WO2019119476A1 - 一种聚合硅酸聚合氯化锆无机高分子絮凝剂的制备方法 - Google Patents

一种聚合硅酸聚合氯化锆无机高分子絮凝剂的制备方法 Download PDF

Info

Publication number
WO2019119476A1
WO2019119476A1 PCT/CN2017/118444 CN2017118444W WO2019119476A1 WO 2019119476 A1 WO2019119476 A1 WO 2019119476A1 CN 2017118444 W CN2017118444 W CN 2017118444W WO 2019119476 A1 WO2019119476 A1 WO 2019119476A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
polymeric
zirconium chloride
silicic acid
zirconium
Prior art date
Application number
PCT/CN2017/118444
Other languages
English (en)
French (fr)
Inventor
李星
苏兆阳
杨艳玲
Original Assignee
北京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京工业大学 filed Critical 北京工业大学
Priority to US16/310,460 priority Critical patent/US11492263B2/en
Publication of WO2019119476A1 publication Critical patent/WO2019119476A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/122Lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/04Halides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/007Contaminated open waterways, rivers, lakes or ponds

Definitions

  • the invention belongs to the field of water treatment, and particularly relates to a preparation method of a polymeric silicic acid polymeric zirconium chloride high-efficiency flocculant.
  • Coagulation is an important unit in the water treatment process.
  • aluminum salts and iron salts have been playing an important role in water treatment as a conventional flocculant.
  • some shortcomings of the application of aluminum salt and iron salt flocculant in water supply plants For example: the problem of toxicity of aluminum salt and poor low-temperature turbidity; the problem of corrosion of iron salt and yellowing of water. Therefore, the development of new high-efficiency flocculants has received extensive attention in the industry.
  • related research has focused on the development and utilization of titanium salt flocculants, and has achieved many research results.
  • zirconium salt flocculants has gradually received attention in the industry.
  • the zirconium salt flocculant Compared with conventional flocculants (such as aluminum salt and iron salt flocculant), the zirconium salt flocculant has a significant improvement on the removal of organic matter, and the floc size is larger, the structure is more compact and the sedimentation performance is more.
  • the zirconium salt flocculant can form larger and dense flocs in the raw water (no particulate matter) dominated by organic matter, while the aluminum and iron salts form smaller flocs and structures under such water quality. Loose and difficult to settle.
  • zirconium salt flocculant especially the inorganic low molecular zirconium salt
  • the removal effect on pollutants is inferior to that of aluminum salts and iron salt flocculants.
  • the preparation of high-efficiency zirconium flocculant which can form large-sized dense flocs under low temperature conditions is a technical problem for researchers in the field of water treatment to further develop and utilize zirconium salt flocculants.
  • the inventors of the present invention have proposed a preparation method of a polymeric silicic acid-polymerized zirconium chloride high-efficiency flocculant to overcome the disadvantages of the inorganic low molecular weight zirconium salt having poor effect on the removal of pollutants under low temperature conditions.
  • the object of the present invention is to provide a method for preparing a high-molecular zirconium salt flocculant suitable for low temperature conditions, in particular, a method for preparing a polymeric silicic acid for a problem of poor removal of contaminants by an inorganic low molecular weight zirconium salt flocculant under low temperature conditions.
  • a method for preparing a polyferric chloride zirconium inorganic polymer flocculant is provided.
