WO2019119266A1 - 一种散热结构、遥控设备、无人机套装 - Google Patents

一种散热结构、遥控设备、无人机套装 Download PDF

Info

Publication number
WO2019119266A1
WO2019119266A1 PCT/CN2017/117161 CN2017117161W WO2019119266A1 WO 2019119266 A1 WO2019119266 A1 WO 2019119266A1 CN 2017117161 W CN2017117161 W CN 2017117161W WO 2019119266 A1 WO2019119266 A1 WO 2019119266A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat dissipation
air
heat sink
structure according
Prior art date
Application number
PCT/CN2017/117161
Other languages
English (en)
French (fr)
Inventor
李日照
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201780007041.5A priority Critical patent/CN108702855A/zh
Priority to PCT/CN2017/117161 priority patent/WO2019119266A1/zh
Publication of WO2019119266A1 publication Critical patent/WO2019119266A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • H05K7/20145Means for directing air flow, e.g. ducts, deflectors, plenum or guides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20336Heat pipes, e.g. wicks or capillary pumps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20409Outer radiating structures on heat dissipating housings, e.g. fins integrated with the housing

Definitions

  • the embodiments of the present application relate to the field of heat dissipation technologies, and in particular, to a heat dissipation structure, a remote control device, and a drone set.
  • the corresponding control can be performed by the remote control device corresponding thereto.
  • the remote control device is small in size, but the internal device is provided with a circuit board component correspondingly, and during the operation of the remote controller, the circuit board component will generate more heat, and the heat is not timely.
  • the small remote control device emits it, which not only affects the use of the remote control device, but also affects the service life of the remote control device.
  • drones have a wide range of research and applications in a variety of fields, such as military, film and television, agriculture, etc., and in different industries, the use of remote controls for the corresponding control of drones is very different.
  • the remote control device of the agricultural drone is relatively harsh, such as dusty and water vapor.
  • the remote control of the existing agricultural drone uses open heat dissipation, making dust and moisture easily pass through the open type.
  • the heat dissipation structure enters the circuit board component, thereby affecting the contact performance of the connector and easily causing corrosion of the circuit board by moisture.
  • the embodiment of the present application provides a heat dissipation structure, a remote control device, and a drone set for providing closed heat dissipation, and avoiding contact between the heat generating device such as dust and water vapor, so as to effectively reduce adverse effects such as dust and moisture on the heat generating device. .
  • the first aspect of the present application provides a heat dissipation structure, where the heat dissipation structure is disposed on a heat generating device, and the heat dissipation structure includes:
  • the first heat dissipating member and the second heat dissipating member cooperate to form a closed heat dissipating air passage having an air inlet and an air outlet;
  • a cooling fan is disposed in the cooling air duct, and the cooling fan is configured to discharge the inlet airflow of the air inlet to the air outlet in the heat dissipation air passage.
  • the second aspect of the present application provides a remote control device, which includes a housing and a heat generating device disposed in the housing, the remote control device further includes:
  • the heat dissipation structure is placed on the heat generating device
  • the air inlet hole and the air outlet hole are arranged on the housing, and the air inlet hole corresponds to the air inlet of the heat dissipation air passage of the heat dissipation structure, and the air outlet hole corresponds to the air outlet of the heat dissipation air passage of the heat dissipation structure.
  • a third aspect of the present application provides a drone set including an unmanned aerial vehicle body, and further comprising the remote control device provided by the second aspect.
  • the embodiments of the present application have the following advantages:
  • the embodiment of the present application provides a heat dissipation structure disposed on a heat generating device, and may include a first heat sink, a second heat sink, and a heat dissipation fan.
  • the first heat dissipating member and the second heat dissipating member can cooperate to form a closed heat dissipating air passage having an air inlet and an air outlet, and the heat dissipating fan can be disposed in the heat dissipating air passage, and the cooling fan can be used to insert the air inlet in the heat dissipating air passage.
  • the inlet airflow is discharged to the air outlet.
