WO2016192144A1 - 一种TiO2基混凝剂及其应用 - Google Patents

一种TiO2基混凝剂及其应用 Download PDF

Info

Publication number
WO2016192144A1
WO2016192144A1 PCT/CN2015/082136 CN2015082136W WO2016192144A1 WO 2016192144 A1 WO2016192144 A1 WO 2016192144A1 CN 2015082136 W CN2015082136 W CN 2015082136W WO 2016192144 A1 WO2016192144 A1 WO 2016192144A1
Authority
WO
WIPO (PCT)
Prior art keywords
tio
coagulant
based coagulant
liquid
water
Prior art date
Application number
PCT/CN2015/082136
Other languages
English (en)
French (fr)
Inventor
张淑娟
王晓萌
李明慧
宋孝杰
吴兵党
Original Assignee
南京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京大学 filed Critical 南京大学
Priority to US15/302,987 priority Critical patent/US10392276B2/en
Publication of WO2016192144A1 publication Critical patent/WO2016192144A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • C01G23/0536Producing by wet processes, e.g. hydrolysing titanium salts by hydrolysing chloride-containing salts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds

Definitions

  • the invention relates to the technical field of water treatment, in particular to a TiO 2 -based coagulant and application thereof.
  • Coagulation sedimentation is a common unit operation in drinking water and wastewater treatment technology.
  • aluminum salt and iron salt inorganic coagulant are the most widely used coagulants, but aluminum is treated in aluminum salt coagulant.
  • the problem of excessive content, long-term consumption of aluminum exceeding the standard water will cause Alzheimer's disease; while iron salt coagulant is not biologically toxic, but if it is excessively added, the water color after treatment will increase, and the iron ion produced by hydrolysis will be water.
  • the treatment equipment is highly corrosive; in addition, when using aluminum salt or iron salt coagulant, a large amount of chemical sludge is generated, and improper sludge treatment may bring serious secondary pollution, so new and efficient
  • inorganic coagulants that meet the requirements of contemporary water and wastewater treatment has become a research hotspot in recent years.
  • Titanium salt is a kind of new type of water treatment agent which has been paid more and more attention by researchers in recent years. Compared with traditional coagulant iron salt and aluminum salt, titanium salt has stronger electric neutralization ability, and the formed floc is large. The compaction and sedimentation speed are more favorable for solid-liquid separation and improve the decontamination effect; in addition, the titanium salt is less corrosive to the water treatment equipment, does not cause chromaticity problems, and titanium is not toxic, and the titanium pair remaining in the water body Human health does not pose a threat. At the same time, it has been reported that TiCl 4 has better coagulation effect than traditional aluminum salt and iron salt coagulant under low temperature conditions, which is of great practical significance for the treatment of winter wastewater in northwest and northeast China.
  • titanium chloride coagulants such as titanium tetrachloride and titanium sulfate are strongly acidic in use and Ti 4+ releases a large amount of H + under hydrolysis, resulting in low pH of the effluent after coagulation. It affects the further utilization of effluent; on the other hand, the titanium salt such as titanium tetrachloride and titanium sulphate is very rapidly hydrolyzed in water, and cannot form the most effective hydrolyzate of titanium hydroxy group, which affects the performance of coagulation.
  • the coagulation agent can be modified by a manual control method to achieve better coagulation effect.
  • the titanium salt inorganic coagulant is optimized mainly by preparing a polymeric titanium salt coagulant or a compounding with an organic polymer flocculant.
  • Patent CN102701387A discloses an inorganic-organic composite flocculant of titanium tetrachloride and polydimethyldiallylammonium chloride, which overcomes the deficiency of a single flocculant by the compounding of inorganic flocculant and organic polymer flocculant.
  • patent CN103964554A discloses a polymeric titanium sulfate-polydimethyldiallyl ammonium chloride composite coagulant, which utilizes the hydrolysis characteristics of titanium sulfate, Firstly, the polymerized titanium sulfate is prepared by pre-hydrolyzing titanium sulfate with alkali, and then the coagulant material with higher stability is obtained by compounding with the organic polymer flocculant. The pre-formed titanium salt coagulant and the compounding method with the organic polymer coagulant have improved the coagulation effect and broadened the application range of the coagulant, but both materials need to be used for the inorganic titanium salt before use.
  • the sol-gel method is a common method for preparing titanium dioxide materials.
  • the inorganic titanium salt or titanium alcohol ester is used as a raw material, and the sol is directly formed by hydrolysis, and further polycondensed to obtain a gel.
  • the gel is calcined to obtain titanium dioxide particles.
  • the rate of hydrolysis-polycondensation is typically adjusted by the addition of a hydrolysis inhibitor to control the synthesis of the gel.
  • the properties of the resulting material can be achieved by adjusting the proportions of the components of the sol stage.
  • the process for preparing titanium dioxide by the sol-gel method generally uses TiO 2 nanoparticles as a final product for use in photocatalytic degradation and the like.
  • the patent ZL 201210509803.3 discloses a TiO 2 xerogel material useful as an adsorbent, and a preparation method and application thereof.
  • the patent utilizes tetrabutyl titanate as titanium source and acetylacetone as hydrolysis inhibitor.
  • a TiO 2 xerogel is synthesized by sol-gel method.
  • the dry gel has good adsorption performance for azo dyes, and the adsorption capacity is comparable to that of conventional activated carbon materials.
  • the TiO 2 xerogel used as the adsorbent is insoluble in water.
  • good water solubility is an important prerequisite for its flocculation and sedimentation properties.
  • the most prominent problem with the use of inorganic titanium salts as coagulants is that the rate of hydrolysis is too fast and the resulting pH of the effluent is low.
  • the inorganic titanium salt is modified by a sol-gel method, and the obtained water-soluble TiO 2 dry gel has a controlled hydrolysis rate and has potential as a coagulant.
  • the present invention provides a TiO 2 -based coagulant which can be widely applied to the natural water body in the field of wastewater treatment and algae outbreak, has good coagulation effect and high sedimentation rate, and the present invention achieves the following:
  • a TiO 2 -based coagulant characterized in that the coagulant is obtained by the following method:
  • (c) B is dropped into the liquid A, and then stirred at a rate of 100 to 300 rpm for 30-60 minutes to obtain a sol; the molar ratio of the added deionized water to titanium tetrachloride is 1 to 8:1;
  • the sol is aged to a constant weight at a temperature of 15 to 55 ° C to obtain the TiO 2 -based coagulant.
  • the step of dropping B into the liquid A in the step c means that the liquid B is dropped into the liquid A dropwise at a dropping rate of 0.5 to 1.5 mL/min.
  • the application of the TiO 2 -based coagulant of the present invention in wastewater treatment refers to: adjusting the pH value of the wastewater to 4-11, and putting the TiO 2 -based coagulant into the wastewater at a dosage of 20-100 mg/L. Used to settle pollutants.
  • the application of the TiO 2 -based coagulant according to the present invention in the treatment of algae burst water body means: adjusting the pH value of the wastewater to 6-10, and adding the TiO 2 -based coagulant to 20-100 mg/L. The amount is invested in the algae outburst water to settle the pollutants.
  • the wastewater includes industrial wastewater and domestic sewage, and the algae burst water body is a natural water body.
  • the invention adopts a sol-gel method, using titanium tetrachloride as a titanium source precursor and acetylacetone as an inhibitor, and preparing a TiO 2 -based coagulant by adjusting the ratio of each raw material and forming conditions of the gel, compared with
  • the prior art has the following beneficial effects:
  • the preparation method of the TiO 2 -based coagulant of the invention is simple in steps, the preparation process is environment friendly, the obtained TiO 2 -based coagulant has good coagulation effect and high stability, and the coagulant is light at room temperature. Yellow particles for easy storage for long periods of time;
  • the TiO 2 -based coagulant prepared by the invention overcomes the disadvantage that the pH of the coagulated effluent is too low due to the strong acidity of the inorganic titanium salt itself, and improves the pH value of the effluent on the basis of improving the coagulation effect, which is beneficial to Subsequent effluent treatment;
  • the TiO 2 -based coagulant prepared by the invention controls the hydrolysis rate of the titanium salt by the addition of the inhibitor, and is beneficial to the formation of the most effective titanium hydrolyzate in the coagulation process, thereby broadening the titanium-based coagulant The scope of application.
  • FIG. 1 is a view showing the treatment effect of TiO 2 -based coagulant in Example 1 on humic acid-kaolin simulated wastewater at different dosages;
  • FIG 2 is a in Example 1 TiO 2 based coagulant treatment effect schematic Chlamydomonas reinhardtii at different initial pH;
  • Example 3 is a schematic view showing the treatment effect of the TiO 2 -based coagulant in Example 1 on simulated wastewater of Microcystis aeruginosa;
  • FIG. 4 is a schematic view showing the treatment effect of the TiO 2 -based coagulant in the simulated wastewater of Cr(III) in Example 1;
  • Example 5 is a schematic view showing the effect of removing AO7 simulated wastewater by the TiO 2 -based coagulant in Example 1;
  • FIG. 6 is a schematic view showing a comparison of the coagulation effect of the TiO 2 -based coagulant and the polymerized FeCl 3 on the chrome tanning wastewater in Example 1;
  • Example 7 is a schematic view showing the comparison of the coagulation effect of the TiO 2 -based coagulant and the polymerized FeCl 3 on the industrial park wastewater in Example 1;
  • Figure 8 is a schematic view showing the comparison of the coagulation effect of the TiO 2 -based coagulant and the polymerized FeCl 3 on the printing and dyeing wastewater in the first embodiment
  • Fig. 9 is a view showing the coagulation effect of the TiO 2 -based coagulant in the first embodiment on the tanning waste water.
  • liquid B According to the volume ratio of 1:5, 2mL deionized water and 10mL ethanol are mixed uniformly to obtain liquid B; in this embodiment, the molar ratio of deionized water to TiCl 4 is 4:1;
  • the obtained sol was aged in a 50 ° C oven to a constant weight (about 7 d) to obtain a TiO 2 -based coagulant.
  • Humic acid-kaolin simulated water quality index initial turbidity was 33.0 ⁇ 0.5 NTU, pH was 7.15 ⁇ 0.1, DOC was 31.0 ⁇ 1.0 mg/L.
  • the TiO 2 -based coagulant obtained in this example was put into a humic acid-kaolin simulated water sample, and the dosage was 2-40 mg/L, stirred at 200 rpm for 1 min, stirred at 40 rpm for 15 min, and allowed to stand for 20 min.
  • the turbidity (RT) and pH of the water sample were measured, and the test results are shown in Fig. 1.
  • the residual turbidity increases first in the range of 2-40 mg/L, because the excessively low dosage is insufficient to produce a coagulation effect, and the TiO 2 -based coagulant
  • the hydrolyzate increases the turbidity of the water; when the dosage is more than 15mg/L, the residual turbidity begins to decrease sharply. When the dosage is more than 35mg/L, the residual turbidity falls below 3NTU, indicating the dose of TiO.
  • the 2 -based coagulant has a good coagulation effect; in addition, as can be seen from Fig. 1, the pH of the solution remains almost unchanged after the coagulation treatment, and the pH is not lowered too low. It is indicated that the TiO 2 -based coagulant successfully overcomes the problem that the pH of the effluent after treatment with titanium salt coagulant is too low.
  • the dosage of the TiO 2 -based coagulant was 40 mg/L, and the initial pH was adjusted to 5.0 to 10.0. After stirring at 200 rpm for 1 min, stirring at 40 rpm for 15 min, and standing for 20 min, the water quality indexes were measured, and the test results are shown in Fig. 2.
  • Microcystis aeruginosa simulated water quality index initial turbidity was 53.0 ⁇ 1.0 NTU, initial pH was 8.0 ⁇ 0.1.
  • the dosage of TiO 2 -based coagulant is 20-100mg/L, stirred at 200rpm for 1min, stirred at 40rpm for 15min, and after standing for 20min, the water quality indicators are determined and treated with TiO 2 -based coagulant.
  • Microcystis aeruginosa simulation process water sample, the volume of generated flocs large, fast settling velocity, after treatment, the residual turbidity dropped 1NTU, from the initial cell density of 3 ⁇ 10 6 cells / mL down to 2 ⁇ 10 4 cells/mL
  • Fig. 3 is a schematic diagram showing the effect of simulating water samples of Microcystis aeruginosa after treatment at a dosage of 50 mg/L. It can be seen that the TiO 2 -based coagulant has a good removal effect on Microcystis aeruginosa.
  • Cr(III) simulated water quality index: initial Cr(III) concentration was 20.0 ⁇ 1.0 mg/L, pH was 10.4 ⁇ 0.1, and initial turbidity was 75.4 ⁇ 1.0 NTU.
  • the dosage of TiO 2 -based coagulant was 30 mg/L, and the mixture was rapidly stirred at 200 rpm for 1 min, stirred at 40 rpm for 15 min, and allowed to stand for 20 min. After the rapid mixing and mixing, during the slow mixing process, large and dense flocs are formed, as shown in Figure 4. After standing for 20 minutes, the supernatant becomes clear, the turbidity is lower than 2 NTU, and the supernatant is in the supernatant.
