WO2019119340A1 - 云台控制方法和设备、云台以及无人机 - Google Patents

云台控制方法和设备、云台以及无人机 Download PDF

Info

Publication number
WO2019119340A1
WO2019119340A1 PCT/CN2017/117668 CN2017117668W WO2019119340A1 WO 2019119340 A1 WO2019119340 A1 WO 2019119340A1 CN 2017117668 W CN2017117668 W CN 2017117668W WO 2019119340 A1 WO2019119340 A1 WO 2019119340A1
Authority
WO
WIPO (PCT)
Prior art keywords
instruction
pan
tilt
drone
coordinate system
Prior art date
Application number
PCT/CN2017/117668
Other languages
English (en)
French (fr)
Inventor
刘帅
王映知
王振动
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201780014495.5A priority Critical patent/CN108780331B/zh
Priority to PCT/CN2017/117668 priority patent/WO2019119340A1/zh
Publication of WO2019119340A1 publication Critical patent/WO2019119340A1/zh
Priority to US16/903,878 priority patent/US20200319642A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/56Accessories
    • G03B17/561Support related camera accessories
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0094Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots involving pointing a payload, e.g. camera, weapon, sensor, towards a fixed or moving target
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D41/00Power installations for auxiliary purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/006Apparatus mounted on flying objects
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/80Arrangement of on-board electronics, e.g. avionics systems or wiring
    • B64U20/87Mounting of imaging devices, e.g. mounting of gimbals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects

