘキサン、1,2-ビス(2-オキサゾリン-2-イル)ベンゼン、1,3-ビス(2-オキサゾリン-2-イル)ベンゼン等の脂肪族あるいは芳香族を含むビスオキサゾリン化合物、2-ビニル-2-オキサゾリン、2-ビニル-4-メチル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-4-メチル-2-オキサゾリン、2-イソプロペニル-5-エチル-2-オキサゾリン等の付加重合性オキサゾリンの1種または2種以上の重合物等が挙げられる。
 上記メラミン系架橋剤としては、例えば、へキサメトキシメチルメラミン、ヘキサエトキシメチルメラミン、ヘキサプロポキシメチルメラミン、ヘキサプトキシメチルメラミン、ヘキサペンチルオキシメチルメラミン、ヘキサヘキシルオキシメチルメラミン、メラミン樹脂等が挙げられる。
 上記アルデヒド系架橋剤としては、例えば、グリオキザール、マロンジアルデヒド、スクシンジアルデヒド、マレインジアルデヒド、グルタルジアルデヒド、ホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド等が挙げられる。
 上記アミン系架橋剤としては、例えば、ヘキサメチレンジアミン、トリエチルジアミン、ポリエチレンイミン、ヘキサメチレンテトラアミン、ジエチレントリアミン、トリエチルテトラアミン、イソフォロンジアミン、アミノ樹脂、ポリアミド等が挙げられる。
 上記架橋剤(E)の含有量は、通常、アクリル系樹脂(A)、ウレタン(メタ)アクリレート系化合物(B)およびエチレン性不飽和化合物(C)の合計100重量部に対して、0.1~30重量部であることが好ましく、特に好ましくは0.2~20重量部、さらに好ましくは0.3~15重量部である。架橋剤(E)が少なすぎると、粘着剤の凝集力が低下し、糊残りの原因となる傾向があり、架橋剤(E)が多すぎると、柔軟性および粘着力が低下し、被加工部材との間に浮きが生じる傾向がある。
[その他の成分]
 本発明の活性エネルギー線硬化性剥離型粘着剤組成物は、本発明の効果を損なわない範囲において、例えば、少量の単官能モノマー、帯電防止剤、酸化防止剤、可塑剤、充填剤、顔料、希釈剤、老化防止剤、紫外線吸収剤、紫外線安定剤等の添加剤をさらに含有していてもよく、これらの添加剤は1種を単独でまたは2種以上を併せて用いることができる。特に酸化防止剤は、粘着剤層の安定性を保つのに有効である。酸化防止剤を配合する場合の含有量は、特に制限はないが、好ましくは活性エネルギー線硬化性剥離型粘着剤組成物に対して0.01~5重量%である。
 なお、本発明の活性エネルギー線硬化性剥離型粘着剤組成物には、上記添加剤の他にも、活性エネルギー線硬化性剥離型粘着剤組成物の構成成分の製造原料等に含まれる不純物等が少量含有されていてもよい。
 また、本発明の活性エネルギー線硬化性剥離型粘着剤組成物は、活性エネルギー線照射後に被加工部材に対する耐汚染性が低くなる点から、テルペン系樹脂、ロジン系樹脂、クロマン系樹脂、フェノール系樹脂、スチレン系樹脂、石油系樹脂等の粘着付与樹脂を含まないことが好ましい。
 かくして、アクリル系樹脂(A)、ウレタン(メタ)アクリレート系化合物(B)、エチレン性不飽和化合物(C)、光重合性開始剤(D)および架橋剤(E)、必要に応じてその他の成分を混合することにより、本発明の活性エネルギー線硬化性剥離型粘着剤組成物が得られる。
 本発明の活性エネルギー線硬化性剥離型粘着剤組成物は、上記架橋剤(E)により架橋され、剥離型粘着シートの粘着剤層として、好適に用いられる。そして、この剥離型粘着シートは、被加工部材と貼り合せた後、活性エネルギー線照射することにより、ウレタン(メタ)アクリレート系化合物(B)およびエチレン性不飽和化合物(C)が重合して粘着剤層が硬化し、粘着力の低下が起こることで剥離性を発揮する。この特性を利用して、各種の被加工部材を加工する際、一時的にその被加工部材の表面を保護する用途に用いられる。
 以下、剥離型粘着シートについて説明する。
 上記剥離型粘着シートによって保護される被加工部材としては、例えば、半導体ウエハ、プリント基板、ガラス加工品、金属板、プラスチック板等が挙げられる。
 上記剥離型粘着シートは、通常、基材シート、本発明の活性エネルギー線硬化性剥離型粘着剤組成物からなる粘着剤層、離型フィルムを有する。かかる剥離型粘着シートの作製方法としては、まず本発明の活性エネルギー線硬化性剥離型粘着剤組成物をそのまま、または適当な有機溶剤により濃度調整し、離型フィルム上または基材シート上に直接塗工する。その後、例えば80~105℃、0.5~10分間加熱処理等により乾燥させ、これを基材シートまたは離型フィルムに貼付することにより剥離型粘着シートを得ることができる。また、粘着特性のバランスをとるために、乾燥後にさらにエージングを行ってもよい。