  • the Cr(III) concentration is less than 0.2 mg/L, and the removal rate of Cr(III) is above 99%; and after the coagulation is finished, the pH of the solution is 8.82, and it is not strongly acidic.
  • the TiO 2 -based coagulant has a good coagulation effect on the algae outbreak water at a pH of 6-10 and a dosage of 20-100 mg/L.
  • AO7 dye simulating water quality index initial concentration is 60.0 ⁇ 1.0mg/L, pH is 4.4 ⁇ 0.1.
  • the dosage of TiO 2 -based coagulant was 50 mg/L, and the mixture was rapidly stirred at 200 rpm for 1 min, slowly stirred at 40 rpm for 15 min, and after standing for 20 min, the water quality indexes were measured. When the coagulation was finished, The color of the clear liquid was obviously lightened. As shown in Fig. 5, the concentration change was measured, the concentration after coagulation was 40.8 mg/L, and the removal rate of AO7 in the coagulation process reached 32.1%.
  • the chrome-tantalum wastewater quality index the initial concentration of chromium is 15.5 ⁇ 0.5mg/L, the pH is 10.4 ⁇ 0.1, and the initial turbidity is 45.7 ⁇ 1.0NTU.
  • TiO 2 -based coagulant was 40 mg/L, and the mixture was rapidly stirred at 200 rpm for 1 min, slowly stirred at 40 rpm for 15 min, and after standing for 20 min, various water quality indexes were determined.
  • Figure 6 is a schematic diagram showing the coagulation effect of TiO 2 -based coagulant and polymerized FeCl 3 on chrome tanning wastewater.
  • Figure 6a shows the results of the treatment of polymerized FeCl 3
  • Figure 6b shows the results of the treatment of TiO 2 -based coagulant;
  • the flocs produced during the coagulation process of TiO 2 -based coagulant were significantly larger than the polymerized FeCl 3 .
  • the supernatant was taken to determine the residual chromium concentration of 3.98 mg / L, the removal rate reached 74.2%, and the pH was 9.48.
  • TiO 2 -based coagulant is applied to industrial park wastewater (taken from an industrial park in Changzhou)
  • the dosage of the TiO 2 -based coagulant coagulant was 40 mg/L, and the mixture was rapidly stirred at 200 rpm for 1 min, stirred at 40 rpm for 15 min, and allowed to stand for 20 min.
  • Polymerized FeCl 3 (Fe content 30%, industrial grade) as a control, the dosage was 40 mg / L, rapid stirring at 200 rpm for 1 min, slow stirring at 40 rpm for 15 min, after standing for 20 min, the water quality was measured. index.
  • FIG. 7 is a schematic diagram showing the coagulation effect of TiO 2 -based coagulant and polymerized FeCl 3 on industrial park wastewater, wherein FIG. 7a is the result of the treatment of the polymerized FeCl 3 , and FIG. 7b is the result of the treatment of the TiO 2 -based coagulant;
  • the supernatant was taken to determine various indexes.
  • the turbidity decreased to 1.33 NTU after treatment with TiO 2 -based coagulant, and the supernatant was clear and transparent. After the treatment with FeCl 3 , the turbidity was 2.20 NTU, in the same dosing.
  • the treatment effect is worse than that of the TiO 2 -based coagulant; in addition, the flocs produced by the TiO 2 -based coagulant during the coagulation process are significantly larger than the flocs produced by the polymerization of FeCl 3 , and the sedimentation rate is faster.
  • TiO 2 -based coagulant The dosage of TiO 2 -based coagulant was 40 mg/L, and the mixture was rapidly stirred at 200 rpm for 1 min, stirred at 40 rpm for 15 min, and allowed to stand for 20 min.
  • Polymerized FeCl 3 (Fe content 30%, industrial grade) as a control, the dosage was 40 mg / L, rapid stirring at 200 rpm for 1 min, slow stirring at 40 rpm for 15 min, after standing for 20 min, the water quality was measured. index.
  • FIG 8 is a TiO 2 based coagulant coagulation effect polymerization comparison chart FeCl 3, wherein 8a is a result of the polymerization process FeCl 3, Figure 8b is a TiO 2 based coagulant processing result; As can be seen from Figure 8 TiO 2 The flocs produced during the coagulation process of the coagulant are significantly larger than the polymerized FeCl 3 . After the coagulation is finished, the supernatant is taken to determine various indexes. After treatment with TiO 2 -based coagulant, the turbidity is reduced to 15.0 NTU, pH.
  • Tanning wastewater quality index initial pH is 7.8 ⁇ 0.1, initial turbidity is 503.0 ⁇ 1.0 NTU.
  • the tannery wastewater is diluted five times with tap water, and the pH after dilution is 7.3 ⁇ 0.1, and the turbidity is 40.6 ⁇ 1.0 NTU. .
  • TiO 2 -based coagulant was 60 mg/L, and the mixture was rapidly stirred at 200 rpm for 1 min, stirred at 40 rpm for 15 min, and allowed to stand for 20 min.
  • Fig. 9 is a coagulation effect of TiO 2 -based coagulant on five times dilution of raw water. It can be seen that TiO 2 -based coagulant has a good coagulation effect on printing and dyeing wastewater, and the floc produced is large and can be quickly After sedimentation, after the completion of coagulation, the turbidity of raw water diluted by five times is reduced from 40.6 NTU to 1.81 NTU. For undiluted raw water, when the dosage is 100 mg/L, the turbidity is reduced from 503 NTU to 26.2 NTU, and TiO 2 is mixed. The coagulant also has a good treatment effect on the wastewater.
  • the TiO 2 -based coagulant has a good coagulation effect on wastewater when the pH is 4-11 and the dosage is 20-100 mg/L.
  • liquid B (2) according to a volume ratio of 1:2, 4mL deionized water and 8mL ethanol are mixed uniformly to obtain liquid B; in this embodiment, the molar ratio of deionized water to TiCl 4 is 4:1;
  • the obtained sol was aged to a constant weight (about 15 days) in an environment of 15 ° C to obtain a TiO 2 -based coagulant.
  • the obtained sol was aged to a constant weight (about 12 days) at a temperature of 18 ° C to obtain a TiO 2 -based coagulant.
  • the molar ratio of deionized water to TiCl 4 is 2:1;
  • the obtained sol was aged to a constant weight (about 5 d) in an oven at 55 ° C to obtain a TiO 2 -based coagulant.
  • the obtained sol was aged in an oven at 30 ° C to a constant weight (about 10 d) to obtain a TiO 2 -based coagulant.
  • the TiO 2 -based coagulant prepared in Example 1-5 was applied to the treatment of humic acid-kaolin simulated water sample, and the treatment results were analyzed.
  • Humic acid-kaolin simulated water quality index initial turbidity was 21.0 ⁇ 0.5 NTU, DOC was 31.0 ⁇ 1.0 mg/L.
  • the coagulant dosage was 20 mg/L. After the addition, the mixture was rapidly stirred at 200 rpm for 1 min, then stirred at a speed of 40 rpm for 15 min, and then allowed to stand for 20 min. The water quality indexes were determined. The results are shown in Table 1. The coagulation effect is expressed by the residual turbidity and the removal rate (%) of the DOC.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

