JP2006019624A - 光素子とこの光素子を有する光送受信装置 - Google Patents

光素子とこの光素子を有する光送受信装置 Download PDF

Info

Publication number
JP2006019624A
JP2006019624A JP2004197932A JP2004197932A JP2006019624A JP 2006019624 A JP2006019624 A JP 2006019624A JP 2004197932 A JP2004197932 A JP 2004197932A JP 2004197932 A JP2004197932 A JP 2004197932A JP 2006019624 A JP2006019624 A JP 2006019624A
Authority
JP
Japan
Prior art keywords
disposed
layer
electrode
optical
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004197932A
Other languages
English (en)
Inventor
Seiichiro Tabata
誠一郎 田端
Masaharu Nakaji
雅晴 中路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004197932A priority Critical patent/JP2006019624A/ja
Publication of JP2006019624A publication Critical patent/JP2006019624A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)

Abstract

【課題】 LDとPDとの間隔を短くしてもクロストークの起こりにくい構成が可能な1チップ光素子を提供する
【解決手段】 Fe−InP基板30の表面に配設された面発光レーザ10aとフォトダイオード10bを、Fe−InP基板に掘り込まれたトレンチ12により分離すると共に、面発光レーザ10aとフォトダイオード10bとの表面を、SiN膜22を介して金属膜24で覆ったもので、面発光レーザ10aに供給する電気信号とフォトダイオード10bから取り出される電気信号とによる電界が、金属膜24により面発光レーザ10a、フォトダイオード10bそれぞれの内部に閉じ込められて、外部に漏れることはないので、面発光レーザ10a、フォトダイオード10b相互間における電気信号のクロストークが除去される。
【選択図】 図2

