WO2019123592A1 - 冗長型レゾルバ、およびそれを用いた回転角度検出装置 - Google Patents

冗長型レゾルバ、およびそれを用いた回転角度検出装置 Download PDF

Info

Publication number
WO2019123592A1
WO2019123592A1 PCT/JP2017/045866 JP2017045866W WO2019123592A1 WO 2019123592 A1 WO2019123592 A1 WO 2019123592A1 JP 2017045866 W JP2017045866 W JP 2017045866W WO 2019123592 A1 WO2019123592 A1 WO 2019123592A1
Authority
WO
WIPO (PCT)
Prior art keywords
teeth
output
excitation
winding
windings
Prior art date
Application number
PCT/JP2017/045866
Other languages
English (en)
French (fr)
Inventor
紘子 池田
勇二 滝澤
一将 伊藤
信一 山口
俊宏 松永
陽介 杉野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/045866 priority Critical patent/WO2019123592A1/ja
Priority to EP17935079.8A priority patent/EP3730903B1/en
Priority to US16/640,276 priority patent/US11512977B2/en
Priority to JP2019559951A priority patent/JP6918142B2/ja
Priority to CN201780097762.XA priority patent/CN111819423B/zh
Publication of WO2019123592A1 publication Critical patent/WO2019123592A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/08Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for safeguarding the apparatus, e.g. against abnormal operation, against breakdown
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2046Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by a movable ferromagnetic element, e.g. a core

