WO2019124095A1 - 液晶組成物及び液晶表示素子 - Google Patents

液晶組成物及び液晶表示素子 Download PDF

Info

Publication number
WO2019124095A1
WO2019124095A1 PCT/JP2018/044886 JP2018044886W WO2019124095A1 WO 2019124095 A1 WO2019124095 A1 WO 2019124095A1 JP 2018044886 W JP2018044886 W JP 2018044886W WO 2019124095 A1 WO2019124095 A1 WO 2019124095A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
carbon atoms
preferable
present
Prior art date
Application number
PCT/JP2018/044886
Other languages
English (en)
French (fr)
Japanese (ja)
Inventor
麻里奈 後藤
雄一 井ノ上
▲卓▼ 楊
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to KR1020207014406A priority Critical patent/KR20200098497A/ko
Priority to JP2019518016A priority patent/JP6658967B2/ja
Priority to CN201880070684.9A priority patent/CN111295433A/zh
Publication of WO2019124095A1 publication Critical patent/WO2019124095A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/14Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a carbon chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/14Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a carbon chain
    • C09K19/16Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a carbon chain the chain containing carbon-to-carbon double bonds, e.g. stilbenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/14Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a carbon chain
    • C09K19/18Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a carbon chain the chain containing carbon-to-carbon triple bonds, e.g. tolans
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/32Non-steroidal liquid crystal compounds containing condensed ring systems, i.e. fused, bridged or spiro ring systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a liquid crystal composition (polymerizable liquid crystal composition) containing a polymerizable compound and a liquid crystal display device using the same.
  • PSA Polymer Sustained Alignment
  • PSA Polymer Sustained Alignment type liquid crystal display device
  • a polymer structure is formed in the cell to control the pretilt angle of liquid crystal molecules, and developed as a liquid crystal display element from high speed response and high contrast Is in progress.
  • a liquid crystal composition (polymerizable liquid crystal composition) containing a polymerizable compound is injected between substrates, and ultraviolet light is irradiated in a state where liquid crystal molecules are aligned by applying a voltage. It is carried out by polymerizing a polymerizable compound to fix the alignment of liquid crystal molecules. At this time, when the unreacted polymerizable compound remains in the device, various problems occur. Therefore, since the polymerizable compound is often consumed, long-time ultraviolet irradiation or irradiation with ultraviolet light of different wavelengths is performed several times. Sometimes.
  • the pretilt angle controls the alignment direction of liquid crystal molecules and is an important element related to the improvement of the response time of the liquid crystal display element. Is very important. If the time until the formation of the pretilt angle is short, and if the multiple ultraviolet irradiation times for consuming the unreacted polymerizable compound are short or unnecessary, it is possible to shorten the manufacturing process time.
  • Patent Document 1 configures a display element using a polymerizable compound having a structure of terphenyl as a ring structure
  • Patent Document 2 configures a display element using a polymerizable compound having an acetylene structure. Is disclosed. However, even if these compounds were used, the improvement effect was not enough.
  • ultraviolet light can be obtained by using the following compound (A) having a terphenyl skeleton or the compound (B) having an acetylene structure: Attempts have been made to improve the polymerization rate of polymerizable compounds at the time of irradiation.
  • the residual amount of the polymerizable compound is sufficiently small and the polymerization rate is relatively fast, but the reliability of the liquid crystal display element after ultraviolet irradiation There were some improvement issues, such as inadequate sex.
  • the problem to be solved by the present invention is a PSA-type or PSVA-type liquid crystal display excellent in reliability after an ultraviolet irradiation process while satisfying various characteristics required for a liquid crystal display element such as high speed response, high contrast, low power consumption.
  • An object of the present invention is to provide a polymerizable liquid crystal composition useful for producing a device, and to provide a liquid crystal display device using the same.
  • a polymerizable liquid crystal composition comprising one or more liquid crystal compounds and one or more polymerizable compounds represented by the general formula (i) and containing a liquid crystal compound and a polymerizable compound
  • the present invention provides a polymerizable liquid crystal composition in which the total content of polymerizable compounds in the product is 0.4% by mass or more and 10.0% by mass or less, and a liquid crystal display device using the same.
  • P i1 and P i2 each independently represent a methacrylate group or an acrylate group
  • Each of Sp i1 and Sp i2 independently represents a spacer group or a single bond
  • Ms i1 has a total of 14 or more of the number of ⁇ electrons contained in the structure and the number of electrons forming a noncovalent electron pair of the oxygen atom contained in the structure, and is represented by the general formula (Ms-1)
  • a i1 is a group of (B i1 ) to (B i4 )
  • n i1 represents 1, 2, 3 or 4, and when a plurality of A i1 are present, they may be the same or different.
  • the liquid crystal composition of the present invention exhibits a small rotational viscosity ( ⁇ 1) without lowering the refractive index anisotropy ( ⁇ n) and the nematic phase-isotropic liquid phase transition temperature (Tni), and the reliability after irradiation with ultraviolet light There is no further precipitation of the polymerizable compound.
  • the liquid crystal display device using the liquid crystal composition of the present invention has a large amount of change in pretilt angle and can form a sufficient pretilt angle by ultraviolet irradiation for a short time, so display defects such as alignment defects and burn-in do not occur or are suppressed. Moreover, while showing the outstanding display quality, the ultraviolet irradiation time in a manufacturing process can be shortened.
  • the liquid crystal composition of the present invention can form a pretilt angle in a short time, so that the liquid crystal composition can suppress deterioration due to ultraviolet light.
  • the polymerizable liquid crystal composition of the present invention has the characteristics as described above, and the liquid crystal display device using the polymerizable liquid crystal composition of the present invention has a high response speed and a high VHR, and has a display defect. Very useful because there is no or very little.
  • the polymerizable liquid crystal composition of the present application contains one or more liquid crystal compounds and one or more polymerizable compounds, and the total content of the polymerizable compounds in the polymerizable liquid crystal composition is 0.4. % And 10.0% or less, preferably 0.45% or more and 10.0% or less, preferably 0.48% or more and 10.0% or less, and more preferably 0.5% or more and 8.5% or less, 0.52% or more and 8.3% or less is preferable, 0.54% or more and 8.0% or less is preferable, 0.54% or more and 6.0% or less is preferable, and 0.54% or more and 4.0% or less 0.54% to 3.0% is preferable 0.54% to 2.0% is preferable 0.54% to 1.0% is preferable 0.54% to 0.8%
  • the following are preferable, 0.56% or more and 0.8% or less are preferable, and the preferable upper limit of content is 10.0%, 9.0%, 9.5%, 8.0%, 7.0%, 5.0%, 3.0%, 2 .0%, 1.5%, 1.2%, 1.0%, 0.8%
  • the polymerizable compound contains one or two or more of the polymerizable compounds represented by the general formula (i), but the polymerizable compound represented by the general formula (i) in the total content of the polymerizable compounds 30% or more and 100% or less is preferable, 35% or more and 100% or less is preferable, 40% or more and 100% or less is preferable, 42% or more and 100% or less is preferable, and 44% or more and 100% or less is preferable.
  • 46% to 100% is preferable, 48% to 100% is preferable, 50% to 100% is preferable, 55% to 100% is preferable, 60% to 100% is preferable, 65% to 100% is preferable % Or less is preferable, 70% or more and 100% or less is preferable, 75% or more and 100% or less is preferable, 80% or more and 100% or less is preferable, and the content is preferably
  • the values are 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75% 80%, 85%, 90%, 95% and substantially 100%.
  • the reliability of the liquid crystal display element is important, the reliability is determined by the voltage holding ratio (VHR) of the liquid crystal display element immediately after production, the VHR after applying a heat history to the liquid crystal display element immediately after production, the liquid crystal immediately after production It can evaluate by measuring VHR after UV-irradiating to a display element.
  • VHR voltage holding ratio
  • the liquid crystal display element having excellent reliability has little or no display defects such as burn-in.
  • the polymerizable liquid crystal composition used for the PSA type or PSVA type liquid crystal display element contains about 0.3% of a polymerizable compound.
  • the compound represented by the general formula (i) of the present application when used, precipitation of the polymerizable compound from the polymerizable liquid crystal composition does not occur even when the content is increased from 0.3%.
  • the unreacted polymerizable compound when the content of the polymerizable compound is increased, the unreacted polymerizable compound remains at the time of curing by ultraviolet irradiation, and all the remaining polymerizable compound is consumed.
  • steps such as re-irradiation with ultraviolet rays having different wavelengths are required, the use of the compound represented by the general formula (i) makes the necessity unnecessary or reduced.
  • the increase in the content can also suppress the change in tilt angle with time.
  • Liquid crystal display elements are eluted from impurities in liquid crystal compositions (compounds produced during production of liquid crystal compounds, compounds produced during liquid crystal display production due to deterioration of liquid crystal compounds due to ultraviolet irradiation, etc., unreacted polymerizable compounds, alignment films, etc. And the like, the reliability thereof is reduced.
  • liquid crystal compositions compounds produced during production of liquid crystal compounds, compounds produced during liquid crystal display production due to deterioration of liquid crystal compounds due to ultraviolet irradiation, etc., unreacted polymerizable compounds, alignment films, etc. And the like.
  • the reliability thereof is reduced.
  • the present invention by optimizing each content described above, excellent reliability is exhibited when the liquid crystal display element is formed.
  • both P i1 and P i2 may be either a methacrylate group or an acrylate group, and one may be a methacrylate group and the other may be an acrylate group.
  • the chain is preferably an alkylene group having 1 to 10 carbon atoms or a single bond.
  • Ms i1 is ⁇ number of electrons and the total number of unshared electron pairs of the oxygen atoms is preferably 14 or more contained in the structure contained within its structure, 16 or more.
  • P i1, P i2, unshared electron pair of ⁇ electrons and oxygen atoms in Sp i1 and Sp i2 are not included in the total.
  • Ms i1 is a group represented by formula (B i11 ), formula (B i12 ) or formula (B i41 )
  • One or more hydrogen atoms in the structure may be substituted with a halogen atom, an alkoxy group having 1 to 8 carbon atoms and / or an alkyl group having 1 to 8 carbon atoms.
  • the structure represented by is preferable, and as a substituent on the formula (B i11 ), the formula (B i12 ) or the formula (B i41 ), it is not contained or 1 or 2 is preferable, and a fluorine atom, methyl Preferred is a group, an ethyl group, a methoxy group or an ethoxy group.
  • the compounds represented by formula (i) are preferably compounds represented by the following formulas (i-1-1) to (i-4-14).
  • the polymerizable liquid crystal composition of the present invention preferably contains one or more compounds selected from the compounds represented by formulas (N-1), (N-2) and (N-3) . These compounds correspond to dielectrically negative compounds (the sign of ⁇ is negative and its absolute value is larger than 2).
  • R N11 , R N12 , R N21 , R N22 , R N31 and R N32 each independently have 1 to 8 carbon atoms Alkyl group, alkoxy group having 1 to 8 carbon atoms, alkenyl group having 2 to 8 carbon atoms or alkenyloxy group having 2 to 8 carbon atoms is preferable, and alkyl group having 1 to 5 carbon atoms, the number of carbon atoms An alkoxy group of 1 to 5, an alkenyl group of 2 to 5 carbon atoms or an alkenyloxy group of 2 to 5 carbon atoms is preferable, and an alkyl group of 1 to 5 carbon atoms or an alkenyl group of 2 to 5 carbon atoms is preferable. More preferably, an alkyl group having 2 to 5 carbon atoms or an alkenyl group having 2 to 3 carbon atoms is further preferable, and an alkenyl group having 3 carbon atoms (propen
  • the ring structure to which it is bonded is a phenyl group (aromatic)
  • a linear alkyl group having 1 to 5 carbon atoms, a linear alkoxy group having 1 to 4 carbon atoms, and carbon Alkenyl group having 4 to 5 atoms is preferable
  • a linear alkyl group having 1 to 5 carbon atoms, a straight chain Preferred is an alkoxy group having 1 to 4 carbon atoms and a linear alkenyl group having 2 to 5 carbon atoms.
  • the total of carbon atoms and oxygen atoms, if present is preferably 5 or less, preferably linear.
  • the alkenyl group is preferably selected from the groups represented by any one of formulas (R1) to (R5). (The black dot in each formula represents a carbon atom in the ring structure.)
  • a N 11 , A N 12 , A N 21 , A N 22 , A N 31 and A N 32 are each preferably aromatic when it is required to increase ⁇ n independently, and in order to improve the response speed, it is preferable to use fat Group is preferred, and trans-1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, 3-fluoro-1,4-phenylene, 3,5 -Difluoro-1,4-phenylene group, 2,3-difluoro-1,4-phenylene group, 1,4-cyclohexenylene group, 1,4-bicyclo [2.2.2] octylene group, piperidine-1 Be 2,4-diyl, naphthalene-2,6-diyl, decahydronaphthalene-2,6-diyl or 1,2,3,4-tetrahydronaphthalene-2,6-diyl Preferred, it is more preferable that represents the following structures,
  • it represents a trans-1,4-cyclohexylene group, a 1,4-cyclohexenylene group or a 1,4-phenylene group.
  • Z N11, Z N12, Z N21 , Z N22, Z N31 and Z N32 -CH 2 each independently O -, - CF 2 O - , - CH 2 CH 2 -, - CF 2 CF 2 - or a single bond preferably represents an, -CH 2 O -, - CH 2 CH 2 - or a single bond is more preferable, -CH 2 O-or a single bond is particularly preferred.
  • X N21 is preferably a fluorine atom.
  • T N31 is preferably an oxygen atom.
  • n N 11 + n N 12 , n N 21 + n N 22 and n N 31 + n N 32 are preferably 1 or 2, and combinations in which n N 11 is 1 and n N 12 is 0, n N 11 is 2 and n N 12 is 0, n A combination in which N 11 is 1 and n N 12 is 1, a combination in which n N 11 is 2 and n N 12 is 1, a combination in which n N 21 is 1 and n N 22 is 0, n N 21 is 2 and n N 22 is A combination of 0, a combination of n N31 of 1 and n N32 of 0, and a combination of n N31 of 2 and n N32 of 0 is preferred.
  • the lower limit of the preferable content of the compound represented by the formula (N-1) to the total amount of the composition of the present invention is 1%, 10%, 20%, and 30%. 40%, 50%, 55%, 60%, 65%, 70%, 75%, 80%.
  • the upper limit of the preferred content is 95%, 85%, 75%, 65%, 55%, 45%, 35%, 25%, 20% It is.
  • the lower limit of the preferable content of the compound represented by the formula (N-2) to the total amount of the composition of the present invention is 1%, 10%, 20%, 30% 40%, 50%, 55%, 60%, 65%, 70%, 75%, 80%.
  • the upper limit of the preferred content is 95%, 85%, 75%, 65%, 55%, 45%, 35%, 25%, 20% It is.
  • the lower limit of the preferable content of the compound represented by the formula (N-3) to the total amount of the composition of the present invention is 1%, 10%, 20%, and 30%. 40%, 50%, 55%, 60%, 65%, 70%, 75%, 80%.
  • the upper limit of the preferred content is 95%, 85%, 75%, 65%, 55%, 45%, 35%, 25%, 20% It is.
  • the above lower limit is low and the upper limit is low. Furthermore, when the composition of the present invention is required to keep Tni high and a composition having good temperature stability is required, it is preferable that the above lower limit is low and the upper limit is low. When it is desired to increase the dielectric anisotropy in order to keep the driving voltage low, it is preferable that the above lower limit value be high and the upper limit value be high.
  • Examples of the compound represented by General Formula (N-1) include compounds represented by the following General Formulas (N-1a) to (N-1g).
  • R N11 and R N12 are as defined R N11 and R N12 in the general formula (N-1), n Na11 represents 0 or 1, n NB11 is 1 or 2, n NC11 is N Nd11 represents 1 or 2; n Ne11 represents 1 or 2; n Nf12 represents 1 or 2; n Ng11 represents 1 or 2; A Ne11 represents trans-1, 4 And A Ng 11 represents a trans-1,4-cyclohexylene group, a 1,4-cyclohexenylene group or a 1,4-phenylene group, but at least one of represents a 1,4-cyclohexenylene group, Z NE11 at least one present in the represents a single bond or ethylene molecules represent ethylene, a NE11 a plurality present in the molecule, Z Ne 1, and / or A NG11 may or may not be the same.
  • the compound represented by General Formula (N-1) is a compound selected from the group of compounds represented by General Formulas (N-1-1) to
  • the compounds represented by General Formula (N-1-1) are the following compounds.
  • R N111 and R N112 each independently represent the same meaning as R N11 and R N12 in General Formula (N-1).
  • R N 111 is preferably an alkyl group of 1 to 5 carbon atoms or an alkenyl group of 2 to 5 carbon atoms, and is preferably a propyl group, a pentyl group or a vinyl group.
  • RN 112 is preferably an alkyl group of 1 to 5 carbon atoms, an alkenyl group of 4 to 5 carbon atoms or an alkoxy group of 1 to 4 carbon atoms, and is preferably an ethoxy group or butoxy group.
  • the compounds represented by General Formula (N-1-1) can be used alone, or two or more compounds can be used in combination. There is no particular limitation on the types of compounds that can be combined, but they are used in appropriate combination according to the required performance such as solubility at low temperature, transition temperature, electrical reliability, birefringence and the like.
  • the type of the compound used is, for example, one type, two types, three types, four types, five types or more as one embodiment of the present invention.
  • the lower limit of the preferable content of the compound represented by the formula (N-1-1) to the total amount of the composition of the present invention is 5%, 10%, 13%, 15% 17%, 20%, 23%, 25%, 27%, 30%, 33%, 35%.
  • the upper limit of the preferred content is 50%, 40%, 38%, 35%, 33%, 30%, or 50%, based on the total weight of the composition of the present invention. %, 25%, 23%, 20%, 18%, 15%, 13%, 10%, 8%, 7%, 6 %, 5% and 3%.
  • the compound represented by General Formula (N-1-1) is a compound selected from the group of compounds represented by Formula (N-1-1.1) to Formula (N-1-1.23) And the compounds represented by the formulas (N-1-1.1) to (N-1-1.4) are preferable, and the compounds represented by the formulas (N-1-1.1) and (N The compound represented by -1-1.3) is preferred.
  • the compounds represented by the formulas (N-1-1.1) to (N-1-1.22) may be used alone or in combination, but the composition of the present invention
  • the lower limit of the preferable content of these compounds alone or in the total amount is 5%, 10%, 13%, 15%, 17%, 20%, 23% 25%, 27%, 30%, 33% and 35%.
  • the upper limit of the preferred content is 50%, 40%, 38%, 35%, 33%, 30%, or 50%, based on the total weight of the composition of the present invention. %, 25%, 23%, 20%, 18%, 15%, 13%, 10%, 8%, 7%, 6 %, 5% and 3%.
  • the compounds represented by formula (N-1-2) are the following compounds.
  • R N121 and R N122 each independently represent the same meaning as R N11 and R N12 in General Formula (N-1).