Description

この発明は、光素子とこの光素子を有する光送受信装置に係り、特に光通信などにおいて使用され光の送受信を行う光素子とこの光素子を有し双方向光伝送を行う光送受信装置に関する。
近年、光通信のブロードバンド化が進展し、光ファイバを用いた公衆通信網の普及に伴って、安価で使用しやすい光送受信装置が益々求められている。特に各家庭にまで光ファイバ網を構築するためには安価で、しかも光ファイバと光送受信装置との接続が簡単な装置が必要とされる。
この様な光送受信装置の公知例として、簡単な構成で低コストに構成できる双方向光送受信伝送装置が開示されている。これは同一パッケージ内に発光素子と受光素子とを収納し、パッケージ開口部にホログラフィック回折格子を設け、この上にレンズを介して光ファイバを設けた光伝送装置で、レーザからの出射光はホログラフィック回折格子を透過しレンズにより光ファイバの端面上に集光され、受信時には光ファイバの端面を発した受信光ビームはレンズを経て回折格子により回折され、その1次回折光が受光素子の光検出面上に集光されるものである(例えば、特許文献1 [0023]〜[0024]の記載、および図1参照)。
さらに、公知の技術として、双方向光伝送を行う光送受信装置において、基板の一方の面に回折格子を形成し他方の面に凸レンズと同じ作用をするレンズを形成したホログラム光学素子を有する光モジュールが開示された例がある(例えば、特許文献2 [0009]〜[0013]の記載、および図1参照)。
また公知例として、光送信素子である半導体レーザと光受信素子であるフォトダイオードとをひとつのチップに一体化することにより安価でかつ光ファイバとの精度よく結合できる光送受信素子が開示されている。
この光送受信素子は半絶縁性半導体基板上に面発光レーザ(VCSEL)と金属−半導体−金属受光素子(MSM photodetector)とを、プロトン注入による分離領域を介して並置したものである。これらの面発光レーザ(VCSEL)および受光素子に接続される光ファイバの間隔は250μm程度あるいはそれ以下である。また電気的接続はワイヤで行われている。(例えば、特許文献3 第7欄第28行〜第8欄第49行、および図3〜図4参照)。
また、公知例として同一基板上に発光素子部と受光素子部とを形成し、この発光素子部と受光素子部の間に発光素子部の接合部よりも深い溝を形成し、この溝の周辺に金属材料の反射膜を形成することにより、発光素子部から横方向に出てくる発光出力が溝に形成された反射膜により反射され受光素子部の接合周辺に入射することがなくと発光素子部と受光素子部の干渉がなくなり小型化が可能となることが開示されている。(例えば、特許文献4 第4頁第4行〜第20行の記載、および第3図参照)
特開平7−104154号公報 特許第2876871号公報 米国特許公報第6,001,664号 実開昭59−109164号公報
しかしながら、従来の双方向光伝送を行う回折光学素子(Diffractive Optical Element 、以下“DOE”と表記する。)型光送受信装置においては、半導体レーザ(以下LDという)やフォトダイオード(以下PDという)は個別に製造され、支持台の上に個別に実装されている。このために半導体レーザ(LD)やフォトダイオード(PD)の実装誤差により位置ずれが発生し、光ファイバとLDやPDとの結合効率も低下させていた。
また、LDやPDをそれほど小さく造れないというチップサイズ上の制限により、一定量、例えば175μm程度離して設置することが必要となる。これほどの距離はなれたLDとPDに対応させて、発信光と受信光の光軸を分離させるための光学系においては、PDとLDとの間隔が広くなるに伴ってDOEの回折角を大きくする必要があるので、回折効率が低下し、その結合効率も、例えば30%以下という低い値になる場合もあった。
さらに従来の、例えば特許文献2記載のLDとPDとを一体的に形成された光素子は、LDとPDとに対応する光ファイバの間隔は250μmと距離が離れていることもあり、LDとPDの間で単にイオン注入の分離領域を設けることにより良好な分離が可能であり、電気的接続もワイヤを用いて行われたとしても、特に支障はないようである。
しかしながら、DOE型光送受信装置においては発信光と受信光の光軸を分離させるための光学系を使用しながら結合効率を高めるためには、LDとPDとの間の間隔を従来の一体型素子の1/3程度まで短くしないと、結合効率が高くならない。このため従来構成の一体型光素子を数百MHz〜数GHzの高周波信号を送受信する光送受信装置にそのまま適用した場合には、LDへの電気信号とPDからの電気信号との間でクロストークが起こりやすいという問題点があった。
この発明は上記の問題点を解決するためになされたもので、第1の目的はLDとPDとの間隔を短くしてもクロストークの起こりにくい構成を持った1チップ光素子を提供することである。また第2の目的は、LDへの電気信号とPDからの電気信号との間でクロストークの起こり難くかつ光学系の結合効率の高い双方向光伝送を行う光送受信装置を提供することである。
この発明に係る光素子は、実質的に透明な半絶縁性基板と、この半絶縁性基板の表面を第1と第2の部分に区分する溝状の一つの凹部と、この凹部により区分された第1の部分の半絶縁性基板の表面上に配設された第1導電型の第1の半導体層、この第1の半導体層の上に選択的に配設された第1導電型の第1のクラッド層、この第1のクラッド層の上に配設された量子井戸構造の活性層、この活性層の上に配設された第2導電型の第2のクラッド層、この第2のクラッド層の上に配設された第2電極、及び第1の半導体層の上に選択的に配設された第1電極を有する発光素子と、凹部により区分された第2の部分の半絶縁性基板の表面上に配設された第1導電型の第2の半導体層、この第2の半導体層の上に選択的に配設された第1導電型の第3のクラッド層、この第3のクラッド層の上に配設された光吸収層、この光吸収層の上に配設された第2導電型の第4のクラッド層、この第4のクラッド層の上に配設された第4電極、及び第2の半導体層の上に選択的に配設された第3電極を有する受光素子と、第1電極、第2電極、第3電極、および第4電極の表面上を除き半絶縁性半導体基板上に配設された絶縁膜と、この絶縁膜上に配設され第1電極、第2電極、第3電極、および第4電極と分離された金属膜と、を備えたものである。
また、この発明に係る光送受信装置は、所定の曲率の曲面部分とこの曲面と互いに対向して配設された波長分離回折格子とを有するレンズと、このレンズの曲面部分に対向しレンズの光軸上に配設された光ファイバと、レンズの波長分離回折格子に対向し、レンズの光軸と発光素子の光軸とが合わせられた請求項4または6に記載の光素子と、を備えたものである。
この発明に係る光素子においては、発光素子と受光素子とを区分する凹部を含め、半絶縁性基板上に配設された絶縁膜を介して金属膜が配設されたので、発光素子と受光素子の間隔が狭くなっても、発光素子への電気信号と受光素子からの電気信号とによる電界が金属膜により発光素子、受光素子それぞれの内部に閉じ込められて外部に漏れることがないので、発光素子への電気信号と受光素子からの電気信号とのクロストークを除去することができる。
また、この発明に係る光送受信装置においては、発光素子と受光素子とを区分する凹部を含め、半絶縁性基板上に配設された絶縁膜を介して金属膜が配設された光素子を使用しているので、金属膜により発光素子への電気信号と受光素子からの電気信号とのクロストークを少なくすることができるから、発光素子と受光素子の間隔を狭くすることができ、双方向光伝送を行う光送受信装置の結合効率を高くすることができる。
以下の説明においては、光半導体装置の一例として、発光素子として半導体レーザ、受光素子としてフォトダイオードを用いた光素子とこの光素子とDOEレンズとを用いた光送受信装置について説明する。
実施の形態1.
図1はこの発明の一実施の形態に係る光素子の平面図、図2は図1の光素子のII−II断面における断面図、図3は図1の光素子のIII−III断面における断面図である。なお以下の各図において同じ符号は同一のものかまたは相当のものである。
