WO2019124163A1 - 発光素子 - Google Patents

発光素子 Download PDF

Info

Publication number
WO2019124163A1
WO2019124163A1 PCT/JP2018/045490 JP2018045490W WO2019124163A1 WO 2019124163 A1 WO2019124163 A1 WO 2019124163A1 JP 2018045490 W JP2018045490 W JP 2018045490W WO 2019124163 A1 WO2019124163 A1 WO 2019124163A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound semiconductor
layer
light emitting
light
semiconductor layer
Prior art date
Application number
PCT/JP2018/045490
Other languages
English (en)
French (fr)
Inventor
達史 濱口
御友 重吾
倫太郎 幸田
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2019560998A priority Critical patent/JP7259763B2/ja
Priority to US16/956,376 priority patent/US11728625B2/en
Priority to EP18891580.5A priority patent/EP3731354B1/en
Publication of WO2019124163A1 publication Critical patent/WO2019124163A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0207Substrates having a special shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0208Semi-insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • H01S5/04257Electrodes, e.g. characterised by the structure characterised by the configuration having positive and negative electrodes on the same side of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02461Structure or details of the laser chip to manipulate the heat flow, e.g. passive layers in the chip with a low heat conductivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04252Electrodes, e.g. characterised by the structure characterised by the material
    • H01S5/04253Electrodes, e.g. characterised by the structure characterised by the material having specific optical properties, e.g. transparent electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04254Electrodes, e.g. characterised by the structure characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • H01S5/0651Mode control
    • H01S5/0653Mode suppression, e.g. specific multimode
    • H01S5/0654Single longitudinal mode emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18322Position of the structure
    • H01S5/1833Position of the structure with more than one structure
    • H01S5/18333Position of the structure with more than one structure only above the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18358Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] containing spacer layers to adjust the phase of the light wave in the cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2059Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion
    • H01S5/2063Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion obtained by particle bombardment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本開示の光素子は、化合物半導体基板11、GaN系化合物半導体から成る積層構造体20、第1光反射層41及び第2光反射層42を備えており、積層構造体20は、第1化合物半導体層21、活性層23及び第2化合物半導体層22が積層されて成り、第1光反射層41は、化合物半導体基板11上に配設され、凹面鏡部43を有しており、第2光反射層42は、第2化合物半導体層22の第2面側に配設され、平坦な形状を有しており、化合物半導体基板11は、低不純物濃度・化合物半導体基板又は半絶縁性・化合物半導体基板から成る。