  • RN 121 is preferably an alkyl group of 1 to 5 carbon atoms or an alkenyl group of 2 to 5 carbon atoms, and is preferably an ethyl group, a propyl group, a butyl group or a pentyl group.
  • R N 122 is preferably an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 4 to 5 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, and a methyl group, a propyl group, a methoxy group, an ethoxy group or a propoxy group is preferable.
  • the compounds represented by General Formula (N-1-2) can be used alone, or two or more compounds can be used in combination. There is no particular limitation on the types of compounds that can be combined, but they are used in appropriate combination according to the required performance such as solubility at low temperature, transition temperature, electrical reliability, birefringence and the like.
  • the type of the compound used is, for example, one type, two types, three types, four types, five types or more as one embodiment of the present invention.
  • the lower limit of the preferable content of the compound represented by the formula (N-1-2) to the total amount of the composition of the present invention is 5%, 7%, 10%, 13% , 15%, 17%, 20%, 23%, 25%, 27%, 30%, 33%, 35%, 37% 40% and 42%.
  • the upper limit of the preferred content is 50%, 48%, 45%, 43%, 40%, 38%, 35%, based on the total weight of the composition of the present invention. %, 33%, 30%, 28%, 25%, 23%, 20%, 18%, 18%, 15%, 13%, 10%. %, 8%, 7%, 6%, 5%.
  • the compound represented by the general formula (N-1-2) is a compound selected from the group of compounds represented by formula (N-1-2.1) to formula (N-1-2.22) It is preferable that the formula (N-1-2.3) to the formula (N-1-2.7), the formula (N-1-2.10), the formula (N-1-2.11), the formula Preferred are the compounds represented by (N-1-2.13) and the formula (N-1-2.20), and in the case of emphasizing the improvement of .DELTA..epsilon.
  • N-1-2.7 is preferably a compound represented by the formula (N-1-2.7) from when emphasizing improvements in T NI formula (N-1-2.10), formula (N-1-2.11) And the compound represented by the formula (N-1-2.13), and in the case of focusing on the improvement of the response speed, the compound represented by the formula (N-1-2.20) Is preferred.
  • the compounds represented by the formula (N-1-2.1) to the formula (N-1-2.22) can be used alone or in combination, but the composition of the present invention
  • the lower limit of the preferred content of these compounds alone or in the total amount of these is 5%, 10%, 13%, 15%, 17%, 20%, 23 %, 25%, 27%, 30%, 33%, 35%.
  • the upper limit of the preferred content is 50%, 40%, 38%, 35%, 33%, 30%, or 50%, based on the total weight of the composition of the present invention. %, 25%, 23%, 20%, 18%, 15%, 13%, 10%, 8%, 7%, 6 %, 5% and 3%.
  • the compounds represented by formula (N-1-3) are the following compounds.
  • R N 131 and R N 132 each independently represent the same meaning as R N 11 and R N 12 in General Formula (N-1).
  • R N 131 is preferably an alkyl group of 1 to 5 carbon atoms or an alkenyl group of 2 to 5 carbon atoms, and is preferably an ethyl group, a propyl group or a butyl group.
  • R N 132 is preferably an alkyl group of 1 to 5 carbon atoms, an alkenyl group of 3 to 5 carbon atoms or an alkoxy group of 1 to 4 carbon atoms, and 1-propenyl group, ethoxy group, propoxy group or butoxy group is preferable .
  • the compounds represented by General Formula (N-1-3) can be used alone, or two or more compounds can be used in combination. There is no particular limitation on the types of compounds that can be combined, but they are used in appropriate combination according to the required performance such as solubility at low temperature, transition temperature, electrical reliability, birefringence and the like.
  • the type of the compound used is, for example, one type, two types, three types, four types, five types or more as one embodiment of the present invention.
  • the lower limit of the preferable content of the compound represented by the formula (N-1-3) to the total amount of the composition of the present invention is 5%, 10%, 13%, 15% 17% and 20%.
  • the upper limit of the preferred content is 35%, 30%, 28%, 25%, 23%, 20%, or 35%, based on the total weight of the composition of the present invention. %, 15% and 13%.
  • the compound represented by the general formula (N-1-3) is a compound selected from the group of compounds represented by the formula (N-1-3.1) to the formula (N-1-3-21) And the compounds represented by formulas (N-3.1) to (N-1-3.7) and formula (N-1-3.21) are preferable.
  • -1-3.1), the formula (N-1-3.2), the formula (N-1-3.3), the formula (N-1-3.4) and the formula (N-1-3.6) The compounds represented by) are preferred.
  • the compounds represented by the formulas (N-1-3.1) to (N-1-3.4), the formulas (N-1-3.6) and the formulas (N-1 3.21) can be used alone. Although it is possible to use in combination or in combination, a combination of formula (N-1-3.1) and formula (N-1-3.2), a formula (N-1-3.3) Or a combination of two or three selected from formula (N-1-3.4) and formula (N-1-3.6).
  • the lower limit of the preferred content of these compounds alone or in the total amount of the composition of the present invention is 5%, 10%, 13%, 15%, 17%, 20 %.
  • the upper limit of the preferred content is 35%, 30%, 28%, 25%, 23%, 20%, or 35%, based on the total weight of the composition of the present invention. %, 15% and 13%.
  • the compounds represented by the general formula (N-1-4) are the following compounds.
  • R N141 and R N 142 independently represents the same meaning as R N 11 and R N 12 in General Formula (N-1).
  • R N141 and R N142 are each independently an alkyl group having 1 to 5 carbon atoms, an alkenyl group or an alkoxy group having 1 to 4 carbon atoms carbon atoms 4-5 preferably a methyl group, a propyl group, an ethoxy Preferred is a group or butoxy group.
  • the compounds represented by General Formula (N-1-4) can be used alone, or two or more compounds can be used in combination. There is no particular limitation on the types of compounds that can be combined, but they are used in appropriate combination according to the required performance such as solubility at low temperature, transition temperature, electrical reliability, birefringence and the like.
  • the type of the compound used is, for example, one type, two types, three types, four types, five types or more as one embodiment of the present invention.
  • the lower limit of the preferable content of the compound represented by the formula (N-1-4) to the total amount of the composition of the present invention is 3%, 5%, 7%, 10% 13%, 15%, 17% and 20%.
  • the upper limit of the preferred content is 35%, 30%, 28%, 25%, 23%, 20%, or 35%, based on the total weight of the composition of the present invention. %, 15%, 13%, 11%, 10%, 8%.
  • the compound represented by General Formula (N-1-4) is a compound selected from the group of compounds represented by Formula (N-1 -4.1) to Formula (N-1 -4.14) And the compounds represented by formulas (N-1-4.1) to (N-1 -4.4) are preferable, and the compounds represented by formulas (N-1-4.1) and (N Preferred are the compounds represented by -1-4.2) and the formula (N-1-4.4).
  • the compounds represented by formulas (N-1-4.1) to (N-1-4.14) may be used alone or in combination, but the compounds of the present invention
  • the lower limit of the preferred content of these compounds alone or in the total amount is 3%, 5%, 7%, 10%, 13%, 15%, 17% And 20%.
  • the upper limit of the preferred content is 35%, 30%, 28%, 25%, 23%, 20%, or 35%, based on the total weight of the composition of the present invention. %, 15%, 13%, 11%, 10%, 8%.
  • the compounds represented by General Formula (N-1-5) are the following compounds.
  • R N 151 and R N 152 each independently represent the same meaning as R N 11 and R N 12 in General Formula (N-1).
  • Each of R N151 and R N152 is independently an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 4 to 5 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, preferably an ethyl group, a propyl group or a butyl group Is preferred.
  • the compounds represented by General Formula (N-1-5) can be used alone, or two or more compounds can be used in combination. There is no particular limitation on the types of compounds that can be combined, but they are used in appropriate combination according to the required performance such as solubility at low temperature, transition temperature, electrical reliability, birefringence and the like.
  • the type of the compound used is, for example, one type, two types, three types, four types, five types or more as one embodiment of the present invention.
  • the lower limit of the preferable content of the compound represented by the formula (N-1-5) to the total amount of the composition of the present invention is 5%, 8%, 10%, 13% 15%, 17% and 20%.
  • the upper limit value of the preferred content is 35%, 33%, 30%, 28%, 25%, 23%, or 35%, based on the total weight of the composition of the present invention. %, 18%, 15% and 13%.
  • the compound represented by General Formula (N-1-5) is a compound selected from the group of compounds represented by Formula (N-1-5.1) to Formula (N-1-5.6)
  • the compounds represented by the formula (N-1-5.1), the formula (N-1-5.2) and the formula (N-1-5.4) are preferable.
  • the compounds represented by the formulas (N-1-5.1), (N-1-5.2) and (N-1-5.4) may be used alone or in combination.
  • the lower limit of the preferred content of these compounds alone or in the total amount of the composition of the present invention is 5%, 8%, 10%, 13%, although it is also possible. It is 15%, 17% and 20%.
  • the upper limit value of the preferred content is 35%, 33%, 30%, 28%, 25%, 23%, or 35%, based on the total weight of the composition of the present invention. %, 18%, 15% and 13%.
  • the compounds represented by the general formula (N-1-10) are the following compounds.
  • R N 1101 is preferably an alkyl group of 1 to 5 carbon atoms or an alkenyl group of 2 to 5 carbon atoms, and is preferably an ethyl group, a propyl group, a butyl group, a vinyl group or a 1-propenyl group.
  • R N 1102 is preferably an alkyl group of 1 to 5 carbon atoms, an alkenyl group of 4 to 5 carbon atoms or an alkoxy group of 1 to 4 carbon atoms, and is preferably an ethoxy group, a propoxy group or a butoxy group.
  • the compounds represented by General Formula (N-1-10) can be used alone, or two or more compounds can be used in combination. There is no particular limitation on the types of compounds that can be combined, but they are used in appropriate combination according to the required performance such as solubility at low temperature, transition temperature, electrical reliability, birefringence and the like.
  • the type of the compound used is, for example, one type, two types, three types, four types, five types or more as one embodiment of the present invention.
  • the lower limit of the preferable content of the compound represented by the formula (N-1-10) to the total amount of the composition of the present invention is 5%, 10%, 13%, 15% 17% and 20%.
  • the upper limit of the preferred content is 35%, 30%, 28%, 25%, 23%, 20%, or 35%, based on the total weight of the composition of the present invention. %, 15% and 13%.
  • the compound represented by General Formula (N-1-10) is a compound selected from the group of compounds represented by Formula (N-1-10.1) to Formula (N-1-10.14) And the compounds represented by formulas (N-1-10.1) to (N-1-10.5) are preferable, and the compounds represented by formulas (N-1-10.1) and (N- The compound represented by -1-10.2) is preferred.
  • the composition of the present invention can be used alone or in combination, the composition of the present invention
  • the lower limit value of the preferred content of these compounds alone or in the total amount of is 5%, 10%, 13%, 15%, 17%, 20%.
  • the upper limit of the preferred content is 35%, 30%, 28%, 25%, 23%, 20%, or 35%, based on the total weight of the composition of the present invention. %, 15% and 13%.
  • the compounds represented by the general formula (N-1-11) are the following compounds.
  • R N 1111 and R N 11 12 independently represents the same meaning as R N 11 and R N 12 in General Formula (N-1).
  • R N 1111 is preferably an alkyl group of 1 to 5 carbon atoms or an alkenyl group of 2 to 5 carbon atoms, and is preferably an ethyl group, a propyl group, a butyl group, a vinyl group or a 1-propenyl group.
  • R N 1112 is preferably an alkyl group of 1 to 5 carbon atoms, an alkenyl group of 4 to 5 carbon atoms or an alkoxy group of 1 to 4 carbon atoms, and is preferably an ethoxy group, a propoxy group or a butoxy group.
  • the compounds represented by General Formula (N-1-11) can be used alone, or two or more compounds can be used in combination. There is no particular limitation on the types of compounds that can be combined, but they are used in appropriate combination according to the required performance such as solubility at low temperature, transition temperature, electrical reliability, birefringence and the like.
  • the type of the compound used is, for example, one type, two types, three types, four types, five types or more as one embodiment of the present invention.
  • the lower limit of the preferable content of the compound represented by the formula (N-1-11) to the total amount of the composition of the present invention is 5%, 10%, 13%, 15% 17% and 20%.
  • the upper limit of the preferred content is 35%, 30%, 28%, 25%, 23%, 20%, or 35%, based on the total weight of the composition of the present invention. %, 15% and 13%.
  • the compound represented by General Formula (N-1-11) is a compound selected from the group of compounds represented by Formula (N-1-11.1) to Formula (N-1-11.14) And the compounds represented by formulas (N-1-11.1) to (N-1-11.14) are preferable.
  • the compound represented by 1-11.4) is preferable.
  • the composition of the present invention The lower limit value of the preferred content of these compounds alone or in the total amount of is 5%, 10%, 13%, 15%, 17%, 20%.
  • the upper limit of the preferred content is 35%, 30%, 28%, 25%, 23%, 20%, or 35%, based on the total weight of the composition of the present invention. %, 15% and 13%.
  • the compounds represented by the general formula (N-1-12) are the following compounds.
  • R N 1121 and R N1122 independently represents the same meaning as R N11 and R N12 in the general formula (N-1).
  • R N 1121 is preferably an alkyl group of 1 to 5 carbon atoms or an alkenyl group of 2 to 5 carbon atoms, and is preferably an ethyl group, a propyl group or a butyl group.
  • RN 1122 is preferably an alkyl group of 1 to 5 carbon atoms, an alkenyl group of 4 to 5 carbon atoms or an alkoxy group of 1 to 4 carbon atoms, and is preferably an ethoxy group, a propoxy group or a butoxy group.
  • the compounds represented by General Formula (N-1-12) can be used alone, or two or more compounds can be used in combination. There is no particular limitation on the types of compounds that can be combined, but they are used in appropriate combination according to the required performance such as solubility at low temperature, transition temperature, electrical reliability, birefringence and the like.
  • the type of the compound used is, for example, one type, two types, three types, four types, five types or more as one embodiment of the present invention.
  • the lower limit of the preferable content of the compound represented by the formula (N-1-12) to the total amount of the composition of the present invention is 5%, 10%, 13%, 15% 17% and 20%.
  • the upper limit of the preferred content is 35%, 30%, 28%, 25%, 23%, 20%, or 35%, based on the total weight of the composition of the present invention. %, 15% and 13%.
  • the compounds represented by the general formula (N-1-13) are the following compounds.
  • R N 1131 and R N 1132 independently represents the same meaning as R N 11 and R N 12 in General Formula (N-1).
  • R N 1131 is preferably an alkyl group of 1 to 5 carbon atoms or an alkenyl group of 2 to 5 carbon atoms, and is preferably an ethyl group, a propyl group or a butyl group.
  • R N 1132 is preferably an alkyl group of 1 to 5 carbon atoms, an alkenyl group of 4 to 5 carbon atoms or an alkoxy group of 1 to 4 carbon atoms, and is preferably an ethoxy group, a propoxy group or a butoxy group.
  • the compounds represented by General Formula (N-1-13) can be used alone, or two or more compounds can be used in combination. There is no particular limitation on the types of compounds that can be combined, but they are used in appropriate combination according to the required performance such as solubility at low temperature, transition temperature, electrical reliability, birefringence and the like.
  • the type of the compound used is, for example, one type, two types, three types, four types, five types or more as one embodiment of the present invention.
  • the lower limit of the preferable content of the compound represented by the formula (N-1-13) to the total amount of the composition of the present invention is 5%, 10%, 13%, 15% 17% and 20%.
  • the upper limit of the preferred content is 35%, 30%, 28%, 25%, 23%, 20%, or 35%, based on the total weight of the composition of the present invention. %, 15% and 13%.
  • the compounds represented by General Formula (N-1-14) are the following compounds.
  • R N 1141 and R N 114 2 independently represents the same meaning as R N 11 and R N 12 in General Formula (N-1).
  • R N 1141 is preferably an alkyl group of 1 to 5 carbon atoms or an alkenyl group of 2 to 5 carbon atoms, and is preferably an ethyl group, a propyl group or a butyl group.
  • RN 1142 is preferably an alkyl group of 1 to 5 carbon atoms, an alkenyl group of 4 to 5 carbon atoms or an alkoxy group of 1 to 4 carbon atoms, and is preferably an ethoxy group, a propoxy group or a butoxy group.
  • the compounds represented by General Formula (N-1-14) can be used alone, or two or more compounds can be used in combination. There is no particular limitation on the types of compounds that can be combined, but they are used in appropriate combination according to the required performance such as solubility at low temperature, transition temperature, electrical reliability, birefringence and the like.
  • the type of the compound used is, for example, one type, two types, three types, four types, five types or more as one embodiment of the present invention.
  • the lower limit of the preferable content of the compound represented by the formula (N-1-14) to the total amount of the composition of the present invention is 5%, 10%, 13%, 15% 17% and 20%.
  • the upper limit of the preferred content is 35%, 30%, 28%, 25%, 23%, 20%, or 35%, based on the total weight of the composition of the present invention. %, 15% and 13%.
  • the compounds represented by the general formula (N-1-15) are the following compounds.
  • R N 1151 is preferably an alkyl group of 1 to 5 carbon atoms or an alkenyl group of 2 to 5 carbon atoms, and is preferably an ethyl group, a propyl group or a butyl group.
  • R N 1152 is preferably an alkyl group of 1 to 5 carbon atoms, an alkenyl group of 4 to 5 carbon atoms or an alkoxy group of 1 to 4 carbon atoms, and is preferably an ethoxy group, a propoxy group or a butoxy group.
  • the compounds represented by General Formula (N-1-15) can be used alone, or two or more compounds can be used in combination. There is no particular limitation on the types of compounds that can be combined, but they are used in appropriate combination according to the required performance such as solubility at low temperature, transition temperature, electrical reliability, birefringence and the like.
  • the type of the compound used is, for example, one type, two types, three types, four types, five types or more as one embodiment of the present invention.
  • the lower limit of the preferable content of the compound represented by the formula (N-1-15) to the total amount of the composition of the present invention is 5%, 10%, 13%, 15% 17% and 20%.
  • the upper limit of the preferred content is 35%, 30%, 28%, 25%, 23%, 20%, or 35%, based on the total weight of the composition of the present invention. %, 15% and 13%.
  • the compounds represented by General Formula (N-1-16) are the following compounds.
  • R N 1161 and R N1162 independently represents the same meaning as R N11 and R N12 in the general formula (N-1).
  • R N 1161 is preferably an alkyl group of 1 to 5 carbon atoms or an alkenyl group of 2 to 5 carbon atoms, and is preferably an ethyl group, a propyl group or a butyl group.
  • R N 1162 is preferably an alkyl group of 1 to 5 carbon atoms, an alkenyl group of 4 to 5 carbon atoms or an alkoxy group of 1 to 4 carbon atoms, and is preferably an ethoxy group, a propoxy group or a butoxy group.