図1に示された光素子10は、発光素子としての面発光レーザ(VCSEL:VerticalCavity Surface Emitting Laser)であるLD10aと受光素子としてのPD10bとを溝状の凹部としてのトレンチ12を介してチップの同じ表面側に並置され、1チップに配設されている。
LD10aは、例えば第2の電極としてのLDp側電極14が頂部に配設された発光部26と第1の電極としてのLDn側電極16が配設されたLDn側電極部56とがチップの同じ表面側に隣接して並置されている。
またPD10bも例えば第4の電極としてのPDp側電極18が配設された受光部28と第3の電極としてのPDn側電極20が配設されたPDn側電極部58とがチップの同じ表面側に隣接して並置されている。
LDp側電極14、LDn側電極16、PDp側電極18およびPDn側電極20を除いて、このLD10a、PD10bおよびトレンチ12の全面を覆って、絶縁膜としての例えばSiN膜22が配設され、各電極間の電気的導通を防いでいる。
このSiN膜22上にトレンチ12をふくめてLD10aとPD10bとの全面を覆って金属膜24が配設されている。ただし金属膜24はLDp側電極14、LDn側電極16、PDp側電極18およびPDn側電極20の部分は除かれ、またこれら電極とは電気的に分離されている。
この金属膜24はこの実施の形態においては下地のSiN膜22との結合性が良好なTi膜とこのTi膜の上に形成されたAu膜とにより構成されている。
図2にLD10aの発光部26とPD10bの受光部28の断面構造が示されている。半絶縁半導体基板としての透明なFe−InP基板30は、第1の部分としてのLD側基板30aと第2の部分としてのPD側基板30bが、Fe−InP基板30に掘り込まれたトレンチ12を介して分けられている。
LD10aは、まずLD側基板30aの表面上に多層膜反射鏡としてのDBR(Distributed Bragg Reflectors)層32が配設されている。この実施の形態ではDBR層32は、不純物濃度が2×1018cm−3程度(以下、m×10をmEnと表記する。例えば2×1018は2E18と表記する。)のn導電型InP/n導電型InGaAsPからなる20ペア程度の厚みの多層反射膜が使用されている(なお以下、「n導電型」を“n−”、「p導電型」を“p−”、真性半導体を“i−”と表記する)。
DBR層32の上に第1の半導体層としてのコンタクト層34が配設される。コンタクト層34は例えば不純物濃度が2E18cm−3程度で層の厚みが0.3μm程度のn−InGaAsP層である。
発光部26におけるコンタクト層34の上に第1クラッド層としてのn−クラッド層36が配設される。n−クラッド層36は例えば不純物濃度が2E18cm−3程度で層の厚みが0.5μm程度のn−InP層である。
n−クラッド層36の上に活性層38が配設される。活性層38は、不純物濃度が1E16cm−3程度で、層の厚みが0.1μm程度の、実質的に真性半導体層であるi−InGaAsP MQW(Multi Quantum Well)層が使用される。
活性層38の上に、第2クラッド層としてのp−クラッド層40が配設される。p−クラッド層40は例えば不純物濃度が2E18cm−3程度で層の厚みが0.85μm程度のp−InP層である。
p−クラッド層40の上にコンタクト層42が配設される。コンタクト層42は例えば不純物濃度が2E19cm−3程度で層の厚みが0.3μm程度のp−InGaAsP層である。このコンタクト層42の上にLDp側電極14が配設されている。
DBR層32としてのn−InP/n−InGaAsP層、コンタクト層34としてのn−InGaAsP層、n−クラッド層36としてのn−InP層、活性層38としてのi−InGaAsP MQW層、p−クラッド層40としてのp−InP層、コンタクト層42としてのp−InGaAsP層は、Fe−InP基板30の上に例えばMOCVDなどにより積層される。
LDp側電極14はコンタクト層42としてのp−InGaAsP層の上にフォトリソグラフィ技術やエッチング技術等のウエハプロセス技術を用いて形成された金属膜である。
金属膜で形成されたLDp側電極14は反射鏡の役割も果たしており、LDp側電極14の反射率はDBR層32よりも高い。従ってLDp側電極14とDBR層32との間を光が往復し、反射率の低いDBR層32からFe−InP基板30を透過して光が出射される。
PD10bは、まずPD側基板30bの表面上に第2の半導体層としてのコンタクト層44が配設される。コンタクト層44は例えば不純物濃度が2E18cm−3〜10E17cm−3程度で層の厚みが0.3μm程度のn−InGaAs層である。
受光部28におけるコンタクト層44の上に第3クラッド層としてのn−クラッド層46が配設される。n−クラッド層46は例えば不純物濃度が2E18cm−3〜10E17cm−3程度で層の厚みが0.5μm程度のn−InP層である。
n−クラッド層46の上に光吸収層48が配設される。光吸収層48は例えば不純物濃度が1E19cm−3程度で層の厚みが1.3μm程度のp−InGaAs層である。
光吸収層48の上に第4クラッド層としてのp−クラッド層50が配設される。p−クラッド層50は例えば不純物濃度が1E18cm−3程度で層の厚みが1μm程度のp−InP層である。
p−クラッド層50の上にコンタクト層52が配設されている。コンタクト層52は例えば不純物濃度が2E18cm−3程度で層の厚みが0.3μm程度のn−InGaAsP層である。
受光部28におけるn−クラッド層46、光吸収層48、p−クラッド層50およびコンタクト層52の周囲を取り囲んで、コンタクト層44表面上に半絶縁半導体層、例えばFe−InP層54が配設されている。Fe−InP層54に囲まれて露呈したコンタクト層52の上に金属膜が形成されたPDp側電極18が配設される。
コンタクト層44としてのn−InGaAsP層、n−クラッド層46としてのn−InP層、光吸収層48としてのp−InGaAs層、p−クラッド層50としてのp−InP層、コンタクト層52としてのp−InGaAsP層は、Fe−InP基板30の上に例えばMOCVDなどにより積層され、n−クラッド層46としてのn−InP層、光吸収層48としてのp−InGaAs層、p−クラッド層50としてのp−InP層、コンタクト層52としてのp−InGaAsP層の各層の周辺を半絶縁半導体層であるFe−InP層54で埋め込んだ構造になっている。
金属膜で形成されたPDp側電極18は、Fe−InP基板30側から入射し、光吸収層48において吸収されず、さらに透過してきた光を反射させることにより、受光感度を向上させる反射鏡の役割も担っている。
図3にLD10aのLDn側電極部56とPD10bのPDn側電極部58の断面構造が示されている。
LDn側電極部56はFe−InP基板30のLD側基板30aの上に発光部26と並置されている。LDn側電極部56には、発光部26と一体的に形成されているDBR層32とこの上に配設されたコンタクト層34とが配設され、このコンタクト層34の上に金属膜で形成されたLDn側電極16が配設されている。
またPDn側電極部58はFe−InP基板30のPD側基板30bの表面上に受光部28と並置されて配設され、PDn側電極部58には受光部28と一体的に形成されたコンタクト層44が配設され、このコンタクト層44の上に金属膜で形成されたPDn側電極20が配設されている。PDn側電極20の周囲のコンタクト層44の上にFe−InP層54が配設されている。
図4はこの発明の一実施の形態に係る光素子の実装状態を示す断面模式図である。図4における光素子の断面図は、図1におけるII−II断面における断面図と同じである。
図4において、光素子10は実装基板としての信号供給用基板60に配設されている。光素子10のLDp側電極14、LDn側電極16、PDp側電極18およびPDn側電極20は、フリップチップ実装技術を用いることにより信号供給用基板60に配設された回路パターン62の表面上に半田パッド64を介して、ジャンクションダウン(junction-down)の形式で直接に接合されている。矢印L1はLD10aからの出射光を示し、矢印L2はPD10bへの受信光を示す。