  • the heat when the heat generating device generates heat due to work, the heat may be transmitted to the heat dissipation structure, and the cooling air fan drives the inlet airflow of the air inlet port to flow in the heat dissipation air channel to make the inlet airflow Take away the corresponding heat and discharge it to the air outlet to achieve heat dissipation for the heat-generating device.
  • the heat dissipation air duct since the heat dissipation air duct is closed, in a special use environment, such as water vapor, dust, etc., will enter the heat dissipation air passage from the air inlet, and may be discharged from the air outlet of the heat dissipation air duct, thereby avoiding such as water vapor, dust and the like.
  • the contact of the heat generating device can prevent adverse effects such as moisture, dust, and the like on the heat generating device, and the protection of the heat generating device is enhanced.
  • FIG. 1 is a schematic structural view of a heat dissipation structure according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a remote control device according to an embodiment of the present application.
  • FIG. 3 is a schematic cross-sectional view of a remote control device according to an embodiment of the present application.
  • the embodiment of the present application provides a heat dissipation structure, a remote control device, and a drone set for providing closed heat dissipation, and avoiding contact between the heat generating device such as dust and water vapor, so as to effectively reduce adverse effects such as dust and moisture on the heat generating device. .
  • an embodiment of the heat dissipation structure in the embodiment of the present application includes:
  • the first heat dissipating member 1 and the second heat dissipating member 2 cooperate to form a closed heat dissipating air passage 6 having an air inlet 4 and an air outlet 5;
  • a heat dissipation fan 3 is disposed in the heat dissipation air duct 6 for discharging the inlet airflow of the air inlet 4 into the air outlet 5 in the heat dissipation air duct 6.
  • the heat dissipation structure may be disposed on the heat generating device 7 for dissipating heat from the heat generating device 7.
  • the heat dissipation structure may include a first heat dissipation member 1, a second heat dissipation member 2, and a heat dissipation fan 3.
  • the first heat dissipation member 1 and the second heat dissipation member 2 may form a closed heat dissipation air passage 6, that is, the heat dissipation air passage 6.
  • the other positions are closed structures, and the external inlet airflow will be discharged through the air inlet 4 to the heat dissipation air duct 6 and then to the air outlet 5, thereby effectively avoiding heat such as water vapor and dust.
  • the foreign matter of the device adversely affects contact with the heat generating device.
  • the heat dissipation fan 3 can be disposed in the heat dissipation air duct 6.
  • the inlet airflow entering from the air inlet 4 can be realized or accelerated.
  • the inlet gas stream can take away the corresponding heat generated by the heat generating device 7 during the flow.
  • the circuit board member is a support body of the electronic component, it is a carrier for electrical connection of the electronic component, and plays a very important function, and is an electronic device during the operation of the electronic device.
  • the main heating element, whereby the heat generating device 7 in this embodiment can be a circuit board.
  • the heat generating device 7 can be other types of devices in addition to the circuit board shown in the figure, that is, the heat dissipation structure in this embodiment can be applied to different types.
  • the heat generating device realizes heat dissipation for different heat generating devices, and is not specifically limited herein.
  • the surface of the heat generating device 7 may be provided with a shield cover, which may be made of a material such as copper.
  • the heat can be conducted to the heat dissipation structure, and the flow of the inlet airflow of the air inlet 4 in the heat dissipation air passage 6 is driven by the heat dissipation fan 3 by rotation. So that the inlet airflow takes the corresponding heat and discharges it to the air outlet 5, so as to achieve heat dissipation for the heat generating device 7.
  • the heat dissipation air duct 6 since the heat dissipation air duct 6 is closed, in a special use environment, such as water vapor, dust, etc., will enter the heat dissipation air duct 6 from the air inlet 4, and may be discharged from the air outlet 5 of the heat dissipation air duct 6, thereby avoiding Contact such as moisture, dust, and heat generating means 7 is prevented, so that adverse effects such as moisture, dust, and the like on the heat generating device 7 can be prevented, and the protection of the heat generating device 7 is enhanced.