Description

発光素子
 本開示は、発光素子(具体的には、垂直共振器レーザ、VCSELとも呼ばれる面発光レーザ素子)に関する。
 面発光レーザ素子(VCSEL)から成る発光素子においては、一般に、2つの光反射層(Distributed Bragg Reflector 層、DBR層)の間でレーザ光を共振させることによってレーザ発振が生じる。そして、n型化合物半導体層、化合物半導体から成る活性層(発光層)及びp型化合物半導体層が積層された積層構造体を有する面発光レーザ素子においては、一般に、p型化合物半導体層上に透明導電性材料から成る第2電極を形成し、第2電極の上に絶縁材料の積層構造から成る第2光反射層を形成する。また、n型化合物半導体層上に(導電性の基板上にn型化合物半導体層が形成されている場合には基板の露出面上に)、第1電極、及び、絶縁材料の積層構造から成る第1光反射層を形成する。尚、便宜上、2つの光反射層によって形成される共振器の中心を通る軸線をZ軸とし、Z軸と直交する仮想平面をXY平面と呼ぶ。
特開2006-114753号公報 特開2000-022277号公報
 ところで、積層構造体をGaAs系化合物半導体から構成する場合、共振器長LORは1μm程度である。一方、積層構造体をGaN系化合物半導体から構成する場合、共振器長LORは、通常、面発光レーザ素子から出射されるレーザ光の波長の数倍と長い。即ち、共振器長LORは1μmよりもかなり長い。そして、このように共振器長LORが長くなると、従来の1μm程度の共振器長LORを採用しているGaAs系面発光レーザ素子と異なり、回折損失(後述する)が増加するためにレーザ発振が難しくなる。このような問題を解決するために、光反射層に凹面鏡としての機能を付与する技術として、例えば、特開2006-114753号公報や特開2000-022277号公報がある。しかしながら、これらの特許公開公報には、共振器長LORが長くなることに起因した回折損失の増加といった本開示の発光素子が解決しようとする課題に関して、何ら言及されていない。
 従って、本開示の目的は、共振器長LORが長くなることに起因した回折損失の増加といった問題を解決できる構成、構造を有する発光素子を提供することにある。
 上記の目的を達成するための本開示の第1の態様に係る発光素子は、
 化合物半導体基板、GaN系化合物半導体から成る積層構造体、第1光反射層及び第2光反射層を備えており、
 積層構造体は、
 化合物半導体基板上に形成され、第1面、及び、第1面と対向する第2面を有する第1化合物半導体層、
 第1化合物半導体層の第2面と面する活性層、並びに、
 活性層と面する第1面、及び、第1面と対向する第2面を有する第2化合物半導体層、
が積層されて成り、
 第1光反射層は、化合物半導体基板上に配設され、凹面鏡部を有しており、
 第2光反射層は、第2化合物半導体層の第2面側に配設され、平坦な形状を有しており、
 化合物半導体基板は、低不純物濃度・化合物半導体基板又は半絶縁性・化合物半導体基板から成る。
 上記の目的を達成するための本開示の第2の態様に係る発光素子は、
 GaN系化合物半導体から成る積層構造体、第1光反射層及び第2光反射層を備えており、
 積層構造体は、
 第1面、及び、第1面と対向する第2面を有する第1化合物半導体層、
 第1化合物半導体層の第2面と面する活性層、並びに、
 活性層と面する第1面、及び、第1面と対向する第2面を有する第2化合物半導体層、
が積層されて成り、
 第1光反射層は、第1化合物半導体層の第1面上に配設され、凹面鏡部を有しており、
 第2光反射層は、第2化合物半導体層の第2面側に配設され、平坦な形状を有しており、
 第1化合物半導体層の不純物濃度は5×1017/cm3以下である。
 上記の目的を達成するための本開示の第3の態様に係る発光素子は、
 GaN系化合物半導体から成る積層構造体、第1光反射層及び第2光反射層を備えており、
 積層構造体は、
 第1面、及び、第1面と対向する第2面を有する第1化合物半導体層、
 第1化合物半導体層の第2面と面する活性層、並びに、
 活性層と面する第1面、及び、第1面と対向する第2面を有する第2化合物半導体層、
が積層されて成り、
 第1光反射層は、第1化合物半導体層の第1面側に配設され、凹面鏡部を有しており、
 第2光反射層は、第2化合物半導体層の第2面側に配設され、平坦な形状を有しており、
 第1化合物半導体層には、活性層が占める仮想平面と平行に、少なくとも1層の低抵抗層が形成されている。
図1は、実施例1の発光素子の模式的な一部端面図である。 図2A及び図2Bは、実施例1の発光素子の製造方法を説明するための積層構造体等の模式的な一部端面図である。 図3は、図2Bに引き続き、実施例1の発光素子の製造方法を説明するための積層構造体等の模式的な一部端面図である。 図4は、図3に引き続き、実施例1の発光素子の製造方法を説明するための積層構造体等の模式的な一部端面図である。 図5は、図4に引き続き、実施例1の発光素子の製造方法を説明するための積層構造体等の模式的な一部端面図である。 図6は、図5に引き続き、実施例1の発光素子の製造方法を説明するための積層構造体等の模式的な一部端面図である。 図7は、図6に引き続き、実施例1の発光素子の製造方法を説明するための積層構造体等の模式的な一部端面図である。 図8は、実施例1の発光素子の変形例の積層構造体等の模式的な一部端面図である。 図9は、実施例1の発光素子の別の変形例の積層構造体等の模式的な一部端面図である。 図10は、実施例3の発光素子の模式的な一部端面図である。 図11は、実施例4の発光素子の模式的な一部端面図である。 図12は、実施例4の発光素子の変形例の模式的な一部端面図である。 図13A及び図13Bは、実施例5の発光素子の製造方法を説明するための積層構造体等の模式的な一部端面図である。 図14は、実施例6の発光素子の模式的な一部端面図である。 図15は、実施例6の発光素子の変形例の模式的な一部端面図である。 図16は、実施例7の発光素子の模式的な一部端面図である。 図17は、実施例7の発光素子の変形例の模式的な一部端面図である。 図18は、実施例8の発光素子の模式的な一部端面図である。 図19は、実施例8の発光素子の変形例の模式的な一部端面図である。 図20A及び図20Bは、実施例8の撮像装置における開口の底部を示す模式的な平面図である。 図21は、実施例8の発光素子の別の変形例の模式的な一部端面図である。 図22は、実施例8の発光素子の更に別の変形例の模式的な一部端面図である。 図23は、実施例10の発光素子の模式的な一部端面図である。 図24A及び図24Bは、実施例10の発光素子の製造方法を説明するための積層構造体等の模式的な一部端面図である。 図25の(A)、(B)及び(C)は、それぞれ、従来の発光素子、実施例10の発光素子及び実施例13の発光素子における光場強度を示す概念図である。 図26は、実施例11の発光素子の模式的な一部端面図である。 図27は、実施例12の発光素子の模式的な一部端面図である。 図28は、実施例13の発光素子の模式的な一部端面図である。 図29は、図28に示した実施例13の発光素子の要部を切り出した模式的な一部断面図である。 図30は、実施例14の発光素子の模式的な一部端面図である。 図31は、実施例15の発光素子の模式的な一部端面図である。 図32は、実施例16の発光素子の模式的な一部断面図である。 図33は、実施例16の発光素子の模式的な一部断面図と、縦モードAと縦モードBの2つの縦モードを重ね合わせた図である。 図34は、実施例19の発光素子の模式的な一部断面図である。 図35は、同一の曲率半径を有する2つの凹面鏡部で挟まれたファブリペロー型共振器を想定したときの概念図である。 図36は、ω0の値と共振器長LORの値と第1光反射層の凹面鏡部の曲率半径RDBRの値の関係を示すグラフである。 図37は、ω0の値と共振器長LORの値と第1光反射層の凹面鏡部の曲率半径RDBRの値の関係を示すグラフである。 図38A及び図38Bは、それぞれ、ω0の値が「正」であるときのレーザ光の集光状態を模式的に示す図、及び、ω0の値が「負」であるときのレーザ光の集光状態を模式的に示す図である。 図39A及び図39Bは、活性層によって決まるゲインスペクトル内に存在する縦モードを模式的に示す概念図である。
 以下、図面を参照して、実施例に基づき本開示を説明するが、本開示は実施例に限定されるものではなく、実施例における種々の数値や材料は例示である。尚、説明は、以下の順序で行う。
1.本開示の第1の態様~第3の態様に係る発光素子、全般に関する説明
2.実施例1(本開示の第1の態様に係る発光素子、第5-A構成の発光素子)
3.実施例2(実施例1の変形)
4.実施例3(実施例1~実施例2の変形、第5-B構成の発光素子)
5.実施例4(本開示の第2の態様に係る発光素子、第6構成の発光素子)
6.実施例5(実施例4の変形)
7.実施例6(本開示の第3の態様、第3-Aの態様に係る発光素子)
8.実施例7(実施例6の変形、第3-Bの態様に係る発光素子)
9.実施例8(実施例6~実施例7の変形)
10.実施例9(実施例1~実施例8の変形、第1構成の発光素子)
11.実施例10(実施例1~実施例9の変形、第2-A構成の発光素子)
12.実施例11(実施例10の変形、第2-B構成の発光素子)
13.実施例12(実施例10~実施例11の変形、第2-C構成の発光素子)
14.実施例13(実施例10~実施例12の変形、第2-D構成の発光素子)
15.実施例14(実施例10~実施例13の変形)
16.実施例15(実施例1~実施例14の変形、第3-A構成の発光素子、第3-B構成の発光素子、第3-C構成の発光素子及び第3-D構成の発光素子)
17.実施例16(実施例1~実施例15の変形、第4構成の発光素子)
18.実施例17(実施例16の変形)
19.実施例18(実施例16の別の変形)
20.実施例19(実施例16~実施例18の変形)
21.その他
〈本開示の第1の態様~第3の態様に係る発光素子、全般に関する説明〉
 共振器を構成する主な部材であるn型GaN系化合物半導体層においては、ドープ量と光吸収とは明瞭な相関を持つことが知られており(例えば、Journal of Crystal Growth, 312, 2010, 3569-3573)、ドープ量は少ないほうが良い。GaN系化合物半導体層においては、導電性を改善するために、ドーパントを添加することが一般的である。例えば上記の文献には、1×1018/cm3以上のドープ量が言及されているだけであり、1×1016/cm3台のドープ量については言及がない。このように、基板のドープ量を低減させることの効果については、これまで、面発光レーザ以外の発光素子においても着目されてこなかった。
 本開示の第1の態様に係る発光素子において、低不純物濃度・化合物半導体基板の不純物濃度は5×1017/cm3以下である形態とすることができ、このような形態において、低不純物濃度・化合物半導体基板はGaN基板から成る形態とすることができる。あるいは又、本開示の第1の態様に係る発光素子において、半絶縁性・化合物半導体基板は、鉄原子を含んだインジウムリン(InP)基板から成る形態とすることができる。
 上記の各種好ましい形態を含む本開示の第1の態様に係る発光素子において、第1化合物半導体層の不純物濃度は5×1017/cm3以下である構成とすることができる。あるいは又、低不純物濃度・化合物半導体基板の不純物濃度と第1化合物半導体層の不純物濃度との平均不純物濃度は5×1017/cm3以下である構成とすることができる。そして、これらの構成にあっては、第1化合物半導体層のシート抵抗値をR1、第2化合物半導体層のシート抵抗値をR2、第2電極のシート抵抗値をREL-2としたとき、R1<R2、及び、REL-2<R2を満足する構成とすることができるし、第1化合物半導体層の厚さは1×10-5m以上である構成とすることができるし、第2化合物半導体層の厚さは1×10-5m以下であり、第2化合物半導体層の不純物濃度は5×1017/cm3以上である構成とすることができ、この場合、第2化合物半導体層には、マグネシウ及び亜鉛から成る群から選択された少なくとも1種類の不純物がドーピングされている構成とすることができる。更には、これらの構成において、第1化合物半導体層には、シリコン、ゲルマニウム、酸素及び炭素から成る群から選択された少なくとも1種類の不純物がドーピングされている構成とすることができる。
 本開示の第2の態様に係る発光素子において、第1化合物半導体層のシート抵抗値をR1、第2化合物半導体層のシート抵抗値をR2、第2電極のシート抵抗値をREL-2としたとき、R1<R2、及び、REL-2<R2を満足する形態とすることができる。
 そして、このような好ましい形態を含む本開示の第2の態様に係る発光素子において、第1化合物半導体層の厚さは1×10-5m以上である形態とすることができる。
 更には、これらの好ましい形態を含む本開示の第2の態様に係る発光素子において、第2化合物半導体層の厚さは1×10-5m以下であり、第2化合物半導体層の不純物濃度は5×1017/cm3以上である形態とすることができ、この場合、第2化合物半導体層には、マグネシウ及び亜鉛から成る群から選択された少なくとも1種類の不純物がドーピングされている形態とすることができる。
 更には、以上に説明した好ましい形態を含む本開示の第2の態様に係る発光素子において、第1化合物半導体層には、シリコン、ゲルマニウム、酸素及び炭素から成る群から選択された少なくとも1種類の不純物がドーピングされている形態とすることができる。
 本開示の第3の態様に係る発光素子にあっては、発光素子の構成、構造に依るが、第1光反射層は、化合物半導体基板上に配設され、あるいは又、凹面鏡部を有しており、第1化合物半導体層の第1面上に配設されている。
 本開示の第3の態様に係る発光素子にあっては、
 第1電極及び第2電極を更に備えており、
 第2電極は、第2光反射層と第2光反射層との間に形成されており、
 第1化合物半導体層には、低抵抗層に至る開口が形成されており、
 開口内には、低抵抗層と接する第1電極が形成されている形態とすることができる。尚、このような形態の本開示の第3の態様に係る発光素子を、便宜上、『本開示の第3-Aの態様に係る発光素子』と呼ぶ。
 そして、本開示の第3-Aの態様に係る発光素子にあっては、
 開口の底部において、第1電極は低抵抗層と接しており、
 開口の底部は、凹凸形状を有し、
 第1光反射層の中心点と第2光反射層の中心点とを通る軸線と開口の底部の中心点とを結ぶ低抵抗層上に描かれた基線と、凹凸形状の凹部及び凸部の延びる方向との成す角度は、0度乃至45度である形態とすることができる。
 このように、開口の底部が凹凸形状を有することで、低抵抗層と接する面積の増加を図ることができ、低抵抗層と第1電極との間の接触抵抗の低減を達成することができる。しかも、凹凸形状の凹部及び凸部の延びる方向との成す角度を0度乃至45度とすることで、第1電極と第2電極との間に流れる電流の流れを円滑な状態とすることができる。後述する本開示の第3-Bの態様に係る発光素子においても同様である。
 更には、上記の好ましい形態を含む本開示の第3-Aの態様に係る発光素子において、低抵抗層の厚さは1×10-5m以下である形態とすることができる。
 更には、これらの好ましい形態を含む本開示の第3-Aの態様に係る発光素子において、低抵抗層の不純物濃度は、第1化合物半導体層の不純物濃度よりも高い構成とすることができ、この場合、低抵抗層の不純物濃度は1×1018/cm3以上であり;第1化合物半導体層の不純物濃度は5×1017/cm3以下である構成とすることができる。更には、これらの構成において、低抵抗層には、シリコン、ゲルマニウム、酸素及び炭素から成る群から選択された少なくとも1種類の不純物がドーピングされている構成とすることができる。
 あるいは又、これらの好ましい形態を含む本開示の第3-Aの態様に係る発光素子において、化合物半導体基板上に第1化合物半導体層が形成されており;低抵抗層の不純物濃度は、第1化合物半導体層及び化合物半導体基板の平均不純物濃度よりも高い構成とすることができ、この場合、低抵抗層の不純物濃度は1×1018/cm3以上であり;第1化合物半導体層及び化合物半導体基板の平均不純物濃度は5×1017/cm3以下であるである構成とすることができる。更には、これらの構成において、低抵抗層、第1化合物半導体層及び化合物半導体基板には、シリコン、ゲルマニウム、酸素及び炭素から成る群から選択された少なくとも1種類の不純物がドーピングされている構成とすることができる。
 あるいは又、これらの好ましい形態を含む本開示の第3-Aの態様に係る発光素子において、低抵抗層は、GaN系化合物半導体材料から成り;第1化合物半導体層を構成するGaN系化合物半導体材料と、低抵抗層を構成するGaN系化合物半導体材料とは、組成が異なる構成とすることができる。そして、この場合、低抵抗層を構成するGaN系化合物半導体材料のバンドギャップは、第1化合物半導体層を構成するGaN系化合物半導体材料のバンドギャップよりも狭い構成とすることができる。
 あるいは又、本開示の第3の態様に係る発光素子にあっては、
 第1電極及び第2電極を更に備えており、
 第1化合物半導体層には、少なくとも2層の低抵抗層が形成されており、
 第1化合物半導体層には、少なくとも2層の低抵抗層に亙り開口が形成されており、
 開口内には、少なくとも2層の低抵抗層と接する第1電極が形成されている形態とすることができる。尚、このような形態の本開示の第3の態様に係る発光素子を、便宜上、『本開示の第3-Bの態様に係る発光素子』と呼ぶ。
 そして、本開示の第3-Bの態様に係る発光素子にあっては、
 開口の底部において、第1電極は低抵抗層の1層と接しており、
 開口の側面において、第1電極は低抵抗層の他の層と接しており、
 開口の底部は、凹凸形状を有し、
 第1光反射層の中心点と第2光反射層の中心点とを通る軸線と開口の底部の中心点とを結ぶ低抵抗層上に描かれた基線と、凹凸形状の凹部及び凸部の延びる方向との成す角度は、0度乃至45度である形態とすることができる。
 更には、上記の好ましい形態を含む第3-Bの態様に係る発光素子にあっては、発振波長をλ0、複数の低抵抗層、及び、低抵抗層と低抵抗層との間に位置する第1化合物半導体層の部分の等価屈折率をn1-eqとしたとき、低抵抗層の厚さはλ0/(4・n1-eq)以下である形態とすることができる。等価屈折率については、後に詳述する。
 更には、これらの好ましい形態を含む本開示の第3-Bの態様に係る発光素子にあっては、低抵抗層と低抵抗層との間の距離をLHCLとしたとき、
0.9×{(m・λ0)/(2・n1-eq)}≦LHCL≦1.1×{(m・λ0)/(2・n1-eq)}
を満足する形態とすることができる。但し、mは、1、又は、1を含む2以上の任意の整数である。
 更には、これらの好ましい形態を含む本開示の第3-Bの態様に係る発光素子において、低抵抗層の厚さは1×10-5m以下である構成とすることができるし、低抵抗層の不純物濃度は、第1化合物半導体層の不純物濃度よりも高い構成とすることができ、この場合、低抵抗層の不純物濃度は1×1018/cm3以上であり、第1化合物半導体層の不純物濃度は5×1017/cm3以下である構成とすることができる。更には、これらの構成において、低抵抗層(及び第1化合物半導体層)には、シリコン、ゲルマニウム、酸素及び炭素から成る群から選択された少なくとも1種類の不純物がドーピングされている構成とすることができる。
 あるいは又、これらの好ましい形態を含む本開示の第3-Bの態様に係る発光素子において、化合物半導体基板上に第1化合物半導体層が形成されており;低抵抗層の不純物濃度は、第1化合物半導体層及び化合物半導体基板の平均不純物濃度よりも高い構成とすることができ、この場合、低抵抗層の不純物濃度は1×1018/cm3以上であり:第1化合物半導体層及び化合物半導体基板の平均不純物濃度は5×1017/cm3以下である構成とすることができるし、これらの場合、低抵抗層、第1化合物半導体層及び化合物半導体基板には、シリコン、ゲルマニウム、酸素及び炭素から成る群から選択された少なくとも1種類の不純物がドーピングされている構成とすることができる。
 あるいは又、これらの好ましい形態を含む本開示の第3-Bの態様に係る発光素子において、低抵抗層はGaN系化合物半導体材料から成り、第1化合物半導体層を構成するGaN系化合物半導体材料と、低抵抗層を構成するGaN系化合物半導体材料とは、組成が異なる構成とすることができ、この場合、低抵抗層を構成するGaN系化合物半導体材料のバンドギャップは、第1化合物半導体層を構成するGaN系化合物半導体材料のバンドギャップよりも狭い構成とすることができる。
 更には、これらの好ましい形態、構成を含む開示の第3の態様に係る発光素子にあっては、積層構造体の内部において形成される光の定在波に生じる最低振幅部分に、少なくとも1層の低抵抗層が位置する構成とすることができる。また、積層構造体の内部において形成される光の定在波に生じる最大振幅部分に活性層が位置する構成とすることができる。
 以上に説明した好ましい形態、構成を含む本開示の第3の態様に係る発光素子と、本開示の第1の態様に係る発光素子とを組み合わせることができるし、以上に説明した好ましい形態、構成を含む本開示の第3の態様に係る発光素子と、本開示の第2の態様に係る発光素子とを組み合わせることができるし、以上に説明した好ましい形態、構成を含む本開示の第3の態様に係る発光素子と、本開示の第1の態様に係る発光素子と、本開示の第2の態様に係る発光素子とを組み合わせることができる。即ち、例えば、
 第1化合物半導体層のシート抵抗値をR1、第2化合物半導体層のシート抵抗値をR2、第2電極のシート抵抗値をREL-2としたとき、R1<R2、且つ、REL-2<R2を満足する形態とすることができるし、
 第1化合物半導体層の厚さは1×10-5m以上である形態とすることができるし、
 第2化合物半導体層の厚さは1×10-5m以下であり、第2化合物半導体層の不純物濃度は5×1017/cm3以上である形態とすることができるし、
 第2化合物半導体層には、マグネシウ及び亜鉛から成る群から選択された少なくとも1種類の不純物がドーピングされている形態とすることができる。
 更には、以上に説明した好ましい形態、構成を含む本開示の第1の態様~第3の態様に係る発光素子(以下、これらを総称して、『本開示の発光素子等』と呼ぶ)において、共振器長をLORとしたとき、1×10-5m≦LORを満足する構成とすることができる。
 また、上記の好ましい構成を含む本開示の発光素子等において、積層構造体の積層方向を含む仮想平面で凹面鏡部を切断したときの凹面鏡部の一部あるいは全部の第1化合物半導体層あるいは化合物半導体基板との界面が描く図形は、円の一部又は放物線の一部である構成とすることができる。図形は、厳密には円の一部ではない場合もあるし、厳密には放物線の一部ではない場合もある。即ち、概ね円の一部である場合、概ね放物線の一部である場合も、「図形は、円の一部又は放物線の一部である」ことに包含される。このような円の一部又は放物線の一部である第1光反射層の部分(領域)を、『第1光反射層の凹面鏡部における有効領域』と呼ぶ場合がある。凹面鏡部の一部の積層構造体に面する界面が描く図形は、界面の形状を計測器で計測し、得られたデータを最小自乗法に基づき解析することで求めることができる。
 更には、上記の各種の好ましい構成を含む本開示の発光素子等において、
 第2化合物半導体層には、電流注入領域及び電流注入領域を取り囲む電流非注入領域が設けられており、
 電流注入領域の面積重心点から、電流注入領域と電流非注入領域の境界までの最短距離DCIは、以下の式を満足する構成とすることができる。ここで、このような構成の発光素子を、便宜上、『第1構成の発光素子』と呼ぶ。以下の式の導出は、例えば,H.  Kogelnik and T. Li, "Laser Beams and Resonators", Applied Optics/Vol. 5, No. 10/ October 1966 を参照のこと。また、ω0はビームウェスト半径とも呼ばれる。
CI≧ω0/2                 (1-1)
但し、
ω0 2≡(λ0/π){LOR(RDBR-LOR)}1/2  (1-2)
ここで、
λ0 :発光素子から主に出射される所望の光の波長(発振波長)
OR :共振器長
DBR:第1光反射層の凹面鏡部の曲率半径
 本開示の発光素子等は、第1光反射層にのみ凹面鏡部を有するが、第2光反射層の平板な鏡に対する対象性を考えれば、共振器は、同一の曲率半径を有する2つの凹面鏡部で挟まれたファブリペロー型共振器へと拡張することができる(図35の模式図を参照)。このとき、仮想的なファブリペロー型共振器の共振器長は、共振器長LORの2倍となる。ω0の値と共振器長LORの値と第1光反射層の凹面鏡部の曲率半径RDBRの値の関係を示すグラフを、図36及び図37に示す。ω0の値が「正」であるとは、レーザ光が模式的に図38Aの状態にあることを示し、ω0の値が「負」であるとは、レーザ光が模式的に図38Bの状態にあることを示す。レーザ光の状態は、図38Aに示す状態であってもよいし、図38Bに示す状態であってもよい。但し、2つの凹面鏡部を有する仮想的なファブリペロー型共振器は、曲率半径RDBRが共振器長LORよりも小さくなると、図38Bに示す状態となり、閉じ込めが過剰になり回折損失を生じる。ここで、「回折損失」とは、一般に、光は回折効果に起因して広がろうとするため、共振器を往復するレーザ光が、次第に、共振器外へと散逸してしまう現象を指す。それ故、曲率半径RDBRが共振器長LORよりも大きい、図38Aに示す状態であることが好ましい。活性層を、2つの光反射層のうち、平坦な光反射層、具体的には、第2光反射層に近づけて配置すると、光場は活性層においてより集光される。即ち、活性層における光場閉じ込めを強め、レーザ発振を容易ならしめる。活性層の位置、即ち、第2化合物半導体層に面する第2光反射層の面から活性層までの距離として、限定するものではないが、λ0/2乃至10λ0を例示することができる。
 ところで、第1光反射層によって反射される光が集光される領域が、電流注入によって活性層が利得を持つ領域に対応する電流注入領域に含まれない場合、キャリアから光の誘導放出が阻害され、ひいては、レーザ発振が阻害される虞がある。上式(1-1)及び(1-2)を満足することで、第1光反射層によって反射される光が集光される領域が電流注入領域に含まれることを保証することができ、レーザ発振を確実に達成することができる。
 そして、第1構成の発光素子は、
 第2化合物半導体層の第2面上に設けられ、発振モードロスの増減に作用するモードロス作用領域を構成するモードロス作用部位、
 第2化合物半導体層の第2面上からモードロス作用部位上に亙り形成された第2電極、及び、
 第1化合物半導体層に電気的に接続された第1電極、
を更に備えており、
 第2光反射層は第2電極上に形成されており、
 積層構造体には、電流注入領域、電流注入領域を取り囲む電流非注入・内側領域、及び、電流非注入・内側領域を取り囲む電流非注入・外側領域が形成されており、
 モードロス作用領域の正射影像と電流非注入・外側領域の正射影像とは重なり合っている構成とすることができる。
 そして、このような好ましい構成を含む第1構成の発光素子において、第1光反射層の凹面鏡部における有効領域の半径r’DBRは、ω0≦r’DBR≦20・ω0、好ましくは、ω0≦r’DBR≦10・ω0を満足する構成とすることができる。あるいは又、r’DBRの値として、r’DBR≦1×10-4m、好ましくは、r’DBR≦5×10-5mを例示することができる。また、後述する基部の高さhDBRとして、hDBR≦5×10-5mを例示することができる。更には、このような好ましい構成を含む第1構成の発光素子において、DCI≧ω0を満足する構成とすることができる。更には、このような好ましい構成を含む第1構成の発光素子において、RDBR≦1×10-3m、好ましくは、1×10-5m≦RDBR≦1×10-3m、より好ましくは、1×10-5m≦RDBR≦1×10-4mを満足する構成とすることができる。
 また、上記の好ましい形態を含む本開示の発光素子等は、
 第2化合物半導体層の第2面上に設けられ、発振モードロスの増減に作用するモードロス作用領域を構成するモードロス作用部位、
 第2化合物半導体層の第2面上からモードロス作用部位上に亙り形成された第2電極、及び、
 第1化合物半導体層に電気的に接続された第1電極、
を更に備えており、
 第2光反射層は第2電極上に形成されており、
 積層構造体には、電流注入領域、電流注入領域を取り囲む電流非注入・内側領域、及び、電流非注入・内側領域を取り囲む電流非注入・外側領域が形成されており、
 モードロス作用領域の正射影像と電流非注入・外側領域の正射影像とは重なり合っている構成とすることができる。ここで、このような構成の発光素子を、便宜上、『第2構成の発光素子』と呼ぶ。
 あるいは又、上記の好ましい形態を含む本開示の発光素子等は、
 第2化合物半導体層の第2面上に形成された第2電極、
 第2電極上に形成された第2光反射層、
 第1化合物半導体層の第1面上に設けられ、発振モードロスの増減に作用するモードロス作用領域を構成するモードロス作用部位、並びに、
 第1化合物半導体層に電気的に接続された第1電極、
を更に備えており、
 第1光反射層は、第1化合物半導体層の第1面上からモードロス作用部位上に亙り形成されており、
 積層構造体には、電流注入領域、電流注入領域を取り囲む電流非注入・内側領域、及び、電流非注入・内側領域を取り囲む電流非注入・外側領域が形成されており、
 モードロス作用領域の正射影像と電流非注入・外側領域の正射影像とは重なり合っている構成とすることができる。ここで、このような構成の発光素子を、便宜上、『第3構成の発光素子』と呼ぶ。第3構成の発光素子の規定を、第1構成の発光素子に適用することができる。
 第2構成の発光素子又は第3構成の発光素子において、積層構造体には電流非注入領域(電流非注入・内側領域及び電流非注入・外側領域の総称)が形成されているが、電流非注入領域は、具体的には、厚さ方向、第2化合物半導体層の第2電極側の領域に形成されていてもよいし、第2化合物半導体層全体に形成されていてもよいし、第2化合物半導体層及び活性層に形成されていてもよいし、第2化合物半導体層から第1化合物半導体層の一部に亙り形成されていてもよい。モードロス作用領域の正射影像と電流非注入・外側領域の正射影像とは重なり合っているが、電流注入領域から充分に離れた領域においては、モードロス作用領域の正射影像と電流非注入・外側領域の正射影像とは重なり合っていなくともよい。
 第2構成の発光素子において、電流非注入・外側領域はモードロス作用領域の下方に位置している構成とすることができる。
 上記の好ましい構成を含む第2構成の発光素子において、電流注入領域の正射影像の面積をS1、電流非注入・内側領域の正射影像の面積をS2としたとき、
0.01≦S1/(S1+S2)≦0.7
を満足する構成とすることができる。また、第3構成の発光素子において、電流注入領域の正射影像の面積をS1’、電流非注入・内側領域の正射影像の面積をS2’としたとき、
0.01≦S1’/(S1’+S2’)≦0.7
を満足する構成とすることができる。但し、S1/(S1’+S2)の範囲、S1’/(S1’+S2’)の範囲は、上記の範囲に限定あるいは制限されるものではない。
 上記の好ましい構成を含む第2構成の発光素子又は第3構成の発光素子において、電流非注入・内側領域及び電流非注入・外側領域は、積層構造体へのイオン注入によって形成される構成とすることができる。このような構成の発光素子を、便宜上、『第2-A構成の発光素子』、『第3-A構成の発光素子』と呼ぶ。そして、この場合、イオン種は、ボロン、プロトン、リン、ヒ素、炭素、窒素、フッ素、酸素、ゲルマニウム及びシリコンから成る群から選択された少なくとも1種類のイオン(即ち、1種類のイオン又は2種類以上のイオン)である構成とすることができる。
 あるいは又、上記の好ましい構成を含む第2構成の発光素子又は第3構成の発光素子において、電流非注入・内側領域及び電流非注入・外側領域は、第2化合物半導体層の第2面へのプラズマ照射、又は、第2化合物半導体層の第2面へのアッシング処理、又は、第2化合物半導体層の第2面への反応性イオンエッチング処理によって形成される構成とすることができる。このような構成の発光素子を、便宜上、『第2-B構成の発光素子』、『第3-B構成の発光素子』と呼ぶ。これらの処理にあっては、電流非注入・内側領域及び電流非注入・外側領域はプラズマ粒子に晒されるので、第2化合物半導体層の導電性に劣化が生じ、電流非注入・内側領域及び電流非注入・外側領域は高抵抗状態となる。即ち、電流非注入・内側領域及び電流非注入・外側領域は、第2化合物半導体層の第2面のプラズマ粒子への暴露によって形成される構成とすることができる。プラズマ粒子として、具体的には、アルゴン、酸素、窒素等を挙げることができる。
 あるいは又、上記の好ましい構成を含む第2構成の発光素子又は第3構成の発光素子において、第2光反射層は、第1光反射層からの光を、第1光反射層と第2光反射層とによって構成される共振器構造の外側に向かって反射あるいは散乱する領域を有する構成とすることができる。このような構成の発光素子を、便宜上、『第2-C構成の発光素子』、『第3-C構成の発光素子』と呼ぶ。具体的には、モードロス作用部位の側壁(モードロス作用部位に設けられた開口部の側壁)の上方に位置する第2光反射層の領域は、順テーパー状の傾斜を有し、あるいは又、第1光反射層に向かって凸状に湾曲した領域を有する。あるいは又、上記の好ましい形態を含む第2構成の発光素子又は第3構成の発光素子において、第1光反射層は、第2光反射層からの光を、第1光反射層と第2光反射層とによって構成される共振器構造の外側に向かって反射あるいは散乱する領域を有する構成とすることができる。具体的には、第1光反射層の一部の領域に、順テーパー状の傾斜を形成し、あるいは、第2光反射層に向かって凸状の湾曲部を形成すればよいし、あるいは又、モードロス作用部位の側壁(モードロス作用部位に設けられた開口部の側壁)の上方に位置する第1光反射層の領域は、順テーパー状の傾斜を有し、あるいは又、第2光反射層に向かって凸状に湾曲した領域を有する構成とすればよい。また、モードロス作用部位の頂面と、モードロス作用部位に設けられた開口部の側壁との境界(側壁エッジ部)において光を散乱させることで、第1光反射層と第2光反射層とによって構成される共振器構造の外側に向かって光を散乱させる構成とすることもできる。
 以上に説明した第2-A構成の発光素子、第2-B構成の発光素子あるいは第2-C構成の発光素子において、電流注入領域における活性層から第2化合物半導体層の第2面までの光学的距離をL2、モードロス作用領域における活性層からモードロス作用部位の頂面までの光学的距離をL0としたとき、
0>L2
を満足する構成とすることができる。また、以上に説明した第3-A構成の発光素子、第3-B構成の発光素子あるいは第3-C構成の発光素子において、電流注入領域における活性層から第1化合物半導体層の第1面までの光学的距離をL1’、モードロス作用領域における活性層からモードロス作用部位の頂面までの光学的距離をL0’としたとき、
0’>L1
を満足する構成とすることができる。更には、これらの構成を含む、以上に説明した第2-A構成の発光素子、第3-A構成の発光素子、第2-B構成の発光素子、第3-B構成の発光素子、第2-C構成の発光素子あるいは第3-C構成の発光素子において、生成した高次モードを有する光は、モードロス作用領域により、第1光反射層と第2光反射層とによって構成される共振器構造の外側に向かって散逸させられ、以て、発振モードロスが増加する構成とすることができる。即ち、生じる基本モード及び高次モードの光場強度が、発振モードロスの増減に作用するモードロス作用領域の存在によって、モードロス作用領域の正射影像内において、Z軸から離れるほど、減少するが、基本モードの光場強度の減少よりも高次モードのモードロスの方が多く、基本モードを一層安定化させることができるし、電流注入内側領域が存在しない場合に比べるとモードロスを抑制することができるので、閾値電流の低下を図ることができる。
 また、以上に説明した第2-A構成の発光素子、第3-A構成の発光素子、第2-B構成の発光素子、第3-B構成の発光素子、第2-C構成の発光素子あるいは第3-C構成の発光素子において、モードロス作用部位は、誘電体材料、金属材料又は合金材料から成る構成とすることができる。誘電体材料として、SiOX、SiNX、AlNX、AlOX、TaOX、ZrOXを例示することができるし、金属材料あるいは合金材料として、チタン、金、白金あるいはこれらの合金を例示することができるが、これらの材料に限定するものではない。これらの材料から構成されたモードロス作用部位により光を吸収させ、モードロスを増加させることができる。あるいは直接的に光を吸収しなくても、位相を乱すことでモードロスを制御することができる。この場合、モードロス作用部位は誘電体材料から成り、モードロス作用部位の光学的厚さt0は、発光素子において生成した光の波長λ0の1/4の整数倍から外れる値である構成とすることができる。即ち、共振器内を周回し定在波を形成する光の位相を、モードロス作用部位においては位相を乱すことで定在波を破壊し、それに相応するモードロスを与えることができる。あるいは又、モードロス作用部位は誘電体材料から成り、モードロス作用部位(屈折率をn0とする)の光学的厚さt0は、発光素子において生成した光の波長λ0の1/4の整数倍である構成とすることができる。即ち、モードロス作用部位の光学的厚さt0は、発光素子において生成した光の位相を乱さず定在波を破壊しないような厚さである構成とすることができる。但し、厳密に1/4の整数倍である必要はなく、
