WO2013176201A1 - 垂直共振面発光レーザ - Google Patents

垂直共振面発光レーザ Download PDF

Info

Publication number
WO2013176201A1
WO2013176201A1 PCT/JP2013/064301 JP2013064301W WO2013176201A1 WO 2013176201 A1 WO2013176201 A1 WO 2013176201A1 JP 2013064301 W JP2013064301 W JP 2013064301W WO 2013176201 A1 WO2013176201 A1 WO 2013176201A1
Authority
WO
WIPO (PCT)
Prior art keywords
vertical cavity
cavity surface
base substrate
light emitting
layer
Prior art date
Application number
PCT/JP2013/064301
Other languages
English (en)
French (fr)
Inventor
岩田圭司
松原一平
粉奈孝行
渡邊博
柳ヶ瀬雅司
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2014516841A priority Critical patent/JPWO2013176201A1/ja
Publication of WO2013176201A1 publication Critical patent/WO2013176201A1/ja
Priority to US14/537,995 priority patent/US20150063393A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/02345Wire-bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18311Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement using selective oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/17Semiconductor lasers comprising special layers
    • H01S2301/176Specific passivation layers on surfaces other than the emission facet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0208Semi-insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • H01S5/04257Electrodes, e.g. characterised by the structure characterised by the configuration having positive and negative electrodes on the same side of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • H01S5/3432Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs the whole junction comprising only (AI)GaAs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • H01S5/423Arrays of surface emitting lasers having a vertical cavity

