WO2019119598A1 - 金属光掩膜的制作方法以及金属光掩膜 - Google Patents

金属光掩膜的制作方法以及金属光掩膜 Download PDF

Info

Publication number
WO2019119598A1
WO2019119598A1 PCT/CN2018/073487 CN2018073487W WO2019119598A1 WO 2019119598 A1 WO2019119598 A1 WO 2019119598A1 CN 2018073487 W CN2018073487 W CN 2018073487W WO 2019119598 A1 WO2019119598 A1 WO 2019119598A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative photoresist
layer
metal
negative
positive
Prior art date
Application number
PCT/CN2018/073487
Other languages
English (en)
French (fr)
Inventor
蔡丰豪
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Publication of WO2019119598A1 publication Critical patent/WO2019119598A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/042Coating on selected surface areas, e.g. using masks using masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask

Definitions

  • the invention belongs to the technical field of semiconductor manufacturing, and in particular to a method for fabricating a metal photomask and a metal photomask produced by the method.
  • part of it is a process from the layout to the wafer fabrication, that is, a photomask or a mask.
  • This part is a key part of the process connection, the highest cost part of the process, and one of the bottlenecks that limit the minimum line width.
  • metal photomasks are widely used in the process of vapor deposition deposition, PECVD (plasma enhanced chemical vapor deposition) deposition, ALD (atomic layer deposition) deposition in organic light emitting diode (OLED) fabrication, etc.
  • PECVD plasma enhanced chemical vapor deposition
  • ALD atomic layer deposition
  • OLED organic light emitting diode
  • the film layer forms a desired pattern on the substrate.
  • the current production of metal photomasks requires a plurality of yellow light processes, etching processes, etc., so that the production process is complicated and the yield is low.
  • an object of the present invention is to provide a method for producing a metal photomask which is simple in production method and high in yield, and a metal photomask.
  • a method for fabricating a metal photomask includes the steps of: forming a positive photoresist layer on a substrate; forming a plurality of negative light on the positive photoresist layer a blocking block having an interval between two adjacent negative photoresist blocks; forming a metal layer on the positive photoresist layer and the negative photoresist block; and the positive photoresist layer And the negative photoresist block is removed to form a metal photomask.
  • the method of forming the positive photoresist layer includes the steps of: applying a positive photoresist liquid on the substrate; and curing the applied positive photoresist liquid to form the positive Sexual photoresist layer.
  • the method for forming the plurality of negative photoresist blocks comprises: coating a negative photoresist layer on the positive photoresist layer; pre-curing the coated negative photoresist solution to Forming a pre-cure negative photoresist layer; exposing and developing the pre-cured negative photoresist layer to form a plurality of pre-cure negative photoresist blocks, and adjacent two of the pre-cured negative photoresist layers There is a space between the blocks; the plurality of pre-cured negative photoresist blocks are cured again to form the plurality of negative photoresist blocks.
  • the developing solution for developing the exposed pre-cured negative photoresist layer is a potassium hydroxide solution having a concentration of 0.02%.
  • the method of forming a metal layer includes: sputtering a metal material on the positive photoresist layer and the negative photoresist block by a magnetron sputtering method to form the metal layer.
  • the metal material is an iron-nickel alloy material.
  • the method for removing the positive photoresist layer and the negative photoresist block comprises: removing the positive photoresist layer and the negative photoresist block by using an organic stripping solution, The positive photoresist layer and the negative photoresist block are removed.
  • cross-sectional shape of the negative photoresist block is in an inverted trapezoidal shape.
  • the thickness of the negative photoresist block is greater than the thickness of the metal layer.
  • the invention has the beneficial effects that the method for fabricating the metal photomask of the invention adopts positive photoresist and negative photoresist as the intermediate medium of the substrate and the metal layer, and the positive and negative photoresist can be formed after the completion of the metal layer. Complete separation from the metal layer, resulting in a simple manufacturing process and high yield.
  • FIG. 1 is a flow chart of a method of fabricating a metal photomask in accordance with an embodiment of the present invention
  • FIGS. 2A through 2D are process diagrams of metal photomasks in accordance with an embodiment of the present invention.