(λ0/4n0)×m-(λ0/8n0)≦t0≦(λ0/4n0)×2m+(λ0/8n0
を満足すればよい。あるいは又、モードロス作用部位を、誘電体材料、金属材料又は合金材料から成る構成とすることで、モードロス作用部位を通過する光がモードロス作用部位によって、位相を乱されたり、吸収させることができる。そして、これらの構成を採用することで、発振モードロスの制御を一層高い自由度をもって行うことができるし、発光素子の設計自由度を一層高くすることができる。
 あるいは又、上記の好ましい構成を含む第2構成の発光素子において、
 第2化合物半導体層の第2面側には凸部が形成されており、
 モードロス作用部位は、凸部を囲む第2化合物半導体層の第2面の領域上に形成されている構成とすることができる。このような構成の発光素子を、便宜上、『第2-D構成の発光素子』と呼ぶ。凸部は、電流注入領域及び電流非注入・内側領域を占めている。そして、この場合、電流注入領域における活性層から第2化合物半導体層の第2面までの光学的距離をL2、モードロス作用領域における活性層からモードロス作用部位の頂面までの光学的距離をL0としたとき、
0<L2
を満足する構成とすることができ、更には、これらの場合、生成した高次モードを有する光は、モードロス作用領域により、電流注入領域及び電流非注入・内側領域に閉じ込められ、以て、発振モードロスが減少する構成とすることができる。即ち、生じる基本モード及び高次モードの光場強度が、発振モードロスの増減に作用するモードロス作用領域の存在によって、電流注入領域及び電流非注入・内側領域の正射影像内において増加する。更には、これらの場合、モードロス作用部位は、誘電体材料、金属材料又は合金材料から成る構成とすることができる。ここで、誘電体材料、金属材料又は合金材料として、上述した各種の材料を挙げることができる。
 あるいは又、上記の好ましい構成を含む第3構成の発光素子において、
 第1化合物半導体層の第1面側には凸部が形成されており、
 モードロス作用部位は、凸部を囲む第1化合物半導体層の第1面の領域上に形成されており、あるいは又、モードロス作用部位は、凸部を囲む第1化合物半導体層の領域から構成されている構成とすることができる。このような構成の発光素子を、便宜上、『第3-D構成の発光素子』と呼ぶ。凸部は、電流注入領域及び電流非注入・内側領域の正射影像と一致する。そして、この場合、電流注入領域における活性層から第1化合物半導体層の第1面までの光学的距離をL1’、モードロス作用領域における活性層からモードロス作用部位の頂面までの光学的距離をL0’としたとき、
0’<L1
を満足する構成とすることができ、更には、これらの場合、生成した高次モードを有する光は、モードロス作用領域により、電流注入領域及び電流非注入領域に閉じ込められ、以て、発振モードロスが減少する構成とすることができ、更には、これらの場合、モードロス作用部位は、誘電体材料、金属材料又は合金材料から成る構成とすることができる。ここで、誘電体材料、金属材料又は合金材料として、上述した各種の材料を挙げることができる。
 更には、以上に説明した好ましい形態、構成(第1構成の発光素子~第3構成の発光素子を含む)を含む本開示の発光素子等において、第2電極を含む積層構造体には、活性層が占める仮想平面と平行に光吸収材料層が形成されている構成とすることができる。ここで、このような構成の発光素子を、便宜上、『第4構成の発光素子』と呼ぶ。光吸収材料層は、形成位置にも依るが、低抵抗層を兼ねている形態とすることができる。
 第4構成の発光素子にあっては、少なくとも2層の光吸収材料層が形成されていることが好ましい。
 上記の好ましい構成を含む第4構成の発光素子において、発振波長(発光素子から主に出射される光の波長であり、所望の発振波長である)をλ0、2層の光吸収材料層、及び、光吸収材料層と光吸収材料層との間に位置する積層構造体の部分の全体の等価屈折率をneq、光吸収材料層と光吸収材料層との間の距離をLAbsとしたとき、
0.9×{(m・λ0)/(2・neq)}≦LAbs≦1.1×{(m・λ0)/(2・neq)}
を満足することが好ましい。ここで、mは、1、又は、1を含む2以上の任意の整数である。等価屈折率neqとは、2層の光吸収材料層、及び、光吸収材料層と光吸収材料層との間に位置する積層構造体の部分を構成する各層のそれぞれの厚さをti、それぞれの屈折率をniとしたとき、
eq=Σ(ti×ni)/Σ(ti
で表される。但し、i=1,2,3・・・,Iであり、「I」は、2層の光吸収材料層、及び、光吸収材料層と光吸収材料層との間に位置する積層構造体の部分を構成する層の総数であり、「Σ」はi=1からi=Iまでの総和を取ることを意味する。等価屈折率neqは、発光素子断面の電子顕微鏡観察等から構成材料を観察し、それぞれの構成材料に対して既知の屈折率及び観察により得た厚さを基に算出すればよい。mが1の場合、隣接する光吸収材料層の間の距離は、全ての複数の光吸収材料層において、
0.9×{λ0/(2・neq)}≦LAbs≦1.1×{λ0/(2・neq)}
を満足する。また、mが1を含む2以上の任意の整数であるとき、一例として、m=1,2とすれば、一部の光吸収材料層において、隣接する光吸収材料層の間の距離は、
0.9×{λ0/(2・neq)}≦LAbs≦1.1×{λ0/(2・neq)}
を満足し、残りの光吸収材料層において、隣接する光吸収材料層の間の距離は、
0.9×{(2・λ0)/(2・neq)}≦LAbs≦1.1×{(2・λ0)/(2・neq)}
を満足する。広くは、一部の光吸収材料層において、隣接する光吸収材料層の間の距離は、
0.9×{λ0/(2・neq)}≦LAbs≦1.1×{λ0/(2・neq)}
を満足し、残りの種々の光吸収材料層において、隣接する光吸収材料層の間の距離は、
0.9×{(m’・λ0)/(2・neq)}≦LAbs≦1.1×{(m’・λ0)/(2・neq)}
を満足する。ここで、m’は、2以上の任意の整数である。また、隣接する光吸収材料層の間の距離とは、隣接する光吸収材料層の重心と重心との間の距離である。即ち、実際には、活性層の厚さ方向に沿った仮想平面で切断したときの、各光吸収材料層の中心と中心との間の距離である。
 更には、上記の各種の好ましい構成を含む第4構成の発光素子において、光吸収材料層の厚さは、λ0/(4・neq)以下であることが好ましい。光吸収材料層の厚さの下限値として1nmを例示することができる。
 更には、上記の各種の好ましい構成を含む第4構成の発光素子にあっては、積層構造体の内部において形成される光の定在波に生じる最低振幅部分に光吸収材料層が位置する構成とすることができる。
 更には、上記の各種の好ましい構成を含む第4構成の発光素子において、積層構造体の内部において形成される光の定在波に生じる最大振幅部分に活性層が位置する構成とすることができる。
 更には、上記の各種の好ましい構成を含む第4構成の発光素子において、光吸収材料層は、積層構造体を構成する化合物半導体の光吸収係数の2倍以上の光吸収係数を有する構成とすることができる。ここで、光吸収材料層の光吸収係数や積層構造体を構成する化合物半導体の光吸収係数は、発光素子断面の電子顕微鏡観察等から構成材料を観察し、それぞれの構成材料に対して観察された既知の評価結果より類推することで求めることができる。
 更には、上記の各種の好ましい構成を含む第4構成の発光素子において、光吸収材料層は、積層構造体を構成する化合物半導体よりもバンドギャップの狭い化合物半導体材料、不純物をドープした化合物半導体材料、透明導電性材料、及び、光吸収特性を有する光反射層構成材料から成る群から選択された少なくとも1種類の材料から構成されている構成とすることができる。ここで、積層構造体を構成する化合物半導体よりもバンドギャップの狭い化合物半導体材料として、例えば、積層構造体を構成する化合物半導体をGaNとする場合、InGaNを挙げることができるし、不純物をドープした化合物半導体材料として、Siをドープしたn-GaN、Bをドープしたn-GaNを挙げることができるし、透明導電性材料として、後述する電極を構成する透明導電性材料を挙げることができるし、光吸収特性を有する光反射層構成材料として、後述する光反射層を構成する材料(例えば、SiOX、SiNX、TaOX等)を挙げることができる。光吸収材料層の全てがこれらの材料の内の1種類の材料から構成されていてもよい。あるいは又、光吸収材料層のそれぞれがこれらの材料の内から選択された種々の材料から構成されていてもよいが、1層の光吸収材料層は1種類の材料から構成されていることが、光吸収材料層の形成の簡素化といった観点から好ましい。光吸収材料層は、第1化合物半導体層内に形成されていてもよいし、第2化合物半導体層内に形成されていてもよいし、第1光反射層内に形成されていてもよいし、第2光反射層内に形成されていてもよいし、これらの任意の組み合わせとすることもできる。あるいは又、光吸収材料層を、後述する透明導電性材料から成る電極(具体的には、第2電極)と兼用することもできる。
 更には、以上に説明した好ましい形態、構成(第1構成の発光素子~第4構成の発光素子を含む)を含む本開示の発光素子等において、第1化合物半導体層の第1面と第1光反射層との間には、前述したとおり、化合物半導体基板が配されている構成とすることができる。ここで、このような構成の発光素子を、便宜上、『第5構成の発光素子』と呼ぶ。この場合、化合物半導体基板はGaN基板から成る構成とすることができる。尚、化合物半導体基板の厚さとして、5×10-5m乃至1×10-4mを例示することができるが、このような値に限定するものではない。そして、このような構成を含む第5構成の発光素子において、第1光反射層の凹面鏡部は、化合物半導体基板の突出部から成る基部、及び、少なくとも基部の一部の表面に形成された多層光反射膜から構成されている構成とすることができる。ここで、このような構成の発光素子を、便宜上、『第5-A構成の発光素子』と呼ぶ。あるいは又、第1光反射層の凹面鏡部は、化合物半導体基板上に形成された基部、及び、少なくとも基部の一部の表面に形成された多層光反射膜から構成されている構成とすることができる。ここで、このような構成の発光素子を、便宜上、『第5-B構成の発光素子』と呼ぶ。第5-A構成の発光素子における基部を構成する材料は、例えば、GaN基板である。GaN基板として、極性基板、半極性基板、無極性基板のいずれを用いてもよい。一方、第5-B構成の発光素子における基部を構成する材料として、TiO2、Ta25、SiO2等の透明な誘電体材料、シリコーン系樹脂、エポキシ系樹脂を例示することができる。
 あるいは又、以上に説明した好ましい形態、構成(第1構成の発光素子~第4構成の発光素子を含む)を含む本開示の発光素子等において、第1化合物半導体層の第1面に第1光反射層が形成されている構成とすることができる。ここで、このような構成の発光素子を、便宜上、『第6構成の発光素子』と呼ぶ。
 更には、以上に説明した好ましい形態、構成(第1構成の発光素子~第6構成の発光素子を含む)を含む本開示の発光素子等において、積層構造体の熱伝導率の値は、第1光反射層の熱伝導率の値よりも高い構成とすることができる。第1光反射層を構成する誘電体材料の熱伝導率の値は、一般に、10ワット/(m・K)程度あるいはそれ以下である。一方、積層構造体を構成するGaN系化合物半導体の熱伝導率の値は、50ワット/(m・K)程度乃至100ワット/(m・K)程度である。
 更には、以上に説明した好ましい形態、構成(第1構成の発光素子~第6構成の発光素子を含む)を含む本開示の発光素子等において、発光素子の凹面鏡部(具体的には、第1光反射層の凹面鏡部における半径r’DBRの有効領域)の曲率半径をRDBRとしたとき、RDBR≦1×10-3m、好ましくは、1×10-5m≦RDBR≦1×10-3m、より好ましくは、1×10-5m≦RDBR≦1×10-4mを満足する構成とすることができる。また、1×10-5m≦LORを満足するが、好ましくは1×10-5m≦LOR≦5×10-4m、より好ましくは、1×10-5m≦LOR≦1×10-4mを満足することが望ましい。
 更には、以上に説明した好ましい形態、構成(第1構成の発光素子~第6構成の発光素子を含む)を含む本開示の発光素子等において、第1光反射層の周囲には凸形状部が形成されており、第1光反射層は凸形状部から突出していない構成とすることができ、これによって、第1光反射層を保護することができる。即ち、第1光反射層は凸形状部よりも引っ込んだ状態で設けられるが故に、例えば、何らかの物体が凸形状部と接触しても、この物体が第1光反射層と接触することが無く、第1光反射層を確実に保護することができる。
 また、以上に説明した好ましい形態、構成(第1構成の発光素子~第6構成の発光素子を含む)を含む本開示の発光素子等において、活性層と第1光反射層との間に位置する各種の化合物半導体層(化合物半導体基板を含む)を構成する材料にあっては、10%以上の屈折率の変調が無いこと(積層構造体の平均屈折率を基準として、10%以上の屈折率差が無いこと)が好ましく、これによって、共振器内の光場の乱れ発生を抑制することができる。
 以上に説明した好ましい形態、構成を含む本開示の発光素子等によって、第1光反射層を介して外部にレーザ光を出射する面発光レーザ素子(垂直共振器レーザ、VCSEL)を構成することができるし、あるいは又、第2光反射層を介してレーザ光を外部に出射する面発光レーザ素子を構成することもできる。場合によっては、発光素子製造用基板(後述する)を除去してもよい。
 本開示の発光素子等において、積層構造体を構成するGaN系化合物半導体として、より具体的には、GaN、AlGaN、InGaN、AlInGaNを挙げることができる。更には、これらの化合物半導体に、所望に応じて、ホウ素(B)原子やタリウム(Tl)原子、ヒ素(As)原子、リン(P)原子、アンチモン(Sb)原子が含まれていてもよい。活性層は、量子井戸構造を有することが望ましい。具体的には、単一量子井戸構造(SQW構造)を有していてもよいし、多重量子井戸構造(MQW構造)を有していてもよい。量子井戸構造を有する活性層は、井戸層及び障壁層が、少なくとも1層、積層された構造を有するが、(井戸層を構成する化合物半導体,障壁層を構成する化合物半導体)の組合せとして、(InyGa(1-y)N,GaN)、(InyGa(1-y)N,InzGa(1-z)N)[但し、y>z]、(InyGa(1-y)N,AlGaN)を例示することができる。第1化合物半導体層を第1導電型(例えば、n型)の化合物半導体から構成し、第2化合物半導体層を第1導電型とは異なる第2導電型(例えば、p型)の化合物半導体から構成することができる。第1化合物半導体層、第2化合物半導体層は、第1クラッド層、第2クラッド層とも呼ばれる。第1化合物半導体層、第2化合物半導体層は、単一構造の層であってもよいし、多層構造の層であってもよいし、超格子構造の層であってもよい。更には、組成傾斜層、濃度傾斜層を備えた層とすることもできる。
 積層構造体は、発光素子製造用基板の第2面上に形成され、あるいは又、化合物半導体基板の第2面上に形成される。発光素子製造用基板として、GaN基板、サファイア基板、GaAs基板、SiC基板、アルミナ基板、ZnS基板、ZnO基板、AlN基板、LiMgO基板、LiGaO2基板、MgAl24基板、InP基板、Si基板、これらの基板の表面(主面)に下地層やバッファ層が形成されたものを挙げることができるが、GaN基板の使用が欠陥密度の少ないことから好ましい。また、化合物半導体基板として、前述したとおり、GaN基板を挙げることができる。GaN基板は成長面によって、極性/無極性/半極性と特性が変わることが知られているが、GaN基板のいずれの主面(第2面)も化合物半導体層の形成に使用することができる。また、GaN基板の主面に関して、結晶構造(例えば、立方晶型や六方晶型等)によっては、所謂A面、B面、C面、R面、M面、N面、S面等の名称で呼ばれる結晶方位面、あるいは、これらを特定方向にオフさせた面等を用いることもできる。発光素子を構成する各種の化合物半導体層の形成方法として、例えば、有機金属化学的気相成長法(MOCVD法,Metal Organic-Chemical Vapor Deposition 法、MOVPE法,Metal Organic-Vapor Phase Epitaxy 法)や分子線エピタキシー法(MBE法)、ハロゲンが輸送あるいは反応に寄与するハイドライド気相成長法(HVPE法)、原子層堆積法(ALD法, Atomic Layer Deposition 法)、マイグレーション・エンハンスト・エピタキシー法(MEE法, Migration-Enhanced Epitaxy 法)、プラズマアシステッド物理的気相成長法(PPD法)等を挙げることができるが、これらに限定するものではない。
 ここで、MOCVD法における有機ガリウム源ガスとして、トリメチルガリウム(TMG)ガスやトリエチルガリウム(TEG)ガスを挙げることができるし、窒素源ガスとして、アンモニアガスやヒドラジンガスを挙げることができる。n型の導電型を有するGaN系化合物半導体層の形成においては、例えば、n型不純物(n型ドーパント)としてケイ素(Si)を添加すればよいし、p型の導電型を有するGaN系化合物半導体層の形成においては、例えば、p型不純物(p型ドーパント)としてマグネシウム(Mg)を添加すればよい。GaN系化合物半導体層の構成原子としてアルミニウム(Al)あるいはインジウム(In)が含まれる場合、Al源としてトリメチルアルミニウム(TMA)ガスを用いればよいし、In源としてトリメチルインジウム(TMI)ガスを用いればよい。更には、Si源としてモノシランガス(SiH4ガス)を用いればよいし、Mg源としてビスシクロペンタジエニルマグネシウムガスやメチルシクロペンタジエニルマグネシウム、ビスシクロペンタジエニルマグネシウム(Cp2Mg)を用いればよい。尚、n型不純物(n型ドーパント)として、Si以外に、Ge、Se、Sn、C、Te、S、O、Pd、Poを挙げることができるし、p型不純物(p型ドーパント)として、Mg以外に、Zn、Cd、Be、Ca、Ba、C、Hg、Srを挙げることができる。
 本開示の発光素子等の製造においては、化合物半導体基板として発光素子製造用基板)を残したままとしてもよいし、第1化合物半導体層上に活性層、第2化合物半導体層、第2電極、第2光反射層を、順次、形成した後、発光素子製造用基板を除去してもよい。具体的には、第1化合物半導体層上に活性層、第2化合物半導体層、第2電極、第2光反射層を、順次、形成し、次いで、第2光反射層を支持基板に固定した後、発光素子製造用基板を除去して、第1化合物半導体層(第1化合物半導体層の第1面)を露出させればよい。発光素子製造用基板の除去は、水酸化ナトリウム水溶液や水酸化カリウム水溶液等のアルカリ水溶液、アンモニア溶液+過酸化水素水、硫酸溶液+過酸化水素水、塩酸溶液+過酸化水素水、リン酸溶液+過酸化水素水等を用いたウェットエッチング法や、ケミカル・メカニカル・ポリッシング法(CMP法)、機械研磨法、ドライエッチング法、レーザを用いたリフトオフ法等によって、あるいは、これらの組合せによって、発光素子製造用基板の除去を行うことができる。あるいは、これらの組合せによって、発光素子製造用基板の一部の除去を行い、あるいは、基板の厚さを薄くし、次いで、化学的/機械的研磨法を実行することで、第1化合物半導体層(第1化合物半導体層の第1面)を露出させればよい。
 あるいは又、発光素子製造用基板を除去する場合、例えば、発光素子製造用基板上に第1光反射層及び第1化合物半導体層を形成し、第1化合物半導体層上に活性層、第2化合物半導体層、第2電極、第2光反射層を順次形成した後(光吸収材料層の形成を含む)、第1光反射層をストッパ層として、発光素子製造用基板を除去すればよい。具体的には、例えば、発光素子製造用基板上に第1光反射層及び第1化合物半導体層を形成し、第1化合物半導体層上に活性層、第2化合物半導体層、第2電極、第2光反射層を順次形成し(光吸収材料層の形成を含む)、次いで、第2光反射層を支持基板に固定した後、第1光反射層をストッパ層として発光素子製造用基板を除去して、第1化合物半導体層(第1化合物半導体層の第1面)及び第1光反射層を露出させればよい。更には、第1化合物半導体層(第1化合物半導体層の第1面)の上に第1電極を形成すればよい。あるいは又、発光素子製造用基板の除去レート(研磨レート)に基づいて除去量を制御すれば、ストッパ層を用いなくてもよい。
 支持基板は、例えば、発光素子製造用基板として例示した各種の基板から構成すればよいし、あるいは又、AlN等から成る絶縁性基板、Si、SiC、Ge等から成る半導体基板、金属製基板や合金製基板から構成することもできるが、導電性を有する基板を用いることが好ましく、あるいは又、機械的特性、弾性変形、塑性変形性、放熱性等の観点から金属製基板や合金製基板を用いることが好ましい。支持基板の厚さとして、例えば、0.05mm乃至1mmを例示することができる。第2光反射層の支持基板への固定方法として、半田接合法、常温接合法、粘着テープを用いた接合法、ワックス接合を用いた接合法、接着剤を用いた方法等、既知の方法を用いることができるが、導電性の確保という観点からは半田接合法あるいは常温接合法を採用することが望ましい。例えば導電性基板であるシリコン半導体基板を支持基板として使用する場合、熱膨張係数の違いによる反りを抑制するために、400゜C以下の低温で接合可能な方法を採用することが望ましい。支持基板としてGaN基板を使用する場合、接合温度が400゜C以上であってもよい。
 発光素子の構成、構造に依るが、本開示の第1の態様に係る発光素子において、第1電極は、化合物半導体基板の第1面上に形成すればよいし、本開示の第2の態様に係る発光素子において、第1電極は第1化合物半導体層の第1面上に形成すればよい。尚、これらの場合、例えば、第1光反射層を取り囲むように第1電極を形成すればよい。本開示の第3の態様に係る発光素子にあっては、低抵抗層と接する第1電極から延在する第1電極延在部を、化合物半導体基板の第1面上に形成すればよいし、あるいは又、第1化合物半導体層の第1面上に形成すればよいし、場合によっては、第1化合物半導体層の第2電極側の露出面上に形成すればよい。
 第1電極は、例えば、金(Au)、銀(Ag)、パラジウム(Pd)、白金(Pt)、ニッケル(Ni)、Ti(チタン)、バナジウム(V)、タングステン(W)、クロム(Cr)、Al(アルミニウム)、Cu(銅)、Zn(亜鉛)、錫(Sn)及びインジウム(In)から成る群から選択された少なくとも1種類の金属(合金を含む)を含む、単層構成又は多層構成を有することが望ましく、具体的には、例えば、Ti/Au、Ti/Al、Ti/Al/Au、Ti/Pt/Au、Ni/Au、Ni/Au/Pt、Ni/Pt、Pd/Pt、Ag/Pdを例示することができる。尚、多層構成における「/」の前の層ほど、より活性層側に位置する。以下の説明においても同様である。第1電極は、例えば、真空蒸着法やスパッタリング法等のPVD法にて成膜することができる。
 第1光反射層を取り囲むように第1電極を形成する場合、第1光反射層と第1電極とは接している構成とすることができる。あるいは又、第1光反射層と第1電極とは離間しており、即ち、オフセットを有しており、離間距離は1mm以内である構成とすることができる。第1光反射層内に位置する電流注入領域と第1電極とが平面的に離れると、電流は、第1化合物半導体層中を長い距離、流れることになる。それ故、この電流経路において生ずる電気抵抗を低く抑えるために、離間距離は1mm以内であることが好ましい。場合によっては、第1光反射層の縁部の上にまで第1電極が形成されている状態、第1電極の縁部の上にまで第1光反射層が形成されている状態を挙げることもできる。ここで、第1電極の縁部の上にまで第1光反射層が形成されている状態とする場合、第1電極は、レーザ発振の基本モード光を出来る限り吸収しないように、或る程度の大きさの開口領域を有する必要がある。開口領域の大きさは、基本モードの波長や横方向(第1化合物半導体層の面内方向)の光閉じ込め構造によって変化するので、限定するものではないが、おおよそ発振波長λ0の数倍あるいはそれ以上のオーダーであることが好ましい。
 第2電極は透明導電性材料から成る構成とすることができる。第2電極を構成する透明導電性材料として、インジウム系透明導電性材料[具体的には、例えば、インジウム-錫酸化物(ITO,Indium Tin Oxide,SnドープのIn23、結晶性ITO及びアモルファスITOを含む)、インジウム-亜鉛酸化物(IZO,Indium Zinc Oxide)、インジウム-ガリウム酸化物(IGO)、インジウム・ドープのガリウム-亜鉛酸化物(IGZO,In-GaZnO4)、IFO(FドープのIn23)、ITiO(TiドープのIn23)、InSn、InSnZnO]、錫系透明導電性材料[具体的には、例えば、酸化錫(SnO2)、ATO(SbドープのSnO2)、FTO(FドープのSnO2)]、亜鉛系透明導電性材料[具体的には、例えば、酸化亜鉛(ZnO、AlドープのZnO(AZO)やBドープのZnOを含む)、ガリウム・ドープの酸化亜鉛(GZO)、AlMgZnO(酸化アルミニウム及び酸化マグネシウム・ドープの酸化亜鉛)]、NiOを例示することができる。あるいは又、第2電極として、ガリウム酸化物、チタン酸化物、ニオブ酸化物、アンチモン酸化物、ニッケル酸化物等を母層とする透明導電膜を挙げることができるし、スピネル型酸化物、YbFe24構造を有する酸化物といった透明導電性材料を挙げることもできる。但し、第2電極を構成する材料として、第2光反射層と第2電極との配置状態に依存するが、透明導電性材料に限定するものではなく、パラジウム(Pd)、白金(Pt)、ニッケル(Ni)、金(Au)、コバルト(Co)、ロジウム(Rh)等の金属を用いることもできる。第2電極は、これらの材料の少なくとも1種類から構成すればよい。第2電極は、例えば、真空蒸着法やスパッタリング法等のPVD法にて成膜することができる。あるいは又、透明電極層として低抵抗な半導体層を用いることもでき、この場合、具体的には、n型のGaN系化合物半導体層を用いることもできる。更には、n型GaN系化合物半導体層と隣接する層がp型である場合、両者をトンネルジャンクションを介して接合することで、界面の電気抵抗を下げることもできる。第2電極を透明導電性材料から構成することで、電流を横方向(第2化合物半導体層の面内方向)に広げることができ、効率良く、電流注入領域(素子領域)に電流を供給することができる。第2化合物半導体層(第2化合物半導体層の第2面)の表面粗さRaは、1.0nm以下であることが、第2化合物半導体層の第2面での光の散乱を防止するといった観点から、好ましい。表面粗さRaは、JIS B-610:2001に規定されており、具体的には、AFMや断面TEMに基づく観察に基づき測定することができる。
 第1電極や第2電極上に、外部の電極あるいは回路と電気的に接続するために、パッド電極を設けてもよい。パッド電極は、Ti(チタン)、アルミニウム(Al)、Pt(白金)、Au(金)、Ni(ニッケル)、Pd(パラジウム)から成る群から選択された少なくとも1種類の金属を含む、単層構成又は多層構成を有することが望ましい。あるいは又、パッド電極を、Ti/Pt/Auの多層構成、Ti/Auの多層構成、Ti/Pd/Auの多層構成、Ti/Pd/Auの多層構成、Ti/Ni/Auの多層構成、Ti/Ni/Au/Cr/Auの多層構成に例示される多層構成とすることもできる。第1電極をAg層あるいはAg/Pd層から構成する場合、第1電極の表面に、例えば、Ni/TiW/Pd/TiW/Niから成るカバーメタル層を形成し、カバーメタル層の上に、例えば、Ti/Ni/Auの多層構成あるいはTi/Ni/Au/Cr/Auの多層構成から成るパッド電極を形成することが好ましい。
 第1光反射層及び第2光反射層を構成する光反射層(分布ブラッグ反射鏡層、Distributed Bragg Reflector 層、DBR層)は、例えば、半導体多層膜や誘電体多層膜から構成される。誘電体材料としては、例えば、Si、Mg、Al、Hf、Nb、Zr、Sc、Ta、Ga、Zn、Y、B、Ti等の酸化物、窒化物(例えば、SiNX、AlNX、AlGaNX、GaNX、BNX等)、又は、フッ化物等を挙げることができる。具体的には、SiOX、TiOX、NbOX、ZrOX、TaOX、ZnOX、AlOX、HfOX、SiNX、AlNX等を例示することができる。そして、これらの誘電体材料の内、屈折率が異なる誘電体材料から成る2種類以上の誘電体膜を交互に積層することにより、光反射層を得ることができる。例えば、SiOX/SiNY、SiOX/TaOX、SiOX/NbOY、SiOX/ZrOY、SiOX/AlNY等の多層膜が好ましい。所望の光反射率を得るために、各誘電体膜を構成する材料、膜厚、積層数等を、適宜、選択すればよい。各誘電体膜の厚さは、用いる材料等により、適宜、調整することができ、発振波長(発光波長)λ0、用いる材料の発振波長λ0での屈折率nによって決定される。具体的には、λ0/(4n)の奇数倍とすることが好ましい。例えば、発振波長λ0が410nmの発光素子において、光反射層をSiOX/NbOYから構成する場合、40nm乃至70nm程度を例示することができる。積層数は、2以上、好ましくは5乃至20程度を例示することができる。光反射層全体の厚さとして、例えば、0.6μm乃至1.7μm程度を例示することができる。また、光反射層の光反射率は95%以上であることが望ましい。
 光反射層は、周知の方法に基づき形成することができ、具体的には、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、ECRプラズマスパッタリング法、マグネトロンスパッタリング法、イオンビームアシスト蒸着法、イオンプレーティング法、レーザアブレーション法等のPVD法;各種CVD法;スプレー法、スピンコート法、ディップ法等の塗布法;これらの方法の2種以上を組み合わせる方法;これらの方法と、全体又は部分的な前処理、不活性ガス(Ar、He、Xe等)又はプラズマの照射、酸素ガスやオゾンガス、プラズマの照射、酸化処理(熱処理)、露光処理のいずれか1種以上とを組み合わせる方法等を挙げることができる。
 光反射層は、電流注入領域あるいは素子領域を覆う限り、大きさ及び形状は特に限定されない。電流注入領域と電流非注入・内側領域との境界の形状、電流非注入・内側領域と電流非注入・外側領域との境界の形状、素子領域や電流狭窄領域に設けられた開口部の平面形状として、具体的には、円形、楕円形、矩形、多角形(三角形、四角形、六角形等)を挙げることができる。第1電極の平面形状として、発光素子の構成、構造にも依るが、環状を挙げることができる。但し、このような形状に限定するものではない。電流注入領域と電流非注入・内側領域との境界の形状、及び、電流非注入・内側領域と電流非注入・外側領域との境界の形状は、相似形であることが望ましい。電流注入領域と電流非注入・内側領域との境界の形状が円形の場合、直径5μm乃至100μm程度であることが好ましい。ここで、『素子領域』とは、狭窄された電流が注入される領域、あるいは又、屈折率差等により光が閉じ込められる領域、あるいは又、第1光反射層と第2光反射層で挟まれた領域の内、レーザ発振が生じる領域、あるいは又、第1光反射層と第2光反射層で挟まれた領域の内、実際にレーザ発振に寄与する領域を指す。
 電流狭窄領域を得るためには、第2電極と第2化合物半導体層との間に絶縁材料(例えば、SiOXやSiNX、AlOX)から成る電流狭窄層を形成してもよいし、あるいは又、第2化合物半導体層をRIE法等によりエッチングしてメサ構造を形成してもよいし、あるいは又、積層された第2化合物半導体層の一部の層を横方向から部分的に酸化して電流狭窄領域を形成してもよいし、第2化合物半導体層に不純物をイオン注入して導電性が低下した領域を形成してもよいし、あるいは、これらを、適宜、組み合わせてもよい。但し、第2電極は、電流狭窄により電流が流れる第2化合物半導体層の部分と電気的に接続されている必要がある。
 積層構造体の側面や露出面を被覆層(絶縁膜)で被覆してもよい。被覆層(絶縁膜)の形成は、周知の方法に基づき行うことができる。被覆層(絶縁膜)を構成する材料の屈折率は、積層構造体を構成する材料の屈折率よりも小さいことが好ましい。被覆層(絶縁膜)を構成する材料として、SiO2を含むSiOX系材料、SiNX系材料、SiOYZ系材料、TaOX、ZrOX、AlNX、AlOX、GaOXを例示することができるし、あるいは又、ポリイミド樹脂等の有機材料を挙げることもできる。被覆層(絶縁膜)の形成方法として、例えば真空蒸着法やスパッタリング法といったPVD法、あるいは、CVD法を挙げることができるし、塗布法に基づき形成することもできる。
 実施例1は、本開示の第1の態様に係る発光素子に関し、具体的には、第5-A構成の発光素子に関する。実施例1あるいは後述する実施例2~実施例13、実施例16~実施例18の発光素子は、より具体的には、第2化合物半導体層の頂面から第2光反射層を介してレーザ光を出射する面発光レーザ素子(垂直共振器レーザ、VCSEL)から成る。また、後述する実施例14、実施例15、実施例19の発光素子は、より具体的には、第1化合物半導体層の頂面から第1光反射層を介してレーザ光を出射する面発光レーザ素子(垂直共振器レーザ、VCSEL)から成る。
 模式的な一部端面図を図1に示す実施例1の発光素子は、
 化合物半導体基板11、GaN系化合物半導体から成る積層構造体20、第1光反射層41及び第2光反射層42を備えており、
 積層構造体20は、
 化合物半導体基板11上に形成され、第1面21a、及び、第1面21aと対向する第2面21bを有する第1化合物半導体層21、
 第1化合物半導体層21の第2面21bと面する活性層(発光層)23、並びに、
 活性層23と面する第1面22a、及び、第1面22aと対向する第2面22bを有する第2化合物半導体層22、
が積層されて成り、
 第1光反射層41は、化合物半導体基板11(具体的には、化合物半導体基板11の第1面11a)上に配設され、凹面鏡部43を有しており、
 第2光反射層42は、第2化合物半導体層22の第2面22b側に配設され、平坦な形状を有しており、
 化合物半導体基板11は、低不純物濃度・化合物半導体基板又は半絶縁性・化合物半導体基板(実施例1においては、具体的には、低不純物濃度・化合物半導体基板)から成る。
 ここで、低不純物濃度・化合物半導体基板から成る化合物半導体基板11の不純物濃度は、5×1017/cm3以下、具体的には、5×1016/cm3である。そして、気相成長法(例えば、HVPE法)や液相成長法(例えば、Naフラックス法)等に基づき化合物半導体基板11を製造することで、化合物半導体基板11の不純物濃度を5×1017/cm3以下とすることができる。低不純物濃度・化合物半導体基板はn-GaN基板から成る。第1化合物半導体層21と面する化合物半導体基板11の面を『第2面11b』と呼び、第2面11bと対向する面を『第1面11a』と呼ぶ。即ち、積層構造体20は、導電性を有する化合物半導体基板11の第2面11bの上に形成されている。第1化合物半導体層21は第1導電型(具体的には、n型)を有し、第2化合物半導体層22は第2導電型(具体的には、p型)を有する。
 低不純物濃度・化合物半導体基板の不純物濃度と第1化合物半導体層21の不純物濃度との平均不純物濃度は、5×1017/cm3以下である。具体的には、第1化合物半導体層21の不純物濃度は1×1018/cm3程度であり、厚さは5μm以下である。第1化合物半導体層21には、シリコン、ゲルマニウム、酸素及び炭素から成る群から選択された少なくとも1種類の不純物、具体的には、不純物としてシリコン(Si)がドーピングされている。第1化合物半導体層21のシート抵抗値をR1、第2化合物半導体層22のシート抵抗値をR2、第2電極のシート抵抗値をREL-2としたとき、R1<R2、及び、REL-2<R2を満足する。具体的には、
1  =1×10-1Ω/□
2  =1×104Ω/□
EL-2=1×102Ω/□
である。第1化合物半導体層21の厚さは1×10-5m以上、具体的には、15μmであるし、第2化合物半導体層22の厚さは1×10-5m以下、具体的には、0.1μmであるし、第2化合物半導体層22の不純物濃度は、5×1017/cm3以上、具体的には、1×1019/cm3である。第2化合物半導体層22には、マグネシウ及び亜鉛から成る群から選択された少なくとも1種類の不純物、具体的には、不純物としてマグネシウム(Mg)がドーピングされている。
 第1化合物半導体層21の第1面21aから或る深さまでの第1光反射層41の領域、積層構造体20(第1化合物半導体層21、活性層23及び第2化合物半導体層22)、並びに、第2化合物半導体層22の第2面22bから或る深さまでの第2光反射層42の領域によって、共振器が構成される。ここで、共振器長をLORとしたとき、1×10-5m≦LORを満足する。
 そして、実施例1の発光素子において、積層構造体20の積層方向を含む仮想平面で第1光反射層41を切断したときの第1光反射層41の凹面鏡部43の一部(第1光反射層41の凹面鏡部43における有効領域44)の積層構造体20に面する界面43aが描く図形は、円の一部又は放物線の一部である。尚、有効領域44の外側に位置する凹面鏡部43の部分の形状(断面形状の図形)は、円の一部や放物線の一部でなくともよい。