Definitions

  • the present invention relates to a vertical cavity surface emitting laser including a plurality of vertical cavity surface emitting lasers.
  • VCSEL Vertical Cavity Surface Emitting LASER
  • a schematic structure of a vertical cavity surface emitting laser includes, for example, a first DBR (multilayer distributed Bragg reflector) layer formed on an upper layer of a base substrate made of an N-type semiconductor having a cathode electrode formed on the back surface, as shown in Patent Document 1, for example. Is formed.
  • a first spacer layer is formed above the first DBR (multilayer distributed Bragg reflector) layer.
  • An active layer including a quantum well is formed on the first spacer layer.
  • a second spacer layer is formed on the active layer.
  • a second DBR layer is formed on the second spacer layer.
  • An anode electrode is formed on the second DBR layer. Then, by applying a drive signal between the anode electrode and the cathode electrode, laser light having sharp directivity is generated in a direction perpendicular to the substrate (parallel to the stacking direction).
  • each vertical cavity surface emitting laser having the above-described structure is mounted on another circuit board and a base substrate are shared.
  • each vertical resonance surface When a single base substrate is used, as described above, when the base substrate is an N-type semiconductor substrate and a cathode electrode is formed on the surface opposite to the active layer across the base substrate, each vertical resonance surface Each drive signal applied to the light emitting laser leaks into the N-type semiconductor substrate, crosstalk occurs between the drive signals, and sufficient isolation cannot be obtained between the vertical cavity surface emitting lasers.
  • An object of the present invention is to realize a vertical cavity surface emitting laser capable of ensuring isolation between vertical cavity surface emitting lasers while forming a plurality of vertical cavity surface emitting lasers on a single base substrate.
  • a vertical cavity surface emitting laser includes a base substrate, an N-type semiconductor multilayer reflective layer formed on the surface of the base substrate, an active layer having a quantum well, and a light emitting region multilayer including a P-type semiconductor multilayer reflective layer And an anode electrode connected to the P-type semiconductor multilayer reflective layer, and a cathode electrode connected to the N-type semiconductor multilayer reflective layer.
  • the base substrate is made of a semi-insulating semiconductor with a predetermined thickness at least on the side of the light emitting region multilayer part.
  • the cathode electrode is formed on the surface side of the base substrate.
  • a plurality of sets of light emitting element constituent elements including a light emitting region multilayer part, an anode electrode, and a cathode electrode are formed on the base substrate.
  • the plurality of light emitting element components are individually separated, and each light emitting element component is driven independently.
  • the base substrate is a semi-insulating semiconductor, and each light emitting element component is individually separated and driven independently. As a result, even if a plurality of light emitting element components are formed on a single base substrate, the light emitting element components are electrically separated, and crosstalk of the drive signals does not occur.
  • the vertical cavity surface emitting laser of the present invention has a gap between a plurality of light emitting element components, and the gap is formed to be recessed from the surface of the base substrate to the inside of the base substrate. It is preferable.
  • each light emitting element component is more reliably electrically separated.
  • the vertical cavity surface emitting laser of the present invention preferably has the following configuration.
  • the anode pad electrode connected to the anode electrode and the cathode pad electrode connected to the cathode electrode are provided for each light emitting element component divided by the gap.
  • the anode pad electrode and the cathode pad electrode are formed on the surface of the insulating layer disposed in a region different from the light emitting region multilayer portion, the anode electrode and the cathode electrode on the surface of the base substrate.
  • each light emitting element component is more reliably electrically separated.
  • the vertical cavity surface emitting laser of the present invention preferably has the following configuration. Adjacent light emitting element components are arranged on the surface side of the base substrate so that the anode pad electrodes are adjacent to each other or the cathode electrode pads are adjacent to each other.
  • the vertical cavity surface emitting laser of the present invention preferably has the following configuration.
  • Two cathode pad electrodes are provided.
  • the two cathode pad electrodes are arranged on the surface of the insulating layer so as to sandwich the anode pad electrode.
  • the cathode pad electrode is necessarily adjacent to the adjacent light emitting element component.
  • the insulating film is formed in a shape excluding at least a part of the anode pad electrode and the cathode pad electrode.
  • each light emitting element component is more reliably electrically separated by the insulating film.
  • the gap portion has a tapered shape in which the width between adjacent light emitting element constituent elements becomes narrower from the anode electrode side toward the base substrate side.
  • This configuration shows the specific shape of the gap. With such a configuration, it is easy to form a gap. In addition, when an insulating film is formed, the insulating film is easily formed.
  • the resistivity of the semi-insulating semiconductor of the base substrate is preferably 1.0 ⁇ 10 7 ⁇ ⁇ cm or more.
  • the distance between adjacent electrodes of adjacent light emitting element constituent elements is 0.5 ⁇ m or more.
  • each light emitting element component is more reliably electrically separated.
  • the vertical cavity surface emitting laser of the present invention may have the following configuration.
  • the base substrate is a semi-insulating semiconductor having a predetermined thickness from the surface on the light emitting element component side.
  • An N-type semiconductor substrate is disposed on the side opposite to the light-emitting element component of the semi-insulating semiconductor.
  • the present invention it is possible to ensure isolation between the vertical cavity surface emitting lasers while forming a plurality of vertical cavity surface emitting lasers on a single base substrate.
  • FIG. 1 is a partial plan view of a vertical cavity surface emitting laser 1 according to a first embodiment of the present invention.
  • 1 is a cross-sectional view of an A-A ′ plane of one vertical cavity surface emitting laser 10 constituting the vertical cavity surface emitting laser 1 according to the first embodiment of the present invention.
  • FIG. 1 is a B-B ′ plane cross-sectional view of a vertical cavity surface emitting laser 1 according to a first embodiment of the present invention. It is sectional drawing of the area
  • FIG. 1 is a partial plan view of a vertical cavity surface emitting laser 1 according to a first embodiment of the present invention.
  • FIG. 2 is an A-A ′ plane cross-sectional view of one vertical cavity surface emitting laser 10 constituting the vertical cavity surface emitting laser 1 according to the first embodiment of the present invention.
  • FIG. 3 is a B-B ′ plane cross-sectional view of the vertical cavity surface emitting laser 1 according to the first embodiment of the present invention.
  • 1 and 3 show only two vertical cavity surface emitting lasers 10A and 10B, the number of the vertical cavity surface emitting lasers constituting the VCSEL 1 is not limited to this.
  • VCSEL 1 includes a plurality of vertical cavity surface emitting lasers. That is, they are arrayed and the plurality of vertical cavity surface emitting lasers are driven independently.
  • the plurality of vertical cavity surface emitting lasers 10 ⁇ / b> A and 10 ⁇ / b> B are respectively formed on the surface of a single base substrate 11.
  • the base substrate 11 is made of a semi-insulating semiconductor, specifically, a substrate made of GaAs.
  • the base substrate 11 preferably has a resistivity of 1.0 ⁇ 10 7 ⁇ ⁇ cm or more.
  • the N-type semiconductor contact layer 21 is laminated on the surface of the base substrate 11.
  • the N-type semiconductor contact layer 21 is made of a compound semiconductor having N-type conductivity.
  • an N-type DBR (multilayer distributed Bragg reflector) layer 22 is laminated on the surface of the N-type semiconductor contact layer 21, an N-type DBR (multilayer distributed Bragg reflector) layer 22 is laminated.
  • the N-type semiconductor DBR (multilayer distributed Bragg reflector) layer 22 is made of an AlGaAs material and is formed by laminating a plurality of layers having different composition ratios of Al to Ga. A first reflector for generating laser light having a predetermined frequency is formed by such a layer structure.
  • the N-type semiconductor DBR layer may also serve as the N-type semiconductor contact layer. That is, the N-type semiconductor contact layer is not essential.
  • an N-type semiconductor clad layer 31 is laminated for each of the vertical cavity surface emitting lasers 10A and 10B.
  • the N-type semiconductor cladding layers 31 of the vertical cavity surface emitting lasers 10A and 10B are formed on the surface of the N-type semiconductor DBR layer 22 with a predetermined distance therebetween.
  • the N-type semiconductor clad layer 31 is also made of an AlGaAs material.
  • the active layer 40 is formed on the surface of each N-type semiconductor clad layer 31.
  • the active layer 40 is made of a GaAs material and an AlGaAs material.
  • the AlGaAs layer is used as an optical confinement layer having a high band gap, and the GaAs layer is formed so as to be sandwiched therebetween.
  • the active layer 40 is a layer having a single or a plurality of quantum wells sandwiched between optical confinement layers having a high band gap.
  • a P-type semiconductor clad layer 32 is formed on the surface of each active layer 40.
  • the P-type semiconductor clad layer 32 is also made of an AlGaAs material.
  • a P-type semiconductor DBR layer 23 is formed on the surface of the P-type semiconductor clad layer 32.
  • the P-type semiconductor DBR layer 23 is made of an AlGaAs material, and is formed by laminating a plurality of layers having different composition ratios of Al to Ga.
  • a second reflector for generating laser light having a predetermined frequency is formed by such a layer structure.
  • the P-type semiconductor DBR layer 23 is formed so that the reflectance is slightly lower than that of the N-type semiconductor DBR layer 31.
  • the semiconductor clad layer is provided so as to sandwich the active layer, but the present invention is not limited to this configuration.
  • a layer having such a thickness as to generate resonance may be provided in the active layer.
  • An oxide constriction layer 50 is formed on the boundary surface between the P-type semiconductor clad layer 32 and the P-type semiconductor DBR layer 23.
  • the oxidized constricting layer 50 is made of an AlGaAs material, and the composition ratio of Al to Ga is set higher than those of the other layers.
  • the oxidized constricting layer 50 is not formed on the entire boundary surface between the P-type semiconductor clad layer 32, the P-type semiconductor DBR layer 23, and a non-formed portion with a predetermined area exists in the approximate center of the formation region.
  • a P-type semiconductor contact layer 24 is laminated on the surface of the P-type semiconductor DBR layer 23.
  • the P-type semiconductor contact layer 24 is made of a compound semiconductor having P-type conductivity. Note that the P-type semiconductor DBR layer may also serve as the P-type semiconductor contact layer. That is, the P-type semiconductor contact layer is not essential.
  • N-type semiconductor contact layer 21, N-type semiconductor DBR layer 22, N-type semiconductor clad layer 31, active layer 40, P-type semiconductor clad layer 32, P-type semiconductor DBR layer 23, and P-type semiconductor contact layer 24 The “light emitting region multilayer portion” of the invention is constituted.
  • each layer and the composition ratio of Al to Ga are set so that a plurality of quantum wells having one emission spectrum peak wavelength are arranged at the antinode position of the center of the optical standing wave distribution.
  • each light emitting region multilayer part functions as a light emitting part of the vertical cavity surface emitting laser.
  • current can be efficiently injected into the active region and a lens effect can be obtained, so that a low power consumption vertical cavity surface emitting laser can be realized.
  • anode electrodes 921 921A, 921B are formed on the surface of the P-type contact layer 24, anode electrodes 921 (921A, 921B) are formed.
  • the anode electrode 921 (921A, 921B) is an annular electrode in plan view as shown in FIG.
  • the anode electrode does not necessarily have to be annular, and may be, for example, a C-shape or a rectangular shape with a part of the annular opening.
  • a region where the N-type semiconductor DBR layer 22 is not formed is provided for each of the vertical cavity surface emitting lasers 10A and 10B. These regions are formed in the vicinity of the region where the N-type semiconductor clad layer 31 in the N-type semiconductor DBR layer 22 is formed.
  • cathode electrodes 911 (911A, 911B) are formed for each of the vertical cavity surface emitting lasers 10A, 10B.
  • the cathode electrodes 911 (911A, 911B) are formed so as to be electrically connected to the N-type semiconductor contact layer 21.
  • the cathode electrodes 911 (911A, 911B) are arc-shaped electrodes as viewed in plan as shown in FIG.