  • the compounds represented by General Formula (N-1-16) can be used alone, or two or more compounds can be used in combination. There is no particular limitation on the types of compounds that can be combined, but they are used in appropriate combination according to the required performance such as solubility at low temperature, transition temperature, electrical reliability, birefringence and the like.
  • the type of the compound used is, for example, one type, two types, three types, four types, five types or more as one embodiment of the present invention.
  • the lower limit of the preferable content of the compound represented by the formula (N-1-16) to the total amount of the composition of the present invention is 5%, 10%, 13%, 15% 17% and 20%.
  • the upper limit of the preferred content is 35%, 30%, 28%, 25%, 23%, 20%, or 35%, based on the total weight of the composition of the present invention. %, 15% and 13%.
  • the compounds represented by General Formula (N-1-17) are the following compounds.
  • R N 1171 and R N1172 independently represents the same meaning as R N11 and R N12 in the general formula (N-1).
  • R N 1171 is preferably an alkyl group of 1 to 5 carbon atoms or an alkenyl group of 2 to 5 carbon atoms, and is preferably an ethyl group, a propyl group or a butyl group.
  • RN 1172 is preferably an alkyl group of 1 to 5 carbon atoms, an alkenyl group of 4 to 5 carbon atoms or an alkoxy group of 1 to 4 carbon atoms, and is preferably an ethoxy group, a propoxy group or a butoxy group.
  • the compounds represented by General Formula (N-1-17) can be used alone, or two or more compounds can be used in combination. There is no particular limitation on the types of compounds that can be combined, but they are used in appropriate combination according to the required performance such as solubility at low temperature, transition temperature, electrical reliability, birefringence and the like.
  • the type of the compound used is, for example, one type, two types, three types, four types, five types or more as one embodiment of the present invention.
  • the lower limit of the preferable content of the compound represented by the formula (N-1-17) to the total amount of the composition of the present invention is 5%, 10%, 13%, 15% 17% and 20%.
  • the upper limit of the preferred content is 35%, 30%, 28%, 25%, 23%, 20%, or 35%, based on the total weight of the composition of the present invention. %, 15% and 13%.
  • the compounds represented by the general formula (N-1-18) are the following compounds.
  • R N 1181 is preferably an alkyl group of 1 to 5 carbon atoms or an alkenyl group of 2 to 5 carbon atoms, and is preferably a methyl group, an ethyl group, a propyl group or a butyl group.
  • R N 1182 is preferably an alkyl group of 1 to 5 carbon atoms, an alkenyl group of 4 to 5 carbon atoms or an alkoxy group of 1 to 4 carbon atoms, and is preferably an ethoxy group, a propoxy group or a butoxy group.
  • the compounds represented by General Formula (N-1-18) can be used alone, or two or more compounds can be used in combination. There is no particular limitation on the types of compounds that can be combined, but they are used in appropriate combination according to the required performance such as solubility at low temperature, transition temperature, electrical reliability, birefringence and the like.
  • the type of the compound used is, for example, one type, two types, three types, four types, five types or more as one embodiment of the present invention.
  • the lower limit of the preferable content of the compound represented by the formula (N-1-18) to the total amount of the composition of the present invention is 5%, 10%, 13%, 15% 17% and 20%.
  • the upper limit of the preferred content is 35%, 30%, 28%, 25%, 23%, 20%, or 35%, based on the total weight of the composition of the present invention. %, 15% and 13%.
  • the compound represented by General Formula (N-1-18) is a compound selected from the group of compounds represented by Formula (N-1-18.1) to Formula (N-1-18.5) And the compounds represented by formulas (N-1-18.1) to (N-1-11.3) are preferable, and the compounds represented by formulas (N-1-18.2) and (N- The compound represented by -1-18.3) is preferred.
  • the compounds represented by the general formula (N-1-20) are the following compounds.
  • each of R N 1201 and R N 1202 independently represents the same meaning as R N 11 and R N 12 in General Formula (N-1).
  • Each of R N1201 and R N1202 is independently preferably an alkyl group of 1 to 5 carbon atoms or an alkenyl group of 2 to 5 carbon atoms, and is preferably an ethyl group, a propyl group or a butyl group.
  • the compounds represented by General Formula (N-1-20) can be used alone, or two or more compounds can be used in combination. There is no particular limitation on the types of compounds that can be combined, but they are used in appropriate combination according to the required performance such as solubility at low temperature, transition temperature, electrical reliability, birefringence and the like.
  • the type of the compound used is, for example, one type, two types, three types, four types, five types or more as one embodiment of the present invention.
  • the lower limit of the preferable content of the compound represented by the formula (N-1-20) to the total amount of the composition of the present invention is 5%, 10%, 13%, 15% 17% and 20%.
  • the upper limit of the preferred content is 35%, 30%, 28%, 25%, 23%, 20%, or 35%, based on the total weight of the composition of the present invention. %, 15% and 13%.
  • the compounds represented by General Formula (N-1-21) are the following compounds.
  • R N1211 and R N1212 independently represents the same meaning as R N11 and R N12 in the general formula (N-1).
  • Each of R N1211 and R N1212 is independently preferably an alkyl group of 1 to 5 carbon atoms or an alkenyl group of 2 to 5 carbon atoms, and is preferably an ethyl group, a propyl group or a butyl group.
  • the compounds represented by General Formula (N-1-21) can be used alone, or two or more compounds can be used in combination. There is no particular limitation on the types of compounds that can be combined, but they are used in appropriate combination according to the required performance such as solubility at low temperature, transition temperature, electrical reliability, birefringence and the like.
  • the type of the compound used is, for example, one type, two types, three types, four types, five types or more as one embodiment of the present invention.
  • the lower limit of the preferable content of the compound represented by the formula (N-1-21) to the total amount of the composition of the present invention is 5%, 10%, 13%, 15% 17% and 20%.
  • the upper limit of the preferred content is 35%, 30%, 28%, 25%, 23%, 20%, or 35%, based on the total weight of the composition of the present invention. %, 15% and 13%.
  • the compounds represented by the general formula (N-1-22) are the following compounds.
  • R N1221 and R N1222 independently represents the same meaning as R N11 and R N12 in the general formula (N-1).
  • Each of R N1221 and R N1222 is independently preferably an alkyl group of 1 to 5 carbon atoms or an alkenyl group of 2 to 5 carbon atoms, and is preferably an ethyl group, a propyl group or a butyl group.
  • the compounds represented by General Formula (N-1-22) can be used alone, but two or more compounds can also be used in combination. There is no particular limitation on the types of compounds that can be combined, but they are used in appropriate combination according to the required performance such as solubility at low temperature, transition temperature, electrical reliability, birefringence and the like.
  • the type of the compound used is, for example, one type, two types, three types, four types, five types or more as one embodiment of the present invention.
  • the lower limit of the preferable content of the compound represented by the formula (N-1-21) to the total amount of the composition of the present invention is 1%, 5%, 10%, 13% 15%, 17% and 20%.
  • the upper limit of the preferred content is 35%, 30%, 28%, 25%, 23%, 20%, or 35%, based on the total weight of the composition of the present invention. %, 15%, 13%, 10%, 5%.
  • the compound represented by General Formula (N-1-22) is a compound selected from the group of compounds represented by Formula (N-1-22.1) to Formula (N-1-22.12) Are preferably compounds represented by formulas (N-1-22.1) to (N-1-22.5), and compounds represented by formulas (N-1-22.1) to (N- The compound represented by 1-22.4) is preferable.
  • the compound represented by General Formula (N-3) is preferably a compound selected from the group of compounds represented by General Formula (N-3-2).
  • R N 321 and R N 322 each independently represent the same meaning as R N 11 and R N 12 in General Formula (N-1).
  • Each of R N321 and R N322 is preferably an alkyl group of 1 to 5 carbon atoms or an alkenyl group of 2 to 5 carbon atoms, and more preferably a propyl group or a pentyl group.
  • the compounds represented by General Formula (N-3-2) can be used alone, or two or more compounds can be used in combination. There is no particular limitation on the types of compounds that can be combined, but they are used in appropriate combination according to the required performance such as solubility at low temperature, transition temperature, electrical reliability, birefringence and the like.
  • the type of the compound used is, for example, one type, two types, three types, four types, five types or more as one embodiment of the present invention.
  • the lower limit of the preferable content of the compound represented by the formula (N-3-2) to the total amount of the composition of the present invention is 3%, 5%, 10%, 13% , 15%, 17%, 20%, 23%, 25%, 27%, 30%, 33%, 35%.
  • the upper limit of the preferred content is 50%, 40%, 38%, 35%, 33%, 30%, or 50%, based on the total weight of the composition of the present invention. %, 25%, 23%, 20%, 18%, 15%, 13%, 10%, 8%, 7%, 6 % And 5%.
  • the compound represented by General Formula (N-3-2) is a compound selected from the group of compounds represented by Formula (N-3-2.1) to Formula (N-3-2.3) Is preferred.
  • composition of the present invention preferably contains one or more compounds represented by general formula (J). These compounds correspond to dielectrically positive compounds ( ⁇ is greater than 2).
  • a J1 , A J2 and A J3 are each independently (A) 1,4-cyclohexylene group (this is present in the group one -CH 2 - or nonadjacent two or more -CH 2 - may be replaced by -O-.)
  • Group (a), group (b) and group (c) are each independently a cyano group, a fluorine atom, a chlorine atom, a methyl group, a trifluoromethyl group or a trifluoro group It may be substituted by a methoxy group
  • Z J1 and Z J2 are each independently a single bond, —CH 2 CH 2 —, — (CH 2 ) 4 —, —OCH 2 —, —CH 2 O—, —OCF 2 —, —CF 2 O—, Represents -COO-, -OCO- or -C ⁇ C-
  • n J1 is 2, 3 or 4 and there are a plurality of A J2 , they may be the same or different, and n J1 is 2, 3 or 4 and a plurality of Z J1 is present If they are identical or different,
  • X J1 represents a hydrogen atom, a fluorine atom, a chlorine atom, a cyano group,
  • R J1 represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms or an alkenyloxy having 2 to 8 carbon atoms Group is preferable, and an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkenyloxy group having 2 to 5 carbon atoms is preferable.
  • An alkyl group of 1 to 5 or an alkenyl group of 2 to 5 carbon atoms is further preferable, an alkyl group of 2 to 5 carbon atoms or an alkenyl group of 2 to 3 carbon atoms is further preferable, and an alkenyl group of 3 carbon atoms (Propenyl group) is particularly preferred.
  • R J1 is preferably an alkyl group, and when importance is attached to decrease in viscosity, it is preferably an alkenyl group.
  • the ring structure to which it is bonded is a phenyl group (aromatic)
  • a linear alkyl group having 1 to 5 carbon atoms, a linear alkoxy group having 1 to 4 carbon atoms, and carbon Alkenyl group having 4 to 5 atoms is preferable
  • a linear alkyl group having 1 to 5 carbon atoms, a straight chain Preferred is an alkoxy group having 1 to 4 carbon atoms and a linear alkenyl group having 2 to 5 carbon atoms.
  • the total of carbon atoms and oxygen atoms, if present is preferably 5 or less, preferably linear.
  • the alkenyl group is preferably selected from the groups represented by any one of formulas (R1) to (R5). (The black dot in each formula represents a carbon atom in a ring structure to which an alkenyl group is bonded.)
  • a J1 , A J2 and A J3 are each preferably aromatic when it is required to increase ⁇ n independently, and in order to improve the response speed, it is preferably aliphatic; 1,4-cyclohexylene group, 1,4-phenylene group, 1,4-cyclohexenylene group, 1,4-bicyclo [2.2.2] octylene group, piperidine-1,4-diyl group, naphthalene -2,6-diyl group, decahydronaphthalene-2,6-diyl group or 1,2,3,4-tetrahydronaphthalene-2,6-diyl group is preferred, and they are substituted by a fluorine atom It is more preferable to represent the following structure.
  • Z J1 and Z J2 each preferably independently represent -CH 2 O-, -OCH 2- , -CF 2 O-, -CH 2 CH 2- , -CF 2 CF 2 -or a single bond,- More preferred is OCH 2 —, —CF 2 O—, —CH 2 CH 2 — or a single bond, and particularly preferred is —OCH 2 —, —CF 2 O— or a single bond.
  • X J1 is preferably a fluorine atom or a trifluoromethoxy group, more preferably a fluorine atom.
  • n J1 is preferably 0, 1, 2 or 3, preferably 0, 1 or 2, and if emphasis is placed on improvement of ⁇ , then 0 or 1 is preferred, and if emphasis is placed on T NI , 1 or 2 is preferred. preferable.
  • the types of compounds that can be combined are, for example, one type, two types, and three types in one embodiment of the present invention. Furthermore, in another embodiment of the present invention, there are four types, five types, six types, and seven or more types.
  • the content of the compound represented by the general formula (J) is low temperature solubility, transition temperature, electrical reliability, birefringence, process compatibility, dripping marks, image sticking, It is necessary to appropriately adjust according to the required performance such as dielectric anisotropy.
  • the lower limit of the preferable content of the compound represented by the general formula (J) to the total amount of the composition of the present invention is 1%, 10%, 20%, 30%, 40%, 50%, 55%, 60%, 65%, 70%, 75%, 80%.
  • the upper limit of the preferred content is, for example, 95%, 85%, 75%, 65%, 55% in one form of the present invention based on the total amount of the composition of the present invention Yes, 45%, 35%, 25%.
  • the viscosity of the composition of the present invention low and lower the above lower limit and lower the upper limit when a composition having a high response speed is required. Furthermore, it is preferable to keep the TNI of the composition of the present invention high, and lower the above lower limit and lower the upper limit when a composition having good temperature stability is required. When it is desired to increase the dielectric anisotropy in order to keep the drive voltage low, it is preferable to raise the lower limit and raise the upper limit.
  • R J1 is preferably an alkyl group, and when importance is attached to decrease in viscosity, it is preferably an alkenyl group.
  • composition of the present invention preferably contains one or two or more compounds represented by General Formula (M). These compounds correspond to dielectrically positive compounds ( ⁇ is greater than 2).
  • R M1 represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms or an alkenyloxy having 2 to 8 carbon atoms Group is preferable, and an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkenyloxy group having 2 to 5 carbon atoms is preferable.
  • An alkyl group of 1 to 5 or an alkenyl group of 2 to 5 carbon atoms is further preferable, an alkyl group of 2 to 5 carbon atoms or an alkenyl group of 2 to 3 carbon atoms is further preferable, and an alkenyl group of 3 carbon atoms (Propenyl group) is particularly preferred.
  • R M1 is preferably an alkyl group, and when importance is attached to decrease in viscosity, it is preferably an alkenyl group.
  • the ring structure to which it is bonded is a phenyl group (aromatic)
  • a linear alkyl group having 1 to 5 carbon atoms, a linear alkoxy group having 1 to 4 carbon atoms, and carbon Alkenyl group having 4 to 5 atoms is preferable
  • a linear alkyl group having 1 to 5 carbon atoms, a straight chain Preferred is an alkoxy group having 1 to 4 carbon atoms and a linear alkenyl group having 2 to 5 carbon atoms.
  • the total of carbon atoms and oxygen atoms, if present is preferably 5 or less, preferably linear.
  • the alkenyl group is preferably selected from the groups represented by any one of formulas (R1) to (R5). (The black dot in each formula represents a carbon atom in a ring structure to which an alkenyl group is bonded.)
  • a M1 and A M2 are each preferably aromatic when it is required to increase ⁇ n independently, and in order to improve the response speed, it is preferably aliphatic, and trans-1,4 -Cyclohexylene group, 1,4-phenylene group, 2-fluoro-1,4-phenylene group, 3-fluoro-1,4-phenylene group, 3,5-difluoro-1,4-phenylene group, 2 ,, 3-difluoro-1,4-phenylene group, 1,4-cyclohexenylene group, 1,4-bicyclo [2.2.2] octylene group, piperidine-1,4-diyl group, naphthalene-2,6- It is preferable to represent a diyl group, decahydronaphthalene-2,6-diyl group or 1,2,3,4-tetrahydronaphthalene-2,6-diyl group, and more preferable to represent the following structure,
  • Z M1 and Z M2 each independently -CH 2 O -, - CF 2 O -, - CH 2 CH 2 -, - CF 2 CF 2 - or preferably a single bond, -CF 2 O-, More preferred is —CH 2 CH 2 — or a single bond, with —CF 2 O— or a single bond being particularly preferred.
  • n M1 is preferably 0, 1, 2 or 3 and is preferably 0, 1 or 2; 0 or 1 is preferred when emphasis is placed on improvement of ⁇ , and 1 or 2 is preferred when T NI is emphasized preferable.
  • the types of compounds that can be combined are, for example, one type, two types, and three types in one embodiment of the present invention. Furthermore, in another embodiment of the present invention, there are four types, five types, six types, and seven or more types.
  • the content of the compound represented by the general formula (M) is low temperature solubility, transition temperature, electrical reliability, birefringence, process compatibility, dripping marks, image sticking, It is necessary to appropriately adjust according to the required performance such as dielectric anisotropy.
  • the lower limit of the preferable content of the compound represented by the formula (M) to the total amount of the composition of the present invention is 1%, 10%, 20%, 30%, 40 %, 50%, 55%, 60%, 65%, 70%, 75%, 80%.
  • the upper limit of the preferred content is, for example, 95%, 85%, 75%, 65%, 55% in one form of the present invention based on the total amount of the composition of the present invention Yes, 45%, 35%, 25%.
  • the viscosity of the composition of the present invention low and lower the above lower limit and lower the upper limit when a composition having a high response speed is required. Furthermore, it is preferable to keep the TNI of the composition of the present invention high, and lower the above lower limit and lower the upper limit when a composition having good temperature stability is required. When it is desired to increase the dielectric anisotropy in order to keep the drive voltage low, it is preferable to raise the lower limit and raise the upper limit.
  • the compound represented by Formula (M) is preferably a compound selected from the group of compounds represented by Formula (M-1), for example.
  • R M11 represents an alkyl group of 1 to 5 carbon atoms, an alkenyl group of 2 to 5 carbon atoms, or an alkoxy group of 1 to 4 carbon atoms
  • X M11 to X M15 are each independently hydrogen Represents an atom or a fluorine atom
  • Y M11 represents a fluorine atom or OCF 3
  • the types of compounds used are, for example, one type, two types, and three or more types in one embodiment of the present invention.
  • the lower limit of the preferable content of the compound represented by the formula (M-1) to the total amount of the composition of the present invention is 1%, 2%, 5%, 8% 10%, 13%, 15%, 18%, 20%, 22%, 25%, 30%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the viscosity of the composition of the present invention low and lower the above lower limit and lower the upper limit when a composition having a high response speed is required. Furthermore, it is preferable to keep the TNI of the composition of the present invention high, and lower the above lower limit and lower the upper limit when a composition having good temperature stability is required. When it is desired to increase the dielectric anisotropy in order to keep the drive voltage low, it is preferable to raise the lower limit and raise the upper limit.