  • a special use environment such as water vapor, dust, etc.
  • FIG. 1 and FIG. 2 another embodiment of the heat dissipation structure in the embodiment of the present application includes:
  • the second heat sink 2 includes a sidewall structure 8 , and the first heat sink 2 is disposed on the sidewall structure 8 ;
  • the cooling fan 3 is located inside the side wall structure 8.
  • the second heat dissipating member 2 may include a side wall structure 8 which may be disposed on the side of the second heat dissipating member 2 except the air outlet 5 corresponding to the heat dissipating air duct 6.
  • the first heat dissipating member 1 is equivalent to the cover structure of the second heat dissipating member 2, so that when the first heat dissipating member 1 is disposed on the side wall structure 8 of the second heat dissipating member 2, the air inlet 4 is used for The wind and the air outlet 5 are used for the air outlet, and the closed heat dissipation passage 6 can be formed through the cooperation of the first heat sink 1 and the second heat sink 2. Therefore, the heat dissipation fan 3 can be located inside the sidewall structure 8 of the second heat sink 2 to effectively avoid the dispersion of the wind energy of the heat dissipation fan 3 and enhance the heat dissipation effect on the heat generating device 7.
  • the configuration of the closed heat dissipating air duct 6 is not limited to the following.
  • the second heat dissipating member 2 may be equivalent to the bottom structure of the first heat dissipating member 1.
  • the first heat dissipating member 1 may be provided with corresponding side walls on the side wall of the air outlet 5 corresponding to the heat dissipating air passage 6.
  • the two heat dissipating members 2 cooperate to form a closed heat dissipating air passage 6;
  • a corresponding side wall may be disposed through the side of the first heat dissipating member 1.
  • the wall and the side wall of the second heat sink 2 cooperate to form a closed heat dissipation air duct 6;
  • the first heat dissipating member 1 or the second heat dissipating member 2 may be a duct structure provided with the air outlet 5 .
  • the first heat dissipating member 1 or the second heat dissipating member 2 may be a cover plate provided with the air inlet 4 .
  • the structure, through the cooperation of the cover structure and the air duct structure, can form a closed heat dissipation air duct 6.
  • the first heat sink 1 may be provided with a third mounting portion 9, and the second heat sink 2 may be provided with a fourth mating with the third mounting portion 9.
  • the mounting portion 10, the third mounting portion 9 and the fourth mounting portion 10 can be used to fix the first heat sink 1 on the second heat sink 2.
  • the third mounting portion 9 may be a through hole structure
  • the fourth mounting portion 10 may be a screw hole structure. Thereby, the screw is passed through the third mounting portion 9 and screwed to the fourth mounting portion 10, so that the fixed connection of the first heat sink 1 and the second heat sink 2 can be achieved.
  • connection manners of the first heat dissipating component 1 and the second heat dissipating component 2 are in addition to the above descriptions, and in practical applications, other methods, such as a snap connection, a slider connection, and the like, may be adopted.
  • the adhesive connection or the like may be connected by an intermediate member, and the intermediate member may serve as a transition piece of the first heat sink 1 and the second heat sink 2, and the intermediate member may be a separately provided intermediate member, or may be The sub-components of the first heat dissipating component 1 or the second heat dissipating component 2, and accordingly, the third mounting portion 9 and the fourth mounting portion 10 may not be designed, or may be adjusted correspondingly according to different connection modes. , there is no specific limit here.
  • the air inlet 4 can be disposed on the first heat sink 1, and the air inlet 4 can be disposed corresponding to the airflow inlet 11 of the heat dissipation fan 3, that is, the outside entrance entering from the air inlet 4.
  • the air flow can directly enter the airflow inlet 11 of the cooling fan 3.
  • the inlet airflow can flow from the air outlet 12 of the heat radiating fan 3 to the air outlet 5 in the heat radiating duct 6 under the operation of the heat radiating fan 3.