 上記基材シートとしては、例えば、ポリエチレンナフタート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンテレフタレート/イソフタレート共重合体等のポリエステル系樹脂;ポリエチレン、ポリプロピレン、ポリメチルペンテン等のポリオレフィン系樹脂;ポリフッ化ビニル、ポリフッ化ビニリデン、ポリフッ化エチレン等のポリフッ化エチレン樹脂;ナイロン6、ナイロン6,6等のポリアミド;ポリ塩化ビニル、ポリ塩化ビニル/酢酸ビニル共重合体、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、ポリビニルアルコール、ビニロン等のビニル重合体;三酢酸セルロース、セロファン等のセルロース系樹脂;ポリメタクリル酸メチル、ポリメタクリル酸エチル、ポリアクリル酸エチル、ポリアクリル酸ブチル等のアクリル系樹脂;ポリスチレン;ポリカーボネート;ポリアリレート;ポリイミド等からなる群から選ばれた少なくとも一つの合成樹脂からなるシート;アルミニウム、銅、鉄の金属箔、上質紙、グラシン紙等の紙、硝子繊維、天然繊維、合成繊維等からなる織物や不織布が挙げられる。これらの基材シートは、単層体としてまたは2種以上が積層された複層体として用いることができる。これらのなかでも、軽量化等の点から、合成樹脂からなるシートが好ましい。
 さらに、上記離型フィルムとしては、例えば、上記基材シートで例示した各種合成樹脂シート、紙、織物、不織布等に離型処理したものを使用することができる。
 また、上記活性エネルギー線硬化性剥離型粘着剤組成物の塗工方法としては、一般的な塗工方法であれば特に限定されることなく、例えば、ロールコーティング、ダイコーティング、グラビアコーティング、コンマコーティング、スクリーン印刷等の方法が挙げられる。
 上記剥離型粘着シートにおける粘着剤層の厚みは、通常、1~200μmであることが好ましく、さらには10~100μmがあることが好ましい。
 活性エネルギー線としては、通常、遠紫外線、紫外線、近紫外線、赤外線等の光線、X線、γ線等の電磁波の他、電子線、プロトン線、中性子線等が利用できるが、硬化速度、照射装置の入手のし易さ、価格等から紫外線を用いることが有利である。
 上記紫外線の積算照射量は、通常50~3,000mJ/cm2、好ましくは100~1,000mJ/cm2である。また、照射時間は、光源の種類、光源と粘着剤層との距離、粘着剤層の厚み、その他の条件によっても異なるが、通常は数秒間、場合によっては1秒に満たないごく短時間でもよい。
 上記剥離型粘着シートの粘着力は、基材シートの種類、被加工部材の種類等によっても異なるが、活性エネルギー線照射前は、1~30N/25mmが好ましく、さらには1~20N/25mmが好ましい。また、活性エネルギー線照射後の粘着力は、0.01~1N/25mmが好ましく、さらには0.05~0.5N/25mmが好ましい。
 そして、活性エネルギー線照射後の粘着力は、活性エネルギー線照射前の粘着力の1/5以下であることが好ましく、より好ましくは1/50以下である。
 本発明の活性エネルギー線硬化性剥離型粘着剤組成物を、粘着剤層として用いた剥離型粘着シートは、これを被加工部材と貼り合せ、被加工部材の表面を一時的に保護した後に、活性エネルギー線を照射することにより、粘着剤層が硬化して粘着力が低下するため、容易に被加工部材から剥離することができる。
 以下、実施例を挙げて本発明をさらに具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。なお、以下「%」、「部」とあるのは、重量基準を意味する。
 実施例および比較例の活性エネルギー線硬化性剥離型粘着剤組成物に含有される各成分は以下の通りである。
 また、アクリル系樹脂の組成を後記の表1に示す。
 ・n-ブチルアクリレート
 〔SP値:9.769(cal/cm31/2、分子量:128.2〕
 ・2-エチルヘキシルアクリレート
 〔SP値:9.221(cal/cm31/2、分子量:184.3〕
 ・メチルアクリレート
 〔SP値:10.560(cal/cm31/2、分子量:86.1〕
 ・メチルメタクリレート
 〔SP値:9.933(cal/cm31/2、分子量:100.1〕
 ・2-ヒドロキシエチルアクリレート
 〔SP値:14.480(cal/cm31/2、分子量:116.1〕
 ・2-ヒドロキシエチルメタクリレート
 〔SP値:13.470(cal/cm31/2、分子量:144.2〕
 ・アクリル酸
 〔SP値:14.040(cal/cm31/2、分子量:72.1〕
<アクリル系樹脂>
[アクリル系樹脂(A-1)]
 温度調節機、温度計、撹拌機、滴下ロートおよび還流冷却器を備えた反応器内に、酢酸エチル29部を仕込み、撹拌しながら昇温し、内温が78℃で安定した段階でn-ブチルアクリレート91.9部、2-ヒドロキシエチルメタクリレート0.1部、アクリル酸8部、アゾビスイソブチロニトリル(AIBN)0.037部を混合溶解させた混合物を2時間にわたって滴下し、還流下で反応させた。次いで、反応開始(還流後)から3.5時間後に酢酸エチル1.5部とAIBN0.025部を溶解させた液を添加した。さらに、反応開始から5.5時間後にトルエン4部とAIBN0.05部を溶解させた液を添加した。反応開始から7.5時間後に酢酸エチル57.5部とトルエン100部を投入し反応を終了させ、溶液状のアクリル系樹脂(A-1)〔SP値:10.057(cal/cm31/2、重量平均分子量:80万、ガラス転移温度(Tg):-48.2℃、樹脂分:35.0%、粘度:8,000mPa・s(25℃)〕を得た。
[アクリル系樹脂(A-2)]