  • the technical principle of the present invention is that a polysilicic acid solution is added to the polymerization zirconium chloride solution, and the polymerization of zirconium chloride interacts with the polysilicic acid to form a Si—O—Zr bond, so that the molecular chain of the flocculant grows and overcomes
  • the disadvantages of inorganic low molecular weight zirconium salt forming flocculation under low temperature conditions are enhanced, and the adsorption bridge and net trapping sweeping effect are strengthened, and the floc size is larger and the pollutant removal ability is stronger.
  • the present invention provides a polymeric silicic acid-polymerized zirconium chloride inorganic polymer flocculant which can be obtained by the following method:
  • the concentration of the polysilicic acid solution in the step (2) is from 0.08 to 0.12 mol/L in terms of silicon.
  • the concentration of the polymerization zirconium chloride solution in the step (3) is 0.2 to 0.3 mol/L in terms of zirconium.
  • the molar ratio of Zr/Si in the step (4) should be selected from the range of 5 to 10:1 when the temperature of the raw water to be treated is ⁇ 5 ° C; when the temperature of the raw water to be treated is in the range of 5 to 10 ° C, It is selected from the range of 10 to 20:1.
  • the polymeric silicic acid-polymerized zirconium chloride flocculant has a good effect on the removal of organic matter, and the floc formed has a large size, compactness and good sedimentation performance.
  • the new flocculant prepared by the combination of the polymeric silicic acid and the polymeric zirconium chloride has good stability and can be stored for 1 to 2 months.
  • the raw water has a turbidity of 21.8 NTU, a DOC of 12.3 mg/L, a pH of 7.3 and a water temperature of 8.8 °C.
  • the flocculating agent prepared by the method of the present invention is subjected to a coagulation test on the above river water.
  • the test is carried out by adding a flocculating agent at the beginning of the coagulation test, while rapidly stirring at 500 rpm for 1 min, and then performing slow stirring for 15 min at 50 rpm. After the final sinking for 15 minutes, the water quality after the sinking was measured.
  • the Zr/Si molar ratio in the process of preparing the polymeric silicic acid polyzirconium chloride should be selected from the range of 10-20:1, and the specific preparation process is as follows:
  • the Zr/Si molar ratio prepared by the inventive method of the present invention is 10:1 to obtain a polymeric silicic acid polyzirconium chloride.
  • the dosage in terms of zirconium
  • the turbidity and the removal rate of the organic matter are equivalent, which proves the high efficiency of the treatment of the low-temperature raw water of the polymeric silicic acid polyzirconium chloride prepared by the new method proposed in the present invention.
  • the flocculating agent prepared by the method of the invention is subjected to a coagulation test on the raw water.
  • the test is carried out by adding a flocculating agent at the beginning of the coagulation test, while rapidly stirring at 500 rpm for 1 min, and then performing slow stirring for 15 min at 50 rpm. After the final sinking for 15 minutes, the water quality after the sinking was measured.
  • the Zr / Si molar ratio in the process of preparing the polymeric silicic acid polyzirconium chloride should be selected from the range of 5 to 10:1, and the specific preparation process is as follows:
  • the Zr/Si molar ratio prepared by the invention method of the present invention is 5:1 to obtain a polymeric silicic acid polyzirconium chloride.
  • the raw water is at a low temperature of ⁇ 5 ° C, and is turbid.
  • the degree of removal of the organic matter and the organic matter were significantly improved, and the high efficiency of the treatment of the low-temperature raw water of the polymeric silicic acid-polymerized zirconium chloride prepared by the new method proposed in the present invention was confirmed.

