WO2019119628A1 - 制备泰拉霉素的方法 - Google Patents

制备泰拉霉素的方法 Download PDF

Info

Publication number
WO2019119628A1
WO2019119628A1 PCT/CN2018/075246 CN2018075246W WO2019119628A1 WO 2019119628 A1 WO2019119628 A1 WO 2019119628A1 CN 2018075246 W CN2018075246 W CN 2018075246W WO 2019119628 A1 WO2019119628 A1 WO 2019119628A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
reaction
added
stirred
Prior art date
Application number
PCT/CN2018/075246
Other languages
English (en)
French (fr)
Inventor
邹平
储玲玲
邱小龙
胡林
张程亮
曾祥军
苟少华
吴忠平
沈伟
符剑
许明
王平
张新刚
时光好
王军强
陈俊
曹雷
Original Assignee
海门慧聚药业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海门慧聚药业有限公司 filed Critical 海门慧聚药业有限公司
Priority to US16/764,396 priority Critical patent/US11001604B2/en
Publication of WO2019119628A1 publication Critical patent/WO2019119628A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/24Heterocyclic radicals containing oxygen or sulfur as ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H17/00Compounds containing heterocyclic radicals directly attached to hetero atoms of saccharide radicals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the invention relates to the field of chemical synthesis, in particular to a novel method for preparing tyanomycin.
  • Tulathromycin is a third-generation macrolide antibiotic. It has low concentration, long duration of action, low minimum inhibitory concentration, low dosage, good water solubility, low overall treatment cost and easy to use. And so on, has been widely concerned by the veterinary medicine industry.
  • Taramycin also known as Taramycin, Tolamycin
  • Draxxin Choinese name is "Rick New” or “Rike New”
  • This medicine is a new type of erythromycin semi-synthetic veterinary drug researched and developed by Pfizer Animal Health Products Company in the late 1990s. It is mainly used to treat and control animals from Actinobacillus pleuropneumoniae, Mycoplasma, Pasteurella, Respiratory diseases caused by Haemophilus parasuis, B. bronchiseptica, etc.
  • the drug was approved by the European Union Veterinary Medical Advisory Committee in October 2004 and was listed in the US by the US FDA in May 2005.
  • the Ministry of Agriculture approved the use of the drug in the Ministry of Agriculture's Announcement No. 957 in 2008.
  • the dosage form is an injection.
  • Taramycin has a complex structure with multiple chiral centers and contains multiple reactive groups (containing 5 hydroxyl groups, one macrolide group, and three amine groups).
  • the chemical name is: (2R, 3S, 4R) , 5R, 8R, 10R, 11R, 12S, 13S, 14R)-13-[[2',6'-dideoxy-3'-C-methyl-3'-O-methyl-4'-C- [(propylamino)methyl]- ⁇ -L-nuclear-hexyranosyl]-oxo]-2-ethyl-3,4,10-trihydroxy-3,5,8,10,12,14 -hexamethyl-11-[[3",4",6"-tripleoxy-3"-(dimethylamino)- ⁇ -D-mu-hexyranose]oxy]-1-oxa-6 - azacyclopentadecane-15-one.
  • telamycin Since the compound contains three amino groups, it is weakly negative in solution, which facilitates penetrating the negative membrane and efficiently stimulates the separation of peptidyl tRNA from the ribosome, thereby inhibiting the bacterial transpeptide process and making the peptide chain. The synthesis and elongation are hindered, thereby affecting the synthesis of bacterial proteins.
  • the chemical structural formula of telamycin is as follows:
  • the epoxy compound is further subjected to Pd/C hydrogenation to remove the Cbz protecting group, and the obtained product is subjected to a nucleophilic addition reaction of n-propylamine and an epoxy three-membered ring in the molecule.
  • telamycin This route also contains 3, 4, 6, 10, 4' hydroxyl (or amino) groups and Swern in the compound due to the protection of the 2'-position hydroxyl group by benzyl chloroformate.
  • Patent CN102260306 reports the use of acetyl groups to protect the hydroxyl group at the 2′′ position of demethyl azithromycin and the amino group at the 6 position, and then oxidize and epoxidize the hydroxyl group at the 4′ position, and finally remove it at high temperature using an inorganic strong base (alkali alcohol solution). After acetylation, the 4' epoxy is subjected to nucleophilic addition with n-propylamine to prepare telamycin. Since Swern is oxidized, the secondary hydroxyl group at the 4-position in the compound is also oxidized, and the inorganic is strong.