 第1光反射層41の凹面鏡部43は、化合物半導体基板11の第1面11aの突出部11a’から成る基部45A、及び、少なくとも基部45Aの一部の表面(具体的には、基部45Aの表面)に形成された多層光反射膜46から構成されている。更には、凹面鏡部43(具体的には、第1光反射層41の凹面鏡部43における半径r’DBRの有効領域44)の曲率半径をRDBRとしたとき、
DBR≦1×10-3
を満足する。具体的には、限定するものではないが、
OR  =50μm
DBR =70μm
r’DBR=20μm
を例示することができる。また、発光素子から主に出射される所望の光の波長(発振波長)λ0として、
λ0  =450nm
を例示することができる。
 ここで、活性層23から基部45Aと多層光反射膜46との界面までの距離をT0とすると、理想的な放物線の関数x=f(z)は、
x  =z2/t0
DBR=r’DBR 2/2T0
で表すことができるが、界面43aが描く図形を放物線の一部としたとき、このような理想的な放物線から逸脱した放物線であってもよいことは云うまでもない。
 また、積層構造体20の熱伝導率の値は、第1光反射層41の熱伝導率の値よりも高い。第1光反射層41を構成する誘電体材料の熱伝導率の値は、10ワット/(m・K)程度あるいはそれ以下である。一方、積層構造体20を構成するGaN系化合物半導体の熱伝導率の値は、50ワット/(m・K)程度乃至100ワット/(m・K)程度である。
 第1化合物半導体層21はn-GaN層から成り、活性層23はIn0.04Ga0.96N層(障壁層)とIn0.16Ga0.84N層(井戸層)とが積層された5重の多重量子井戸構造から成り、第2化合物半導体層22はp-GaN層から成る。第1電極31は、化合物半導体基板11の第1面11aの上に形成されている。一方、第2電極32は、第2化合物半導体層22の上に形成されており、第2光反射層42は第2電極32上に形成されている。第2電極32の上の第2光反射層42は平坦な形状を有する。第1電極31はTi/Pt/Auから成り、第2電極32は、透明導電性材料、具体的には、ITOから成る。第1電極31の縁部の上には、外部の電極あるいは回路と電気的に接続するための、例えばTi/Pt/Au又はV/Pt/Auから成るパッド電極(図示せず)が形成あるいは接続されている。第2電極32の縁部の上には、外部の電極あるいは回路と電気的に接続するための、例えば、Pd/Ti/Pt/AuやTi/Pd/Au、Ti/Ni/Auから成るパッド電極33が形成あるいは接続されている。第1光反射層41及び第2光反射層42は、Ta25層とSiO2層の積層構造(誘電体膜の積層総数:20層)から成る。第1光反射層41及び第2光反射層42はこのように多層構造を有するが、図面の簡素化のため、1層で表している。第1電極31、第1光反射層41、第2光反射層42、絶縁層(電流狭窄層)34に設けられた開口部34Aのそれぞれの平面形状は円形である。
 以下、積層構造体等の模式的な一部端面図である図2A、図2B、図3、図4、図5、図6及び図7を参照して、実施例1の発光素子の製造方法を説明する。
  [工程-100]
 先ず、厚さ0.4mm程度の化合物半導体基板11の第2面11b上に、
 第1面21a、及び、第1面21aと対向する第2面21bを有する第1化合物半導体層21、
 第1化合物半導体層21の第2面21bと面する活性層(発光層)23、並びに、
 活性層23と面する第1面22a、及び、第1面22aと対向する第2面22bを有する第2化合物半導体層22、
が積層された、GaN系化合物半導体から成る積層構造体20を形成する。具体的には、周知のMOCVD法によるエピタキシャル成長法に基づき、第1化合物半導体層21、活性層23及び第2化合物半導体層22を、化合物半導体基板11の第2面11b上に、順次、形成することで、積層構造体20を得ることができる(図2A参照)。
  [工程-110]
 次いで、第2化合物半導体層22の第2面22b上に、CVD法やスパッタリング法、真空蒸着法といった成膜法とウエットエッチング法やドライエッチング法との組合せに基づき、開口部34Aを有し、SiO2から成る絶縁層(電流狭窄層)34を形成する(図2B参照)。開口部34Aを有する絶縁層34によって、電流狭窄領域(電流注入領域61A及び電流非注入領域61B)が規定される。即ち、開口部34Aによって電流注入領域61Aが規定される。
 電流狭窄領域を得るためには、第2電極32と第2化合物半導体層22との間に絶縁材料(例えば、SiOXやSiNX、AlOX)から成る絶縁層(電流狭窄層)を形成してもよいし、あるいは又、第2化合物半導体層22をRIE法等によりエッチングしてメサ構造を形成してもよいし、あるいは又、積層された第2化合物半導体層22の一部の層を横方向から部分的に酸化して電流狭窄領域を形成してもよいし、第2化合物半導体層22に不純物をイオン注入して導電性が低下した領域を形成してもよいし、あるいは、これらを、適宜、組み合わせてもよい。但し、第2電極32は、電流狭窄により電流が流れる第2化合物半導体層22の部分と電気的に接続されている必要がある。
  [工程-120]
 その後、第2化合物半導体層22上に第2電極32及び第2光反射層42を形成する。具体的には、開口部34A(電流注入領域61A)の底面に露出した第2化合物半導体層22の第2面22bから絶縁層34の上に亙り、例えば、リフトオフ法に基づき第2電極32を形成し、更に、スパッタリング法や真空蒸着法といった成膜法とウエットエッチング法やドライエッチング法といったパターニング法との組合せに基づきパッド電極33を形成する。次いで、第2電極32の上からパッド電極33の上に亙り、スパッタリング法や真空蒸着法といった成膜法とウエットエッチング法やドライエッチング法といったパターニング法との組合せに基づき第2光反射層42を形成する。第2電極32の上の第2光反射層42は平坦な形状を有する。こうして、図3に示す構造を得ることができる。
  [工程-130]
 次いで、第2光反射層42を、接合層48を介して支持基板49に固定する(図4参照)。具体的には、第2光反射層42を、接着剤から成る接合層48を用いて、サファイア基板から構成された支持基板49に固定する。
  [工程-140]
 次いで、化合物半導体基板11を、機械研磨法やCMP法に基づき薄くし、更に、化合物半導体基板11の第1面11aに鏡面仕上げを施す(図5参照)。化合物半導体基板11の第1面11aの表面粗さRaの値は10nm以下であることが好ましい。表面粗さRaは、JIS B-610:2001に規定されており、具体的には、AFMや断面TEMに基づく観察に基づき測定することができる。そして、化合物半導体基板11の露出面(第1面11a)に突出部11a’から成る基部45Aを形成する。具体的には、基部45Aを形成すべき化合物半導体基板11の第1面11a上にパターニングされたレジスト層を形成し、レジスト層を加熱することでレジスト層をリフローさせて、レジストパターンを得る。レジストパターンには突出部11a’の形状と同じ形状(あるいは類似した形状)が付与される。そして、レジストパターン及び化合物半導体基板11の第1面11aを、RIE法等を用いてエッチバックすることによって、化合物半導体基板11の露出面(第1面11a)に突出部11a’から成る基部45Aを形成することができる(図6参照)。
  [工程-150]
 その後、少なくとも基部45Aの一部の上に多層光反射膜46を形成する。具体的には、化合物半導体基板11の露出面(第1面11a)から基部45Aの上に亙り、スパッタリング法や真空蒸着法といった周知の方法に基づき多層光反射膜46を形成する。そして、ウエットエッチング法やドライエッチング法といったパターニング法に基づき多層光反射膜46の不要な部分を除去して第1光反射層41を得た後(図7参照)、化合物半導体基板11の第1面11a上に、スパッタリング法や真空蒸着法といった成膜法とウエットエッチング法やドライエッチング法といったパターニング法との組合せに基づき第1電極31を形成することで、第1化合物半導体層21に電気的に接続された第1電極31を得ることができる。
  [工程-160]
 そして、支持基板49を剥離する。こうして、図1に示す構造を得ることができる。その後、所謂素子分離を行うことで発光素子を分離し、積層構造体の側面や露出面を、例えば、SiO2から成る絶縁膜で被覆する。次いで、パッケージや封止することで、実施例1の発光素子を完成させる。
 尚、[工程-140]において、化合物半導体基板11を薄くし、更に、鏡面仕上げを施した後、支持基板49を剥離してもよい。
 また、実施例1の発光素子の変形例として、[工程-140]において、化合物半導体基板11を薄くし、更に、鏡面仕上げを施した後、そして、化合物半導体基板11の露出面(第1面11a)に突出部11a’から成る基部45Aを形成する前に、基部45Aを形成すべき化合物半導体基板11の露出面(第1面11a)の領域に凹み11a”を形成し、凹み11a”内にパターニングされたレジスト層を形成し、レジスト層を加熱することでレジスト層をリフローさせて、レジストパターンを得る。レジストパターンには突出部11a’の形状と同じ形状(あるいは類似した形状)が付与される。そして、レジストパターン及び凹み11a”の部分を、RIE法等を用いてエッチバックすることによって、化合物半導体基板11の露出面(第1面11a)の凹み11a”内に突出部11a’から成る基部45Aを形成してもよい(図8参照)。次に、基部45Aの上を含む全面に、スパッタリング法や真空蒸着法といった周知の方法に基づき多層光反射膜46を形成する。そして、ウエットエッチング法やドライエッチング法といったパターニング法に基づき多層光反射膜46の不要な部分を除去することで、第1光反射層41を得ることができる。即ち、第1光反射層41の周囲には凸形状部11Aが形成されており、第1光反射層41は凸形状部11A(化合物半導体基板11の露出面(第1面11a)から構成されている)から突出しておらず、これによって、第1光反射層41を保護することができる。
 あるいは又、[工程-140]において、化合物半導体基板11の露出面(第1面11a)に突出部11a’から成る基部45Aを形成すると同時に、基部45Aと離間して、基部45Aを囲むように、化合物半導体基板11の露出面(第1面11a)に突起部を形成してもよい。具体的には、基部45Aを形成すべき化合物半導体基板11の第1面11a上にパターニングされたレジスト層を形成し、レジスト層を加熱することでレジスト層をリフローさせて、レジストパターンを得る。レジストパターンには突出部11a’の形状と同じ形状(あるいは類似した形状)が付与される。併せて、レジストパターンと離間して、レジストパターンを囲むように、突起部を形成すべき化合物半導体基板11の第1面11aの部分の上にレジスト層を形成する。そして、レジストパターン、レジスト層及び化合物半導体基板11の第1面11aを、RIE法等を用いてエッチバックすることによって、化合物半導体基板11の露出面(第1面11a)に突出部11a’から成る基部45Aを形成することができ、併せて、突起部を形成することができる。第1光反射層41の周囲には突起部が形成されており、第1光反射層41は突起部(化合物半導体基板11の露出面(第1面11a)から構成されている)から突出しておらず、これによって、第1光反射層41を保護することができる。
 あるいは又、上記の[工程-150]において、少なくとも基部45Aの一部の上に多層光反射膜46を形成することで第1光反射層41を得た後、化合物半導体基板11の第1面11a上に、第1光反射層41を囲む凸形状部11Aを形成してもよい(図9参照)。凸形状部11Aは、例えば、絶縁材料や金属材料から構成すればよい。このように、第1光反射層41の周囲には凸形状部11Aが形成されており、第1光反射層41は凸形状部11Aから突出しておらず、これによって、第1光反射層41を保護することができる。
 実施例1あるいは後述する実施例2~実施例19の発光素子において、第1光反射層は凹面鏡部を有している。それ故、活性層を起点に回折して広がり、そして、第1光反射層に入射した光を活性層に向かって確実に反射し、活性層に集光することができる。従って、例えば共振器長LORが1×10-5m以上であっても、回折損失が増加することを回避することができる結果、確実にレーザ発振を行うことができる。ところで、積層構造体をGaN系化合物半導体から構成する場合、熱飽和の問題が挙げられる。ここで、「熱飽和」とは、面発光レーザ素子の駆動時、自己発熱によって光出力が飽和する現象である。光反射層に用いられる材料(例えば、SiO2やTa25といった材料)は、GaN系化合物半導体よりも熱伝導率の値が低い。よって、GaN系化合物半導体層の厚さを厚くすることは、熱飽和を抑制することに繋がる。然るに、GaN系化合物半導体層の厚さを厚くすると、共振器長LORの長さが長くなるので、回折損失の問題が生じる。しかしながら、実施例1あるいは後述する実施例2~実施例19の発光素子においては、例えば共振器長LORを1×10-5m以上とすることができるが故に、即ち、長い共振器を有するが故に、熱飽和の問題を回避、緩和することもできるし、発光素子の製造プロセスの許容度が高くなる結果、歩留りの向上を図ることができる。また、GaN系化合物半導体層の厚さを厚くすると、GaN系化合物半導体層自体が光を吸収する結果、特性が悪化する場合がある。より具体的には、閾値の悪化、信頼性の低下等の特性悪化や、レーザ発振そのものが阻害される。然るに、上述したとおり、例えば共振器長LORが1×10-5m以上であっても回折損失が増加することを回避することができる結果、確実にレーザ発振を行うことができる。
 また、後述する実施例5を除き、発光素子の製造プロセスにあっては、GaN基板を用いるが、ELO法等の横方向にエピタキシャル成長させる方法に基づきGaN系化合物半導体を形成してはいない。従って、GaN基板として、極性GaN基板だけでなく、半極性GaN基板や無極性GaN基板を用いることができる。極性GaN基板を使用すると、活性層におけるピエゾ電界の効果のために発光効率が低下する傾向があるが、無極性GaN基板や半極性GaN基板を用いれば、このような問題を解決したり、緩和することが可能である。しかも、化合物半導体基板は、低不純物濃度・化合物半導体基板から成るので、共振器の光吸収の抑制が可能となる。
 実施例2は、実施例1の変形であり、化合物半導体基板11は、半絶縁性・化合物半導体基板、具体的には、鉄原子を含んだインジウムリン(InP)基板から成る。尚、鉄原子の濃度は、例えば、5×1016/cm3である。そして、このような半絶縁性・化合物半導体基板は、気相成長や液相成長法に基づき製造することができる。
 実施例2の発光素子は、上記のとおり化合物半導体基板11をInPから構成し、第1化合物半導体層をSを添加したInPから構成し、第2化合物半導体層をZnを添加したInPから構成し、活性層をAlInGaAsP系化合物から構成した。また、誘電体多層膜から成る反射鏡の材料として、アモルファスシリコン、SiC、ZnSe、TiO2、SiN、Al23、MgO等を挙げることができる。発振波長は、例えば、1.3μmあるいは1.55μmとすることができる。以上の点を除き、その他の構成は、実施例1を同様とすることができるので、詳細な説明は省略する。実施例2の発光素子にあっては、化合物半導体基板は半絶縁性・化合物半導体基板から成るので、実施例1の発光素子と同様に、共振器の光吸収の抑制が可能となる。尚、実施例2と後述する実施例6とを組み合わせることが好ましい。
 実施例3は、実施例1~実施例2の変形であり、第5-B構成の発光素子に関する。模式的な一部端面図を図10に示す実施例3の発光素子において、第1光反射層41の凹面鏡部43は、化合物半導体基板11の上(具体的には、化合物半導体基板11の第1面11aの上)に形成された突出部45cから成る基部45B、及び、少なくとも基部45Bの一部(具体的には、基部45Bの表面)に形成された多層光反射膜46から構成されている。基部45B(突出部45c)を構成する材料として、TiO2、Ta25、SiO2等の透明な誘電体材料、シリコーン系樹脂、エポキシ系樹脂等を挙げることができる。
 実施例3の発光素子は、実施例1の[工程-140]と同様の工程において、化合物半導体基板11を薄くし、鏡面仕上げを施した後、化合物半導体基板11の露出面(第1面11a)の上に突出部45cから成る基部45Bを形成する。具体的には、化合物半導体基板11の露出面(第1面11a)の上に、例えば、TiO2層又はTa25層を形成し、次いで、基部45Bを形成すべきTiO2層又はTa25層の上にパターニングされたレジスト層を形成し、レジスト層を加熱することでレジスト層をリフローさせて、レジストパターンを得る。レジストパターンには突出部45cの形状と同じ形状(あるいは類似した形状)が付与される。そして、レジストパターン及びTiO2層又はTa25層をエッチバックすることによって、化合物半導体基板11の露出面(第1面11a)の上に突出部45cから成る基部45Bを形成することができる。次いで、化合物半導体基板11の露出面(第1面11a)から基部45Bの上に亙り、周知の方法に基づき多層光反射膜46を形成する。その後、多層光反射膜46の不要な部分を除去して第1光反射層41を得た後、化合物半導体基板11の第1面11a上に第1電極31を形成することで、第1化合物半導体層21に電気的に接続された第1電極31を得ることができる。
 以上の点を除き、実施例3の発光素子の構成、構造は、実施例1の発光素子の構成、構造と同様とすることができるので、詳細な説明は省略する。尚、実施例1の発光素子の変形例や実施例2の発光素子を実施例3に適用することもできる。
 実施例4は、本開示の第2の態様に係る発光素子に関し、また、第6構成の発光素子に関する。
 模式的な一部端面図を図11に示す実施例4の発光素子は、
 GaN系化合物半導体から成る積層構造体20、第1光反射層41及び第2光反射層42を備えており、
 積層構造体20は、
 第1面21a、及び、第1面21aと対向する第2面21bを有する第1化合物半導体層21、
 第1化合物半導体層21の第2面21bと面する活性層23、並びに、
 活性層23と面する第1面22a、及び、第1面22aと対向する第2面22bを有する第2化合物半導体層22、
が積層されて成り、
 第1光反射層41は、第1化合物半導体層21の第1面21aの上に配設され、凹面鏡部43を有しており、
 第2光反射層42は、第2化合物半導体層22の第2面22b側に配設され、平坦な形状を有しており、
 第1化合物半導体層21の不純物濃度は5×1017/cm3以下である。
 ここで、第1化合物半導体層21のシート抵抗値をR1、第2化合物半導体層22のシート抵抗値をR2、第2電極32のシート抵抗値をREL-2としたとき、R1<R2、及び、REL-2<R2を満足する。具体的には、
1  =1×10-1Ω/□
2  =5×104Ω/□
EL-2=3×102Ω/□
である。第1化合物半導体層21の厚さは1×10-5m以上、具体的には、15μmであるし、第2化合物半導体層22の厚さは1×10-5m以下、具体的には、0.2μmであるし、第2化合物半導体層22の不純物濃度は、5×1017/cm3以上、具体的には、5×1018/cm3である。第2化合物半導体層22には、マグネシウ及び亜鉛から成る群から選択された少なくとも1種類の不純物、具体的には、不純物としてマグネシウム(Mg)がドーピングされている。第1化合物半導体層21の不純物濃度は、5×1017/cm3以下、具体的には、1×1017/cm3である。第1化合物半導体層21には、シリコン、ゲルマニウム、酸素及び炭素から成る群から選択された少なくとも1種類の不純物、具体的には、不純物として酸素(O)がドーピングされている。
 具体的には、第1化合物半導体層21の第1面21aには第1光反射層41が形成されている。実施例4の発光素子の製造においては、実施例1の[工程-140]と同様の工程において、発光素子製造用基板11を除去し、第1化合物半導体層21の第1面21aを露出させる。そして、実施例1と同様に、基部45Dを形成すべき第1化合物半導体層21の第1面21a上にパターニングされたレジスト層を形成し、レジスト層を加熱することでレジスト層をリフローさせて、レジストパターンを得る。レジストパターンには突出部21dの形状と同じ形状(あるいは類似した形状)が付与される。そして、レジストパターン及び第1化合物半導体層21の第1面21aをエッチバックすることによって、第1化合物半導体層21の第1面21aに突出部21dから成る基部45Dを形成することができる。あるいは又、模式的な一部端面図を図12に示す実施例4の発光素子の変形例において、第1化合物半導体層21の第1面21aの上に、例えば、TiO2層又はTa25層を形成し、次いで、基部45Eを形成すべきTiO2層又はTa25層の上にパターニングされたレジスト層を形成し、レジスト層を加熱することでレジスト層をリフローさせて、レジストパターンを得る。レジストパターンには突出部21eの形状と同じ形状(あるいは類似した形状)が付与される。そして、レジストパターン及びTiO2層又はTa25層をエッチバックすることによって、第1化合物半導体層21の第1面21aの上に突出部21eから成る基部45Eを形成することができる。
 以上の点を除き、実施例4の発光素子及びその変形例の構成、構造は、実施例1の発光素子の構成、構造と同様とすることができるので、詳細な説明は省略する。実施例4の発光素子にあっては、第1化合物半導体層21の不純物濃度が規定されているので、共振器の光吸収の抑制が可能となる。尚、支持基板49や接合層48を除去せず、残しておいてもよく、この場合には、第1光反射層41を介して光が外部に出射される。
 実施例5は、実施例4の変形である。実施例5の発光素子の模式的な一部端面図は、実質的に、図12と同様であるし、実施例5の発光素子の構成、構造は、実質的に、実施例4の発光素子の構成、構造と同様とすることができるので、詳細な説明は省略する。
 実施例5にあっては、先ず、化合物半導体基板11の第2面11bに、凹面鏡部43を形成するための凹部43Aを形成する。そして、化合物半導体基板11の第2面11bの上に、多層膜から成る第1光反射層41を形成した後、第1光反射層41上に平坦化膜47を形成し、平坦化膜47及び第1光反射層41に平坦化処理を施し、平坦化膜47及び第1光反射層41を残しつつ、化合物半導体基板11の第2面11bの一部を露出させる(図13A参照)。第1光反射層41の平面形状は円形である。但し、第1光反射層41の形状はこれに限定するものではない。
 次に、第1光反射層41を含む化合物半導体基板11上に、ELO法等の横方向にエピタキシャル成長させる方法を用いて、横方向成長に基づき積層構造体20を形成する(図13B参照)。その後、実施例1の[工程-110]及び[工程-120]を実行する。そして、化合物半導体基板11を除去し、露出した第1化合物半導体層21の第1面21aに第1電極31を形成する。あるいは又、化合物半導体基板11を除去すること無く、化合物半導体基板11の第1面11aに第1電極31を形成する。その後、所謂素子分離を行うことで発光素子を分離し、積層構造体の側面や露出面を、例えば、SiO2から成る絶縁膜で被覆する。そして、パッケージや封止することで、実施例5の発光素子を完成させることができる。
 実施例6は、本開示の第3の態様に係る発光素子、具体的には、第3-Aの態様に係る発光素子に関する。
 模式的な一部端面図を図14に示すように、実施例6の発光素子は、
 GaN系化合物半導体から成る積層構造体20、第1光反射層41及び第2光反射層42を備えており、
 積層構造体20は、
 第1面21a、及び、第1面21aと対向する第2面21bを有する第1化合物半導体層21、
 第1化合物半導体層21の第2面21bと面する活性層23、並びに、
 活性層23と面する第1面22a、及び、第1面22aと対向する第2面22bを有する第2化合物半導体層22、
が積層されて成り、
 第1光反射層41は、第1化合物半導体層21の第1面21a側に配設され、凹面鏡部43を有しており、
 第2光反射層42は、第2化合物半導体層22の第2面22b側に配設され、平坦な形状を有しており、
 第1化合物半導体層21には、活性層23が占める仮想平面と平行に、少なくとも1層の(図示した例では1層の)低抵抗層71が形成されている。
 そして、実施例6の発光素子にあっては、
 第1電極131及び第2電極132を更に備えており、
 第2電極132は、第2光反射層42と第2光反射層42との間に形成されており、
 第1化合物半導体層21には、低抵抗層71に至る開口72が形成されており、
 開口72内には、低抵抗層71と接する第1電極131が形成されている。
 尚、開口72内に形成された第1電極131から化合物半導体基板11の第1面11aの上を第1電極延在部131’が延びている。また、低抵抗層71の厚さは1×10-5m以下、具体的には、0.02μmである。更には、低抵抗層71の不純物濃度は、第1化合物半導体層21の不純物濃度よりも高い。具体的には、低抵抗層71の不純物濃度は、1×1018/cm3以上、より具体的には、5×1019/cm3であり、第1化合物半導体層21の不純物濃度は、5×1017/cm3以下、より具体的には、5×1016/cm3である。ここで、低抵抗層71には、シリコン、ゲルマニウム、酸素及び炭素から成る群から選択された少なくとも1種類の不純物、より具体的には、不純物としてゲルマニウム(Ge)がドーピングされている。更には、積層構造体20の内部において形成される光の定在波に生じる最低振幅部分に低抵抗層71が位置するし、積層構造体20の内部において形成される光の定在波に生じる最大振幅部分に活性層23が位置する。具体的には、発振波長をλ0、活性層23と第1化合物半導体層21の等価屈折率をneq、活性層23と低抵抗層71との間の距離をLHCL’としたとき、
0.9×{(m・λ0)/(2・neq)}≦LHCL’≦1.1×{(m・λ0)/(2・neq)}
を満足することが好ましい。ここで、mは、1、又は、1を含む2以上の任意の整数である。低抵抗層71は、光吸収材料層としても機能する。光吸収材料層に関しては後述する。
 実施例6にあっても、第1化合物半導体層21のシート抵抗値をR1、第2化合物半導体層22のシート抵抗値をR2、第2電極132のシート抵抗値をREL-2としたとき、R1<R2、且つ、REL-2<R2を満足している。
 実施例6の発光素子にあっては、第1化合物半導体層には少なくとも1層の低抵抗層が形成されているので、化合物半導体層と電極との間の接触抵抗が増加してしまうといった問題の発生を回避することができ、消費電力の抑制が可能となるし、結果として、共振器の光吸収の抑制も可能となる。
 実施例6の変形例として、
 低抵抗層71は、GaN系化合物半導体材料から成り、
 第1化合物半導体層21を構成するGaN系化合物半導体材料と、低抵抗層71を構成するGaN系化合物半導体材料とは、組成が異なる構成とすることができる。そして、この場合、低抵抗層71を構成するGaN系化合物半導体材料のバンドギャップは、第1化合物半導体層21を構成するGaN系化合物半導体材料のバンドギャップよりも狭い構成とすることができる。具体的には、第1化合物半導体層21を構成するGaN系化合物半導体材料はGaNから成り、低抵抗層71を構成するGaN系化合物半導体材料はIn0.035Ga0.965Nから成る。
 また、実施例6の発光素子を、実施例1~実施例5の発光素子において説明した発光素子の少なくとも1種類と組み合わせることができる。
 図14に示した例では、第1電極131は、第1化合物半導体層21の第1面21a側から低抵抗層71に向かって延びている。図15に模式的な一部端面図を示す実施例6の発光素子の変形例にあっては、積層構造体20はメサ構造を有している。即ち、第2化合物半導体層22、活性層23及び第1化合物半導体層21の厚さ方向の一部をRIE法等によりエッチングすることで、メサ構造が形成されている。そして、露出した第1化合物半導体層21の上には第1電極延在部131’が形成されており、第1電極延在部131’から、第1化合物半導体層21に形成された開口72内を、低抵抗層71まで、第1電極131が延びている。
 実施例7は、実施例6の変形であり、本開示の第3-Bの態様に係る発光素子に関する。実施例6にあっては、第1化合物半導体層21内に1層の低抵抗層71を設けた。一方、実施例7の発光素子にあっては、模式的な一部端面図を図16に示すように、
 第1電極131及び第2電極132を更に備えており、
 第1化合物半導体層21には、少なくとも2層(図示した例では2層)の低抵抗層71A,71Bが形成されており、
 第1化合物半導体層21には、少なくとも2層の低抵抗層71A,71Bに亙り開口72が形成されており、
 開口72内には、少なくとも2層の低抵抗層71A,71Bと接する第1電極131が形成されている。
 そして、実施例7の発光素子にあっては、発振波長をλ0、複数の低抵抗層71A,71B、及び、低抵抗層71Aと低抵抗層71Bとの間に位置する第1化合物半導体層21の部分の等価屈折率をn1-eqとしたとき、低抵抗層71A,71Bの厚さはλ0/(4・n1-eq)以下である。更には、低抵抗層71Aと低抵抗層71Bとの間の距離をLHCLとしたとき、
0.9×{(m・λ0)/(2・n1-eq)}≦LHCL≦1.1×{(m・λ0)/(2・n1-eq)}
を満足する。但し、mは、1、又は、1を含む2以上の任意の整数である。
 実施例7にあっても、低抵抗層71A,71Bの不純物濃度は、第1化合物半導体層21の不純物濃度よりも高い。この場合、実施例6と同様に、低抵抗層71A,71Bの不純物濃度は1×1018/cm3以上であり、第1化合物半導体層21の不純物濃度は5×1017/cm3以下である。更には、実施例6と同様に、低抵抗層71A,71B及び第1化合物半導体層21には、シリコン、ゲルマニウム、酸素及び炭素から成る群から選択された少なくとも1種類の不純物がドーピングされている。
 あるいは又、実施例7の発光素子において、実施例6の変形例と同等に、低抵抗層71A,71Bは、GaN系化合物半導体材料から成り、第1化合物半導体層21を構成するGaN系化合物半導体材料と、低抵抗層71A,71Bを構成するGaN系化合物半導体材料とは、組成が異なる構成とすることができ、この場合、低抵抗層71A,71Bを構成するGaN系化合物半導体材料のバンドギャップは、第1化合物半導体層21を構成するGaN系化合物半導体材料のバンドギャップよりも狭い構成とすることができる。
 以上の点を除き、実施例7の発光素子の構成、構造は、実施例6の発光素子の構成、構造と同様とすることができるし、実施例7の発光素子を、実施例1~実施例5の発光素子において説明した発光素子の少なくとも1種類と組み合わせることができる。
 また、図16に示した例では、第1電極131は、第1化合物半導体層21の第1面21a側から低抵抗層71A,71Bに向かって延びている。一方、図17に模式的な一部端面図を示すように、実施例7の発光素子の変形例にあっても、図15に示したと同様に、露出した第1化合物半導体層21の上には第1電極延在部131’が形成されており、第1電極延在部131’から、第1化合物半導体層21に形成された開口72内を、低抵抗層71A,71Bまで、第1電極131が延びている構造を採用してもよい。
 実施例8は、実施例6~実施例7の変形である。
 模式的な一部端面図を図18あるいは図19に示すように、また、開口72の底部73を図20A及び図20Bの模式的な平面図に示すように、実施例6を適用した実施例8の発光素子にあっては、
 開口72の底部73において、第1電極131は低抵抗層71と接しており、
 開口72の底部73は、凹凸形状を有し、
 第1光反射層41の中心点と第2光反射層42の中心点とを通る軸線(Z軸)と開口72の底部73の中心点とを結ぶ低抵抗層上に描かれた71基線と、凹凸形状の凹部及び凸部の延びる方向との成す角度は、0度乃至45度である。尚、図20Aに示す例では、この角度は0度であるし、図20Bに示す例では、この角度は45度である。また、図20Aの左手の図は、図20Aの右手の図の矢印に沿った模式的な一部端面図である。
 また、模式的な一部端面図を図21あるいは図22に示すように、実施例7あるいはその変形例を適用した実施例8の発光素子にあっては、
 開口72の底部73において、第1電極131は低抵抗層の1層71Aと接しており、
 開口72の側面において、第1電極131は低抵抗層71の他の層71Bと接しており、
 開口72の底部は、凹凸形状を有し、
 第1光反射層41の中心点と第2光反射層42の中心点とを通る軸線と開口72の底部の中心点とを結ぶ低抵抗層71上に描かれた基線と、凹凸形状の凹部及び凸部の延びる方向との成す角度は、0度乃至45度である。
 このように、開口72の底部は凹凸形状を有することで、低抵抗層71,71Aと接する面積の増加を図ることができ、低抵抗層71,71Aと第1電極131との間の接触抵抗の低減を図ることができる。しかも、凹凸形状の凹部及び凸部の延びる方向との成す角度を0度乃至45度とすることで、電流の第1電極と第2電極との間の流れを円滑な状態とすることができる。
 実施例9は、実施例1~実施例8の変形であり、第1構成の発光素子に関する。前述したとおり、開口部34Aを有する絶縁層34によって、電流狭窄領域(電流注入領域61A及び電流非注入領域61B)が規定される。即ち、開口部34Aによって電流注入領域61Aが規定される。即ち、実施例9の発光素子にあっては、第2化合物半導体層22には、電流注入領域61A及び電流注入領域61Aを取り囲む電流非注入領域61Bが設けられており、電流注入領域61Aの面積重心点から、電流注入領域61Aと電流非注入領域61Bの境界61Cまでの最短距離DCIは、前述した式(1-1)及び式(1-2)を満足する。
 実施例9の発光素子にあっては、第1光反射層41の凹面鏡部43における有効領域の半径r’DBRは、
ω0≦r’DBR≦20・ω0
を満足する。また、DCI≧ω0を満足する。更には、RDBR≦1×10-3mを満足する。具体的には、
CI =4μm
ω0  =1.5μm
OR =50μm
DBR=60μm
λ0  =525nm
を例示することができる。また、開口部34Aの直径として8μmを例示することができる。GaN基板として、c面をm軸方向に約75度傾けた面を主面とする基板を用いる。即ち、GaN基板は、主面として、半極性面である{20-21}面を有する。尚、このようなGaN基板を、他の実施例において用いることもできる。
 凹面鏡部43の中心軸(Z軸)と、XY平面方向における電流注入領域61Aとの間のズレは、発光素子の特性を悪化させる原因となる。凹面鏡部43の形成のためのパターニング、開口部34Aの形成のためのパターニングのいずれも、リソグラフィ技術を用いることが多いが、この場合、両者の位置関係は、露光機の性能に応じてXY平面内で屡々ずれる。特に、開口部34A(電流注入領域61A)は、第2化合物半導体層22の側からアライメントを行って位置決めされる。一方、凹面鏡部43は、化合物半導体基板11の側からアライメントを行って位置決めされる。そこで、実施例9の発光素子では、開口部34A(電流注入領域61)を、凹面鏡部43によって光が絞られる領域よりも大きく形成することで、凹面鏡部43の中心軸(Z軸)と、XY平面方向における電流注入領域61Aとの間にズレが生じても、発振特性に影響が出ない構造を実現している。
 即ち、第1光反射層によって反射される光が集光される領域が、電流注入によって活性層が利得を持つ領域に対応する電流注入領域に含まれない場合、キャリアから光の誘導放出が阻害され、ひいては、レーザ発振が阻害される虞がある。然るに、上式(1-1)及び(1-2)を満足することで、第1光反射層によって反射される光が集光される領域が電流注入領域に含まれることを保証することができ、レーザ発振を確実に達成することができる。
 実施例10は、実施例1~実施例9の変形であり、且つ、第2構成の発光素子、具体的には、第2-A構成の発光素子に関する。実施例10の発光素子の模式的な一部端面図を図23に示す。
 ところで、第1電極と第2電極との間を流れる電流の流路(電流注入領域)を制御するために、電流注入領域を取り囲むように電流非注入領域を形成する。GaAs系面発光レーザ素子(GaAs系化合物半導体から構成された面発光レーザ素子)においては、活性層をXY平面に沿って外側から酸化することで電流注入領域を取り囲む電流非注入領域を形成することができる。酸化された活性層の領域(電流非注入領域)は、酸化されない領域(電流注入領域)に比べて屈折率が低下する。その結果、共振器の光路長(屈折率と物理的な距離の積で表される)は、電流注入領域よりも電流非注入領域の方が短くなる。そして、これによって、一種の「レンズ効果」が生じ、面発光レーザ素子の中心部にレーザ光を閉じ込める作用をもたらす。一般に、光は回折効果に起因して広がろうとするため、共振器を往復するレーザ光は、次第に、共振器外へと散逸してしまい(回折損失)、閾値電流の増加等の悪影響が生じる。しかしながら、レンズ効果は、この回折損失を補償するので、閾値電流の増加等を抑制することができる。