 上記アクリル系樹脂(A-1)において、重合成分をn-ブチルアクリレート70部、2-ヒドロキシエチルアクリレート30部に変更した以外は同様にして、溶液状のアクリル系樹脂(A-2)〔SP値:11.065(cal/cm31/2、重量平均分子量:70万、ガラス転移温度:-45.1℃、樹脂分:35.0%、粘度:6,000mPa・s(25℃)〕を得た。
[アクリル系樹脂(A-3)]
 上記アクリル系樹脂(A-1)において、重合成分をn-ブチルアクリレート69部、メチルアクリレート30部、2-ヒドロキシエチルアクリレート1部に変更した以外は同様にして、溶液状のアクリル系樹脂(A-3)〔SP値:10.033(cal/cm31/2、重量平均分子量:60万、ガラス転移温度:-39.6℃、樹脂分:35.0%、粘度:5,000mPa・s(25℃)〕を得た。
[アクリル系樹脂(A-4)]
 上記アクリル系樹脂(A-1)において、重合成分をn-ブチルアクリレート59部、メチルアクリレート40部、2-ヒドロキシエチルアクリレート1部に変更した以外は同様にして、溶液状のアクリル系樹脂(A-4)〔SP値:10.110(cal/cm31/2、重量平均分子量:70万、ガラス転移温度:-33.6℃、樹脂分:35.0%、粘度:6,000mPa・s(25℃)〕を得た。
[アクリル系樹脂(A-5)]
 上記アクリル系樹脂(A-1)において、重合成分をn-ブチルアクリレート70部、メチルメタクリレート20部、2-ヒドロキシエチルメタクリレート0.1部、アクリル酸9.9部に変更した以外は同様にして、溶液状のアクリル系樹脂(A-5)〔SP値:10.163(cal/cm31/2、重量平均分子量:50万、ガラス転移温度:-24.2℃、樹脂分:35.0%、粘度:8,000mPa・s(25℃)〕を得た。
[アクリル系樹脂(A-6)]
 上記アクリル系樹脂(A-1)において、重合成分をn-ブチルアクリレート69.8部、メチルメタクリレート25部、2-ヒドロキシエチルメタクリレート0.2部、アクリル酸5部に変更した以外は同様にして、溶液状のアクリル系樹脂(A-6)〔SP値:9.995(cal/cm31/2、重量平均分子量:45万、ガラス転移温度:-24.0℃、樹脂分:35.0%、粘度:6,000mPa・s(25℃)〕を得た。
[アクリル系樹脂(A-7)]
 上記アクリル系樹脂(A-1)において、重合成分をn-ブチルアクリレート39部、メチルアクリレート60部、2-ヒドロキシエチルアクリレート1部に変更した以外は同様にして、溶液状のアクリル系樹脂(A-7)〔SP値:10.270(cal/cm31/2、重量平均分子量:70万、ガラス転移温度:-21.0℃、樹脂分:35.0%、粘度:10,000mPa・s(25℃)〕を得た。
[アクリル系樹脂(A-8)]
 上記アクリル系樹脂(A-1)において、重合成分をn-ブチルアクリレート64.85部、メチルメタクリレート30部、2-ヒドロキシエチルメタクリレート5部、アクリル酸0.15部に変更した以外は同様にして、溶液状のアクリル系樹脂(A-8)〔SP値:9.996(cal/cm31/2、重量平均分子量:45万、ガラス転移温度:-19.1℃、樹脂分:35.0%、粘度:6,000mPa・s(25℃)〕を得た。
[アクリル系樹脂(A’-1)]
 上記アクリル系樹脂(A-1)において、重合成分を2-エチルヘキシルアクリレート92.8部、2-ヒドロキシエチルアクリレート7部、アクリル酸0.2部に変更した以外は同様にして、溶液状のアクリル系樹脂(A’-1)〔SP値:9.550(cal/cm31/2、重量平均分子量:100万、ガラス転移温度:-66.7℃、樹脂分:35.0%、粘度:4,000mPa・s(25℃)〕を得た。
[アクリル系樹脂(A’-2)]
 上記アクリル系樹脂(A-1)において、重合成分を2-エチルヘキシルアクリレート91.9部、2-ヒドロキシエチルメタクリレート0.1部、アクリル酸8部に変更した以外は同様にして、溶液状のアクリル系樹脂(A’-2)〔SP値:9.530(cal/cm31/2、重量平均分子量:60万、ガラス転移温度:-62.1℃、樹脂分:35.0%、粘度:2,000mPa・s(25℃)〕を得た。
[アクリル系樹脂(A’-3)]
 上記アクリル系樹脂(A-1)において、重合成分をn-ブチルアクリレート59部、2-エチルヘキシルアクリレート36部、2-ヒドロキシエチルアクリレート5部に変更した以外は同様にして、溶液状のアクリル系樹脂(A’-3)〔SP値:9.770(cal/cm31/2、重量平均分子量:95万、ガラス転移温度:-59.6℃、樹脂分:35.0%、粘度:3,000mPa・s(25℃)〕を得た。
[アクリル系樹脂(A’-4)]
 上記アクリル系樹脂(A-1)において、重合成分をn-ブチルアクリレート45.9部、2-エチルヘキシルアクリレート46部、2-ヒドロキシエチルメタクリレート0.1部、アクリル酸8部に変更した以外は同様にして、溶液状のアクリル系樹脂(A’-4)〔SP値:9.787(cal/cm31/2、重量平均分子量:55万、ガラス転移温度:-55.4℃、樹脂分:35.0%、粘度:1500mPa・s(25℃)〕を得た。
Figure JPOXMLDOC01-appb-T000003
<ウレタン(メタ)アクリレート系化合物およびエチレン性不飽和化合物>