光素子10のLD10aは信号供給用基板60の回路パターン62に接続されたLDp側電極14とLDn側電極16により電力が供給され、この供給電力により発光した光がLDp側電極14とDBR層32との間を往復し励起され、反射率の低いDBR層32からFe−InP基板30を透過してレーザ光として出射される。このレーザ光はRF信号により変調されており信号光として出射される。
一方、PD10bはFe−InP基板30を透過して信号光が入射し、この入射した信号光は光吸収層48により吸収される。光吸収層48において吸収されずに透過してきた光はPDp側電極18により反射され、再び光吸収層48に到達し、光吸収層48において吸収される。これによりPD10bの受光感度が向上する。光吸収層48に吸収された光のエネルギーにより、電子−正孔対が発生し、これが電力として取り出され、信号光に対応した高周波の電気信号として取り出される。
光素子10においては、LD10aが配設されたLD側基板30aとPD10bが配設されたPD側基板30bが、半絶縁性のFe−InP基板30に掘り込まれたトレンチ12を介して分けられている。このためにLD10aとPD10bは電気的に非導通の状態にある。
そしてこのトレンチ12をふくめLD10aとPD10bとの全面を覆って、SiN膜22が配設され、このSiN膜22を介して更に電極部分を除くLD10aとPD10bとの全面を覆って金属膜24が配設されている。
このために従来単に半絶縁性基板にプロトン注入による分離領域を設けるだけでは十分除き得なかった、LD10aに供給される電気信号とPD10bから取り出される電気信号とによるクロストークが、LD10aに供給する電気信号とPD10bから取り出される電気信号とによる電界がLD10a、PD10bそれぞれの内部に閉じ込められて外部に漏れることが無くなったので、除去される。
また、信号供給用基板60の回路パターン62に接合された光素子10は、光素子10のLDp側電極14、LDn側電極16、PDp側電極18およびPDn側電極20が直接回路パターン62に接合され、電気信号を伝達するためのワイヤは備えていない。
このためワイヤを介しての接続とは異なり、空間に漏れ出す電界が発生せずLD10aに供給する電気信号とPD10bから取り出される電気信号との間に発生する電気的なクロストークが除去される。
このように、光素子10や、LDp側電極14、LDn側電極16、PDp側電極18およびPDn側電極20が信号供給用基板60の回路パターン62に接合された光素子10はクロストークが除去される。このためにLD10aとPD10bの間隔を狭くしてもクロストークがない1チップタイプの光素子を構成することができる。
変形例1
図5はこの発明の一実施の形態の変形例に係る光素子の平面図、図6は図5の光素子のVI−VI断面における断面図である。
図5および図6に示された光素子70は、Fe−InP基板30に掘り込まれたトレンチ12を介してFe−InP基板30を3分割し、端部にある1つをLD側基板30aとし他の2つをPD側基板30bとしたものである。光素子70では1つのLD10aと2つのPD10bとしているが、更にトレンチ12の数を多くしてFe−InP基板30の分割を多くしてもかまわない。またその場合、LD10aとPD10bの個数を適宜に選択してもよい。さらに光素子70では、LD10aの片側にのみPD10bが配置されているが、LD10aの両側の所定の位置に2つのPD10bを配置してもよい。さらにトレンチ12の数を多くしてFe−InP基板30の分割を多くして、LD10aとPD10bの個数を適宜選択する場合においても、その配置は適宜選択的に行ってもよい。
光素子70においては、2つのPD10bによって2つの受信光L2、L3を同時に受信することができる。2つのPD10bおよびLD10aは、各電極を除きトレンチ12をふくめ全面を覆って配設されたSiN膜22で覆われ、さらに各電極を除いて金属膜24がSiN膜22上に配設されている。
従って光素子10における効果に加えて、この光素子70においては、2つのPD10bから取り出される電気信号による電界がそれぞれのPD10bの内部に閉じ込められて外部に漏れることはないので、この受信光L2、L3に対応した2つの電気信号の相互間でのクロストークを除去することができる。
以上のように、この実施の形態1に係る光素子は、Fe−InP基板の表面に配設された面発光レーザとフォトダイオードを、Fe−InP基板に掘り込まれたトレンチにより分離すると共に、面発光レーザとフォトダイオードとの表面をSiN膜を介して金属膜で覆ったもので、面発光レーザに供給する電気信号とフォトダイオードから取り出される電気信号とによる電界が面発光レーザ、フォトダイオードそれぞれの内部に閉じ込められて外部に漏れることはない。このために面発光レーザ、フォトダイオード相互間におけるクロストーク、複数個のフォトダイオードがトレンチを介して配設された場合においては複数の受信光に対応した電気信号相互間におけるクロストーク、が除去される。
従って面発光レーザとフォトダイオードとの間の間隔、またフォトダイオードが複数配設された場合においては、フォトダイオード間の間隔、を狭くしてもクロストークがない1チップタイプの光素子を構成することができる。延いては、安価で、しかも光ファイバとの接続が簡単な光素子を提供することができる。
なお、半導体レーザとして、電流狭窄構造を有する構成やp側の反射鏡に多層膜を有する構成など、またフォトダイオードとして半絶縁性半導体で埋め込んでいない構成や増幅機能を有する層構造のものを用いても同様の効果がある。
実施の形態2.
図7はこの発明の一実施の形態に係る光素子の平面図、図8は図7の光素子のVIII−VIII断面における断面図、図9は図7の光素子のIX−IX断面における断面図である。
この実施の形態2の光素子75は実施の形態1における光素子10において、面発光レーザであるLD10aに替えて、通信用に使用されているファブリペロLDを使用した1チップタイプの光素子で、フォトダイオードは光素子10におけるものと同じPD10bを用いている。
また光素子75においては、ファブリペロLDとPD10bとを各1つずつ配置した例について説明するが、実施の形態1における変形例1のようにFe−InP基板30に掘り込まれたトレンチ12を介してFe−InP基板30を複数に分割し、ファブリペロLDとPD10bとを適宜選択的に配置してもよい。
図7に示された光素子75は、発光素子としてのリッジ型ファブリペロLDであるLD76とPD10bとがトレンチ12を介してチップの同じ表面側に並置され、1チップに配設されている。矢印L4はLD76からの出射光を示す。
LD76において、中央に光導波路リッジ78(図8参照)が配設され、その両側に分離溝82(図8参照)を介してn側電極パッド台84(図8参照)とp側電極パッド台88(図8参照)とが配設されている。
光導波路リッジ78(図8参照)の頂部に光の導波方向に延在する第2の電極としてのLDp側電極80が、またLDp側電極80に沿ってn側電極パッド台84(図8参照)の頂部に第1の電極としてのLDn側電極86が配設されている。
さらに、p側電極パッド台88(図8参照)の頂部にLDp側電極80と一体的に形成されたLDp側電極パッド90が配設されている。
またPD10bのPDp側電極18が配設された受光部28とPDn側電極20が配設されたPDn側電極部58とがLD76のp側電極パッド台88とトレンチ12を介して隣接して並置されている。
光導波路リッジ78の両端面である劈開面はLD76の共振器端面79a、79bとなっている。
LDp側電極80、LDn側電極86、PDp側電極18およびPDn側電極20を除いて、このLD76、PD10bおよびトレンチ12の全面を覆って、SiN膜22が配設され、各電極間の電気的導通を防いでいる。
このSiN膜22上にトレンチ12をふくめてLD76とPD10bとの全面を覆って金属膜24が配設されている。ただし金属膜24はLDp側電極80、LDn側電極16、PDp側電極18およびPDn側電極20の部分は除かれ、またこれら電極とは電気的に分離されている。