 然るに、GaN系化合物半導体から構成された発光素子においては、材料の特性上、活性層をXY平面に沿って外部から(横方向から)酸化することが難しい。それ故、実施例1~実施例9において説明したとおり、第2化合物半導体層22上に開口部を有するSiO2から成る絶縁層34を形成し、開口部34Aの底部に露出した第2化合物半導体層22から絶縁層34上に亙り透明導電性材料から成る第2電極32を形成し、第2電極32上に絶縁材料の積層構造から成る第2光反射層42を形成する。このように、絶縁層34を形成することで電流非注入領域61Bが形成される。そして、絶縁層34に設けられた開口部34A内に位置する第2化合物半導体層22の部分が電流注入領域61Aとなる。
 第2化合物半導体層22上に絶縁層34を形成した場合、絶縁層34が形成された領域(電流非注入領域61B)における共振器長は、絶縁層34が形成されていない領域(電流注入領域61A)における共振器長よりも、絶縁層34の光学的厚さ分だけ長くなる。それ故、面発光レーザ素子(発光素子)の2つの光反射層41,42によって形成される共振器を往復するレーザ光が共振器外へと発散・散逸する作用が生じてしまう。このような作用を、便宜上、『逆レンズ効果』と呼ぶ。そして、その結果、レーザ光に発振モードロスが生じ、閾値電流が増加したり、スロープ効率が悪化する虞が生じる。ここで、『発振モードロス』とは、発振するレーザ光における基本モード及び高次モードの光場強度に増減を与える物理量であり、個々のモードに対して異なる発振モードロスが定義される。『光場強度』は、XY平面におけるZ軸からの距離Lを関数とした光場強度であり、一般に、基本モードにおいては距離Lが増加するに従い単調に減少するが、高次モードにおいては距離Lが増加するに従い増減を一度若しくは複数繰り返しながら減少に至る(図25の(A)の概念図を参照)。図25において、実線は基本モードの光場強度分布、破線は高次モードの光場強度分布を示す。また、図25において、第1光反射層41を、便宜上、平坦状態で表示しているが、実際には凹面鏡部を有する。
 実施例10の発光素子あるいは後述する実施例11~実施例14の発光素子は、
 (A)第1面21a、及び、第1面21aと対向する第2面21bを有する第1化合物半導体層21、
 第1化合物半導体層21の第2面21bと面する活性層(発光層)23、及び、
 活性層23と面する第1面22a、及び、第1面22aと対向する第2面22bを有する第2化合物半導体層22、
が積層された、GaN系化合物半導体から成る積層構造体20、
 (B)第2化合物半導体層22の第2面22b上に設けられ、発振モードロスの増減に作用するモードロス作用領域55を構成するモードロス作用部位(モードロス作用層)54、
 (C)第2化合物半導体層22の第2面22bの上からモードロス作用部位54の上に亙り形成された第2電極32、
 (D)第2電極32の上に形成された第2光反射層42、
 (E)第1化合物半導体層21の第1面21a側に設けられた第1光反射層41、並びに、
 (F)第1化合物半導体層21に電気的に接続された第1電極31、
を備えている。
 そして、積層構造体20には、電流注入領域51、電流注入領域51を取り囲む電流非注入・内側領域52、及び、電流非注入・内側領域52を取り囲む電流非注入・外側領域53が形成されており、モードロス作用領域55の正射影像と電流非注入・外側領域53の正射影像とは重なり合っている。即ち、電流非注入・外側領域53はモードロス作用領域55の下方に位置している。尚、電流が注入される電流注入領域51から充分に離れた領域においては、モードロス作用領域55の正射影像と電流非注入・外側領域53の正射影像とは重なり合っていなくともよい。ここで、積層構造体20には、電流が注入されない電流非注入領域52,53が形成されているが、図示した例では、厚さ方向、第2化合物半導体層22から第1化合物半導体層21の一部に亙り形成されている。但し、電流非注入領域52,53は、厚さ方向、第2化合物半導体層22の第2電極側の領域に形成されていてもよいし、第2化合物半導体層22全体に形成されていてもよいし、第2化合物半導体層22及び活性層23に形成されていてもよい。
 モードロス作用部位(モードロス作用層)54は、SiO2といった誘電体材料から成り、実施例10あるいは後述する実施例11~実施例14の発光素子においては、第2電極32と第2化合物半導体層22との間に形成されている。モードロス作用部位54の光学的厚さは、発光素子において生成した光の波長λ0の1/4の整数倍から外れる値とすることができる。あるいは又、モードロス作用部位54の光学的厚さt0は、発光素子において生成した光の波長λ0の1/4の整数倍とすることもできる。即ち、モードロス作用部位54の光学的厚さt0は、発光素子において生成した光の位相を乱さず、定在波を破壊しないような厚さとすることができる。但し、厳密に1/4の整数倍である必要はなく、
(λ0/4n0)×m-(λ0/8n0)≦t0≦(λ0/4n0)×2m+(λ0/8n0
を満足すればよい。具体的には、モードロス作用部位54の光学的厚さt0は、発光素子において生成した光の波長の1/4の値を「100」としたとき、25乃至250程度とすることが好ましい。そして、これらの構成を採用することで、モードロス作用部位54を通過するレーザ光と、電流注入領域51を通過するレーザ光との間の位相差を変える(位相差を制御する)ことができ、発振モードロスの制御を一層高い自由度をもって行うことができるし、発光素子の設計自由度を一層高くすることができる。
 実施例10において、電流注入領域51と電流非注入・内側領域52との境界の形状を円形(直径:8μm)とし、電流非注入・内側領域52と電流非注入・外側領域53との境界の形状を円形(直径:12μm)とした。即ち、電流注入領域51の正射影像の面積をS1、電流非注入・内側領域52の正射影像の面積をS2としたとき、
0.01≦S1/(S1+S2)≦0.7
を満足する。具体的には、
1/(S1+S2)=82/122=0.44
である。
 実施例10あるいは後述する実施例11~実施例12、実施例14の発光素子において、電流注入領域51における活性層23から第2化合物半導体層22の第2面までの光学的距離をL2、モードロス作用領域55における活性層23からモードロス作用部位54の頂面(第2電極32と対向する面)までの光学的距離をL0としたとき、
0>L2
を満足する。具体的には、
0/L2=1.5
とした。そして、生成した高次モードを有するレーザ光は、モードロス作用領域55により、第1光反射層41と第2光反射層42とによって構成される共振器構造の外側に向かって散逸させられ、以て、発振モードロスが増加する。即ち、生じる基本モード及び高次モードの光場強度が、発振モードロスの増減に作用するモードロス作用領域55の存在によって、モードロス作用領域55の正射影像内において、Z軸から離れるほど、減少するが(図25の(B)の概念図を参照)、基本モードの光場強度の減少よりも高次モードの光場強度の減少の方が多く、基本モードを一層安定化させることができるし、閾値電流の低下を図ることができるし、基本モードの相対的な光場強度を増加させることができる。しかも、高次モードの光場強度の裾の部分は、電流注入領域から、従来の発光素子(図25の(A)参照)よりも一層遠くに位置するので、逆レンズ効果の影響の低減を図ることができる。尚、そもそも、SiO2から成るモードロス作用部位54を設けない場合、発振モード混在が発生してしまう。
 第1化合物半導体層21はn-GaN層から成り、活性層23はIn0.04Ga0.96N層(障壁層)とIn0.16Ga0.84N層(井戸層)とが積層された5重の多重量子井戸構造から成り、第2化合物半導体層22はp-GaN層から成る。また、第1電極31はTi/Pt/Auから成り、第2電極32は、透明導電性材料、具体的には、ITOから成る。モードロス作用部位54には円形の開口部54Aが形成されており、この開口部54Aの底部に第2化合物半導体層22が露出している。第1電極31の縁部の上には、外部の電極あるいは回路と電気的に接続するための、例えばTi/Pt/Au又はV/Pt/Auから成るパッド電極(図示せず)が形成あるいは接続されている。第2電極32の縁部の上には、外部の電極あるいは回路と電気的に接続するための、例えばTi/Pd/Au又はTi/Ni/Auから成るパッド電極33が形成あるいは接続されている。第1光反射層41及び第2光反射層42は、SiN層とSiO2層の積層構造(誘電体膜の積層総数:20層)から成る。
 実施例10の発光素子において、電流非注入・内側領域52及び電流非注入・外側領域53は、積層構造体20へのイオン注入によって形成される。イオン種として、例えば、ボロンを選択したが、ボロンイオンに限定するものではない。
 以下、実施例10の発光素子の製造方法の概要を説明する。
  [工程-1000]
 実施例10の発光素子の製造にあっては、先ず、実施例1の[工程-100]と同様の工程を実行する。
  [工程-1010]
 次いで、ボロンイオンを用いたイオン注入法に基づき、電流非注入・内側領域52及び電流非注入・外側領域53を積層構造体20に形成する。
  [工程-1020]
 その後、実施例1の[工程-110]と同様の工程において、第2化合物半導体層22の第2面22b上に、周知の方法に基づき、開口部54Aを有し、SiO2から成るモードロス作用部位(モードロス作用層)54を形成する(図24A参照)。
  [工程-1030]
 その後、実施例1の[工程-120]~[工程-160]と同様の工程を実行することで、実施例10の発光素子を得ることができる。尚、[工程-120]と同様の工程の途中において得られた構造を図24Bに示す。
 実施例10の発光素子において、積層構造体には、電流注入領域、電流注入領域を取り囲む電流非注入・内側領域、及び、電流非注入・内側領域を取り囲む電流非注入・外側領域が形成されており、モードロス作用領域の正射影像と電流非注入・外側領域の正射影像とは重なり合っている。即ち、電流注入領域とモードロス作用領域とは、電流非注入・内側領域によって隔てられている(切り離されている)。それ故、概念図を図25の(B)に示すように、発振モードロスの増減(具体的には、実施例10にあっては増加)を所望の状態とすることが可能となる。あるいは又、電流注入領域とモードロス作用領域との位置関係、モードロス作用領域を構成するモードロス作用部位の厚さ等を、適宜、決定することで、発振モードロスの増減を所望の状態とすることが可能となる。そして、その結果、例えば、閾値電流が増加したり、スロープ効率が悪化するといった従来の発光素子における問題を解決することができる。例えば、基本モードにおける発振モードロスを減少させることによって、閾値電流の低下を図ることができる。しかも、発振モードロスが与えられる領域と電流が注入され発光に寄与する領域とを独立して制御することができるので、即ち、発振モードロスの制御と発光素子の発光状態の制御とを独立して行うことができるので、制御の自由度、発光素子の設計自由度を高くすることができる。具体的には、電流注入領域、電流非注入領域及びモードロス作用領域を上記の所定の配置関係とすることで、基本モードとより高次のモードに対してモードロス作用領域が与える発振モードロスの大小関係を制御することができ、高次モードに与える発振モードロスを基本モードに与える発振モードロスに対して相対的に大きくすることで、基本モードを一層安定化させることができる。しかも、尚、実施例10の発光素子にあっては凹面鏡部43を有するので、回折損失の発生を一層確実に抑制することができる。
 実施例11は、実施例10の変形であり、第2-B構成の発光素子に関する。模式的な一部断面図を図26に示すように、実施例11の発光素子において、電流非注入・内側領域52及び電流非注入・外側領域53は、第2化合物半導体層22の第2面へのプラズマ照射、又は、第2化合物半導体層22の第2面へのアッシング処理、又は、第2化合物半導体層22の第2面への反応性イオンエッチング(RIE)処理によって形成される。そして、このように電流非注入・内側領域52及び電流非注入・外側領域53はプラズマ粒子(具体的には、アルゴン、酸素、窒素等)に晒されるので、第2化合物半導体層22の導電性に劣化が生じ、電流非注入・内側領域52及び電流非注入・外側領域53は高抵抗状態となる。即ち、電流非注入・内側領域52及び電流非注入・外側領域53は、第2化合物半導体層22の第2面22bのプラズマ粒子への暴露によって形成される。尚、図26、図27、図28、図29においては、第1光反射層41の図示を省略した。
 実施例11においても、電流注入領域51と電流非注入・内側領域52との境界の形状を円形(直径:10μm)とし、電流非注入・内側領域52と電流非注入・外側領域53との境界の形状を円形(直径:15μm)とした。即ち、電流注入領域51の正射影像の面積をS1、電流非注入・内側領域52の正射影像の面積をS2としたとき、
0.01≦S1/(S1+S2)≦0.7
を満足する。具体的には、
1/(S1+S2)=102/152=0.44
である。
 実施例11にあっては、実施例10の[工程-1010]の代わりに、第2化合物半導体層22の第2面へのプラズマ照射、又は、第2化合物半導体層22の第2面へのアッシング処理、又は、第2化合物半導体層22の第2面への反応性イオンエッチング処理に基づき、電流非注入・内側領域52及び電流非注入・外側領域53を積層構造体20に形成すればよい。
 以上の点を除き、実施例11の発光素子の構成、構造は、実施例10の発光素子と構成、構造と同様とすることができるので、詳細な説明は省略する。
 実施例11あるいは後述する実施例12の発光素子にあっても、電流注入領域、電流非注入領域及びモードロス作用領域を前述した所定の配置関係とすることで、基本モードとより高次のモードに対してモードロス作用領域が与える発振モードロスの大小関係を制御することができ、高次モードに与える発振モードロスを基本モードに与える発振モードロスに対して相対的に大きくすることで、基本モードを一層安定化させることができる。
 実施例12は、実施例10~実施例11の変形であり、第2-C構成の発光素子に関する。模式的な一部断面図を図27に示すように、実施例12の発光素子において、第2光反射層42は、第1光反射層41からの光を、第1光反射層41と第2光反射層42とによって構成される共振器構造の外側に向かって(即ち、モードロス作用領域55に向かって)反射あるいは散乱する領域を有する。具体的には、モードロス作用部位(モードロス作用層)54の側壁(開口部54Bの側壁)の上方に位置する第2光反射層42の部分は、順テーパー状の傾斜部42Aを有し、あるいは又、第1光反射層41に向かって凸状に湾曲した領域を有する。
 実施例12において、電流注入領域51と電流非注入・内側領域52との境界の形状を円形(直径:8μm)とし、電流非注入・内側領域52と電流非注入・外側領域53との境界の形状を円形(直径:10μm乃至20μm)とした。
 実施例12にあっては、実施例10の[工程-1020]と同様の工程において、開口部54Bを有し、SiO2から成るモードロス作用部位(モードロス作用層)54を形成するとき、順テーパー状の側壁を有する開口部54Bを形成すればよい。具体的には、第2化合物半導体層22の第2面22b上に形成されたモードロス作用層の上にレジスト層を形成し、開口部54Bを形成すべきレジスト層の部分に、フォトリソグラフィ技術に基づき開口部を設ける。周知の方法に基づき、この開口部の側壁を順テーパー状とする。そして、エッチバックを行うことで、モードロス作用部位(モードロス作用層)54に順テーパー状の側壁を有する開口部54Bを形成することができる。更には、このようなモードロス作用部位(モードロス作用層)54の上に、第2電極32、第2光反射層42を形成することで、第2光反射層42に順テーパー状の傾斜部42Aを付与することができる。
 以上の点を除き、実施例12の発光素子の構成、構造は、実施例10~実施例11の発光素子と構成、構造と同様とすることができるので、詳細な説明は省略する。
 実施例13は、実施例10~実施例12の変形であり、第2-D構成の発光素子に関する。実施例13の発光素子の模式的な一部断面図を図28に示し、要部を切り出した模式的な一部断面図を図29に示すように、第2化合物半導体層22の第2面22b側には凸部22Aが形成されている。そして、図28及び図29に示すように、モードロス作用部位(モードロス作用層)54は、凸部22Aを囲む第2化合物半導体層22の第2面22bの領域22Bの上に形成されている。凸部22Aは、電流注入領域51、電流注入領域51及び電流非注入・内側領域52を占めている。モードロス作用部位(モードロス作用層)54は、実施例10と同様に、例えば、SiO2といった誘電体材料から成る。領域22Bには、電流非注入・外側領域53が設けられている。電流注入領域51における活性層23から第2化合物半導体層22の第2面までの光学的距離をL2、モードロス作用領域55における活性層23からモードロス作用部位54の頂面(第2電極32と対向する面)までの光学的距離をL0としたとき、
0<L2
を満足する。具体的には、
2/L0=1.5
とした。これによって、発光素子にはレンズ効果が生じる。
 実施例13の発光素子にあっては、生成した高次モードを有するレーザ光は、モードロス作用領域55により、電流注入領域51及び電流非注入・内側領域52に閉じ込められ、以て、発振モードロスが減少する。即ち、生じる基本モード及び高次モードの光場強度が、発振モードロスの増減に作用するモードロス作用領域55の存在によって、電流注入領域51及び電流非注入・内側領域52の正射影像内において増加する。
 実施例13において、電流注入領域51と電流非注入・内側領域52との境界の形状を円形(直径:8μm)とし、電流非注入・内側領域52と電流非注入・外側領域53との境界の形状を円形(直径:30μm)とした。
 実施例13にあっては、実施例10の[工程-1010]と[工程-1020]との間において、第2化合物半導体層22の一部を第2面22b側から除去することで、凸部22Aを形成すればよい。
 以上の点を除き、実施例13の発光素子の構成、構造は、実施例10の発光素子と構成、構造と同様とすることができるので、詳細な説明は省略する。実施例13の発光素子にあっては、種々のモードに対してモードロス作用領域が与える発振モードロスを抑制し、横モードを多モード発振させるのみならず、レーザ発振の閾値を低減することができる。また、概念図を図25の(C)に示すように、生じる基本モード及び高次モードの光場強度を、発振モードロスの増減(具体的には、実施例13にあっては、減少)に作用するモードロス作用領域の存在によって、電流注入領域及び電流非注入・内側領域の正射影像内において増加させることができる。
 実施例14は、実施例10~実施例13の変形である。実施例14あるいは後述する実施例15の発光素子は、より具体的には、第1化合物半導体層21の頂面から第1光反射層41を介してレーザ光を出射する面発光レーザ素子(発光素子)(垂直共振器レーザ、VCSEL)から成る。
 実施例14の発光素子にあっては、模式的な一部断面図を図30に示すように、第2光反射層42は、金(Au)層あるいは錫(Sn)を含む半田層から成る接合層48を介して、シリコン半導体基板から構成された支持基板49に半田接合法に基づき固定されている。実施例14の発光素子の製造にあっては、支持基板49の除去を除き、即ち、支持基板49を除去すること無く、例えば、実施例10の[工程-1000]~[工程-1030]と同様の工程を実行すればよい。
 実施例14の発光素子にあっても、電流注入領域、電流非注入領域及びモードロス作用領域を前述した所定の配置関係とすることで、基本モードとより高次のモードに対してモードロス作用領域が与える発振モードロスの大小関係を制御することができ、高次モードに与える発振モードロスを基本モードに与える発振モードロスに対して相対的に大きくすることで、基本モードを一層安定化させることができる。
 以上に説明し、図30に示した発光素子の例では、第1電極31の端部は第1光反射層41から離間している。即ち、第1光反射層41と第1電極31とは離間しており、云い換えれば、オフセットを有しており、離間距離は1mm以内、具体的には、例えば、平均0.05mmである。但し、このような構造に限定するものではなく、第1電極31の端部が第1光反射層41と接していてもよいし、第1電極31の端部が第1光反射層41の縁部の上に亙り形成されていてもよい。
 また、例えば、実施例10の[工程-1000]~[工程-1030]と同様の工程を実行した後、発光素子製造用基板11を除去して第1化合物半導体層21の第1面21aを露出させ、次いで、第1化合物半導体層21の第1面21a上に第1光反射層41、第1電極31を形成してもよい。また、第1化合物半導体層21の第1面21a上に第1光反射層41を形成する際、第1化合物半導体層21をエッチングして、第1化合物半導体層21の第1面21aに凹みを形成し、この凹みに第1光反射層41を形成してもよい。そして、この場合、凹みの側壁を順テーパー状とすれば、第2-C構成の発光素子を得ることができる。即ち、第1光反射層41は、第2光反射層42からの光を、第1光反射層41と第2光反射層42とによって構成される共振器構造の外側に向かって反射あるいは散乱する領域(傾斜部)を有する。
 実施例15は、実施例1~実施例14の変形であるが、第3構成の発光素子、具体的には、第3-A構成の発光素子に関する。実施例15の発光素子は、より具体的には、第1化合物半導体層21の頂面から第1光反射層41を介してレーザ光を出射する面発光レーザ素子(発光素子)(垂直共振器レーザ、VCSEL)から成る。
 模式的な一部端面図を図31に示す実施例15の発光素子は、
 (a)GaN系化合物半導体から成り、第1面21a、及び、第1面21aと対向する第2面21bを有する第1化合物半導体層21、
 GaN系化合物半導体から成り、第1化合物半導体層21の第2面21bと接する活性層(発光層)23、及び、
 GaN系化合物半導体から成り、第1面22a、及び、第1面22aと対向する第2面22bを有し、第1面22aが活性層23と接する第2化合物半導体層22、
が積層されて成る積層構造体20、
 (b)第2化合物半導体層22の第2面22b上に形成された第2電極32、
 (c)第2電極32上に形成された第2光反射層42、
 (d)第1化合物半導体層21の第1面21a上に設けられ、発振モードロスの増減に作用するモードロス作用領域65を構成するモードロス作用部位64、
 (e)第1化合物半導体層21の第1面21aの上からモードロス作用部位64の上に亙り形成された第1光反射層41、並びに、
 (f)第1化合物半導体層21に電気的に接続された第1電極31、
を備えている。尚、実施例15の発光素子において、第1電極31は、第1化合物半導体層21の第1面21aの上に形成されている。
 そして、積層構造体20には、電流注入領域61、電流注入領域61を取り囲む電流非注入・内側領域62、及び、電流非注入・内側領域62を取り囲む電流非注入・外側領域63が形成されており、モードロス作用領域65の正射影像と電流非注入・外側領域63の正射影像とは重なり合っている。ここで、積層構造体20には電流非注入領域62,63が形成されているが、図示した例では、厚さ方向、第2化合物半導体層22から第1化合物半導体層21の一部に亙り形成されている。但し、電流非注入領域62,63は、厚さ方向、第2化合物半導体層22の第2電極側の領域に形成されていてもよいし、第2化合物半導体層22全体に形成されていてもよいし、第2化合物半導体層22及び活性層23に形成されていてもよい。
 積層構造体20、パッド電極33、第1光反射層41及び第2光反射層42の構成は、実施例10と同様とすることができるし、接合層48及び支持基板49の構成は、実施例14と同様とすることができる。モードロス作用部位64には円形の開口部64Aが形成されており、この開口部64Aの底部に第1化合物半導体層21の第1面21aが露出している。
 モードロス作用部位(モードロス作用層)64は、SiO2といった誘電体材料から成り、第1化合物半導体層21の第1面21a上に形成されている。モードロス作用部位64の光学的厚さt0は、発光素子において生成した光の波長λ0の1/4の整数倍から外れる値とすることができる。あるいは又、モードロス作用部位64の光学的厚さt0は、発光素子において生成した光の波長λ0の1/4の整数倍とすることもできる。即ち、モードロス作用部位64の光学的厚さt0は、発光素子において生成した光の位相を乱さず、定在波を破壊しないような厚さとすることができる。但し、厳密に1/4の整数倍である必要はなく、
(λ0/4n0)×m-(λ0/8n0)≦t0≦(λ0/4n0)×2m+(λ0/8n0
を満足すればよい。具体的には、モードロス作用部位64の光学的厚さt0は、発光素子において生成した光の波長λ0の1/4の値を「100」としたとき、25乃至250程度とすることが好ましい。そして、これらの構成を採用することで、モードロス作用部位64を通過するレーザ光と、電流注入領域61を通過するレーザ光との間の位相差を変える(位相差を制御する)ことができ、発振モードロスの制御を一層高い自由度をもって行うことができるし、発光素子の設計自由度を一層高くすることができる。
 実施例15において、電流注入領域61と電流非注入・内側領域62との境界の形状を円形(直径:8μm)とし、電流非注入・内側領域62と電流非注入・外側領域63との境界の形状を円形(直径:15μm)とした。即ち、電流注入領域61の正射影像の面積をS1’、電流非注入・内側領域62の正射影像の面積をS2’としたとき、
0.01≦S1’/(S1’+S2’)≦0.7
を満足する。具体的には、
1’/(S1’+S2’)=82/152=0.28
である。
 実施例15の発光素子において、電流注入領域61における活性層23から第1化合物半導体層21の第1面までの光学的距離をL1’、モードロス作用領域65における活性層23からモードロス作用部位64の頂面(第1電極31と対向する面)までの光学的距離をL0’としたとき、
0’>L1
を満足する。具体的には、
0’/L1’=1.01
とした。そして、生成した高次モードを有するレーザ光は、モードロス作用領域65により、第1光反射層41と第2光反射層42とによって構成される共振器構造の外側に向かって散逸させられ、以て、発振モードロスが増加する。即ち、生じる基本モード及び高次モードの光場強度が、発振モードロスの増減に作用するモードロス作用領域65の存在によって、モードロス作用領域65の正射影像内において、Z軸から離れるほど、減少するが(図25の(B)の概念図を参照)、基本モードの光場強度の減少よりも高次モードの光場強度の減少の方が多く、基本モードを一層安定化させることができるし、閾値電流の低下を図ることができるし、基本モードの相対的な光場強度を増加させることができる。
 実施例15の発光素子において、電流非注入・内側領域62及び電流非注入・外側領域63は、実施例10と同様に、積層構造体20へのイオン注入によって形成される。イオン種として、例えば、ボロンを選択したが、ボロンイオンに限定するものではない。
 以下、実施例15の発光素子の製造方法を説明する。
  [工程-1500]
 先ず、実施例10の[工程-1000]と同様の工程を実行することで、積層構造体20を得ることができる。次いで、実施例10の[工程-1010]と同様の工程を実行することで、電流非注入・内側領域62及び電流非注入・外側領域63を積層構造体20に形成することができる。
  [工程-1510]
 次いで、第2化合物半導体層22の第2面22bの上に、例えば、リフトオフ法に基づき第2電極32を形成し、更に、周知の方法に基づきパッド電極33を形成する。その後、第2電極32の上からパッド電極33の上に亙り、周知の方法に基づき第2光反射層42を形成する。
  [工程-1520]
 その後、第2光反射層42を、接合層48を介して支持基板49に固定する。
  [工程-1530]
 次いで、発光素子製造用基板11を除去して、第1化合物半導体層21の第1面21aを露出させる。具体的には、先ず、機械研磨法に基づき、発光素子製造用基板11の厚さを薄くし、次いで、CMP法に基づき、発光素子製造用基板11の残部を除去する。こうして、第1化合物半導体層21の第1面21aを露出させる。
  [工程-1540]
 その後、第1化合物半導体層21の第1面21a上に、周知の方法に基づき、開口部64Aを有し、SiO2から成るモードロス作用部位(モードロス作用層)64を形成する。
  [工程-1150]
 次に、モードロス作用部位64の開口部64Aの底部に露出した第1化合物半導体層21の第1面21aに基部45F及び多層光反射膜46から成る凹面鏡部43から構成された第1光反射層41を形成し、更に、第1電極31を形成する。こうして、図31に示した構造を有する実施例15の発光素子を得ることができる。
  [工程-1560]
 その後、所謂素子分離を行うことで発光素子を分離し、積層構造体の側面や露出面を、例えば、SiO2から成る絶縁膜で被覆する。そして、パッケージや封止することで、実施例15の発光素子を完成させる。
 実施例15の発光素子にあっても、積層構造体には、電流注入領域、電流注入領域を取り囲む電流非注入・内側領域、及び、電流非注入・内側領域を取り囲む電流非注入・外側領域が形成されており、モードロス作用領域の正射影像と電流非注入・外側領域の正射影像とは重なり合っている。それ故、概念図を図25の(B)に示すように、発振モードロスの増減(具体的には、実施例15にあっては増加)を所望の状態とすることが可能となる。しかも、発振モードロスの制御と発光素子の発光状態の制御とを独立して行うことができるので、制御の自由度、発光素子の設計自由度を高くすることができる。具体的には、電流注入領域、電流非注入領域及びモードロス作用領域を前述した所定の配置関係とすることで、基本モードとより高次のモードに対してモードロス作用領域が与える発振モードロスの大小関係を制御することができ、高次モードに与える発振モードロスを基本モードに与える発振モードロスに対して相対的に大きくすることで、基本モードを一層安定化させることができる。また、逆レンズ効果の影響の低減を図ることもできる。しかも、実施例15の発光素子にあっては凹面鏡部43を有するので、回折損失の発生を一層確実に抑制することができる。
 実施例15にあっても、実施例11と同様に、電流非注入・内側領域62及び電流非注入・外側領域63を、第2化合物半導体層22の第2面へのプラズマ照射、又は、第2化合物半導体層22の第2面へのアッシング処理、又は、第2化合物半導体層22の第2面への反応性イオンエッチング(RIE)処理によって形成することができる(第3-B構成の発光素子)。このように電流非注入・内側領域62及び電流非注入・外側領域63をプラズマ粒子に暴露することで、第2化合物半導体層22の導電性に劣化が生じ、電流非注入・内側領域62及び電流非注入・外側領域63は高抵抗状態となる。即ち、電流非注入・内側領域62及び電流非注入・外側領域63は、第2化合物半導体層22の第2面22bのプラズマ粒子への暴露によって形成される。
 また、実施例12と同様に、第2光反射層42は、第1光反射層41からの光を、第1光反射層41と第2光反射層42とによって構成される共振器構造の外側に向かって(即ち、モードロス作用領域65に向かって)反射あるいは散乱する領域を有する構成とすることもできる(第3-C構成の発光素子)。あるいは又、実施例14と同様に、第1化合物半導体層21の第1面2a上に第1光反射層41を形成する際、第1化合物半導体層21をエッチングして、第1化合物半導体層21の第1面21aに凹部を形成し、この凹部に第1光反射層41を形成するが、凹部の側壁を順テーパー状としてもよい。
 また、実施例13と同様に、第1化合物半導体層21の第1面21a側に凸部を形成し、モードロス作用部位(モードロス作用層)64を、凸部を囲む第1化合物半導体層21の第1面21aの領域の上に形成してもよい(第3-D構成の発光素子)。モードロス作用部位(モードロス作用層)64は、凸部を囲む第1化合物半導体層21の第1面21aの領域の上に形成すればよい。凸部は、電流注入領域61、電流注入領域61及び電流非注入・内側領域62を占める。そして、これによって、生成した高次モードを有するレーザ光は、モードロス作用領域65により、電流注入領域61及び電流非注入・内側領域62に閉じ込められ、以て、発振モードロスが減少する。即ち、生じる基本モード及び高次モードの光場強度が、発振モードロスの増減に作用するモードロス作用領域65の存在によって、電流注入領域61及び電流非注入・内側領域62の正射影像内において増加する。このような構成の実施例15の発光素子の変形例にあっても、種々のモードに対してモードロス作用領域65が与える発振モードロスを抑制し、横モードを多モード発振させるのみならず、レーザ発振の閾値を低減することができる。また、概念図を図25の(C)に示すように、生じる基本モード及び高次モードの光場強度を、発振モードロスの増減(具体的には、実施例15の発光素子の変形例にあっては、減少)に作用するモードロス作用領域65の存在によって、電流注入領域及び電流非注入・内側領域の正射影像内において増加させることができる。
 場合によっては、第1化合物半導体層21の第1面21a側に凸部(メサ構造)を形成し、凸部を囲む第1化合物半導体層21の領域をモードロス作用領域(モードロス作用部位)としてもよい。即ち、この場合には、モードロス作用層の形成を省略し、モードロス作用部位を、凸部を囲む第1化合物半導体層の領域から構成すればよい。そして、凸部の頂面に第1光反射層41を形成すればよい。凸部は、電流注入領域61、電流注入領域61及び電流非注入・内側領域62を占める。そして、これによっても、生成した高次モードを有するレーザ光は、モードロス作用領域により、電流注入領域61及び電流非注入・内側領域62に閉じ込められ、以て、発振モードロスが減少する。即ち、生じる基本モード及び高次モードの光場強度が、発振モードロスの増減に作用するモードロス作用領域の存在によって、電流注入領域61及び電流非注入・内側領域62の正射影像内において増加する。このような構成の実施例15の発光素子の変形例にあっても、種々のモードに対してモードロス作用領域が与える発振モードロスを抑制し、横モードを多モード発振させるのみならず、レーザ発振の閾値を低減することができる。また、概念図を図25の(C)に示すように、生じる基本モード及び高次モードの光場強度を、発振モードロスの増減(具体的には、実施例15の発光素子の変形例にあっては、減少)に作用するモードロス作用領域の存在によって、電流注入領域及び電流非注入・内側領域の正射影像内において増加させることができる。
 実施例16は、実施例1~実施例15の変形であり、第4構成の発光素子に関する。
 ところで、2つのDBR層及びその間に形成された積層構造体によって構成された積層構造体における共振器長LORは、積層構造体全体の等価屈折率をneq、面発光レーザ素子(発光素子)から出射すべきレーザ光の波長をλ0としたとき、
L=(m・λ0)/(2・neq
で表される。ここで、mは、正の整数である。そして、面発光レーザ素子(発光素子)において、発振可能な波長は共振器長LORによって決まる。発振可能な個々の発振モードは縦モードと呼ばれる。そして、縦モードの内、活性層によって決まるゲインスペクトルと合致するものが、レーザ発振し得る。縦モードの間隔Δλは、実効屈折率をneffとしたとき、
λ0 2/(2neff・L)
で表される。即ち、共振器長LORが長いほど、縦モードの間隔Δλは狭くなる。よって、共振器長LORが長い場合、複数の縦モードがゲインスペクトル内に存在し得るため、複数の縦モードが発振し得る。等価屈折率neqと実効屈折率neffとの間には、発振波長をλ0としたとき、以下の関係がある。
eff=neq-λ0・(dneq/dλ0
 ここで、積層構造体をGaAs系化合物半導体層から構成する場合、共振器長LORは、通常、1μm以下と短く、面発光レーザ素子から出射される縦モードのレーザ光は、1種類(1波長)である(図39Aの概念図を参照)。従って、面発光レーザ素子から出射される縦モードのレーザ光の発振波長を正確に制御することが可能である。一方、積層構造体をGaN系化合物半導体層から構成する場合、共振器長LORは、通常、面発光レーザ素子から出射されるレーザ光の波長の数倍と長い。従って、面発光レーザ素子から出射され得る縦モードのレーザ光が複数種類となってしまい(図39Bの概念図を参照)、面発光レーザ素子から出射され得るレーザ光の発振波長を正確に制御することが困難となる。
 模式的な一部断面図を図32に示すように、実施例16の発光素子、あるいは又、後述する実施例17~実施例19の発光素子において、第2電極32を含む積層構造体20には、活性層23が占める仮想平面と平行に、具体的には、実施例16にあっては、20層の光吸収材料層81が形成されている。尚、図面を簡素化するため、図面では2層の光吸収材料層81のみを示した。この光吸収材料層81の内、最も外側に位置する1層又は2層若しくは複数層の光吸収材料層を、前述した低抵抗層71,71A,71Bとして機能させてもよいし、最も内側(活性層側)に位置する1層又は2層若しくは複数層の光吸収材料層を、前述した低抵抗層71,71A,71Bとして機能させてもよい。
 実施例16において、発振波長(発光素子から出射される所望の発振波長)λ0は450nmである。20層の光吸収材料層81は、積層構造体20を構成する化合物半導体よりもバンドギャップの狭い化合物半導体材料、具体的には、n-In0.2Ga0.8Nから成り、第1化合物半導体層21の内部に形成されている。光吸収材料層81の厚さはλ0/(4・neq)以下、具体的には、3nmである。また、光吸収材料層81の光吸収係数は、n-GaN層から成る第1化合物半導体層21の光吸収係数の2倍以上、具体的には、1×103倍である。