  • Patent CN102786569 uses a Boc group to simultaneously protect the hydroxyl group at the 2′′ position of demethyl azithromycin and the amino group at the 6 position, and then oxidize the hydroxyl group at the 4′ position, deprotecting with trifluoroacetic acid, and simultaneously forming trifluoroacetate, and then Epoxidation of the 4'-position carbonyl group, and finally nucleophilic addition of epoxy to n-propylamine to complete the preparation of telamycin.
  • This route contains a large amount of compounds in the epoxidation of Corey-Chaykovsky. Exposed reactive groups, and thus the reaction is particularly complicated, resulting in more impurities after the epoxy reaction, especially difficult to purify.
  • Patent CN102295672 also uses Cbz to first protect the 2'-position hydroxyl group, then Swern oxidizes the 4'-position hydroxyl group, then converts the 4' carbonyl group to a methylene group by a methylation reaction of a carbonyl group, and rings the methylene group by hydrogen peroxide. Oxidation, then nucleophilic addition of epoxy to n-propylamine to complete the preparation of telamycin.
  • This route has other active groups in the compound when Cbz protects the 2'-position hydroxyl group and Swern oxidizes the 4'-position hydroxyl group. The group participates in the competitive reaction, resulting in poor selectivity, high reaction impurities, and difficulty in purification.
  • the technical problem to be solved by the present invention is to provide a synthetic method suitable for amplifying the production of tyranamicin.
  • the first step of the reaction uses demethylated azithromycin (Formula I) protected with 3,4 acetone forks as a starting material.
  • the first step of the reaction is to react a compound of formula I and formula II in the presence of a reaction solvent to protect the 2" hydroxyl group of the compound of formula I to effect the preparation of a compound of formula III.
  • the solvent used in the first step of the reaction includes THF, Dioxane, CH 2 Cl 2 , CH 3 CN, 2-MeTHF.
  • R is H, Me, and NO 2 ; in the formula III, R is H, Me, and NO 2 .
  • the second step of the reaction involves the oxidation of the hydroxyl group at the 4' position of the formula III to a carbonyl group by Swern conditions to effect the preparation of the compound of formula IV.
  • the reagents used in the second step of the Swern reaction were DMSO and (CF 3 CO) 2 O.
  • R is H, Me, NO 2 .
  • the third step of the reaction involves the preparation of the compound of formula V by subjecting the carbonyl group at the 4' position of the compound of formula IV to a cyano addition reaction using TMSCN under the action of TBAF.
  • the solvent used in the fourth step reaction includes THF, 2-MeTHF, CH 2 Cl 2 , Dioxane, CH 3 CN.
  • R is H, Me, and NO 2 .
  • the fourth step of the reaction involves hydrogenating the compound V in the presence of PAc under the conditions of Pd/C as a catalyst, hydrogenating the cyano group in the compound to an amine methyl group, and simultaneously removing the 2' hydroxy protecting group and 4 position acetone fork protection to achieve the preparation of compound VI.
  • the hydrogen pressure used in the fourth step is 2 atm-10 atm.
  • the solvent used in the fourth step includes MeOH, EtOH, i-PrOH;
  • the fifth step of the reaction involves the reaction of the compound of formula VI with 1-halopropane (formula VII) under the action of a base to effect the preparation of telamycin.
  • the base used in the fifth step reaction includes DMAP, Et 3 N, Na 2 CO 3 , Cs 2 CO 3 , K 2 CO 3 , DIPEA.
  • X is I and Br.
  • the route is protected by the acetone fork due to the active 3,4 hydroxyl group in the starting material, which avoids the main side reaction in the oxidation and epoxidation process, has good selectivity, is easy to obtain high-purity products, and is easy to realize industrial production. Compared with the existing routes, the advantages are obvious.
  • a compound of formula I 500 g, 645.16 mmol
  • CH 2 Cl 2 3.5 L
  • H 2 O 500 mL