Definitions

  • the present invention relates to a redundant resolver using a change in permeance in a gap between a rotor and a stator, and a rotation angle detection device using the same.
  • Patent Document 1 discloses that two resolvers are stacked in two stages.
  • Patent Document 2 discloses JP-A-2007-189834 (Patent Document 2) and JP-A-2009-222435 (Patent Document 3) disclose a redundant resolver having two pairs of stators and a rotor in the radial direction. It is done.
  • Patent Document 3 discloses Japanese Patent Application Laid-Open Nos.
  • Non-Patent Document 1 both the 4-pole excitation winding and the 2-pole output winding are fixed If the rotor is provided with a rotor and the shape of the gap permeance changes appropriately with respect to the circumferential position, the rotor has a simple structure of an iron core having no winding, and the output winding has Research has been published in which a two-phase voltage whose amplitude changes sinusoidally with one full cycle depending on the position of the rotor is obtained.
  • the redundant resolver disclosed in Patent Document 1 has an axial dimension twice as large as that of a one-system resolver because two resolvers are constructed by stacking the stator and rotor in two stages via a shaft. There was a growing challenge.
  • the present invention has been made to solve the above-mentioned problems, and prevents the increase in axial dimension due to redundancy while suppressing the deterioration of manufacturability and the increase in cost, and further improving the angle detection accuracy.
  • An object of the present invention is to provide a resolver and a rotation angle detection device using the resolver.
  • a redundant resolver comprises a pair of rotors and a stator, wherein the rotor is a rotor having a shaft double angle Nx having Nx (Nx is a natural number) salient poles, and the stator is , N is a natural number, and n teeth are sequentially arranged in the circumferential direction, and divided into M in the circumferential direction to constitute M systems, and the total angle of teeth constituting one system is 360 / M degrees In each of the n teeth, an excitation winding of one phase and an output winding of two phases are wound, and excitation signals of the same frequency are applied to the excitation windings by different excitation circuits.
  • the present invention is characterized in that the output order per system is Nout (Nout is a natural number), and an abnormality is detected by the output signal of the M system.
  • the redundant resolver according to the present invention has a structure in which a stator is divided in the circumferential direction to form a redundant system, and the output order per system is Nout (Nout is a natural number). Therefore, it is possible to suppress the deterioration of the manufacturability and the cost increase while preventing the expansion of the axial dimension due to the redundancy, and further improve the angle detection accuracy.
  • FIG. 1 is a cross-sectional view of a redundant resolver according to Embodiment 1 of the present invention. It is stator sectional drawing of the redundant resolver which concerns on Embodiment 1 of this invention. It is a block block diagram of the rotation angle detection apparatus using the redundant resolver which concerns on Embodiment 1 of this invention. It is a figure which shows the number of turns of the excitation winding of the redundant resolver concerning Embodiment 1 of this invention. It is a figure which shows the number of turns of the output winding of the redundant resolver concerning Embodiment 1 of this invention.
  • FIG. 1 is a diagram showing a configuration of a rotation angle detection apparatus using a redundant resolver according to Embodiment 1 of the present invention
  • FIG. 2 is a cross-sectional view of the redundant resolver according to Embodiment 1
  • FIG. 1 is a cross-sectional view of a stator of a redundant resolver according to a first embodiment
  • FIG. 4 is a block diagram of a rotation angle detection apparatus using the redundant resolver according to the first embodiment.
  • the rotation angle detection apparatus 100 includes an angle calculator 1 and a redundant resolver (hereinafter, simply referred to as resolver) 2.
  • the resolver 2 is composed of a pair of stators 3 and a rotor 4, and the stator 3 includes windings 5.
  • the rotor 4 of the resolver 2 is connected via a shaft 6 to the rotating electrical machine 7 or to the rotating parts of various devices.
  • the resolver 2 has a number Ns of teeth T1 to T14 of the stator 3 (hereinafter, “from” is described as “!) as shown in FIG. 2, and the number Nx of salient poles of the rotor 4 is 14 It is assumed that five.
  • the number Nx of salient poles is also called an axial double angle.
  • teeth T1 to T7 of the stator 3 are first system teeth
  • teeth T8 to T14 of the stator 3 are second system teeth.
  • Each tooth is wound with a one-phase excitation winding and a two-phase output winding. That is, as shown in FIGS. 3 and 4, the first system teeth T1 to T7 include the first system excitation windings R1 to R7, the first first system output windings Sa1 to Sa7, and the second The first system output windings Sb1 to Sb7 are wound.
  • second series teeth T8 to T14 second series excitation windings R8 to R14, first second series output windings Sa8 to Sa14, and second second series output windings Sb8 to Sb14. Is wound.
  • the first system excitation circuit 10 and the second system excitation are provided via the output terminals 9a provided in the extension portion 8 of the resolver 2 for the first system excitation windings R1 to R7 and the second system excitation windings R8 to R14, respectively. It is connected to the circuit 11.
  • the first system excitation circuit 10 and the second system excitation circuit 11 apply alternating voltages having the same amplitude and frequency to the first system excitation windings R1 to R7 and the second system excitation windings R8 to R14, respectively.
  • the Sb 14 is connected to the first system angle calculator 1 a and the second system angle calculator 1 b through an output terminal 9 b provided in the extension portion 8 of the resolver 2.
  • the arrangement of the output terminals 9a and the output terminals 9b is only an example, and for example, in FIG. 2, the output terminals 9a and the output terminals 9b may be arranged in any order, such as being reversed left or right or arranged alternately. I don't care.
  • the first system angle calculator 1a and the second system angle calculator 1b are configured of the output voltages of the two-phase output windings Sa1 to Sa7, Sa8 to Sa14, Sb1 to Sb7, and Sb8 to Sb14 of the resolver 2, respectively.
  • the first system detection angle ⁇ 1 and the second system detection angle ⁇ 2 are calculated and output.
  • the first system angle calculator 1a and the second system angle calculator 1b are respectively connected to the abnormality determiner 12, and from the values of the first system detection angle ⁇ 1 and the second system detection angle ⁇ 2, an abnormality such as a fault is generated.
  • the excitation windings of one phase for each of the first system teeth T1 to T7 and the second system teeth T8 to T14 that is, first system excitation windings R1 to R7, the second system The excitation windings R8 to R14 are wound first, and the two-phase output windings from above, ie, the first first system output windings Sa1 to Sa7, the second first system output windings Sb1 to Sb7, and The first second system output winding Sa8 to Sa14 and the second second system output winding Sb8 to Sb14 are respectively wound.
  • the wires Sb8 to Sb14 or the first system excitation windings R1 to R7 and the second system excitation windings R8 to R14 may be wound in any order.
  • the teeth T1 to T14 of the resolver 2 may be provided with teeth that do not wind one of the two-phase output windings. Insulating paper etc. insulates between windings of each phase.
  • the first system excitation windings R1 to R7 are connected in series, and the first first system output windings Sa1 to Sa7 and the second first system output windings Sb1 to Sb7 are also connected in series.
  • the second system excitation windings R8 to R14 are connected in series, and the first second system output windings Sa8 to Sa14 and the second second system output windings Sb8 to Sb14 are also connected in series.
  • each winding is connected in series in the order of teeth T1 to T7, but the teeth at the beginning of winding are arbitrary teeth Ti, and adjacent teeth are connected in series in order Even the same effect can be obtained.
  • the one-phase excitation winding and the two-phase output winding are arranged side by side in the circumferential direction and wound, but the invention is not limited to this. The same effect can be obtained by changing the winding order.
  • FIG. 5 is a diagram showing the number-of-turns distribution of the first system excitation windings R1 to R7 and the second system excitation windings R8 to R14 of the resolver 2 according to the first embodiment.
  • the number of turns of the first system excitation windings R1 to R7 and the second system excitation windings R8 to R14 wound on the first system teeth T1 to T7 and the second system teeth T8 to T14 respectively is continuous. Is shown.
  • a winding direction (+) and a winding direction (-) are defined in the excitation winding of the resolver.
  • a winding direction (+) When the direction of winding of a certain coil is represented by a winding direction (+), a coil wound in the reverse direction is expressed as a winding direction (-).
  • the number of turns in the winding direction (+) and the number of turns in the winding direction (-) are the same in absolute value. That is, assuming that the number of turns in the winding direction (+) is + X, the number of turns in the winding direction ( ⁇ ) is ⁇ X.
  • the number of turns of the excitation winding is normalized by the amplitude of the number of turns.
  • the excitation order per system is N ⁇ 0.5 (N is a natural number), and the axis double angle is an odd number.
  • the excitation winding is repeated Ne times around the stator 3 in which the first system teeth T1 to T7 and the second system teeth T8 to T14 are combined in units of 2 teeth of (+) and (-).
  • An example has been described, but not limited to this, the same effect can be obtained even if the excitation windings (+) and (-) are repeated with one unit of the divisor of the number of teeth of the stator 3 as one unit. it can.
  • FIG. 6 shows the first first system output winding Sa1 to Sa7, the second first system output winding Sb1 to Sb7, the first second system output winding Sa8 to Sa14, and the second second system It is a figure which shows winding number distribution of output winding Sb8-Sb14.
  • the number of turns of the output winding wound around the first system teeth T1 to T7 and the second system teeth T8 to T14 is continuously shown.
  • the first number of turns N SalI of the first system output winding, and a second number of turns N Sb1i of the first system output winding wound around the i th tooth can be represented by each formula (1).
  • the first number of turns N Sa2i of the second system output winding, and a second number of turns N Sb2i of the second system output winding also first of the first system output winding of turns N SalI, the second first It can be expressed by the same equation as the number of turns N Sb1i of the system output winding.
  • N 1 represents the amplitude of the number of turns of the output winding
  • ⁇ teeth represents the circumferential position of the teeth.
  • the output windings are distributed sinusoidally in the circumferential direction of the teeth. If the number of turns is a decimal, it is rounded to an integer. In FIG. 6, the number of turns of the output winding has its amplitude, that is, normalized by N 1.
  • the magnetomotive force is space Ne order and the gap is Permeance is Nx order.
  • the space A-order represents the component of the A period within the mechanical angle of 360 degrees.
  • the number of pole pairs Ne is the number of magnetic pole pairs of the stator 3.
  • a magnetic flux is generated in the gap by the AC excitation current flowing through the first system excitation windings R1 to R7 and the second system excitation windings R8 to R14 of the resolver 2, and the magnetic flux is interlinked with the respective output windings.
  • First system output windings Sa1 to Sa7, second first system output windings Sb1 to Sb7, first second system output windings Sa8 to Sa14, and second second system output windings Sb8 to Sb14 A voltage is generated.
  • the permeance of the gap changes, and the first first system output windings Sa1 to Sa7, the second first system output windings Sb1 to Sb7, and the first second system output windings. Voltage changes occur on the lines Sa8 to Sa14 and the second second output winding Sb8 to Sb14.
  • Angle detection is performed from the output winding wound on each tooth.
  • This envelope is called the output voltage.
  • the magnetic flux density of the gap can be expressed by the product of the magnetomotive force and the permeance of the gap. Since both the magnetomotive force and the permeance are trigonometric functions, they are orders of trigonometric functions of their products. That is, the spatial order of the magnetic flux density of the gap is
  • the spatial order of the magnetic flux density of this gap and the spatial order of the output winding coincide, the flux linkage of the output winding is generated due to the orthogonality of the trigonometric function. Since the exciting current is alternating current, a voltage is generated in the output winding, and the angle can be detected.
  • the magnetic flux density of the gap necessary for angle detection is
  • 2nd order, 12th order (equivalent to the second order).
  • the second and 12th orders of the spatial order of the flux density of the gap are It can be said that they are equivalent. That is, in order to detect the rotation angle of the rotor 4, it is necessary for the output winding to pick up one of the spatial order second order and the twelfth order.
  • the spatial order of the output winding is second order. The rotation angle of is detected.
  • FIG. 7 is a simplified representation of the air-gap magnetic flux density by the excitation signal applied to the first system excitation windings R1 to R7 and the second system excitation windings R8 to R14 of the resolver 2 according to the first embodiment. It is. Further, FIG. 8 shows the number of turns of the output winding of any of the first system and the second system continuously and simplified.
  • the range of the mechanical angle of 0 to 180 ° on the horizontal axis represents the first system, and the range of 180 to 360 ° represents the second system.
  • the resolver 2 detects the angle by reading the magnetic flux linked to the air gap by the output winding. For this reason, the magnetic flux interlinked with the output winding can be calculated by multiplying the air-gap interlinkage magnetic flux by the number of turns.