  • FIG. 1 is a flow chart of a method of fabricating a metal photomask in accordance with an embodiment of the present invention.
  • 2A through 2D are process diagrams of metal photomasks in accordance with an embodiment of the present invention.
  • a method of fabricating a metal photomask according to an embodiment of the present invention includes steps S100 to S400.
  • a positive photoresist layer 200 is formed on the substrate 100.
  • the substrate 100 may be, for example, a glass substrate, but the present invention is not limited thereto, and for example, the substrate 100 may be a resin substrate.
  • the method of forming the positive photoresist layer 200 includes the steps of: first, applying a positive photoresist liquid onto the substrate 100 by using a coating device; and then, curing the applied positive photoresist liquid, To form the positive photoresist layer 200. Further, the positive photoresist liquid was cured for about 3 minutes at a curing temperature of 130 ° C to form the positive photoresist layer 200.
  • step S200 follows.
  • step S200 a plurality of negative photoresist blocks 300 are formed on the positive photoresist layer 200, and the adjacent two negative photoresist blocks 300 have a space therebetween.
  • the spacer exposes the positive photoresist layer 200 between the negative photoresist blocks 300.
  • the cross-sectional shape of the negative photoresist block 300 is an inverted trapezoidal shape. That is, the width of the negative photoresist block 300 gradually increases in a direction away from the positive photoresist layer 200.
  • the metal film since the metal film is required to be formed later, the metal film is generally formed by precipitation, so that the metal film is deposited on the inverted trapezoidal negative resistive block 300, and the metal film may not partially cover the negative of the inverted trapezoidal shape.
  • the photoresist block 300 is adapted to facilitate contact with the inverted trapezoidal shaped negative photoresist block 300 during stripping, thereby facilitating the stripping process.
  • the method of forming a plurality of negative photoresist blocks 300 includes the steps of: first, coating a negative photoresist liquid on the positive photoresist layer 200 by using a coating device; and then, coating the negative light
  • the liquid blocking layer is pre-cured to form a pre-cured negative photoresist layer; then, the pre-cured negative photoresist layer is exposed and developed to form a plurality of pre-cured negative photoresist blocks (which are negative)
  • the shape of the photoresist block 300 is completely the same), and there is a gap between two adjacent pre-cured negative photoresist blocks; finally, the plurality of pre-cured negative photoresist blocks are cured again to form a A plurality of negative photoresist blocks 300 are described.
  • the developer for developing the exposed pre-cured negative photoresist layer may be a potassium hydroxide (KOH) solution having a concentration of about 0.02%, but the invention is not limited thereto. herein.
  • KOH potassium hydroxide
  • step S300 follows.
  • a metal layer 400 is formed on the positive photoresist layer 200 and the negative photoresist block 300.
  • the method of forming the metal layer 400 includes sputtering a metal material on the positive photoresist layer 200 and the negative photoresist block 300 by a magnetron sputtering method to form the metal layer 400.
  • the metal material is an iron-nickel alloy material, but the invention is not limited thereto.
  • the thickness of the negative photoresist block 300 is greater than the thickness of the metal layer 400, but the invention is not limited thereto.
  • the thickness of the negative photoresist block 300 is set to be larger than the thickness of the metal layer 400, and it is ensured that a portion of the negative photoresist block 300 is exposed from the metal layer 400, thereby facilitating the liquid medicine and the negative light when the film is removed.
  • the block 300 is in contact, which in turn facilitates the stripping process.
  • step S400 follows.
  • step S400 the positive photoresist layer 200 and the negative photoresist block 300 are removed to form a metal photomask.
  • the method for removing the positive photoresist layer 200 and the negative photoresist block 300 includes: removing the positive photoresist layer 200 and the negative photoresist block 300 by using an organic stripping solution to remove the film to be positive. The photoresist layer 200 and the negative photoresist block 300 are removed.
  • the method for fabricating a metal photomask uses a positive photoresist and a negative photoresist as an intermediate dielectric between the substrate and the metal layer, and can be positive and negative after the fabrication of the metal layer is completed.
  • the photoresist is completely separated from the metal layer, so that the manufacturing process is simple and the yield is high.