  • the surface side of the base substrate 11 does not cover at least a part of the cathode electrode 911 (911A, 911B) and the anode electrode 921 (921A, 921B), and each component constituting the other light emitting region multilayer portion
  • An insulating film 60 is formed so as to cover the outer surface.
  • the insulating film 60 is formed using, for example, silicon nitride (SiNx) as a material.
  • An insulating layer 70 is laminated on the surface of the insulating film 60 in the vicinity of the region where the N-type semiconductor clad layer 31 is formed in the N-type semiconductor DBR layer 22.
  • the insulating layer 70 is made of, for example, polyimide.
  • a cathode pad electrode 912 (912A, 912B) and an anode pad electrode 922 (922A, 922B) are formed apart from each other.
  • the insulating layer 70A is formed near the light emitting region multilayer portion of the vertical cavity surface emitting laser 10A.
  • a cathode pad electrode 912A and an anode pad electrode 922A are formed apart from each other.
  • the insulating layer 70B is formed near the light emitting region multilayer portion of the vertical cavity surface emitting laser 10B.
  • a cathode pad electrode 912B and an anode pad electrode 922B are formed apart from each other.
  • the cathode pad electrode 912A is connected to the cathode electrode 911A via the cathode wiring electrode 913A.
  • the cathode pad electrode 912B is connected to the cathode electrode 911B via the cathode wiring electrode 913B.
  • the anode pad electrode 922A is connected to the anode electrode 921A via the anode wiring electrode 923A.
  • the anode pad electrode 922B is connected to the anode electrode 921B via the anode wiring electrode 923B.
  • the insulating film 60, the N-type semiconductor DBR layer 22, and the N-type semiconductor contact layer 21 are penetrated in the stacking direction, and the surface of the base substrate 11 is A groove 80 is formed in a shape that is recessed at a predetermined depth.
  • the groove 80 has a light emitting region multilayer part constituting the vertical cavity surface emitting lasers 10A and 10B and an electrode forming an anode and a cathode connected to the light emitting area multilayer part for each of the vertical cavity surface emitting lasers 10A and 10B. It is formed in a shape that separates into two.
  • the groove 80 and the light emitting region multilayer part constituting each vertical cavity surface emitting laser 10A, 10B and the space in which the anode and the cathode are separated from each other by a predetermined distance constitute the “gap part” of the present invention.
  • the vertical cavity surface emitting lasers 10A and 10B are individually separated. That is, even if a drive signal is applied between the anode and cathode of each of the vertical cavity surface emitting lasers 10A and 10B, the drive signal between the adjacent light emitting region multilayer portions is separated by the gap and the semi-insulating semiconductor base substrate 11. Leakage is suppressed. As a result, even if the VCSEL 1 including a plurality of vertical cavity surface emitting lasers 10A and 10B in an array is formed on a single base substrate 11, the isolation between adjacent vertical cavity surface emitting lasers can be increased. . Therefore, crosstalk due to a drive signal between adjacent vertical cavity surface emitting lasers can be suppressed, and high speed modulation driving of each vertical cavity surface emitting laser can be realized.
  • the structure as the VCSEL array is simplified and the size can be reduced. Furthermore, since high isolation can be ensured between the adjacent vertical cavity surface emitting lasers in this way, the distance between the adjacent vertical cavity surface emitting lasers 10 can be shortened. For example, experimental results conducted by the inventors have shown that the distance between the vertical cavity surface emitting lasers 10 can be reduced to about half compared to the conventional case. Thereby, VCSEL1 can be reduced in size.
  • the insulating layer 70 is provided, and the cathode pad electrode 912 and the anode pad electrode 922 of each vertical cavity surface emitting laser are separated from the N-type semiconductor DBR layer 22 to be adjacent to each other. Higher isolation can be ensured between the resonant surface emitting lasers.
  • the vertical cavity surface emitting laser 1 having such a structure is manufactured, for example, as follows. In the following, an example of forming one vertical cavity surface emitting laser is mainly shown, but a plurality of vertical cavity surface emitting lasers formed on the surface of the base substrate 11 are simultaneously formed in the same process.
  • the N-type semiconductor clad layer 31 is sequentially etched with a predetermined pattern. In this region to be etched, etching is performed up to the surface of the N-type semiconductor DBR layer 22. Thereby, the light emitting region multilayer portions of the vertical cavity surface emitting lasers 10A and 10B excluding the N-type semiconductor contact layer 21 and the N-type semiconductor DBR layer 22 are separated so as to be separated by a predetermined distance.
  • the N-type semiconductor contact layer 21 is exposed by etching a position close to the light emitting region multilayer portion in the region where the surface of the N-type semiconductor DBR layer 22 is exposed.
  • a cathode electrode 911 is formed in a region where the N-type semiconductor contact layer 21 is exposed.
  • an anode electrode 921 is formed on the surface of the P-type contact layer 24 of the light emitting region multilayer part that has not been etched.
  • the insulating film 60 is formed on the surface side of the base substrate 11 except for the surfaces of the cathode electrode 911 and the anode electrode 921.
  • An insulating layer 70 is formed in a region near the light emitting region multilayer portion on the surface of the insulating film 60.
  • a cathode pad electrode 912 and an anode pad electrode 922 are formed on the surface of the insulating layer 70.
  • a cathode wiring electrode 913 that connects the cathode electrode 911 and the cathode pad electrode 912 is formed.
  • An anode wiring electrode 923 that connects the anode electrode 921 and the anode pad electrode 912 is formed.
  • the groove 80 is formed.
  • the VCSEL 1 is formed by such a manufacturing process.
  • the width of the gap formed between the vertical cavity surface emitting lasers by etching is preferably wide on the P-type contact layer 24 side and gradually narrows toward the N-type contact layer 21 side. That is, the gap is preferably tapered.
  • FIG. 4 is a cross-sectional view of a region where a cathode pad electrode and an anode pad electrode are formed in a vertical cavity surface emitting laser 1A according to a second embodiment of the present invention.
  • the VCSEL 1A of the present embodiment is obtained by adding an insulating film 600 to the VCSEL 1 shown in the first embodiment.
  • Other configurations are the same as the VCSEL 1 shown in the first embodiment. Therefore, only different parts will be described.
  • the insulating film 600 is made of silicon nitride or the like, similar to the insulating film 60 shown in the first embodiment, and has a shape that covers the surface of the base substrate 11 on the light emitting region multilayer side side, including the inner surface of the groove 80. However, the insulating layer 600 is not formed on the surfaces of the cathode pad electrode and the anode pad electrode in a range that can be connected to an external element by wire bonding or the like.
  • the surfaces of the N-type semiconductor contact layer 21 and the N-type semiconductor DBR layer 22 that face each other via the groove 80 are also covered with the insulating layer 600.
  • the isolation between the vertical cavity surface emitting lasers 10 ⁇ / b> A ⁇ b> 1 and 10 ⁇ / b> B ⁇ b> 1 adjacent to each other through the groove 80 can be further ensured.
  • FIG. 5 is a partial plan view of a vertical cavity surface emitting laser 1B according to the third embodiment of the present invention.
  • the VCSEL 1B of the present embodiment differs from the VCSEL 1 shown in the first embodiment in the arrangement pattern of the cathode pad electrodes and the anode pad electrodes of the vertical cavity surface emitting lasers 10A2 and 10B2.
  • Other configurations are the same as the VCSEL 1 shown in the first embodiment. Therefore, only different parts will be described.
  • the VCSEL 1B is arranged so that the same-polarity pad electrodes are adjacent to each other between the vertical cavity surface emitting lasers 10A2 and 10B2 that are parallel to the arrangement direction of the cathode pad electrode and the anode pad electrode and are adjacent to each other via the groove 80. ing.
  • the anode pad electrode 922A of the vertical cavity surface emitting laser 10A2 and the anode pad electrode 922B of the vertical cavity surface emitting laser 10B2 are arranged adjacent to each other. .
  • the vertical cavity surface emitting laser disposed on the opposite side of the vertical cavity surface emitting laser 10B2 in the vertical cavity surface emitting laser 10A2 has a cathode pad electrode adjacent to the vertical cavity surface emitting laser 10A2. Is arranged.
  • the vertical cavity surface emitting laser 10B2 disposed on the opposite side of the vertical cavity surface emitting laser 10B2 has a cathode pad electrode adjacent to the vertical cavity surface emitting laser 10B2.
  • FIG. 6 is a partial plan view of a vertical cavity surface emitting laser 1C according to the fourth embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of a region where a cathode pad electrode and an anode pad electrode are formed in a vertical cavity surface emitting laser according to the fourth embodiment of the present invention.
  • the VCSEL 1C of this embodiment is different from the VCSEL 1 shown in the first embodiment in that two cathode pad electrodes of the vertical cavity surface emitting lasers 10A3 and 10B3 are provided. Other configurations are the same as the VCSEL 1 shown in the first embodiment. Therefore, only different parts will be described.
  • the vertical cavity surface emitting laser 10A3 has two cathode pad electrodes 912A1 and 912A2.
  • the cathode pad electrodes 912A1 and 912A2 are connected to the cathode electrode 911A via the cathode wiring electrodes 913A1 and 913A2, respectively.
  • the cathode pad electrodes 912A1 and 912A2 are arranged on the surface of the insulating layer 70 so as to sandwich the anode pad electrode 922A in parallel with the direction in which the vertical cavity surface emitting lasers are arranged.
  • the vertical cavity surface emitting laser 10B3 is formed with two cathode pad electrodes 912B1 and 912B2.
  • the cathode pad electrodes 912B1 and 912B2 are connected to the cathode electrode 911B via the cathode wiring electrodes 913B1 and 913B2, respectively.
  • the cathode pad electrodes 912B1 and 912B2 are arranged on the surface of the insulating layer 70 so as to sandwich the anode pad electrode 922B in parallel with the direction in which the vertical cavity surface emitting lasers are arranged.
  • the adjacent vertical cavity surface emitting lasers 10A3 and 10B3 are arranged so that the cathode electrodes of the same polarity are adjacent to each other. Thereby, similarly to the third embodiment, it is possible to further suppress the crosstalk due to the drive signal for each vertical cavity surface emitting laser.
  • FIG. 8 is a cross-sectional view of a region where a cathode pad electrode and an anode pad electrode are formed in a vertical cavity surface emitting laser according to the fifth embodiment of the present invention.
  • the VCSEL 1D of the present embodiment is different in the structure of the base substrate 11D from the VCSEL 1 shown in the first embodiment.
  • Other configurations are the same as the VCSEL 1 shown in the first embodiment. Therefore, only different parts will be described.
  • the base substrate 11D includes a semi-insulating semiconductor layer 111 and a conductive semiconductor layer 112 made of an N-type semiconductor.
  • a region having a predetermined thickness on the surface side where the light emitting region multilayer portion of the base substrate 11D is formed is formed of a semi-insulating semiconductor layer 111.
  • the conductive semiconductor layer 112 is formed on the surface opposite to the surface where the light emitting region multilayer portion is formed with respect to the semi-insulating semiconductor layer 111.
  • the semi-insulating semiconductor 111 is thinner than the conductive semiconductor layer 112.
  • the groove 80 is formed in a shape that is recessed at a predetermined depth with respect to at least the semi-insulating semiconductor layer 111. Note that the groove 80 may have a depth related to the conductive semiconductor layer 112.
  • the example in which the insulating layer 70 is provided has been described, but it may be omitted.
  • the provision of the insulating layer 70 can suppress parasitic capacitance generated in the cathode pad electrode and the anode pad electrode. Thereby, the occurrence of crosstalk between adjacent vertical cavity surface emitting lasers can be more effectively suppressed.
  • the interval between adjacent anode electrodes and cathode electrodes is 0.5 ⁇ m or more.
  • 1, 1A, 1B, 1C, 1D vertical cavity surface emitting laser, 10, 10A, 10A1, 10A2, 10A3, 10B, 10B1, 10B2, 10B3: vertical cavity surface emitting laser, 11, 11D: base substrate, 21: N-type semiconductor contact layer, 22: N-type DBR (multilayer distributed Bragg reflector) layer, 23: P-type semiconductor DBR layer, 24: P-type contact layer, 31: N-type semiconductor spacer layer, 32: P-type semiconductor spacer layer, 40: active layer, 50: oxidation constriction layer, 60: Insulating film 70: Insulating layer, 80: groove, 111: Semi-insulating semiconductor layer, 112: conductive semiconductor layer, 911, 911A, 911B: cathode electrodes, 921, 921A, 921B: electrode for anode, 912A, 912A1, 912A2, 912B, 912B1, 912B2: cathode pad electrodes, 913A, 913B: cathode wiring electrode, 922