  • the resolver 2 calculates the output signals from the first system output windings Sa1 to Sa7 and Sb1 to Sb7 and the output signals from the second system output windings Sa8 to Sa14 and Sb8 to Sb14.
  • the one-system rotation angle that is, the first-system detection angle ⁇ 1 and the second-system rotation angle, that is, the second-system detection angle ⁇ 2 are mutually monitored by the abnormality determiner 12, and a failure such as disconnection or short occurs in the resolver 2 If it detects an abnormality.
  • the resolver 2 has the thresholds ⁇ and ⁇ in the abnormality determiner 12.
  • FIG. 10 is a cross-sectional view of the resolver 2 used in the rotation angle detection device 100 according to the second embodiment, in which the number Ns of teeth of the stator 3 is 16 and the shaft double angle Nx of the rotor 4 is 6. .
  • the teeth T1 to T16 of the stator 3 are divided into four in the circumferential direction, and the first system first block B1, the second system first block B2, the first system second block B3 and It is comprised from 2nd system
  • first system first block B1 and the first system second block B3 windings wound respectively around teeth T1 to T4 and T9 to T12 of the block are connected in series to constitute a first system winding.
  • second system first block B2 and the second system second block B4 the windings wound respectively around the teeth T5 to T8 and T13 to T16 of the block are connected in series to form a second system winding.
  • the resolver 2 constitutes a redundant system of dual system.
  • the teeth constituting one system are arranged at opposing positions, so the imbalance of the magnetic flux when the stator 3 is eccentric is alleviated, the output signal becomes sinusoidal, and the angle detection Accuracy can be improved.
  • FIG. 11 is a diagram showing a number-of-turns distribution of the first system excitation winding and the second system excitation winding of the resolver 2 according to the second embodiment.
  • the number of turns of the excitation winding wound on the first system teeth T1 to T4 and T9 to T12 and the second system teeth T5 to T8 and T13 to T16 is continuously shown.
  • a winding direction (+) and a winding direction (-) are defined in the excitation winding of the resolver.
  • a winding direction (+) When the direction of winding of a certain coil is represented by a winding direction (+), a coil wound in the reverse direction is expressed as a winding direction (-).
  • the number of turns in the winding direction (+) and the number of turns in the winding direction (-) are the same in absolute value. That is, when the number of turns in the winding direction (+) is + X, the number of turns in the winding direction ( ⁇ ) is ⁇ X.
  • the number of turns of the excitation winding is normalized by the amplitude of the number of turns.
  • the excitation order per system is N (N is a natural number), and the axis double angle is an even number.
  • N is a natural number
  • the axis double angle is an even number.
  • the abnormality determination unit 12 has the thresholds ⁇ and ⁇ , and the first system detection angle ⁇ 1 calculated from the output signal of the first system, When the relationship of the second system detection angle ⁇ 2 calculated from the output signal of the second system satisfies ⁇ 1 + ⁇ 2> ⁇ or ⁇ 1 ⁇ 2> ⁇ , it is assumed that an abnormality such as disconnection or short circuit occurs in the resolver 2 It is possible to determine.
  • FIG. 12 shows a first first system output winding of the resolver 2 used in the rotation angle detection device according to the third embodiment, a second first system output winding, a first second system output winding, and It is a figure which shows winding number distribution of a 2nd 2nd system
  • the number Ns of teeth is 14, and the teeth T1 to T7 correspond to the first system teeth and teeth T8 to T7.
  • T14 is comprised as 2nd system teeth, and the 1-phase excitation winding and the 2-phase output winding are wound by each teeth. That is, in the first system teeth T1 to T7, the first system excitation windings R1 to R7, the first first system output windings Sa1 to Sa7, and the second first system output windings Sb1 to Sb7 are wound. It is done.
  • second system teeth T8 to T14 are provided with second system excitation windings R8 to R14, first second system output windings Sa8 to Sa14, and second second system output windings Sb8 to Sb14. It has been turned.
  • the output windings wound around the first system teeth T1 to T7 and the second system teeth T8 to T14 that is, the first first system output windings Sa1 to Sa7, the second first system output
  • the numbers of turns of the windings Sb1 to Sb7, the first second system output windings Sa8 to Sa14, and the second second system output windings Sb8 to Sb14 are continuously shown.
  • the first first system output winding Sa1 to Sa7 and the second first system are wound around the first system teeth T1 to T7 and the second system teeth T8 to T14.
  • the system output windings Sb1 to Sb7, the first second system output windings Sa8 to Sa14, and the second second system output windings Sb8 to Sb14 have mutually opposite winding directions. That is, the signs of the numbers of turns of the first first system output windings Sa1 to Sa7 and the first second system output windings Sa8 to Sa14 are opposite to each other. Similarly, the signs of the numbers of turns of the second first system output windings Sb1 to Sb7 and the second second system output windings Sb8 to Sb14 are opposite to each other.
  • FIG. 13 is a simplified diagram showing the air-gap magnetic flux density by the excitation signal applied to the first system excitation windings R1 to R7 and the second system excitation windings R8 to R14 of the resolver 2 according to the third embodiment. is there.
  • FIG. 14 shows an output winding of either the first system or the second system, that is, the first first system output winding Sa1 to Sa7, the second first system output winding Sb1 to Sb7, or the first The number of turns of any of the second system output windings Sa8 to Sa14 and the second second system output windings Sb8 to Sb14 is continuously simplified and shown.
  • the range of the mechanical angle of 0 to 180 ° on the horizontal axis represents the first system, and the range of 180 to 360 ° represents the second system.
  • the angle is detected by reading the magnetic flux linked to the air gap by the output winding. For this reason, the magnetic flux interlinked with the output winding can be calculated by multiplying the air-gap interlinkage magnetic flux by the number of turns.
  • FIG. 15 shows the magnetic flux linked to the output winding when the gap flux of FIG. 13 is read by the number of turns of FIG.
  • the waveforms of the magnetic fluxes interlinking with the first second output trains Sa8 to Sa14 and the second second output windings Sb8 to Sb14 which are lines are the same. For this reason, offsets with the same sign are superimposed on the output signals from the first system output winding and the second system output winding. If this offset is corrected by the angle calculator 1, the rotation angle can be detected accurately. With such a configuration, it is possible to easily detect an abnormality.
  • the resolver 2 in which the number Ns of teeth of the stator 3 shown in FIG. 3 and described in the first embodiment is 14 and the teeth T1 to T14 are divided into two in the circumferential direction is taken as an example.
  • the number Ns of teeth of the stator 3 shown in FIG. 10 described in the second embodiment is 16 and the resolver 2 in which the teeth T1 to T16 are divided into four in the circumferential direction is also provided. Applicable
  • FIG. 16 is a diagram showing the relationship between the phase difference between the first system excitation signal and the second system excitation signal of the resolver 2 used in the rotation angle detection device according to the fourth embodiment and the angular error.
  • the angle error is the difference between the detection angle by the resolver 2 and the rotation angle true value of the rotor 4. The smaller the error, the better the angle detection accuracy.
  • the angular error in FIG. 16 is shown normalized to the value when the phase difference is 0 °. When the phase difference between the two excitation signals is within 60 °, angle detection accuracy comparable to that when the phase difference is 0 ° is obtained.
  • the angular error is the smallest when the phase difference is 45 °. That is, by setting the phase difference between the first system excitation signal and the second system excitation signal to 60 ° or less, the effect of improving the angle detection accuracy can be obtained. In addition, it is desirable that the phase difference between the first system excitation signal and the second system excitation signal be synchronized at 0 ° in practice.
  • FIG. 17 is a cross-sectional view showing the stator 3 of the resolver 2 used in the rotation angle detection device according to the fifth embodiment.
  • teeth T1 to T7 of the stator 3 be first system teeth
  • teeth T8 to T14 of the stator 3 be second system teeth.
  • the teeth T1 and the teeth T8 are auxiliary teeth that wind only the excitation winding and do not wind the output winding.
  • a one-phase excitation winding and a two-phase output winding are wound around the other teeth T2 to T7 and T9 to T14. That is, the first system excitation winding R1 is wound around the first system teeth T1, and the first system excitation windings R2 to R7 and the first first system output winding are wound around the first system teeth T2 to T7.
  • the lines Sa2 to Sa7 and the second first output train Sb2 to Sb7 are wound.
  • a second system excitation winding R8 is wound around the second system teeth T8, and second system excitation windings R9 to R14 and a first second system output winding are wound around the second system teeth T9 to T14.
  • the lines Sa9 to Sa14 and the second second output winding Sb9 to Sb14 are wound.
  • FIG. 18 shows the first first system output windings Sa2 to Sa7, the second first system output windings Sb2 to Sb7, the first second system output windings Sa9 to Sa14, and the first embodiment according to the fifth embodiment.
  • FIG. 7 is a diagram showing a number-of-turns distribution of second system output windings Sb9 to Sb14.
  • the number of turns of the output winding wound around the first system teeth T1 to T7 and the second system teeth T8 to T14 is continuously shown including the auxiliary teeth teeth T1 and T8.
  • the number of turns is standardized by the number of turns when the auxiliary teeth teeth T1 and T8 are not provided.
  • the number of turns of the teeth T1 and T8 of the auxiliary teeth is zero.
  • the amplitude is designed to be equal. For this reason, the amplitudes of the number of turns are apparently different.
  • the number of turns of each of the teeth T1 and T8 of the auxiliary teeth is set to 0, the phase differences differ between the first second-system output windings Sa9 to Sa14 and the second second-system output windings Sb9 to Sb14. Is 90 °, and the amplitude is designed to be equal. For this reason, the amplitudes of the number of turns are apparently different.
  • the output signal can be made sinusoidal, so that the effect of improving the angle detection accuracy can be obtained.
  • FIG. 19 is a cross-sectional view showing the stator 3 of the resolver 2 used in the rotation angle detection device according to the sixth embodiment.
  • teeth T1 to T7 of the stator 3 be first system teeth
  • teeth T8 to T14 of the stator 3 be second system teeth.
  • the teeth T1, T7, T8 and T14 are auxiliary teeth that wind only the excitation winding and do not wind the output winding.
  • a one-phase excitation winding and a two-phase output winding are wound. That is, the first system excitation windings R1 and R7 are wound around the first system teeth T1 and T7, and the first system excitation windings R2 to R6 and the first first winding are connected to the first system teeth T2 to T6.
  • the system output windings Sa2 to Sa6 and the second first system output windings Sb2 to Sb6 are wound.
  • second system excitation windings R8 and R14 are wound around the second system teeth T8 and T14, and second system excitation windings R9 to R13 and the first first system winding are connected to the second system teeth T9 to T13.
  • the two-system output winding Sa9 to Sa13 and the second second-system output winding Sb9 to Sb13 are wound.
  • teeth having no output winding are disposed at both ends of the teeth on which the first and second output windings are wound, and the output windings are disposed adjacent to each other. Since there are no locations, it is possible to obtain the effect of further improving the angle detection accuracy by suppressing the magnetic interference.
  • FIG. 20 shows the first first system output windings Sa1 to Sa7, the second first system output windings Sb1 to Sb7, the first second system output windings Sa8 to Sa14, and the first embodiment according to the sixth embodiment.
  • FIG. 7 is a diagram showing a number-of-turns distribution of second system output windings Sb8 to Sb14.
  • the number of turns of the output winding wound on the first system teeth T2 to T6 and the second system teeth T9 to T13 is continuous including the teeth T1, T7, T8, and T14 which are auxiliary teeth. Is shown. Further, the number of turns is standardized by the number of turns when the teeth T1, T7, T8 and T14 which are auxiliary teeth are not provided.
  • the number of turns of teeth T1 and T7 as auxiliary teeth is both 0. And the phase difference is 90.degree. And the amplitude is designed to be equal. For this reason, the amplitudes of the number of turns are apparently different.
  • the number of turns of teeth T8 and T14, which are auxiliary teeth is set to 0, the first second-system output windings Sa8 to Sa14 and the second second-system output windings Sb8 to Sb14 have the same value.
  • the phase difference is 90 ° and the amplitude is designed to be equal. For this reason, the amplitudes of the number of turns are apparently different.
  • the output signal can be made sinusoidal, so that the effect of improving the angle detection accuracy can be obtained.
  • Reference Signs List 1 angle operator, 1a 1st system angle operator, 1b 2nd system angle operator, 2 redundant resolvers, 3 stators, 4 rotors, 5 windings, 6 shafts, 7 rotating electric machines, 8 extension parts, 9a, 9b output terminal, 10 first system excitation circuit, 11 second system excitation circuit, 12 abnormality determination unit, 13 insulator, 100 rotation angle detection device, T1 to T14 teeth, R1 to R14 excitation winding, Sa1 to Sa14, Sb1 to Sb14 Output windings, B1 first system first block, B2 second system first block, B3 first system second block, B4 second system second block.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