  • the dispersion of the inlet airflow can be ensured, and the air outlet 5 of the heat dissipation air duct 6 can be discharged to the maximum extent.
  • the side wall structure 8 of the second heat dissipating member 2 may have a corresponding open end and a closed end, and the open end corresponds to the air outlet 5, and the closed end corresponds to the heat dissipation air duct 6 due to the design of the air outlet 5 of the heat dissipating air duct 6. The other end.
  • the heat dissipation fan 3 may be located at the closed end of the side wall structure 8, that is, a port of the heat dissipation air duct 6 may be provided with an air outlet.
  • the other port may be provided with an air inlet 4 (an adjacent surface on one side of the heat dissipation air duct 6), and at the same time, the inlet airflow can be made from the heat dissipation air passage.
  • One end of 6 flows to the other end, which increases the flow length of the inlet airflow, increases the contact area between the inlet airflow and the heat dissipation structure, and is beneficial to increase the heat dissipation effect.
  • the airflow inlet 11 of the heat dissipation fan 3 may have a size no larger than the size of the air inlet 4, so that the air inlet 4 can have more inlet airflow to enter the airflow inlet 11 of the heat dissipation fan 3, and is effective. Use the inlet airflow.
  • the second heat sink 2 when the air inlet 4 is disposed on the first heat sink 1, the second heat sink 2 will serve as a heat collecting body and a heat conducting body of the heat generating device 7, in order to optimize heat transfer and heat dissipation.
  • the bottom of the second heat dissipating member 2 can be completely adhered to the heat generating device 7, so that after the second heat dissipating member 2 absorbs the heat of the heat generating device 7, the heat dissipating fan 3 can be used to transmit the airflow and carry away the second heat dissipating member 2. The heat is transferred to the second heat sink 2, and the cycle is repeated, thereby achieving heat dissipation to the heat generating device 7.
  • FIG. 1 and FIG. 2 another embodiment of the heat dissipation structure in the embodiment of the present application includes:
  • the first heat sink 1 is provided with a first mounting portion 13
  • the second heat sink 2 is provided with a second mounting portion 14 that cooperates with the first mounting portion 13 .
  • the first mounting portion 13 and the second mounting portion 14 are used for heat dissipation. Preset devices are assembled in the duct 6.
  • a preset device may be installed in the heat dissipation structure to fully utilize the receiving cavity of the heat dissipation air duct 6.
  • the first heat sink 1 may be provided with a first mounting portion 13
  • the second heat sink 2 may be provided with a second mounting portion 14 for engaging the first mounting portion 13 .
  • the preset device is disposed in the heat dissipation air duct 6 .
  • the preset device can be fixed by the cooperation of the first mounting portion 13 and the second mounting portion 14.
  • the second mounting portion 14 can be disposed inside the second heat sink 2, and the preset device can be connected to the second mounting portion 14 first, and then when the first heat sink 1 and the second heat sink 2 are connected.
  • the first mounting portion 13 and the second mounting portion 14 may be fixed to achieve fixation of the preset device within the heat dissipation air duct 6.
  • the first mounting portion 13 may be a through hole structure
  • the second mounting portion 14 may be a screw hole structure. Thereby, the screw is passed through the first mounting portion 13 and screwed to the second mounting portion 14, so that the fixed mounting of the predetermined device can be achieved.
  • the installation of the preset device in the heat dissipation air duct 6 is in addition to the above description.
  • other methods may also be used, such as using buckle assembly, using a slider assembly, and utilizing The adhesive is bonded or the like, and accordingly, the first mounting portion 13 and the second mounting portion 14 may not be designed, and may be adjusted according to different mounting manners, which is not specifically limited herein.
  • the first heat sink 1 may be provided with an opening structure 15 , which may be used for connecting a signal between the preset device and the external device, such as when the heat generating device 7 is a circuit board component.
  • the device can be electrically connected to the circuit board member through the opening structure 15.