 また、積層構造体の内部において形成される光の定在波に生じる最低振幅部分に光吸収材料層81が位置するし、積層構造体の内部において形成される光の定在波に生じる最大振幅部分に活性層23が位置する。活性層23の厚さ方向中心と、活性層23に隣接した光吸収材料層81の厚さ方向中心との間の距離は、46.5nmである。更には、2層の光吸収材料層81、及び、光吸収材料層81と光吸収材料層81との間に位置する積層構造体の部分(具体的には、実施例16にあっては、第1化合物半導体層21)の全体の等価屈折率をneq、光吸収材料層81と光吸収材料層81との間の距離をLAbsとしたとき、
0.9×{(m・λ0)/(2・neq)}≦LAbs≦1.1×{(m・λ0)/(2・neq)}
を満足する。ここで、mは、1、又は、1を含む2以上の任意の整数である。但し、実施例16においては、m=1とした。従って、隣接する光吸収材料層81の間の距離は、全ての複数の光吸収材料層81(20層の光吸収材料層81)において、
0.9×{λ0/(2・neq)}≦LAbs≦1.1×{λ0/(2・neq)}
を満足する。等価屈折率neqの値は、具体的には、2.42であり、m=1としたとき、具体的には、
Abs=1×450/(2×2.42)
   =93.0nm
である。尚、20層の光吸収材料層81の内、一部の光吸収材料層81にあっては、mを、2以上の任意の整数とすることもできる。
 実施例16の発光素子の製造にあっては、実施例1の[工程-100]と同様の工程において、積層構造体20を形成するが、このとき、第1化合物半導体層21の内部に20層の光吸収材料層81を併せて形成する。この点を除き、実施例16の発光素子は、実施例1の発光素子と同様の方法に基づき製造することができる。
 活性層23によって決まるゲインスペクトル内に複数の縦モードが発生する場合、これを模式的に表すと図33のようになる。尚、図33においては、縦モードAと縦モードBの2つの縦モードを図示する。そして、この場合、光吸収材料層81が、縦モードAの最低振幅部分に位置し、且つ、縦モードBの最低振幅部分には位置しないとする。とすると、縦モードAのモードロスは最小化されるが、縦モードBのモードロスは大きい。図33において、縦モードBのモードロス分を模式的に実線で示す。従って、縦モードAの方が、縦モードBよりも発振し易くなる。それ故、このような構造を用いることで、即ち、光吸収材料層81の位置や周期を制御することで、特定の縦モードを安定化させることができ、発振し易くすることができる。その一方で、望ましくないそれ以外の縦モードに対するモードロスを増加させることができるので、望ましくないそれ以外の縦モードの発振を抑制することが可能となる。
 以上のとおり、実施例16の発光素子にあっては、光吸収材料層が積層構造体の内部に形成されているので、面発光レーザ素子から出射され得る複数種類の縦モードのレーザ光の内、不所望の縦モードのレーザ光の発振を抑制することができる。その結果、出射されるレーザ光の発振波長を正確に制御することが可能となる。しかも、尚、実施例16の発光素子にあっては凹面鏡部43を有するので、回折損失の発生を確実に抑制することができる。
 実施例17は、実施例16の変形である。実施例16においては、光吸収材料層81を、積層構造体20を構成する化合物半導体よりもバンドギャップの狭い化合物半導体材料から構成した。一方、実施例17においては、10層の光吸収材料層81を、不純物をドープした化合物半導体材料、具体的には、1×1019/cm3の不純物濃度(不純物:Si)を有する化合物半導体材料(具体的には、n-GaN:Si)から構成した。また、実施例17にあっては、発振波長λ0を515nmとした。活性層23の組成は、In0.3Ga0.7Nである。実施例17にあっては、m=1とし、LAbsの値は107nmであり、活性層23の厚さ方向中心と、活性層23に隣接した光吸収材料層81の厚さ方向中心との間の距離は53.5nmであり、光吸収材料層81の厚さは3nmである。以上の点を除き、実施例17の発光素子の構成、構造は、実施例16の発光素子の構成、構造と同様とすることができるので、詳細な説明は省略する。10層の光吸収材料層81の内、一部の光吸収材料層81にあっては、mを、2以上の任意の整数とすることもできる。
 実施例18も、実施例16の変形である。実施例18においては、5層の光吸収材料層(便宜上、『第1の光吸収材料層』と呼ぶ)を、実施例16の光吸収材料層81と同様の構成、即ち、n-In0.3Ga0.7Nから構成した。更には、実施例18にあっては、1層の光吸収材料層(便宜上、『第2の光吸収材料層』と呼ぶ)を透明導電性材料から構成した。具体的には、第2の光吸収材料層を、ITOから成る第2電極32と兼用した。実施例18にあっては、発振波長λ0を450nmとした。また、m=1及び2とした。m=1にあっては、LAbsの値は93.0nmであり、活性層23の厚さ方向中心と、活性層23に隣接した第1の光吸収材料層の厚さ方向中心との間の距離は46.5nmであり、5層の第1の光吸収材料層の厚さは3nmである。即ち、5層の第1の光吸収材料層にあっては、
0.9×{λ0/(2・neq)}≦LAbs≦1.1×{λ0/(2・neq)}
を満足する。また、活性層23に隣接した第1の光吸収材料層と、第2の光吸収材料層とは、m=2とした。即ち、
0.9×{(2・λ0)/(2・neq)}≦LAbs≦1.1×{(2・λ0)/(2・neq)}
を満足する。第2電極32を兼用する1層の第2の光吸収材料層の光吸収係数は2000cm-1、厚さは30nmであり、活性層23から第2の光吸収材料層までの距離は139.5nmである。以上の点を除き、実施例18の発光素子の構成、構造は、実施例16の発光素子の構成、構造と同様とすることができるので、詳細な説明は省略する。5層の第1の光吸収材料層の内、一部の第1の光吸収材料層にあっては、mを、2以上の任意の整数とすることもできる。実施例16と異なり、光吸収材料層81の数を1とすることもできる。この場合にも、例えば、第2電極32を兼ねた第2の光吸収材料層と光吸収材料層81の位置関係は、以下の式を満たす必要がある。
0.9×{(m・λ0)/(2・neq)}≦LAbs≦1.1×{(m・λ0)/(2・neq)}
 実施例19は、実施例16~実施例18の変形である。実施例19の発光素子は、より具体的には、第1化合物半導体層21の頂面から第1光反射層41を介してレーザ光を出射する面発光レーザ素子(垂直共振器レーザ、VCSEL)から成る。
 実施例19の発光素子にあっては、模式的な一部断面図を図34に示すように、第2光反射層42は、金(Au)層あるいは錫(Sn)を含む半田層から成る接合層48を介して、シリコン半導体基板から構成された支持基板49に半田接合法に基づき固定されている。
 実施例19の発光素子は、第1化合物半導体層21の内部に20層の光吸収材料層81を併せて形成する点を除き、また、支持基板49の除去しない点を除き、実施例1の発光素子と同様の方法に基づき製造することができる。
 以上、本開示を好ましい実施例に基づき説明したが、本開示はこれらの実施例に限定するものではない。実施例において説明した発光素子の構成、構造は例示であり、適宜、変更することができるし、発光素子の製造方法も、適宜、変更することができる。場合によっては、接合層や支持基板を適切に選択することで、第2化合物半導体層の頂面から第2光反射層を介して光を出射する面発光レーザ素子とすることができる。
 尚、本開示は、以下のような構成を取ることもできる。
[A01]《発光素子・・・第1の態様》
 化合物半導体基板、GaN系化合物半導体から成る積層構造体、第1光反射層及び第2光反射層を備えており、
 積層構造体は、
 化合物半導体基板上に形成され、第1面、及び、第1面と対向する第2面を有する第1化合物半導体層、
 第1化合物半導体層の第2面と面する活性層、並びに、
 活性層と面する第1面、及び、第1面と対向する第2面を有する第2化合物半導体層、
が積層されて成り、
 第1光反射層は、化合物半導体基板上に配設され、凹面鏡部を有しており、
 第2光反射層は、第2化合物半導体層の第2面側に配設され、平坦な形状を有しており、
 化合物半導体基板は、低不純物濃度・化合物半導体基板又は半絶縁性・化合物半導体基板から成る発光素子。
[A02]低不純物濃度・化合物半導体基板の不純物濃度は5×1017/cm3以下である[A01]に記載の発光素子。
[A03]低不純物濃度・化合物半導体基板はGaN基板から成る[A01]又は[A02]に記載の発光素子。
[A04]第1化合物半導体層の不純物濃度は5×1017/cm3以下である[A01]乃至[A03]のいずれか1項に記載の発光素子。
[A05]低不純物濃度・化合物半導体基板の不純物濃度と第1化合物半導体層の不純物濃度との平均不純物濃度は5×1017/cm3以下である[A01]乃至[A03]のいずれか1項に記載の発光素子。
[A06]第1化合物半導体層のシート抵抗値をR1、第2化合物半導体層のシート抵抗値をR2、第2電極のシート抵抗値をREL-2としたとき、R1<R2、及び、REL-2<R2を満足する[A01]乃至[A05]のいずれか1項に記載の発光素子。
[A07]第2化合物半導体層の厚さは1×10-5m以下であり、
 第2化合物半導体層の不純物濃度は5×1017/cm3以上である[A01]乃至[A06]のいずれか1項に記載の発光素子。
[A08]第2化合物半導体層には、マグネシウ及び亜鉛から成る群から選択された少なくとも1種類の不純物がドーピングされている[A07]に記載の発光素子。
[A09]第1化合物半導体層には、シリコン、ゲルマニウム、酸素及び炭素から成る群から選択された少なくとも1種類の不純物がドーピングされている[A01]乃至[A08]のいずれか1項に記載の発光素子。
[B01]《発光素子・・・第2の態様》
 GaN系化合物半導体から成る積層構造体、第1光反射層及び第2光反射層を備えており、
 積層構造体は、
 第1面、及び、第1面と対向する第2面を有する第1化合物半導体層、
 第1化合物半導体層の第2面と面する活性層、並びに、
 活性層と面する第1面、及び、第1面と対向する第2面を有する第2化合物半導体層、
が積層されて成り、
 第1光反射層は、第1化合物半導体層の第1面上に配設され、凹面鏡部を有しており、
 第2光反射層は、第2化合物半導体層の第2面側に配設され、平坦な形状を有しており、
 第1化合物半導体層の不純物濃度は5×1017/cm3以下である発光素子。
[B02]第1化合物半導体層のシート抵抗値をR1、第2化合物半導体層のシート抵抗値をR2、第2電極のシート抵抗値をREL-2としたとき、R1<R2、及び、REL-2<R2を満足する[B01]に記載の発光素子。
[B03]第1化合物半導体層の厚さは1×10-5m以上である[B01]又は[B02]に記載の発光素子。
[B04]第2化合物半導体層の厚さは1×10-5m以下であり、
 第2化合物半導体層の不純物濃度は5×1017/cm3以上である[B01]乃至[B03]のいずれか1項に記載の発光素子。
[B05]第2化合物半導体層には、マグネシウ及び亜鉛から成る群から選択された少なくとも1種類の不純物がドーピングされている[B04]に記載の発光素子。
[B06]第1化合物半導体層には、シリコン、ゲルマニウム、酸素及び炭素から成る群から選択された少なくとも1種類の不純物がドーピングされている[B01]乃至[B05]のいずれか1項に記載の発光素子。
 上記の目的を達成するための本開示の第3の態様に係る発光素子は、
[C01]《発光素子・・・第3の態様》
 GaN系化合物半導体から成る積層構造体、第1光反射層及び第2光反射層を備えており、
 積層構造体は、
 第1面、及び、第1面と対向する第2面を有する第1化合物半導体層、
 第1化合物半導体層の第2面と面する活性層、並びに、
 活性層と面する第1面、及び、第1面と対向する第2面を有する第2化合物半導体層、
が積層されて成り、
 第1光反射層は、第1化合物半導体層の第1面側に配設され、凹面鏡部を有しており、
 第2光反射層は、第2化合物半導体層の第2面側に配設され、平坦な形状を有しており、
 第1化合物半導体層には、活性層が占める仮想平面と平行に、少なくとも1層の低抵抗層が形成されている発光素子。
[C02]第1電極及び第2電極を更に備えており、
 第2電極は、第2光反射層と第2光反射層との間に形成されており、
 第1化合物半導体層には、低抵抗層に至る開口が形成されており、
 開口内には、低抵抗層と接する第1電極が形成されている[C01]に記載の発光素子。
[C03]開口の底部において、第1電極は低抵抗層と接しており、
 開口の底部は、凹凸形状を有し、
 第1の光反射層の中心点と第2の光反射層の中心点とを通る軸線と開口の底部の中心点とを結ぶ低抵抗層上に描かれた基線と、凹凸形状の凹部及び凸部の延びる方向との成す角度は、0度乃至45度である[C02]に記載の発光素子。
[C04]低抵抗層の厚さは1×10-5m以下である[C01]乃至[C03]のいずれか1項に記載の発光素子。
[C05]低抵抗層の不純物濃度は、第1化合物半導体層の不純物濃度よりも高い[C01]乃至[C04]のいずれか1項に記載の発光素子。
[C06]低抵抗層の不純物濃度は1×1018/cm3以上であり、
 第1化合物半導体層の不純物濃度は5×1017/cm3以下である[C01]乃至[C05]のいずれか1項に記載の発光素子。
[C07]低抵抗層には、シリコン、ゲルマニウム、酸素及び炭素から成る群から選択された少なくとも1種類の不純物がドーピングされている[C01]乃至[C06]のいずれか1項に記載の発光素子。
[C08]化合物半導体基板上に第1化合物半導体層が形成されており、
 低抵抗層の不純物濃度は、第1化合物半導体層及び化合物半導体基板の平均不純物濃度よりも高い[C01]乃至[C04]のいずれか1項に記載の発光素子。
[C09]低抵抗層の不純物濃度は1×1018/cm3以上であり、
 第1化合物半導体層及び化合物半導体基板の平均不純物濃度は5×1017/cm3以下である[C08]に記載の発光素子。
[C10]低抵抗層、第1化合物半導体層及び化合物半導体基板には、シリコン、ゲルマニウム、酸素及び炭素から成る群から選択された少なくとも1種類の不純物がドーピングされている[C08]又は[C09]に記載の発光素子。
[C11]低抵抗層は、GaN系化合物半導体材料から成り、
 第1化合物半導体層を構成するGaN系化合物半導体材料と、低抵抗層を構成するGaN系化合物半導体材料とは、組成が異なる[C01]乃至[C10]のいずれか1項に記載の発光素子。
[C12]低抵抗層を構成するGaN系化合物半導体材料のバンドギャップは、第1化合物半導体層を構成するGaN系化合物半導体材料のバンドギャップよりも狭い[C11]に記載の発光素子。
[C13]積層構造体の内部において形成される光の定在波に生じる最低振幅部分に低抵抗層が位置する[C01]乃至[C12]のいずれか1項に記載の発光素子。
[C14]積層構造体の内部において形成される光の定在波に生じる最大振幅部分に活性層が位置する[C04]乃至[C13]のいずれか1項に記載の発光素子。
[C15]第1電極及び第2電極を更に備えており、
 第1化合物半導体層には、少なくとも2層の低抵抗層が形成されており、
 第1化合物半導体層には、少なくとも2層の低抵抗層に亙り開口が形成されており、
 開口内には、少なくとも2層の低抵抗層と接する第1電極が形成されている[C01]に記載の発光素子。
[C16]開口の底部において、第1電極は低抵抗層の1層と接しており、
 開口の側面において、第1電極は低抵抗層の他の層と接しており、
 開口の底部は、凹凸形状を有し、
 第1の光反射層の中心点と第2の光反射層の中心点とを通る軸線と開口の底部の中心点とを結ぶ低抵抗層上に描かれた基線と、凹凸形状の凹部及び凸部の延びる方向との成す角度は、0度乃至45度である[C15]に記載の発光素子。
[C17]発振波長をλ0、複数の低抵抗層、及び、低抵抗層と低抵抗層との間に位置する第1化合物半導体層の部分の等価屈折率をn1-eqとしたとき、低抵抗層の厚さはλ0/(4・n1-eq)以下である[C15]又は[C16]に記載の発光素子。
[C18]低抵抗層と低抵抗層との間の距離をLHCLとしたとき、
0.9×{(m・λ0)/(2・n1-eq)}≦LHCL≦1.1×{(m・λ0)/(2・n1-eq)}
を満足する[C15]乃至[C17]のいずれか1項に記載の発光素子。
但し、mは、1、又は、1を含む2以上の任意の整数である。
[C19]低抵抗層の厚さは1×10-5m以下である[C15]乃至[C18]のいずれか1項に記載の発光素子。
[C20]低抵抗層の不純物濃度は、第1化合物半導体層の不純物濃度よりも高い[C15]乃至[C19]のいずれか1項に記載の発光素子。
[C21]低抵抗層の不純物濃度は1×1018/cm3以上であり、
 第1化合物半導体層の不純物濃度は5×1017/cm3以下である[C15]乃至[C20]のいずれか1項に記載の発光素子。
[C22]低抵抗層には、シリコン、ゲルマニウム、酸素及び炭素から成る群から選択された少なくとも1種類の不純物がドーピングされている[C20]又は[C21]に記載の発光素子。
[C23]化合物半導体基板上に第1化合物半導体層が形成されており、
 低抵抗層の不純物濃度は、第1化合物半導体層及び化合物半導体基板の平均不純物濃度よりも高い[C15]乃至[C19]のいずれか1項に記載の発光素子。
[C24]低抵抗層の不純物濃度は1×1018/cm3以上であり、
 第1化合物半導体層及び化合物半導体基板の平均不純物濃度は5×1017/cm3以下である[C23]に記載の発光素子。
[C25]低抵抗層、第1化合物半導体層及び化合物半導体基板には、シリコン、ゲルマニウム、酸素及び炭素から成る群から選択された少なくとも1種類の不純物がドーピングされている[C23]又は[C24]に記載の発光素子。
[C26]低抵抗層は、GaN系化合物半導体材料から成り、
 第1化合物半導体層を構成するGaN系化合物半導体材料と、低抵抗層を構成するGaN系化合物半導体材料とは、組成が異なる[C15]乃至[C25]のいずれか1項に記載の発光素子。
[C27]低抵抗層を構成するGaN系化合物半導体材料のバンドギャップは、第1化合物半導体層を構成するGaN系化合物半導体材料のバンドギャップよりも狭い[C26]に記載の発光素子。
[C28]積層構造体の内部において形成される光の定在波に生じる最低振幅部分に、少なくとも1層の低抵抗層が位置する[C15]乃至[C27]のいずれか1項に記載の発光素子。
[C29]積層構造体の内部において形成される光の定在波に生じる最大振幅部分に活性層が位置する[C15]乃至[C28]のいずれか1項に記載の発光素子。
[D01]GaN系化合物半導体から成る積層構造体は化合物半導体基板上に形成されており、
 化合物半導体基板は、低不純物濃度・化合物半導体基板又は半絶縁性・化合物半導体基板から成る[C01]乃至[C29]のいずれか1項に記載の発光素子。
[D02]低不純物濃度・化合物半導体基板の不純物濃度は5×1017/cm3以下である[D01]に記載の発光素子。
[D03]低不純物濃度・化合物半導体基板はGaN基板から成る[D01]又は[D02]に記載の発光素子。
[D04]第1化合物半導体層の不純物濃度は5×1017/cm3以下である[D01]乃至[D03]のいずれか1項に記載の発光素子。
[D05]低不純物濃度・化合物半導体基板の不純物濃度と第1化合物半導体層の不純物濃度との平均不純物濃度は5×1017/cm3以下である[D01]乃至[D03]のいずれか1項に記載の発光素子。
[D06]第1化合物半導体層のシート抵抗値をR1、第2化合物半導体層のシート抵抗値をR2、第2電極のシート抵抗値をREL-2としたとき、R1<R2、及び、REL-2<R2を満足する[D01]乃至[D05]のいずれか1項に記載の発光素子。
[D07]第1化合物半導体層の厚さは1×10-5m以上である[D01]乃至[D06]のいずれか1項に記載の発光素子。
[D08]第2化合物半導体層の厚さは1×10-5m以下であり、
 第2化合物半導体層の不純物濃度は5×1017/cm3以上である[D01]乃至[D07]のいずれか1項に記載の発光素子。
[D09]第2化合物半導体層には、マグネシウ及び亜鉛から成る群から選択された少なくとも1種類の不純物がドーピングされている[D08]に記載の発光素子。
[D10]第1化合物半導体層には、シリコン、ゲルマニウム、酸素及び炭素から成る群から選択された少なくとも1種類の不純物がドーピングされている[D01]乃至[D09]のいずれか1項に記載の発光素子。
[D11] 第1化合物半導体層の不純物濃度は5×1017/cm3以下である[C01]乃至[C29]のいずれか1項に記載の発光素子。
[D12]第1化合物半導体層のシート抵抗値をR1、第2化合物半導体層のシート抵抗値をR2、第2電極のシート抵抗値をREL-2としたとき、R1<R2、及び、REL-2<R2を満足する[D11]に記載の発光素子。
[D13]第1化合物半導体層の厚さは1×10-5m以上である[D11]又は[D12]に記載の発光素子。
[D14]第2化合物半導体層の厚さは1×10-5m以下であり、
 第2化合物半導体層の不純物濃度は5×1017/cm3以上である[D11]乃至[D13]のいずれか1項に記載の発光素子。
[D15]第2化合物半導体層には、マグネシウ及び亜鉛から成る群から選択された少なくとも1種類の不純物がドーピングされている[D14]に記載の発光素子。
[D16]第1化合物半導体層には、シリコン、ゲルマニウム、酸素及び炭素から成る群から選択された少なくとも1種類の不純物がドーピングされている[D11]乃至[D15]のいずれか1項に記載の発光素子。
[E01]共振器長をLORとしたとき、1×10-5m≦LORを満足する[A01]乃至[D16]のいずれか1項に記載の発光素子。
[E02]積層構造体の積層方向を含む仮想平面で第1光反射層を切断したときの積層構造体(具体的には、第1化合物半導体層)に面する第1光反射層の凹面鏡部の一部の界面が描く図形は、円の一部又は放物線の一部である[A01]乃至[E01]のいずれか1項に記載の発光素子。
[E03]第2化合物半導体層には、電流注入領域及び電流注入領域を取り囲む電流非注入領域が設けられており、
 電流注入領域の面積重心点から、電流注入領域と電流非注入領域の境界までの最短距離DCIは、以下の式を満足する[A01]乃至[E02]のいずれか1項に記載の発光素子。
CI≧ω0/2
但し、
ω0 2≡(λ0/π){LOR(RDBR-LOR)}1/2
ここで、
λ0 :発光素子から主に出射される光の波長
OR :共振器長
DBR:第1光反射層の凹面鏡部の曲率半径
[E04]第2化合物半導体層の第2面上に設けられ、発振モードロスの増減に作用するモードロス作用領域を構成するモードロス作用部位、
 第2化合物半導体層の第2面上からモードロス作用部位上に亙り形成された第2電極、及び、
 第1化合物半導体層に電気的に接続された第1電極、
を更に備えており、
 第2光反射層は第2電極上に形成されており、
 積層構造体には、電流注入領域、電流注入領域を取り囲む電流非注入・内側領域、及び、電流非注入・内側領域を取り囲む電流非注入・外側領域が形成されており、
 モードロス作用領域の正射影像と電流非注入・外側領域の正射影像とは重なり合っている[E03]に記載の発光素子。
[E05]第1光反射層の凹面鏡部における有効領域の半径r’DBRは、
ω0≦r’DBR≦20・ω0
を満足する[E03]に記載の発光素子。
[E06]DCI≧ω0を満足する[E03]に記載の発光素子。
[E07]RDBR≦1×10-3mを満足する[E03]に記載の発光素子。
[E08]《第2構成の発光素子》
 第2化合物半導体層の第2面上に設けられ、発振モードロスの増減に作用するモードロス作用領域を構成するモードロス作用部位、
 第2化合物半導体層の第2面上からモードロス作用部位上に亙り形成された第2電極、及び、
 第1化合物半導体層に電気的に接続された第1電極、
を更に備えており、
 第2光反射層は第2電極上に形成されており、
 積層構造体には、電流注入領域、電流注入領域を取り囲む電流非注入・内側領域、及び、電流非注入・内側領域を取り囲む電流非注入・外側領域が形成されており、
 モードロス作用領域の正射影像と電流非注入・外側領域の正射影像とは重なり合っている[A01]乃至[E02]のいずれか1項に記載の発光素子。
[E09]電流非注入・外側領域はモードロス作用領域の下方に位置している[E08]に記載の発光素子。
[E10]電流注入領域の射影像の面積をS1、電流非注入・内側領域の射影像の面積をS2としたとき、
0.01≦S1/(S1+S2)≦0.7
を満足する[E08]又は[E09]に記載の発光素子。
[E11]電流非注入・内側領域及び電流非注入・外側領域は、積層構造体へのイオン注入によって形成される[E08]乃至[E10]のいずれか1項に記載の発光素子。
[E12]イオン種は、ボロン、プロトン、リン、ヒ素、炭素、窒素、フッ素、酸素、ゲルマニウム及びシリコンから成る群から選択された少なくとも1種類のイオンである[E11]に記載の発光素子。
[E13]《第2-B構成の発光素子》
 電流非注入・内側領域及び電流非注入・外側領域は、第2化合物半導体層の第2面へのプラズマ照射、又は、第2化合物半導体層の第2面へのアッシング処理、又は、第2化合物半導体層の第2面への反応性イオンエッチング処理によって形成される[E08]乃至[E12]のいずれか1項に記載の発光素子。
[E14]《第2-C構成の発光素子》
 第2光反射層は、第1光反射層からの光を、第1光反射層と第2光反射層とによって構成される共振器構造の外側に向かって反射あるいは散乱する領域を有する[E08]乃至[E13]のいずれか1項に記載の発光素子。
[E15]電流注入領域における活性層から第2化合物半導体層の第2面までの光学的距離をL2、モードロス作用領域における活性層からモードロス作用部位の頂面までの光学的距離をL0としたとき、
0>L2
を満足する[E11]乃至[E14]のいずれか1項に記載の発光素子。
[E16]生成した高次モードを有する光は、モードロス作用領域により、第1光反射層と第2光反射層とによって構成される共振器構造の外側に向かって散逸させられ、以て、発振モードロスが増加する[E11]乃至[E15]のいずれか1項に記載の発光素子。
[E17]モードロス作用部位は、誘電体材料、金属材料又は合金材料から成る[E11]乃至[E16]のいずれか1項に記載の発光素子。
[E18]モードロス作用部位は誘電体材料から成り、
 モードロス作用部位の光学的厚さは、発光素子において生成した光の波長の1/4の整数倍から外れる値である[E17]に記載の発光素子。
[E19]モードロス作用部位は誘電体材料から成り、
 モードロス作用部位の光学的厚さは、発光素子において生成した光の波長の1/4の整数倍である[E17]に記載の発光素子。
[E20]《第2-D構成の発光素子》
 第2化合物半導体層の第2面側には凸部が形成されており、
 モードロス作用部位は、凸部を囲む第2化合物半導体層の第2面の領域上に形成されている[E08]乃至[E10]のいずれか1項に記載の発光素子。
[E21]電流注入領域における活性層から第2化合物半導体層の第2面までの光学的距離をL2、モードロス作用領域における活性層からモードロス作用部位の頂面までの光学的距離をL0としたとき、
0<L2
を満足する[E20]に記載の発光素子。
[E22]生成した高次モードを有する光は、モードロス作用領域により、電流注入領域及び電流非注入・内側領域に閉じ込められ、以て、発振モードロスが減少する[E20]又は[E21]に記載の発光素子。
[E23]モードロス作用部位は、誘電体材料、金属材料又は合金材料から成る[E20]乃至[E22]のいずれか1項に記載の発光素子。
[E24]第2電極は、透明導電性材料から成る[E08]乃至[E23]のいずれか1項に記載の発光素子。
[E25]《第3構成の発光素子》
 第2化合物半導体層の第2面上に形成された第2電極、
 第2電極上に形成された第2光反射層、
 第1化合物半導体層の第1面上に設けられ、発振モードロスの増減に作用するモードロス作用領域を構成するモードロス作用部位、並びに、
 第1化合物半導体層に電気的に接続された第1電極、
を更に備えており、
 第1光反射層は、第1化合物半導体層の第1面上からモードロス作用部位上に亙り形成されており、
 積層構造体には、電流注入領域、電流注入領域を取り囲む電流非注入・内側領域、及び、電流非注入・内側領域を取り囲む電流非注入・外側領域が形成されており、
 モードロス作用領域の正射影像と電流非注入・外側領域の正射影像とは重なり合っている[A01]乃至[E02]のいずれか1項に記載の発光素子。
[E26]電流注入領域の射影像の面積をS1、電流非注入・内側領域の射影像の面積をS2としたとき、
0.01≦S1’/(S1’+S2’)≦0.7
を満足する[E25]に記載の発光素子。
[E27]《第3-A構成の発光素子》
 電流非注入・内側領域及び電流非注入・外側領域は、積層構造体へのイオン注入によって形成される[E25]又は[E26]に記載の発光素子。
[E28]イオン種は、ボロン、プロトン、リン、ヒ素、炭素、窒素、フッ素、酸素、ゲルマニウム及びシリコンから成る群から選択された少なくとも1種類のイオンである[E27]に記載の発光素子。
[E29]《第3-B構成の発光素子》
 電流非注入・内側領域及び電流非注入・外側領域は、第2化合物半導体層の第2面へのプラズマ照射、又は、第2化合物半導体層の第2面へのアッシング処理、又は、第2化合物半導体層の第2面への反応性イオンエッチング処理によって形成される[E25]乃至[E28]のいずれか1項に記載の発光素子。
[E30]《第3-C構成の発光素子》
 第2光反射層は、第1光反射層からの光を、第1光反射層と第2光反射層とによって構成される共振器構造の外側に向かって反射あるいは散乱する領域を有する[E25]乃至[E29]のいずれか1項に記載の発光素子。
[E31]電流注入領域における活性層から第1化合物半導体層の第1面までの光学的距離をL1’、モードロス作用領域における活性層からモードロス作用部位の頂面までの光学的距離をL0’としたとき、
0’>L1
を満足する[E27]乃至[E30]のいずれか1項に記載の発光素子。
[E32]生成した高次モードを有する光は、モードロス作用領域により、第1光反射層と第2光反射層とによって構成される共振器構造の外側に向かって散逸させられ、以て、発振モードロスが増加する[E27]乃至[E31]のいずれか1項に記載の発光素子。
[E33]モードロス作用部位は、誘電体材料、金属材料又は合金材料から成る[E27]乃至[E32]のいずれか1項に記載の発光素子。
[E34]モードロス作用部位は誘電体材料から成り、
 モードロス作用部位の光学的厚さは、発光素子において生成した光の波長の1/4の整数倍から外れる値である[E33]に記載の発光素子。
[E35]モードロス作用部位は誘電体材料から成り、
 モードロス作用部位の光学的厚さは、発光素子において生成した光の波長の1/4の整数倍である[E33]に記載の発光素子。
[E36]《第3-D構成の発光素子》
 第1化合物半導体層の第1面側には凸部が形成されており、
 モードロス作用部位は、凸部を囲む第1化合物半導体層の第1面の領域上に形成されている[E25]又は[E26]に記載の発光素子。
[E37]電流注入領域における活性層から第1化合物半導体層の第1面までの光学的距離をL1’、モードロス作用領域における活性層からモードロス作用部位の頂面までの光学的距離をL0’としたとき、
0’<L1
を満足する[E36]に記載の発光素子。
[E38]第1化合物半導体層の第1面側には凸部が形成されており、
 モードロス作用部位は、凸部を囲む第1化合物半導体層の第1面の領域から構成されている[E25]又は[E26]に記載の発光素子。
[E39]生成した高次モードを有する光は、モードロス作用領域により、電流注入領域及び電流非注入・内側領域に閉じ込められ、以て、発振モードロスが減少する[E36]乃至[E38]のいずれか1項に記載の発光素子。
[E40]モードロス作用部位は、誘電体材料、金属材料又は合金材料から成る[E36]乃至[E39]のいずれか1項に記載の発光素子。
[E41]第2電極は、透明導電性材料から成る[E25]乃至[E40]のいずれか1項に記載の発光素子。
[E42]《第4構成の発光素子》
 第2電極を含む積層構造体には、活性層が占める仮想平面と平行に、少なくとも2層の光吸収材料層が形成されている[A01]乃至[E41]のいずれか1項に記載の発光素子。
[E43]少なくとも4層の光吸収材料層が形成されている[E42]に記載の発光素子。
[E44]発振波長をλ0、2層の光吸収材料層、及び、光吸収材料層と光吸収材料層との間に位置する積層構造体の部分の全体の等価屈折率をneq、光吸収材料層と光吸収材料層との間の距離をLAbsとしたとき、
0.9×{(m・λ0)/(2・neq)}≦LAbs≦1.1×{(m・λ0)/(2・neq)}
を満足する[E42]又は[E43]に記載の発光素子。
但し、mは、1、又は、1を含む2以上の任意の整数である。
[E45]光吸収材料層の厚さは、λ0/(4・neq)以下である[E42]乃至[E44]のいずれか1項に記載の発光素子。
[E46]積層構造体の内部において形成される光の定在波に生じる最低振幅部分に光吸収材料層が位置する[E42]乃至[E45]のいずれか1項に記載の発光素子。
[E47]積層構造体の内部において形成される光の定在波に生じる最大振幅部分に活性層が位置する[E42]乃至[E46]のいずれか1項に記載の発光素子。
[E48]光吸収材料層は、積層構造体を構成する化合物半導体の光吸収係数の2倍以上の光吸収係数を有する[E42]乃至[E47]のいずれか1項に記載の発光素子。
[E49]光吸収材料層は、積層構造体を構成する化合物半導体よりもバンドギャップの狭い化合物半導体材料、不純物をドープした化合物半導体材料、透明導電性材料、及び、光吸収特性を有する光反射層構成材料から成る群から選択された少なくとも1種類の材料から構成されている[E42]乃至[E48]のいずれか1項に記載の発光素子。
[E50]第1化合物半導体層の第1面と第1光反射層との間には化合物半導体基板が配されている[A01]乃至[E49]のいずれか1項に記載の発光素子。
[E51]化合物半導体基板はGaN基板から成る[E50]に記載の発光素子。
[E52]第1光反射層の凹面鏡部は、化合物半導体基板の突出部から成る基部、及び、少なくとも基部の一部の表面に形成された多層光反射膜から構成されている[A01]乃至[E51]のいずれか1項に記載の発光素子。
[E53]第1光反射層の凹面鏡部は、化合物半導体基板上に形成された基部、及び、少なくとも基部の一部の表面に形成された多層光反射膜から構成されている[A01]乃至[E51]のいずれか1項に記載の発光素子。
[E54]第1化合物半導体層の第1面に第1光反射層が形成されている[A01]乃至[E49]のいずれか1項に記載の発光素子。
[E55]積層構造体の熱伝導率の値は、第1光反射層の熱伝導率の値よりも高い[A01]乃至[E54]のいずれか1項に記載の発光素子。
[E56]発光素子の凹面鏡部の曲率半径をRDBRとしたとき、RDBR≦1×10-3mを満足する[A01]乃至[E55]のいずれか1項に記載の発光素子。
[E57]第1光反射層の周囲には凸形状部が形成されており、第1光反射層は凸形状部から突出していない[A01]乃至[E56]のいずれか1項に記載の発光素子。
11・・・化合物半導体基板(発光素子製造用基板)、11a・・・第1化合物半導体層と面する化合物半導体基板(発光素子製造用基板)の第1面、11a’・・・化合物半導体基板の第1面の突出部、11a”・・・凹み、11b・・・第1化合物半導体層と面する化合物半導体基板(発光素子製造用基板)の第2面、11A・・・凸形状部、20・・・積層構造体、21・・・第1化合物半導体層、21a・・・第1化合物半導体層の第1面、21b・・・第1化合物半導体層の第2面、21d,21e・・・第1化合物半導体層の第1面の突出部、22・・・第2化合物半導体層、22a・・・第2化合物半導体層の第1面、22b・・・第2化合物半導体層の第2面、23・・・活性層(発光層)、31,131・・・第1電極、131’・・・第1電極延在部、32,132・・・第2電極、33・・・パッド電極、34・・・絶縁層(電流狭窄層)、34A・・・絶縁層(電流狭窄層)に設けられた開口部、41・・・第1光反射層、42・・・第2光反射層、42A・・・第2光反射層に形成された順テーパー状の傾斜部、43・・・凹面鏡部、43A・・・凹部、43a・・・第1光反射層の凹面鏡部における有効領域の積層構造体に面する界面、44・・・第1光反射層の凹面鏡部における有効領域、45A,45B,45D,45E,45F・・・基部、45c・・・突出部、46・・・多層光反射膜、47・・・平坦化膜、48・・・接合層、49・・・支持基板、51,61・・・電流注入領域、52,62・・・電流非注入・内側領域、53,63・・・電流非注入・外側領域、54,64・・・モードロス作用部位(モードロス作用層)、54A,54B,64A・・・モードロス作用部位に形成された開口部、55,65・・・モードロス作用領域、71,71A,71B・・・低抵抗層、72・・・開口、73・・・開口の底部、81・・・光吸収材料層