Abstract

一种金属光掩膜的制作方法,其包括步骤:在基板(100)上制作形成正性光阻层(200);在正性光阻层(200)上制作形成多个负性光阻块(300),相邻的两个负性光阻块(300)之间具有间隔;在正性光阻层(200)和负性光阻块(300)上制作形成金属层(400);将正性光阻层(200)和负性光阻块(300)去除,以形成金属光掩膜。金属光掩膜的制作方法采用正性光阻和负性光阻做基板和金属层的中间介体,在完成金属层的制作之后可以将正负性光阻与金属层完全分离,从而制作过程简单且良率较高。

Description

金属光掩膜的制作方法以及金属光掩膜 技术领域
本发明属于半导体制造技术领域,具体地讲,涉及一种金属光掩膜的制作方法以及由该制作方法制作的金属光掩膜。
背景技术
在半导体制造的整个流程中,其中一部分就是从版图到晶圆(wafer)制造中间的一个过程,即光掩膜或称光罩(mask)制造。这一部分是流程衔接的关键部分,是流程中造价最高的一部分,也是限制最小线宽的瓶颈之一。
目前,金属光掩膜广泛应用于有机发光二极管(OLED)制造中的蒸镀沉积、PECVD(等离子体增强化学气相沉积法)沉积、ALD(原子层沉积法)沉积等工艺制程中,可以使沉积的膜层在基板上形成所需要的图案(pattern)。然而,目前的金属光掩膜的制作需要经过多次黄光制程、蚀刻制程等,从而制作流程较为复杂,并且良率也较低。
发明内容
为了解决上述现有技术存在的问题,本发明的目的在于提供一种制作方法简单且良率较高的金属光掩膜的制作方法以及金属光掩膜。
根据本发明的一方面,提供了一种金属光掩膜的制作方法,其包括步骤:在基板上制作形成正性光阻层;在所述正性光阻层上制作形成多个负性光阻块,相邻的两个所述负性光阻块之间具有间隔;在所述正性光阻层和所述负性光阻块上制作形成金属层;将所述正性光阻层和所述负性光阻块去除,以形成金属光掩膜。
进一步地,制作形成所述正性光阻层的方法包括步骤:将正性光阻液涂布在所述基板上;对涂布的所述正性光阻液进行固化,以形成所述正性光阻层。
进一步地,制作形成所述多个负性光阻块的方法包括:将负性光阻液涂布 在所述正性光阻层上;对涂布的负性光阻液进行预固化,以形成预固化负性光阻层;对所述预固化负性光阻层进行曝光和显影处理,以形成多个预固化负性光阻块,相邻的两个所述预固化负性光阻块之间具有间隔;对所述多个预固化负性光阻块再次进行固化,以形成所述多个负性光阻块。
进一步地,对经曝光后的所述预固化负性光阻层进行显影处理的显影液为氢氧化钾溶液,所述氢氧化钾溶液的浓度为0.02%。
进一步地,制作形成金属层的方法包括:利用磁控溅射方法在所述正性光阻层和所述负性光阻块上溅镀金属材料,从而形成所述金属层。
进一步地,所述金属材料为铁镍合金材料。
进一步地,将所述正性光阻层和所述负性光阻块去除的方法包括:利用有机脱膜液对所述正性光阻层和所述负性光阻块进去脱膜处理,以将所述正性光阻层和所述负性光阻块去除。
进一步地,所述负性光阻块的截面形状呈倒梯形状。
进一步地,所述负性光阻块的厚度大于所述金属层的厚度。
根据本发明的另一方面,还提供了一种由上述的制作方法制作的金属光掩膜。
本发明的有益效果:本发明的金属光掩膜的制作方法采用正性光阻和负性光阻做基板和金属层的中间介体,在完成金属层的制作之后可以将正负性光阻与金属层完全分离,从而制作过程简单且良率较高。
附图说明
通过结合附图进行的以下描述,本发明的实施例的上述和其它方面、特点和优点将变得更加清楚,附图中:
图1是根据本发明的实施例的金属光掩膜的制作方法的流程图;
图2A至图2D是根据本发明的实施例的金属光掩膜的制程图。
具体实施方式
以下,将参照附图来详细描述本发明的实施例。然而,可以以许多不同的形式来实施本发明,并且本发明不应该被解释为限制于这里阐述的具体实施例。相反,提供这些实施例是为了解释本发明的原理及其实际应用,从而使本领域的其他技术人员能够理解本发明的各种实施例和适合于特定预期应用的各种修改。