Abstract

一种聚合硅酸聚合氯化锆无机高分子絮凝剂的制备方法,其通过聚合氯化锆与聚硅酸发生共聚作用,形成了Si—O—Zr键使得该絮凝剂分子链增长,强化了吸附架桥和网捕卷扫作用,在低温条件下对有机污染物去除能力强,形成的絮体尺寸大且易于沉降。

Description

一种聚合硅酸聚合氯化锆无机高分子絮凝剂的制备方法 技术领域
本发明属给水处理领域,特别涉及一种聚合硅酸聚合氯化锆高效絮凝剂的制备方法。
背景技术
混凝是水处理工艺中的重要单元。在过去的近百年的工程应用中,铝盐和铁盐一直作为常规絮凝剂在水处理过程中发挥着重要的作用。然而,随着现代科技以及医学的进步,也逐渐意识到并发现铝盐和铁盐絮凝剂在给水厂中应用的一些不足。例如:铝盐的毒性问题及低温除浊能力差等问题;铁盐的腐蚀性问题以及出水发黄等问题。因此,新型高效絮凝剂的研制受到业内广泛关注。近年来,相关的研究主要集中在钛盐絮凝剂的开发利用上,并且取得了诸多的研究成果。除此之外,锆盐絮凝剂的研制也逐渐受到业内的重视。
锆盐絮凝剂相比常规絮凝剂(如:铝盐和铁盐絮凝剂)对有机物的去除效果有显著的提升,且形成的絮体尺寸较大,结构更加密实、沉降性能更加。特别是锆盐絮凝剂可在以有机物为主的原水(没有颗粒物)中仍可形成尺寸较大且密实的絮体,而铝盐和铁盐在此种水质下形成的絮体较小、结构疏松且难以沉降。然而,锆盐絮凝剂(特指无机低分子锆盐)在低温条件下絮体形成受阻,对污染物的去除效果较差,不及铝盐和铁盐絮凝剂。
因此,制备出在低温条件下仍能形成大尺寸密实絮体的高效锆盐絮凝剂是水处理领域研究人员进一步开发利用锆盐絮凝剂的技术难题。为此,本案发明人针对该问题,提出了一种聚合硅酸聚合氯化锆高效絮凝剂的制备方法,以克服无机低分子锆盐在低温条件下对污染物去除效果差的缺点。
发明内容
本发明的目的是针对低温条件下无机低分子锆盐絮凝剂对污染物去除效 果差的问题,提供一种适用于低温条件的高分子锆盐絮凝剂的制备方法,特别涉及一种聚合硅酸聚合氯化锆无机高分子絮凝剂的制备方法。
本发明的技术原理在于:在聚合氯化锆溶液中加入聚硅酸溶液,聚合氯化锆与聚硅酸发生相互作用,形成了Si—O—Zr键,使得该絮凝剂分子链增长,克服了无机低分子锆盐在低温条件下形成絮体受阻的缺点,强化了吸附架桥和网捕卷扫作用,形成絮体尺寸较大,对污染物去除能力较强。
为实现上述目的,本发明提供的一种聚合硅酸聚合氯化锆无机高分子絮凝剂,可以通过如下方法得到:
(1)称取原料,配制溶液;
(2)将硅酸钠溶液逐滴加入0.2~0.3mol/L的稀硫酸中,室温20~25℃下持续以500~600rpm搅拌,控制反应过程中混合液的pH值<2,静置熟化3~4小时,得到聚硅酸溶液;
(3)将氢氧化钠溶液逐滴加入至四氯化锆溶液中,室温20~25℃下持续以500~600rpm持续搅拌至溶液呈无色透明后,静置熟化3~4小时,得到碱化度(B)为0.5~2.0的聚合氯化锆溶液;
(4)量取聚硅酸溶液,控制Zr/Si摩尔比为5~20:1,逐滴加入到聚合氯化锆溶液中,此过程在室温20~25℃及以500~600rpm持续搅拌下进行,并于滴定结束后继续在室温20~25℃下以500~600rpm持续搅拌5~6小时后,静置熟化20~24小时,得到聚合硅酸聚合氯化锆溶液。
所述方法中,步骤(2)中的聚硅酸溶液的浓度以硅计为0.08~0.12mol/L。
所述方法中,步骤(3)中的聚合氯化锆溶液的浓度以锆计为0.2~0.3mol/L。
所述方法中,步骤(4)中Zr/Si摩尔比,当待处理原水水温<5℃时,应选自5~10:1范围;当待处理原水水温处于5~10℃范围时,应选自10~20:1范围。
本发明的技术优势、可取得如下预期的技术效果:
(1)在低温条件下,聚合硅酸聚合氯化锆絮凝剂对有机物去除效果较好,形成的絮体尺寸较大、密实且沉降性能良好。
(2)聚合硅酸与聚合氯化锆复配后制备的新型絮凝剂稳定性好,可储存1~2个月。
(3)操作方法简单易行,原料易得,成本低廉,实际应用的可能性较大。
具体实施方式
实施例1