一种TiO 2基混凝剂,通过如下方法获得:将乙酰丙酮与乙醇混合均匀后,滴入四氯化钛,为A液;将去离子水与乙醇混合成B液;将B液滴入A液中,搅拌至溶胶,然后老化至恒重,即获得TiO 2基混凝剂。该TiO 2基混凝剂混凝效果好、稳定性高,克服了目前无机钛盐强酸性导致混凝出水pH值过低的缺点。还提供了一种TiO 2基混凝剂在废水处理和藻类爆发水体中的应用。

Description

一种TiO2基混凝剂及其应用 技术领域
本发明涉及水处理技术领域,特别是一种TiO2基混凝剂及其应用。
背景技术
混凝沉淀是饮用水和废水处理技术中常用的单元操作,其中铝盐和铁盐类无机混凝剂是目前使用最为广泛的混凝剂,但是以铝盐混凝剂处理后的水中存在铝含量超标的问题,长期饮用铝超标的水会引起老年痴呆;而铁盐混凝剂虽然不具有生物毒性,但如果过量投加会使处理后的水色度增加,而且水解产生的铁离子对水处理设备存在强腐蚀性;此外,在使用铝盐或铁盐混凝剂时,均产生大量化学污泥,不恰当的污泥处理即可能带来严重的二次污染,因此,新型、高效且能满足当代水和废水处理要求的无机混凝剂的开发成为近年来混凝的研究热点。
钛盐是近年来逐渐受到研究人员关注的一类一种新型水处理剂,与传统混凝剂铁盐、铝盐相比,钛盐具有更强的电中和能力,所形成的絮体大而密实、沉降速度快,更有利于固液分离,提高去污效果;此外,钛盐对水处理设备腐蚀性小,不会引起色度问题,且钛不具有毒性,水体中残留的钛对人体健康不构成威胁。同时已有研究报道TiCl4在低温条件下,混凝效果明显优于传统铝盐和铁盐混凝剂,这对我国西北及东北地区冬季废水的处理具有十分重要的现实意义;此外,相关研究报道,硫酸钛和四氯化钛用作混凝剂时,对有机物去除率明显高于传统铝盐和铁盐,且混凝后所得污泥经高温煅烧后,可得具有广泛应用价值的二氧化钛光催化剂,有效解决了混凝过程中产生的大量污泥的后续处理问题,具有水质净化和污泥回用的双重功效。
但是,四氯化钛和硫酸钛等钛盐混凝剂在使用过程中,由于本身呈强酸性且 Ti4+在水解作用下会释放出大量的H+,导致混凝后出水pH值偏低,影响出水的进一步利用;另一方面,四氯化钛和硫酸钛等钛盐在水中水解速度非常迅速,不能形成最有效的钛羟基水解产物,影响混凝效能的发挥。通过人工控制的方法对混凝剂进行修饰,可以达到更好的混凝效果。基于钛盐的水解特性,目前主要采用通过制备聚合钛盐混凝剂或与有机高分子絮凝剂复配的方法,对钛盐无机混凝剂进行优化。专利CN102701387A公开了一种四氯化钛与聚二甲基二烯丙基氯化铵无机有机复合絮凝剂,该发明通过无机絮凝剂和有机高分子絮凝剂的复配使用克服单一絮凝剂的不足,提高适应范围,降低残留金属离子浓度,减少二次污染;专利CN103964554A公开了一种聚合硫酸钛-聚二甲基二烯丙基氯化铵复合混凝剂,其利用硫酸钛的水解特性,首先通过加碱预水解硫酸钛制备出聚合硫酸钛,再通过与有机高分子絮凝剂复配得到稳定性较高的混凝剂材料。预制聚合钛盐混凝剂和与有机高分子混凝剂复配的方法虽然提高了混凝效果,拓宽了混凝剂的应用范围,但这两种材料均需要在使用前对无机钛盐进行现场制备,过程繁琐,且配制好的液体不宜长时间存放,降低了钛盐混凝剂在水处理使用过程中的时效性。因此,寻求钛盐混凝剂更高效方便的前处理方法,具有重要的意义。
溶胶-凝胶法是制备二氧化钛材料的一种常用方法,其以无机钛盐或钛醇酯为原料,经水解直接形成溶胶,再进一步缩聚得到凝胶,凝胶经煅烧处理后得到二氧化钛颗粒。在溶胶-凝胶制备过程中,通常通过加入水解抑制剂来调节水解-缩聚的速率以控制凝胶的合成。最终所得材料的性能可通过调节溶胶阶段各组分的比例来实现。溶胶-凝胶法制备二氧化钛的工艺通常以TiO2纳米颗粒为终产物,用于光催化降解等领域。对于合成过程中的中间体-TiO2干凝胶的关注甚少,目前仅有将TiO2干凝胶用作吸附剂的少数报道。例如,专利ZL 201210509803.3公开了一种可用作吸附剂的TiO2干凝胶材料及其制备方法与应用。该专利利用钛酸四丁酯为钛源,乙酰丙酮为水解抑制剂,通过调节原料的配比,利用溶胶-凝胶法合成了一种TiO2干凝胶。该干凝胶对偶氮染料具有良好的吸附性能,吸附容量可与常规的活性炭材料相媲美。需要注意的是作为吸附剂使用的TiO2干凝胶是不溶于水的。对于混凝剂而言,良好的水溶性是其发挥絮凝沉降性能的一个重要前提条件。目前尚未见有水溶性TiO2干凝胶材料的公开报道。无机钛盐作为混凝剂使用时存在的最突出的问题是:水解速率过快以及由此所导致的出水pH偏低。为克服这一问题,通过溶胶-凝胶法对无机钛盐进行改性处理,所得水溶性TiO2干凝胶的水解速率可控,具有作为混凝剂使用的潜力。目前尚未见有将TiO2基材料用作混凝剂进行水处理的报道。
发明内容
针对上述问题,本发明提供一种TiO2基混凝剂,可广泛应用于废水处理领域和藻类爆发的天然水体,混凝效果好,沉淀率高,本发明是这样实现的:
一种TiO2基混凝剂,其特征在于,该混凝剂是通过如下方法获得的:
(a)将乙酰丙酮与乙醇按体积比1∶7~166混合均匀后,滴入四氯化钛,然后以100~300rpm的速率搅拌10min,获得A液;所滴入四氯化钛与乙酰丙酮的摩尔比为32~2.7∶1;
(b)将体积比为1∶2~23的去离子水与乙醇混合成B液;
(c)将B液滴入A液中,然后以100~300rpm的速率搅拌30-60min,获得溶胶;所加入的去离子水与四氯化钛的摩尔比为1~8∶1;
(d)将溶胶置于15~55℃温度下老化至恒重,即获得所述TiO2基混凝剂。
进一步,本发明中,步骤c所述将B液滴入A液中是指,将B液以0.5-1.5mL/min的滴加速率逐滴滴入A液中。
本发明所述的TiO2基混凝剂在废水处理中的应用。
进一步,本发明所述TiO2基混凝剂在废水处理中的应用是指:将废水pH值调整为4~11,将TiO2基混凝剂以20~100mg/L的投加量投入废水中,用以沉降污染物。
本发明所述的TiO2基混凝剂在藻类爆发水体处理中的应用。
进一步,本发明所述的TiO2基混凝剂在藻类爆发水体处理中的应用是指:将废水pH值调整为6~10,将TiO2基混凝剂以20~100mg/L的投加量投入藻类爆发水体中,用以沉降污染物。
本发明中,废水包括工业废水和生活污水,藻类爆发水体为天然水体。
本发明采用溶胶-凝胶法,以四氯化钛为钛源前驱体,乙酰丙酮作为抑制剂,通过调节各原料的配比以及凝胶的形成条件制备TiO2基混凝剂,相较于现有技术,具有以下有益效果:
(1)本发明的TiO2基混凝剂的制备方法步骤简单,制备过程环境友好,所获得的TiO2基混凝剂混凝效果好、稳定性高,且室温下该混凝剂为淡黄色颗粒,方便长时间存储;
(2)本发明制备的TiO2基混凝剂,克服了无机钛盐本身强酸性导致混凝出水pH值过低的缺点,在提高混凝效果的基础上也提高了出水pH值,有利于后续出水处理;
(3)本发明制备的TiO2基混凝剂,通过抑制剂的添加控制钛盐的水解速度,有利于混凝过程中最有效的钛羟基水解产物的形成,从而拓宽了钛基混凝剂的应用范围。