Definitions

  • Embodiments of the present application relate to the field of control, and more particularly, to a pan/tilt control method and apparatus, a pan/tilt head, and a drone.
  • UAV Unmanned Aerial Vehicle
  • UAV plant protection UAV plant protection
  • UAV aerial photography UAV aerial photography
  • UAV forest fire alarm monitoring etc.
  • civilization is also the future development trend of UAV.
  • the pan/tilt can be placed in the lower part of the aircraft.
  • the gimbal can be loaded with loads for fixing the load, adjusting the attitude of the load (for example, changing the height, inclination and/or direction of the load), or for maintaining the load stability.
  • loads for fixing the load, adjusting the attitude of the load (for example, changing the height, inclination and/or direction of the load), or for maintaining the load stability.
  • the load when the load is a shooting device, it can be mounted on the pan/tilt for stable, smooth, multi-angle shooting.
  • the pan/tilt is placed in the lower part of the aircraft, which limits the function of the load.
  • the embodiment of the present application provides a PTZ control method and device, a PTZ, and a UAV, which can implement flexible setting of the PTZ, and on this basis, does not increase the difficulty of the user to control the PTZ.
  • a pan/tilt control method including:
  • the motion of the pan/tilt is controlled by the second command.
  • a control device including: an acquisition unit, an adjustment unit, and a control unit;
  • the acquiring unit is configured to: acquire a first instruction for controlling motion of the pan/tilt; acquire first posture data of the cloud platform itself; and acquire second posture data of the drone connected to the cloud platform;
  • the adjusting unit is configured to: adjust a control direction in the first instruction to obtain a second instruction for controlling the pan/tilt based on the first posture data and the second posture data;
  • the control unit is configured to: control the movement of the gimbal by using the second instruction.
  • a pan/tilt head including a processor, a rotating shaft mechanism, and a motor for driving the rotating shaft mechanism, and a first sensor;
  • the first sensor is configured to acquire first posture data of the gimbal itself
  • the processor is configured to acquire a first instruction for controlling movement of the pan/tilt; acquire the first posture data from the first sensor; acquire second posture data of the drone connected to the cloud platform; and based on the first posture Data and the second attitude data, adjusting a control direction in the first instruction to obtain a second instruction for controlling the pan/tilt; and using the second instruction to control motion of the motor;
  • the motor moves based on the control of the processor and drives the movement of the spindle mechanism.
  • a storage medium includes instructions that, when run on a computer, cause the computer to perform the following methods:
  • the motion of the pan/tilt is controlled by the second command.
  • a drone including: a communication system, a flight control system, a power system, a sensing system including a second sensor, and a pan/tilt;
  • the communication system is configured to acquire an instruction to control movement of the drone
  • the flight control system is configured to output a driving signal to the power system based on an instruction acquired by the communication system;
  • the power system is configured to drive the movement of the drone based on a driving signal output by the flight control system;
  • the second sensor is configured to acquire posture data of the drone
  • the pan/tilt head includes a processor, a rotating shaft mechanism, and a motor for driving the rotating shaft mechanism, and a first sensor; the first sensor is configured to acquire first posture data of the pan/tilt head; Obtaining a first instruction for controlling movement of the gimbal; acquiring the first posture data from the first sensor; acquiring second posture data from the second sensor; and based on the first posture data and Determining a second orientation data, adjusting a control direction in the first instruction to obtain a second instruction to control the pan/tilt; using the second instruction to control motion of the motor; The control of the processor moves and drives the movement of the spindle mechanism.
  • the control direction in the command for controlling the motion of the pan/tilt can be adjusted according to the attitude data of the drone and the attitude data of the gimbal, the pan/tilt can be set in the drone.
  • the control direction in the command can be automatically changed according to the position, that is, the control strategy is automatically switched, and the user does not need to manually set it, thereby minimizing the trouble of the user's control of the pan/tilt rotation and avoiding the control error caused by the user. The problem.
  • FIG. 1 is a schematic structural diagram of a pan/tilt head according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a manner in which a gimbal is disposed on a drone according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a manner of setting a pan/tilt head on a drone according to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a pan/tilt control method according to an embodiment of the present application.
  • 5a-5d are schematic diagrams of relative postures of a drone and a pan/tilt head according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a body coordinate system of a drone and a body coordinate system of a gimbal according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a body coordinate system of a drone and a body coordinate system of a gimbal according to an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a control device according to an embodiment of the present application.
  • FIG. 9 is a schematic structural view of a drone according to an embodiment of the present application.
  • a component when a component is “fixedly connected” or “connected” to another component in the embodiment of the present application, or when one component is “fixed” to another component, it may be directly on another component, or There can be a centered component.
  • the pan/tilt can carry loads (eg, camera equipment) for fixing the load, changing the height, tilt and/or direction of the load, or for maintaining the load in a stable attitude.
  • loads eg, camera equipment
  • the pan/tilt in the embodiment of the present application may be disposed on a mobile device, for example, on a drone or a motor vehicle.
  • the pan/tilt of the embodiment of the present application can also be used for other devices that carry non-photographing devices, such as a microwave antenna of a spectrometer or a radar, and the like.
  • the gimbal of the embodiment of the present application may also have other names, such as a load support frame, etc., which is not specifically limited in this embodiment of the present application.
  • FIG. 1 is a schematic diagram of a platform 100 according to an embodiment of the present application.
  • the platform 100 can include a base 110, a load bracket 140 and a yaw mechanism 122, a roll mechanism 124 and a pitch mechanism 126, and a heading motor. 132, a roll axis motor 134 and a pitch axis motor 136, wherein the heading axis motor 132 is mounted on the base 110 for driving the rotation of the shaft mechanism 122, and the roll axis motor 134 is mounted to the roll axis mechanism 124 is used to drive the rotation of the rotating shaft mechanism 124.
  • the pitch axis motor 136 is mounted on the roll axis mechanism 124 for driving the rotation of the rotating shaft mechanism 126.
  • the pan/tilt may also include only one or two spindle mechanisms.
  • the yaw axis mechanism is connected to one end of the roll axis mechanism, the other end of the roll axis mechanism is connected to the pitch axis mechanism, and the load bracket 140 is directly connected to the pitch axis mechanism, but the present application The embodiment is not limited thereto, and the yaw axis mechanism, the roll axis mechanism, and the pitch axis mechanism may be connected in other orders.
  • the load bracket 140 can be used to support the load 199, and the load bracket 140 can be provided with an inertial sensor, such as at least one of an accelerometer or a gyroscope.
  • the platform 100 shown in FIG. 1 can be mounted to a mobile device (eg, a drone) via a base 110.
  • the cloud platform 100 can obtain power or transmit and receive electronic signals through the base 110, and the cloud platform 100 can also transmit and receive wireless signals.
  • a processor may be disposed in the susceptor 110 for processing input control commands, or transmitting and receiving signals and the like.
  • the pan/tilt can be installed at the bottom of the drone through the base.
  • the pan/tilt head 100 is disposed at the bottom of the drone 200.
  • the pan/tilt can also be mounted on the top of the drone through the base.
  • the pan/tilt 100 is disposed at the upper portion of the drone 200 as shown in FIG.
  • the pan/tilt can also be installed anywhere from the top or the bottom.
  • the installation position of the gimbal is flexible, it will increase the difficulty of the user's control of the gimbal. For example, if the attitude of the drone remains unchanged, if the gimbal is placed in the lower part of the drone, if the user If you want the pan/tilt to move upwards, the user can move the joystick of the pitch axis upwards. If the user wants the pan/tilt to rotate clockwise, the joystick of the yaw axis will be turned to the right; when the pan/tilt is set to the upper part of the drone If the user wants the pan/tilt to move upwards, the user needs to move the joystick of the pitch axis downward. If the user wants the pan/tilt to rotate clockwise, the joystick of the yaw axis will be turned to the left.
  • the user needs to input the control command according to the position set by the gimbal at the drone, which makes the user control troublesome and error-prone.
  • the embodiment of the present application provides the following method 300, which can minimize the trouble of the user's control of the pan/tilt rotation and avoid the problem of control error caused by the user.
  • FIG. 4 is a schematic flowchart of a pan/tilt control method 300 according to an embodiment of the present application.
  • the method 300 includes at least a portion of the following.
  • the method 300 can be implemented by a control device, wherein the control device is disposed in the cloud platform or can be disposed in other devices, for example, can be disposed in the drone, and is implemented by a flight control system of the drone.
  • control device obtains a first instruction to control movement of the gimbal.
  • control device may acquire the first instruction from the terminal device (for example, the remote control device or a mobile phone carrying the control application, etc.) or obtain the first instruction from a software development kit (SDK).
  • terminal device for example, the remote control device or a mobile phone carrying the control application, etc.
  • SDK software development kit
  • the user may input an instruction for controlling the motion of the pan/tilt to the control device in real time through the terminal device; or the user may write an instruction to control the motion of the pan/tilt in the SDK, and the control device may read the SDK. In order to obtain the user's instruction to control the movement of the gimbal.
  • control device acquires a plurality of instructions input by the user; synthesizes the plurality of instructions to obtain the first instruction.
  • the plurality of instructions include an instruction input by the user through the terminal device and/or an instruction written by the SDK.
  • the user may input a control instruction for controlling the motion of the pan/tilt to the control device through multiple channels, for example, the user inputs an instruction through the SDK, and adjusts the instruction input through the SDK through the terminal device in real time, and the control device receives the instruction.
  • the plurality of instructions may be processed, for example, by performing a synthesis process.
  • the speed vector in the instruction may be processed in an additive manner, or the input command may be replaced by the previously input. Instructions, etc.
  • control device acquires the first pose data of the pan/tilt itself.
  • a first sensor may be disposed on the pan/tilt (eg, the load bracket 140 shown in FIG. 2), and the control device may acquire the first posture data through a first sensor disposed on the pan/tilt.
  • the first sensor is at least one of an accelerometer or a gyroscope.
  • the first sensor may also be other sensors, which is not specifically limited in this embodiment of the present application.
  • the first attitude data is used to represent a direction of a body coordinate system of the pan/tilt.
  • the body coordinate system of the gimbal is a three-dimensional orthogonal direct coordinate system that follows the right-hand rule, and the origin may be located at the center of gravity of the pan-tilt, and the OX axis is parallel to the axis of the photographing device (the direction of zooming of the photographing device) and is pointed In front of the camera (the lens is facing forward), the OY axis is perpendicular to the camera axis and points to the right of the camera. The OZ axis is perpendicular to the XOY plane and points below the camera.
  • the relative positional relationship of each of the rotating shaft mechanisms of the gimbal and the positional relationship of the rotating shaft mechanism with respect to the base may be in a specific state, so that the cloud may be determined multiple times.
  • the criteria used are the same.
  • the direction of the body coordinate system of the gimbal may be the direction of the three axes of the body coordinate system of the gimbal.
  • the establishment of the body coordinate system of the pan/tilt in the embodiment of the present application may also be in other manners, for example, a three-dimensional orthogonal direct coordinate system that follows the left-hand rule, or a three-dimensional orthogonal direct coordinate system that follows the right-hand rule.
  • the OX axis may be toward the rear of the photographing device or the like.
  • the direction of the body coordinate system of the gimbal may be the direction of the relative geodetic coordinate system.
  • 5a-d wherein the drones of Figures 5a and 5d are inverted, the drones of Figures 5b and 5c are erect, which can be derived from the attitude of the propeller 201.
  • the body coordinate system of the gimbal is different from the direction of the geodetic coordinate system due to the change of the attitude of the drone.
  • the body coordinate system of the gimbal is different from the direction of the geodetic coordinate system due to the change of the attitude of the drone.
  • the body coordinate system of the gimbal is the same as the direction of the geodetic coordinate system due to the change of the attitude of the drone.
  • the body coordinate system of the gimbal is relatively relative to the geodetic coordinate system due to the change of the attitude of the drone. The direction is the same.
  • the direction of the body coordinate system of the gimbal may also be the direction relative to the body coordinate system of the drone.