  • the compound represented by General Formula (M-1) is specifically a compound represented by Formula (M-1.1) to Formula (M-1.4),
  • the compound represented by M-1.1) or Formula (M-1.2) is preferable, and the compound represented by Formula (M-1.2) is more preferable.
  • the lower limit of the preferable content of the compound represented by the formula (M-1.1) to the total amount of the composition of the present invention is 1%, 2%, 5%, 6% It is.
  • the upper limit value of the preferable content is 15%, 13%, 10%, 8%, 5%.
  • the lower limit of the preferable content of the compound represented by the formula (M-1.2) to the total amount of the composition of the present invention is 1%, 2%, 5%, 6% It is.
  • the upper limit of the preferable content is 30%, 25%, 23%, 20%, 18%, 15%, 13%, 10%, 8% It is.
  • the lower limit of the preferable content of the total of the compounds represented by the formula (M-1.1) and the formula (M-1.2) with respect to the total amount of the composition of the present invention is 1%, 2 %, 5%, and 6%.
  • the upper limit of the preferable content is 30%, 25%, 23%, 20%, 18%, 15%, 13%, 10%, 8% It is.
  • the compound represented by Formula (M) is preferably a compound selected from the group of compounds represented by Formula (M-2), for example.
  • R M21 represents an alkyl group of 1 to 5 carbon atoms, an alkenyl group of 2 to 5 carbon atoms, or an alkoxy group of 1 to 4 carbon atoms, and X M21 and X M22 are each independently hydrogen
  • Y M21 represents a fluorine atom, a chlorine atom or OCF 3
  • the lower limit of the preferable content of the compound represented by the formula (M-2) to the total amount of the composition of the present invention is 1%, 2%, 5%, 8% 10%, 13%, 15%, 18%, 20%, 22%, 25%, 30%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the viscosity of the composition of the present invention low and lower the above lower limit and lower the upper limit when a composition having a high response speed is required. Furthermore, it is preferable to keep the TNI of the composition of the present invention high, and lower the above lower limit value and lower the upper limit value when a composition which hardly causes seizure is required. When it is desired to increase the dielectric anisotropy in order to keep the drive voltage low, it is preferable to raise the lower limit and raise the upper limit.
  • the compound represented by General Formula (M-2) is preferably a compound represented by Formula (M-2.1) to Formula (M-2.5), and the compound represented by Formula (M-2. 3) or / and a compound represented by the formula (M-2.5) is preferable.
  • the lower limit of the preferable content of the compound represented by the formula (M-2.2) to the total amount of the composition of the present invention is 1%, 2%, 5%, 6% It is.
  • the upper limit value of the preferable content is 15%, 13%, 10%, 8%, 5%.
  • the lower limit of the preferable content of the compound represented by the formula (M-2.3) to the total amount of the composition of the present invention is 1%, 2%, 5%, 6% It is.
  • the upper limit of the preferable content is 30%, 25%, 23%, 20%, 18%, 15%, 13%, 10%, 8% It is.
  • the lower limit of the preferable content of the compound represented by the formula (M-2.5) to the total amount of the composition of the present invention is 1%, 2%, 5%, 6% It is.
  • the upper limit of the preferable content is 30%, 25%, 23%, 20%, 18%, 15%, 13%, 10%, 8% It is.
  • Lower limit value of the preferable content of the total of the compounds represented by Formula (M-2.2), (M-2.3) and Formula (M-2.5) with respect to the total amount of the composition of the present invention Is 1%, 2%, 5% and 6%.
  • the upper limit of the preferable content is 30%, 25%, 23%, 20%, 18%, 15%, 13%, 10%, 8% It is.
  • the content is preferably 1% or more, more preferably 5% or more, still more preferably 8% or more, still more preferably 10% or more, still more preferably 14% or more based on the total amount of the composition of the present invention , 16% or more is particularly preferred.
  • the maximum ratio is preferably 30% or less, preferably 25% or less, more preferably 22% or less, and 20% Less than is particularly preferred.
  • the compound represented by General Formula (M) used in the composition of the present invention is preferably a compound represented by General Formula (M-3).
  • R M31 represents an alkyl group of 1 to 5 carbon atoms, an alkenyl group of 2 to 5 carbon atoms, or an alkoxy group of 1 to 4 carbon atoms
  • X M31 to X M36 are each independently hydrogen Represents an atom or a fluorine atom
  • Y M31 represents a fluorine atom, a chlorine atom or OCF 3
  • the content of the compound represented by Formula (M-3) is an upper limit value and a lower limit in each embodiment in consideration of characteristics such as solubility at low temperature, transition temperature, electrical reliability, birefringence, and the like. There is a value.
  • the lower limit of the preferable content of the compound represented by the formula (M-3) to the total amount of the composition of the present invention is 1%, 2%, 4%, 5% 8%, 10%, 13%, 15%, 18%, 20%.
  • the upper limit value of the preferable content is 20%, 18%, 15%, 13%, 10%, 8%, 5%.
  • the compound represented by General Formula (M-3) used in the composition of the present invention is specifically represented by Formula (M-3.1) to Formula (M-3.8)
  • the compound is preferably a compound, and it is particularly preferable to contain a compound represented by the formula (M-3.1) and / or the formula (M-3.2).
  • the lower limit of the preferable content of the compound represented by the formula (M-3.1) to the total amount of the composition of the present invention is 1%, 2%, 4%, 5% 8%, 10%, 13%, 15%, 18% and 20%.
  • the upper limit value of the preferable content is 20%, 18%, 15%, 13%, 10%, 8%, 5%.
  • the lower limit of the preferable content of the compound represented by the formula (M-3.2) to the total amount of the composition of the present invention is 1%, 2%, 4%, 5% 8%, 10%, 13%, 15%, 18% and 20%.
  • the upper limit value of the preferable content is 20%, 18%, 15%, 13%, 10%, 8%, 5%.
  • the lower limit of the preferable content of the total of the compounds represented by the formula (M-3.1) and the formula (M-3.2) with respect to the total amount of the composition of the present invention is 1%, 2 %, 4%, 5%, 8%, 10%, 13%, 15%, 18%, 20%.
  • the upper limit value of the preferable content is 20%, 18%, 15%, 13%, 10%, 8%, 5%.
  • the compound represented by Formula (M) is preferably a compound selected from the group represented by Formula (M-4).
  • R M41 represents an alkyl group of 1 to 5 carbon atoms, an alkenyl group of 2 to 5 carbon atoms, or an alkoxy group of 1 to 4 carbon atoms
  • X M41 to X M48 are each independently fluorine Represents an atom or a hydrogen atom
  • Y M41 represents a fluorine atom, a chlorine atom or OCF 3
  • the content of the compound represented by the general formula (M-4) is an upper limit value and a lower limit for each embodiment in consideration of characteristics such as solubility at low temperature, transition temperature, electrical reliability, birefringence and the like There is a value.
  • the lower limit of the preferable content of the compound represented by the formula (M-4) to the total amount of the composition of the present invention is 1%, 2%, 4%, 5% 8%, 10%, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • composition of the present invention When used for a liquid crystal display device having a small cell gap, it is suitable to increase the content of the compound represented by Formula (M-4). When used for a liquid crystal display element with a small driving voltage, it is suitable to increase the content of the compound represented by Formula (M-4). When used for a liquid crystal display element used in a low temperature environment, it is suitable to reduce the content of the compound represented by the general formula (M-4). When the composition is used for a liquid crystal display device having a high response speed, it is suitable to reduce the content of the compound represented by Formula (M-4).
  • the compound represented by General Formula (M-4) used in the composition of the present invention is specifically represented by Formula (M-4.1) to Formula (M-4.4) It is preferable that it is a compound, It is preferable to contain the compound represented by Formula (M-4.2)-Formula (M-4.4) especially, and the compound represented by Formula (M-4.2) It is more preferable to contain
  • the compound represented by Formula (M) is preferably a compound represented by Formula (M-5).
  • R M51 represents an alkyl group of 1 to 5 carbon atoms, an alkenyl group of 2 to 5 carbon atoms, or an alkoxy group of 1 to 4 carbon atoms
  • X M51 and X M52 are each independently hydrogen
  • Y M51 represents a fluorine atom, a chlorine atom or OCF 3
  • solubility at low temperature, transition temperature, electrical reliability, birefringence, etc. they are used in appropriate combination for each embodiment. For example, in one embodiment of the present invention, one in another embodiment, two in another embodiment, three in yet another embodiment, four in still another embodiment, five in yet another embodiment, In still another embodiment, six or more types are combined.
  • the lower limit of the preferable content of the compound represented by the formula (M-5) to the total amount of the composition of the present invention is 1%, 2%, 5%, 8% 10%, 13%, 15%, 18%, 20%, 22%, 25%, 30%.
  • the upper limit of the preferable content is 50%, 45%, 40%, 35%, 33%, 30%, 28%, 25%, 23% 20%, 18%, 15%, 13%, 10%, 8%, 5%.
  • the viscosity of the composition of the present invention low and lower the above lower limit and lower the upper limit when a composition having a high response speed is required. Furthermore, it is preferable to keep the TNI of the composition of the present invention high, and lower the above lower limit value and lower the upper limit value when a composition which hardly causes seizure is required. When it is desired to increase the dielectric anisotropy in order to keep the drive voltage low, it is preferable to raise the lower limit and raise the upper limit.
  • the compound represented by General Formula (M-5) is preferably a compound represented by Formula (M-5.1) to Formula (M-5.4), and the compound represented by Formula (M-5. It is preferable that it is a compound represented by 1) to Formula (M-5.4).
  • the lower limit of the preferred content of these compounds to the total amount of the composition of the present invention is 1%, 2%, 5%, 8%, 10%, 13% Yes, 15%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the compound represented by Formula (M-5) is preferably a compound represented by Formula (M-5.11) to Formula (M-5.17), and the compound represented by Formula (M-5. 11) Compounds represented by Formula (M-5.13) and Formula (M-5.17) are preferable.
  • the lower limit of the preferred content of these compounds to the total amount of the composition of the present invention is 1%, 2%, 5%, 8%, 10%, 13% Yes, 15%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the compound represented by General Formula (M-5) is preferably a compound represented by Formula (M-5. 21) to Formula (M-5. 28), and the compound represented by Formula (M-5. 21) Compounds represented by Formula (M-5.22), Formula (M-5.23) and Formula (M-5.25) are preferable.
  • the lower limit of the preferred content of these compounds to the total amount of the composition of the present invention is 1%, 2%, 5%, 8%, 10%, 13% Yes, 15%, 18%, 20%, 22%, 25%, 30%.
  • the upper limit of the preferred content is 40%, 35%, 33%, 30%, 28%, 25%, 23%, 20%, 18% 15%, 13%, 10%, 8%, 5%.
  • the compound represented by Formula (M) is preferably a compound represented by Formula (M-6).
  • R M61 represents an alkyl group of 1 to 5 carbon atoms, an alkenyl group of 2 to 5 carbon atoms, or an alkoxy group of 1 to 4 carbon atoms
  • X M61 to X M64 are each independently fluorine Represents an atom or a hydrogen atom
  • Y M61 represents a fluorine atom, a chlorine atom or OCF 3
  • the lower limit of the preferable content of the compound represented by the formula (M-6) to the total amount of the composition of the present invention is 1%, 2%, 4%, 5% 8%, 10%, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • composition of the present invention When the composition of the present invention is used for a liquid crystal display device having a small driving voltage, it is suitable to increase the content of the compound represented by Formula (M-6). When the composition is used for a liquid crystal display device having a high response speed, it is suitable to reduce the content of the compound represented by Formula (M-6).
  • the compound represented by the general formula (M-6) is specifically a compound represented by the formula (M-6.1) to the formula (M-6.4), among them It is preferable to contain the compounds represented by M-6.2) and the formula (M-6.4).
  • the lower limit of the preferred content of these compounds to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the compound represented by General Formula (M-6) is specifically a compound represented by Formula (M-6. 11) to Formula (M-6. It is preferable to contain the compounds represented by M-6.12) and the formula (M-6.14).
  • the lower limit of the preferred content of these compounds to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the compound represented by general formula (M-6) is specifically a compound represented by formula (M-6. 21) to formula (M-6. 24), among which It is preferable to contain the compounds represented by M-6.21), Formula (M-6.22) and Formula (M-6.24).
  • the lower limit of the preferred content of these compounds to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • compounds represented by general formula (M-6) are specifically preferably compounds represented by formula (M-6.31) to formula (M-6.34). Among them, it is preferable to contain the compounds represented by Formula (M-6.31) and Formula (M-6.32).
  • the lower limit of the preferred content of these compounds to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the compound represented by general formula (M-6) is specifically a compound represented by formula (M-6.41) to formula (M-6.44), among which It is preferable to contain the compound represented by M-6.42).
  • the lower limit of the preferred content of these compounds to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the compound represented by Formula (M) is preferably a compound selected from the group of compounds represented by Formula (M-7).
  • each of X M71 to X M76 independently represents a fluorine atom or a hydrogen atom, and R M71 is an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or 1 to 5 carbon atoms 4 represents an alkoxy group, and Y M71 represents a fluorine atom or OCF 3 )
  • R M71 is an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or 1 to 5 carbon atoms 4 represents an alkoxy group
  • Y M71 represents a fluorine atom or OCF 3
  • the content of the compound represented by Formula (M-7) is an upper limit value and a lower limit in each embodiment in consideration of characteristics such as solubility at low temperature, transition temperature, electrical reliability, birefringence, and the like. There is a value.
  • the lower limit of the preferable content of the compound represented by the formula (M-7) to the total amount of the composition of the present invention is 1%, 2%, 4%, 5% 8%, 10%, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • composition of the present invention When used for a liquid crystal display device having a small cell gap, it is suitable to increase the content of the compound represented by the general formula (M-7). When used for a liquid crystal display element with a small driving voltage, it is suitable to increase the content of the compound represented by Formula (M-7). When used for a liquid crystal display device used in a low temperature environment, it is suitable to reduce the content of the compound represented by the general formula (M-7). When the composition is used for a liquid crystal display device having a high response speed, it is suitable to reduce the content of the compound represented by the general formula (M-7).
  • the compound represented by General Formula (M-7) is preferably a compound represented by Formula (M-7.1) to Formula (M-7.4), and Formula (M-7. It is preferable that it is a compound represented by 2).
  • the lower limit of the preferred content of these compounds to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the compound represented by General Formula (M-7) is preferably a compound represented by Formula (M-7.11) to Formula (M-7.14), and the compound represented by Formula (M-7. 11) and the compounds represented by formula (M-7.12).
  • the lower limit of the preferred content of these compounds to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the compound represented by General Formula (M-7) is preferably a compound represented by Formula (M-7.21) to Formula (M-7.24), and the compound represented by Formula (M-7. 21) and the compounds represented by formula (M-7.22).
  • the lower limit of the preferred content of these compounds to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the compound represented by Formula (M) is preferably a compound represented by Formula (M-8).
  • X M81 X M84 each independently represents a fluorine atom or a hydrogen atom, Y M81 fluorine atom, a chlorine atom or -OCF 3, R M81 represents an alkyl group having 1 to 5 carbon atoms, And each of A M 81 and A M 82 independently represents a 1,4-cyclohexylene group, a 1,4-phenylene group or an alkenyl group having 2 to 5 carbon atoms or an alkoxy group having 1 to 4 carbon atoms.
  • the hydrogen atom on the 1,4-phenylene group may be substituted by a fluorine atom.
  • the lower limit of the preferable content of the compound represented by General Formula (M-8) to the total amount of the composition of the present invention is 1%, 2%, 4%, 5% Yes, 8%, 10%, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the viscosity of the composition of the present invention low and lower the above lower limit and lower the upper limit when a composition having a high response speed is required. Furthermore, in the case where a composition that hardly causes sticking is required, it is preferable to lower the above lower limit and lower the upper limit. When it is desired to increase the dielectric anisotropy in order to keep the drive voltage low, it is preferable to raise the lower limit and raise the upper limit.
  • the compound represented by General Formula (M-8) used in the composition of the present invention is specifically represented by Formula (M-8.1) to Formula (M-8.4) It is preferably a compound, and it is particularly preferable to contain the compounds represented by Formula (M-8.1) and Formula (M-8.2).
  • the lower limit of the preferred content of these compounds to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the compound represented by General Formula (M-8) used in the composition of the present invention is specifically represented by Formula (M-8.11) to Formula (M-8.14)
  • the compound is preferably a compound, and it is particularly preferable to contain the compound represented by the formula (M-8.12).
  • the lower limit of the preferred content of these compounds to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the compound represented by General Formula (M-8) used in the composition of the present invention is specifically represented by Formula (M-8.21) to Formula (M-8.24)
  • the compound is preferably a compound, and it is particularly preferable to contain the compound represented by the formula (M-8.22).
  • the lower limit of the preferred content of these compounds to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the compound represented by General Formula (M-8) used in the composition of the present invention is specifically represented by Formula (M-8.31) to Formula (M-8.34)
  • the compound is preferably a compound, and it is particularly preferable to contain the compound represented by the formula (M-8.32).
  • the lower limit of the preferred content of these compounds to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the compound represented by General Formula (M-8) used in the composition of the present invention is specifically represented by Formula (M-8.41) to Formula (M-8.44)
  • the compound is preferably a compound, and it is particularly preferable to contain the compound represented by the formula (M-8.42).