附图说明
图1是实施例1中TiO2基混凝剂在不同投加量时对腐殖酸-高岭土模拟废水的处 理效果示意图;
图2是实施例1中不同初始pH下TiO2基混凝剂对莱茵衣藻的处理效果示意图;
图3是实施例1中TiO2基混凝剂对铜绿微囊藻模拟废水的处理效果示意图;
图4是实施例1中TiO2基混凝剂对Cr(III)模拟废水的处理效果示意图;
图5是实施例1中TiO2基混凝剂对AO7模拟废水去除效果示意图;
图6是实施例1中TiO2基混凝剂与聚合FeCl3对铬鞣废水混凝效果对比图示意图;
图7是实施例1中TiO2基混凝剂与聚合FeCl3对工业园区废水混凝效果对比示意图;
图8是实施例1中TiO2基混凝剂与聚合FeCl3对印染废水混凝效果对比示意图;
图9是实施例1中TiO2基混凝剂对制革废水的混凝效果示意图。
具体实施方式
下面结合实施例和应用例对本发明做进一步说明,但本发明所保护的范围不限于此。
实施例1制备TiO2基混凝剂及混凝水样测试
(1)制备TiO2基混凝剂
a.按照体积比为1∶28,将0.72mL乙酰丙酮加入到20mL乙醇中,以100rpm的速率搅拌溶液10min,然后逐滴滴加TiCl4,所滴加TiCl4与乙酰丙酮的摩尔比为8∶1(约3.11mL),滴加完毕后,再以100rpm的速率搅拌溶液10min,所获得的透明溶液即为A液;
b.按照体积比为1∶5,将2mL去离子水与10mL乙醇混合均匀,获得B液;本实施例中去离子水与TiCl4的摩尔比为4∶1;
c.将B液以1mL/min的速率滴入A液中,然后以100rpm的速率持续搅拌溶液 30min,得到稳定的溶胶。
d.将获得的溶胶置于50℃烘箱中老化至恒重(约7d),即得TiO2基混凝剂。
(2)TiO2基混凝剂处理腐殖酸-高岭土模拟水样
腐殖酸-高岭土模拟水样水质指标:初始浊度为33.0±0.5NTU,pH为7.15±0.1,DOC为31.0±1.0mg/L。
将本实施例获得的TiO2基混凝剂投入腐殖酸-高岭土模拟水样中,投加量为2-40mg/L,在200rpm转速下搅拌1min,40rpm转速下搅拌15min,静置20min然后检测水样浊度(RT)和pH值,检测结果如图1所示。
从图1中可以看出,在投加量为2-40mg/L范围内,剩余浊度先增加,这是由于过低的投加量不足以产生混凝效果,TiO2基混凝剂的水解产物反而增大了水体的浊度;当投加量大于15mg/L时,剩余浊度开始急剧降低,投加量大于35mg/L时,剩余浊度降至3NTU以下,说明该剂量的TiO2基混凝剂具有较好的混凝效果;此外,由图1可以看出,在整个投加范围内,混凝处理后溶液pH值几乎保持不变,不会使pH降至过低,说明TiO2基混凝剂成功克服了钛盐混凝剂处理后出水pH值过低的难题。
(3)TiO2基混凝剂处理莱茵衣藻模拟水样
莱茵衣藻模拟水样水质指标:初始浊度为16.0±0.5NTU,初始pH为10.2±0.1。
TiO2基混凝剂投加量为40mg/L,初始pH调节至5.0~10.0。在200rpm转速下搅拌1min,40rpm转速下搅拌15min,并且静置20min后,测定各项水质指标,检测结果如图2所示。
从图2中可以看出,当pH为7-9时,剩余浊度明显降低,当pH为8和9时,剩余浊度降至1以下,处理后出水非常澄清。在pH 5-10范围内,经TiO2基混 凝剂处理后溶液的pH降低。初始pH在7-9范围内的藻液,处理后溶液pH降至4.5-6。而在此pH范围内,如果直接投加TiCl4,则会使溶液pH急剧降低至3以下,难以生成絮体沉淀。
(4)TiO2基混凝剂处理铜绿微囊藻模拟水样
铜绿微囊藻模拟水样水质指标:初始浊度为53.0±1.0NTU,初始pH为8.0±0.1。
TiO2基混凝剂投加量为20~100mg/L,在200rpm转速下搅拌1min,40rpm转速下搅拌15min,并且静置20min后,测定各项水质指标,在用TiO2基混凝剂处理铜绿微囊藻模拟水样过程中,所产生的絮体体积大,沉降速度快,处理过后,剩余浊度降至1NTU以下,藻密度由初始的3×106cells/mL降至2×104cells/mL,图3为投加量为50mg/L时处理后铜绿微囊藻模拟水样的效果示意图,可见TiO2基混凝剂对于铜绿微囊藻具有很好的去除效果。
(5)TiO2基混凝剂应用于Cr(III)模拟水样
Cr(III)模拟水样水质指标:初始Cr(III)浓度为20.0±1.0mg/L,pH为10.4±0.1,初始浊度为75.4±1.0NTU。
TiO2基混凝剂投加量为30mg/L,在以200rpm转速下快速搅拌1min,40rpm转速下慢速搅拌15min,并且静置20min后,测定各项水质指标。在快速搅拌混合结束后,慢速搅拌过程中,有大而密实的絮体生成,如图4所示,静置20min后,上清液变得澄清,浊度低于2NTU,上清液中Cr(III)浓度低于0.2mg/L,对Cr(III)的去除率在99%以上;并且混凝结束后,溶液的pH为8.82,并没有呈强酸性。
由(2)-(5)可以看出,在pH为6~10,投加量20~100mg/L时,TiO2基混凝剂对藻类爆发水体具有较好的混凝效果。
(6)TiO2基混凝剂处理酸性橙7(AO7)染料模拟水样
AO7染料模拟水样水质指标:初始浓度为60.0±1.0mg/L,pH为4.4±0.1。
TiO2基混凝剂投加量为50mg/L,在以200rpm转速下快速搅拌1min,40rpm转速下慢速搅拌15min,并且静置20min后,测定各项水质指标,当混凝结束后,上清液颜色明显变淡,如图5所示,测定浓度变化,混凝后浓度为40.8mg/L,混凝过程对AO7去除率达到32.1%。
(7)TiO2基混凝剂处理铬鞣废水(取自江苏省海门市某印染厂)
铬鞣废水水质指标:铬初始浓度为15.5±0.5mg/L,pH为10.4±0.1,初始浊度为45.7±1.0NTU。
TiO2基混凝剂投加量为40mg/L,以200rpm转速下快速搅拌1min,40rpm转速下慢速搅拌15min,并且静置20min后,测定各项水质指标。
以聚合FeCl3(Fe含量30%,工业级)作为对照,投加量为40mg/L,在以200rpm转速下快速搅拌1min,40rpm转速下慢速搅拌15min,静置20min后,测定各项水质指标。
图6为TiO2基混凝剂与聚合FeCl3对铬鞣废水混凝效果对比示意图,其中,图6a为聚合FeCl3处理结果,图6b为TiO2基混凝剂处理结果;由图6可见,TiO2基混凝剂混凝过程中所产生的絮体明显大于聚合FeCl3,混凝结束后,取上清液测定铬剩余浓度为3.98mg/L,去除率达到74.2%,pH为9.48,浊度降至1.44NTU,上清液澄清透明;聚合FeCl3处理后铬剩余浓度为6.20mg/L,浊度为6.08NTU,处理效果明显差于TiO2基混凝剂。
(8)TiO2基混凝剂应用于工业园废水(取自常州某工业园区)
工业园区废水水质指标:初始pH为8.3±0.1,初始浊度为17.3±1.0NTU。