Claims (20)

  1.  化合物半導体基板、GaN系化合物半導体から成る積層構造体、第1光反射層及び第2光反射層を備えており、
     積層構造体は、
     化合物半導体基板上に形成され、第1面、及び、第1面と対向する第2面を有する第1化合物半導体層、
     第1化合物半導体層の第2面と面する活性層、並びに、
     活性層と面する第1面、及び、第1面と対向する第2面を有する第2化合物半導体層、
    が積層されて成り、
     第1光反射層は、化合物半導体基板上に配設され、凹面鏡部を有しており、
     第2光反射層は、第2化合物半導体層の第2面側に配設され、平坦な形状を有しており、
     化合物半導体基板は、低不純物濃度・化合物半導体基板又は半絶縁性・化合物半導体基板から成る発光素子。
  2.  低不純物濃度・化合物半導体基板の不純物濃度は5×1017/cm3以下である請求項1に記載の発光素子。
  3.  半絶縁性・化合物半導体基板は、鉄原子を含んだインジウムリン基板から成る請求項1に記載の発光素子。
  4.  GaN系化合物半導体から成る積層構造体、第1光反射層及び第2光反射層を備えており、
     積層構造体は、
     第1面、及び、第1面と対向する第2面を有する第1化合物半導体層、
     第1化合物半導体層の第2面と面する活性層、並びに、
     活性層と面する第1面、及び、第1面と対向する第2面を有する第2化合物半導体層、
    が積層されて成り、
     第1光反射層は、第1化合物半導体層の第1面上に配設され、凹面鏡部を有しており、
     第2光反射層は、第2化合物半導体層の第2面側に配設され、平坦な形状を有しており、
     第1化合物半導体層の不純物濃度は5×1017/cm3以下である発光素子。
  5.  第1化合物半導体層のシート抵抗値をR1、第2化合物半導体層のシート抵抗値をR2、第2電極のシート抵抗値をREL-2としたとき、R1<R2、及び、REL-2<R2を満足する請求項4に記載の発光素子。
  6.  第1化合物半導体層の厚さは1×10-5m以上である請求項4に記載の発光素子。
  7.  第2化合物半導体層の厚さは1×10-5m以下であり、
     第2化合物半導体層の不純物濃度は5×1017/cm3以上である請求項4に記載の発光素子。
  8.  GaN系化合物半導体から成る積層構造体、第1光反射層及び第2光反射層を備えており、
     積層構造体は、
     第1面、及び、第1面と対向する第2面を有する第1化合物半導体層、
     第1化合物半導体層の第2面と面する活性層、並びに、
     活性層と面する第1面、及び、第1面と対向する第2面を有する第2化合物半導体層、
    が積層されて成り、
     第1光反射層は、第1化合物半導体層の第1面側に配設され、凹面鏡部を有しており、
     第2光反射層は、第2化合物半導体層の第2面側に配設され、平坦な形状を有しており、
     第1化合物半導体層には、活性層が占める仮想平面と平行に、少なくとも1層の低抵抗層が形成されている発光素子。
  9.  第1電極及び第2電極を更に備えており、
     第2電極は、第2光反射層と第2光反射層との間に形成されており、
     第1化合物半導体層には、低抵抗層に至る開口が形成されており、
     開口内には、低抵抗層と接する第1電極が形成されている請求項8に記載の発光素子。
  10.  開口の底部において、第1電極は低抵抗層と接しており、
     開口の底部は、凹凸形状を有し、
     第1光反射層の中心点と第2光反射層の中心点とを通る軸線と開口の底部の中心点とを結ぶ低抵抗層上に描かれた基線と、凹凸形状の凹部及び凸部の延びる方向との成す角度は、0度乃至45度である請求項9に記載の発光素子。
  11.  低抵抗層の厚さは1×10-5m以下である請求項9に記載の発光素子。
  12.  低抵抗層の不純物濃度は、第1化合物半導体層の不純物濃度よりも高い請求項9に記載の発光素子。
  13.  低抵抗層の不純物濃度は1×1018/cm3以上であり、
     第1化合物半導体層の不純物濃度は5×1017/cm3以下である請求項12に記載の発光素子。
  14.  低抵抗層には、シリコン、ゲルマニウム、酸素及び炭素から成る群から選択された少なくとも1種類の不純物がドーピングされている請求項12に記載の発光素子。
  15.  低抵抗層は、GaN系化合物半導体材料から成り、
     第1化合物半導体層を構成するGaN系化合物半導体材料と、低抵抗層を構成するGaN系化合物半導体材料とは、組成が異なる請求項9に記載の発光素子。
  16.  低抵抗層を構成するGaN系化合物半導体材料のバンドギャップは、第1化合物半導体層を構成するGaN系化合物半導体材料のバンドギャップよりも狭い請求項15に記載の発光素子。
  17.  積層構造体の内部において形成される光の定在波に生じる最低振幅部分に低抵抗層が位置する請求項8に記載の発光素子。
  18.  第2化合物半導体層には、電流注入領域及び電流注入領域を取り囲む電流非注入領域が設けられており、
     電流注入領域の面積重心点から、電流注入領域と電流非注入領域の境界までの最短距離DCIは、以下の式を満足する請求項1、請求項4及び請求項8のいずれか1項に記載の発光素子。
    CI≧ω0/2
    但し、
    ω0 2≡(λ0/π){LOR(RDBR-LOR)}1/2
    ここで、
    λ0 :発光素子から主に出射される光の波長
    OR :共振器長
    DBR:第1光反射層の凹面鏡部の曲率半径
  19.  第2化合物半導体層の第2面上に設けられ、発振モードロスの増減に作用するモードロス作用領域を構成するモードロス作用部位、
     第2化合物半導体層の第2面上からモードロス作用部位上に亙り形成された第2電極、及び、
     第1化合物半導体層に電気的に接続された第1電極、
    を更に備えており、
     第2光反射層は第2電極上に形成されており、
     積層構造体には、電流注入領域、電流注入領域を取り囲む電流非注入・内側領域、及び、電流非注入・内側領域を取り囲む電流非注入・外側領域が形成されており、
     モードロス作用領域の正射影像と電流非注入・外側領域の正射影像とは重なり合っている請求項18に記載の発光素子。
  20.  第2化合物半導体層の第2面上に設けられ、発振モードロスの増減に作用するモードロス作用領域を構成するモードロス作用部位、
     第2化合物半導体層の第2面上からモードロス作用部位上に亙り形成された第2電極、及び、
     第1化合物半導体層に電気的に接続された第1電極、
    を更に備えており、
     第2光反射層は第2電極上に形成されており、
     積層構造体には、電流注入領域、電流注入領域を取り囲む電流非注入・内側領域、及び、電流非注入・内側領域を取り囲む電流非注入・外側領域が形成されており、
     モードロス作用領域の正射影像と電流非注入・外側領域の正射影像とは重なり合っている請求項1、請求項4及び請求項8のいずれか1項に記載の発光素子。
PCT/JP2018/045490 2017-12-22 2018-12-11 発光素子 WO2019124163A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019560998A JP7259763B2 (ja) 2017-12-22 2018-12-11 発光素子
US16/956,376 US11728625B2 (en) 2017-12-22 2018-12-11 Light emitting element
EP18891580.5A EP3731354B1 (en) 2017-12-22 2018-12-11 Light-emitting element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017245998 2017-12-22
JP2017-245998 2017-12-22