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

垂直共振面発光レーザ(1)は、半絶縁性半導体からなるベース基板(11)と、該ベース基板(11)の表面に順次形成されたN型半導体コンタクト層(21)、N型半導体多層膜反射層(22)、N型半導体クラッド層(31)、量子井戸を備える活性層(40)、P型半導体クラッド層(32)、P型半導体多層膜反射層(23)、P型半導体コンタクト層(24)を含む発光領域多層部と、P型半導体コンタクト層の表面に形成されたアノード用電極と、N型半導体クラッド層に接続するカソード用電極と、を備える。カソード用電極は、ベース基板(11)の発光領域多層部側に形成されている。各垂直共振面発光レーザの間には、N型半導体コンタクト層(21)、N型半導体多層膜反射層(22)を貫通し、ベース基板(11)の表面から内側まで窪む形状の溝(80)が形成されている。

Description

垂直共振面発光レーザ
 本発明は、複数の垂直共振面発光レーザを備えた垂直共振面発光レーザに関する。
 現在、半導体レーザの一種として、垂直共振面発光レーザ(VCSEL(Vertical Cavity Surface Emitting LASER))が実用化されている。
 垂直共振面発光レーザの概略的な構造は、例えば特許文献1に示すように、裏面にカソード電極が形成されたN型半導体からなるベース基板の上層に、第1DBR(多層分布ブラッグ反射器)層が形成されている。第1DBR(多層分布ブラッグ反射器)層の上層には第1スペーサ層が形成されている。第1スペーサ層の上層には、量子井戸を備える活性層が形成されている。活性層の上層には、第2スペーサ層が形成されている。第2スペーサ層の上層には、第2DBR層が形成されている。第2DBR層の上層には、アノード電極が形成されている。そして、アノード電極とカソード電極間に駆動信号を印加することで、基板に垂直な(積層方向に平行な)方向へ鋭い指向性を有するレーザ光が発生する。
 このような垂直共振面発光レーザを複数個備えてアレイ化する場合、例えば、上述の構造からなる個々の垂直共振面発光レーザを、別の回路基板にそれぞれ実装する構造と、ベース基板を共通化する構造とが考えられる。
特表2003-508928号公報
 上述の個別に形成した垂直共振面発光レーザを別の回路基板に実装する場合、構造が大型化してしまう。
 一方、単一のベース基板にした場合、上述のように、ベース基板をN型半導体基板にし、当該ベース基板を挟んで活性層と反対側の面にカソード電極を形成した場合、各垂直共振面発光レーザに与える各駆動信号が、N型半導体基板内に漏洩してしまい、互いの駆動信号間でクロストークが発生し、各垂直共振面発光レーザ間で十分にアイソレーションをとることができない。
 この発明の目的は、単一のベース基板に複数の垂直共振面発光レーザを形成しながら、各垂直共振面発光レーザ間のアイソレーションを確保できる垂直共振面発光レーザを実現することにある。
 この発明の垂直共振面発光レーザは、ベース基板と、該ベース基板の表面に形成されたN型半導体多層膜反射層、量子井戸を備える活性層、P型半導体多層膜反射層を含む発光領域多層部と、P型半導体多層膜反射層に接続されるアノード用電極と、N型半導体多層膜反射層に接続されるカソード用電極と、を備える。ベース基板は、少なくとも発光領域多層部側の所定厚みが半絶縁性半導体からなる。カソード用電極は、ベース基板の表面側に形成されている。発光領域多層部、アノード用電極、カソード用電極からなる発光素子構成要素の組は、ベース基板に複数形成されている。そして、該複数の発光素子構成要素は個別に分離されており、各発光素子構成要素はそれぞれ独立に駆動される。
 この構成では、ベース基板が半絶縁性半導体であり、各発光素子構成要素は個別に分離されており、それぞれ独立に駆動される。これにより、単一のベース基板に複数の発光素子構成要素が形成されていても、各発光素子構成要素は電気的に分離され、互いの駆動信号のクロストークが発生しない。
 また、この発明の垂直共振面発光レーザは、複数の発光素子構成要素の間に空隙部を有しており、該空隙部は、ベース基板の表面から該ベース基板の内側まで窪む形状からなることが好ましい。
 この構成では、各発光素子構成要素がより確実に電気的に分離される。
 また、この発明の垂直共振面発光レーザでは、次の構成であることが好ましい。アノード用電極に接続するアノード用パッド電極と、カソード用電極に接続するカソード用パッド電極とは、空隙部によって分割される発光素子構成要素毎に備えられている。アノード用パッド電極とカソード用パッド電極は、ベース基板の表面における発光領域多層部、アノード用電極およびカソード用電極と異なる領域に配設された絶縁層の表面に形成されている。
 この構成では、各発光素子構成要素がより確実に電気的に分離される。
 また、この発明の垂直共振面発光レーザでは、次の構成であることが好ましい。隣り合う発光素子構成要素は、アノード用パッド電極同士が隣り合うか、もしくはカソード用電極パッド同士が隣り合うように、ベース基板の表面側に配置されている。
 この構成では、隣り合う発光素子構成要素において、パッド電極間での電気的な結合を抑制することができる。これにより、各発光素子構成要素がより確実に電気的に分離される。
 また、この発明の垂直共振面発光レーザでは、次の構成であることが好ましい。カソード用パッド電極は、二個備えられている。該二個のカソード用パッド電極は、絶縁層の表面に、アノード用パッド電極を挟むように配置されている。
 この構成では、隣り合う発光素子構成要素において、カソード用パッド電極が必ず隣り合う。これにより、隣り合う発光素子構成要素においてパッド電極間での電気的な結合が抑制され、各発光素子構成要素がより確実に電気的に分離される。
 また、この発明の垂直共振面発光レーザでは、アノード用パッド電極とカソード用パッド電極の少なくとも一部を除く形状で絶縁膜が形成されていることが好ましい。
 この構成では、絶縁膜により、各発光素子構成要素がより確実に電気的に分離される。
 また、この発明の垂直共振面発光レーザでは、空隙部は、アノード用電極側からベース基板側に向かって、隣り合う発光素子構成要素間の幅が狭くなるテーパ形状からなることが好ましい。
 この構成では、空隙部の具体的な形状を示している。このような構成により、空隙部を形成しやすい。また、絶縁膜を形成する場合に、絶縁膜を形成しやすい。
 また、この発明の垂直共振面発光レーザでは、ベース基板の半絶縁性半導体の抵抗率は、1.0×10Ω・cm以上であることが好ましい。
 また、この発明の垂直共振面発光レーザでは、隣り合う発光素子構成要素の近接する電極の間隔が0.5μm以上であることが好ましい。
 これらの構成では、各発光素子構成要素がより確実に電気的に分離される。
 また、この発明の垂直共振面発光レーザでは、次の構成とすることもできる。ベース基板は、発光素子構成要素側の表面から所定厚みが半絶縁性半導体である。半絶縁性半導体の発光素子構成要素と反対側には、N型半導体基板が配置されている。
 この構成では、上述の複数の発光素子構成要素間の電気的分離を実現しながら、ベース基板に起因する結晶欠落による不良の発生を抑制することができる。
 この発明によれば、単一のベース基板に複数の垂直共振面発光レーザを形成しながら、各垂直共振面発光レーザ間のアイソレーションを確保することができる。
本発明の第1の実施形態に係る垂直共振面発光レーザ1の部分平面図である。 本発明の第1の実施形態に係る垂直共振面発光レーザ1を構成する1個の垂直共振面発光レーザ10のA-A’面断面図である。 本発明の第1の実施形態に係る垂直共振面発光レーザ1のB-B’面断面図である。 本発明の第2の実施形態に係る垂直共振面発光レーザ1Aのカソード用パッド電極およびアノード用パッド電極が形成された領域の断面図である。 本発明の第3の実施形態に係る垂直共振面発光レーザ1Bの部分平面図である。 本発明の第4の実施形態に係る垂直共振面発光レーザ1Bの部分平面図である。 本発明の第4の実施形態に係る垂直共振面発光レーザのカソード用パッド電極およびアノード用パッド電極が形成された領域の断面図である。 本発明の第5の実施形態に係る垂直共振面発光レーザのカソード用パッド電極およびアノード用パッド電極が形成された領域の断面図である。
 本発明の第1の実施形態に係る垂直共振面発光レーザ(VCSEL)について、図を参照して説明する。以下では、垂直共振面発光レーザをVCSELと称する。図1は本発明の第1の実施形態に係る垂直共振面発光レーザ1の部分平面図である。図2は本発明の第1の実施形態に係る垂直共振面発光レーザ1を構成する1個の垂直共振面発光レーザ10のA-A’面断面図である。図3は本発明の第1の実施形態に係る垂直共振面発光レーザ1のB-B’面断面図である。なお、図1、図3では、2個の垂直共振面発光レーザ10A,10Bのみが記載されているが、VCSEL1を構成する垂直共振面発光レーザの個数はこれに限るものではない。
 VCSEL1は、複数の垂直共振面発光レーザを備えている。すなわち、アレイ化されており、複数の垂直共振面発光レーザはそれぞれ独立に駆動する。複数の垂直共振面発光レーザ10A,10Bは、単一のベース基板11の表面にそれぞれ形成されている。
 ベース基板11は、半絶縁性半導体からなり、具体的には、GaAsを材料とする基板からなる。ベース基板11は、抵抗率が1.0×10Ω・cm以上であることが好ましい。このような抵抗率の半絶縁性半導体からなるベース基板11を用いることにより、後述する垂直共振面発光レーザ10A,10B間のアイソレーションをより高く確保することができる。