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Saccharide Compounds (AREA)

Abstract

本发明公开了一种制备泰拉霉素的方法。

Description

制备泰拉霉素的方法 技术领域
本发明涉及化学合成领域,具体涉及一条制备泰拉霉素的新方法。
背景技术
泰拉霉素(Tulathromycin)作为第三代大环内酯抗生素,由于在使用过程中浓度低、作用时间长、最小抑制浓度低、用量少、注射水溶性好、整体治疗成本低、使用方便等优点,受到了兽药界广泛关注。
泰拉霉素,又名土拉霉素、托拉霉素,商品名为“Draxxin”(中文名称为“瑞克新”或“瑞可新”)。该药是美国辉瑞动物保健品公司于上世纪90年代末研究开发出的一种新型红霉素类半合成兽药,主要用于治疗和防治动物由胸膜肺炎放线杆菌、支原体、巴氏杆菌、副嗜血杆菌、支气管败血性博德特菌等引起的呼吸系统疾病。该药于2004年10月被欧盟兽医医学咨询委员会批准在欧盟上市,2005年5月被美国FDA批准在美国上市,中国农业部于2008年在农业部第957号公告中批准使用该药,该药剂型为注射剂。
泰拉霉素结构复杂,具有多个手性中心,且包含多个活性基团(包含5个羟基、一个大环内酯基、三个胺基),化学名为:(2R,3S,4R,5R,8R,10R,11R,12S,13S,14R)-13-[[2′,6′-双脱氧-3′-C-甲基-3′-O-甲基-4′-C-[(丙氨基)甲基]-α-L-核-己吡喃糖基]-氧]-2-乙基-3,4,10-三羟基-3,5,8,10,12,14-六甲基-11-[[3″,4″,6″-三脱氧-3″-(二甲氨基)-β-D-木-己吡喃糖]氧]-1-氧杂-6-氮杂环十五烷-15-酮。化合物由于含有三个氨基基团,因此在溶液中呈弱负电性,从而有利于穿透阴性菌膜,高效率地刺激肽酰tRNA从核糖体上分离,从而抑制细菌转肽过程,使肽链的合成和延长受阻,从而影响细菌蛋白质的合成。泰拉霉素的化学结构式如下:
Figure PCTCN2018075246-appb-000001
由于泰拉霉素结构复杂,含有多个手性中心,且包含多个活性基团,因而合成难度巨大。美国辉瑞公司专利WO9856802/US6420536从去甲基阿奇霉素出发,以氯甲酸苄酯保护2″位的羟基,然后采用Swern氧化条件氧化4′的羟基,随后中间体再使用Corey-Chaykovsky环氧化条 件对羰基进行环氧化反应,得到环氧化合物。环氧化合物再经过Pd/C氢化脱除Cbz保护基,所得产物再经过正丙胺与分子中的环氧三元环发生亲核加成反应,实现泰拉霉素的制备。该路线由于氯甲酸苄酯保护2″位的羟基时化合物中同时还含有3位、4位、6位、10位、4′的羟基(或氨基)基团以及Swern氧化条件氧化4′的羟基时化合物中同时含有4位裸露的羟基基团,容易发生其它位点反应,因而反应选择性极差,中间体杂质复杂,因而整个合成工艺复杂、产物杂质很难控制,合成泰拉霉素成本高,使泰拉霉素的进一步放大生产和市场推广受到了很大的限制。相关合成路线如下:
Figure PCTCN2018075246-appb-000002
专利CN102260306报道了使用乙酰基保护去甲基阿奇霉素2″位的羟基和6位的氨基,再对4′位的羟基进行氧化、环氧化,最后使用无机强碱(碱醇溶液)高温脱除乙酰基后,用正丙胺进行4′的环氧进行亲核加成,实现泰拉霉素的制备。由于在Swern氧化时,化合物中的4位的仲羟基同样会被氧化,且使用无机强碱(碱醇溶液)高温脱除氨基上的乙酰基时,由于大环内酯本身就含有内酯,在碱性条件下极易开环,从而导致副产物多,收率低。