冗長化による軸線方向寸法の拡大を防止しながら、製造性の悪化やコスト増大を抑制し、さらに角度検出精度を向上する。一対の固定子3および回転子4で構成され、回転子4は、Nx(Nxは自然数)個の突極を有する軸倍角Nxの回転子であり、固定子3は、nを自然数として、周方向にn個のティースT1からTnが順に配置されると共に、周方向にM分割されてM系統を構成し、1つの系統を構成するティースの角度を合計すると360/M度を有し、ティースT1からTnには、それぞれ1相の励磁巻線と2相の出力巻線が巻回されて、それぞれの励磁巻線には、異なる励磁回路により同一周波数の励磁信号が印加され、1つの系統当たりの出力次数がNout(Noutは自然数)であって、M系統の出力信号により異常を検知する。

Description

冗長型レゾルバ、およびそれを用いた回転角度検出装置
 この発明は、回転子と固定子の空隙におけるパーミアンスの変化を利用した冗長型レゾルバ、およびそれを用いた回転角度検出装置に関するものである。
 回転角度検出装置に用いられるレゾルバを冗長化するために、例えば特開2009-281818号公報(特許文献1)には、2つのレゾルバを2段積みにしたものが開示されている。また、例えば特開2007-189834号公報(特許文献2)および特開2009-222435号公報(特許文献3)には、径方向に2対の固定子と回転子を備えた冗長型レゾルバが開示されている。更に、例えば特開2013-247828号公報(特許文献4)および特開2013-53890号公報(特許文献5)には、出力巻線が第1系統巻線と第2系統巻線から構成され、ひとつのティースには何れか一方の系統の巻線のみが巻回された冗長型レゾルバが開示されている。なお、この発明を具体的に開示するものではないが、電気学会論文誌D、平成7年、第115巻、第5号、p.598-604、石崎 彰、外3名、「新方式VR形1Xレゾルバの理論と特性」(非特許文献1)に、4極の励磁巻線と2極の出力巻線の双方をいずれも固定子に設けるとともに、ギャップパーミアンスの円周方向の位置に対する変化が適切になるような回転子形状とすれば、回転子は巻線を持たない鉄心のみの簡単な構造によって、出力巻線には、その振幅が回転子の位置に応じて全円周を1周期として正弦波形で変化する2相電圧を得られる研究が発表されている。
特開2009-281818号公報 特開2007-189834号公報 特開2009-222435号公報 特開2013-247828号公報 特開2013-53890号公報
電気学会論文誌D、平成7年、第115巻、第5号、p.598-604、石崎 彰、外3名、「新方式VR形1Xレゾルバの理論と特性」
 特許文献1に開示された冗長型レゾルバは、2つのレゾルバが、そのステータおよびロータをシャフトを介して2段積みにして構成されているため、一系統レゾルバに比べ、軸線方向寸法が2倍に増大する課題があった。
 また、特許文献2、3に開示された冗長型レゾルバでは、レゾルバの内側から順に第1系統回転子、第1系統固定子、第2系統固定子、第2系統回転子を配置することにより冗長化しているため、固定子が2重となって巻線数が増加する。このため製造性が悪化し、また、コストが増大する課題があった。
 更に、特許文献4、5に開示された冗長型レゾルバでは、第1系統の出力巻線と第2系統の出力巻線がティースに対して交互に巻回されているため、何れかの系統の出力信号が理想的な正弦波にならず、角度検出精度が悪化する課題があった。
 この発明は、前記課題を解決するためになされたものであり、冗長化による軸線方向寸法の拡大を防止しながら、製造性の悪化やコスト増大を抑制し、さらに角度検出精度を向上する冗長型レゾルバ、およびそれを用いた回転角度検出装置の提供を目的とするものである。
 この発明に係る冗長型レゾルバは、一対の回転子と固定子で構成され、前記回転子は、Nx(Nxは自然数)個の突極を有する軸倍角Nxの回転子であり、前記固定子は、nを自然数として、周方向にn個のティースが順に配置されると共に、周方向にM分割されてM系統を構成し、1つの系統を構成するティースの角度の合計が360/M度を有し、n個の前記ティースには、それぞれ1相の励磁巻線と2相の出力巻線が巻回されて、それぞれの前記励磁巻線には、異なる励磁回路により同一周波数の励磁信号が印加され、1つの系統当たりの出力次数がNout(Noutは自然数)であって、前記M系統の出力信号により異常を検知することを特徴とする。
 この発明に係る冗長型レゾルバは、一対の固定子および回転子からなり、固定子を周方向に分割し冗長系とする構造であって、1系統あたりの出力次数がNout(Noutは自然数)であるため、冗長化による軸線方向寸法の拡大を防止しながら、製造性の悪化やコスト増大を抑制し、さらに角度検出精度を向上することができる。
この発明の実施の形態1に係る冗長型レゾルバを用いた回転角度検出装置の構成を示す図である。 この発明の実施の形態1に係る冗長型レゾルバの断面図である。 この発明の実施の形態1に係る冗長型レゾルバの固定子断面図である。 この発明の実施の形態1に係る冗長型レゾルバを用いた回転角度検出装置のブロック構成図である。 この発明の実施の形態1に係る冗長型レゾルバの励磁巻線の巻数を示す図である。 この発明の実施の形態1に係る冗長型レゾルバの出力巻線の巻数を示す図である。 この発明の実施の形態1に係る冗長型レゾルバにおける空隙磁束密度を示す図である。 この発明の実施の形態1に係る冗長型レゾルバの出力巻線を示す図である。 この発明の実施の形態1に係る冗長型レゾルバの出力巻線鎖交磁束を示す図である。 この発明の実施の形態2に係る冗長型レゾルバの断面図である。 この発明の実施の形態2に係る冗長型レゾルバの励磁巻線の巻数を示す図である。 この発明の実施の形態3に係る冗長型レゾルバの出力巻線の巻数を示す図である。 この発明の実施の形態3に係る冗長型レゾルバにおける空隙鎖磁束密度を示す図である。 この発明の実施の形態3に係る冗長型レゾルバの出力巻線を示す図である。 この発明の実施の形態3に係る冗長型レゾルバの出力巻線鎖交磁束を示す図である。 この発明の実施の形態4に係る冗長型レゾルバの励磁信号の位相差と角度誤差の関係を示す図である。 この発明の実施の形態5に係る冗長型レゾルバの固定子断面図である。 この発明の実施の形態5に係る冗長型レゾルバの出力巻線の巻数を示す図である。 この発明の実施の形態6に係る冗長型レゾルバの固定子断面図である。 この発明の実施の形態6に係る冗長型レゾルバの出力巻線の巻数を示す図である。
 以下、この発明に係る冗長型レゾルバ、およびそれを用いた回転角度検出装置の好適な実施の形態について図面を参照して詳細に説明する。なお、各実施の形態において、同一または相当部分については、同一符号を付して説明するが、一部で重複説明を省略する場合がある。
実施の形態1.
 図1は、この発明の実施の形態1に係る冗長型レゾルバを用いた回転角度検出装置の構成を示す図であり、図2は実施の形態1に係る冗長型レゾルバの断面図、図3は実施の形態1に係る冗長型レゾルバの固定子断面図である。また、図4は、実施の形態1に係る冗長型レゾルバを用いた回転角度検出装置のブロック構成図である。
 図1に示すように、実施の形態1に係る回転角度検出装置100は、角度演算器1と冗長型レゾルバ(以下、単にレゾルバと表記する。)2を備えて構成されている。レゾルバ2は、一対の固定子3と回転子4で構成されており、固定子3は巻線5を備えている。レゾルバ2の回転子4はシャフト6を介して回転電機7、もしくは種々の装置の回転部と接続されている。
 レゾルバ2は、図2に示すように固定子3のティースT1からT14(以下、「から」を「~」と表記する。)の数Nsは14で、回転子4の突極の数Nxを5としている。突極の数Nxは軸倍角とも呼ばれている。また、図3に示すように、固定子3のティースT1~T14は、周方向に2つに分割されており、図4に示すように、第1系統および第2系統を構成し、レゾルバ2は二重系の冗長型を構成している。つまり、1系統あたりのティースを合計すると、360°/2=180°となる。
 図3に示すように、固定子3のティースT1~T7を第1系統ティース、固定子3のティースT8~T14を第2系統ティースとする。それぞれのティースには、1相の励磁巻線と、2相の出力巻線が巻回されている。つまり、図3および図4に示すように、第1系統ティースT1~T7には、第1系統励磁巻線であるR1~R7、第1の第1系統出力巻線Sa1~Sa7、第2の第1系統出力巻線Sb1~Sb7が巻回されている。同様に、第2系統ティースT8~T14には、第2系統励磁巻線であるR8~R14、第1の第2系統出力巻線Sa8~Sa14、第2の第2系統出力巻線Sb8~Sb14が巻回されている。
 第1系統励磁巻線R1~R7および第2系統励磁巻線R8~R14は、それぞれレゾルバ2の延出部8に設けられた出力端子9aを介して第1系統励磁回路10、第2系統励磁回路11に接続されている。第1系統励磁回路10および第2系統励磁回路11は、それぞれ第1系統励磁巻線R1~R7、第2系統励磁巻線R8~R14に振幅および周波数が同一の交流電圧を与える。第1の第1系統出力巻線Sa1~Sa7、第2の第1系統出力巻線Sb1~Sb7、第1の第2系統出力巻線Sa8~Sa14および第2の第2系統出力巻線Sb8~Sb14は、それぞれレゾルバ2の延出部8に設けられた出力端子9bを介して第1系統角度演算器1a、第2系統角度演算器1bに接続されている。なお、出力端子9aと出力端子9bの配列については、一例であり、例えば図2において、出力端子9aと出力端子9bとを左右逆に配列するとか、交互に配列する等、任意に配列しても構わない。
 第1系統角度演算器1aおよび第2系統角度演算器1bは、レゾルバ2の2相の出力巻線Sa1~Sa7、Sa8~Sa14、およびSb1~Sb7、Sb8~Sb14の出力電圧から回転子4の第1系統検出角度θ1および第2系統検出角度θ2を計算して出力する。さらに、第1系統角度演算器1aおよび第2系統角度演算器1bは、それぞれ異常判定器12に接続されており、第1系統検出角度θ1、第2系統検出角度θ2の値から故障等の異常を検知する。
 実施の形態1に係るレゾルバ2では、第1系統ティースT1~T7、第2系統ティースT8~T14のそれぞれに1相の励磁巻線、即ち、第1系統励磁巻線R1~R7、第2系統励磁巻線R8~R14を先に巻き、その上から2相の出力巻線、即ち、第1の第1系統出力巻線Sa1~Sa7、第2の第1系統出力巻線Sb1~Sb7、および第1の第2系統出力巻線Sa8~Sa14、第2の第2系統出力巻線Sb8~Sb14をそれぞれ巻回した構成となっている。なお、第1の第1系統出力巻線Sa1~Sa7、第2の第1系統出力巻線Sb1~Sb7、および第1の第2系統出力巻線Sa8~Sa14、第2の第2系統出力巻線Sb8~Sb14、あるいは第1系統励磁巻線R1~R7、第2系統励磁巻線R8~R14は、それぞれをどのような順序で巻いても構わない。
 巻線と鉄心との絶縁は、インシュレータ(絶縁紙、塗装等)13で行われている。レゾルバ2のティースT1~T14には2相の出力巻線のうち何れか1相の出力巻線を巻回しないティースを設ける場合がある。各相の巻線間は絶縁紙等で絶縁する。第1系統励磁巻線R1~R7は直列に接続され、第1の第1系統出力巻線Sa1~Sa7、および第2の第1系統出力巻線Sb1~Sb7も直列に接続される。同様に、第2系統励磁巻線R8~R14は直列に接続され、第1の第2系統出力巻線Sa8~Sa14、第2の第2系統出力巻線Sb8~Sb14も直列に接続される。
 なお、ここではそれぞれの巻線は、ティースT1~T7の順に直列に接続されるとしたが、巻き始めのティースはそれぞれ任意のティースTiであって、かつ隣接するティースを順に直列に接続されていても、同様の効果が得られる。