取北京市内某河水作为试验用原水,原水浊度为21.8NTU,DOC为12.3mg/L,pH值为7.3,水温为8.8℃。
使用本发明的方法制备的絮凝剂对上述河水进行混凝试验,此试验的过程为混凝试验开始时投加絮凝剂,同时以500rpm进行1min快速搅拌,然后以50rpm进行15min的慢速搅拌,最后静沉15min后测沉后水水质。
当处理水温处于5~10℃范围时,在制备聚合硅酸聚合氯化锆过程中Zr/Si摩尔比应选自10~20:1范围,具体的制备过程如下:
(1)称取7.4039g的Na 2SiO 3·9H 2O固体溶于50mL的去离子水中,使用注射泵以0.1mL/min的速度逐滴加入0.2mol/L的稀硫酸中,滴加过程在室温25℃下进行并持续以550rpm搅拌,用0.6mol/L的稀硫酸控制反应过程中混合液的pH值为1.5,静置熟化3小时后,定容至250mL的容量瓶中得到0.1mol/L的聚硅酸溶液;
(2)将50mL的0.4mol/L氢氧化钠溶液使用注射泵以0.1mL/min的速度逐滴加入至50mL的0.4mol/L四氯化锆溶液中,滴加过程在室温25℃下进行并持续以550rpm搅拌至溶液呈无色透明后,静置熟化3小时,得到碱化度(B)为1.0的0.2mol/L聚合氯化锆溶液;
(3)取20mL的0.1mol/L聚硅酸溶液,使用注射泵以0.05mL/min的速度逐滴加入到100mL的0.2mol/L聚合氯化锆溶液中,此过程在室温25℃及以550rpm持续搅拌下进行,并于滴定结束后继续在室温25℃下以550rpm持续搅拌6小时后,静置熟化20小时,Zr/Si摩尔比为10:1得到聚合硅酸聚合氯化锆絮凝剂。
试验结果如下:
Figure PCTCN2017118444-appb-000001
说明采取本案的发明方法制备的Zr/Si摩尔比为10:1得到聚合硅酸聚合氯化锆较单独使用四氯化锆作为絮凝剂而言,在投量(以锆计)降低37.5%的条件下,对浊度和有机物的去除率水平相当,证明了本案提出的新方法制备的聚合硅酸聚合氯化锆的处理低温原水的高效性。
实施例2
于11月取北京某公园湖水作为试验用水,原水浊度为6.6NTU,DOC为6.3mg/L,pH值为7.5,水温为3.2℃。
使用本发明的方法制备的絮凝剂对上述原水进行混凝试验,此试验的过程为混凝试验开始时投加絮凝剂,同时以500rpm进行1min快速搅拌,然后以50rpm进行15min的慢速搅拌,最后静沉15min后测沉后水水质。
当处理水温<5℃时,在制备聚合硅酸聚合氯化锆过程中Zr/Si摩尔比应选自5~10:1范围,具体的制备过程如下:
(1)称取7.4039g的Na 2SiO 3·9H 2O固体溶于50mL的去离子水中,使用注射泵以0.1mL/min的速度逐滴加入0.2mol/L的稀硫酸中,滴加过程在室温25℃下进行并持续以600rpm搅拌,用0.6mol/L的稀硫酸控制反应过程中混合液的pH值为1.5,静置熟化3.5小时后,定容至250mL的容量瓶中得到0.1mol/L的聚硅酸溶液;
(2)将50mL的0.4mol/L氢氧化钠溶液使用注射泵以0.1mL/min的速度逐滴加入至50mL的0.4mol/L四氯化锆溶液中,滴加过程在室温25℃下进行并持续以600rpm搅拌至溶液呈无色透明后,静置熟化3.5小时,得到碱 化度(B)为1.0的0.2mol/L聚合氯化锆溶液;
(3)取40mL的0.1mol/L聚硅酸溶液,使用注射泵以0.05mL/min的速度逐滴加入到100mL的0.2mol/L聚合氯化锆溶液中,此过程在室温25℃及以600rpm持续搅拌下进行,并于滴定结束后继续在室温25℃下以600rpm持续搅拌5小时后,静置熟化24小时,Zr/Si摩尔比为5:1得到聚合硅酸聚合氯化锆絮凝剂。
试验结果如下:
Figure PCTCN2017118444-appb-000002
说明采取本案的发明方法制备的Zr/Si摩尔比为5:1得到聚合硅酸聚合氯化锆较单独使用四氯化锆作为絮凝剂而言,在原水处于低温<5℃条件下,对浊度和有机物的去除率显著提高,证实了本案提出的新方法制备的聚合硅酸聚合氯化锆的处理低温原水的高效性。