  • the lower limit of the preferred content of these compounds to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the compound represented by General Formula (M-8) used in the composition of the present invention is specifically represented by Formula (M-8.51) to Formula (M-8.54)
  • the compound is preferably a compound, and it is particularly preferable to contain the compound represented by the formula (M-8.52).
  • the lower limit of the preferred content of these compounds to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the compound represented by General Formula (M) may have the following partial structure in its structure.
  • the black point in the formula represents a carbon atom in the ring structure to which the above partial structure is bonded.
  • the compounds having the above partial structure are preferably compounds represented by general formulas (M-10) to (M-18).
  • each of X M101 and X M102 independently represents a fluorine atom or a hydrogen atom
  • Y M101 represents a fluorine atom, a chlorine atom or —OCF 3
  • R M101 represents an alkyl group having 1 to 5 carbon atoms, an alkenyl group or an alkoxy group having 1 to 4 carbon atoms carbon atoms 2 ⁇ 5
  • W M101 and W M102 are each independently, -CH 2 - represents a or -O-).
  • the lower limit of the preferable content of the compound represented by General Formula (M-10) to the total amount of the composition of the present invention is 1%, 2%, 4%, 5% Yes, 8%, 10%, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the viscosity of the composition of the present invention low and lower the above lower limit and lower the upper limit when a composition having a high response speed is required. Furthermore, in the case where a composition that hardly causes sticking is required, it is preferable to lower the above lower limit and lower the upper limit. When it is desired to increase the dielectric anisotropy in order to keep the drive voltage low, it is preferable to raise the lower limit and raise the upper limit.
  • the compound represented by General Formula (M-10) used in the composition of the present invention is specifically represented by Formula (M-10.1) to Formula (M-10.4) It is preferably a compound.
  • the lower limit of the preferred content of these compounds to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • each of X M111 to X M114 independently represents a fluorine atom or a hydrogen atom
  • Y M111 represents a fluorine atom, a chlorine atom or —OCF 3
  • R M111 represents an alkyl group having 1 to 5 carbon atoms
  • the lower limit of the preferable content of the compound represented by General Formula (M-11) to the total amount of the composition of the present invention is 1%, 2%, 4%, 5% Yes, 8%, 10%, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the viscosity of the composition of the present invention low and lower the above lower limit and lower the upper limit when a composition having a high response speed is required. Furthermore, in the case where a composition that hardly causes sticking is required, it is preferable to lower the above lower limit and lower the upper limit. When it is desired to increase the dielectric anisotropy in order to keep the drive voltage low, it is preferable to raise the lower limit and raise the upper limit.
  • the compound represented by General Formula (M-11) used in the composition of the present invention is specifically represented by Formula (M-11. 1) to Formula (M-11.8) Among them, the compounds represented by formulas (M-11. 1) to (M-11. 4) are preferably contained.
  • the lower limit of the preferred content of these compounds to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • each of X M121 and X M122 independently represents a fluorine atom or a hydrogen atom
  • Y M121 represents a fluorine atom, a chlorine atom or —OCF 3
  • R M121 represents an alkyl group having 1 to 5 carbon atoms
  • W M121 and W M122 are each independently, -CH 2 - represents a or -O-).
  • the lower limit of the preferable content of the compound represented by General Formula (M-12) to the total amount of the composition of the present invention is 1%, 2%, 4%, 5% Yes, 8%, 10%, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the viscosity of the composition of the present invention low and lower the above lower limit and lower the upper limit when a composition having a high response speed is required. Furthermore, in the case where a composition that hardly causes sticking is required, it is preferable to lower the above lower limit and lower the upper limit. When it is desired to increase the dielectric anisotropy in order to keep the drive voltage low, it is preferable to raise the lower limit and raise the upper limit.
  • the compound represented by General Formula (M-12) used in the composition of the present invention is specifically represented by Formula (M-12. 1) to Formula (M-12. 12) It is preferably a compound, and it is particularly preferable to contain a compound represented by Formula (M-12.5) to Formula (M-12.8).
  • the lower limit of the preferred content of these compounds to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • each of X M131 to X M134 independently represents a fluorine atom or a hydrogen atom
  • Y M131 represents a fluorine atom, a chlorine atom or —OCF 3
  • R M131 represents an alkyl group having 1 to 5 carbon atoms, an alkenyl group or an alkoxy group having 1 to 4 carbon atoms carbon atoms 2 ⁇ 5
  • W M131 and W M132 are each independently, -CH 2 - represents a or -O-).
  • the lower limit of the preferable content of the compound represented by General Formula (M-13) to the total amount of the composition of the present invention is 1%, 2%, 4%, 5% Yes, 8%, 10%, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the viscosity of the composition of the present invention low and lower the above lower limit and lower the upper limit when a composition having a high response speed is required. Furthermore, in the case where a composition that hardly causes sticking is required, it is preferable to lower the above lower limit and lower the upper limit. When it is desired to increase the dielectric anisotropy in order to keep the drive voltage low, it is preferable to raise the lower limit and raise the upper limit.
  • the compound represented by General Formula (M-13) used in the composition of the present invention is specifically represented by Formula (M-13. 1) to Formula (M-13.8) It is preferably a compound.
  • the lower limit of the preferred content of these compounds to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • X M141 ⁇ X M144 are each independently a fluorine atom or a hydrogen atom
  • Y M 141 is a fluorine atom, a chlorine atom or -OCF 3
  • R M 141 is an alkyl group having 1 to 5 carbon atoms, an alkenyl group or an alkoxy group having 1 to 4 carbon atoms carbon atoms 2 ⁇ 5
  • W M141 and W M142 are each independently, -CH 2 - represents a or -O-).
  • the lower limit of the preferable content of the compound represented by the general formula (M-14) to the total amount of the composition of the present invention is 1%, 2%, 4%, 5% Yes, 8%, 10%, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the viscosity of the composition of the present invention low and lower the above lower limit and lower the upper limit when a composition having a high response speed is required. Furthermore, in the case where a composition that hardly causes sticking is required, it is preferable to lower the above lower limit and lower the upper limit. When it is desired to increase the dielectric anisotropy in order to keep the drive voltage low, it is preferable to raise the lower limit and raise the upper limit.
  • the compound represented by General Formula (M-14) used in the composition of the present invention is specifically represented by Formula (M-14. 1) to Formula (M-14.8) It is preferably a compound, and it is particularly preferable to contain a compound represented by Formula (M-14.5) and Formula (M-14.8).
  • the lower limit of the preferred content of these compounds to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • X M151 and X M152 each independently represents a fluorine atom or a hydrogen atom, Y M151 fluorine atom, a chlorine atom or -OCF 3, R M151 is an alkyl group having 1 to 5 carbon atoms, an alkenyl group or an alkoxy group having 1 to 4 carbon atoms carbon atoms 2 ⁇ 5, W M151 and W M152 are each independently, -CH 2 - represents a or -O-).
  • the lower limit of the preferable content of the compound represented by General Formula (M-15) to the total amount of the composition of the present invention is 1%, 2%, 4%, 5% Yes, 8%, 10%, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the viscosity of the composition of the present invention low and lower the above lower limit and lower the upper limit when a composition having a high response speed is required. Furthermore, in the case where a composition that hardly causes sticking is required, it is preferable to lower the above lower limit and lower the upper limit. When it is desired to increase the dielectric anisotropy in order to keep the drive voltage low, it is preferable to raise the lower limit and raise the upper limit.
  • the compound represented by General Formula (M-15) used in the composition of the present invention is specifically represented by Formula (M-15.1) to Formula (M-15.14) Among them, compounds containing the compounds represented by formulas (M-15.5) to (M-15.8) and (M-15.11) to (M-15.14) are preferred. It is preferable to do.
  • the lower limit of the preferred content of these compounds to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • X M161 ⁇ X M164 are each independently a fluorine atom or a hydrogen atom, Y M161 fluorine atom, a chlorine atom or -OCF 3, R M161 is an alkyl group having 1 to 5 carbon atoms, Represents an alkenyl group having 2 to 5 carbon atoms or an alkoxy group having 1 to 4 carbon atoms.
  • the lower limit of the preferable content of the compound represented by General Formula (M-16) to the total amount of the composition of the present invention is 1%, 2%, 4%, 5% Yes, 8%, 10%, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the viscosity of the composition of the present invention low and lower the above lower limit and lower the upper limit when a composition having a high response speed is required. Furthermore, in the case where a composition that hardly causes sticking is required, it is preferable to lower the above lower limit and lower the upper limit. When it is desired to increase the dielectric anisotropy in order to keep the drive voltage low, it is preferable to raise the lower limit and raise the upper limit.
  • the compound represented by General Formula (M-16) used in the composition of the present invention is specifically represented by Formula (M-16.1) to Formula (M-16.8) Among them, the compounds represented by formulas (M-16.1) to (M-16.4) are preferred.
  • the lower limit of the preferred content of these compounds to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • each of X M 171 to X M 174 independently represents a fluorine atom or a hydrogen atom
  • Y M 171 represents a fluorine atom, a chlorine atom or —OCF 3
  • R M 171 represents an alkyl group having 1 to 5 carbon atoms
  • W M171 and W M172 are each independently, -CH 2 - represents a or -O-).
  • the lower limit of the preferable content of the compound represented by General Formula (M-17) to the total amount of the composition of the present invention is 1%, 2%, 4%, 5% Yes, 8%, 10%, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the viscosity of the composition of the present invention low and lower the above lower limit and lower the upper limit when a composition having a high response speed is required. Furthermore, in the case where a composition that hardly causes sticking is required, it is preferable to lower the above lower limit and lower the upper limit. When it is desired to increase the dielectric anisotropy in order to keep the drive voltage low, it is preferable to raise the lower limit and raise the upper limit.
  • the compound represented by General Formula (M-17) used in the composition of the present invention is specifically represented by Formula (M-17. 1) to Formula (M-17. 12) It is preferably a compound.
  • the lower limit of the preferred content of these compounds to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • each of X M181 to X M186 independently represents a fluorine atom or a hydrogen atom
  • Y M181 represents a fluorine atom, a chlorine atom or —OCF 3
  • R M181 represents an alkyl group having 1 to 5 carbon atoms
  • the lower limit of the preferable content of the compound represented by the general formula (M-18) to the total amount of the composition of the present invention is 1%, 2%, 4%, 5% Yes, 8%, 10%, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the viscosity of the composition of the present invention low and lower the above lower limit and lower the upper limit when a composition having a high response speed is required. Furthermore, in the case where a composition that hardly causes sticking is required, it is preferable to lower the above lower limit and lower the upper limit. When it is desired to increase the dielectric anisotropy in order to keep the drive voltage low, it is preferable to raise the lower limit and raise the upper limit.
  • the compound represented by General Formula (M-18) used in the composition of the present invention is specifically represented by Formula (M-18. 1) to Formula (M-18. 12) It is preferably a compound, and it is particularly preferable to contain a compound represented by Formula (M-18.5) to Formula (M-18.8).
  • the lower limit of the preferred content of these compounds to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
  • the liquid crystal composition of the present invention preferably contains one or two or more compounds represented by General Formula (L).
  • the compounds represented by the general formula (L) correspond to dielectric substantially neutral compounds (the value of ⁇ is ⁇ 2 to 2).
  • the liquid crystal composition of the present invention preferably contains one or two or more compounds represented by General Formula (L).
  • the compounds represented by the general formula (L) correspond to dielectric substantially neutral compounds (the value of ⁇ is ⁇ 2 to 2). Therefore, the number of polar groups such as halogen contained in the molecule is preferably 2 or less, more preferably 1 or less, and it is more preferable not to have one.
  • the group (a), the group (b) and the group (c) may be each independently substituted with a cyano group, a fluorine atom or a chlorine atom
  • n L1 is 2 or 3 and a plurality of A L2 is present, they may be the same or different, and when n L1 is 2 or 3 and a plurality of Z L3 is present, they may be May be the same or different, but the compounds represented by the general formulas (N-1), (N-2) and (N-3) and the compounds represented by the general formula
  • the compounds represented by formula (L) may be used alone or in combination. There is no particular limitation on the types of compounds that can be combined, but they are used in appropriate combination according to the desired performance such as solubility at low temperature, transition temperature, electrical reliability, birefringence and the like.
  • the type of compound used is, for example, one type in one embodiment of the present invention. Or in another embodiment of the present invention, there are 2 types, 3 types, 4 types, 5 types, 5 types, 6 types, 7 types, 8 types, 9 types and 10 It is more than kind.
  • the content of the compound represented by the general formula (L) is low temperature solubility, transition temperature, electrical reliability, birefringence, process compatibility, dripping marks, image sticking, It is necessary to appropriately adjust according to the required performance such as dielectric anisotropy.
  • the lower limit of the preferable content of the compound represented by the formula (L) to the total amount of the composition of the present invention is 1%, 10%, 20%, 30%, 40 %, 50%, 55%, 60%, 65%, 70%, 75%, 80%.
  • the upper limit value of the preferred content is 95%, 85%, 75%, 65%, 55%, 45%, 35%, 25%.
  • the above lower limit is high and the upper limit is high. Furthermore, when the composition of the present invention is required to keep Tni high and a composition having good temperature stability is required, it is preferable that the above lower limit is high and the upper limit is high. When it is desired to increase the dielectric anisotropy in order to keep the drive voltage low, it is preferable that the above lower limit value be low and the upper limit value be low.
  • both R L1 and R L2 are preferably alkyl groups, and when importance is given to reducing the volatility of the compound, alkoxy groups are preferable, and viscosity reduction is important When doing, at least one is preferably an alkenyl group.
  • the number of halogen atoms present in the molecule is preferably 0, 1, 2 or 3 and is preferably 0 or 1. When importance is attached to compatibility with other liquid crystal molecules, 1 is preferred.
  • R L1 and R L2 are, when the ring structure to which they are bonded is a phenyl group (aromatic), a linear alkyl group having 1 to 5 carbon atoms, a linear alkyl group having 1 to 4 carbon atoms Alkoxy groups and alkenyl groups having 4 to 5 carbon atoms are preferred, and in the case where the ring structure to which they are attached is a saturated ring structure such as cyclohexane, pyran and dioxane, a straight chain having 1 to 5 carbon atoms is preferred.
  • An alkyl group, a linear alkoxy group having 1 to 4 carbon atoms and a linear alkenyl group having 2 to 5 carbon atoms are preferable.
  • the total of carbon atoms and oxygen atoms, if present, is preferably 5 or less, preferably linear.
  • the alkenyl group is preferably selected from the groups represented by any one of formulas (R1) to (R5). (The black dot in each formula represents a carbon atom in the ring structure.)
  • n L1 is preferably 0 when importance is attached to the response speed, 2 or 3 is preferable to improve the upper limit temperature of the nematic phase, and 1 is preferable to balance them. Moreover, in order to satisfy the characteristics required as a composition, it is preferable to combine compounds of different values.
  • a L 1 , A L 2 and A L 3 are preferably aromatic when it is required to increase ⁇ n, and are preferably aliphatic to improve the response speed, and each of them is independently trans- 1,4-cyclohexylene group, 1,4-phenylene group, 2-fluoro-1,4-phenylene group, 3-fluoro-1,4-phenylene group, 3,5-difluoro-1,4-phenylene group , 1,4-cyclohexenylene group, 1,4-bicyclo [2.2.2] octylene group, piperidine-1,4-diyl group, naphthalene-2,6-diyl group, decahydronaphthalene-2,6 -Diyl group or 1,2,3,4-tetrahydronaphthalene-2,6-diyl group is preferable, and the following structure is more preferable,
  • it represents a trans-1,4-cyclohexylene group or a 1,4-phenylene group.
  • Z L1 and Z L2 be a single bond when the response speed is important.
  • the compound represented by formula (L) preferably has 0 or 1 halogen atoms in the molecule.
  • the compound represented by formula (L) is preferably a compound selected from the group of compounds represented by formulas (L-1) to (L-7).
  • the compounds represented by formula (L-1) are the following compounds.
  • R L11 and R L12 each independently represent the same meaning as R L1 and R L2 in general formula (L).
  • R L11 and R L12 are preferably linear alkyl groups having 1 to 5 carbon atoms, linear alkoxy groups having 1 to 4 carbon atoms, and linear alkenyl groups having 2 to 5 carbon atoms. .
  • the compounds represented by General Formula (L-1) can be used alone, or two or more compounds can be used in combination. There is no particular limitation on the types of compounds that can be combined, but they are used in appropriate combination according to the required performance such as solubility at low temperature, transition temperature, electrical reliability, birefringence and the like.
  • the type of the compound used is, for example, one type, two types, three types, four types, five types or more as one embodiment of the present invention.
  • the lower limit of the preferred content is 1%, 2%, 3%, 5%, 7%, 10%, based on the total weight of the composition of the present invention. %, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%.
  • the upper limit of the preferred content is 95%, 90%, 85%, 80%, 75%, 70%, based on the total weight of the composition of the present invention. %, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%.
  • the above lower limit is high and the upper limit is high. Furthermore, when the composition of the present invention needs to have a high Tni and a composition having good temperature stability is required, it is preferable that the above lower limit value is medium and the upper limit value is medium. When it is desired to increase the dielectric anisotropy in order to keep the drive voltage low, it is preferable that the above lower limit value is low and the upper limit value is low.