[ウレタンアクリレート(B-1)とジペンタエリスリトールヘキサアクリレート(C-1)の組成物]
 温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、イソホロンジイソシアネート8.7部、ジペンタエリスリトールのアクリル酸付加物(水酸基価48mgKOH/g)91.3部、重合禁止剤として2,6-ジ-tert-ブチルクレゾール0.06部、反応触媒としてジブチル錫ジラウレート0.01部を仕込み、60℃で反応させ、残存イソシアネート基が0.3%以下となった時点で反応を終了し、組成物I(重量平均分子量2,300)を得た。この組成物Iは、ウレタンアクリレート(B-1)45部、ジペンタエリスリトールヘキサアクリレート(C-1)55部を含むものであった。
 [ウレタンアクリレート(B-1)]
 ・イソホロンジイソシアネートとジペンタエリスリトールペンタアクリレートの反応物〔エチレン性不飽和基:10個、SP値:10.64(cal/cm31/2
 [エチレン性不飽和化合物(C-1)]
 ・ジペンタエリスリトールヘキサアクリレート〔エチレン性不飽和基:6個、SP値:10.40(cal/cm31/2
[ウレタンアクリレート(B-2)とペンタエリスリトールテトラアクリレート(C-2)の組成物]
 温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えたフラスコに、イソホロンジイソシアネート19.2部と、ペンタエリスリトールのアクリル酸付加物(水酸基価120mgKOH/g)80.8部を仕込み、重合禁止剤として2,6-ジ-tert-ブチルクレゾール0.06部、反応触媒としてジブチル錫ジラウレート0.01部を仕込み、60℃で反応させ、残存イソシアネート基が0.3%以下となった時点で反応を終了し、組成物II(重量平均分子量1,600)を得た。この組成物IIは、ウレタンアクリレート(B-2)65部、ペンタエリスリトールテトラアクリレート(C-2)35部を含むものであった。
 [ウレタンアクリレート(B-2)]
 ・イソホロンジイソシアネートとペンタエリスリトールトリアクリレートの反応物〔エチレン性不飽和基:6個、SP値:10.73(cal/cm31/2
 [エチレン性不飽和化合物(C-2)]
 ・ペンタエリスリトールテトラアクリレート〔エチレン性不飽和基:4個、SP値:10.34(cal/cm31/2
[ウレタンアクリレート(B-3)とジペンタエリスリトールヘキサアクリレート(C-1)の組成物]
 温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、イソホロンジイソシアネート16.3部、ジペンタエリスリトールのアクリル酸付加物(水酸基価98mgKOH/g)83.7部、重合禁止剤として2,6-ジ-tert-ブチルクレゾール0.06部、反応触媒としてジブチル錫ジラウレート0.01部を仕込み、60℃で反応させ、残存イソシアネート基が0.3%以下となった時点で反応を終了し、組成物III(重量平均分子量5300)を得た。この組成物IIIは、ウレタンアクリレート(B-3)37.5部、ジペンタエリスリトールヘキサアクリレート(C-1)12.5部を含むものであった。
 [ウレタンアクリレート(B-3)]
 ・イソホロンジイソシアネートとジペンタエリスリトールペンタアクリレートの反応物〔エチレン性不飽和基:10個、SP値:10.64(cal/cm31/2
 [エチレン性不飽和化合物(C-1)]
 ・ジペンタエリスリトールヘキサアクリレート〔エチレン性不飽和基:6個、SP値:10.40(cal/cm31/2
<光重合開始剤>
[光重合性開始剤(D-1)]
・オムニラッド184(IGM RESIN社製)
<架橋剤>
[架橋剤(E-1)]
・コロネートL-55E(イソシアネート系架橋剤、東ソー社製)
<<実施例1>>
〔活性エネルギー線硬化性剥離型粘着剤組成物の調製〕
 上記アクリル系樹脂(A-1)286部(樹脂分35%)、組成物I 50部〔ウレタンアクリレート(B-1)22.5部、エチレン性不飽和化合物(C-1)27.5部〕、光重合性開始剤(D-1)2.1部、架橋剤(E-1)9.7部(有効成分換算で5.4部)、希釈溶剤としてトルエン30部を混合し、活性エネルギー線硬化性剥離型粘着剤組成物を得た。
〔剥離型粘着シートの作製〕
 得られた活性エネルギー線硬化性剥離型粘着剤組成物を、基材シートとして、易接着ポリエチレンテレフタレートフイルム(膜厚50μm)(東レ社製、「ルミラーT60」)上に、アプリケーターで塗工した後、100℃で3分間乾燥し、離型フィルム(三井化学東セロ社製、「SP-PET 38 01-BU」)に貼付し、40℃にて3日間エージングすることにより、剥離型粘着シート(粘着剤層の厚み25μm)を得た。
 得られた剥離型粘着シートを用いて下記の評価を行った。
〔粘着力:紫外線(UV)照射前〕
 上記で得られた剥離型粘着シートから25mm×100mmの大きさの試験片を作製し、離型フィルムを剥がしたうえで、ステンレス板(SUS304BA板)に23℃、相対湿度50%の雰囲気下にて質量2kgのゴムローラーを2往復させて加圧貼付し、同雰囲気下で30分間静置した後、剥離速度300mm/minで180度剥離強度(N/25mm)を測定した。