 このような構成により、通常の1系統角度検出装置と同等の軸線方向寸法で冗長化することが可能である。また、コイル数の増加を抑制することができるため、製造しやすく、コストの増大を抑えることができる効果を得ることができる。
 また、実施の形態1に係るレゾルバ2では、1相の励磁巻線と2相の出力巻線を周方向に並べて巻回するものとしたがこの限りではなく、径方向に並べたり、ティースごとに巻回する順序を変更しても同様の効果を得ることができる。
 図5は、実施の形態1に係るレゾルバ2の第1系統励磁巻線R1~R7および第2系統励磁巻線R8~R14の巻数分布を示す図である。図5では、第1系統ティースT1~T7、第2系統ティースT8~T14のそれぞれに巻回される第1系統励磁巻線R1~R7、第2系統励磁巻線R8~R14の巻数を連続的に示している。
 一般に、レゾルバの励磁巻線には、巻き方向(+)、巻き方向(-)が定義されている。あるコイルの巻線の方向を巻き方向(+)で表すと、巻線が逆向きに巻かれているコイルは巻き方向(-)と表現する。巻き方向(+)の巻数と巻き方向(-)の巻数は、絶対値が同じである。即ち、巻き方向(+)の巻数を+X回とすると、巻き方向(-)の巻数は-X回となる。なお、励磁巻線の巻数は、巻数の振幅で規格化している。
 実施の形態1に係るレゾルバ2では、励磁巻線は(+),(-)の2ティース単位で、第1系統ティースT1~T7と第2系統ティースT8~T14を合わせた固定子3の周りをNe回繰り返し巻いている。つまり、固定子3のティースT1~T14の数が14であるため、励磁巻線の空間次数はNe=7である。よって、第1系統励磁巻線R1~R7の空間次数Ne1=3.5、第2系統励磁巻線R8~R14の空間次数Ne2=3.5である。
 実施の形態1に係るレゾルバ2では、1系統当たりの励磁次数がN±0.5(Nは自然数)であり、かつ、軸倍角が奇数である。
 このような構成により、固定子3と回転子4の間の空隙に鎖交する磁束を正弦波状にすることができるため、回転角度検出精度を向上することができる。
 また、ここでは励磁巻線は(+),(-)の2ティース単位で、第1系統ティースT1~T7と第2系統ティースT8~T14を合わせた固定子3の周りをNe回繰り返し巻いている例を説明したが、この限りではなく、励磁巻線の(+),(-)は固定子3のティースの数の約数を1単位として繰り返していても、同様の効果を得ることができる。
 図6は、第1の第1系統出力巻線Sa1~Sa7、第2の第1系統出力巻線Sb1~Sb7、第1の第2系統出力巻線Sa8~Sa14、および第2の第2系統出力巻線Sb8~Sb14の巻数分布を示す図である。ここで、図6では、第1系統ティースT1~T7および第2系統ティースT8~T14に巻回される出力巻線の巻数を連続的に示している。i番目のティースに巻回される第1の第1系統出力巻線の巻数NSa1i、および第2の第1系統出力巻線の巻数NSb1iは、それぞれ式(1)で表すことができる。また、第1の第2系統出力巻線の巻数NSa2i、および第2の第2系統出力巻線の巻数NSb2iも第1の第1系統出力巻線の巻数NSa1i、第2の第1系統出力巻線の巻数NSb1iと同様の式で表すことができる。
Figure JPOXMLDOC01-appb-M000001
 ここで、Nは出力巻線の巻数の振幅、θteethはティースの周方向位置を表している。
 出力巻線は、ティースの周方向に正弦波状に分布している。巻数が小数になる場合は四捨五入して整数としている。なお、図6において、出力巻線の巻数は、その振幅、即ち、Nで規格化している。
 第1系統励磁巻線R1~R7、第2系統励磁巻線R8~R14の極対数をNeとし、回転子4の突極の数をNxとしたとき、起磁力は空間Ne次で、ギャップのパーミアンスはNx次となる。ここで空間A次とは、機械角360度内でA周期の成分のことを表す。極対数Neは、固定子3の磁極の対の数のことである。レゾルバ2の第1系統励磁巻線R1~R7、第2系統励磁巻線R8~R14に流れる交流の励磁電流によりギャップに磁束が生じ、その磁束がそれぞれの出力巻線に鎖交し、第1の第1系統出力巻線Sa1~Sa7、第2の第1系統出力巻線Sb1~Sb7、第1の第2系統出力巻線Sa8~Sa14、第2の第2系統出力巻線Sb8~Sb14に電圧が生じる。回転子4の位置が変化すると、ギャップのパーミアンスが変化し、第1の第1系統出力巻線Sa1~Sa7、第2の第1系統出力巻線Sb1~Sb7、第1の第2系統出力巻線Sa8~Sa14、第2の第2系統出力巻線Sb8~Sb14に電圧変化が生じる。
 各ティースに巻回される出力巻線から角度検出を行う。この包絡線は出力電圧と呼ばれる。ギャップの磁束密度は、起磁力とギャップのパーミアンスの積で表すことができる。起磁力もパーミアンスも三角関数のため、両者の積の三角関数の次数となる。つまり、ギャップの磁束密度の空間次数は、三角関数の積和の式より、|Ne±Nx|次となる。ここで|X|はXの絶対値を表す。このギャップの磁束密度の空間次数と出力巻線の空間次数が一致すると、三角関数の直交性より出力巻線の鎖交磁束が発生する。励磁電流が交流であるので出力巻線には電圧が発生し、角度を検出することができる。
 前述のように、レゾルバ2として機能するためには、空隙に発生する磁束のうち、|Ne±Nx|に等しい空間次数の磁束を拾う必要がある。このことは例えば、非特許文献1の599頁「<2・1>原理」にも記載されている。非特許文献1の式(7)から回転角度φによって変化するのは|Ne±Nx|に等しい。下記式2は非特許文献1の式(7)を示し、但し書きは追記したものである。
Figure JPOXMLDOC01-appb-M000002
 即ち、実施の形態1におけるレゾルバ2では、角度検出に必要なギャップの磁束密度が|7±5|=2次、12次(2次と等価)となる。ここで、これらのギャップの磁束密度の空間次数である2次、12次の間には、|2±Ns|=12次の関係が成立するため、ギャップの磁束密度の空間次数2次と12次は等価であると言える。つまり、回転子4の回転角度を検出するためには、空間次数2次、12次の一方を出力巻線が拾う必要があり、ここでは出力巻線の空間次数を2次とし、回転子4の回転角度を検出している。
 図7は、実施の形態1に係るレゾルバ2の第1系統励磁巻線R1~R7、および第2系統励磁巻線R8~R14に印加される励磁信号による空隙磁束密度を簡略化して示したものである。また、図8は、第1系統および第2系統の何れかの出力巻線の巻数を連続的に簡略化して示したものである。
 図7および図8において、横軸である機械角が0~180°の範囲は第1系統を、180~360°の範囲は第2系統をそれぞれ表している。レゾルバ2では、空隙に鎖交する磁束を出力巻線で読み取ることにより角度を検出する。このため、出力巻線に鎖交する磁束は空隙鎖交磁束と巻数の掛け算により算出することができる。
 図7の空隙鎖交磁束を図8の巻数で読み取る場合に、出力巻線に鎖交する磁束を図9に示す。図9の第1系統出力巻線に鎖交する磁束の波形と、第2系統出力巻線に鎖交する磁束の波形は反転している。このため、第1系統出力巻線、第2系統出力巻線からの出力信号には、符号が反対のオフセットが重畳する。このオフセットを角度演算器1で補正すると、精度よく回転角度を検出することができる。
 実施の形態1におけるレゾルバ2では、これらの第1系統出力巻線Sa1~Sa7、Sb1~Sb7からの出力信号、第2系統出力巻線Sa8~Sa14、Sb8~Sb14からの出力信号から算出した第1系統回転角度、即ち第1系統検出角度θ1、第2系統回転角度、即ち第2系統検出角度θ2を異常判定器12で相互監視し、レゾルバ2の内部において断線や短絡等の故障が発生した場合、異常を検知する。
 具体的には、レゾルバ2は、異常判定器12に閾値α、βを有している。第1系統の出力信号から算出した第1系統検出角度θ1、第2系統の出力信号から算出した第2系統検出角度θ2の関係が、θ1+θ2>α、またはθ1-θ2>βを満たすときに、レゾルバ2の内部で断線や短絡等の異常が発生していると判定する。
 そして、レゾルバ2の第1系統で故障が生じた場合は、第1系統励磁巻線R1~R7への励磁信号の印加を停止する。このような構成により、故障した第1系統を停止し、正常な第2系統の出力信号から、正常時と同様に回転角度を検出することが可能である。同様に、レゾルバ2の第2系統で故障が生じた場合は、第2系統励磁巻線R8~R14への励磁信号の印加を停止することで、正常な第1系統の出力信号から、正常時と同様に回転角度を検出することが可能となる効果が得られる。
 なお、前記においては、スロット数が14、軸倍角が5であるとしたが、この限りではなく、他の構成であっても同様の効果を得ることができる。
実施の形態2.
 次に、この発明の実施の形態2に係る冗長型レゾルバを用いた回転角度検出装置について説明する。
 図10は、実施の形態2に係る回転角度検出装置100に用いられるレゾルバ2の断面図で、固定子3のティースの数Nsを16、回転子4の軸倍角Nxを6としたものである。
 図10に示すように、固定子3のティースT1~T16は、周方向に4つに分割され、第1系統第1ブロックB1、第2系統第1ブロックB2、第1系統第2ブロックB3および第2系統第2ブロックB4から構成されている。第1系統第1ブロックB1と第1系統第2ブロックB3は、当該ブロックのティースT1~T4、T9~T12にそれぞれ巻回される巻線が直列に接続されて第1系統巻線を構成する。同様に、第2系統第1ブロックB2と第2系統第2ブロックB4は、当該ブロックのティースT5~T8、T13~T16にそれぞれ巻回される巻線が直列に接続されて第2系統巻線を構成し、レゾルバ2は二重系の冗長型を構成している。
 このような構成により、一つの系統を構成するティースが対抗する位置に配置されているため、固定子3が偏心した場合の磁束の不平衡が緩和され、出力信号が正弦波状になり、角度検出精度を向上することができる。
 図11は、実施の形態2に係るレゾルバ2の第1系統励磁巻線および第2系統励磁巻線の巻数分布を示す図である。ここで、図11では、第1系統ティースT1~T4、T9~T12および第2系統ティースT5~T8、T13~T16に巻回される励磁巻線の巻数を連続的に示している。
 一般に、レゾルバの励磁巻線には、巻き方向(+)、巻き方向(-)が定義されている。あるコイルの巻線の方向を巻き方向(+)で表すと、巻線が逆向きに巻かれているコイルは巻き方向(-)と表現する。巻き方向(+)の巻数と巻き方向(-)の巻数は、絶対値が同じである。即ち、巻き方向(+)の巻数を+X回とすると巻き方向(-)の巻数は-X回となる。なお、励磁巻線の巻数は、巻数の振幅で規格化している。
 実施の形態2に係るレゾルバ2では、励磁巻線は(+),(-)の2ティース単位で、第1系統ティースT1~T4、T9~T12と第2系統ティースT5~T8、T13~T16を合わせた固定子3の周りをNe回繰り返し巻いている。つまり、固定子3のティースの数が16であるため、励磁巻線の空間次数はNe=8である。よって、第1系統励磁巻線の空間次数Ne1=4、第2系統励磁巻線の空間次数Ne2=4である。
 実施の形態2に係るレゾルバ2では、1系統当たりの励磁次数がN(Nは自然数)であり、かつ、軸倍角が偶数である。
 このような構成により、固定子3と回転子4の間の空隙に鎖交する磁束を正弦波状にすることができるため、回転角度検出精度を向上できる効果がある。
 なお、ここでは、スロット数が16、軸倍角が6であるとしたが、この限りではなく、他の構成であっても同様の効果を得ることができる。
 また、実施の形態2に係るレゾルバ2においても、実施の形態1と同様に、異常判定器12に閾値α、βを有し、第1系統の出力信号から算出した第1系統検出角度θ1、第2系統の出力信号から算出した第2系統検出角度θ2の関係が、θ1+θ2>α、またはθ1-θ2>βを満たすとき、レゾルバ2の内部で断線や短絡等の異常が発生していると判定することが可能である。