在附图中,为了清楚器件,夸大了层和区域的厚度。相同的标号在整个说明书和附图中表示相同的元器件。
图1是根据本发明的实施例的金属光掩膜的制作方法的流程图。图2A至图2D是根据本发明的实施例的金属光掩膜的制程图。
参照图1,根据本发明的实施例的金属光掩膜的制作方法包括步骤S100至步骤S400。
具体地,参照图1和图2A,在步骤S100中,在基板100上制作形成正性光阻层200。
这里,基板100可例如是玻璃基板,但本发明并不限制于此,例如基板100也可以是树脂基板。
此外,制作形成正性光阻层200的方法包括步骤:首先,利用涂布设备将正性光阻液涂布在基板100上;接着,对涂布的所述正性光阻液进行固化,以形成正性光阻层200。进一步地,在固化温度为130℃的条件下对所述正性光阻液进行约3分钟的固化,以形成所述正性光阻层200。
进行完步骤S100之后,接着进行步骤S200。
参照图1和图2B,在步骤S200中,在正性光阻层200上制作形成多个负性光阻块300,相邻的两个负性光阻块300之间具有间隔。这里,该间隔将负性光阻块300之间的正性光阻层200暴露。
在本实施例中,优选地,负性光阻块300的截面形状为倒梯形形状。也就是说,负性光阻块300的宽度沿远离正性光阻层200的方向逐渐增大。这里, 由于在之后需要制作金属膜,金属膜的制作一般采用沉淀的方式,因此在倒梯形形状的负性光阻块300上沉淀金属膜,金属膜会有部分不能完全覆盖倒梯形形状的负性光阻块300,这样有利于脱膜时药液与倒梯形形状的负性光阻块300接触,从而有利于脱膜过程。
进一步地,制作形成多个负性光阻块300的方法包括步骤:首先,利用涂布设备将负性光阻液涂布在正性光阻层200上;接着,对涂布的负性光阻液进行预固化,以形成预固化负性光阻层;接着,对所述预固化负性光阻层进行曝光和显影处理,以形成多个预固化负性光阻块(其与负性光阻块300的形状完全相同),相邻的两个所述预固化负性光阻块之间具有间隔;最后,对所述多个预固化负性光阻块再次进行固化,以形成所述多个负性光阻块300。
这里,对经曝光后的所述预固化负性光阻层进行显影处理的显影液可以为氢氧化钾(KOH)溶液,该氢氧化钾溶液的浓度约为0.02%,但本发明并不限制于此。
进行完步骤S200之后,接着进行步骤S300。
参照图1和图2C,在步骤S300中,在正性光阻层200和负性光阻块300上制作形成金属层400。
进一步地,制作形成金属层400的方法包括:利用磁控溅射方法在正性光阻层200和负性光阻块300上溅镀金属材料,从而形成金属层400。在本实施例中,优选地,所述金属材料为铁镍合金材料,但本发明并不限制于此。
此外,需要说明的是,负性光阻块300的厚度大于金属层400的厚度,但本发明并不限制于此。这里,将负性光阻块300的厚度设置成大于金属层400的厚度,可以保证负性光阻块300的部分从金属层400中裸露出来,从而有利于脱膜时药液与负性光阻块300接触,进而有利于脱膜过程。
进行完步骤S300之后,接着进行步骤S400。
参照图1和图2D,在步骤S400中,将正性光阻层200和负性光阻块300去除,以形成金属光掩膜。
进一步地,将正性光阻层200和负性光阻块300去除的方法包括:利用有机脱膜液对正性光阻层200和负性光阻块300进去脱膜处理,以将正性光阻层200和负性光阻块300去除。
综上所述,根据本发明的实施例的金属光掩膜的制作方法采用正性光阻和负性光阻做基板和金属层的中间介体,在完成金属层的制作之后可以将正负性光阻与金属层完全分离,从而制作过程简单且良率较高。
虽然已经参照特定实施例示出并描述了本发明,但是本领域的技术人员将理解:在不脱离由权利要求及其等同物限定的本发明的精神和范围的情况下,可在此进行形式和细节上的各种变化。