(評価基準)
 ◎・・・10N/25mm以上
 ○・・・5N/25mm以上、10N/25mm未満
 △・・・1N/25mm以上、5N/25mm未満
 ×・・・1N/25mm未満、もしくは糊残りが発生
〔粘着力:紫外線(UV)照射後〕
 上記で得られた剥離型粘着シートから25mm×100mmの大きさの試験片を作製し、離型フィルムを剥がしたうえで、ステンレス板(SUS304BA板)に23℃、相対湿度50%の雰囲気下にて質量2kgのゴムローラーを2往復させて加圧貼付し、同雰囲気下で30分間放置した後、80Wの高圧水銀灯、1灯を用いて、18cmの高さから5.1m/minのコンベア速度で紫外線照射(積算照射量200mJ/cm2)を行った。さらに23℃、相対湿度50%の雰囲気下で30分間静置した後、剥離速度300mm/minで180度剥離強度(N/25mm)を測定した。
(評価基準)
 ◎・・・0.2N/25mm未満
 ○・・・0.2N/25mm以上、0.5N/25mm未満
 △・・・0.5N/25mm以上、1N/25mm未満
 ×・・・1N/25mm以上、もしくは糊残りが発生
〔耐汚染性:紫外線(UV)照射前〕
 異物が付着していない4インチ角のステンレス板(SUS304BA板)の表面に、上記で得られた剥離型粘着シートを貼付し、23℃、相対湿度65%の雰囲気下に1時間静置した後、ステンレス板の表面から剥離型粘着シートを剥離し、剥離後のステンレス板について、目視にて以下のように評価した。
(評価基準)
 ○・・・糊残りなし
 △・・・わずかに糊残りあり
 ×・・・糊残りあり
〔耐汚染性:紫外線(UV)照射後〕
 異物が付着していない4インチ角のステンレス板(SUS304BA板)の表面に、上記で得られた剥離型粘着シートを貼付し、23℃、相対湿度65%の雰囲気下に1時間静置した後、80Wの高圧水銀灯、1灯を用いて、18cmの高さから5.1m/minのコンベア速度で紫外線照射(積算照射量200mJ/cm2)を行った。その後、ステンレス板の表面から剥離型粘着シートを剥離し、剥離後のステンレス板について、目視にて以下のように評価した。
(評価基準)
 ○・・・糊残りなし
 △・・・わずかに糊残りあり
 ×・・・糊残りあり
〔ヘイズ値〕
 剥離フィルムを剥がした剥離型粘着シートの拡散透過率および全光線透過率を、HAZE MATER NDH2000(日本電色工業社製)を用いて測定し、得られた拡散透過率と全光線透過率の値を下記式に代入してヘイズ値を求めた。なお、ヘイズ値が高い程、活性エネルギー線硬化性剥離型粘着剤組成物中の各成分が均一でないことを意味する。また、ヘイズ値は基材シートを含む値である。
 ヘイズ値(%)=(拡散透過率/全光線透過率)×100
(評価基準)
 ◎・・・1%未満
 ○・・・1%以上、2%未満
 △・・・2%以上、3%未満
 ×・・・3%以上
<<実施例2~14、比較例1~9>>
 各成分を下記表2、3の通りに配合した以外は、実施例1と同様にして活性エネルギー線硬化性剥離型粘着剤組成物を得た。また、得られた実施例2~14、比較例1~9の活性エネルギー線硬化性剥離型粘着剤組成物について実施例1と同様の評価を行なった。実施例2~14、比較例1~9の評価結果を実施例1の評価結果とともに後記表4に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 上記表4に示すように、溶解度パラメータにおけるSP値が特定の値以上のアクリル系樹脂(A)、特定個数のエチレン性不飽和基を有するウレタン(メタ)アクリレート系化合物(B)およびエチレン性不飽和化合物(C)、光重合性開始剤(D)および架橋剤(E)を含有し、ウレタン(メタ)アクリレート系化合物(B)とエチレン性不飽和化合物(C)の合計含有量が特定の範囲である実施例1~14の活性エネルギー線硬化性剥離型粘着剤組成物は、これを剥離型粘着シートの粘着剤層とした際のヘイズ値が低いことから、各成分が活性エネルギー線硬化性剥離型粘着剤組成物中で均一な状態となっていることがわかる。そして、この実施例1~14を用いた剥離型粘着シートは、活性エネルギー線照射前および照射後の粘着特性に優れ、さらには被加工部材に対する耐汚染性に優れるものであった。
 一方、溶解度パラメータにおけるSP値が特定の値未満であるアクリル系樹脂を用いた比較例1~4は、ヘイズ値が高いことから、各成分が均一な状態となっておらず、これを用いた剥離型粘着シートは、粘着特性に劣り、また、被加工部材に対する耐汚染性に劣るものであった。
 さらに、ウレタン(メタ)アクリレート系化合物(B)とエチレン性不飽和化合物(C)との合計含有量が特定の範囲外である比較例5~9を用いた剥離型粘着シートは、粘着特性に劣るか、または被加工部材に対する耐汚染性に劣るものであった。
 上記実施例においては、本発明における具体的な形態について示したが、上記実施例は単なる例示にすぎず、限定的に解釈されるものではない。当業者に明らかな様々な変形は、本発明の範囲内であることが企図されている。
 本発明の活性エネルギー線硬化性剥離型粘着剤組成物は、半導体ウエハ、プリント基板、ガラス加工品、金属板、プラスチック板等を加工する際の一時的な表面保護用粘着フィルムに好適に用いることができる。