专利CN102786569使用了Boc基团同时保护去甲基阿奇霉素2″位的羟基和6位的氨基,再对4′位的羟基进行氧化,使用三氟乙酸脱保护,同时生成三氟乙酸盐,然后对4′位的羰基进行 环氧化,最后用正丙胺对环氧进行亲核加成,完成泰拉霉素的制备。该路线由于在进行Corey-Chaykovsky环氧化时,化合物中含有大量的裸露的活性基团,因而反应特别复杂,导致环氧反应后杂质多,特别不易纯化。
专利CN102295672同样使用Cbz首先保护2″位的羟基,然后Swern氧化4′位的羟基,然后通过羰基的亚甲基化反应将4′的羰基转化为亚甲基,通过双氧水对亚甲基进行环氧化,然后用正丙胺对环氧进行亲核加成,完成泰拉霉素的制备。该路线由于Cbz保护2″位的羟基时、Swern氧化4′位羟基时化合物中同时存在其他活性基团参与竞争性反应,从而导致选择性差,反应杂质多,不易纯化。
因此,如何克服现有技术制备泰拉霉素存在的缺陷,提供一种更加适合工业生产泰拉霉素的制备方法成为进一步放大生产和市场推广该产品急需解决的问题。
发明内容
本发明所要解决的技术问题在于提供一条适合放大生产泰拉霉素的合成方法。
该方法使用3,4位羟基丙酮叉保护的去甲基阿奇霉素(式I)作为起始原料,具体反应式如下:
Figure PCTCN2018075246-appb-000003
反应第一步使用3,4位丙酮叉保护的去甲基阿奇霉素(式I)作为起始原料。
反应第一步是在反应溶剂的存在下,式I和式II的化合物反应,将式I化合物中2″的羟基进行保护,实现式III化合物的制备。
反应第一步所使用的溶剂包括THF、Dioxane、CH 2Cl 2、CH 3CN、2-MeTHF。
式II中R为H、Me、NO 2;式III中R为H、Me、NO 2
反应第二步涉及将式III中4′位的羟基通过Swern条件氧化为羰基,实现化合物式IV的制备。
第二步Swern反应所使用的试剂为DMSO和(CF 3CO) 2O。
式IV中R为H、Me、NO 2
反应第三步涉及使用TMSCN在TBAF作用下,将化合物式IV中4′位的羰基进行氰基加成反应,实现化合物式V的制备。
第四步反应所使用的溶剂包括THF、2-MeTHF、CH 2Cl 2、Dioxane、CH 3CN。
式V中R为H、Me、NO 2
反应第四步涉及在Pd/C作为催化剂条件下,同时在HOAc存在下对化合物式V进行氢化反应,将化合物中的氰基氢化为胺甲基,同时脱除2′的羟基保护基和3、4位丙酮叉保护,实现化合物式VI的制备。
第四步所使用的氢气压力为2atm-10atm。
第四步所用的溶剂包括MeOH、EtOH、i-PrOH;
反应第五步涉及在碱作用下使化合物式VI和1-卤代丙烷(式VII)反应,实现泰拉霉素的制备。
第五步反应所使用的碱包括DMAP、Et 3N、Na 2CO 3、Cs 2CO 3、K 2CO 3、DIPEA。
式VII中X为I、Br。
该路线由于起始物料中活泼的3,4位羟基已被丙酮叉保护起来,避免了在氧化、环氧化过程中的主要副反应,选择性好,容易获得高纯度产品,易于实现工业化生产,相较已有路线优势明显。
具体实施方式
通过下面的实施例可以更具体的理解本发明,但其是举例说明而不是限制本发明的范围。
实施例
1、制备式III(R=Me)化合物
10L四口瓶中加入化合物式I(500g,645.16mmol)和CH 2Cl 2(3.5L),体系充分搅拌后维持体系温度在20度左右。向反应体系通过滴液漏斗缓慢滴加氯甲酸对甲基苄酯(式II,R=Me,180g,975mmol),滴加过程维持体系温度在20度左右。滴加完毕后,体系保温反应3小时。体系缓慢加入4L饱和碳酸氢钠水溶液淬灭反应,加入完毕后体系室温搅拌2小时。体系静置2小时,分液,有机相用1L水洗涤,随后有机相加入250克无水硫酸钠搅拌干燥。过滤,有机相减压浓缩至无明显馏分,得式III化合物(R=Me,油状物,636克,产物不经纯化,直 接用于下一步)。
2、制备式IV(R=Me)化合物