  • the opening structure 15 can be closed, such as being sealed with a waterproof glue, to maintain the closed structure of the heat dissipation air duct 6 except for the air inlet 4 and the air outlet 5. And preventing the heat dissipation effect caused by the dispersion of the airflow in the heat dissipation air passage 6, or the contact with the heat generating device 7 such as dust, moisture, or the like, adversely affecting the heat generating device 7.
  • the first heat sink 1 may further include a first heat conductor, and the first heat conductor may be located on a side of the first heat sink 1 facing the heat generating region of the preset device. That is, when the preset device is in operation, heat may also be generated.
  • the heat generating region of the preset device may face the first heat sink 1 to pass the first heat conductor on the first heat sink 1
  • the heat transfer of the preset device is performed, and the airflow driven by the heat dissipation fan 3 realizes heat dissipation of the preset device, thereby effectively utilizing the accommodating cavity of the heat dissipation air duct 6, and fully utilizing the heat dissipation resource of the heat dissipation fan 3. Double heat dissipation to the heat generating device 7 and the preset device is achieved.
  • the first thermal conductor has various forms, as follows:
  • the first heat conductor may be an independent heat conductive sheet structure, and the upper surface of the first heat conductor may be attached to the side of the heat radiating region of the first heat sink 1 facing the preset device, and the lower surface may be attached to the preset device.
  • the heat generating zone is configured to conduct heat generated by the preset device to the first heat sink 1.
  • the first heat conductor may be one, the first heat conductor may be covered with the entire surface of the heating element of the preset device, or may only be covered with the surface of the heat generating area of the preset device or the surface of the main heat generating area;
  • the plurality of first heat conductors may also be multiple to facilitate heat conduction to each of the heat generating regions of the preset device, which is not specifically limited herein.
  • the shape, the size of the bonding area, and the height of the first heat conductor may be matched with the heat generating area or the main heat generating area of the preset device, or other designs may be performed according to actual needs. No specific restrictions.
  • the thermally conductive sheet structure may include, but is not limited to, a metal thermal conductive sheet, such as a metal thermal conductive sheet such as an aluminum alloy or copper, or a silicone thermal conductive sheet.
  • the first heat conductor can also be a separate heat conduction structure, but the first heat conductor can be a first heat pipe, one end of the first heat pipe can be in contact with the side of the first heat sink 1 facing the heat generating zone of the preset device, The other end can be in contact with the heating zone of the preset device.
  • One end of the first heat pipe is an evaporation end, and the other end is a condensation end.
  • the liquid in the first heat pipe evaporates rapidly, and the steam flows to the condensation under a slight pressure difference. End, and release heat, re-condense into a liquid, and the liquid flows back to the evaporation end along the porous material by capillary action, so that the circulation is not limited, so that the heat of the preset device is transmitted from the evaporation end of the first heat pipe to the condensation end. Then to the first heat sink 1.
  • the first heat conductor may not be an independent heat conducting structure, and the first heat conductor may be a first protruding structure of the first heat sink 1 facing a side of the heat generating region of the preset device, and the first protruding structure may be The heating zone of the preset device is adapted.
  • the first heat conductor is integrally formed with the first heat sink 1 , and the material of the first heat conductor may be the same as the material of the first heat sink 1 , and the number of the first heat conductors is matched to the heat generating area of the preset device.
  • the shape, the size and the height can be matched with the heating zone of the preset device.
  • the first form and the second form have greater flexibility, that is, the first heat sink 1 can be adapted to a plurality of preset devices under the adjustment of the first heat conductor.
  • Three forms simplify the assembly process and are highly efficient to install.
  • the non-contact surface of the first heat dissipating member 1 and the heat generating portion of the preset device may be provided with a first protective film to enable the first protection.
  • the film can prevent oxidation or corrosion of the non-contact surface of the first heat sink 1 and the preset device, and the heat transfer can be achieved by the contact surface of the first heat sink 1 and the heat generating portion of the preset device.