Claims (4)

  1. 一种聚合硅酸聚合氯化锆无机高分子絮凝剂的制备方法,其特征在于,所用的原料:硅酸钠;四氯化锆;氢氧化钠和硫酸;
    其制备步骤如下:
    (1)称取原料,配制溶液;
    (2)将硅酸钠溶液逐滴加入0.2~0.3mol/L的稀硫酸中,室温20~25℃下持续以500~600rpm搅拌,控制反应过程中混合液的pH值<2,静置熟化3~4小时,得到聚硅酸溶液;
    (3)将氢氧化钠溶液逐滴加入至四氯化锆溶液中,室温20~25℃下持续以500~600rpm持续搅拌至溶液呈无色透明后,静置熟化3~4小时,得到碱化度(B)为0.5~2.0的聚合氯化锆溶液;
    (4)量取聚硅酸溶液,控制Zr/Si摩尔比为5~20:1,逐滴加入到聚合氯化锆溶液中,此过程在室温20~25℃及以500~600rpm持续搅拌下进行,并于滴定结束后继续在室温20~25℃下以500~600rpm持续搅拌5~6小时后,静置熟化20~24小时,得到聚合硅酸聚合氯化锆溶液。
  2. 根据权利要求1所述的聚合硅酸聚合氯化锆无机高分子絮凝剂的制备方法,其特征在于,步骤(2)中的聚硅酸溶液的浓度以硅计为0.08~0.12mol/L。
  3. 根据权利要求1所述的聚合硅酸聚合氯化锆无机高分子絮凝剂的制备方法,其特征在于,步骤(3)中的聚合氯化锆溶液的浓度以锆计为0.2~0.3mol/L。
  4. 根据权利要求1所述的聚合硅酸聚合氯化锆无机高分子絮凝剂的制备方法,其特征在于,步骤(4)中Zr/Si摩尔比,当待处理原水水温<5℃时,应选自5~10:1范围;当待处理原水水温处于5~10℃范围时,应选自10~20:1范围。
PCT/CN2017/118444 2017-12-21 2017-12-26 一种聚合硅酸聚合氯化锆无机高分子絮凝剂的制备方法 WO2019119476A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/310,460 US11492263B2 (en) 2017-12-21 2017-12-26 Method of preparing inorganic macromolecular flocculant by polymerizing silicate and zirconium chloride

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711390381.9A CN108128863B (zh) 2017-12-21 2017-12-21 一种聚合硅酸聚合氯化锆无机高分子絮凝剂的制备方法
CN201711390381.9 2017-12-21

Publications (1)

Publication Number Publication Date
WO2019119476A1 true WO2019119476A1 (zh) 2019-06-27

Family

ID=62391063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118444 WO2019119476A1 (zh) 2017-12-21 2017-12-26 一种聚合硅酸聚合氯化锆无机高分子絮凝剂的制备方法

Country Status (3)