Claims (6)

  1.  アクリル系樹脂(A)、ウレタン(メタ)アクリレート系化合物(B)、上記ウレタン(メタ)アクリレート系化合物(B)を除くエチレン性不飽和化合物(C)、光重合性開始剤(D)および架橋剤(E)を含有する剥離型粘着剤組成物であって、上記アクリル系樹脂(A)の溶解度パラメータにおけるSP値が9.9(cal/cm31/2以上であり、上記ウレタン(メタ)アクリレート系化合物(B)が、2~20個のエチレン性不飽和基を有し、上記エチレン性不飽和化合物(C)が、2~10個のエチレン性不飽和基を有し、かつ上記ウレタン(メタ)アクリレート系化合物(B)とエチレン性不飽和化合物(C)の合計含有量が、上記アクリル系樹脂(A)100重量部に対して、20~100重量部であることを特徴とする活性エネルギー線硬化性剥離型粘着剤組成物。
  2.  上記アクリル系樹脂(A)のガラス転移温度が-50~20℃であることを特徴とする請求項1記載の活性エネルギー線硬化性剥離型粘着剤組成物。
  3.  上記ウレタン(メタ)アクリレート系化合物(B)とエチレン性不飽和化合物(C)との重量含有比率(B:C)が99.9:0.1~0.1:99.9であることを特徴とする請求項1または2記載の活性エネルギー線硬化性剥離型粘着剤組成物。
  4.  上記ウレタン(メタ)アクリレート系化合物(B)が、水酸基含有(メタ)アクリレート系化合物(b1)と多価イソシアネート系化合物(b2)との反応物であることを特徴とする請求項1~3のいずれか一項に記載の活性エネルギー線硬化性剥離型粘着剤組成物。
  5.  上記架橋剤(E)が、イソシアネート系架橋剤であることを特徴とする請求項1~4のいずれか一項に記載の活性エネルギー線硬化性剥離型粘着剤組成物。
  6.  請求項1~5のいずれか一項に記載の活性エネルギー線硬化性剥離型粘着剤組成物が架橋剤(E)により架橋されてなる粘着剤層を有することを特徴とする剥離型粘着シート。
PCT/JP2018/045784 2017-12-22 2018-12-13 活性エネルギー線硬化性剥離型粘着剤組成物および剥離型粘着シート WO2019124197A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018565907A JP7172604B2 (ja) 2017-12-22 2018-12-13 活性エネルギー線硬化性剥離型粘着剤組成物および剥離型粘着シート
CN201880079190.7A CN111465670A (zh) 2017-12-22 2018-12-13 活性能量射线固化性剥离型粘合剂组合物和剥离型粘合片
KR1020207016427A KR102557929B1 (ko) 2017-12-22 2018-12-13 활성 에너지선 경화성 박리형 점착제 조성물 및 박리형 점착 시트