  • the body coordinate system of the drone may be a three-dimensional orthogonal Cartesian coordinate system following the right-hand rule, the origin of which is located at the center of gravity of the aircraft, and the OX axis is located in the reference plane of the drone parallel to the axis of the fuselage and directed to the front of the drone.
  • the OY axis is perpendicular to the UAV reference plane and points to the right of the drone.
  • the OZ axis is perpendicular to the XOY plane in the reference plane and points to the underside of the drone.
  • the establishment of the body coordinate system of the UAV of the embodiment of the present application may also be in other manners, for example, a three-dimensional orthogonal direct coordinate system that follows the left-hand rule, or a three-dimensional orthogonal direct coordinate system that follows the right-hand rule.
  • the OX axis may be toward the rear of the drone or the like.
  • the second pose data of the drone connected to the pan/tilt is obtained.
  • a second sensor may be disposed on the drone, and the second posture data is acquired by a second sensor disposed on the drone.
  • the second sensor is at least one of an accelerometer and a gyroscope.
  • the first sensor may also be other sensors, which is not specifically limited in this embodiment of the present application.
  • the second attitude data is used to characterize a direction of the body coordinate system of the drone.
  • the direction of the body coordinate system of the drone may be the direction of the three axes of the body coordinate system of the drone.
  • the direction of the body coordinate system of the drone may be the direction of the relative geodetic coordinate system.
  • the direction of the body coordinate system of the drone is the same; as shown in Figures 5b and 5c, the direction of the body coordinate system of the drone is the same; the body coordinates of the drone of Figures 5a and 5d The direction of the system is different from the direction of the body coordinate system of the drone in Figures 5b and 5c.
  • the controller may adjust a control direction in the first instruction based on the first posture data and the second posture data to acquire a second instruction for controlling the pan/tilt.
  • control device adjusts the control direction in the first instruction to the body coordinate system of the pan-tilt based on the direction of the body coordinate system of the drone and the direction of the body coordinate system of the gimbal The direction of control to obtain the second instruction.
  • the PTZ control command can be unified into the body coordinate system of the UAV.
  • the user inputs a control command through the PTZ joystick, and through the application (app) pointing flight control, etc., the control device superimposes each instruction to obtain
  • the PTZ determines the relative attitude of the UAV and the PTZ according to the attitude data of the UAV and the attitude data of the PTZ, and calculates the body coordinates of the PTZ according to the adjustment matrix.
  • the command is displayed, so that the output command is sent to the closed loop module.
  • control device acquires an adjustment matrix based on the first posture data and the second posture data, and uses the adjustment matrix to adjust a control direction in the first instruction to obtain the second instruction.
  • the number of elements of the adjustment matrix may be 3, that is, the direction for respectively adjusting the velocity components decomposed into the OX axis, the OY axis, and the OZ axis in the first control instruction.
  • the value of each element in the adjustment matrix may be related to the direction of the body coordinate system of the drone and the direction of the body coordinate system of the gimbal.
  • the body coordinate system of the UAV can be shown as a in FIG. 6, and the body coordinate system of the PTZ can be as shown in b of FIG.
  • the coordinate system shown by a and the coordinate system shown by b are the same in all three directions.
  • the values of the three elements in the adjustment matrix can both be 1, and there is no need to control the first instruction. Adjust the direction.
  • the body coordinate system of the drone may be as shown in a of FIG. 7, and the body coordinate system of the pan/tilt may be as shown by b in FIG. 7, wherein
  • the coordinate system shown by a and the coordinate system shown by b are the same in the direction of the OX axis, and the directions of the OY axis and the OZ axis are opposite, wherein the elements of the adjustment matrix may have a value of 1, -1 , -1, where the first element is used to adjust the control direction of the OX axis in the first instruction, and the second element is used to adjust the control direction of the OY axis in the first instruction, the third element Used to adjust the control direction of the OZ axis in the first command.
  • the value of the element in the adjustment matrix does not have to be 1 or -1, and the specific value may be related to the angle between the body coordinate system of the gimbal and the corresponding axis of the body coordinate system of the drone.
  • the direction of the velocity in the second command may be a vector sum of the speeds of the adjusted directions.
  • the control direction in the first instruction is inverted to obtain The second instruction.
  • the body coordinate system of the drone may be as shown in a of FIG. 7, and the body coordinate system of the pan/tilt may be as shown by b in FIG. 7, wherein
  • the coordinate system shown by a in Fig. 7 is the same as the coordinate system shown by b in Fig. 7 in the direction of the OX axis, and the directions in the OY axis and the OZ axis are opposite, wherein the OY axis and The control direction of the OZ axis is reversed.
  • the second command is used to control the movement of the pan/tilt.
  • the control direction in the command for controlling the motion of the pan/tilt can be adjusted according to the attitude data of the drone and the attitude data of the gimbal, the pan/tilt can be set in the drone.
  • the control direction in the command can be automatically changed according to the position, that is, the control strategy is automatically switched, and the user does not need to manually set it, thereby minimizing the trouble of the user's control of the pan/tilt rotation and avoiding the control error caused by the user. The problem.
  • FIG. 8 is a schematic block diagram of a control device 400 in accordance with an embodiment of the present application.
  • the control device may include an acquisition unit 410, an adjustment unit 420, and a control unit 430.
  • the acquiring unit 410 is configured to: acquire a first instruction for controlling motion of the pan/tilt; acquire first posture data of the cloud platform itself; acquire second posture data of the drone connected to the cloud platform; and the adjusting unit 420 And configured to: adjust a control direction in the first instruction to obtain a second instruction for controlling the pan/tilt based on the first posture data and the second posture data; and the control unit 430 is configured to: utilize the second Command to control the movement of the gimbal.
  • the obtaining unit 410 is further configured to: acquire the first posture data by using a first sensor disposed on the pan/tilt.
  • the first sensor is at least one of an accelerometer or a gyroscope.
  • the obtaining unit 410 is further configured to: acquire the second posture data by using a second sensor disposed on the drone.
  • the second sensor is at least one of an accelerometer or a gyroscope.
  • the adjusting unit 420 is further configured to: acquire an adjustment matrix based on the first posture data and the second posture data; and use the adjustment matrix to adjust a control direction in the first instruction to obtain the second instruction.
  • the first attitude data is used to represent a direction of a body coordinate system of the cloud platform
  • the second posture data is used to represent a direction of a body coordinate system of the drone.
  • the first instruction is an instruction in a body coordinate system of the UAV; the adjusting unit 420 is further configured to: based on a direction of a body coordinate system of the UAV, and a body coordinate system of the PTZ The direction is adjusted to a control direction in the body coordinate system of the pan/tilt to obtain the second instruction.
  • the adjusting unit 420 is further configured to: when the body coordinate system of the UAV and the body coordinate system of the PTZ are opposite in at least one direction, in the at least one direction, The control direction is reversed to obtain the second instruction.
  • the obtaining unit 410 is further configured to: acquire a plurality of instructions input by the user; synthesize the plurality of instructions to obtain the first instruction.
  • the plurality of instructions comprise instructions input by the terminal device and/or instructions written by the software development kit SDK.
  • control device 400 can implement the operations implemented by the control device in the method 300. For brevity, no further details are provided herein.
  • the embodiment of the present application provides a cloud platform, which may include a processor, a rotating shaft mechanism, and a motor for driving the rotating shaft mechanism, and a first sensor.
  • the structure of the gimbal here may be 100 as shown in FIG. 1 .
  • the processor may be disposed in the pedestal 110, and may of course be disposed at other locations.
  • the spindle mechanism herein may include the spindle mechanisms 122, 124 and 126 shown in FIG.
  • the motor herein may include motors 132, 134 and 136 as shown in FIG.
  • the first sensor here can be provided with the load bracket 140, and of course, it can be placed at other locations.
  • the processor of the gimbal can implement the corresponding operations implemented by the control device in the method 300.
  • the processor of the gimbal can implement the corresponding operations implemented by the control device in the method 300.
  • the pan/tilt in the embodiment of the present application may be located in a mobile device.
  • the mobile device can be moved in any suitable environment, for example, in the air (eg, a fixed-wing aircraft, a rotorcraft, or an aircraft with neither a fixed wing nor a rotor), in water (eg, a ship or submarine), on land. (for example, a car or train), space (for example, a space plane, satellite or detector), and any combination of the above.
  • the mobile device can be an aircraft, such as an Unmanned Aerial Vehicle (UAV).
  • UAV Unmanned Aerial Vehicle
  • the mobile device can carry a living being, such as a person or an animal.
  • the drone 600 is an example in conjunction with FIG.
  • FIG. 9 is a schematic block diagram of a drone 600 in accordance with an embodiment of the present application.
  • the drone 600 includes a pan/tilt 610 and a camera 620.
  • the description of the drone as a drone in Figure 9 is for illustrative purposes only.
  • Camera 620 can be connected to the drone via pan/tilt 610.
  • the drone 600 can also include a power system 630, a sensing system 640, and a communication system 650 and a flight control system 660.
  • Power system 630 can include an electronic governor (referred to as an ESC), one or more propellers, and one or more electric machines corresponding to one or more propellers.
  • the motor and the propeller are disposed on the corresponding arm; the electronic governor is configured to receive the driving signal generated by the flight control system 660, and provide a driving current to the motor according to the driving signal to control the rotation speed and/or steering of the motor.
  • the motor is used to drive the propeller to rotate, thereby powering the drone's flight, which enables the drone to achieve one or more degrees of freedom of motion.
  • the drone can be rotated about one or more axes of rotation.
  • the above-described rotating shaft may include a roll axis, a pan axis, and a pitch axis.
  • the motor can be a DC motor or an AC motor.
  • the motor can be a brushless motor or a brush motor.
  • the sensing system 640 is used to measure the attitude information of the drone, that is, the position information and state information of the drone in the space, for example, three-dimensional position, three-dimensional angle, three-dimensional speed, three-dimensional acceleration, and three-dimensional angular velocity.
  • the sensing system may include, for example, a gyroscope, an accelerometer, an electronic compass, an Inertial Measurement Unit ("IMU"), a vision sensor, a Global Positioning System (GPS), and a barometer. At least one of the sensors.
  • the flight controller is used to control the flight of the drone. For example, the flight of the drone can be controlled based on the attitude information measured by the sensing system.
  • the flight controller may control the drone in accordance with pre-programmed program instructions, or may control the drone in response to one or more control commands from the maneuvering device.
  • the sensing system 640 can include a second sensor for acquiring attitude data of the drone in accordance with an embodiment of the present application.
  • the second sensor may include at least one of a gyroscope and an accelerometer.
  • Communication system 650 is capable of communicating with wireless terminal 690 via a terminal device 680 having communication system 670.
  • Communication system 650 and communication system 670 can include a plurality of transmitters, receivers, and/or transceivers for wireless communication.
  • the wireless communication herein may be one-way communication, for example, only the drone 600 may transmit data to the terminal device 680.
  • the wireless communication may be two-way communication, and the data may be transmitted from the drone 600 to the terminal device 680 or may be transmitted by the terminal device 680 to the drone 600.
  • the flight control system 660 can control the flight of the drone 600 based on instructions acquired by the communication system 650 and output a drive signal to the power system 610. Alternatively, the current flight state or the like is fed back to the terminal device 680 via the communication system 650.
  • the platform 610 may include a processor, a first sensor, a rotating shaft mechanism, and a motor for driving the rotating shaft mechanism; the first sensor is configured to acquire the first attitude data of the platform itself.
  • the processor can perform the operations implemented by the method 300 in the embodiment of the present application to obtain a second instruction to control the motion of the motor; the motor moves based on the control of the processor and drives the movement of the shaft mechanism.
  • the terminal device 680 can provide control data for one or more of the drones 600, the pan/tilt 610, and the camera 620, and can receive information transmitted by the drone 600, the pan/tilt 610, and the camera 620.
  • the control data provided by terminal device 680 can be used to control the status of one or more drones 600, pan/tilt 610, and camera 620.
  • a cloud station 610 and a camera 620 include communication modules for communicating with the terminal device 680.
  • the gimbal 960 included in the UAV shown in FIG. 9 can refer to the description of the method embodiment above, and for brevity, no further details are provided herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Toys (AREA)