向10L四口瓶中加入实施例1制备的化合物式III(R=Me,600g)和无水CH 2Cl 2(2.5L)。体系氮气置换三次,后续加料过程进行氮气保护。向反应体系中加入无水DMSO(1.2L),体系搅拌下降温至-70℃,然后通过滴液漏斗缓慢加入三氟醋酸酐(410g),滴加过程保持体系温度在-70℃左右,滴加完毕后体系保温搅拌1.5小时。然后通过滴液漏斗缓慢滴加三乙胺(270g),滴加完毕后体系保温搅拌反应1.5小时,然后通过滴液漏斗缓慢加入H 2O(3L),体系缓慢升温至20℃左右,搅拌1小时后,体系静置2小时,分出有机相,有机相使用H 2O(1.5L)洗涤一次,分出有机相,有机相减压浓缩至无明显馏分,然后1L异丙醇再次浓缩至无明显馏分,残余物加入0.5L异丙醇加热溶解,溶解后体系搅拌下缓慢降温至-10℃左右,搅拌过夜,过滤,固体烘干后得式IV化合物(R=Me,389g,69%--两步收率)。
3、制备式V(R=Me)化合物
2L的反应瓶中加入实施例2所制备的化合物IV(R=Me,120g,130mmol),体系中加入CH 2Cl 2(1L),搅拌溶解后体系降温至0℃左右,然后通过滴液漏斗缓慢加入三甲基硅氰(15.5g,156mmol)。滴加完毕后体系自然升温至室温反应过夜,然后向体系中缓慢滴加入TBAF(1M in THF,160mL),滴加完毕后保温反应5小时。反应体系缓慢加入H 2O(500mL)淬灭反应,体系静置分层,分出有机相,有机相用饱和食盐水洗涤2次(2×500mL),有机相无水硫酸钠干燥。过滤,有机相减压浓缩至无明显馏分,残余物加入乙酸乙酯(35mL)溶解,然后加入正庚烷(250mL),升温至70-80℃溶清,缓慢降温至-5℃,搅拌12小时,抽滤,真空干燥产品得式V化合物(R=Me,92g,75%)。
4、制备式VI化合物
2L的高压釜内加入实施例3所制备的化合物V(R=Me,52g,55mmol),然后加入甲醇(500mL)和HOAc(150mL),搅拌溶清后,氮气保护下加入Pd/C(8g,10%)。体系氮气置换3次,在35℃和5atm条件下氢化反应12小时。反应完全后,取出反应液,过滤,滤饼使用甲醇(100mL)洗涤,合并滤液,将滤液浓缩至无明显馏分,残余物加入乙酸乙酯(30mL),搅拌溶清,缓慢滴加庚烷(150mL),搅拌3小时,体系有大量白色固体析出,过滤,滤饼使用少许冷却的庚烷洗涤后干燥得式VI化合物(34.5g,82%)。
5、制备泰拉霉素
500mL反应瓶中加入化合物VI(22g,28.8mmol),DMAP(3.5g)和CH 2Cl 2(80mL)。搅拌溶清后体系降温至0℃,体系通过滴液漏斗缓慢滴加1-碘丙烷(5.5g)的CH 2Cl 2(5mL)溶液,滴加 过程保持体系温度在0℃左右。体系自然升温至室温搅拌反应5小时,反应加入H 2O(50mL)淬灭反应,分出有机相,水相使用CH 2Cl 2(2×30mL)萃取,合并有机相,有机相使用饱和食盐水洗涤二次(2×40mL),有机相减压脱溶至无明显馏分,体系加入正庚烷(50mL)脱溶至无明显馏分,残余物加入乙酸乙酯(12mL)搅拌,然后加入正庚烷(90mL),体系升温至70-80℃搅拌溶清,然后体系缓慢降温至-5℃左右,搅拌5小时,抽滤,所得固体40℃真空干燥得泰拉霉素(白色固体,18.2g,78%)。
6、制备式III(R=NO 2)化合物
1000mL四口瓶中加入化合物式I(50.0g,64.5mmol)和CH 2Cl 2(300mL),体系充分搅拌至体系完全溶清。在20度左右温度下,向反应体系通过滴液漏斗缓慢滴加氯甲酸对硝基苄酯(式II,R=NO 2,18.0g,83.5mmol),滴加过程维持体系温度在20±5℃。滴加完毕后,体系保温反应5小时。反应完全后向反应体系缓慢加入饱和碳酸氢钠水溶液(250mL)淬灭反应,加入完毕后体系室温搅拌2小时。分液,有机相用饱和食盐水(100mL)洗涤,随后有机相用无水硫酸钠干燥。过滤,有机相高真空减压浓缩至无明显馏分,得式III化合物(R=NO 2,60.2克,产物不经纯化直接用于下一步)。