Publications (1)

Publication Number Publication Date
WO2019124163A1 true WO2019124163A1 (ja) 2019-06-27

Family

ID=66993399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045490 WO2019124163A1 (ja) 2017-12-22 2018-12-11 発光素子

Country Status (4)

Country Link
US (1) US11728625B2 (ja)
EP (1) EP3731354B1 (ja)
JP (1) JP7259763B2 (ja)
WO (1) WO2019124163A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021124967A1 (ja) * 2019-12-20 2021-06-24 ソニーグループ株式会社 垂直共振器型面発光レーザ素子、垂直共振器型面発光レーザ素子アレイ、垂直共振器型面発光レーザモジュール及び垂直共振器型面発光レーザ素子の製造方法
WO2021140802A1 (ja) * 2020-01-07 2021-07-15 ソニーグループ株式会社 発光素子
WO2023032300A1 (ja) 2021-08-30 2023-03-09 ソニーグループ株式会社 発光デバイスおよび画像表示装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020084942A1 (ja) 2018-10-26 2020-04-30 ソニー株式会社 発光素子及びその製造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000022277A (ja) 1998-06-29 2000-01-21 Toshiba Corp 発光素子及びその製造方法
JP2002237653A (ja) * 2001-02-02 2002-08-23 Samsung Electro Mech Co Ltd P型電極と活性層との間に効果的な正孔拡散のためのスペーサを備えるGaN面発光レーザダイオードおよびその製造方法
JP2002368333A (ja) * 2001-06-02 2002-12-20 Heon-Su Jeon 面発光レーザー
JP2003124570A (ja) * 2001-10-16 2003-04-25 Canon Inc 面発光半導体レーザ装置、及びその製造方法
WO2003044872A1 (en) * 2001-11-19 2003-05-30 Sanyo Electric Co., Ltd. Compound semiconductor light emitting device and its manufacturing method
JP2006114753A (ja) 2004-10-15 2006-04-27 Seiko Epson Corp 面発光レーザ、面発光レーザの製造方法、デバイス及び電子機器
JP2007157889A (ja) * 2005-12-02 2007-06-21 Nippon Telegr & Teleph Corp <Ntt> 面発光レーザモジュールおよびその作製方法
US20070280320A1 (en) * 2006-05-15 2007-12-06 Feezell Daniel F Electrically-pumped (Ga,In,Al)N vertical-cavity surface-emitting laser
WO2017018017A1 (ja) * 2015-07-28 2017-02-02 ソニー株式会社 発光素子

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555703A (ja) * 1991-05-15 1993-03-05 Fujitsu Ltd 面発光レーザ装置
JPH0883929A (ja) * 1994-09-14 1996-03-26 Rohm Co Ltd 半導体発光素子、およびその製造方法
US6026111A (en) * 1997-10-28 2000-02-15 Motorola, Inc. Vertical cavity surface emitting laser device having an extended cavity
JP3362836B2 (ja) 1997-12-26 2003-01-07 日亜化学工業株式会社 光半導体素子の製造方法
JP2005217147A (ja) 2004-01-29 2005-08-11 Seiko Epson Corp 受発光素子アレイ、光モジュール、および光伝達装置
JP2006019624A (ja) * 2004-07-05 2006-01-19 Mitsubishi Electric Corp 光素子とこの光素子を有する光送受信装置
WO2016048268A1 (en) * 2014-09-22 2016-03-31 Hewlett Packard Enterprise Development Lp Single mode vertical-cavity surface-emitting laser
JP2017050308A (ja) 2015-08-31 2017-03-09 浜松ホトニクス株式会社 量子カスケードレーザ
US10720756B2 (en) * 2017-04-04 2020-07-21 Rayir, Co. Vertical cavity surface emitting laser and method for manufacturing same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000022277A (ja) 1998-06-29 2000-01-21 Toshiba Corp 発光素子及びその製造方法
JP2002237653A (ja) * 2001-02-02 2002-08-23 Samsung Electro Mech Co Ltd P型電極と活性層との間に効果的な正孔拡散のためのスペーサを備えるGaN面発光レーザダイオードおよびその製造方法
JP2002368333A (ja) * 2001-06-02 2002-12-20 Heon-Su Jeon 面発光レーザー
JP2003124570A (ja) * 2001-10-16 2003-04-25 Canon Inc 面発光半導体レーザ装置、及びその製造方法
WO2003044872A1 (en) * 2001-11-19 2003-05-30 Sanyo Electric Co., Ltd. Compound semiconductor light emitting device and its manufacturing method
JP2006114753A (ja) 2004-10-15 2006-04-27 Seiko Epson Corp 面発光レーザ、面発光レーザの製造方法、デバイス及び電子機器
JP2007157889A (ja) * 2005-12-02 2007-06-21 Nippon Telegr & Teleph Corp <Ntt> 面発光レーザモジュールおよびその作製方法
US20070280320A1 (en) * 2006-05-15 2007-12-06 Feezell Daniel F Electrically-pumped (Ga,In,Al)N vertical-cavity surface-emitting laser
WO2017018017A1 (ja) * 2015-07-28 2017-02-02 ソニー株式会社 発光素子

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
H. KOGELNIKT. LI: "Laser Beams and Resonators", APPLIED OPTICS, vol. 5, no. 10, October 1966 (1966-10-01)
JOURNAL OF CRYSTAL GROWTH, vol. 312, 2010, pages 3569 - 3573

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021124967A1 (ja) * 2019-12-20 2021-06-24 ソニーグループ株式会社 垂直共振器型面発光レーザ素子、垂直共振器型面発光レーザ素子アレイ、垂直共振器型面発光レーザモジュール及び垂直共振器型面発光レーザ素子の製造方法
WO2021140802A1 (ja) * 2020-01-07 2021-07-15 ソニーグループ株式会社 発光素子
WO2023032300A1 (ja) 2021-08-30 2023-03-09 ソニーグループ株式会社 発光デバイスおよび画像表示装置

Also Published As

Publication number Publication date
EP3731354A1 (en) 2020-10-28
JPWO2019124163A1 (ja) 2020-12-17
EP3731354B1 (en) 2023-01-25
EP3731354A4 (en) 2021-05-26
US11728625B2 (en) 2023-08-15
JP7259763B2 (ja) 2023-04-18
US20200343694A1 (en) 2020-10-29

Similar Documents

Publication Publication Date Title
JP7388517B2 (ja) 発光素子
US11594859B2 (en) Light emitting element and light emitting element array
JP6566034B2 (ja) 発光素子
JP7215608B2 (ja) 発光素子
WO2019124163A1 (ja) 発光素子
JP7276313B2 (ja) 発光素子
WO2019003627A1 (ja) 発光素子及びその製造方法
US20190173263A1 (en) Light emitting element
JP7331859B2 (ja) 発光素子
JP7444067B2 (ja) 発光素子及びその製造方法
US20220166191A1 (en) Light emitting element and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18891580

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019560998

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018891580

Country of ref document: EP

Effective date: 20200722