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-246029 2017-12-22
JP2017246029 2017-12-22

Publications (1)

Publication Number Publication Date
WO2019124197A1 true WO2019124197A1 (ja) 2019-06-27

Family

ID=66993085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045784 WO2019124197A1 (ja) 2017-12-22 2018-12-13 活性エネルギー線硬化性剥離型粘着剤組成物および剥離型粘着シート

Country Status (5)

Country Link
JP (1) JP7172604B2 (ja)
KR (1) KR102557929B1 (ja)
CN (1) CN111465670A (ja)
TW (1) TWI817964B (ja)
WO (1) WO2019124197A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020200391A (ja) * 2019-06-10 2020-12-17 三菱ケミカル株式会社 活性エネルギー線硬化性剥離型粘着剤組成物および剥離型粘着シート
CN113150699A (zh) * 2019-12-18 2021-07-23 狮王特殊化学株式会社 再剥离型粘合剂组合物和粘合片
WO2024009593A1 (ja) * 2022-07-08 2024-01-11 株式会社レゾナック 粘着剤組成物及び保護シート

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10335271A (ja) * 1997-06-02 1998-12-18 Texas Instr Japan Ltd ウェハ貼着用シートおよび半導体装置の製造方法
JP2012084758A (ja) * 2010-10-14 2012-04-26 Denki Kagaku Kogyo Kk 電子部品の製造方法
JP2012177084A (ja) * 2011-01-31 2012-09-13 Dainippon Printing Co Ltd 耐熱仮着用の粘着剤組成物及び粘着テープ
JP2015198107A (ja) * 2014-03-31 2015-11-09 住友ベークライト株式会社 半導体用ウエハ加工用粘着テープ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10310748A (ja) 1997-05-12 1998-11-24 Sumitomo Bakelite Co Ltd 半導体ウエハ加工用粘着シート
JP6482463B2 (ja) * 2014-06-30 2019-03-13 日本合成化学工業株式会社 活性エネルギー線硬化性粘着剤組成物、粘着剤及び粘着シート