7、制备式IV(R=NO 2)化合物
向1L四口瓶中加入实施例6制备的化合物式III(R=NO 2,52g)和无水CH 2Cl 2(200mL)。氮气保护下向反应体系中加入无水DMSO(105mL),体系搅拌下降温至-75℃,然后通过滴液漏斗缓慢加入三氟醋酸酐(36g),滴加过程保持体系温度在-70至-75℃之间,滴加完毕后体系保温搅拌1.5小时。然后通过滴液漏斗缓慢滴加三乙胺(24g),滴加完毕后体系保温搅拌反应1.5小时,然后通过滴液漏斗缓慢递加H 2O(250mL),体系缓慢升温至20℃左右,搅拌1小时后,体系静置,分出有机相,有机相使用H 2O(120mL)洗涤一次,分出有机相,有机相减压浓缩至无明显馏分,然后加入异丙醇(80mL)溶解后再次浓缩至无明显馏分,残余物加入异丙醇(40mL)加热溶解,溶解后体系搅拌下缓慢降温至-10℃左右,搅拌过夜,过滤,固体烘干后得化合物式IV化合物(R=NO 2,31.1g,59%--两步收率)。
8、制备式V(R=NO 2)化合物
实施例7所制备的化合物IV(R=NO 2,25g,26.3mmol)加入到500mL反应瓶中,体系中加入CH 2Cl 2(180mL),搅拌溶解后反应体系冰盐浴降温至0℃左右,然后通过注射器缓慢加入三甲基硅氰(3.3g,33.3mmol)。加入完毕后体系自然升温至室温反应过夜,然后向体系中缓慢滴加入TBAF(1M in THF,35mL),滴加完毕后保温反应3小时。反应体系缓慢加入H 2O(100mL)淬灭反应,体系静置分层,分出有机相,有机相用饱和食盐水洗涤2次(2×80mL),有机相无水硫酸钠干燥。过滤,有机相减压浓缩至无明显馏分,残余物加入乙酸乙酯(7mL) 溶解,然后加入正庚烷(50mL),升温至75℃左右溶清,缓慢降温至-5℃,搅拌12小时,抽滤,真空干燥产品得式V化合物(R=NO 2,20.2g,78%)。
9、制备式VI化合物
实施例8所制备的化合物V(R=NO 2,16g,16.3mmol)加入到500mL小型高压釜中,然后加入异丙醇(120mL)和HOAc(45mL),搅拌溶清后,氮气保护下加入的Pd/C(2.5g,10%)。体系氮气置换3次,在35℃和5atm条件下氢化反应24小时。反应完全后,取出反应液,布氏漏斗过滤2次,滤饼使用异丙醇(20mL)洗涤,合并滤液,将滤液高真空减压浓缩至无明显馏分,残余物加入乙酸乙酯(10mL),搅拌溶清,缓慢滴加庚烷(50mL),搅拌过夜,体系有大量白色固体析出,过滤,滤饼使用少许冷却的正庚烷洗涤后干燥得式VI化合物(9.2g,73.9%)。
10、制备泰拉霉素
200mL反应瓶加入化合物VI(8.6g,11.3mmol),DIPEA(1.5g,11.6mmol)和CH 2Cl 2(30mL)。搅拌溶清后体系降温至0℃,体系通过注射器缓慢加入1-溴丙烷(1.4g,11.4mmol)的CH 2Cl 2(2mL)溶液,滴加过程保持体系温度在0℃左右,加入完毕后向体系中加入NaI(100mg)。体系自然升温至室温快速搅拌反应12小时,反应加入H 2O(20mL)淬灭反应,分出有机相,水相使用CH 2Cl 2(2×30mL)萃取,合并有机相,有机相使用饱和食盐水洗涤二次(2×40mL),有机相减压脱溶至无明显馏分,体系加入正庚烷(30mL)脱溶至无明显馏分,残余物加入乙酸乙酯(5mL)搅拌,然后加入正庚烷(35mL),体系升温至70-80℃搅拌溶清,然后体系缓慢降温至-5℃左右,搅拌5小时,抽滤,所得固体40℃真空干燥得泰拉霉素(白色固体,5.86g,64.3%)。