 ベース基板11の表面には、N型半導体コンタクト層21が積層形成されている。N型半導体コンタクト層21は、N型導電性を有する化合物半導体からなる。
 N型半導体コンタクト層21の表面には、N型DBR(多層分布ブラッグ反射器)層22が積層形成されている。N型半導体DBR(多層分布ブラッグ反射器)層22は、AlGaAs材料からなり、Gaに対するAlの組成比率が異なる層を複数層積層してなる。このような層構成により所定周波数のレーザ光を発生するための第1の反射器を形成する。なお、N型半導体DBR層は、N型半導体コンタクト層を兼ねていてもよい。すなわち、N型半導体コンタクト層は必須ではない。
 N型半導体DBR層22の表面には、垂直共振面発光レーザ10A,10B毎に、N型半導体クラッド層31が積層形成されている。各垂直共振面発光レーザ10A,10BのN型半導体クラッド層31は、N型半導体DBR層22の表面において、所定距離を離間して形成されている。N型半導体クラッド層31もAlGaAs材料からなる。
 各N型半導体クラッド層31の表面には、活性層40が形成されている。活性層40は、GaAs材料とAlGaAs材料からなる。AlGaAs層をバンドギャップの高い光閉じ込め層とし、その間に挟まれるようにGaAs層を形成する。このような構成により、活性層40には、バンドギャップの高い光閉じ込め層に挟まれた単一もしくは複数の量子井戸を有する層となる。
 各活性層40の表面には、P型半導体クラッド層32が形成されている。P型半導体クラッド層32もAlGaAs材料からなる。
 P型半導体クラッド層32の表面には、P型半導体DBR層23が形成されている。P型半導体DBR層23は、AlGaAs材料からなり、Gaに対するAlの組成比率が異なる層を複数層積層してなる。このような層構成により所定周波数のレーザ光を発生するための第2の反射器を形成する。P型半導体DBR層23は、N型半導体DBR層31に対して反射率が若干低くなるように形成されている。ここでは、活性層を挟むように半導体クラッド層を設けたが、この構成に限るものではない。共振を発生させるような膜厚の層を活性層に設けてもよい。
 P型半導体クラッド層32とP型半導体DBR層23との境界面には、酸化狭窄層50が形成されている。酸化狭窄層50は、AlGaAs材料からなり、Gaに対するAlの組成比率が他の各層よりも高く設定されている。酸化狭窄層50は、P型半導体クラッド層32とP型半導体DBR層23と境界面の全面に形成されているわけでなく、形成領域の略中央に所定の面積で非形成部が存在する。
 P型半導体DBR層23の表面には、P型半導体コンタクト層24が積層形成されている。P型半導体コンタクト層24は、P型導電性を有する化合物半導体からなる。なお、P型半導体DBR層は、P型半導体コンタクト層を兼ねていてもよい。すなわち、P型半導体コンタクト層は必須ではない。
 これら、N型半導体コンタクト層21、N型半導体DBR層22、N型半導体クラッド層31、活性層40、P型半導体クラッド層32、P型半導体DBR層23、P型半導体コンタクト層24によって、本発明の「発光領域多層部」が構成される。
 このような構成において、光定在波分布の中心の腹の位置に1つの発光スペクトルピーク波長を有する、複数の量子井戸が配置されるように、各層の厚み、Gaに対するAlの組成比率を設定する。これにより、各発光領域多層部が垂直共振面発光レーザの発光部として機能する。さらに、上述の酸化狭窄層50を備えることで、電流を活性領域に効率良く注入できるとともに、レンズ効果も得られるため、低消費電力の垂直共振面発光レーザを実現できる。
 P型コンタクト層24の表面には、アノード用電極921(921A,921B)が形成されている。アノード用電極921(921A,921B)は、図1に示すように平面視して環状の電極である。なお、アノード用電極は必ずしも環状である必要はなく、例えば環状の一部が開いたC型の形状や矩形状であってもよい。
 N型半導体コンタクト層21の表面には、垂直共振面発光レーザ10A,10B毎に、N型半導体DBR層22が形成されていない領域が設けられている。これらの領域は、N型半導体DBR層22におけるN型半導体クラッド層31が積層形成される領域の近傍に、形成されている。
 これらの領域には、垂直共振面発光レーザ10A,10B毎にカソード用電極911(911A,911B)が形成されている。カソード用電極911(911A,911B)は、N型半導体コンタクト層21に導通するように形成されている。カソード用電極911(911A,911B)は、図1に示すように平面視して、円弧状の電極である。
 ベース基板11の表面側には、カソード用電極911(911A,911B)、アノード用電極921(921A,921B)の少なくとも一部を被覆せず、他の発光領域多層部を構成する各構成要素の外面を覆うように、絶縁膜60が形成されている。絶縁膜60は、例えば窒化ケイ素(SiNx)を材料として形成されている。
 N型半導体DBR層22におけるN型半導体クラッド層31が形成される領域の近傍には、絶縁膜60の表面に、絶縁層70が積層形成されている。絶縁層70は、例えばポリイミドを材料として形成されている。
 絶縁層70の表面には、カソード用パッド電極912(912A,912B)、およびアノード用パッド電極922(922A,922B)が離間して形成されている。絶縁層70Aは、垂直共振面発光レーザ10Aの発光領域多層部付近に形成されている。絶縁層70Aの表面には、カソード用パッド電極912A、およびアノード用パッド電極922Aが離間して形成されている。絶縁層70Bは、垂直共振面発光レーザ10Bの発光領域多層部付近に形成されている。絶縁層70Bの表面には、カソード用パッド電極912B、およびアノード用パッド電極922Bが離間して形成されている。
 カソード用パッド電極912Aは、カソード配線電極913Aを介して、カソード用電極911Aに接続されている。カソード用パッド電極912Bは、カソード用配線電極913Bを介して、カソード用電極911Bに接続されている。
 アノード用パッド電極922Aは、アノード用配線電極923Aを介して、アノード用電極921Aに接続されている。アノード用パッド電極922Bは、アノード用配線電極923Bを介して、アノード用電極921Bに接続されている。
 さらに、本実施形態の構成では、図2、図3に示すように、絶縁膜60、N型半導体DBR層22、およびN型半導体コンタクト層21を、積層方向に貫通し、ベース基板11の表面から所定深さで凹む形状で、溝80が形成されている。溝80は、それぞれに垂直共振面発光レーザ10A,10Bを構成する発光領域多層部およびこの発光領域多層部に接続するアノードとカソードとを形成する電極を、各垂直共振面発光レーザ10A,10B毎に分離する形状で形成されている。この溝80と、各垂直共振面発光レーザ10A,10Bを構成する各発光領域多層部およびアノード、カソードがそれぞれ所定距離をもって離間される空間とにより、本発明の「空隙部」が構成される。
 このような構成とすることで、各垂直共振面発光レーザ10A,10Bは個別に分離される。すなわち、各垂直共振面発光レーザ10A,10Bのアノード、カソード間に駆動信号を印加しても、空隙部と半絶縁性半導体のベース基板11によって、隣り合う発光領域多層部同士での駆動信号の漏洩が抑制される。これにより、単一のベース基板11に複数の垂直共振面発光レーザ10A,10Bをアレイで構成するVCSEL1を形成しても、隣り合う垂直共振面発光レーザ間でのアイソレーションを高くすることができる。したがって、隣り合う垂直共振面発光レーザ間での駆動信号によるクロストークを抑圧でき、各垂直共振面発光レーザの高速変調駆動を実現することができる。
 この際、アレイ化される複数の垂直共振面発光レーザが単一のベース基板11上に形成されるので、VCSELアレイとしての構造が簡素化し、小型化が可能になる。さらに、このように、隣り合う垂直共振面発光レーザ間でのアイソレーションを高く確保することができるので、隣り合う垂直共振面発光レーザ10間の距離を短くすることができる。例えば、発明者が行った実験結果では、従来に比べて、垂直共振面発光レーザ10間の距離を半分程度にできることが分かった。これにより、VCSEL1を小型化することができる。
 なお、上述のようにベース基板11を半絶縁性半導体にすることで、上述の作用効果を得ることができるが、上述の溝80を設けることで、隣り合う垂直共振面発光レーザ間でのアイソレーションをさらに高く確保することができる。
 また、上述のように、絶縁層70を設けて、各垂直共振面発光レーザのカソード用パッド電極912とアノード用パッド電極922とを、N型半導体DBR層22から離間することで、隣り合う垂直共振面発光レーザ間でのアイソレーションをさらに高く確保することができる。
 このような構造からなる垂直共振面発光レーザ1は、例えば、次のように製造する。なお、以下では、主として、1つの垂直共振面発光レーザの形成例を示すが、ベース基板11の表面に形成される複数の垂直共振面発光レーザが、同じ工程で同時に形成される。
 まず、ベース基板11の表面に、上述のN型半導体コンタクト層21、N型半導体DBR層22、N型半導体クラッド層31、活性層40、P型半導体クラッド層32、P型半導体DBR層23、P型半導体コンタクト層24を、この順に積層形成する。
 次に、それぞれの垂直共振面発光レーザ10A,10Bの発光領域多層部を構成する部分を除き、P型半導体コンタクト層24、P型半導体DBR層23、P型半導体クラッド層32、活性層40、N型半導体クラッド層31を、順次所定のパターンでエッチングする。このエッチングする領域では、N型半導体DBR層22の表面まで、エッチングを行う。これにより、N型半導体コンタクト層21、N型半導体DBR層22を除く垂直共振面発光レーザ10A,10Bの発光領域多層部が所定距離離間するように分離される。