TiO2基混凝剂混凝剂投加量为40mg/L,在以200rpm转速下快速搅拌1min, 40rpm转速下慢速搅拌15min,并且静置20min后,测定各项水质指标。
以聚合FeCl3(Fe含量30%,工业级)作为对照,投加量为40mg/L,在以200rpm转速下快速搅拌1min,40rpm转速下慢速搅拌15min,静置20min后,测定各项水质指标。
图7为TiO2基混凝剂与聚合FeCl3对工业园废水混凝效果对比示意图,其中,图7a为聚合FeCl3处理结果,图7b为TiO2基混凝剂处理结果;混凝结束后,取上清液测定各项指标,对于TiO2基混凝剂处理后浊度降至1.33NTU,上清液澄清透明;而聚合FeCl3处理后,浊度为2.20NTU,在相同的投加量下,处理效果差于TiO2基混凝剂;此外,TiO2基混凝剂在混凝过程中所产生的絮体明显大于聚合FeCl3所产生的絮体,沉降速度更快。
(9)TiO2基混凝剂处理印染废水(取自江苏省海门市某印染厂)
印染废水水质指标:初始pH为8.3±0.1,初始浊度为54.0±1.0NTU。
TiO2基混凝剂投加量为40mg/L,在以200rpm转速下快速搅拌1min,40rpm转速下慢速搅拌15min,并且静置20min后,测定各项水质指标。
以聚合FeCl3(Fe含量30%,工业级)作为对照,投加量为40mg/L,在以200rpm转速下快速搅拌1min,40rpm转速下慢速搅拌15min,静置20min后,测定各项水质指标。
图8为TiO2基混凝剂与聚合FeCl3混凝效果对比图,其中,图8a为聚合FeCl3处理结果,图8b为TiO2基混凝剂处理结果;由图8可以看出TiO2基混凝剂混凝过程中所产生的絮体明显大于聚合FeCl3,混凝结束后,取上清液测定各项指标,对于TiO2基混凝剂处理后浊度降至15.0NTU,pH为7.69,没有明显的降低,上清液澄清透明;而聚合FeCl3处理后浊度反而升高至68.4NTU。可见,在相同的投加量下,TiO2基混凝剂对于该废水的去除明显优于聚合FeCl3混凝 剂。
(10)TiO2基混凝剂处理制革废水(取自河北石家庄市某印染厂)
制革废水水质指标:初始pH为7.8±0.1,初始浊度为503.0±1.0NTU。
由于该废水具有很深的色度,直接用于混凝实验无法观察到混凝效果,因此将该制革废水用自来水稀释五倍,稀释后pH为7.3±0.1,浊度为40.6±1.0NTU。
TiO2基混凝剂投加量为60mg/L,在以200rpm转速下快速搅拌1min,40rpm转速下慢速搅拌15min,并且静置20min后,测定各项水质指标。
图9为TiO2基混凝剂对稀释五倍原水的混凝效果图,可以看出,TiO2基混凝剂对印染废水有很好的混凝效果,所产生的絮体大,能够快速沉降,混凝结束后,稀释五倍的原水浊度由40.6NTU降至1.81NTU,对于未稀释的原水,投加量为100mg/L时,浊度从503NTU降至26.2NTU,TiO2基混凝剂对于该废水也有很好的处理效果。
由(6)-(10)可以看出,在pH为4~11,投加量20~100mg/L时,TiO2基混凝剂对废水具有较好的混凝效果。
实施例2
(1)按照体积比为1∶42,将0.36mL乙酰丙酮加入到15mL乙醇中,以200rpm的速率搅拌10min,然后逐滴滴加TiCl4,所滴入TiCl4与乙酰丙酮的摩尔比为16∶1(约3.11mL),滴加完毕后,再以200rpm的速率搅拌溶液10min,所获得的透明溶液即为A液;
(2)按照体积比为1∶2,将4mL去离子水与8mL乙醇混合均匀,获得B液;本实施例中,去离子水与TiCl4摩尔比为4∶1;
(3)将B液以1.5mL/min的速率滴入A液中,然后以200rpm的速率持续搅 拌溶液40min,得到稳定的溶胶。
(4)将获得的溶胶在15℃的环境下老化至恒重(约15天),即得TiO2基混凝剂。
实施例3
(1)按照体积比为1∶166,将0.18mL乙酰丙酮加入到30mL乙醇中,以300rpm的速率搅拌10min,然后逐滴滴加TiCl4溶液,所滴加TiCl4与乙酰丙酮的摩尔比为32∶1,约3.11mL,滴加完毕后,再以300rpm的速率搅拌溶液10min,所获得的透明溶液即为A液;
(2)按照体积比为1∶23,将0.5mL去离子水与11.5mL乙醇混合均匀,获得B液;去离子水与TiCl4摩尔比为1∶1
(3)将B液以0.8mL/min的速率滴入A液中,然后以150rpm的速率持续搅拌溶液50min,得到稳定的溶胶。
(4)将获得的溶胶置于18℃温度下老化至恒重(约12天),即得TiO2基混凝剂。
实施例4
(1)按照体积比1∶17,将1.44mL乙酰丙酮加入到25mL乙醇中,以250rpm的速率搅拌10min,然后逐滴滴加TiCl4溶液,所滴加TiCl4与乙酰丙酮的摩尔比为4∶1(3.11mL);滴加完毕后,再以250rpm的速率搅拌溶液10min,所获得的透明溶液即为A液;
(2)按照体积比为1∶11,将1mL去离子水与11mL乙醇混合均匀,获得B液;
本实施例中,去离子水与TiCl4摩尔比为2∶1;
(3)将B液以0.5mL/min的速率滴入A液中,然后以250rpm的速率持续搅 拌溶液60min,得到稳定的溶胶。
d.将获得的溶胶置于55℃烘箱中老化至恒重(约5d),即得TiO2基混凝剂。
实施例5
(1)按照体积比为1∶7,将2.16mL乙酰丙酮加入到15mL乙醇中,以300rpm的速率搅拌10min,然后逐滴滴加TiCl4溶液,所滴加TiCl4与乙酰丙酮的摩尔比为2.7∶1(约3.11mL),滴加完毕后,再以300rpm的速率搅拌溶液10min,获得A液;
(2)按照体积比1∶2,将4mL去离子水与8mL乙醇混合均匀,获得B液;本实施例中去离子水与TiCl4摩尔比为8∶1;
(3)将B液以1mL/min的速率滴入A液中,然后以300rpm的速率持续搅拌溶液30min,得到稳定的溶胶。
d.将获得的溶胶置于30℃烘箱中老化至恒重(约10d),即得TiO2基混凝剂。
将实施例1-5制得的TiO2基混凝剂应用于处理腐殖酸-高岭土模拟水样,并分析处理结果。
腐殖酸-高岭土模拟水样水质指标:初始浊度为21.0±0.5NTU,DOC为31.0±1.0mg/L。
混凝剂投加量为20mg/L,投加后,以200rpm快速搅拌1min,再以40rpm速率慢速搅拌15min,然后静置20min,测定各项水质指标,结果如表1所示,出水的混凝效果以剩余浊度和DOC的去除率(%)表示。
表1.TiO2基混凝剂对腐殖酸-高岭土模拟水样的处理效果
Figure PCTCN2015082136-appb-000001
由表1结果可见,根据本技术方案合成的TiO2基混凝剂均具有较好的混凝效果,对于所处理模拟水样,剩余浊度均降至7NTU以下,DOC去除率达到23%以上。
本发明所述的实施方式不局限于上述过程,任何人在本发明的启示下,所作出的任何修改、替换和改进等均应包含在本发明权利要求的保护范围之内。