図8にLD76とPD10bの受光部28の断面構造が示されている。
図8において、Fe−InP基板30のLD側基板30aとPD側基板30bが、Fe−InP基板30に掘り込まれたトレンチ12を介して分けられている。LD76は、まずLD側基板30aの表面上に第1の半導体層としてのコンタクト層92が配設される。コンタクト層92は例えば不純物濃度が2E18cm−3程度で層の厚みが0.3μm程度のn−InGaAsP層である。
このコンタクト層92の上に第1クラッド層としてのn−クラッド層94が配設される。n−クラッド層94は例えば不純物濃度が2E18cm−3程度で層の厚みが1.8μm程度のn−InP層である。このn−クラッド層94上にn−SCH層95(SCH:Separate Confinement Heterostructures、分離閉じ込めヘテロ構造)が配設される。このn−SCH層95は、例えば不純物濃度が1E18cm−3程度で、層の厚みが0.1μm程度のn−InGaAsP層である。
このn−SCH層95の上に活性層96が配設される。活性層96は、実質的に真性半導体である不純物濃度が1E16cm−3程度で、層の厚みが0.1μm程度のi−InGaAsP MQW(Multi Quantum Well)層が使用される。
この活性層96の上に、i−InGaAsP層からなる層の厚みが0.1μm程度のアンドープのi−SCH層97が配設され、このi−SCH層97を介して第2クラッド層としてのp−クラッド層98が配設される。p−クラッド層98は例えば不純物濃度が2E18cm−3程度で層の厚みが1.8μm程度のp−InP層である。
p−クラッド層98の上にコンタクト層100が配設される。コンタクト層100は例えば不純物濃度が2E19cm−3程度で層の厚みが0.3μm程度のp−InGaAsP層である。このコンタクト層100の上にLDp側電極80が配設されている。このp−クラッド層98とコンタクト層100とで光導波路リッジ78が構成される。
n側電極パッド台84とp側電極パッド台88は、光導波路リッジ78と同じ工程で積層されたp−InP層とp−InGaAsP層とが光導波路リッジ78を形成する2つの分離溝82により光導波路リッジ78と分離され、この分離された部分の上にSiN膜22が配設されて形成されている。
n側電極パッド台84の頂部に配設されたLDn側電極86はn側電極パッド台84の側壁上をSiN膜22を介してコンタクト層92の上まで延在し、SiN膜22に配設された開口を介してコンタクト層92と電気的に接続されている。
p側電極パッド台88上に配設されたLDp側電極パッド90は分離溝82の側壁上に延在する接続部91を介してLDp側電極80と電気的に接続されている。
コンタクト層92としてのn−InGaAsP層、n−クラッド層94としてのn−InP層、活性層96としてのi−InGaAsP MQW層、p−クラッド層98としてのp−InP層、コンタクト層100としてのp−InGaAsP層は、Fe−InP基板30の上に例えばMOCVDなどにより積層され、フォトリソグラフィ技術やエッチング技術等のウエハプロセス技術を用いてリッジ型ファブリペロLDであるLD76が形成される。
図8におけるPD10bの構成は、実施の形態1の図2において示された構成と同じである。
図9にLD76とPD10bのPDn側電極部58の断面構造が示されている。LD76の断面構造は図8に示されたLD76の断面構造と同じであり、PD10bのPDn側電極部58の断面構造は実施の形態1の図3において示された構成と同じである。
図10はこの発明の一実施の形態に係る光素子の実装状態を示す一部透過斜視図である。
図10おいて、LD76の出射光L4は光導波路リッジ78の光導波方向から実質的に直交する方向に光の方向を転換させる光学部品としての例えば反射鏡104である。反射鏡104に替えてプリズムを用いてもよい。
光素子75は信号供給用基板60に配設されている。光素子75のLDp側電極パッド90、LDn側電極86、PDp側電極18およびPDn側電極20は、フリップチップ実装技術を用いることによりジャンクションダウン(junction-down)の形式で信号供給用基板60に配設された回路パターン62の表面上に半田パッド64を介して、直接に接合されている。矢印L4はLD76からの出射光を示し、矢印L2はPD10bへの受信光を示す。
光素子75においては、信号供給用基板60の回路パターン62に直接に接続されたLDp側電極パッド90とLDn側電極86を介してLD76に電力が供給される。この供給された電力により発光した光が、光導波路リッジ78の両端面を含む劈開面の共振器端面79aと共振器端面79bとの間を往復して励起され、これらの共振器端面79a、79bからレーザ光として出射される。このレーザ光はRF信号により変調されており信号光として出射される。
この出射光L4はLD76から出射した後に反射鏡104に直角に、すなわち受信光L2と並行する方向に曲げられる。一方受信光L2はFe−InP基板30を透過してPD10bにより受光され、電気信号として取り出される。
光素子75においては、光素子10と同様に半絶縁半導体基板のFe−InP基板30上に配設されたLD76とPD10bはトレンチ12により分離されていることもあり、電気的に非導通の状態にある。
さらにこのトレンチ12をふくめLD76とPD10bとの全面を覆って、金属膜24が配設されている。従来単に半絶縁性基板にプロトン注入による分離領域を設けるだけでは十分除き得なかったLD76に供給する電気信号とPD10bから取り出される電気信号とによるクロストークは、LD76に供給する電気信号とPD10bから取り出される電気信号とによる電界が、SiN膜22上に配設された金属膜24によりLD76、PD10bそれぞれの内部に閉じ込められて外部に漏れることはない。このためにLD76への電気信号とPD10bからの電気信号との相互間におけるクロストークは除去される。
光素子10と同様に信号供給用基板60の回路パターン62に接合された光素子75はLDp側電極パッド90、LDn側電極86、PDp側電極18およびPDn側電極20が半田パッド64を介して直接回路パターン62に接合され、電気信号を伝達するためのワイヤは備えていない。
このためワイヤを介しての接続とは異なり、空間に漏れ出す電界が発生せずLD76に供給する電気信号とPD10bから取り出される電気信号との間に発生する電気的なクロストークが除去される。
このように、光素子75や信号供給用基板60の回路パターン62に直接に接合された光素子75においては、クロストークが除去されるために、LD76とPD10bの間隔を狭くしてもクロストークが除去された1チップタイプの光素子を構成することができる。
以上のように、この実施の形態2に係る光素子は、Fe−InP基板の表面に配設されたファブリペロLDとフォトダイオードを、Fe−InP基板に掘り込まれたトレンチにより分離すると共に、ファブリペロLDとフォトダイオードとの表面をSiN膜を介して金属膜で覆ったもので、ファブリペロLDに供給する電気信号とフォトダイオードから取り出される電気信号とによる電界が金属膜によりファブリペロLD、フォトダイオードそれぞれの内部に閉じ込められて外部に漏れることはないので、ファブリペロLD、フォトダイオード相互間におけるクロストークが除去される。
このためにファブリペロLDとフォトダイオードとの間の間隔を狭くしてもクロストークがない1チップタイプの光素子を構成することができる。延いては、安価で、しかも光ファイバとの接続が簡単な光素子を提供することができる。
なおこの実施の形態2においては、一例としてファブリペロLDを用いて説明したが、DFB−LDにおいても同様の効果を奏する。
実施の形態3.
この実施の形態の説明においては、実施の形態1に記載した面発光LDを用いて説明するが、実施の形態2において説明したファブリペロ型の光素子でも同様に構成することができる。
図11はこの発明の一実施の形態に係る光送受信装置の断面模式図である。
図11において、光送受信モジュール110は双方向伝送を行うDOE型の光送受信モジュールである。光送受信モジュール110は光素子を封止したパッケージ112とDOEレンズ114を備えた鏡筒116と光ファイバ118を備えた光ファイバ保持具120から構成されている。