Claims (6)

  1. 一条制备泰拉霉素的合成方法,具有如下的合成路线:
    Figure PCTCN2018075246-appb-100001
  2. 权利要求1所示的具有式V化学结构的化合物。
  3. 权利要求2所示的式V化合物是通过化合物式IV和TMSCN在TBAF作用下制备得到,其中式IV中的R为H、Me、NO 2,式V中的R为H、Me、NO 2
  4. 权利要求1所示的具有式VI化学结构的化合物。
  5. 权利要求4所示的式VI化合物是通过在Pd/C作为催化剂条件下,HOAc存在下通过氢化反应制备得到,该步反应所使用的溶剂为MeOH、EtOH、i-PrOH,氢气压力为2-10atm。
  6. 权利要求1中的泰拉霉素是通过式VI化合物在碱作用下和式VII化合物反应制备得到,其中反应所使用的碱包括DMAP、Et 3N、Na 2CO 3、Cs 2CO 3、K 2CO 3、DIPEA,式VI中的X为I、Br。
PCT/CN2018/075246 2017-12-19 2018-02-05 制备泰拉霉素的方法 WO2019119628A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/764,396 US11001604B2 (en) 2017-12-19 2018-02-05 Method for preparing tulathromycin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711371367.4A CN108003207B (zh) 2017-12-19 2017-12-19 制备泰拉霉素的方法
CN201711371367.4 2017-12-19

Publications (1)

Publication Number Publication Date
WO2019119628A1 true WO2019119628A1 (zh) 2019-06-27

Family

ID=62059676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/075246 WO2019119628A1 (zh) 2017-12-19 2018-02-05 制备泰拉霉素的方法

Country Status (3)

Country Link
US (1) US11001604B2 (zh)
CN (1) CN108003207B (zh)
WO (1) WO2019119628A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110498774A (zh) * 2018-05-18 2019-11-26 上海医药工业研究院 一种艾沙康唑中间体的制备方法
CN113861252A (zh) * 2021-11-08 2021-12-31 江苏君若药业有限公司 泰拉霉素的合成

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998056802A1 (en) * 1997-06-11 1998-12-17 Pfizer Products Inc. 4'-substituted-9-deoxo-9a-aza-9a-homoerythromycin a derivatives
CN103073603A (zh) * 2011-10-26 2013-05-01 青岛康地恩药业股份有限公司 一种制备泰拉霉素化合物的方法
CN103864865A (zh) * 2012-12-17 2014-06-18 青岛康地恩药业股份有限公司 一种高纯度泰拉霉素的合成方法
WO2015014907A1 (en) * 2013-07-31 2015-02-05 Farma Grs, D.O.O. Process for preparation of tulathromycin
CN104861018A (zh) * 2015-06-17 2015-08-26 瑞普(天津)生物药业有限公司 一种泰拉菌素的制备方法
CN104876983A (zh) * 2015-06-17 2015-09-02 瑞普(天津)生物药业有限公司 一种合成泰拉菌素的新路线
CN106939029A (zh) * 2017-04-28 2017-07-11 艾美科健(中国)生物医药有限公司 一种泰拉霉素的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HN1998000074A (es) 1997-06-11 1999-01-08 Pfizer Prod Inc Derivados de macrolidos c-4 sustituidos
CN102295672B (zh) 2011-07-13 2014-06-04 武汉回盛生物科技有限公司 一种泰拉菌素的合成方法
CN102260306B (zh) 2011-07-22 2012-07-18 山东鲁抗舍里乐药业有限公司 一种制备泰拉霉素的方法
CN102786569B (zh) 2012-09-07 2016-12-07 安徽中升药业有限公司 泰拉霉素中间体及其制备方法与泰拉霉素的制备方法
CN103588833B (zh) * 2013-10-30 2016-08-17 北京科技大学 动物抗菌素泰拉霉素的制备方法
CN104193789A (zh) * 2014-07-31 2014-12-10 苏赵珍 以去甲基阿齐霉素为原料制备泰拉霉素化合物的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998056802A1 (en) * 1997-06-11 1998-12-17 Pfizer Products Inc. 4'-substituted-9-deoxo-9a-aza-9a-homoerythromycin a derivatives
CN103073603A (zh) * 2011-10-26 2013-05-01 青岛康地恩药业股份有限公司 一种制备泰拉霉素化合物的方法
CN103864865A (zh) * 2012-12-17 2014-06-18 青岛康地恩药业股份有限公司 一种高纯度泰拉霉素的合成方法
WO2015014907A1 (en) * 2013-07-31 2015-02-05 Farma Grs, D.O.O. Process for preparation of tulathromycin
CN104861018A (zh) * 2015-06-17 2015-08-26 瑞普(天津)生物药业有限公司 一种泰拉菌素的制备方法
CN104876983A (zh) * 2015-06-17 2015-09-02 瑞普(天津)生物药业有限公司 一种合成泰拉菌素的新路线
CN106939029A (zh) * 2017-04-28 2017-07-11 艾美科健(中国)生物医药有限公司 一种泰拉霉素的制备方法