Country Link
US (1) US11492263B2 (zh)
CN (1) CN108128863B (zh)
WO (1) WO2019119476A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114133010A (zh) * 2021-12-10 2022-03-04 江苏莲洋港环保科技有限公司 一种利用人造石英石尾泥制备改性混凝剂的方法及装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114436385B (zh) * 2022-03-03 2022-11-29 南京大学 一种聚锆混凝剂及其应用
CN114590877B (zh) * 2022-03-10 2023-02-07 华北水利水电大学 一种高效去除溴酸盐的复配混凝系统的构建方法及其在水处理中的应用
CN115571890A (zh) * 2022-10-24 2023-01-06 南京信息工程大学 一种利用气化灰渣制备聚合硅酸铝铁絮凝剂的方法及应用
CN117285138A (zh) * 2023-10-24 2023-12-26 太仓市业洪净水新材料有限公司 一种硫酸铝水处理剂及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1082006A (zh) * 1992-08-13 1994-02-16 汉迪化学品有限公司 聚合硅酸-硫酸铝及其生产工艺
US20100330366A1 (en) * 2009-06-30 2010-12-30 Keiser Bruce A Silica-based particle composition
CN104004581A (zh) * 2013-02-22 2014-08-27 宝山钢铁股份有限公司 轧制油泥的净化方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101979333B (zh) * 2010-11-19 2012-03-28 杭州电子科技大学 聚硅钛复合絮凝剂的制备方法
CN102515322B (zh) * 2011-11-29 2013-07-10 北京工业大学 一种强化低温低浊度水处理的复合混凝剂制备方法
CN103342406B (zh) * 2013-07-02 2014-07-30 山东大学 聚合硅酸聚合硫酸钛无机高分子复合絮凝剂及其制备方法与应用
CN104724805B (zh) * 2015-03-26 2017-04-12 山东大学 聚合硅酸聚合氯化钛无机高分子复合絮凝剂及其制备方法与应用
CN107151030A (zh) * 2017-06-20 2017-09-12 中国科学技术大学 一种聚合四氯化锆无机高分子混凝剂的制备方法及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1082006A (zh) * 1992-08-13 1994-02-16 汉迪化学品有限公司 聚合硅酸-硫酸铝及其生产工艺
US20100330366A1 (en) * 2009-06-30 2010-12-30 Keiser Bruce A Silica-based particle composition
CN104004581A (zh) * 2013-02-22 2014-08-27 宝山钢铁股份有限公司 轧制油泥的净化方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114133010A (zh) * 2021-12-10 2022-03-04 江苏莲洋港环保科技有限公司 一种利用人造石英石尾泥制备改性混凝剂的方法及装置

Also Published As

Publication number Publication date
CN108128863B (zh) 2019-08-09
CN108128863A (zh) 2018-06-08
US20210032114A1 (en) 2021-02-04
US11492263B2 (en) 2022-11-08

Similar Documents

Publication Publication Date Title
WO2019119476A1 (zh) 一种聚合硅酸聚合氯化锆无机高分子絮凝剂的制备方法
CN103342406B (zh) 聚合硅酸聚合硫酸钛无机高分子复合絮凝剂及其制备方法与应用
WO2019119477A1 (zh) 一种聚合氯化锆铝无机高效絮凝剂的制备方法
WO2016192144A1 (zh) 一种TiO2基混凝剂及其应用
CN103043764A (zh) 复合型海水絮凝剂制备方法
WO2014094545A1 (zh) 聚合硫酸钛无机高分子絮凝剂及其制备方法与应用
CN108178262A (zh) 一种高铝离子浓度的无机-有机复合高分子絮凝剂
CN101979333B (zh) 聚硅钛复合絮凝剂的制备方法
CN102502670A (zh) 一种制备聚硅酸盐絮凝剂的新方法
CN102976462B (zh) 一种聚合四氯化钛无机高分子絮凝剂的制备方法
CN104724805A (zh) 聚合硅酸聚合氯化钛无机高分子复合絮凝剂及其制备方法与应用
CN107324466A (zh) 一种河道水处理混凝剂的现场制备方法
CN105236536A (zh) 一种用于钢铁工业污水絮凝剂的制备方法
CN104310545A (zh) 一种新型无机高分子絮凝剂的制备方法
CN107445270A (zh) 一种聚合硅酸铝铁的制备方法
CN110668538B (zh) 一种聚合氯化钛的制备方法
JP2013519506A5 (zh)
CN106745600A (zh) 一种皂土/聚硅酸铝铁复合絮凝剂、制备方法及其应用
CN104909440A (zh) 新型复合正硅酸乙酯-聚合氯化铝絮凝剂的制备方法
WO2019051743A1 (zh) 一种聚合氯化铝-壳聚糖复合絮凝剂的制备方法
CN104692507B (zh) 一种共聚法制备聚合硅酸聚合氯化钛无机高分子复合絮凝剂的方法
CN108773887A (zh) 有机-无机复合高分子絮凝剂的制备方法及其产品和应用
CN107935009A (zh) 一种新型净水材料的生产方法
CN1552637A (zh) 一种絮凝剂及其制备方法与应用
CN117865305A (zh) 一种聚合钛锆混凝剂的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17935669

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM1205 DATED 02/12/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17935669

Country of ref document: EP

Kind code of ref document: A1