実施の形態3.
 次に、この発明の実施の形態3に係る冗長型レゾルバを用いた回転角度検出装置について説明する。
 図12は、実施の形態3に係る回転角度検出装置に用いられるレゾルバ2の第1の第1系統出力巻線、第2の第1系統出力巻線、第1の第2系統出力巻線および第2の第2系統出力巻線の巻数分布を示す図である。
 なお、実施の形態3に係るレゾルバ2の固定子3は、実施の形態1で説明した図3と同様に、ティースの数Nsは14で、ティースT1~T7を第1系統ティース、ティースT8~T14を第2系統ティースとして構成され、それぞれのティースには、1相の励磁巻線と、2相の出力巻線が巻回されている。つまり、第1系統ティースT1~T7には、第1系統励磁巻線R1~R7、第1の第1系統出力巻線Sa1~Sa7、第2の第1系統出力巻線Sb1~Sb7が巻回されている。同様に、第2系統ティースT8~T14には、第2系統励磁巻線R8~R14、第1の第2系統出力巻線Sa8~Sa14、第2の第2系統出力巻線Sb8~Sb14が巻回されている。
 図12では、第1系統ティースT1~T7および第2系統ティースT8~T14に巻回される出力巻線、即ち、第1の第1系統出力巻線Sa1~Sa7、第2の第1系統出力巻線Sb1~Sb7、第1の第2系統出力巻線Sa8~Sa14、第2の第2系統出力巻線Sb8~Sb14の巻数を連続的に示している。
 また、実施の形態3に係るレゾルバ2では、第1系統ティースT1~T7と第2系統ティースT8~T14に巻回される第1の第1系統出力巻線Sa1~Sa7、第2の第1系統出力巻線Sb1~Sb7と、第1の第2系統出力巻線Sa8~Sa14、第2の第2系統出力巻線Sb8~Sb14は、互いに巻回方向が反対方向になっている。即ち、第1の第1系統出力巻線Sa1~Sa7と第1の第2系統出力巻線Sa8~Sa14は巻数の符号が反対になっている。同様に、第2の第1系統出力巻線Sb1~Sb7と第2の第2系統出力巻線Sb8~Sb14は巻数の符号が反対になっている。
 図13は、実施の形態3に係るレゾルバ2の第1系統励磁巻線R1~R7および第2系統励磁巻線R8~R14に印加される励磁信号による空隙磁束密度を簡略化して示したものである。図14は、第1系統および第2系統の何れかの出力巻線、即ち、第1の第1系統出力巻線Sa1~Sa7、第2の第1系統出力巻線Sb1~Sb7、または第1の第2系統出力巻線Sa8~Sa14、第2の第2系統出力巻線Sb8~Sb14の何れかの巻数を連続的に簡略化して示したものである。
 図13および図14において、横軸である機械角が0~180°の範囲は第1系統を、180~360°の範囲は第2系統を表している。
 一般に、レゾルバでは、空隙に鎖交する磁束を出力巻線で読み取ることにより角度を検出する。このため、出力巻線に鎖交する磁束は空隙鎖交磁束と巻数の掛け算により算出することができる。
 図13の空隙鎖交磁束を図14の巻数で読み取る場合に出力巻線に鎖交する磁束を図15に示す。図15の第1系統出力巻線である第1の第1系統出力巻線Sa1~Sa7、第2の第1系統出力巻線Sb1~Sb7に鎖交する磁束の波形と、第2系統出力巻線である第1の第2系統出力巻線Sa8~Sa14、第2の第2系統出力巻線Sb8~Sb14に鎖交する磁束の波形は同一である。このため、第1系統出力巻線、第2系統出力巻線からの出力信号には、符号が一致したオフセットが重畳する。このオフセットを角度演算器1で補正すると、精度よく回転角度を検出することができる。このような構成により、異常を検知することが容易になる効果がある。
 なお、前記においては、実施の形態1で説明した図3に示す固定子3のティースの数Nsが14で、ティースT1~T14が周方向に2つに分割されたレゾルバ2を例に挙げて説明した。しかし、この実施の形態3は、実施の形態2で説明した図10に示す固定子3のティースの数Nsが16で、ティースT1~T16が周方向に4つに分割されたレゾルバ2についても適用できる。
実施の形態4.
 次に、この発明の実施の形態4に係る冗長型レゾルバを用いた回転角度検出装置について説明する。
 図16は、実施の形態4に係る回転角度検出装置に用いられるレゾルバ2の第1系統励磁信号と第2系統励磁信号の位相差と角度誤差との関係を示す図である。
 ここで、角度誤差とは、レゾルバ2による検出角度と回転子4の回転角度真値との差であり、小さい方が角度検出精度は良好である。なお、図16の角度誤差は、位相差0°のときの値で規格化して示している。2つの励磁信号の位相差が60°以内であるとき、位相差が0°の場合と同等程度の角度検出精度が得られる。
 また、位相差45°のとき角度誤差は最も小さくなっている。つまり、第1系統励磁信号と第2系統励磁信号の位相差を60°以下にすることにより、角度検出精度を向上するといった効果を得ることができる。また、実用上は第1系統励磁信号と第2系統励磁信号の位相差が0°で同期していることが望ましい。
実施の形態5.
 次に、この発明の実施の形態5に係る冗長型レゾルバを用いた回転角度検出装置について説明する。
 図17は、実施の形態5に係る回転角度検出装置に用いられるレゾルバ2の固定子3を示す断面図である。
 実施の形態5に係る固定子3のティースT1~T14は、周方向に2つに分割され、第1系統および第2系統を構成し、二重系の冗長型レゾルバを構成している。つまり、1系統あたりのティースを合計すると、360°/2=180°となる。
 固定子3のティースT1~T7を第1系統ティース、固定子3のティースT8~T14を第2系統ティースとする。第1系統ティースT1~T7、第2系統ティースT8~T14のうち、ティースT1およびティースT8は励磁巻線のみを巻回し、出力巻線を巻かない補助ティースである。その他のティースT2~T7、T9~T14には、1相の励磁巻線と2相の出力巻線が巻回されている。つまり、第1系統ティースT1には第1系統励磁巻線R1が巻回され、第1系統ティースT2~T7には、第1系統励磁巻線R2~R7と、第1の第1系統出力巻線Sa2~Sa7、第2の第1系統出力巻線Sb2~Sb7が巻回されている。
 同様に、第2系統ティースT8には第2系統励磁巻線R8が巻回され、第2系統ティースT9~T14には、第2系統励磁巻線R9~R14、第1の第2系統出力巻線Sa9~Sa14、第2の第2系統出力巻線Sb9~Sb14が巻回されている。
 このように構成することにより、第1系統および第2系統の出力巻線が隣接して配置される箇所がなくなるため、磁気干渉を抑制して角度検出精度を向上する効果を得ることができる。
 図18は、実施の形態5に係る第1の第1系統出力巻線Sa2~Sa7、第2の第1系統出力巻線Sb2~Sb7、第1の第2系統出力巻線Sa9~Sa14および第2の第2系統出力巻線Sb9~Sb14の巻数分布を示す図である。
 ここで、図18では、第1系統ティースT1~T7および第2系統ティースT8~T14に巻回される出力巻線の巻数を、補助ティースのティースT1、T8も含めて連続的に示している。また、巻数は補助ティースのティースT1、T8を持たない場合の巻数で規格化している。
 実施の形態5に係るレゾルバ2の第1の第1系統出力巻線Sa2~Sa7と第2の第1系統出力巻線Sb2~Sb7は、補助ティースのティースT1、T8の巻数をいずれも0としたときに、位相差が90°となり、振幅が等しくなるように設計されている。このため、巻数の振幅が、見かけ上異なっている。同様に、第1の第2系統出力巻線Sa9~Sa14と第2の第2系統出力巻線Sb9~Sb14は、補助ティースのティースT1、T8の巻数をいずれも0としたときに、位相差が90°となり、振幅が等しくなるように設計されている。このため、巻数の振幅が、見かけ上異なっている。
 このように構成することにより、出力信号を正弦波状にすることができるため、角度検出精度を向上する効果を得ることができる。
実施の形態6.
 次に、この発明の実施の形態6に係る冗長型レゾルバを用いた回転角度検出装置について説明する。
 図19は、実施の形態6に係る回転角度検出装置に用いられるレゾルバ2の固定子3を示す断面図である。
 実施の形態6に係る固定子3のティースT1~T14は、周方向に2つに分割され、第1系統および第2系統を構成し、二重系の冗長型レゾルバを構成している。つまり、1系統あたりのティースを合計すると、360°/2=180°となる。
 固定子3のティースT1~T7を第1系統ティース、固定子3のティースT8~T14を第2系統ティースとする。第1系統ティースT1~T7、第2系統ティースT8~T14のうち、ティースT1、T7、T8、T14は励磁巻線のみを巻回し、出力巻線を巻かない補助ティースである。その他のティースT2~T6、T9~T13には、1相の励磁巻線と、2相の出力巻線が巻回されている。つまり、第1系統ティースT1、T7には第1系統励磁巻線R1、R7が巻回され、第1系統ティースT2~T6には、第1系統励磁巻線R2~R6、第1の第1系統出力巻線Sa2~Sa6、第2の第1系統出力巻線Sb2~Sb6が巻回されている。
 同様に、第2系統ティースT8、T14には第2系統励磁巻線R8、R14が巻回され、第2系統ティースT9~T13には、第2系統励磁巻線R9~R13、第1の第2系統出力巻線Sa9~Sa13、第2の第2系統出力巻線Sb9~Sb13が巻回されている。
 このように構成することにより、第1系統および第2系統の出力巻線が巻回されるティースの両端に、出力巻線をもたないティースが配置され、出力巻線が隣接して配置される箇所がなくなるため、磁気干渉を抑制して角度検出精度をさらに向上するといった効果を得ることができる。
 図20は、実施の形態6に係る第1の第1系統出力巻線Sa1~Sa7、第2の第1系統出力巻線Sb1~Sb7、第1の第2系統出力巻線Sa8~Sa14および第2の第2系統出力巻線Sb8~Sb14の巻数分布を示す図である。
 ここで、図20では、第1系統ティースT2~T6および第2系統ティースT9~T13に巻回される出力巻線の巻数を、補助ティースであるティースT1、T7、T8、T14も含めて連続的に示している。また、巻数は補助ティースであるティースT1、T7、T8、T14を持たない場合の巻数で規格化している。
 実施の形態6に係るレゾルバ2の第1の第1系統出力巻線Sa1~Sa7と第2の第1系統出力巻線Sb1~Sb7は、補助ティースであるティースT1、T7の巻数をいずれも0としたときに、位相差が90°となり、かつ、振幅が等しくなるように設計されている。このため、巻数の振幅が、見かけ上異なっている。同様に、第1の第2系統出力巻線Sa8~Sa14と第2の第2系統出力巻線Sb8~Sb14は、補助ティースであるティースT8、T14の巻数をいずれも0としたときに、位相差が90°となり、かつ、振幅が等しくなるように設計されている。このため、巻数の振幅が、見かけ上異なっている。
 このような構成により、出力信号を正弦波状にすることができるため、角度検出精度を向上する効果を得ることができる。
 以上、この発明に係る複数の実施の形態について説明したが、この発明はこれに限定されるものではなく、この発明の要旨を逸脱しない範囲において各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。
1 角度演算器、1a 第1系統角度演算器、1b 第2系統角度演算器、2 冗長型レゾルバ、3 固定子、4 回転子、5 巻線、6 シャフト、7 回転電機、8 延出部、9a,9b 出力端子、10 第1系統励磁回路、11 第2系統励磁回路、12 異常判定器、13 インシュレータ、100 回転角度検出装置、T1~T14 ティース、R1~R14 励磁巻線、Sa1~Sa14、Sb1~Sb14 出力巻線、B1 第1系統第1ブロック、B2 第2系統第1ブロック、B3 第1系統第2ブロック、B4 第2系統第2ブロック。