Claims (6)

  1. 一种TiO2基混凝剂,其特征在于,该混凝剂是通过如下方法获得的:
    (a)将乙酰丙酮与乙醇按体积比1∶7~166混合均匀后,滴入四氯化钛,然后以100~300rpm的速率搅拌10min,获得A液;
    所滴入四氯化钛与乙酰丙酮的摩尔比为32~2.7∶1;
    (b)将体积比为1∶2~23的去离子水与乙醇混合成B液;
    (c)将B液滴入A液中,然后以100~300rpm的速率搅拌30-60min,获得溶胶;
    所加入的去离子水与四氯化钛的摩尔比为1~8∶1;
    (d)将溶胶置于15~55℃温度下老化至恒重,即获得所述TiO2基混凝剂。
  2. 根据权利要求1所述的TiO2基混凝剂,其特征在于,步骤c所述将B液滴入A液中是指,将B液以0.5-1.5mL/min的滴加速率逐滴滴入A液中。
  3. 如权利要求1或2所述的TiO2基混凝剂在废水处理中的应用。
  4. 如权利要求3所述应用,其特征在于,所述在废水处理中的应用是指:将废水pH值调整为4~11,将TiO2基混凝剂以20~100mg/L的投加量投入废水中,用以沉降污染物。
  5. 如权利要求1或2所述的TiO2基混凝剂在藻类爆发水体处理中的应用。
  6. 如权利要求5所述应用,其特征在于,所述在藻类爆发水体处理中的应用是指:将废水pH值调整为6~10,将TiO2基混凝剂以20~100mg/L的投加量投入藻类爆发水体中,用以沉降污染物。
PCT/CN2015/082136 2015-06-05 2015-06-23 一种TiO2基混凝剂及其应用 WO2016192144A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/302,987 US10392276B2 (en) 2015-06-05 2015-06-23 TiO2 base coagulant and its application

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510301771.9 2015-06-05
CN201510301771.9A CN104944547B (zh) 2015-06-05 2015-06-05 一种TiO2基混凝剂及其应用

Publications (1)

Publication Number Publication Date
WO2016192144A1 true WO2016192144A1 (zh) 2016-12-08

Family

ID=54159690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/082136 WO2016192144A1 (zh) 2015-06-05 2015-06-23 一种TiO2基混凝剂及其应用

Country Status (3)