Abstract

一种云台控制方法和设备、云台以及无人机,可以实现对云台的灵活设置,以及在此基础上,不增加用户对云台控制的难度。该云台控制方法(300)包括:获取对云台(100,610)的运动进行控制的第一指令;获取该云台(100,610)自身的第一姿态数据;获取该云台(100,610)所连接的无人机(200,600)的第二姿态数据;基于该第一姿态数据以及该第二姿态数据,调整该第一指令中的控制方向,以获取对该云台(100,610)进行控制的第二指令;利用该第二指令,对该云台(100,610)的运动进行控制。

Description

云台控制方法和设备、云台以及无人机
版权申明
本专利文件披露的内容包含受版权保护的材料。该版权为版权所有人所有。版权所有人不反对任何人复制专利与商标局的官方记录和档案中所存在的该专利文件或者该专利披露。
技术领域
本申请实施例涉及控制领域,并且更具体地,涉及一种云台控制方法和设备、云台以及无人机。
背景技术
随着飞行技术的发展,飞行器,例如,UAV(Unmanned Aerial Vehicle,无人飞行器),也称为无人机,已经从军用发展到越来越广泛的民用,例如,UAV植物保护、UAV航空拍摄、UAV森林火警监控等等,而民用化也是UAV未来发展的趋势。
云台可以设置在飞行器的下部,云台上可以搭载负载,用于负载的固定,随意调节负载的姿态(例如,改变负载的高度、倾角和/或方向),或者用于负载稳定保持在确定的姿态上。例如,在负载为拍摄设备时,其搭载在云台上可以实现稳定、流畅且多角度拍摄。但是云台设置在飞行器的下部,限制了负载的功能。
因此,如何实现对云台的灵活设置,以及在此基础上,不增加用户对云台控制的难度,是一项亟待解决的问题。
发明内容
本申请实施例提供了一种云台控制方法和设备、云台以及无人机,可以实现对云台的灵活设置,以及在此基础上,不增加用户对云台控制的难度。
一方面,提供了一种云台控制方法,包括:
获取对云台的运动进行控制的第一指令;
获取该云台自身的第一姿态数据;
获取该云台所连接的无人机的第二姿态数据;
基于该第一姿态数据以及该第二姿态数据,调整该第一指令中的控制方向,以获取对该云台进行控制的第二指令;
利用该第二指令,对该云台的运动进行控制。
另一方面,提供了一种控制设备,包括:获取单元、调整单元和控制单元;
该获取单元用于:获取对云台的运动进行控制的第一指令;获取该云台自身的第一姿态数据;获取该云台所连接的无人机的第二姿态数据;
该调整单元用于:基于该第一姿态数据以及该第二姿态数据,调整该第一指令中的控制方向,以获取对该云台进行控制的第二指令;
该控制单元用于:利用该第二指令,对该云台的运动进行控制。
另一方面,提供了一种云台,包括处理器、转轴机构以及用于带动该转轴机构运动的电机,以及第一传感器;
该第一传感器用于获取该云台自身的第一姿态数据;
该处理器用于获取对云台的运动进行控制的第一指令;从该第一传感器获取该第一姿态数据;获取该云台所连接的无人机的第二姿态数据;并基于该第一姿态数据以及该第二姿态数据,调整该第一指令中的控制方向,以获取对该云台进行控制的第二指令;利用该第二指令,控制该电机的运动;
该电机基于该处理器的控制进行运动,并带动该转轴机构的运动。
另一方面,提供了一种存储介质,包括指令,当其在计算机上运行时,使得该计算机执行以下方法:
获取对云台的运动进行控制的第一指令;
获取该云台自身的第一姿态数据;
获取该云台所连接的无人机的第二姿态数据;
基于该第一姿态数据以及该第二姿态数据,调整该第一指令中的控制方向,以获取对该云台进行控制的第二指令;
利用该第二指令,对该云台的运动进行控制。
另一方面,提供了一种无人机,包括:通信系统、飞控系统、动力系统、包括第二传感器的传感系统和云台;
所述通信系统用于获取对所述无人机的运动进行控制的指令;
所述飞控系统用于基于所述通信系统获取的指令,向所述动力系统输出驱动信号;
所述动力系统用于基于所述飞控系统输出的驱动信号,驱动所述无人机的运动;
所述第二传感器用于获取所述无人机的姿态数据;
所述云台包括处理器、转轴机构以及用于带动所述转轴机构运动的电机,以及第一传感器;所述第一传感器用于获取所述云台自身的第一姿态数据;所述处理器用于获取对云台的运动进行控制的第一指令;从所述第一传感器获取所述第一姿态数据;从所述第二传感器获取第二姿态数据;并基于所述第一姿态数据以及所述第二姿态数据,调整所述第一指令中的控制方向,以获取对所述云台进行控制的第二指令;利用所述第二指令,控制所述电机的运动;所述电机基于所述处理器的控制进行运动,并带动所述转轴机构的运动。
因此,在本申请实施例中,由于可以根据无人机的姿态数据和云台的姿态数据对控制云台的运动的指令中的控制方向进行调整,可以实现将云台设置在无人机的不同的位置时,可以根据位置自动更改指令中的控制方向,即自动切换控制策略,无需用户手动设定,可以尽量减少用户对云台转动的控制的麻烦度以及尽量避免用户所造成的控制出错的问题。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本申请实施例的云台的示意性结构图。
图2是根据本申请实施例的云台在无人机上的设置方式的示意性图。
图3是根据本申请实施例的云台在无人机上的设置方式的示意性图。
图4是根据本申请实施例的云台控制方法的示意性流程图。
图5a-5d是根据本申请实施例的无人机和云台的相对姿态的示意性图。
图6是根据本申请实施例的无人机的体坐标系和云台的体坐标系的示意性图。
图7是根据本申请实施例的无人机的体坐标系和云台的体坐标系的示意性图。
图8是根据本申请实施例的控制设备的示意性框图。
图9是根据本申请实施例的无人机的示意性结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,本申请实施例中当一组件与另一组件“固定连接”或“连接”,或者,一组件“固定于”另一组件时,它可以直接在另一组件上,或者也可以存在居中的组件。
除非另有说明,本申请实施例所使用的所有技术和科学术语与本申请的技术领域的技术人员通常理解的含义相同。本申请中所使用的术语只是为了描述具体的实施例的目的,不是旨在限制本申请的范围。本申请所使用的术语“和/或”包括一个或多个相关的所列项的任意的和所有的组合。
云台上可以承载负载(例如,拍摄设备),用于负载的固定,改变负载的高度、倾角和/或方向,或者用于负载稳定保持在确定的姿态上。
本申请实施例的云台可以设置于可移动设备上,例如,设置于无人机或机动车上等。
本申请实施例的云台也可以用于承载非拍摄设备的其它设备,例如,分光仪或雷达的微波天线等。本申请实施例的云台也可以是具有其它的名字,例如,负载支持架等,本申请实施例对此不作具体限定。
图1是根据本申请实施例的云台100的示意性图。如图1所示,该云台100可以包括基座110,负载支架140以及偏航轴(yaw)机构122,横滚轴(Roll)机构124和俯仰轴(pitch)机构126,以及航向轴电机132,横滚轴电机134和俯仰轴电机136,其中,航向轴电机132安装于所述基座110用于带动转轴机构122的转动,所述横滚轴电机134安装于所述横滚轴机构124用于带动转轴机构124的转动,所述俯仰轴电机136安装于所述横滚轴机构124用于带动转轴机构126的转动。
应理解,云台也可以只包括一个或两个转轴机构。另外,虽然图1中所示,偏航轴机构连接于横滚轴机构的一端,横滚轴机构的另一端连接于俯仰轴机构,负载支架140直接连接在了俯仰轴机构上,但是本申请实施例并不限于此,偏航轴机构、横滚轴机构和俯仰轴机构也可以以其它顺序进行连接。
负载支架140可以用于支持负载199,负载支架140上可以设置有惯性传感器,例如,加速度计或陀螺仪中的至少一种。
图1所示的云台100可以通过基座110安装于可移动设备(例如,无人机)上。云台100可以通过基座110获取电能或收发电子信号,云台100也可以收发无线信号。