Claims (15)

  1.  一対の回転子と固定子で構成され、
     前記回転子は、Nx(Nxは自然数)個の突極を有する軸倍角Nxの回転子であり、
     前記固定子は、nを自然数として、周方向にn個のティースが順に配置されると共に、周方向にM分割されてM系統を構成し、1つの系統を構成するティースの角度を合計すると360/M度を有し、
     n個の前記ティースには、それぞれ1相の励磁巻線と2相の出力巻線が巻回されて、それぞれの前記励磁巻線には、異なる励磁回路により同一周波数の励磁信号が印加され、1つの系統当たりの出力次数がNout(Noutは自然数)であって、
     前記M系統の出力信号により異常を検知することを特徴とする冗長型レゾルバ。
  2.  前記M系統のうちの一部で故障が発生した場合、故障が発生した系統の励磁信号を停止することを特徴とする請求項1に記載の冗長型レゾルバ。
  3.  前記1つの系統当たりの励磁次数がNe±0.5次(Neは自然数)であると共に、前記回転子の軸倍角が奇数であることを特徴とする請求項1または2に記載の冗長型レゾルバ。
  4.  前記1つの系統当たりの励磁次数がNe±次(Neは自然数)であると共に、前記回転子の軸倍角が偶数であることを特徴とする請求項1または2に記載の冗長型レゾルバ。
  5.  前記M系統の出力信号が、それぞれオフセットを補正されていることを特徴とする請求項1から4の何れか一項に記載の冗長型レゾルバ。
  6.  前記1つの系統を構成するティースの連なりであるティースブロックの端部には、出力巻線を巻回しない補助ティースが配置されていることを特徴とする請求項1から5の何れか一項に記載の冗長型レゾルバ。
  7.  前記1つの系統に巻回される2相の出力巻線の巻数の振幅が異なることを特徴とする請求項6に記載の冗長型レゾルバ。
  8.  前記励磁信号の位相差が、60°以内であることを特徴とする請求項1から7の何れか一項に記載の冗長型レゾルバ。
  9.  前記励磁信号が同期していることを特徴とする請求項1から8の何れか一項に記載の冗長型レゾルバ。
  10.  前記Mが2であることを特徴とする請求項1から7の何れか一項に記載の冗長型レゾルバ。
  11.  第1系統および第2系統の出力巻線が、互いに同方向または反対方向に巻回されていることを特徴とする請求項1から10の何れか一項に記載の冗長型レゾルバ。
  12.  第1系統による検出角度をθ1、第2系統による検出角度をθ2とするとき、
    |θ1-θ2|>α、|θ1+θ2|>β(ただし、α、βは実数)により異常を判定することを特徴とする請求項1から11の何れか一項に記載の冗長型レゾルバ。
  13.  2つの系統が周方向に180°ごとに配置されていることを特徴とする請求項1から12の何れか一項に記載の冗長型レゾルバ。
  14.  2つの系統が周方向に90°ごとに配置されていることを特徴とする請求項1から12の何れか一項に記載の冗長型レゾルバ。
  15.  請求項1から14の何れか一項に記載の冗長型レゾルバと、前記冗長型レゾルバの出力端子に接続され、前記冗長型レゾルバの出力巻線の出力電圧から回転子の検出角度を計算して出力する角度演算器と、を備えたことを特徴とする回転角度検出装置。
PCT/JP2017/045866 2017-12-21 2017-12-21 冗長型レゾルバ、およびそれを用いた回転角度検出装置 WO2019123592A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2017/045866 WO2019123592A1 (ja) 2017-12-21 2017-12-21 冗長型レゾルバ、およびそれを用いた回転角度検出装置
EP17935079.8A EP3730903B1 (en) 2017-12-21 2017-12-21 Redundant resolver and rotation angle detection device using same
US16/640,276 US11512977B2 (en) 2017-12-21 2017-12-21 Redundant resolver and rotation angle detection device using same
JP2019559951A JP6918142B2 (ja) 2017-12-21 2017-12-21 冗長型レゾルバ、およびそれを用いた回転角度検出装置
CN201780097762.XA CN111819423B (zh) 2017-12-21 2017-12-21 冗余型旋转变压器、以及使用其的旋转角度检测装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/045866 WO2019123592A1 (ja) 2017-12-21 2017-12-21 冗長型レゾルバ、およびそれを用いた回転角度検出装置

Publications (1)

Publication Number Publication Date
WO2019123592A1 true WO2019123592A1 (ja) 2019-06-27

Family

ID=66993315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045866 WO2019123592A1 (ja) 2017-12-21 2017-12-21 冗長型レゾルバ、およびそれを用いた回転角度検出装置

Country Status (5)

Country Link
US (1) US11512977B2 (ja)
EP (1) EP3730903B1 (ja)
JP (1) JP6918142B2 (ja)
CN (1) CN111819423B (ja)
WO (1) WO2019123592A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021060263A (ja) * 2019-10-07 2021-04-15 多摩川精機株式会社 二重冗長系レゾルバ
WO2021100076A1 (ja) * 2019-11-18 2021-05-27 三菱電機株式会社 冗長レゾルバ及びそれを搭載した電動パワーステアリング装置
FR3105401A1 (fr) * 2019-12-20 2021-06-25 Safran Electronics & Defense Résolveur angulaire à double excitation
WO2021157000A1 (ja) 2020-02-06 2021-08-12 三菱電機株式会社 角度検出装置
JPWO2021171391A1 (ja) * 2020-02-26 2021-09-02
WO2021171392A1 (ja) * 2020-02-26 2021-09-02 三菱電機株式会社 レゾルバの異常検出装置
JPWO2021234802A1 (ja) * 2020-05-19 2021-11-25
EP4092889A4 (en) * 2020-01-17 2023-01-04 Mitsubishi Electric Corporation RESOLVER AND ELECTRIC POWER STEERING DEVICE
EP4134632A4 (en) * 2020-04-09 2023-05-24 Mitsubishi Electric Corporation MULTI-SYSTEM ROTATION SENSOR AND ELECTRIC POWER STEERING DEVICE WITH MULTI-SYSTEM ROTATION SENSOR
JP7459233B2 (ja) 2020-04-09 2024-04-01 三菱電機株式会社 冗長レゾルバ及び冗長レゾルバを搭載した電動パワーステアリング装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220181940A1 (en) * 2020-12-03 2022-06-09 Joby Aero, Inc. Redundant resolver
EP4325173A4 (en) * 2021-04-15 2024-06-05 Mitsubishi Electric Corporation RESOLVER AND ELECTRIC POWER STEERING DEVICE EQUIPPED THEREWITH
CN115457276B (zh) * 2022-09-20 2023-05-30 哈尔滨理工大学 基于视觉检测的输配电变压器高压绕组缠绕角度检测方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11337373A (ja) * 1998-05-25 1999-12-10 Hitachi Ltd 回転センサ及びその異常診断方法及びそれを用いた電動機の制御システム
JP2000018968A (ja) * 1998-07-06 2000-01-21 Tamagawa Seiki Co Ltd 複重系レゾルバ
JP2007189834A (ja) 2006-01-13 2007-07-26 Tamagawa Seiki Co Ltd 冗長系レゾルバステータ構造
JP2009222435A (ja) 2008-03-13 2009-10-01 Toyota Motor Corp レゾルバ
JP2009281818A (ja) 2008-05-21 2009-12-03 Tamagawa Seiki Co Ltd 冗長型レゾルバ
JP2013053890A (ja) 2011-09-02 2013-03-21 Japan Aviation Electronics Industry Ltd バリアブルリラクタンス型レゾルバ及び回転角検出装置
JP2013247828A (ja) 2012-05-29 2013-12-09 Tamagawa Seiki Co Ltd 冗長系レゾルバ巻線構造
WO2016027290A1 (ja) * 2014-08-21 2016-02-25 三菱電機株式会社 レゾルバ
WO2017115414A1 (ja) * 2015-12-28 2017-07-06 三菱電機株式会社 回転角度検出装置および回転電機