Also Published As

Publication number Publication date
CN108003207B (zh) 2019-05-10
US20200354396A1 (en) 2020-11-12
CN108003207A (zh) 2018-05-08
US11001604B2 (en) 2021-05-11

Similar Documents

Publication Publication Date Title
JP4104463B2 (ja) 4’’−置換された−9−デオキソ−9a−アザ−9a−ホモエリスロマイシン誘導体を製造するための方法
EP0885234B1 (fr) Nouveaux derives de l'erythromycine, leur procede de preparation et leur application comme medicaments
KR101051369B1 (ko) 항염증 활성을 가진 매크로라이드 화합물
AU2016203649A1 (en) Process for the preparation of macrolide antibacterial agents
CN102307866A (zh) 一种利奈唑胺的制备方法及其中间体
ES2858585T3 (es) Método y producto intermedio para preparar tulatromicina
CN103772459A (zh) 泰拉霉素中间体及其制备方法和泰拉霉素的制备方法
JP2002502366A (ja) 3―デスクラジノース―2,3―無水エリスロマイシン誘導体
WO2019119628A1 (zh) 制备泰拉霉素的方法
JPH05255374A (ja) 9−デオキソ−8a−アザ−8a−アルキル−8a−ホモエリスロマイシンAの4″誘導体の製造方法
CN104861018A (zh) 一种泰拉菌素的制备方法
Pavlović et al. Synthesis and antibacterial evaluation of novel 4 ″-glycyl linked quinolyl-azithromycins with potent activity against macrolide-resistant pathogens
OA10491A (en) Erythromycin a 9-0-oxime derivatives endowed with antibiotic activity
ES2260047T3 (es) Proceso de etapa unica para la preparacion de 7,16-deoxi-2-aza-10-o-cladinosil-12-o-desosaminil-4,5-dihidroxi-6-etil-3,5,9,11,13,15-hexametilbiciclo(11.2.1)hexadeca-1(2)-en-ona y obtencion de una forma nueva de 9-deoxo-9a-metil-9a-homoeritromicina a.
CN111116533B (zh) 扎那米韦和拉那米韦的中间体及其合成方法
CA2282666C (fr) Nouveaux derives de l'erythromycine, leur procede de preparation et leur application comme medicaments
CN107619432B (zh) 糖肽类衍生物及其药学可接受的盐、制备方法和应用
EP0906326A1 (fr) Nouveaux derives aromatiques substitues par un ribose, leur procede de preparation et leur application comme medicaments
CN113493483A (zh) 一种泰拉霉素的合成方法
CN108610388B (zh) 一种大环内酯的制备方法
ES2246403T3 (es) Procedimiento de arilacion para la funcionalizacion de derivados de eritromicina o-alilica.
CN108727445B (zh) 一种阿奇霉素杂质f的合成方法
CN107056767B (zh) 用于制备水溶性紫杉烷类衍生物的方法及中间体
CH628906A5 (en) Semi-synthetic derivatives of 4''-erythromycin A and medicinal products containing them
EP0394135A1 (fr) Noveaux dérivés macrolides, leur procédé de préparation et leur compositions pharmaceutiques qui les contiennent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18890524

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18890524

Country of ref document: EP

Kind code of ref document: A1