基座110中可以设置处理器,用于输入的控制指令进行处理,或者收发信号等。
以可移动设备为无人机例,云台可以通过基座安装于无人机的底部,例如,如图2所示,云台100设置于无人机200的底部。或者,云台也可以通过基座安装于无人机的顶部,例如,如图3所示云台100设置于无人机200的上部。当然,云台也可以安装于非顶部或下部的任何位置。
随着云台的安装位置的灵活多变,将会增加用户对云台的控制的难度,例如,如果无人机的姿态保持不变,在云台设置于无人机的下部时,如果用户希望云台向上运动,则用户可以拨动pitch轴的摇杆向上,如果用户希望云台顺时针转动时,会拨动yaw轴的摇杆向右;在云台设置于无人机的上部时,如果用户希望云台向上运动,则用户需要拨动pitch轴的摇杆向下,如果用户希望云台顺时针转动时,会拨动yaw轴的摇杆向左。
也就是说,此时用户需要按照云台在无人机设置的位置进行控制指令的输入,造成用户控制较为麻烦且容易出错。
因此,本申请实施例提供了以下的方法300,可以尽量减少用户对云台转动的控制的麻烦度以及尽量避免用户所造成的控制出错的问题。
图4是根据本申请实施例的云台控制方法300的示意性流程图。该方法300包括以下内容中的至少部分内容。该方法300可以由控制设备实现,其中,该控制设备设置于云台中,也可以设置在其他设备中,例如可以设置在无人机中,由无人机的飞控系统实现。
在310中,控制设备获取对云台的运动进行控制的第一指令。
可选地,控制设备可以从终端设备(例如,遥控设备或者携带控制应用 的手机等)获取第一指令,或者从软件开发工具包(Software Development Kit,SDK)获取第一指令。
具体地,用户可以通过终端设备实时向控制设备输入对云台的运动进行控制的指令;或者,用户可以在SDK中写入对云台的运动进行控制的指令,控制设备可以读取该SDK,以获取用户对云台的运动进行控制的指令。
可选地,控制设备获取用户输入的多个指令;对该多个指令进行合成,以获取该第一指令。
可选地,该多个指令包括用户通过终端设备输入的指令和/或通过SDK写入的指令。
具体地,用户可以通过多个途径向控制设备输入对云台的运动进行控制的控制指令,例如,用户通过SDK输入一次指令,以及通过终端设备实时调整通过SDK输入的指令,控制设备接收到该多个指令后,可以对该多个指令进行处理,例如,进行合成处理,具体地,可以对指令中的速度矢量以加的方式进行处理,或者,将在后输入的指令替代在前输入的指令等。
在320中,控制设备获取该云台自身的第一姿态数据。
可选地,可以在云台(例如,如图2所示的负载支架140)上设置第一传感器,控制设备可以通过设置在该云台上的第一传感器,获取该第一姿态数据。
可选地,该第一传感器是加速度计或陀螺仪中的至少一种。当然,该第一传感器也可以是其它传感器,本申请实施例对此不作具体限定。
可选地,该第一姿态数据用于表征该云台的体坐标系的方向。
可选地,该云台的体坐标系是遵循右手法则的三维正交直接坐标系,其原点可以位于云台的重心,OX轴平行于在拍摄设备轴线(拍摄设备的变焦的方向)并指向拍摄设备前方(镜头朝向为前方),OY轴垂直于拍摄设备轴线并指向拍摄设备右方,OZ轴在垂直于XOY平面,指向拍摄设备下方。
其中,在确定云台的体坐标系时,云台的各个转轴机构的相对位置关系,以及转轴机构相对于基座的位置关系,可以均处于特定的状态,如此,可以实现在多次确定云台的体坐标系时,使用的准则是一致的。
其中,云台的体坐标系的方向可以是云台的体坐标系的三个轴的指向。
应理解,本申请实施例的云台的体坐标系的建立也可以是按照其它方式,例如,遵循左手法则的三维正交直接坐标系,或者,在遵循右手法则的 三维正交直接坐标系时,OX轴可以是朝向拍摄设备的后方等。
可选地,该云台的体坐标系的方向可以是相对大地坐标系的方向。以下结合图5a-d进行说明,其中,图5a和5d的无人机是倒立的,图5b和5c的无人机是正立的,这可以通过螺旋桨201的姿态得出。
例如,如图5a和5b所示,虽然云台均设置在了无人机的顶部,但是由于无人机的姿态的变化,其云台的体坐标系相对大地坐标系的方向是不同的,类似地,如图5c和5d所示,虽然云台均设置在了无人机的底部,但是由于无人机的姿态的变化,其云台的体坐标系相对大地坐标系的方向是不同的。以及,如图5a和5c所示,虽然云台分别设置在了无人机的顶部和底部,但是由于无人机的姿态的变化,其云台的体坐标系相对大地坐标系的方向是相同的,类似地,如图5b和5d所示,虽然云台分别设置在了无人机的顶部和底部,但是由于无人机的姿态的变化,其云台的体坐标系相对大地坐标系的方向是相同的。
当然,该云台的体坐标系的方向也可以是相对于无人机的体坐标系的方向。
其中,无人机的体坐标系可以是遵循右手法则的三维正交直角坐标系,其原点位于飞行器的重心,OX轴位于无人机参考平面内平行于机身轴线并指向无人机前方,OY轴垂直于无人机参考面并指向无人机右方,OZ轴在参考面内垂直于XOY平面,指向无人机下方。
应理解,本申请实施例的无人机的体坐标系的建立也可以是按照其它方式,例如,遵循左手法则的三维正交直接坐标系,或者,在遵循右手法则的三维正交直接坐标系时,OX轴可以是朝向无人机的后方等。
在330中,获取该云台所连接的无人机的第二姿态数据。
可选地,可以在无人机上设置第二传感器,通过设置在该无人机上的第二传感器,获取该第二姿态数据。
可选地,该第二传感器是加速度计和陀螺仪中的至少一种。当然,该第一传感器也可以是其它传感器,本申请实施例对此不作具体限定。
可选地,该第二姿态数据用于表征该无人机的体坐标系的方向。
其中,无人机的体坐标系的方向可以是无人机的体坐标系的三个轴的指向。
可选地,该无人机的体坐标系的方向可以是相对大地坐标系的方向。
例如,如图5a和5d中,无人机的体坐标系的方向是相同;如图5b和5c中,无人机的体坐标系的方向是相同;图5a和5d无人机的体坐标系的方向,与图5b和5c中的无人机的体坐标系的方向是不同的。
在340中,控制器可以基于该第一姿态数据以及该第二姿态数据,调整该第一指令中的控制方向,以获取对该云台进行控制的第二指令。
可选地,控制设备基于该无人机的体坐标系的方向,以及该云台的体坐标系的方向,将该第一指令中的控制方向,调整为在该云台的体坐标系下的控制方向,以获取该第二指令。
具体地,云台控制指令可以统一为无人机的体坐标系下,比如用户通过云台摇杆输入控制指令,通过应用(app)指点飞行控制等,控制设备通过对各指令进行叠加,得到无人机的体坐标系下的总指令,云台根据无人机的姿态数据以及云台的姿态数据,判断无人机与云台的相对姿态,从而根据调整矩阵计算得到云台的体坐标系下的指令表示,从而算出输出指令发送给闭环模块。
可选地,控制设备基于该第一姿态数据,以及该第二姿态数据,获取调整矩阵;利用该调整矩阵,调整该第一指令中的控制方向,以获取该第二指令。
可选地,调整矩阵的元素数量可以是3,也即分别用于调整第一控制指令中分解到OX轴、OY轴和OZ轴的速度分量的方向。
可选地,调整矩阵中各个元素的取值可以与无人机的体坐标系的方向,以及云台的体坐标系的方向有关。
例如,如图5d所示的场景,此时,无人机的体坐标系可以是图6中的a所示,云台的体坐标系的可以是如图6中的b所示,其中,a所示的坐标系与b所示的坐标系在三个方向均是相同的,则该种情况下,调整矩阵中三个元素的值可以均为1,也无需对第一指令中的控制方向进行调整。
再例如,如图5a所示的场景,此时,无人机的体坐标系可以是如图7中的a所示,云台的体坐标系可以是如图7中的b所示,其中,a所示的坐标系与b所示的坐标系在OX轴的方向是相同的,在OY轴和OZ轴的方向是相反的,其中,调整矩阵的元素的取值可以为1,-1,-1,其中,第一个元素用于对第一指令中的OX轴的控制方向进行调整,第二个元素用于对第一指令中的OY轴的控制方向进行调整,第三个元素用于对第一指令中的 OZ轴的控制方向进行调整。