  • the first heat sink 1 may be passivated or may be first.
  • the heat dissipating component 1 is subjected to a fuel injection process, so that a surface of the first heat dissipating component 1 is provided with a first protective film, and then the contact surface of the first heat dissipating component 1 and the heating region of the preset device can be subjected to a deprotective film treatment.
  • the non-contact surface of the first heat sink 1 and the heat generating region of the preset device can obtain protection of the first protective film such as oxidation resistance, corrosion resistance and the like.
  • a thermally conductive material may be provided, which may include, but is not limited to, a thermal paste or a thermally conductive silicone sheet or the like.
  • the space design or the refined design of the electronic device where the heat dissipation structure is located can be appropriately adjusted, and the shape and size of the heat dissipation structure can be adjusted correspondingly to achieve heat dissipation of the heat generating device.
  • the accommodation of the preset device in the heat dissipation air duct 6 can be realized.
  • the side of the first heat dissipating member 1 facing the heat dissipating air passage 6 may be provided with a groove structure adapted to the preset device, and when the preset device is placed inside the second heat dissipating member 2, if the connection is first The heat dissipating member 1 and the second heat dissipating member 2, the preset device can be accommodated in the groove structure, so that the preset device is received in the heat dissipating air channel 6.
  • the first heat dissipating member 1 The external platform height of the position of the groove structure may be higher than other positions of the first heat sink 1 , so that the first heat sink 1 can perform corresponding structural adjustment on the corresponding position of the preset device, and at the same time, The heat dissipation effect of the heat dissipation air duct 6 is realized in an effective space.
  • the structural adjustments made in accordance with the size of the preset device in this embodiment are in addition to the above description. In practical applications, other structural designs may also be adopted, as long as the preset can be preset in the heat dissipation air duct 6. At the same time, the device can achieve better space design and heat dissipation effect, and is not specifically limited herein.
  • the preset device may be an RF device.
  • the opening structure 15 of the first heat dissipating member 1 may be three, and the two opening structures 15 at one end of the first heat dissipating member 1 may be used for the radio frequency device.
  • the other opening structure 15 at the other end can be used for the connection of the RF device to the circuit board member (i.e., the heat generating device 7).
  • the preset device may be other devices in practical applications, and may be set according to actual needs, and correspondingly, the opening structure of the first heat sink 1
  • the shape, size, and number can be adjusted, and are not specifically limited herein.
  • FIG. 1 and FIG. 2 another embodiment of the heat dissipation structure in the embodiment of the present application includes:
  • the second heat sink 2 includes a second heat conductor disposed on a side of the second heat sink 2 facing the heat generating portion of the heat generating device 7.
  • the second heat dissipating member 2 may further include a second heat conductor, and the second heat conductor may be located at a side of the second heat sink 2 facing the heat generating portion of the heat generating device 7. That is, when the heat generating device 7 generates heat due to the operation, the heat of the heat generating device 7 can be transmitted through the second heat conductor on the second heat sink 2, and the airflow driven by the heat radiating fan 3 can dissipate heat from the heat generating device 7.
  • the second thermal conductor has various forms, as follows:
  • the second heat conductor may be an independent heat conductive sheet structure, and the upper surface of the second heat conductor may be attached to the side surface of the heat generating portion of the heat radiating device 7 of the second heat dissipating member 2, and the lower surface may be attached to the heat generating device 7
  • the heat generating zone is configured to conduct heat generated by the heat generating device 7 to the second heat sink 2.
  • the second heat conductor can be one, the second heat conductor can cover the entire surface where the heat generating portion of the heat generating device 7 is located, or only the surface of the heat generating portion of the heat generating device 7 or the surface of the main heat generating portion; There may be a plurality of second heat conductors in order to perform heat conduction for each of the heat generating regions of the heat generating device 7, which is not specifically limited herein.
  • the shape, the size of the bonding area, and the height of the second heat conductor may be matched with the heat generating area or the main heat generating area of the heat generating device 7, and other designs may be performed according to actual needs. No specific restrictions.