  • the compound represented by General Formula (L-1) is preferably a compound selected from the group of compounds represented by General Formula (L-1-1).
  • the compound represented by General Formula (L-1-1) is a compound selected from the compound group represented by Formula (L-1-1.1) to Formula (L-1-1.3) It is preferable that it is a compound represented by the formula (L-1-1.2) or the formula (L-1-1.3), and in particular, it is represented by the formula (L-1-1.3) It is preferable that it is a compound.
  • the lower limit of the preferable content of the compound represented by the formula (L-1-1.3) to the total amount of the composition of the present invention is 1%, 2%, 3%, It is 5%, 7% and 10%.
  • the upper limit of the preferred content is 20%, 15%, 13%, 10%, 8%, 7%, based on the total weight of the composition of the present invention. %, 5% and 3%.
  • the compound represented by General Formula (L-1) is preferably a compound selected from the group of compounds represented by General Formula (L-1-2).
  • R L12 has the same meaning as in the general formula (L-1).
  • the lower limit of the preferable content of the compound represented by the formula (L-1-2) to the total amount of the composition of the present invention is 1%, 5%, 10%, 15% , 17%, 20%, 23%, 25%, 27%, 30%, 35%.
  • the upper limit of the preferred content is 60%, 55%, 50%, 45%, 42%, 40%, based on the total weight of the composition of the present invention. %, 35%, 33%, and 30%.
  • the compound represented by General Formula (L-1-2) is a compound selected from the group of compounds represented by Formula (L-1-2.1) to Formula (L-1-2.4)
  • the compound is preferably a compound represented by Formula (L-1-2.2) to Formula (L-1-2.4).
  • the compounds represented by the formula (L-1-2.2) are preferable because they particularly improve the response speed of the composition of the present invention.
  • Tni higher than the response speed it is preferable to use a compound represented by formula (L-1-2.3) or formula (L-1-2.4). It is not preferable to set the content of the compounds represented by Formula (L-1-2.3) and Formula (L-1-2.4) to 30% or more in order to improve the solubility at low temperature.
  • the lower limit of the preferable content of the compound represented by the formula (L-1-2.2) to the total amount of the composition of the present invention is 10%, 15%, 18%, 20%, 23%, 25%, 27%, 30%, 33%, 35%, 38%, 40%.
  • the upper limit of the preferred content is 60%, 55%, 50%, 45%, 43%, 40%, 60%, based on the total weight of the composition of the present invention. %, 35%, 32%, 30%, 27%, 25%, 22%.
  • Lower limit of preferable content of the total of the compound represented by the formula (L-1-1.3) and the compound represented by the formula (L-1-2.2) relative to the total amount of the composition of the present invention The values are 10%, 15%, 20%, 25%, 27%, 30%, 35%, 40%.
  • the upper limit of the preferred content is 60%, 55%, 50%, 45%, 43%, 40%, 60%, based on the total weight of the composition of the present invention. %, 35%, 32%, 30%, 27%, 25%, 22%.
  • the compound represented by formula (L-1) is preferably a compound selected from the group of compounds represented by formula (L-1-3).
  • L L13 and R L14 each independently represent an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms.
  • R L13 and R L14 are preferably linear alkyl groups having 1 to 5 carbon atoms, linear alkoxy groups having 1 to 4 carbon atoms, and linear alkenyl groups having 2 to 5 carbon atoms. .
  • the lower limit of the preferable content of the compound represented by the formula (L-1-3) to the total amount of the composition of the present invention is 1%, 5%, 10%, 13% , 15%, 17%, 20%, 23%, 25%, 30%.
  • the upper limit of the preferred content is 60%, 55%, 50%, 45%, 40%, 37%, 35%, based on the total weight of the composition of the present invention. %, 33%, 30%, 27%, 25%, 23%, 20%, 17%, 15%, 13%, 10%. %.
  • the compound represented by General Formula (L-1-3) is a compound selected from the group of compounds represented by Formula (L-1-3.1) to Formula (L-1-3.13)
  • the compound is preferably a compound represented by formula (L-1-3.1), formula (L-1-3.3) or formula (L-1-3.4).
  • the compound represented by the formula (L-1-3.1) is preferable in order to particularly improve the response speed of the composition of the present invention.
  • Tni higher than the response speed is to be determined.
  • the formula (L-1-3.3), the formula (L-1-3.4), the formula (L-1-3.11) and the formula (L-) are used. It is preferable to use the compound represented by 1-3.12).
  • the lower limit of the preferable content of the compound represented by the formula (L-1-3.1) to the total amount of the composition of the present invention is 1%, 2%, 3%, 5%, 7%, 10%, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 20%, 17%, 15%, 13%, 10%, 8%, or 20%, based on the total weight of the composition of the present invention. % And 6%.
  • the compound represented by Formula (L-1) is preferably a compound selected from the group of compounds represented by Formula (L-1-4) and / or (L-1-5).
  • R L15 and R L16 each independently represent an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms.
  • R L15 and R L16 are preferably linear alkyl groups having 1 to 5 carbon atoms, linear alkoxy groups having 1 to 4 carbon atoms, and linear alkenyl groups having 2 to 5 carbon atoms. .
  • the lower limit of the preferable content of the compound represented by the formula (L-1-4) to the total amount of the composition of the present invention is 1%, 5%, 10%, 13% 15%, 17% and 20%.
  • the upper limit of the preferred content is 25%, 23%, 20%, 17%, 15%, 13%, 10%, based on the total weight of the composition of the present invention. %.
  • the lower limit of the preferable content of the compound represented by the formula (L-1-5) to the total amount of the composition of the present invention is 1%, 5%, 10%, 13% 15%, 17% and 20%.
  • the upper limit of the preferred content is 25%, 23%, 20%, 17%, 15%, 13%, 10%, based on the total weight of the composition of the present invention. %.
  • compounds represented by general formulas (L-1-4) and (L-1-5) are represented by formulas (L-1-4.1) to (L-1-5.3) It is preferable that it is a compound selected from the group of compounds, and it is preferable that it is a compound represented by Formula (L-1-4.2) or Formula (L-1-5.2).
  • the lower limit of the preferable content of the compound represented by the formula (L-1-4.2) to the total amount of the composition of the present invention is 1%, 2%, 3%, 5%, 7%, 10%, 13%, 15%, 18%, 20%.
  • the upper limit of the preferred content is 20%, 17%, 15%, 13%, 10%, 8%, or 20%, based on the total weight of the composition of the present invention. % And 6%.
  • R L17 and R L18 each independently represent a methyl group or a hydrogen atom.
  • the lower limit of the preferable content of the compound represented by the formula (L-1-6) to the total amount of the composition of the present invention is 1%, 5%, 10%, 15% , 17%, 20%, 23%, 25%, 27%, 30%, 35%.
  • the upper limit of the preferred content is 60%, 55%, 50%, 45%, 42%, 40%, based on the total weight of the composition of the present invention. %, 35%, 33%, and 30%.
  • the compound represented by General Formula (L-1-6) is a compound selected from the group of compounds represented by Formula (L-1-6.1) to Formula (L-1-6.3) Is preferred.
  • the compounds represented by formula (L-2) are the following compounds.
  • R L21 and R L22 each independently represent the same meaning as R L1 and R L2 in general formula (L).
  • R L21 is preferably an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms
  • R L22 is an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 4 to 5 carbon atoms or a carbon atom
  • the alkoxy groups of 1 to 4 are preferable.
  • the compounds represented by General Formula (L-2) can be used alone, or two or more compounds can be used in combination. There is no particular limitation on the types of compounds that can be combined, but they are used in appropriate combination according to the required performance such as solubility at low temperature, transition temperature, electrical reliability, birefringence and the like.
  • the type of the compound used is, for example, one type, two types, three types, four types, five types or more as one embodiment of the present invention.
  • the lower limit of the preferable content of the compound represented by the formula (L-2) to the total amount of the composition of the present invention is 1%, 2%, 3%, 5% 7% and 10%.
  • the upper limit of the preferred content is 20%, 15%, 13%, 10%, 8%, 7%, based on the total weight of the composition of the present invention. %, 5% and 3%.
  • the compound represented by General Formula (L-2) is preferably a compound selected from the group of compounds represented by Formula (L-2.1) to Formula (L-2.6), Compounds represented by (L-2.1), formula (L-2.3), formula (L-2.4) and formula (L-2.6) are preferable.
  • the compounds represented by formula (L-3) are the following compounds.
  • R L31 and R L32 each independently represent the same meaning as R L1 and R L2 in general formula (L).
  • R L31 and R L32 are preferably each independently an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 4 to 5 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms.
  • the compounds represented by formula (L-3) can be used alone or in combination of two or more. There is no particular limitation on the types of compounds that can be combined, but they are used in appropriate combination according to the required performance such as solubility at low temperature, transition temperature, electrical reliability, birefringence and the like.
  • the type of the compound used is, for example, one type, two types, three types, four types, five types or more as one embodiment of the present invention.
  • the lower limit of the preferable content of the compound represented by the formula (L-3) to the total amount of the composition of the present invention is 1%, 2%, 3%, 5% 7% and 10%.
  • the upper limit of the preferred content is 20%, 15%, 13%, 10%, 8%, 7%, based on the total weight of the composition of the present invention. %, 5% and 3%.
  • the compound represented by General Formula (L-3) is preferably a compound selected from the group of compounds represented by Formula (L-3.1) to Formula (L-3.7), Compounds represented by (L-3.2) to (L-3.5) are preferable.
  • the compounds represented by formula (L-4) are the following compounds.
  • R L41 and R L42 each independently represent the same meaning as R L1 and R L2 in General Formula (L).
  • R L41 is preferably an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms
  • R L42 is an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 4 to 5 carbon atoms or a carbon atom
  • the alkoxy groups of 1 to 4 are preferable.
  • the compounds represented by formula (L-4) can be used alone or in combination of two or more compounds.
  • the type of the compound used is, for example, one type, two types, three types, four types, five types or more as one embodiment of the present invention.
  • the content of the compound represented by the general formula (L-4) is low temperature solubility, transition temperature, electrical reliability, birefringence, process compatibility, dripping marks, It is necessary to appropriately adjust according to the required performance such as burn-in and dielectric anisotropy.
  • the lower limit of the preferable content of the compound represented by the formula (L-4) to the total amount of the composition of the present invention is 1%, 2%, 3%, 5% 7%, 10%, 14%, 16%, 20%, 23%, 26%, 30%, 35%, 40% .
  • the upper limit of the preferable content of the compound represented by the formula (L-4) to the total amount of the composition of the present invention is 50%, 40%, 35%, and 30%. 20%, 15%, 10% and 5%.
  • the compound represented by General Formula (L-4) is preferably a compound represented by Formula (L-4.1) to Formula (L-4.3), for example.
  • the compound represented by the formula (L-4.1) can be represented by the formula (L-4.1) Even if it contains the compound represented by -4.2), it contains both the compound represented by the formula (L-4.1) and the compound represented by the formula (L-4.2) Or all of the compounds represented by Formula (L-4.1) to Formula (L-4.3) may be contained.
  • the lower limit of the preferable content of the compound represented by the formula (L-4.1) or the formula (L-4.2) to the total amount of the composition of the present invention is 3%, 5% Yes, 7%, 9%, 11%, 12%, 13%, 18%, 21%, preferred upper limit is 45, 40% , 35%, 30%, 25%, 23%, 20%, 18%, 15%, 13%, 10%, 8% .
  • both the compound represented by the formula (L-4.1) and the compound represented by the formula (L-4.2) are contained, both compounds relative to the total amount of the composition of the present invention
  • the lower limit of the preferable content is 15%, 19%, 24%, 30%, and the preferable upper limit is 45, 40%, 35%, 30% Yes, 25%, 23%, 20%, 18%, 15%, 13%.
  • the compound represented by General Formula (L-4) is preferably a compound represented by Formula (L-4.4) to Formula (L-4.6), for example. It is preferable that it is a compound represented by these.
  • the compound represented by the formula (L-4.4) may be represented by the formula (L-4.4) Even if it contains the compound represented by -4.5), it contains both the compound represented by the formula (L-4.4) and the compound represented by the formula (L-4.5) May be
  • the lower limit of the preferable content of the compound represented by the formula (L-4.4) or the formula (L-4.5) to the total amount of the composition of the present invention is 3%, 5% Yes, 7%, 9%, 11%, 12%, 13%, 18%, 21%.
  • the preferred upper limit is 45, 40%, 35%, 30%, 25%, 23%, 20%, 18%, 15%, 13%. %, 10%, and 8%.
  • both the compound represented by the formula (L-4.4) and the compound represented by the formula (L-4.5) are contained, both compounds relative to the total amount of the composition of the present invention
  • the lower limit of the preferable content is 15%, 19%, 24%, 30%, and the preferable upper limit is 45, 40%, 35%, 30% Yes, 25%, 23%, 20%, 18%, 15%, 13%.
  • the compound represented by Formula (L-4) is preferably a compound represented by Formula (L-4.7) to Formula (L-4.10), and in particular, a compound represented by Formula (L-4.
  • the compound represented by 9) is preferable.
  • the compounds represented by General Formula (L-5) are the following compounds.
  • R L51 and R L52 each independently represent the same meaning as R L1 and R L2 in general formula (L).
  • R L51 is preferably an alkyl group or an alkenyl group having 2 to 5 carbon atoms having 1 to 5 carbon atoms
  • R L52 is an alkyl group, an alkenyl group or a carbon atom of the carbon atoms 4-5 of 1-5 carbon atoms
  • the alkoxy groups of 1 to 4 are preferable.
  • the compounds represented by General Formula (L-5) can be used alone, or two or more compounds can be used in combination. There is no particular limitation on the types of compounds that can be combined, but they are used in appropriate combination according to the required performance such as solubility at low temperature, transition temperature, electrical reliability, birefringence and the like.
  • the type of the compound used is, for example, one type, two types, three types, four types, five types or more as one embodiment of the present invention.
  • the content of the compound represented by the general formula (L-5) is low temperature solubility, transition temperature, electrical reliability, birefringence, process compatibility, dripping marks, It is necessary to appropriately adjust according to the required performance such as burn-in and dielectric anisotropy.
  • the lower limit of the preferable content of the compound represented by the formula (L-5) to the total amount of the composition of the present invention is 1%, 2%, 3%, 5% 7%, 10%, 14%, 16%, 20%, 23%, 26%, 30%, 35%, 40% .
  • the upper limit of the preferable content of the compound represented by the formula (L-5) to the total amount of the composition of the present invention is 50%, 40%, 35%, and 30%. 20%, 15%, 10% and 5%
  • the compound represented by the general formula (L-5) is a compound represented by the formula (L-5.1) or the formula (L-5.2) It is preferable that it is a compound represented by these, and it is especially preferable that it is a compound represented by Formula (L-5.1).
  • the lower limit value of the preferable content of these compounds to the total amount of the composition of the present invention is 1%, 2%, 3%, 5%, 7%.
  • the upper limit of the preferable content of these compounds is 20%, 15%, 13%, 10%, and 9%.
  • the compound represented by General Formula (L-5) is preferably a compound represented by Formula (L-5.3) or Formula (L-5.4).
  • the lower limit value of the preferable content of these compounds to the total amount of the composition of the present invention is 1%, 2%, 3%, 5%, 7%.
  • the upper limit of the preferable content of these compounds is 20%, 15%, 13%, 10%, and 9%.
  • the compound represented by General Formula (L-5) is preferably a compound selected from the group of compounds represented by Formula (L-5.5) to Formula (L-5.7), and in particular It is preferable that it is a compound represented by L-5.7).
  • the lower limit value of the preferable content of these compounds to the total amount of the composition of the present invention is 1%, 2%, 3%, 5%, 7%.
  • the upper limit of the preferable content of these compounds is 20%, 15%, 13%, 10%, and 9%.
  • the compounds represented by General Formula (L-6) are the following compounds.
  • R L61 and R L62 each independently represent the same as R L1 and R L2 in General Formula (L), and X L61 and X L62 each independently represent a hydrogen atom or a fluorine atom.
  • Each of R L61 and R L62 is preferably independently an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms, and one of X L61 and X L62 is a fluorine atom, and the other is a hydrogen atom Is preferred.
  • the compounds represented by formula (L-6) can be used alone or in combination of two or more compounds. There is no particular limitation on the types of compounds that can be combined, but they are used in appropriate combination according to the required performance such as solubility at low temperature, transition temperature, electrical reliability, birefringence and the like.
  • the type of the compound used is, for example, one type, two types, three types, four types, five types or more as one embodiment of the present invention.
  • the lower limit of the preferable content of the compound represented by the formula (L-6) to the total amount of the composition of the present invention is 1%, 2%, 3%, 5% 7%, 10%, 14%, 16%, 20%, 23%, 26%, 30%, 35%, 40% .
  • the upper limit of the preferable content of the compound represented by the formula (L-6) to the total amount of the composition of the present invention is 50%, 40%, 35%, and 30%. 20%, 15%, 10% and 5%.
  • the compound represented by General Formula (L-6) is preferably a compound represented by Formula (L-6.1) to Formula (L-6.9).
  • the compound represented by General Formula (L-6) is preferably a compound represented by Formula (L-6.10) to Formula (L-6.17), for example.
  • the compound represented by L-6.11) is preferred.
  • the lower limit value of the preferable content of these compounds to the total amount of the composition of the present invention is 1%, 2%, 3%, 5%, 7%.
  • the upper limit of the preferable content of these compounds is 20%, 15%, 13%, 10%, and 9%.
  • the compounds represented by General Formula (L-7) are the following compounds.
  • R L71 and R L72 each independently represent the same as R L1 and R L2 in the general formula (L), and A L71 and A L72 are each independently A L2 and A L2 in the general formula (L)
  • a hydrogen having the same meaning as A L3 is represented, but each of hydrogen atoms on A L71 and A L72 may be independently substituted by a fluorine atom
  • Z L71 has the same meaning as Z L2 in formula (L)
  • X L71 and X L72 each independently represent a fluorine atom or a hydrogen atom.
  • R L71 and R L72 are each independently an alkyl group having 1 to 5 carbon atoms, an alkenyl group or an alkoxy group having 1 to 4 carbon atoms of 2 to 5 carbon atoms preferably
  • a L71 and A L72 each independently 1,4-cyclohexylene group or a 1,4-phenylene group is preferably a hydrogen atom on a L71 and a L72 may be substituted by fluorine
  • the type of compound used is, for example, one type, two types, three types, and four types according to one embodiment of the present invention.