 N型半導体DBR層22の表面が露出した領域における発光領域多層部に近接する位置をエッチングすることで、N型半導体コンタクト層21を露出させる。このN型半導体コンタクト層21を露出させた領域に、カソード用電極911を形成する。
 また、エッチングしなかった発光領域多層部のP型コンタクト層24の表面にアノード用電極921を形成する。
 ベース基板11の表面側に、カソード用電極911、アノード用電極921の表面をのぞき、絶縁膜60を形成する。
 絶縁膜60の表面の発光領域多層部に近接する領域に絶縁層70を形成する。
 絶縁層70の表面に、カソード用パッド電極912とアノード用パッド電極922とを、形成する。
 カソード用電極911とカソード用パッド電極912とを接続するカソード用配線電極913を形成する。アノード用電極921とアノード用パッド電極912とを接続するアノード用配線電極923を形成する。
 隣り合う垂直共振面発光レーザの領域を分割するように、絶縁層60、N型半導体DBR層22、N型半導体コンタクト層21を貫通し、ベース基板11の表面から内部へ所定深さで凹む形状の溝80を形成する。
 このような製造工程によって、VCSEL1が形成される。なお、エッチングによって、垂直共振面発光レーザ間に生じる空隙部の幅が、P型コンタクト層24側で広く、N型コンタクト層21側に向かって徐々に狭くなるようにするとよい。すなわち、空隙がテーパ状であるとよい。このような構成とすることで、発光領域多層部の側面に対する絶縁層60の被覆性が向上し、発光領域多層部間のアイソレーションを、さらに高く確保することができる。
 次に、本発明の第2の実施形態に係る垂直共振面発光レーザ(VCSEL)について、図を参照して説明する。図4は本発明の第2の実施形態に係る垂直共振面発光レーザ1Aのカソード用パッド電極およびアノード用パッド電極が形成された領域の断面図である。
 本実施形態のVCSEL1Aは、第1の実施形態に示したVCSEL1に対して、絶縁膜600を追加したものである。他の構成は、第1の実施形態に示したVCSEL1と同じである。したがって、異なる箇所のみを説明する。
 絶縁膜600は、第1の実施形態に示した絶縁膜60と同じく窒化ケイ素等からなり、溝80の内表面を含む、ベース基板11の発光領域多層部側の表面を覆う形状からなる。ただし、カソード用パッド電極およびアノード用パッド電極の表面に対しては、ワイヤボンディング等によって外部素子と接続できる範囲で絶縁層600が形成されていない。
 このような構成とすることで、溝80を介して対向するN型半導体コンタクト層21およびN型半導体DBR層22の表面(溝80の内表面)も絶縁層600で覆われる。これにより、溝80を介して隣り合う垂直共振面発光レーザ10A1,10B1間のアイソレーションをさらに高く確保することができる。
 次に、第3の実施形態に係る垂直共振面発光レーザ(VCSEL)について、図を参照して説明する。図5は、本発明の第3の実施形態に係る垂直共振面発光レーザ1Bの部分平面図である。
 本実施形態のVCSEL1Bは、第1の実施形態に示したVCSEL1に対して、各垂直共振面発光レーザ10A2,10B2のカソード用パッド電極およびアノード用パッド電極の配置パターンが異なる。他の構成は、第1の実施形態に示したVCSEL1と同じである。したがって、異なる箇所のみを説明する。
 VCSEL1Bは、カソード用パッド電極およびアノード用パッド電極の配列方向に平行で、溝80を介して隣り合う垂直共振面発光レーザ10A2,10B2間で、同極のパッド電極が隣り合うように、配置されている。具体的な例としては、図5に示すように、垂直共振面発光レーザ10A2のアノード用パッド電極922Aと、垂直共振面発光レーザ10B2のアノード用パッド電極922Bとが隣り合うように配置されている。なお、図示しないが、垂直共振面発光レーザ10A2における垂直共振面発光レーザ10B2と反対側に配置された垂直共振面発光レーザは、垂直共振面発光レーザ10A2に対してカソード用パッド電極が隣り合うように配置されている。同様に、図示しないが、垂直共振面発光レーザ10B2における垂直共振面発光レーザ10B2と反対側に配置された垂直共振面発光レーザは、垂直共振面発光レーザ10B2に対してカソード用パッド電極が隣り合うように配置されている。
 このように、隣り合う垂直共振面発光レーザ同士で同極パッド電極が隣り合うようにすることで、それぞれの垂直共振面発光レーザに対する駆動信号によるクロストークを、さらに抑圧することができる。
 次に、第4の実施形態に係る垂直共振面発光レーザ(VCSEL)について、図を参照して説明する。図6は、本発明の第4の実施形態に係る垂直共振面発光レーザ1Cの部分平面図である。図7は、本発明の第4の実施形態に係る垂直共振面発光レーザのカソード用パッド電極およびアノード用パッド電極が形成された領域の断面図である。
 本実施形態のVCSEL1Cは、第1の実施形態に示したVCSEL1に対して、各垂直共振面発光レーザ10A3,10B3のカソード用パッド電極が2つ設けられた点が異なる。他の構成は、第1の実施形態に示したVCSEL1と同じである。したがって、異なる箇所のみを説明する。
 垂直共振面発光レーザ10A3には、2つのカソード用パッド電極912A1,912A2が形成されている。カソード用パッド電極912A1,912A2は、それぞれカソード配線電極913A1,913A2を介して、カソード用電極911Aに接続されている。カソード用パッド電極912A1,912A2は、絶縁層70の表面において、垂直共振面発光レーザが配列する方向に平行に、アノード用パッド電極922Aを挟むように配置されている。
 垂直共振面発光レーザ10B3には、2つのカソード用パッド電極912B1,912B2が形成されている。カソード用パッド電極912B1,912B2は、それぞれカソード配線電極913B1,913B2を介して、カソード用電極911Bに接続されている。カソード用パッド電極912B1,912B2は、絶縁層70の表面において、垂直共振面発光レーザが配列する方向に平行に、アノード用パッド電極922Bを挟むように配置されている。
 このような構成とすることで、隣り合う垂直共振面発光レーザ10A3,10B3は、同極のカソード用パッド電極同士が隣り合うように、配置される。これにより、第3の実施形態と同様に、それぞれの垂直共振面発光レーザに対する駆動信号によるクロストークを、さらに抑圧することができる。
 次に、第5の実施形態に係る垂直共振面発光レーザ(VCSEL)について、図を参照して説明する。図8は、本発明の第5の実施形態に係る垂直共振面発光レーザのカソード用パッド電極およびアノード用パッド電極が形成された領域の断面図である。
 本実施形態のVCSEL1Dは、第1の実施形態に示したVCSEL1に対して、ベース基板11Dの構造が異なる。他の構成は、第1の実施形態に示したVCSEL1と同じである。したがって、異なる箇所のみを説明する。
 ベース基板11Dは、半絶縁性半導体層111と、N型半導体からなる導電性半導体層112とを備える。
 ベース基板11Dの発光領域多層部が形成される面側の所定厚みの領域が、半絶縁性半導体層111からなる。導電性半導体層112は、半絶縁性半導体層111に対して、発光領域多層部が形成される面と反対側の面に形成されている。半絶縁性半導体111の厚みは、導電性半導体層112の厚みよりも薄い。
 溝80は、少なくとも半絶縁性半導体層111に対して所定深さで凹む形状で形成されている。なお、溝80は、導電性半導体層112に係る深さであってもよい。
 このような構成であっても、上述の各実施形態と同様の効果を得ることが可能である。さらに、ベース基板11Dの一部に、N型半導体の層を設けることで、結晶欠落の発生を、大幅に少なくすることができる。これにより、より信頼性の高いVCSELを形成することができる。
 なお、上述の各実施形態では、絶縁層70を設ける例を示したが、省略することも可能である。ただし、絶縁層70を備えることで、カソード用パッド電極およびアノード用パッド電極に生じる寄生容量を抑圧することができる。これにより、隣り合う垂直共振面発光レーザ間のクロストークの発生を、より効果的に抑圧することができる。
 また、上述の各実施形態では、具体的な数値例を示していないが、隣り合うアノード用の各電極とカソード用の各電極との間隔は、0.5μm以上であることが好ましい。このような条件を満たすことで、上述のクロストークの発生を効果的に抑圧することができる。
1,1A,1B,1C,1D:垂直共振面発光レーザ、
10,10A,10A1,10A2,10A3,10B,10B1,10B2,10B3:垂直共振面発光レーザ、
11,11D:ベース基板、
21:N型半導体コンタクト層、
22:N型DBR(多層分布ブラッグ反射器)層、
23:P型半導体DBR層、
24:P型コンタクト層、
31:N型半導体スペーサ層、
32:P型半導体スペーサ層、
40:活性層、
50:酸化狭窄層、
60:絶縁膜、
70:絶縁層、
80:溝、
111:半絶縁性半導体層、
112:導電性半導体層、
911,911A,911B:カソード用電極、
921,921A,921B:アノード用電極、
912A,912A1,912A2,912B,912B1,912B2:カソード用パッド電極、
913A,913B:カソード配線電極、
922A,922B:アノード用パッド電極、
923A,923B:アノード用配線電極