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3665737B2 (ja) * 2000-11-30 2005-06-29 山洋電気株式会社 nXリラクタンスレゾルバ
JP3926664B2 (ja) * 2002-04-15 2007-06-06 三菱電機株式会社 回転角度検出装置およびそれを用いた回転電機
JP3783667B2 (ja) * 2002-08-06 2006-06-07 三菱電機株式会社 回転電機およびその回転位置センサーの位置決め方法および位置決め装置
WO2007029678A1 (ja) 2005-09-05 2007-03-15 Japan Aviation Electronics Industry Limited レゾルバ
JP4775294B2 (ja) * 2007-03-27 2011-09-21 トヨタ自動車株式会社 レゾルバ
JP5090847B2 (ja) * 2007-10-17 2012-12-05 ミネベア株式会社 計測装置、信号処理方法およびプログラム
US20140299392A9 (en) * 2007-10-26 2014-10-09 Frederick William Klatt Brushless Multiphase Self-Commutation Control (BMSCC) And Related Inventions
JP2011185656A (ja) * 2010-03-05 2011-09-22 Toyota Motor Corp レゾルバ
JP2012220406A (ja) * 2011-04-12 2012-11-12 Minebea Co Ltd 角度検出装置
JP6235591B2 (ja) * 2012-08-15 2017-11-22 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 融通性のある付属品を有する副流式呼吸気体サンプリングシステム及び取り外し可能なウォータートラップ
JP6242116B2 (ja) * 2013-08-23 2017-12-06 三菱電機株式会社 回転角度検出装置
CN103617880A (zh) * 2013-12-10 2014-03-05 哈尔滨工业大学 带有冗余绕组的外转子轴向磁路多对极磁阻式旋转变压器
EP3708967B1 (en) * 2014-02-19 2022-08-10 Mitsubishi Electric Corporation Motor rotational angle detection device and electric power steering device using motor rotational angle detection device
CN107040096B (zh) * 2016-02-03 2020-04-21 德昌电机(深圳)有限公司 电机及其分解器
JP6535292B2 (ja) * 2016-03-01 2019-06-26 旭化成エレクトロニクス株式会社 異常診断装置、異常診断方法、およびプログラム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11337373A (ja) * 1998-05-25 1999-12-10 Hitachi Ltd 回転センサ及びその異常診断方法及びそれを用いた電動機の制御システム
JP2000018968A (ja) * 1998-07-06 2000-01-21 Tamagawa Seiki Co Ltd 複重系レゾルバ
JP2007189834A (ja) 2006-01-13 2007-07-26 Tamagawa Seiki Co Ltd 冗長系レゾルバステータ構造
JP2009222435A (ja) 2008-03-13 2009-10-01 Toyota Motor Corp レゾルバ
JP2009281818A (ja) 2008-05-21 2009-12-03 Tamagawa Seiki Co Ltd 冗長型レゾルバ
JP2013053890A (ja) 2011-09-02 2013-03-21 Japan Aviation Electronics Industry Ltd バリアブルリラクタンス型レゾルバ及び回転角検出装置
JP2013247828A (ja) 2012-05-29 2013-12-09 Tamagawa Seiki Co Ltd 冗長系レゾルバ巻線構造
WO2016027290A1 (ja) * 2014-08-21 2016-02-25 三菱電機株式会社 レゾルバ
WO2017115414A1 (ja) * 2015-12-28 2017-07-06 三菱電機株式会社 回転角度検出装置および回転電機

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AKIRA ISHIZAKI: "Theory and Characteristics on Novel Variable Reluctance 1X Resolver", THE TRANSACTIONS OF THE INSTITUTE OF ELECTRICAL ENGINEERS OF JAPAN D, vol. 115, no. 5, 1995, pages 598 - 604
See also references of EP3730903A4

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021060263A (ja) * 2019-10-07 2021-04-15 多摩川精機株式会社 二重冗長系レゾルバ
EP4063799A4 (en) * 2019-11-18 2022-11-02 Mitsubishi Electric Corporation REDUNDANT RESOLVER AND EQUIPPED ELECTRIC POWER STEERING
WO2021100076A1 (ja) * 2019-11-18 2021-05-27 三菱電機株式会社 冗長レゾルバ及びそれを搭載した電動パワーステアリング装置
JPWO2021100076A1 (ja) * 2019-11-18 2021-05-27
JP7325529B2 (ja) 2019-11-18 2023-08-14 三菱電機株式会社 冗長レゾルバ及びそれを搭載した電動パワーステアリング装置
FR3105401A1 (fr) * 2019-12-20 2021-06-25 Safran Electronics & Defense Résolveur angulaire à double excitation
EP4092889A4 (en) * 2020-01-17 2023-01-04 Mitsubishi Electric Corporation RESOLVER AND ELECTRIC POWER STEERING DEVICE
WO2021157000A1 (ja) 2020-02-06 2021-08-12 三菱電機株式会社 角度検出装置
EP4113069A4 (en) * 2020-02-26 2023-04-05 Mitsubishi Electric Corporation RESOLVER ABNORMAL DETECTION DEVICE
JPWO2021171392A1 (ja) * 2020-02-26 2021-09-02
WO2021171392A1 (ja) * 2020-02-26 2021-09-02 三菱電機株式会社 レゾルバの異常検出装置
JP7229418B2 (ja) 2020-02-26 2023-02-27 三菱電機株式会社 レゾルバの異常検出装置
EP4113068A4 (en) * 2020-02-26 2023-04-05 Mitsubishi Electric Corporation ANOMALY DETECTION DEVICE FOR SOLVER
WO2021171391A1 (ja) * 2020-02-26 2021-09-02 三菱電機株式会社 レゾルバの異常検出装置
JPWO2021171391A1 (ja) * 2020-02-26 2021-09-02
EP4134632A4 (en) * 2020-04-09 2023-05-24 Mitsubishi Electric Corporation MULTI-SYSTEM ROTATION SENSOR AND ELECTRIC POWER STEERING DEVICE WITH MULTI-SYSTEM ROTATION SENSOR
JP7459233B2 (ja) 2020-04-09 2024-04-01 三菱電機株式会社 冗長レゾルバ及び冗長レゾルバを搭載した電動パワーステアリング装置
JPWO2021234802A1 (ja) * 2020-05-19 2021-11-25
WO2021234802A1 (ja) 2020-05-19 2021-11-25 三菱電機株式会社 電動機制御装置
EP4156499A4 (en) * 2020-05-19 2023-07-12 Mitsubishi Electric Corporation ELECTRIC MOTOR CONTROL DEVICE
JP7351006B2 (ja) 2020-05-19 2023-09-26 三菱電機株式会社 電動機制御装置

Also Published As

Publication number Publication date
EP3730903A1 (en) 2020-10-28
JPWO2019123592A1 (ja) 2020-07-30
EP3730903A4 (en) 2020-12-23
US11512977B2 (en) 2022-11-29
CN111819423B (zh) 2022-03-29
US20200363233A1 (en) 2020-11-19
EP3730903B1 (en) 2023-02-15
JP6918142B2 (ja) 2021-08-11
CN111819423A (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
WO2019123592A1 (ja) 冗長型レゾルバ、およびそれを用いた回転角度検出装置
US9847686B2 (en) Stator for rotating electric machine
JP6490244B2 (ja) 回転角度検出装置および回転電機
JP2003307436A (ja) 回転角度検出装置およびそれを用いた回転電機
WO2014091609A1 (ja) 回転電機
WO2013157115A1 (ja) 回転電機の固定子巻線
US7511481B2 (en) Variable reluctance type angle detector
JP7159800B2 (ja) 回転電機
JP6242116B2 (ja) 回転角度検出装置
JP2013221740A (ja) レゾルバ
JP2624747B2 (ja) レゾルバ
JP3103487B2 (ja) バリアブルリラクタンス型角度検出器
JP2013127448A (ja) バリアブルリラクタンス型角度検出器
JP5651060B2 (ja) バリアブルリラクタンス型レゾルバ
JP5947744B2 (ja) 回転電機のステータ、および、回転電機
JP2012005327A (ja) レゾルバ
JP6271088B2 (ja) 回転電機
JP5467840B2 (ja) 永久磁石モータ
JP3812611B2 (ja) 回転子位置センサ付き多相モータ
JP2013127447A (ja) バリアブルリラクタンス型角度検出器
JP2010217111A (ja) バリアブルリラクタンス型角度検出器
JP2013162535A (ja) 三相モータ
JPH02231948A (ja) 同期機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935079

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019559951

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017935079

Country of ref document: EP

Effective date: 20200721