パッケージ112の台座112aには信号供給用基板60とこの上にフリップチップ実装技術により表面実装された光素子10が配設されている。信号供給用基板60と光素子10との実装方法は実施の形態1において説明したフリップチップ実装である。
信号供給用基板60と光素子10とは、上端面にガラス窓112bを備えた金属製のパッケージ本体112cと台座112aとにより封止される。
DOEレンズ114は一方の面が所定の曲率を有する曲面部分としてのレンズ面114aで、このレンズ面と互いに対向する端面には波長分離回折格子としての回折格子114bが配設されている。この回折格子114bは断面が鋸歯状であって鋸歯を構成する一辺がレンズの光軸に平行でもう一辺がレンズの光軸と所定の角度で傾いた形状をしている。
DOEレンズ114は、回折格子114bをパッケージ112のガラス窓112bに対向させて、鏡筒116とパッケージ112との間に保持される。
光ファイバ118を備えた光ファイバ保持具120は光ファイバ118の光軸とDOEレンズ114のレンズ面114aの光軸と光素子10のLD10aの光軸とが一致するように調整され鏡筒116と固定される。
光素子10のLD10aから出射された信号光L1はガラス窓112bを介してパッケージ112の外側に配設されたDOEレンズ114に伝播される。この実施の形態ではLD10aから出射された信号光L1の波長は1.3μmで、回折格子114bはこの1.3μmの光は透過するように形成されている。この回折格子114bを透過した信号光L1はDOEレンズ114のレンズ面114aにより光ファイバ118の端面において結像するように屈折され、光ファイバ118に入射する。
一方、この実施の形態における受信光L2の波長は1.55μmに設定されており、回折格子114bはこの受信光L2が回折するように形成されている。
光ファイバ118から送られてきた受信光L2はDOEレンズ114のレンズ面114aにより屈折された後、回折格子114bにより回折され、光軸が傾き光素子10のPD10bに入射する。波長合分波方法として誘電体多層膜フィルターを証する方法もあるが、光送受信モジュール110においてはDOEレンズ114を使用しているので、LD10aとPD10bとを1つのパッケージ内に配置でき、1枚のDOEレンズ114で光の送受信結合ができるため、安価で小形に構成することができる。
例えばDOEレンズ114の材料としてSi(屈折率 3.45)を用い、回折格子114bを7段の段数で形成し、回折格子114bの鋸歯の高さを2.6μmと設定した場合、波長1.3μmの光の0次回折光、つまり透過光の回折効率は100%近くになり、波長1.55μmの光に対する1次回折光の回折効率は90%と非常に高い回折効率を得ることができる。
DOEレンズ114を使用する場合にLD10aから出射された信号光L1が光ファイバ118に結合する結合効率、あるいは光ファイバ118からの受信光L2がPD10bと結合する結合効率は、レンズによる結合効率と回折効率との積になる。
回折効率は回折格子のピッチが小さくなると低下し、波長が1.55μmの光の場合には設計上の要請から、回折格子114bのピッチを最小値として20μmとするのが1つの限界値である。
回折格子114bのピッチを20μmしたとき、波長が1.55μmの光の回折角は、sin−1(1.55/20)=4.4°となる。光素子10の受光面と回折格子114bとの距離を1mmと設定すると、LD10aとPD10bとの間隔は77μmと非常に近接した状態になる。
従来の構成ではLDとPDとの間隔は77μmと非常に近接した状態になると電気的なクロストークが発生し、このクロストークを除去するためにLDとPDとの間隔を規定する回折角を大きくすると回折効率が低下することになったが、この実施の形態の光送受信モジュール110においては、LD10aとPD10bとを近接させても電気的なクロストークを除去できる光素子を使用しているので、結合効率の高い双方向光送信用の光送受信モジュールを構成することができる。
また、結合効率が高い光学系を用いることができ、光学設計の自由度も高くすることができる。
変形例2
図12はこの発明の一実施の形態の変形例に係る光送受信装置の断面模式図である。
図12に示された光送受信モジュール130の基本構成は、光送受信モジュール110の構成と同じであるが、光送受信モジュール130が光送受信モジュール110と異なる点は、光送受信モジュール110においては光素子10が使用されているのに対して、光送受信モジュール130においては光素子70が使用されていることである。
このように光素子70は2つのPD10bによって2つの受信光L2、L3を受信することができる。従って光ファイバ118により2種類の異なる波長の信号光L2、L3が伝播される場合に、この異なる2種類の信号光L2、L3を同時に受信することができる。
例えば、光ファイバ118により波長1.5μmの光L2と波長1.6μmL3とが送られてきたときに、これらの光は回折格子114bにより回折されるが、波長により回折角が異なるために、これらの光は異なる位置に焦点を結ぶ。
そして、光素子70においては、2つのPD10bから取り出される電気信号による電界がそれぞれのPD10bの内部に閉じ込められて外部に漏れることはないので、この受信光L2、L3に対応した2つの電気信号の間でのクロストークを除去することができ、近接する2つのPD10bでRF信号をクロストークなしに受信することができる。
以上のようにこの実施の形態の光送受信モジュールにおいては、実施の形態1に記載した光素子10を使用することにより、面発光レーザとフォトダイオードとの間の間隔、またフォトダイオードが複数配設された場合においては、フォトダイオード間の間隔、を狭くしてもクロストークがない1チップタイプの光素子を使用しているので、受信光の回折光における回折角を小さくすることができる。このために、高い回折効率を得ることができると共に結合効率の高い双方向光送信用の光送受信モジュールを構成することができる。また光学設計の自由度も高くすることができる。
延いては、安価で、効率の高い双方向の光送受信装置を提供することができる。
なお、光送受信モジュール130ではPD10bが2つのものについて説明したが、この構成に限るものではなく、実施の形態1の変形例1に示したように多様な構成を有する光素子を適用することができる。
以上のように、この発明に係る光素子およびこの光素子を有する光送受信装置は、光通信などにおける安価で光ファイバとの接続が簡単な双方向の光送受信装置に適している。
この発明の一実施の形態に係る光素子の平面図である。 図1の光素子のII−II断面における断面図である。 図1の光素子のIII−III断面における断面図である。 この発明の一実施の形態に係る光素子の実装状態を示す断面模式図である。 この発明の一実施の形態の変形例に係る光素子の平面図である。 図5の光素子のVI−VI断面における断面図である。 この発明の一実施の形態に係る光素子の平面図 図7の光素子のVIII−VIII断面における断面図である。 図7の光素子のIX−IX断面における断面図である。 この発明の一実施の形態に係る光素子の実装状態を示す一部透過斜視図である。 この発明の一実施の形態に係る光送受信装置の断面模式図である。 この発明の一実施の形態の変形例に係る光送受信装置の断面模式図である。
符号の説明
30 Fe−InP基板、 12 トレンチ、 34 コンタクト層、 36 n−クラッド層、 38 活性層、 40 p−クラッド層、 14 LDp側電極、 16 LDn側電極、 10a LD、 44 コンタクト層、 46 n−クラッド層、 48 光吸収層、 50 p−クラッド層、 18 PDp側電極、 20 PDn側電極、 10b PD、 22 SiN膜、 24 金属膜、 32 DBR層、 62 回路パターン、 60 信号供給用基板、 64 半田パッド、 79a,79b 共振器端面、 104 反射鏡、 114a レンズ面、 114b 回折格子114b、 114 DOEレンズ、 118 光ファイバ。