Claims (10)

  1.  ベース基板と、
     該ベース基板の表面に形成された、N型半導体多層膜反射層、量子井戸を備える活性層、P型半導体多層膜反射層をそれぞれ含む発光領域多層部と、
     P型半導体多層膜反射層に接続されるアノード用電極と、
     N型半導体多層膜反射層に接続されるカソード用電極と、を備え、
     前記ベース基板は、少なくとも前記発光領域多層部側の所定厚みが半絶縁性半導体からなり、
     前記カソード用電極は、前記ベース基板の表面側に形成されており、
     前記発光領域多層部、前記アノード用電極、前記カソード用電極からなる発光素子構成要素の組は、前記ベース基板に複数形成されており、
     前記複数の発光素子構成要素は個別に分離されており、前記複数の発光素子構成要素はそれぞれ独立に駆動する、垂直共振面発光レーザ。
  2.  前記複数の発光素子構成要素の間に空隙部を有しており、該空隙部は、前記ベース基板の表面から該ベース基板の内側まで窪む形状からなる、
     請求項1に記載の垂直共振面発光レーザ。
  3.  前記アノード用電極に接続するアノード用パッド電極と、前記カソード用電極に接続するカソード用パッド電極とを、前記空隙部によって分割される前記発光素子構成要素毎に備え、
     前記アノード用パッド電極と前記カソード用パッド電極は、前記ベース基板の表面における前記発光領域多層部、前記アノード用電極および前記カソード用電極と異なる領域に配設された絶縁層の表面に形成されている、
     請求項1または請求項2に記載の垂直共振面発光レーザ。
  4.  隣り合う発光素子構成要素は、前記アノード用パッド電極同士が隣り合うか、もしくは前記カソード用電極パッド同士が隣り合うように、前記ベース基板の表面側に配置されている、請求項3に記載の垂直共振面発光レーザ。
  5.  前記カソード用パッド電極は、二個備えられており、
     該二個のカソード用パッド電極は、前記絶縁層の表面に、前記アノード用パッド電極を挟むように配置されている、請求項3に記載の垂直共振面発光レーザ。
  6.  前記アノード用パッド電極と前記カソード用パッド電極の少なくとも一部を除く形状で絶縁膜が形成されている、
     請求項3乃至請求項5のいずれかに記載の垂直共振面発光レーザ。
  7.  前記空隙部は、前記アノード用電極側から前記ベース基板側に向かって、隣り合う発光素子構成要素間の幅が狭くなるテーパ形状からなる、請求項1乃至請求項6のいずれかに記載の垂直共振面発光レーザ。
  8.  前記ベース基板の半絶縁性半導体の抵抗率は、1.0×10Ω・cm以上である、請求項1乃至請求項7のいずれかに記載の垂直共振面発光レーザ。
  9.  隣り合う発光素子構成要素の近接する電極の間隔は、0.5μm以上である、請求項1乃至請求項8のいずれかに記載の垂直共振面発光レーザ。
  10.  前記ベース基板は、前記発光素子構成要素側の表面から所定厚みが前記半絶縁性半導体であり、
     該半絶縁性半導体の前記発光素子構成要素と反対側には、N型半導体基板が配置されている、請求項1乃至請求項10のいずれかに記載の垂直共振面発光レーザ。
PCT/JP2013/064301 2012-05-25 2013-05-23 垂直共振面発光レーザ WO2013176201A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014516841A JPWO2013176201A1 (ja) 2012-05-25 2013-05-23 垂直共振面発光レーザ
US14/537,995 US20150063393A1 (en) 2012-05-25 2014-11-11 Vertical cavity surface emitting laser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-119460 2012-05-25
JP2012119460 2012-05-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/537,995 Continuation US20150063393A1 (en) 2012-05-25 2014-11-11 Vertical cavity surface emitting laser