Claims (11)

  1. 一种金属光掩膜的制作方法,其中,包括步骤:
    在基板上制作形成正性光阻层;
    在所述正性光阻层上制作形成多个负性光阻块,相邻的两个所述负性光阻块之间具有间隔;
    在所述正性光阻层和所述负性光阻块上制作形成金属层;
    将所述正性光阻层和所述负性光阻块去除,以形成金属光掩膜。
  2. 根据权利要求1所述的制作方法,其中,制作形成所述正性光阻层的方法包括步骤:
    将正性光阻液涂布在所述基板上;
    对涂布的所述正性光阻液进行固化,以形成所述正性光阻层。
  3. 根据权利要求1所述的制作方法,其中,制作形成所述多个负性光阻块的方法包括:
    将负性光阻液涂布在所述正性光阻层上;
    对涂布的负性光阻液进行预固化,以形成预固化负性光阻层;
    对所述预固化负性光阻层进行曝光和显影处理,以形成多个预固化负性光阻块,相邻的两个所述预固化负性光阻块之间具有间隔;
    对所述多个预固化负性光阻块再次进行固化,以形成所述多个负性光阻块。
  4. 根据权利要求3所述的制作方法,其中,对经曝光后的所述预固化负性光阻层进行显影处理的显影液为氢氧化钾溶液,所述氢氧化钾溶液的浓度为0.02%。
  5. 根据权利要求1所述的制作方法,其中,制作形成金属层的方法包括:利用磁控溅射方法在所述正性光阻层和所述负性光阻块上溅镀金属材料,从而形成所述金属层。
  6. 根据权利要求5所述的制作方法,其中,所述金属材料为铁镍合金材料。
  7. 根据权利要求1所述的制作方法,其中,将所述正性光阻层和所述负性光阻块去除的方法包括:利用有机脱膜液对所述正性光阻层和所述负性光阻块进去脱膜处理,以将所述正性光阻层和所述负性光阻块去除。
  8. 根据权利要求1所述的制作方法,其中,所述负性光阻块的截面形状呈倒梯形状。
  9. 根据权利要求1所述的制作方法,其中,所述负性光阻块的厚度大于所述金属层的厚度。
  10. 根据权利要求8所述的制作方法,其中,所述负性光阻块的厚度大于所述金属层的厚度。
  11. 一种由权利要求1所述的制作方法制作的金属光掩膜。
PCT/CN2018/073487 2017-12-21 2018-01-19 金属光掩膜的制作方法以及金属光掩膜 WO2019119598A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711396854.6 2017-12-21
CN201711396854.6A CN108179378A (zh) 2017-12-21 2017-12-21 金属光掩膜的制作方法以及金属光掩膜

Publications (1)

Publication Number Publication Date
WO2019119598A1 true WO2019119598A1 (zh) 2019-06-27

Family

ID=62547052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/073487 WO2019119598A1 (zh) 2017-12-21 2018-01-19 金属光掩膜的制作方法以及金属光掩膜

Country Status (2)

Country Link
CN (1) CN108179378A (zh)
WO (1) WO2019119598A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109830511B (zh) * 2019-01-09 2020-10-16 昆山国显光电有限公司 掩膜板制作方法及掩膜板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1866470A (zh) * 2005-05-19 2006-11-22 中华映管股份有限公司 形成图案化材料层的方法
US20100003621A1 (en) * 2008-07-01 2010-01-07 Sae Magnetics (H.K.) Ltd., Etching method for forming a multi-step surface on a substrate
CN104635994A (zh) * 2015-03-17 2015-05-20 蚌埠玻璃工业设计研究院 一种触摸屏金属图形的制作方法
CN107065432A (zh) * 2017-05-27 2017-08-18 中国电子科技集团公司第四十研究所 一种制备铬版掩膜版的方法
CN107193184A (zh) * 2017-05-27 2017-09-22 中国电子科技集团公司第四十研究所 一种用于制备高精度铬版掩膜版电路图形的方法
CN107221497A (zh) * 2017-07-28 2017-09-29 京东方科技集团股份有限公司 导线的制造方法和显示面板