其中,调整矩阵中的元素取值并非必须是1或-1,具体的取值大小可以与云台的体坐标系和无人机的体坐标系的相应的轴的方向夹角有关。
可选地,虽然调整矩阵是对各个方向分别进行调整,但是第二指令中的速度的方向可以是调整后的各个方向的速度的矢量和。
可选地,在该无人机的体坐标系与该云台的体坐标系在至少一个方向相反时,在该至少一个方向,对该将该第一指令中的控制方向取反,以获取该第二指令。
例如,如图5a所示的场景,此时,无人机的体坐标系可以是如图7中的a所示,云台的体坐标系可以是如图7中的b所示,其中,图7中的a所示的坐标系与图7中的b所示的坐标系在OX轴的方向是相同的,在OY轴和OZ轴的方向是相反的,其中,则可以对OY轴和OZ轴的控制方向进行取反。
在350中,利用该第二指令,控制设备对该云台的运动进行控制。
因此,在本申请实施例中,由于可以根据无人机的姿态数据和云台的姿态数据对控制云台的运动的指令中的控制方向进行调整,可以实现将云台设置在无人机的不同的位置时,可以根据位置自动更改指令中的控制方向,即自动切换控制策略,无需用户手动设定,可以尽量减少用户对云台转动的控制的麻烦度以及尽量避免用户所造成的控制出错的问题。
图8是根据本申请实施例的控制设备400的示意性框图。如图8所示,该控制设备可以包括获取单元410、调整单元420和控制单元430。
该获取单元410用于:获取对云台的运动进行控制的第一指令;获取该云台自身的第一姿态数据;获取该云台所连接的无人机的第二姿态数据;该调整单元420用于:基于该第一姿态数据以及该第二姿态数据,调整该第一指令中的控制方向,以获取对该云台进行控制的第二指令;该控制单元430用于:利用该第二指令,对该云台的运动进行控制。
可选地,该获取单元410进一步用于:通过设置在该云台上的第一传感器,获取该第一姿态数据。
可选地,该第一传感器是加速度计或陀螺仪中的至少一种。
可选地,该获取单元410进一步用于:通过设置在该无人机上的第二传感器,获取该第二姿态数据。
可选地,该第二传感器是加速度计或陀螺仪中的至少一种。
可选地,该调整单元420进一步用于:基于该第一姿态数据,以及该第二姿态数据,获取调整矩阵;利用该调整矩阵,调整该第一指令中的控制方向,以获取该第二指令。
可选地,该第一姿态数据用于表征该云台的体坐标系的方向,该第二姿态数据用于表征该无人机的体坐标系的方向。
可选地,该第一指令是该无人机的体坐标系下的指令;该调整单元420进一步用于:基于该无人机的体坐标系的方向,以及该云台的体坐标系的方向,将该第一指令中的控制方向,调整为在该云台的体坐标系下的控制方向,以获取该第二指令。
可选地,该调整单元420进一步用于:在该无人机的体坐标系与该云台的体坐标系在至少一个方向相反时,在该至少一个方向,对该将该第一指令中的控制方向取反,以获取该第二指令。
可选地,该获取单元410进一步用于:获取用户输入的多个指令;对该多个指令进行合成,以获取该第一指令。
可选地,该多个指令包括通过终端设备输入的指令和/或通过软件开发工具包SDK写入的指令。
应理解,该控制设备400可以实现方法300中控制设备实现的操作,为了简洁,在此不再赘述。
本申请实施例提供了一种云台,该云台可以包括处理器、转轴机构以及用于带动该转轴机构运动的电机,以及第一传感器。
可选地,此处云台的结构可以如图1所示100。其中,处理器可以设置在基座110中,当然,也可以设置在其他的位置。此处的转轴机构可以包括图1所示的转轴机构122,124和126。此处的电机可以包括如图1所示的电机132,134和136。此处的第一传感器可以设置负载支架140,当然,也可以设置在其他位置。
该云台的处理器可以实现方法300中由控制设备实现的相应操作,为了简洁,在此不再赘述。
可选地,本申请实施例的云台可以位于可移动设备中。可移动设备可以在任何合适的环境下移动,例如,空气中(例如,定翼飞机、旋翼飞机,或既没有定翼也没有旋翼的飞机)、水中(例如,轮船或潜水艇)、陆地上(例 如,汽车或火车)、太空(例如,太空飞机、卫星或探测器),以及以上各种环境的任何组合。可移动设备可以是飞机,例如无人机(Unmanned Aerial Vehicle,简称为“UAV”)。在一些实施例中,可移动设备可以承载生命体,例如,人或动物。为了便于理解,以下结合图9,以无人机600为例进行说明。
图9是根据本申请实施例的无人机600的示意性框图。如图9所示,无人机600包括云台610和相机620。图9中将无人机描述为无人机仅仅是为了描述方面。相机620可以通过云台610连接到无人机上。无人机600还可以包括动力系统630、传感系统640和通信系统650和飞控系统660。
动力系统630可以包括电子调速器(简称为电调)、一个或多个螺旋桨以及与一个或多个螺旋桨相对应的一个或多个电机。电机和螺旋桨设置在对应的机臂上;电子调速器用于接收飞控系统660产生的驱动信号,并根据驱动信号提供驱动电流给电机,以控制电机的转速和/或转向。电机用于驱动螺旋桨旋转,从而为无人机的飞行提供动力,该动力使得无人机能够实现一个或多个自由度的运动。在某些实施例中,无人机可以围绕一个或多个旋转轴旋转。例如,上述旋转轴可以包括横滚轴、平移轴和俯仰轴。应理解,电机可以是直流电机,也可以交流电机。另外,电机可以是无刷电机,也可以有刷电机。
传感系统640用于测量无人机的姿态信息,即无人机在空间的位置信息和状态信息,例如,三维位置、三维角度、三维速度、三维加速度和三维角速度等。传感系统例如可以包括陀螺仪、加速度计、电子罗盘、惯性测量单元(Inertial Measurement Unit,简称为“IMU”)、视觉传感器、全球定位系统(Global Positioning System,简称为“GPS”)和气压计等传感器中的至少一种。飞行控制器用于控制无人机的飞行,例如,可以根据传感系统测量的姿态信息控制无人机的飞行。应理解,飞行控制器可以按照预先编好的程序指令对无人机进行控制,也可以通过响应来自操纵设备的一个或多个控制指令对无人机进行控制。该传感系统640可以包括根据本申请实施例的第二传感器,该第二传感器用于获取无人机的姿态数据。其中,该第二传感器可以包括陀螺仪和加速度计中的至少一种。
通信系统650能够与一个具有通信系统670的终端设备680通过无线信号690进行通信。通信系统650和通信系统670可以包括多个用于无线通信 的发射机、接收机和/或收发机。这里的无线通信可以是单向通信,例如,只能是无人机600向终端设备680发送数据。或者无线通信可以是双向通信,数据即可以从无人机600发送给终端设备680,也可以由终端设备680发送给无人机600。
所述飞控系统660可以基于通信系统650获取的指令,对无人机600的飞行进行控制,向动力系统610输出驱动信号。或者,通过通信系统650向终端设备680反馈当前的飞行状态等。
可选地,该云台610可以包括处理器、第一传感器、转轴机构以及用于带动该转轴机构运动的电机;该第一传感器用于获取该云台自身的第一姿态数据。该处理器可以执行本申请实施例中方法300实现的操作,以获取第二指令,控制该电机的运动;该电机基于该处理器的控制进行运动,并带动该转轴机构的运动。
可选地,终端设备680能够提供针对于一个或多个无人机600、云台610和相机620的控制数据,并能接收无人机600、云台610和相机620发送的信息。终端设备680提供的控制数据能够用于控制一个或多个无人机600、云台610和相机620的状态。可选地,云台610和相机620中包括用于与终端设备680进行通信的通信模块。
可以理解的是,图9所示出的无人机包括的云台960可以参照上文方法实施例的描述,为了简洁,在此不再赘述。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (32)