Country Link
US (1) US10392276B2 (zh)
CN (1) CN104944547B (zh)
WO (1) WO2016192144A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108059225B (zh) * 2017-12-29 2021-04-02 南京大学 钛凝胶-聚二甲基二烯丙基氯化铵复合混凝剂及其应用
CN108928850A (zh) * 2018-07-31 2018-12-04 中冶华天工程技术有限公司 可见光响应介孔二氧化钛材料的制备方法
CN110354833B (zh) * 2019-06-18 2022-12-23 中冶华天工程技术有限公司 利用混凝后污泥制备可见光响应介孔二氧化钛材料的方法
CN111165492B (zh) * 2020-01-10 2021-05-28 南京大学 乙酰丙酮在抑制蓝藻生长中的应用
CN111115783A (zh) * 2020-01-11 2020-05-08 南京大学 一种制备聚钛混凝剂的方法及其应用
CN111807485B (zh) * 2020-07-15 2022-08-12 日照远明化工有限公司 一种mcm-41/钛铁基复合混凝剂及其制备方法
CN112174279B (zh) * 2020-11-13 2022-08-02 陕西科技大学 一种聚合硅铝酸盐无机絮凝剂及其制备方法和应用
CN113603197A (zh) * 2021-07-22 2021-11-05 南京智感环境科技有限公司 用于水体治理的絮凝剂制备方法及应用
CN114956279A (zh) * 2022-03-18 2022-08-30 苏州科技大学 一种制备镧系凝胶混凝剂的方法及其在深度除磷中的应用
CN114835217A (zh) * 2022-04-08 2022-08-02 常州大学 一种钛盐混凝剂及其直接氧化制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11188204A (ja) * 1997-12-26 1999-07-13 Tayca Corp 水処理用チタン系凝集剤
JP2000033384A (ja) * 1998-07-16 2000-02-02 Nissin Electric Co Ltd 凝集沈殿による水処理方法
JP2002028404A (ja) * 2000-07-17 2002-01-29 Nobuo Iwane チタン系凝集剤
CN101337705A (zh) * 2008-08-14 2009-01-07 中国地质大学(武汉) 清除蓝藻用的蒙脱石复合物及其制备方法
JP2012148267A (ja) * 2010-12-27 2012-08-09 Ishihara Sangyo Kaisha Ltd 凝集剤及びその製造方法法並びにそれを用いた水処理方法
CN102976402A (zh) * 2012-12-04 2013-03-20 南京大学 一种光控可逆吸附偶氮染料的TiO2干凝胶及其制备方法和应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5137848B2 (ja) * 2006-01-19 2013-02-06 ジヤンセン・フアーマシユーチカ・ナームローゼ・フエンノートシヤツプ ヒストンデアセチラーゼのインヒビターとしてのピリジン及びピリミジン誘導体
RU2007124531A (ru) * 2007-07-02 2009-01-10 Общество с ограниченной ответственностью "Проминвест РП" (ООО "Проминвест РП") (RU) Коагулянт титановый для очистки и обеззараживания природных и сточных вод, безопасный способ его получения и способ использования
WO2009062140A2 (en) * 2007-11-08 2009-05-14 Sager Brian M Improved anti-reflective coating
JP2014210232A (ja) * 2013-04-18 2014-11-13 山陽特殊製鋼株式会社 カルシウム溶出粒子を含むアルカリ排水の処理方法
CN104045853A (zh) * 2014-05-22 2014-09-17 上海施迈尔精密陶瓷有限公司 纳米二氧化钛掺杂银铜锌复合抗茵剂及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11188204A (ja) * 1997-12-26 1999-07-13 Tayca Corp 水処理用チタン系凝集剤
JP2000033384A (ja) * 1998-07-16 2000-02-02 Nissin Electric Co Ltd 凝集沈殿による水処理方法
JP2002028404A (ja) * 2000-07-17 2002-01-29 Nobuo Iwane チタン系凝集剤
CN101337705A (zh) * 2008-08-14 2009-01-07 中国地质大学(武汉) 清除蓝藻用的蒙脱石复合物及其制备方法
JP2012148267A (ja) * 2010-12-27 2012-08-09 Ishihara Sangyo Kaisha Ltd 凝集剤及びその製造方法法並びにそれを用いた水処理方法
CN102976402A (zh) * 2012-12-04 2013-03-20 南京大学 一种光控可逆吸附偶氮染料的TiO2干凝胶及其制备方法和应用

Also Published As

Publication number Publication date
US20170137306A1 (en) 2017-05-18
US10392276B2 (en) 2019-08-27
CN104944547B (zh) 2017-04-12
CN104944547A (zh) 2015-09-30

Similar Documents

Publication Publication Date Title
WO2016192144A1 (zh) 一种TiO2基混凝剂及其应用
Gao et al. Effect of aging period on the characteristics and coagulation behavior of polyferric chloride and polyferric chloride–polyamine composite coagulant for synthetic dying wastewater treatment
CN101628746B (zh) 聚合氯化铝铁-聚二甲基二烯丙基氯化铵复合混凝剂及其制备方法
CN107140719B (zh) 利用氮掺杂二氧化钛强化藻类混凝同时在可见光下降解含藻底泥的方法
CN100579913C (zh) 聚合硫酸铁复合混凝剂及其应用
KR101016392B1 (ko) 지르코늄을 이용한 수처리용 응집제 조성물 및 이를 이용한 수처리 방법
CN104261530A (zh) 一种脱磷絮凝剂及其制备方法
CN108585146B (zh) 一种含钛复合聚硫酸铁絮凝剂的制备方法
CN100567173C (zh) 水处理复配混凝剂及其复配混凝方法
CN108059225B (zh) 钛凝胶-聚二甲基二烯丙基氯化铵复合混凝剂及其应用
Zhao et al. Influence of using Enteromorpha extract as a coagulant aid on coagulation behavior and floc characteristics of traditional coagulant in Yellow River water treatment
CN106186231A (zh) 除藻混凝剂及其制备和除藻方法
WO2014094545A1 (zh) 聚合硫酸钛无机高分子絮凝剂及其制备方法与应用
WO2019119477A1 (zh) 一种聚合氯化锆铝无机高效絮凝剂的制备方法
CN103964554B (zh) 聚合硫酸钛-聚二甲基二烯丙基氯化铵复合混凝剂及其制备与应用方法
CN101767809B (zh) 一种用于饮用水强化混凝的高聚聚硫氯化铝混凝剂的制备方法
CN114835303A (zh) 一种提升小分子有机物去除效率的珊瑚礁状絮体诱导形成方法
WO2020143282A1 (zh) 一种应用于废水除磷去浊的复合絮凝剂及其制法及应用
Mamchenko et al. The investigation of the efficiency of coagulants based on titanium when purifying water
Liu et al. Insight into control mechanism of polymeric ferric titanium composite coagulant on membrane fouling: Role of natural organic matters
CN107963702B (zh) 一种聚合氯化铁镁钛复合型高分子絮凝剂的制备方法
CN102874909B (zh) 一种复合除磷除浊混凝剂及其除磷除浊方法
Zhang et al. TiO 2 base coagulant and its application
CN105000646B (zh) 一种复合铁锌混凝剂的制备方法
CN109574173A (zh) 高效除重金属、除磷的有机混凝剂及其制备和使用方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15302987

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15893800

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15893800

Country of ref document: EP

Kind code of ref document: A1