  • the content of the compound represented by the general formula (L-7) is low temperature solubility, transition temperature, electrical reliability, birefringence, process compatibility, dripping mark, It is necessary to appropriately adjust according to the required performance such as burn-in and dielectric anisotropy.
  • the lower limit of the preferable content of the compound represented by the formula (L-7) to the total amount of the composition of the present invention is 1%, 2%, 3%, 5% 7%, 10%, 14%, 16% and 20%.
  • the upper limit of the preferable content of the compound represented by the formula (L-7) to the total amount of the composition of the present invention is 30%, 25%, 23%, and 20%. 18%, 15%, 10% and 5%.
  • the compound represented by General Formula (L-7) is preferably a compound represented by Formula (L-7.1) to Formula (L-7.4), and Formula (L-7. It is preferable that it is a compound represented by 2).
  • the compound represented by General Formula (L-7) is preferably a compound represented by Formula (L-7.11) to Formula (L-7.13), and the compound represented by Formula (L-7. It is preferable that it is a compound represented by 11).
  • the compound represented by General Formula (L-7) is a compound represented by Formula (L-7.21) to Formula (L-7.23). It is preferable that it is a compound represented by Formula (L-7.21).
  • the compound represented by General Formula (L-7) is preferably a compound represented by Formula (L-7. 31) to Formula (L-7. 34), and the compound represented by Formula (L-7. 31) or / and a compound represented by the formula (L-7. 32) is preferable.
  • the compound represented by General Formula (L-7) is preferably a compound represented by Formula (L-7.41) to Formula (L-7.44), and the compound represented by Formula (L-7. 41) or / and a compound represented by the formula (L-7. 42) is preferable.
  • the compound represented by General Formula (L-7) is preferably a compound represented by Formula (L-7.51) to Formula (L-7.53).
  • Preferred content of the total of the compounds represented by general formulas (L), (N-1), (N-2), (N-3) and (J) relative to the total amount of the composition of the present invention The lower limit is 80%, 85%, 88%, 90%, 92%, 93%, 94%, 95%, 96%, 97%. %, 98%, 99%, and 100%.
  • the upper limit of the preferred content is 100%, 99%, 98% and 95%.
  • any one of the compounds represented by formulas (N-1), (N-2), (N-3) or (J) is % Or less is preferable, 3% or less is preferable, and 0% is preferable.
  • Preferred total content of compounds represented by general formulas (L-1) to (L-8) and general formulas (M-1) to (M-18) relative to the total amount of the composition of the present invention The lower limit is 80%, 85%, 88%, 90%, 92%, 93%, 94%, 95%, 96%, 97%. %, 98%, 99%, and 100%.
  • the upper limit of the preferred content is 100%, 99%, 98% and 95%.
  • the total of the compounds represented by General Formulas (L-1) to (L-8) and General Formulas (N-1-1) to (N-1-21) relative to the total amount of the composition of the present invention The lower limit value of the preferable content is 80%, 85%, 88%, 90%, 92%, 93%, 94%, 95%, 96% , 97%, 98%, 99% and 100%.
  • the upper limit of the preferred content is 100%, 99%, 98% and 95%.
  • the content of the compounds represented by formulas (M-4), (M-7), (M-8.51) to (M-8.54) and (L-6) may be increased.
  • the lower limit of the preferable content is 15%, 20%, and 25%.
  • composition of the present invention preferably does not contain a compound having a structure in which oxygen atoms such as a peracid (—CO—OO—) structure are bonded to each other in the molecule.
  • the content of the compound having a carbonyl group is preferably 5% or less, more preferably 3% or less, based on the total mass of the composition. Preferably, it is more preferably 1% or less, and most preferably substantially free.
  • the content of the compound substituted with chlorine atoms is preferably 15% or less, preferably 10% or less, based on the total mass of the composition. % Is preferable, 5% or less is more preferable, 3% or less is preferable, and substantially no content is further preferable.
  • the content of compounds in which all ring structures in the molecule are six-membered rings is 80 based on the total mass of the composition. % Or more is preferable, 90% or more is more preferable, 95% or more is more preferable, and the composition is composed only of compounds in which all ring structures in the molecule are substantially 6-membered rings. Most preferred.
  • the content of the compound having a cyclohexenylene group is the total mass of the composition.
  • it is preferably 10% or less, preferably 8% or less, more preferably 5% or less, preferably 3% or less, and even more preferably substantially non-containing.
  • the content of a compound having a 2-methylbenzene-1,4-diyl group in which the hydrogen atom may be substituted by halogen in the molecule should be reduced
  • the content of the compound having a 2-methylbenzene-1,4-diyl group in the molecule is preferably 10% or less, and more preferably 8% or less based on the total mass of the composition.
  • the content is preferably 5% or less, more preferably 3% or less, and even more preferably substantially non-containing.
  • not substantially contained means that it is not contained except for unintentionally contained substances.
  • the number of carbon atoms of the alkenyl group is 2 to 5
  • the number of carbon atoms of the alkenyl group is preferably 4 to 5, and the unsaturated bond of the alkenyl group and benzene are directly bonded. Preferably not.
  • the average elastic constant (K AVG ) of the liquid crystal composition used in the present invention is preferably 10 to 25, but the lower limit is preferably 10, 10.5 is preferred, 11 is preferred and 11.5 is preferred.
  • 12 is preferable, 12.3 is preferable, 12.5 is preferable, 12.8 is preferable, 13 is preferable, 13.3 is preferable, 13.5 is preferable, 13.8 is preferable, 14 is preferable, 14 3 is preferable, 14.5 is preferable, 14.8 is preferable, 15 is preferable, 15.3 is preferable, 15.5 is preferable, 15.8 is preferable, 16 is preferable, 16.3 is preferable, 16 5 is preferable, 16.8 is preferable, 17 is preferable, 17.3 is preferable, 17.5 is preferable, 17.8 is preferable, and 18 is preferable, and the upper limit thereof is 25 is preferable, 24.5 is preferable, 24 is preferable, 23.5 is preferable, 23 is preferable, 22.8 is preferable, 22.5 is preferable, 22.3 is preferable, 22 is preferable, 21.8 is 2
  • K AVG When importance is given to reducing power consumption, it is effective to reduce the amount of light from the backlight, and it is preferable to improve the light transmittance of the liquid crystal display element. For that purpose, the value of K AVG should be set lower. preferable. When emphasis is placed on improvement of response speed, it is preferable to set the value of K AVG higher.
  • the polymerizable liquid crystal composition of the present application contains the polymerizable compound represented by the general formula (i), but further contains the general formula (P)
  • R p1 represents a hydrogen atom, a fluorine atom, a cyano group, a hydrogen atom, an alkyl group having 1 to 15 carbon atoms in which a hydrogen atom may be substituted by a halogen atom, a hydrogen atom is An alkoxy group having 1 to 15 carbon atoms which may be substituted with a halogen atom, an alkenyl group having 1 to 15 carbon atoms which may optionally have a hydrogen atom substituted for the halogen atom, a hydrogen atom is substituted for the halogen atom And optionally represents an alkenyloxy group having 1 to 15 carbon atoms or -Sp p2 -P p2 ; P p1 and P p2 are each independently represented by general formula (P p1 -1) to formula (P p1 -9)
  • R p11 and R p12 each independently represent a hydrogen atom, an alkyl group of 1 to 5 carbon atoms or a halogenated alkyl group of 1 to 5 carbon atoms
  • W p11 is a single bond, —O -, -COO-, or a methylene group
  • t p11 represents 0, 1 or 2, but when there are a plurality of R p11 , R p12 , W p11 and / or t p11 in the molecule, they are identical It may be different or different.
  • Z p1 and Z p2 are each independently a single bond, -O-, -S-, -CH 2- , -OCH 2- , -CH 2 O-, -CO-, -C 2 H 4 -,- COO -, - OCO -, - OCOOCH 2 -,
  • a p2 is a 1,4-phenylene group, a 1,4-cyclohexylene group, an anthracene-2,6-diyl group, a phenanthrene-2,7-diyl group, a pyridine-2,5-diyl group, a pyrimidine-2, 5-diyl group, naphthalene-2,6-diyl group, indane-2,5-diyl group, 1,2,3,4-tetrahydronaphthalene-2,6-diyl group or 1,3-dioxane-2,5 -Represents a diyl group, wherein A p2 is unsubstituted or an alkyl group having 1 to 12 carbon atoms, a halogenated alkyl group having 1 to 12 carbon atoms, an
  • Sp p1 or m p1 when Sp p1 or m p1 is 2 or 3, it is bonded to Sp p1 or Z p1, and it is bonded to Z p1 with ⁇ , and one or more hydrogen atoms in the structure have 1 carbon atom Substituted by an alkyl group of ⁇ 12, a halogenated alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, a halogenated alkoxy group having 1 to 12 carbon atoms, a halogen atom, a cyano group or a nitro group Represents a group represented by A p3 is the formula (A p3 -11) to (A p3 -19)
  • R p1 is preferably -Sp 2 -P p 2 .
  • P p1 and P p2 be each independently any one of the formulas (P p1 -1) to (P p1 -3), and it is preferable that it is (P p1 -1).
  • R p11 and R p12 are preferably each independently a hydrogen atom or a methyl group.
  • m p1 + m p4 is preferably 2 or more, preferably 2 or 3.
  • the chain is preferably an alkylene group having 1 to 10 carbon atoms or a single bond.
  • a p2 is preferably 1,4-phenylene, 1,4-cyclohexylene, anthracene-2,6-diyl, phenanthrene-2,7-diyl or naphthalene-2,6-diyl; 4-phenylene group, 1,4-cyclohexylene group, phenanthrene-2,7-diyl group or naphthalene-2,6-diyl group is preferable, and when m p2 + m p3 is 0, phenanthrene 2,7-diyl group is Preferably, when m p 2 + m p 3 is 1, 2 or 3, a 1,4-phenylene group or a 1,4-cyclohexylene group is preferable.
  • One or more hydrogen atoms in the structure of A p2 may be substituted with a methyl group, an ethyl group, a methoxy group, an ethoxy group or a fluorine atom in order to improve the compatibility with the liquid crystal compound.
  • a p1 is preferably of the formula (A p1 -15), (A p1 -16), (A p1 -17) or (A p1 -18).
  • One or more hydrogen atoms in the structure of A p1 may be substituted by a methyl group, an ethyl group, a methoxy group, an ethoxy group or a fluorine atom in order to improve the compatibility with the liquid crystal compound.
  • a p3 is preferably of the formula (A p1 -14), (A p1 -15), (A p1 -16), (A p1 -17) or (A p1 -18).
  • One or more hydrogen atoms in the structure of A p3 may be substituted with a methyl group, an ethyl group, a methoxy group, an ethoxy group or a fluorine atom in order to improve the compatibility with the liquid crystal compound.
  • n p2 + m p3 is preferably 0, 1, 2 or 3 and 1 or 2 is preferable.
  • the total content of the compound represented by the general formula (P) is preferably 0.05 to 10% of the composition containing the compound represented by the general formula (P) of the present application, It is preferable to contain 0.1 to 8%, to contain 0.1 to 5%, to contain 0.1 to 3%, and to contain 0.2 to 2%. Preferably, 0.2 to 1.3% is contained, 0.2 to 1% is preferably contained, and 0.2 to 0.56% is preferably contained.
  • the preferable lower limit of the total content of the compounds represented by General Formula (P) is 0.01% with respect to the composition containing the compound represented by General Formula (P) of the present application, and 0. 0%. 03%, 0.05%, 0.08%, 0.1%, 0.15%, 0.2%, 0.25%, 0.3% %.
  • the preferred upper limit of the total content of the compounds represented by general formula (P) is 10% and 8% with respect to the composition containing the compound represented by general formula (P) of the present application 5%, 3%, 1.5%, 1.2%, 1%, 0.8% and 0.5%.
  • the content is small, the effect of adding the compound represented by the general formula (P) is difficult to appear, and problems such as weak alignment control of the liquid crystal composition or weakening with time occur. There are problems such as a large amount remaining later, long time for curing, and a decrease in the reliability of the liquid crystal. Therefore, the content is set in consideration of these balances.
  • the compounds represented by General Formula (P) are preferably compounds represented by General Formula (P-1), General Formula (P-2) and General Formula (P-3).
  • P p11 , P p12 , P p21 , P p22 , P p31 and P p32 each independently represent the same meaning as P p1 in formula (P)
  • Sp p11 , Sp p12 , Sp p21 , Sp p22 , Sp p31 and Sp p32 each independently represent the same meaning as Sp p1 in formula (P)
  • Ap11 , Ap12 , Ap13 , Ap21 , Ap22 , Ap23 and Ap32 are each independently a 1,4-phenylene group, a 1,4-cyclohexylene group, an anthracene-2,6-diyl group, Phenanthrene-2,7-diyl group, pyridine-2,5-diyl group, pyrimidine-2,5-diyl group, naphthalene-2,6-diyl group, indane-2,5-diyl group, 1,2,3 , 4-tetrahydronaphthalen
  • Sp p11 , Sp p12 , Sp p21 , Sp p22 , Sp p31 and Sp p32 each independently represent a single bond or an alkylene group having 1 to 30 carbon atoms, and —CH 2 — in the alkylene group is an oxygen atom
  • Ap11 , Ap12 , Ap13 , Ap21 , Ap22 , Ap23 and Ap32 are each independently a 1,4-phenylene group, a 1,4-cyclohexylene group, an anthracene-2,6-diyl group, A phenanthrene-2,7-diyl group or a naphthalene-2,6-diyl group is preferable, and a 1,4-phenylene group, a 1,4-cyclohexylene group, a phenanthrene-2,7-diyl group or a naphthalene-2,6- Diyl is preferred.
  • a 1,4-phenylene group or a 1,4-cyclohexylene group is independently preferred, and the structure thereof is to improve the compatibility with the liquid crystal compound.
  • one or more hydrogen atoms may be substituted by a methyl group, an ethyl group, a methoxy group, an ethoxy group or a fluorine atom.
  • a phenanthrene-2,7-diyl group is preferable, and in order to improve the compatibility with the liquid crystal compound, one or two or more hydrogen atoms in the structure thereof are a methyl group, an ethyl group, It may be substituted by a methoxy group, an ethoxy group or a fluorine atom.
  • Z p21 present in the molecule is- (CH 2 ) 2 -COO-,-(CH 2 ) 2 -OCO-, -O-CO- (CH 2 ) 2- , -COO- It is a linking group selected from the group consisting of (CH 2 ) 2- , and the others are preferably single bonds.
  • Preferred examples of the compound represented by General Formula (P-1) according to the present invention include polymerizable compounds represented by the following Formula (P-1-1) to Formula (P-1-9).
  • P p11 , P p12 , Sp p11 and Sp p12 have the same meaning as P p11 , P p12 , Sp p11 and Sp p12 in general formula (P-1)
  • Preferred examples of the compound represented by General Formula (P-2) according to the present invention include polymerizable compounds represented by the following Formula (P-2-1) to Formula (P-2-12).
  • P p21 , P p22 , Sp p21 and Sp p22 have the same meaning as P p21 , P p22 , Sp p21 and Sp p22 in formula (P-2)
  • Preferred examples of the compound represented by the general formula (P-4) according to the present invention include polymerizable compounds represented by the following formulas (P-4-1) to (P-4-19).
  • a liquid crystal display element is manufactured using the above-mentioned polymerizable liquid crystal composition, but the liquid crystal display element is preferably a liquid crystal display element for driving an active matrix, and for PSA mode, PSVA mode, PS-IPS mode or PS-FSS mode It is preferable that it is a liquid crystal display element.
  • a liquid crystal composition containing a polymerizable compound is coated with a polyimide alignment film for inducing vertical alignment with a cell gap of 3.5 ⁇ m, and then a vacuum injection method is applied to a liquid crystal cell including a substrate with ITO where the polyimide alignment film is rubbed. Infused.
  • a vertical alignment film forming material JALS 2096 manufactured by JSR Corporation was used.
  • VHR voltage holding ratio
  • the residual amount [ppm] of the polymerizable compound in the liquid crystal display element after irradiation with ultraviolet light under the above conditions was measured.
  • the measuring method of the residual amount of this polymeric compound is demonstrated.
  • the liquid crystal display element was disassembled to obtain an acetonitrile solution of an eluted component containing a liquid crystal composition, a polymer, and an unreacted polymerizable compound. This was analyzed by high performance liquid chromatograph, and the peak area of each component was measured. The amount of the remaining polymerizable compound was determined from the peak area of the liquid crystal compound as the index and the peak area ratio of the unreacted polymerizable compound.
  • the residual amount of the polymerizable compound was determined from this value and the amount of the polymerizable compound initially added.
  • the detection limit of the residual amount of the polymerizable compound was 100 ppm. The fact that the polymerizable compound remains means that the polymerization rate of the polymerizable compound is slow.
  • the display defect (burn-in) evaluation by the change of a pretilt angle was performed using the liquid crystal display element after irradiating an ultraviolet-ray on the above-mentioned conditions.
  • the pretilt angle of the liquid crystal display element was measured and used as a pretilt angle (initial).
  • the backlight was illuminated for 24 hours while applying a voltage of 30 V at a frequency of 100 Hz to the liquid crystal display element.
  • the pretilt angle was measured and used as the pretilt angle (after the test).
  • the pretilt angle was measured using Syntech OPTIPRO.
  • Liquid crystal compositions of LC-001 to LC-013 were prepared, and their physical property values were measured.
  • the composition of the liquid crystal composition and the results of the physical properties are shown below.
  • the VHR (UV) of LC-1-4 to LC-1-8 which is the liquid crystal composition of the present invention, clearly shows a higher value than Comparative Example 1 and Comparative Example 3 and shows sufficient UV resistance. .
  • impurities in the liquid crystal composition can be easily incorporated into the polymer layer, so that a high VHR is exhibited.
  • the residual amount of the polymerizable compound after curing was 421 ppm in Comparative Example 1 and 539 ppm in Comparative Example 2.
  • the irradiation time of the ultraviolet light is prolonged or the wavelength is different. Steps such as irradiating ultraviolet light again are required.
  • the remaining amount of the polymerizable compound after curing of Examples 1 to 5 which is the liquid crystal composition of the present invention is smaller than that of Comparative Examples 1 and 2.
  • the polymerization rate of the polymerizable compound is appropriately high, so that polymerization can be performed by ultraviolet irradiation for a short time.
  • the amount of residual organic compounds can be reduced.
  • the pretilt angle change amounts of the liquid crystal display devices using LC-1-4 to LC-1-8 prepared in Examples 1 to 5 are respectively 0.1 [°], and the pretilt angle change amounts are sufficiently small. That was confirmed.
  • the liquid crystal composition of the present invention has sufficiently high UV resistance, the reaction rate of the polymerizable compound is moderately fast, and display defects due to the change of the pretilt angle hardly occur.
  • Examples 6 to 28 Using the prepared LC-001 to LC-007, LC-1-9 to LC-7-2 were prepared and vacuum injected into a test cell to prepare liquid crystal display elements (Examples 5 to 28). The residual amounts of these VHR (UV) and polymerizable compounds were evaluated. The results are shown below.
  • Example 6 to 28 using the polymerizable liquid crystal composition of the present invention as in Examples 1 to 5, it is confirmed that the VHR after UV irradiation is sufficiently high, and the reaction rate of the polymerizable compound is moderately fast. did it.
  • Examples 29 to 40 In the same manner as in Examples 29 to 40 except that the prepared LC-008 to LC-013 were used, the VHR (UV) and the residual amount of the polymerizable compound were evaluated. The composition of the polymerizable liquid crystal composition used and the evaluation results are shown below.
PCT/JP2018/044886 2017-12-19 2018-12-06 液晶組成物及び液晶表示素子 WO2019124095A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207014406A KR20200098497A (ko) 2017-12-19 2018-12-06 액정 조성물 및 액정 표시 소자
JP2019518016A JP6658967B2 (ja) 2017-12-19 2018-12-06 液晶組成物及び液晶表示素子
CN201880070684.9A CN111295433A (zh) 2017-12-19 2018-12-06 液晶组合物及液晶显示元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017242795 2017-12-19
JP2017-242795 2017-12-19