  1. 一种云台控制方法,其特征在于,包括:
    获取对云台的运动进行控制的第一指令;
    获取所述云台自身的第一姿态数据;
    获取所述云台所连接的无人机的第二姿态数据;
    基于所述第一姿态数据以及所述第二姿态数据,调整所述第一指令中的控制方向,以获取对所述云台进行控制的第二指令;
    利用所述第二指令,对所述云台的运动进行控制。
  2. 根据权利要求1所述的方法,其特征在于,所述获取所述云台自身的第一姿态数据,包括:
    通过设置在所述云台上的第一传感器,获取所述第一姿态数据。
  3. 根据权利要求2所述的方法,其特征在于,所述第一传感器是加速度计或陀螺仪中的至少一种。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述获取所述云台所连接的无人机的第二姿态数据,包括:
    通过设置在所述无人机上的第二传感器,获取所述第二姿态数据。
  5. 根据权利要求4所述的方法,其特征在于,所述第二传感器是加速度计或陀螺仪中的至少一种。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述基于所述第一姿态数据,以及所述第二姿态数据,调整所述第一指令中的控制方向,以获取所述第二指令,包括:
    基于所述第一姿态数据,以及所述第二姿态数据,获取调整矩阵;
    利用所述调整矩阵,调整所述第一指令中的控制方向,以获取所述第二指令。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述第一姿态数据用于表征所述云台的体坐标系的方向,所述第二姿态数据用于表征所述无人机的体坐标系的方向。
  8. 根据权利要求7所述的方法,其特征在于,所述第一指令是所述无人机的体坐标系下的指令;
    所述基于所述第一姿态数据,以及所述第二姿态数据,调整所述第一指令中的控制方向,以获取所述第二指令,包括:
    基于所述无人机的体坐标系的方向,以及所述云台的体坐标系的方向,将所述第一指令中的控制方向,调整为在所述云台的体坐标系下的控制方向,以获取所述第二指令。
  9. 根据权利要求8所述的方法,其特征在于,所述基于所述无人机的体坐标系的方向,以及所述云台的体坐标系的方向,将所述第一指令中的控制方向,调整为在所述云台的体坐标系下的控制方向,以获取所述第二指令,包括:
    在所述无人机的体坐标系与所述云台的体坐标系在至少一个方向相反时,在所述至少一个方向,对所述将所述第一指令中的控制方向取反,以获取所述第二指令。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述获取用户输入的对云台进行控制的第一指令,包括:
    获取用户输入的多个指令;
    对所述多个指令进行合成,以获取所述第一指令。
  11. 根据权利要求10所述的方法,其特征在于,所述多个指令包括通过终端设备输入的指令和/或通过软件开发工具包SDK写入的指令。
  12. 一种控制设备,其特征在于,包括用于执行根据权利要求1至11中任一项所述的模块。
  13. 一种存储介质,其特征在于,包括指令,当其在计算机上运行时,使得所述计算机执行如权利要求1至11中任一项所述的方法。
  14. 一种云台,其特征在于,包括处理器、转轴机构以及用于带动所述转轴机构运动的电机,以及第一传感器;
    所述第一传感器用于获取所述云台自身的第一姿态数据;
    所述处理器用于获取对云台的运动进行控制的第一指令;从所述第一传感器获取所述第一姿态数据;获取所述云台所连接的无人机的第二姿态数据;并基于所述第一姿态数据以及所述第二姿态数据,调整所述第一指令中的控制方向,以获取对所述云台进行控制的第二指令;利用所述第二指令,控制所述电机的运动;
    所述电机基于所述处理器的控制进行运动,并带动所述转轴机构的运动。
  15. 根据权利要求14所述的云台,其特征在于,所述第一传感器是加 速度计或陀螺仪。
  16. 根据权利要求14或15所述的云台,其特征在于,所述处理器进一步用于:
    通过设置在所述无人机上的第二传感器,获取所述第二姿态数据。
  17. 根据权利要求16所述的云台,其特征在于,所述第二传感器是加速度计或陀螺仪。
  18. 根据权利要求14至17中任一项所述的云台,其特征在于,所述处理器进一步用于:
    基于所述第一姿态数据,以及所述第二姿态数据,获取调整矩阵;
    利用所述调整矩阵,调整所述第一指令中的控制方向,以获取所述第二指令。
  19. 根据权利要求14至18中任一项所述的云台,其特征在于,所述第一姿态数据用于表征所述云台的体坐标系的方向,所述第二姿态数据用于表征所述无人机的体坐标系的方向。
  20. 根据权利要求19所述的云台,其特征在于,所述第一指令是所述无人机的体坐标系下的指令;
    所述处理器进一步用于:
    基于所述无人机的体坐标系的方向,以及所述云台的体坐标系的方向,将所述第一指令中的控制方向,调整为在所述云台的体坐标系下的控制方向,以获取所述第二指令。
  21. 根据权利要求20所述的云台,其特征在于,所述处理器进一步用于:
    在所述无人机的体坐标系与所述云台的体坐标系在至少一个方向相反时,在所述至少一个方向,对所述将所述第一指令中的控制方向取反,以获取所述第二指令。
  22. 根据权利要求14至21中任一项所述的云台,其特征在于,所述处理器进一步用于:
    获取用户输入的多个指令;
    对所述多个指令进行合成,以获取所述第一指令。
  23. 根据权利要求22所述的云台,其特征在于,所述多个指令包括所述用户通过终端设备输入的指令和/或所述用户通过软件开发工具包SDK写 入的指令。
  24. 一种无人机,其特征在于,包括通信系统、飞控系统、动力系统、包括第二传感器的传感系统和云台;
    所述通信系统用于获取对所述无人机的运动进行控制的指令;
    所述飞控系统用于基于所述通信系统获取的指令,向所述动力系统输出驱动信号;
    所述动力系统用于基于所述飞控系统输出的驱动信号,驱动所述无人机的运动;
    所述第二传感器用于获取所述无人机的姿态数据;
    所述云台包括处理器、转轴机构以及用于带动所述转轴机构运动的电机,以及第一传感器;所述第一传感器用于获取所述云台自身的第一姿态数据;所述处理器用于获取对云台的运动进行控制的第一指令;从所述第一传感器获取所述第一姿态数据;从所述第二传感器获取第二姿态数据;并基于所述第一姿态数据以及所述第二姿态数据,调整所述第一指令中的控制方向,以获取对所述云台进行控制的第二指令;利用所述第二指令,控制所述电机的运动;所述电机基于所述处理器的控制进行运动,并带动所述转轴机构的运动。
  25. 根据权利要求24所述的无人机,其特征在于,所述第一传感器是加速度计或陀螺仪。
  26. 根据权利要求24或25所述的无人机,其特征在于,所述第二传感器是加速度计或陀螺仪。
  27. 根据权利要求25至26中任一项所述的无人机,其特征在于,所述处理器进一步用于:
    基于所述第一姿态数据,以及所述第二姿态数据,获取调整矩阵;
    利用所述调整矩阵,调整所述第一指令中的控制方向,以获取所述第二指令。
  28. 根据权利要求25至27中任一项所述的无人机,其特征在于,所述第一姿态数据用于表征所述云台的体坐标系的方向,所述第二姿态数据用于表征所述无人机的体坐标系的方向。
  29. 根据权利要求28所述的无人机,其特征在于,所述第一指令是所述无人机的体坐标系下的指令;
    所述处理器进一步用于:
    基于所述无人机的体坐标系的方向,以及所述云台的体坐标系的方向,将所述第一指令中的控制方向,调整为在所述云台的体坐标系下的控制方向,以获取所述第二指令。
  30. 根据权利要求29所述的无人机,其特征在于,所述处理器进一步用于:
    在所述无人机的体坐标系与所述云台的体坐标系在至少一个方向相反时,在所述至少一个方向,对所述将所述第一指令中的控制方向取反,以获取所述第二指令。
  31. 根据权利要求25至30中任一项所述的无人机,其特征在于,所述处理器进一步用于:
    获取用户输入的多个指令;
    对所述多个指令进行合成,以获取所述第一指令。
  32. 根据权利要求31所述的无人机,其特征在于,所述多个指令包括所述用户通过终端设备输入的指令和/或所述用户通过软件开发工具包SDK写入的指令。
PCT/CN2017/117668 2017-12-21 2017-12-21 云台控制方法和设备、云台以及无人机 WO2019119340A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780014495.5A CN108780331B (zh) 2017-12-21 2017-12-21 云台控制方法和设备、云台以及无人机
PCT/CN2017/117668 WO2019119340A1 (zh) 2017-12-21 2017-12-21 云台控制方法和设备、云台以及无人机
US16/903,878 US20200319642A1 (en) 2017-12-21 2020-06-17 Gimbal control method and device, gimbal, and unmanned aerial vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/117668 WO2019119340A1 (zh) 2017-12-21 2017-12-21 云台控制方法和设备、云台以及无人机