Claims (7)

  1. 実質的に透明な半絶縁性基板と、
    この半絶縁性基板の表面を第1と第2の部分に区分する溝状の一つの凹部と、
    この凹部により区分された第1の部分の半絶縁性基板の表面上に配設された第1導電型の第1の半導体層、この第1の半導体層の上に選択的に配設された第1導電型の第1のクラッド層、この第1のクラッド層の上に配設された量子井戸構造の活性層、この活性層の上に配設された第2導電型の第2のクラッド層、この第2のクラッド層の上に配設された第2電極、及び上記第1の半導体層の上に選択的に配設された第1電極を有する発光素子と、
    上記凹部により区分された第2の部分の半絶縁性基板の表面上に配設された第1導電型の第2の半導体層、この第2の半導体層の上に選択的に配設された第1導電型の第3のクラッド層、この第3のクラッド層の上に配設された光吸収層、この光吸収層の上に配設された第2導電型の第4のクラッド層、この第4のクラッド層の上に配設された第4電極、及び上記第2の半導体層の上に選択的に配設された第3電極を有する受光素子と、
    上記第1電極、第2電極、第3電極、および第4電極の表面上を除き半絶縁性半導体基板上に配設された絶縁膜と、
    この絶縁膜上に配設され上記第1電極、第2電極、第3電極、および第4電極と分離された金属膜と、
    を備えた光素子。
  2. 半絶縁性基板の第2の部分をさらに選択的に区分する溝状の一つまたは複数の凹部と、
    この凹部により区分された一つまたは複数の部分であって、受光素子が配設されていない半絶縁性基板上に、第1導電型の第2の半導体層、この第2の半導体層の上に選択的に配設された第1導電型の第3のクラッド層、この第3のクラッド層の上に配設された光吸収層、この光吸収層の上に配設された第2導電型の第4のクラッド層、この第4のクラッド層の上に配設された第4電極、及び上記第2の半導体層の上に選択的に配設された第3電極を有する受光素子がさらに配設されたことを特徴とする請求項1記載の光素子。
  3. 発光素子の第2電極が金属膜で構成されるとともに、この第2電極の裏面と互いに対向する多層膜反射鏡が第1の半導体層と半絶縁性基板との間にさらに配設されたことを特徴とする請求項1または2に記載の光素子。
  4. 表面に回路パターンを有した実装基板をさらに備えるとともに、実装基板の回路パターンに半田を介して第1電極、第2電極、第3電極、および第4電極が配設されたことを特徴とする請求項3記載の光素子。
  5. 発光素子の第1の半導体層、第1のクラッド層、活性層、および第2のクラッド層の共通端面であって互いに対向する2つの共通端面が共振器端面として構成されたことを特徴とする請求項1または2に記載の光素子。
  6. 表面に回路パターンを有しこの回路パターンに半田を介して第1電極、第2電極、第3電極、および第4電極が配設された実装基板と、共振器端面の一方に前置され共振器端面からの出射光を実質直角に曲げる光学部品とをさらに備えたことを特徴とする請求項5記載の光素子。
  7. 所定の曲率の曲面部分とこの曲面と互いに対向して配設された波長分離回折格子とを有するレンズと、
    このレンズの曲面部分に対向し上記レンズの光軸上に配設された光ファイバと、
    上記レンズの波長分離回折格子に対向し、上記レンズの光軸と発光素子の光軸とが合わせられた請求項4または6に記載の光素子と、を備えた光送受信装置。
JP2004197932A 2004-07-05 2004-07-05 光素子とこの光素子を有する光送受信装置 Pending JP2006019624A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004197932A JP2006019624A (ja) 2004-07-05 2004-07-05 光素子とこの光素子を有する光送受信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004197932A JP2006019624A (ja) 2004-07-05 2004-07-05 光素子とこの光素子を有する光送受信装置