Publications (1)

Publication Number Publication Date
WO2013176201A1 true WO2013176201A1 (ja) 2013-11-28

Family

ID=49623882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064301 WO2013176201A1 (ja) 2012-05-25 2013-05-23 垂直共振面発光レーザ

Country Status (3)

Country Link
US (1) US20150063393A1 (ja)
JP (1) JPWO2013176201A1 (ja)
WO (1) WO2013176201A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018157065A (ja) * 2017-03-17 2018-10-04 住友電気工業株式会社 面発光半導体レーザ

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103311261B (zh) * 2013-05-24 2016-02-17 安徽三安光电有限公司 集成led发光器件及其制作方法
KR102412409B1 (ko) * 2015-10-26 2022-06-23 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
US10541514B2 (en) * 2016-02-25 2020-01-21 Ngk Insulators, Ltd. Surface-emitting device, vertical external-cavity surface-emitting laser, and method for manufacturing surface-emitting device
US10535799B2 (en) * 2017-05-09 2020-01-14 Epistar Corporation Semiconductor device
TWI786170B (zh) 2017-08-22 2022-12-11 美商普林斯頓光電公司 用於高密度光發射器陣列之多層導體互連件
EP3883073B1 (en) * 2020-03-20 2022-09-07 TRUMPF Photonic Components GmbH Method of forming an electrical metal contact and method of producing a vertical cavity surface emitting laser
CN111817135B (zh) * 2020-09-04 2020-12-04 江西铭德半导体科技有限公司 一种垂直腔面发射激光器芯片的刻蚀方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11261174A (ja) * 1998-02-09 1999-09-24 Hewlett Packard Co <Hp> Vcselおよびvcselアレイ
EP1357648A1 (en) * 2002-04-25 2003-10-29 Avalon Photonics AG High speed vertical cavity surface emitting laser device (VCSEL) with low parasitic capacitance
US20050151137A1 (en) * 2004-01-13 2005-07-14 Infineon Technologies Ag Optical emission module
JP2006019624A (ja) * 2004-07-05 2006-01-19 Mitsubishi Electric Corp 光素子とこの光素子を有する光送受信装置
JP2007250669A (ja) * 2006-03-14 2007-09-27 Nec Corp 誘電体dbrミラーを有する面発光半導体レーザおよびその製造方法
JP2008047717A (ja) * 2006-08-17 2008-02-28 Fuji Xerox Co Ltd 高周波特性が改善された表面発光型半導体レーザ素子
JP2009246291A (ja) * 2008-03-31 2009-10-22 Furukawa Electric Co Ltd:The 面発光レーザアレイ素子
JP2009283859A (ja) * 2008-05-26 2009-12-03 Fuji Xerox Co Ltd 光モジュール
JP2011114146A (ja) * 2009-11-26 2011-06-09 Hamamatsu Photonics Kk 半導体発光素子

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0405758A2 (en) * 1989-06-27 1991-01-02 Hewlett-Packard Company Broadband semiconductor optical gain medium
JP3619155B2 (ja) * 2001-01-17 2005-02-09 キヤノン株式会社 面発光レーザ装置、その製造方法、およびその駆動方法
JP5522595B2 (ja) * 2009-11-27 2014-06-18 株式会社リコー 面発光レーザ素子、面発光レーザアレイ、光走査装置及び画像形成装置
JP5621369B2 (ja) * 2010-07-12 2014-11-12 株式会社リコー 面発光レーザ素子、光走査装置及び画像形成装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11261174A (ja) * 1998-02-09 1999-09-24 Hewlett Packard Co <Hp> Vcselおよびvcselアレイ
EP1357648A1 (en) * 2002-04-25 2003-10-29 Avalon Photonics AG High speed vertical cavity surface emitting laser device (VCSEL) with low parasitic capacitance
US20050151137A1 (en) * 2004-01-13 2005-07-14 Infineon Technologies Ag Optical emission module
JP2006019624A (ja) * 2004-07-05 2006-01-19 Mitsubishi Electric Corp 光素子とこの光素子を有する光送受信装置
JP2007250669A (ja) * 2006-03-14 2007-09-27 Nec Corp 誘電体dbrミラーを有する面発光半導体レーザおよびその製造方法
JP2008047717A (ja) * 2006-08-17 2008-02-28 Fuji Xerox Co Ltd 高周波特性が改善された表面発光型半導体レーザ素子
JP2009246291A (ja) * 2008-03-31 2009-10-22 Furukawa Electric Co Ltd:The 面発光レーザアレイ素子
JP2009283859A (ja) * 2008-05-26 2009-12-03 Fuji Xerox Co Ltd 光モジュール
JP2011114146A (ja) * 2009-11-26 2011-06-09 Hamamatsu Photonics Kk 半導体発光素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018157065A (ja) * 2017-03-17 2018-10-04 住友電気工業株式会社 面発光半導体レーザ

Also Published As

Publication number Publication date
JPWO2013176201A1 (ja) 2016-01-14
US20150063393A1 (en) 2015-03-05

Similar Documents

Publication Publication Date Title
WO2013176201A1 (ja) 垂直共振面発光レーザ
JP3966067B2 (ja) 表面発光型半導体レーザ素子およびその製造方法
US8987763B2 (en) Light emitting device and method of manufacturing the same, and light emitting unit
JP6020560B2 (ja) 垂直共振面発光レーザ素子の実装方法、垂直共振面発光レーザアレイ素子の実装方法、垂直共振面発光レーザ素子、垂直共振面発光レーザアレイ素子
JP4948012B2 (ja) 面発光レーザ素子および面発光レーザ素子の製造方法
JPH11168262A (ja) 面型光デバイス、その製造方法、および表示装置
JP2869279B2 (ja) 半導体レーザダイオード及びその製造方法並びに半導体レーザダイオードアレイ
TWI515984B (zh) Vertical resonant surface luminous lasers
WO2007116659A1 (ja) 面発光レーザ
CN102891434A (zh) 激光器阵列、激光器装置及光学传输装置和信息处理装置
JP2010040752A (ja) 半導体レーザ装置およびその製造方法
JP2010147321A (ja) 発光装置
US4977570A (en) Semiconductor laser array with stripe electrodes having pads for wire bonding
JP2009259857A (ja) 面発光レーザ素子および面発光レーザ素子アレイ
US9118167B2 (en) Vertical cavity surface emitting laser
JP6252222B2 (ja) 面発光レーザアレイ及びレーザ装置
JP4835190B2 (ja) 光半導体集積素子
WO2020105411A1 (ja) 発光デバイス及び発光装置
CN114069391B (zh) 一种垂直腔面发射激光器以及制备方法
JP2007294741A (ja) 面発光半導体レーザ、光伝送モジュール及び光伝送システム
JP2010161104A (ja) 発光装置および積層型発光装置
JP2009238845A (ja) 発光モジュール及びその製造方法
JP2009238846A (ja) 発光装置
JP2963701B2 (ja) 半導体レーザ装置
US10211598B2 (en) Side-view light emitting laser element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13794289

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014516841

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13794289

Country of ref document: EP

Kind code of ref document: A1