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6979588B2 (en) * 2003-01-29 2005-12-27 Hynix Semiconductor Inc. Method for manufacturing CMOS image sensor having microlens therein with high photosensitivity
TWI438564B (zh) * 2011-12-23 2014-05-21 Au Optronics Corp 光罩及其製造方法
CN104532183B (zh) * 2015-01-26 2017-09-26 深圳市华星光电技术有限公司 高精度掩膜板的制作方法
CN105655257A (zh) * 2016-01-13 2016-06-08 深圳市华星光电技术有限公司 薄膜晶体管结构的制造方法
CN107419216A (zh) * 2016-05-18 2017-12-01 上海和辉光电有限公司 一种金属掩膜板的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1866470A (zh) * 2005-05-19 2006-11-22 中华映管股份有限公司 形成图案化材料层的方法
US20100003621A1 (en) * 2008-07-01 2010-01-07 Sae Magnetics (H.K.) Ltd., Etching method for forming a multi-step surface on a substrate
CN104635994A (zh) * 2015-03-17 2015-05-20 蚌埠玻璃工业设计研究院 一种触摸屏金属图形的制作方法
CN107065432A (zh) * 2017-05-27 2017-08-18 中国电子科技集团公司第四十研究所 一种制备铬版掩膜版的方法
CN107193184A (zh) * 2017-05-27 2017-09-22 中国电子科技集团公司第四十研究所 一种用于制备高精度铬版掩膜版电路图形的方法
CN107221497A (zh) * 2017-07-28 2017-09-29 京东方科技集团股份有限公司 导线的制造方法和显示面板

Also Published As

Publication number Publication date
CN108179378A (zh) 2018-06-19

Similar Documents

Publication Publication Date Title
US9892933B2 (en) Lithography using multilayer spacer for reduced spacer footing
US10916568B2 (en) Manufacturing method of display substrate, array substrate and display device
JP2004304097A (ja) パターン形成方法および半導体装置の製造方法
KR100720481B1 (ko) 반도체 소자의 제조 방법
TWI462161B (zh) 半導體裝置之製造方法
JP2010158805A (ja) 光インプリント用モールドの製造方法
WO2017041485A1 (zh) 薄膜晶体管及其制作方法、显示面板
WO2019119598A1 (zh) 金属光掩膜的制作方法以及金属光掩膜
CN105489502B (zh) 薄膜晶体管结构的制造方法
KR20110112727A (ko) 더블 패터닝을 이용한 반도체소자의 패턴형성방법
JPH11231161A (ja) 単一チャンバ内で平面光導波路を製作する方法
TWI422940B (zh) 陣列基板的形成方法
CN106444293A (zh) 一种金属图形的制备方法
WO2015172505A1 (zh) 一种离子注入的方法
JP6555843B2 (ja) アレイ基板及びその製造方法
JP2014112655A (ja) ナノインプリントモールドおよびその製造方法
KR101467633B1 (ko) Dlc 패턴을 포함하는 포토 마스크 및 그 제조방법
KR20090006703A (ko) 고종횡비 미세구조물 제조방법
US20100105207A1 (en) Method for forming fine pattern of semiconductor device
JP5294733B2 (ja) 機械部品と微細機械部品を製造する方法
US10916428B2 (en) Method to transfer patterns to a layer
TW201712733A (zh) 配線圖案之製造方法、電晶體之製造方法、以及轉印用構件
JPS61245161A (ja) X線用マスクの製造方法
KR100333370B1 (ko) 반도체 소자의 제조 방법
JPH0470626B2 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18892195

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18892195

Country of ref document: EP

Kind code of ref document: A1