Publications (1)

Publication Number Publication Date
JP2006019624A true JP2006019624A (ja) 2006-01-19

Family

ID=35793578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004197932A Pending JP2006019624A (ja) 2004-07-05 2004-07-05 光素子とこの光素子を有する光送受信装置

Country Status (1)

Country Link
JP (1) JP2006019624A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100882720B1 (ko) 2007-08-30 2009-02-06 주식회사 동부하이텍 이미지 센서 및 그 제조방법
JP2009231804A (ja) * 2008-02-29 2009-10-08 Kyocera Corp 受発光一体型素子アレイおよびセンサ装置
US7626321B1 (en) 2008-06-03 2009-12-01 Tech Patent Licensing, Llc Spring coil shunt for light string socket
WO2013176201A1 (ja) * 2012-05-25 2013-11-28 株式会社村田製作所 垂直共振面発光レーザ
EP3731354A4 (en) * 2017-12-22 2021-05-26 Sony Corporation LIGHT EMITTING ELEMENT
CN115088150A (zh) * 2020-02-19 2022-09-20 索尼半导体解决方案公司 发光装置及其制造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100882720B1 (ko) 2007-08-30 2009-02-06 주식회사 동부하이텍 이미지 센서 및 그 제조방법
JP2009231804A (ja) * 2008-02-29 2009-10-08 Kyocera Corp 受発光一体型素子アレイおよびセンサ装置
US7626321B1 (en) 2008-06-03 2009-12-01 Tech Patent Licensing, Llc Spring coil shunt for light string socket
WO2013176201A1 (ja) * 2012-05-25 2013-11-28 株式会社村田製作所 垂直共振面発光レーザ
EP3731354A4 (en) * 2017-12-22 2021-05-26 Sony Corporation LIGHT EMITTING ELEMENT
CN115088150A (zh) * 2020-02-19 2022-09-20 索尼半导体解决方案公司 发光装置及其制造方法

Similar Documents

Publication Publication Date Title
CN109075532B (zh) 高速vcsel装置
JP5466712B2 (ja) 表面出射型レーザ
KR100244821B1 (ko) 발광소자와 외부변조기의 집적소자
JPH0738205A (ja) 面発光レーザダイオードアレイ及びその駆動方法,光検出素子,光検出素子アレイ,空間光接続システム,並びに波長多重光通信システム
US20130322478A1 (en) Semiconductor Laser Device
JP2008277445A (ja) 半導体レーザおよび光モジュール
KR20000064552A (ko) 직렬 및 병렬 광학 링크용 vcsel식 다중 파장 송신기 및수신기 모듈
US9778428B2 (en) Semiconductor optical device, arrayed semiconductor optical device, and optical module
US20100142885A1 (en) Optical module
JP2012151157A (ja) 水平共振器垂直出射レーザとその製造方法及び受光素子、並びに水平共振器垂直出射レーザアレイ
WO2016129664A1 (ja) 半導体レーザ装置
JP6247944B2 (ja) 水平共振器面出射型レーザ素子
US10700494B2 (en) Data center transmission systems
US10811844B2 (en) External cavity laser using vertical-cavity surface-emitting laser and silicon optical element
JP2006019624A (ja) 光素子とこの光素子を有する光送受信装置
JP2010003883A (ja) 半導体レーザ素子、光モジュールおよび光トランシーバ
WO2019111675A1 (ja) 波長可変レーザ装置
JP3576764B2 (ja) グレーティング結合型面発光装置
CN114924362A (zh) 一种收发双向集成芯片及其在光双向收发组件中的应用
JP2010147149A (ja) 光モジュール及び半導体発光素子
JP2018026468A (ja) 半導体光素子、光モジュール及び半導体光素子の製造方法
CN111817133A (zh) 光学半导体装置、光学子组件和光学模块
GB2353898A (en) A semiconductor laser amplifier using waveguides
JP3331828B2 (ja) 光送受信モジュ−ル
CN218070543U (zh) 一种半导体激光器及其应用的10g pon olt、otdr检测光模块和大容量数据通信光模块