Publications (1)

Publication Number Publication Date
WO2019124095A1 true WO2019124095A1 (ja) 2019-06-27

Family

ID=66994820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044886 WO2019124095A1 (ja) 2017-12-19 2018-12-06 液晶組成物及び液晶表示素子

Country Status (5)

Country Link
JP (1) JP6658967B2 (zh)
KR (1) KR20200098497A (zh)
CN (1) CN111295433A (zh)
TW (1) TW201934726A (zh)
WO (1) WO2019124095A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110396412A (zh) * 2019-08-06 2019-11-01 晶美晟光电材料(南京)有限公司 液晶组合物及其应用
CN112852443A (zh) * 2019-11-27 2021-05-28 Dic株式会社 聚合性液晶组合物和使用其的液晶显示元件
CN112852444A (zh) * 2019-11-27 2021-05-28 Dic株式会社 液晶组合物和使用其的液晶显示元件
CN112980465A (zh) * 2019-12-02 2021-06-18 Dic株式会社 液晶组合物及液晶显示元件
CN115216308A (zh) * 2021-04-15 2022-10-21 江苏和成显示科技有限公司 液晶组合物及其液晶显示器件
CN115216305A (zh) * 2021-04-15 2022-10-21 江苏和成显示科技有限公司 液晶组合物及其液晶显示器件

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115216309A (zh) * 2021-04-15 2022-10-21 江苏和成显示科技有限公司 液晶组合物及其液晶显示器件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015143366A (ja) * 2009-02-06 2015-08-06 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 液晶媒体および液晶ディスプレイ
JP2016108558A (ja) * 2014-12-01 2016-06-20 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 液晶媒体
WO2016152340A1 (ja) * 2015-03-24 2016-09-29 Jnc株式会社 液晶組成物および液晶表示素子
WO2016170948A1 (ja) * 2015-04-23 2016-10-27 Jnc株式会社 液晶組成物および液晶表示素子
JP2017201036A (ja) * 2011-04-07 2017-11-09 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 液晶媒体および液晶ディスプレイ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102292412B (zh) * 2009-01-22 2014-04-09 Jnc株式会社 液晶组成物以及液晶显示元件
KR20120027531A (ko) 2009-06-16 2012-03-21 아미리스 인코퍼레이티드 시클로헥센 1,4-카르복실레이트
DE102010047409A1 (de) 2009-10-28 2011-05-05 Merck Patent Gmbh Polymerisierbare Verbindungen und ihre Verwendung in Flüssigkristallanzeigen
JP5750111B2 (ja) * 2010-09-07 2015-07-15 シャープ株式会社 液晶層及びポリマー層形成用組成物、並びに、液晶表示装置
JP5834489B2 (ja) * 2011-05-18 2015-12-24 Dic株式会社 重合性ナフタレン化合物
JP6729395B2 (ja) * 2015-01-20 2020-07-22 Jnc株式会社 液晶組成物および液晶表示素子
WO2017068875A1 (ja) * 2015-10-23 2017-04-27 Jnc株式会社 液晶組成物および液晶表示素子
EP3450523B1 (en) * 2016-04-27 2021-01-06 DIC Corporation Liquid crystal composition and liquid crystal display device
JP2019056036A (ja) * 2017-09-20 2019-04-11 シャープ株式会社 ネガ型液晶材料、液晶セル及び液晶表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015143366A (ja) * 2009-02-06 2015-08-06 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 液晶媒体および液晶ディスプレイ
JP2017201036A (ja) * 2011-04-07 2017-11-09 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 液晶媒体および液晶ディスプレイ
JP2016108558A (ja) * 2014-12-01 2016-06-20 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 液晶媒体
WO2016152340A1 (ja) * 2015-03-24 2016-09-29 Jnc株式会社 液晶組成物および液晶表示素子
WO2016170948A1 (ja) * 2015-04-23 2016-10-27 Jnc株式会社 液晶組成物および液晶表示素子

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110396412A (zh) * 2019-08-06 2019-11-01 晶美晟光电材料(南京)有限公司 液晶组合物及其应用
CN112852443A (zh) * 2019-11-27 2021-05-28 Dic株式会社 聚合性液晶组合物和使用其的液晶显示元件
CN112852444A (zh) * 2019-11-27 2021-05-28 Dic株式会社 液晶组合物和使用其的液晶显示元件
CN112980465A (zh) * 2019-12-02 2021-06-18 Dic株式会社 液晶组合物及液晶显示元件
CN115216308A (zh) * 2021-04-15 2022-10-21 江苏和成显示科技有限公司 液晶组合物及其液晶显示器件
CN115216305A (zh) * 2021-04-15 2022-10-21 江苏和成显示科技有限公司 液晶组合物及其液晶显示器件

Also Published As

Publication number Publication date
CN111295433A (zh) 2020-06-16
KR20200098497A (ko) 2020-08-20
JPWO2019124095A1 (ja) 2019-12-19
JP6658967B2 (ja) 2020-03-04
TW201934726A (zh) 2019-09-01

Similar Documents

Publication Publication Date Title
JP6658967B2 (ja) 液晶組成物及び液晶表示素子
JP6233550B1 (ja) 液晶組成物及び液晶表示素子
JP6008065B1 (ja) ネマチック液晶組成物及びこれを用いた液晶表示素子
JP6369655B2 (ja) 液晶組成物及び液晶表示素子
JP6489397B1 (ja) 液晶組成物及びそれを使用した液晶表示素子
JPWO2018193859A1 (ja) 液晶表示素子
JP6566153B1 (ja) ネマチック液晶組成物及びこれを用いた液晶表示素子
JP6465255B2 (ja) 液晶組成物及び液晶表示素子
JP6380825B1 (ja) 液晶組成物及び液晶表示素子
JP6750755B2 (ja) 液晶組成物及び液晶表示素子
JP6849151B2 (ja) 重合性化合物含有液晶組成物及び液晶表示素子ならびに重合性化合物
JP6394830B2 (ja) 液晶組成物及びそれを使用した液晶表示素子
JP7243509B2 (ja) 液晶組成物及び液晶表示素子
JP2021095540A (ja) 液晶組成物及び液晶表示素子
JPWO2021002205A1 (ja) 液晶組成物及び液晶表示素子
CN112779024A (zh) 液晶组合物和液晶显示元件
JP2020100600A (ja) 重合性安定剤及びそれを用いた液晶組成物
JP2021161318A (ja) 液晶組成物及び液晶表示素子
WO2020115936A1 (ja) 液晶組成物及び液晶表示素子

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019518016

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18891279

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18891279

Country of ref document: EP

Kind code of ref document: A1