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/903,878 Continuation US20200319642A1 (en) 2017-12-21 2020-06-17 Gimbal control method and device, gimbal, and unmanned aerial vehicle

Publications (1)

Publication Number Publication Date
WO2019119340A1 true WO2019119340A1 (zh) 2019-06-27

Family

ID=64034075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117668 WO2019119340A1 (zh) 2017-12-21 2017-12-21 云台控制方法和设备、云台以及无人机

Country Status (3)

Country Link
US (1) US20200319642A1 (zh)
CN (1) CN108780331B (zh)
WO (1) WO2019119340A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113212770A (zh) * 2021-05-25 2021-08-06 象限空间(天津)科技有限公司 飞行器动力装置控制系统

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108496138B (zh) * 2017-05-25 2022-04-22 深圳市大疆创新科技有限公司 一种跟踪方法及装置
CN111258240A (zh) * 2018-11-30 2020-06-09 杭州海康威视数字技术股份有限公司 一种控制云台的方法及装置
CN109828274B (zh) * 2019-01-07 2022-03-04 深圳市道通智能航空技术股份有限公司 调整机载雷达的主探测方向的方法、装置和无人机
CN111959802A (zh) * 2019-05-20 2020-11-20 辽宁巨维建设工程有限公司 一种多角度可变式三维建模云台
CN114967737A (zh) * 2019-07-12 2022-08-30 深圳市道通智能航空技术股份有限公司 一种飞行器控制方法及飞行器
CN111328387B (zh) * 2019-07-19 2024-02-20 深圳市大疆创新科技有限公司 云台控制方法、设备和计算机可读存储介质
CN113741497A (zh) * 2021-08-25 2021-12-03 深圳市道通智能航空技术股份有限公司 云台方向的控制方法、装置及终端
WO2023028830A1 (zh) * 2021-08-31 2023-03-09 深圳市大疆创新科技有限公司 一种无人机的控制方法、设备、无人机及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105446351A (zh) * 2015-11-16 2016-03-30 杭州码全信息科技有限公司 一种能够锁定目标区域瞭望基于自主导航的无人飞艇系统
CN105607653A (zh) * 2016-01-05 2016-05-25 深圳一电航空技术有限公司 云台控制方法和系统
CN106094865A (zh) * 2016-07-15 2016-11-09 陈昊 无人飞行器拍摄系统及其拍摄方法
CN106525074A (zh) * 2016-10-13 2017-03-22 重庆零度智控智能科技有限公司 一种云台漂移的补偿方法、装置、云台和无人机
WO2017192666A1 (en) * 2016-05-03 2017-11-09 Sunshine Aerial Systems, Inc. Autonomous aerial vehicle

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7602415B2 (en) * 2003-01-17 2009-10-13 Insitu, Inc. Compensation for overflight velocity when stabilizing an airborne camera
CN103336532B (zh) * 2013-04-26 2016-06-15 杨毅 3d视听觉系统的支持装置及3d视听觉系统
CN103426282A (zh) * 2013-07-31 2013-12-04 深圳市大疆创新科技有限公司 遥控方法及终端
CN104995575B (zh) * 2014-07-21 2018-12-14 深圳市大疆创新科技有限公司 一种数据处理方法、装置及飞行器
CN104483977B (zh) * 2014-10-11 2016-11-30 国家电网公司 一种舵机云台的无速度反馈动态面控制方法及控制器
CN104571140B (zh) * 2014-11-20 2017-10-27 中国建材检验认证集团股份有限公司 一种光伏组件巡检拍照控制系统
JP2016143309A (ja) * 2015-02-04 2016-08-08 株式会社Jvcケンウッド ジンバル制御装置及びジンバル制御方法
CN104881049B (zh) * 2015-05-28 2017-07-11 天津大学 有限空间内无人机全景拍摄云台
CN104965527B (zh) * 2015-07-03 2018-07-10 深圳市大疆灵眸科技有限公司 云台控制方法及云台
WO2017185316A1 (zh) * 2016-04-29 2017-11-02 深圳市大疆创新科技有限公司 一种无人机第一视角飞行的控制方法及系统、智能眼镜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105446351A (zh) * 2015-11-16 2016-03-30 杭州码全信息科技有限公司 一种能够锁定目标区域瞭望基于自主导航的无人飞艇系统
CN105607653A (zh) * 2016-01-05 2016-05-25 深圳一电航空技术有限公司 云台控制方法和系统
WO2017192666A1 (en) * 2016-05-03 2017-11-09 Sunshine Aerial Systems, Inc. Autonomous aerial vehicle
CN106094865A (zh) * 2016-07-15 2016-11-09 陈昊 无人飞行器拍摄系统及其拍摄方法
CN106525074A (zh) * 2016-10-13 2017-03-22 重庆零度智控智能科技有限公司 一种云台漂移的补偿方法、装置、云台和无人机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113212770A (zh) * 2021-05-25 2021-08-06 象限空间(天津)科技有限公司 飞行器动力装置控制系统

Also Published As

Publication number Publication date
CN108780331B (zh) 2021-02-05
CN108780331A (zh) 2018-11-09
US20200319642A1 (en) 2020-10-08

Similar Documents

Publication Publication Date Title
WO2019119340A1 (zh) 云台控制方法和设备、云台以及无人机
WO2021008628A1 (zh) 飞行器控制方法及飞行器
US11233943B2 (en) Multi-gimbal assembly
US11036228B2 (en) Method and system for stabilizing a payload
US11665422B2 (en) Method and system for user feedback in a motion constrained image stabilization system
US11118728B2 (en) Method and system for stabilizing a payload
US10447912B2 (en) Systems, methods, and devices for setting camera parameters
US10657832B2 (en) Method and apparatus for target relative guidance
WO2019223270A1 (zh) 云台电机角度和角速度估算方法、装置、云台及飞行器
US9456185B2 (en) Helicopter
US11156905B2 (en) Control method for gimbal, controller, and gimbal
WO2016138687A1 (zh) 多旋翼飞行器的控制系统、终端及机载飞控系统
JP6899846B2 (ja) 飛行経路表示方法、モバイルプラットフォーム、飛行システム、記録媒体及びプログラム
US11958604B2 (en) Unmanned aerial vehicle and method for controlling gimbal thereof
WO2018059295A1 (zh) 多旋翼飞行器的控制方法、装置和系统
WO2020048365A1 (zh) 飞行器的飞行控制方法、装置、终端设备及飞行控制系统
TW201825354A (zh) 用於無人機和機器人的360度照相機架
WO2020042159A1 (zh) 一种云台的转动控制方法、装置及控制设备、移动平台
WO2020062356A1 (zh) 控制方法、控制装置、无人飞行器的控制终端
JP6921026B2 (ja) 送信機、飛行体、飛行制御指示方法、飛行制御方法、プログラム、及び記憶媒体
JP2019156127A (ja) 無人飛行装置
WO2023238631A1 (ja) 制御方法、ジンバル、飛翔体、ジンバル付き飛翔体及びプログラム
KR20240103248A (ko) 짐벌 자세 제어 시스템 및 방법
CN114706411A (zh) 无人机的伴飞方法、系统、终端设备及存储介质
CN111052020A (zh) 导航设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935725

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17935725

Country of ref document: EP

Kind code of ref document: A1