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10335271A (ja) * 1997-06-02 1998-12-18 Texas Instr Japan Ltd ウェハ貼着用シートおよび半導体装置の製造方法
JP2012084758A (ja) * 2010-10-14 2012-04-26 Denki Kagaku Kogyo Kk 電子部品の製造方法
JP2012177084A (ja) * 2011-01-31 2012-09-13 Dainippon Printing Co Ltd 耐熱仮着用の粘着剤組成物及び粘着テープ
JP2015198107A (ja) * 2014-03-31 2015-11-09 住友ベークライト株式会社 半導体用ウエハ加工用粘着テープ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020200391A (ja) * 2019-06-10 2020-12-17 三菱ケミカル株式会社 活性エネルギー線硬化性剥離型粘着剤組成物および剥離型粘着シート
JP7255373B2 (ja) 2019-06-10 2023-04-11 三菱ケミカル株式会社 活性エネルギー線硬化性剥離型粘着剤組成物および剥離型粘着シート
CN113150699A (zh) * 2019-12-18 2021-07-23 狮王特殊化学株式会社 再剥离型粘合剂组合物和粘合片
WO2024009593A1 (ja) * 2022-07-08 2024-01-11 株式会社レゾナック 粘着剤組成物及び保護シート

Also Published As

Publication number Publication date
KR20200100631A (ko) 2020-08-26
JP7172604B2 (ja) 2022-11-16
JPWO2019124197A1 (ja) 2020-10-22
TWI817964B (zh) 2023-10-11
TW201930516A (zh) 2019-08-01
CN111465670A (zh) 2020-07-28
KR102557929B1 (ko) 2023-07-20

Similar Documents

Publication Publication Date Title
JP7255241B2 (ja) 活性エネルギー線硬化性剥離型粘着剤組成物および剥離型粘着シート
JP5859193B2 (ja) 多層粘着シート及び電子部品の製造方法
JP7259327B2 (ja) 活性エネルギー線硬化性剥離型粘着剤組成物
WO2019124197A1 (ja) 活性エネルギー線硬化性剥離型粘着剤組成物および剥離型粘着シート
JP2022160306A (ja) 活性エネルギー線硬化性剥離型粘着剤組成物および剥離型粘着シート
JP5161283B2 (ja) 電子部品の製造方法
JP6565304B2 (ja) 薬液保護用粘着シート用熱硬化性粘着剤組成物、これを架橋させてなる薬液保護用粘着シート用粘着剤、薬液保護用粘着シート及び薬液保護用粘着シートの使用方法
JP6927114B2 (ja) 粘着剤組成物および粘着シート
JP7434754B2 (ja) 活性エネルギー線硬化性剥離型粘着剤組成物および剥離型粘着シート
JP7400572B2 (ja) 活性エネルギー線硬化性剥離型粘着剤組成物および剥離型粘着シート
JP7251203B2 (ja) 活性エネルギー線硬化性剥離型粘着剤組成物および剥離型粘着シート
JP7251202B2 (ja) 活性エネルギー線硬化性剥離型粘着剤組成物および剥離型粘着シート
JP7346842B2 (ja) 活性エネルギー線硬化性剥離型粘着剤組成物および剥離型粘着シート
JP2020063425A (ja) 活性エネルギー線硬化性剥離型粘着剤組成物および剥離型粘着シート
JP6943207B2 (ja) 加熱剥離型粘着剤組成物および剥離型粘着シート
TWI839336B (zh) 活性能量射線硬化性剝離型黏著劑組成物
JP7255373B2 (ja) 活性エネルギー線硬化性剥離型粘着剤組成物および剥離型粘着シート
WO2017150018A1 (ja) 半導体加工シート
JP2022182471A (ja) 活性エネルギー線硬化性粘着剤組成物および剥離型粘着シート
JP2023135819A (ja) 活性エネルギー線硬化性剥離型粘着剤組成物及び剥離型粘着シート
JP2024064172A (ja) 活性エネルギー線硬化性剥離型粘着剤組成物及び活性エネルギー線硬化性剥離型粘着シート

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018565907

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18890008

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18890008

Country of ref document: EP

Kind code of ref document: A1