  • the thermally conductive sheet structure may include, but is not limited to, a metal thermal conductive sheet, such as a metal thermal conductive sheet such as an aluminum alloy or copper, or a silicone thermal conductive sheet.
  • the second heat conductor may also be a separate heat conducting structure, but the second heat conductor may be a second heat pipe, and one end of the second heat pipe may be in contact with a side of the second heat sink 2 facing the heat generating portion of the heat generating device 7. The other end can be in contact with the heat generating portion of the heat generating device 7.
  • One end of the second heat pipe is an evaporation end, and the other end is a condensation end.
  • the liquid in the second heat pipe evaporates rapidly, and the steam flows to the condensation under a slight pressure difference. End, and release heat, re-condense into a liquid, and the liquid flows back to the evaporation end along the porous material by the capillary force, so that the circulation is not limited, so that the heat of the heat generating device 7 is transmitted from the evaporation end of the second heat pipe to the condensation end. Then to the second heat sink 2.
  • the second heat conductor may not be a separate heat conducting structure, and the second heat conductor may be a second protruding structure of the second heat sink 2 facing one side of the heat generating portion of the heat generating device 7, and the second protruding structure may be The heat generating region of the heat generating device 7 is adapted.
  • the second heat conductor and the second heat sink 2 are integrally formed, and the material of the second heat conductor can be the same as the material of the second heat sink 2, and the number of the second heat conductors is matched to the heat generating area of the heat generating device 2, The shape, the size and the height can be matched with the heat generating region of the heat generating device 7.
  • the mold suitable for the heat generating region of the heat generating device 2 can be prepared first, and the second mold can be used to prepare the second mold. The heat sink 2, thereby obtaining the second heat sink 2 having the second heat conductor.
  • the first form and the second form have greater flexibility, that is, the second heat sink 2 can be adapted to a plurality of heat generating devices 7 under the adjustment of the second heat conductor.
  • Three forms simplify the assembly process and are highly efficient to install.
  • the non-contact surface of the second heat dissipating member 2 and the heat generating portion of the heat generating device 7 may be provided with a second protective film to enable the second protection.
  • the film can prevent oxidation or corrosion of the non-contact surface of the second heat sink 2 and the heat generating device 7, and the contact surface of the second heat sink 2 and the heat generating portion of the heat generating device 7 can achieve heat transfer.
  • the second heat sink 2 may be passivated or second.
  • the heat dissipating member 2 is subjected to a fuel injection treatment, so that a surface of the second heat dissipating member 2 is provided with a second protective film, and then the contact surface of the second heat dissipating member 2 and the heat generating portion of the heat generating device 7 can be subjected to a deprotecting film treatment.
  • the non-contact surface of the second heat sink 2 and the heat generating portion of the heat generating device 7 can obtain protection of the second protective film such as oxidation resistance, corrosion resistance and the like.
  • a heat conducting material may be disposed between the bonding surface of the heat dissipating portion of the second heat dissipating member 2 and the heat generating device 7, and the heat conducting material may be Including but not limited to thermal paste or thermal silica gel sheet.
  • other components may be disposed on the heat generating device 7.
  • the heat generating device 7 is a circuit board member
  • the heat dissipation structure is reduced on the heat generating device 7 when the heat dissipating structure is placed on the heat generating device 7.
  • the gravity impact of the component, the side of the second heat sink 2 facing the heat generating component 7 may also be provided with a buffer structure, which may be used to provide a mitigating effect on the components on the heat generating device 7.
  • the material of the buffer structure may include, but is not limited to, a sponge.
  • FIG. 1 another embodiment of the heat dissipation structure in the embodiment of the present application includes:
  • a plurality of fins 16 are disposed in the heat dissipating air passage 6 to form a plurality of sub-heat dissipating air passages in the heat dissipating air passage 6.
  • the heat dissipation air duct 6 may be provided with a plurality of heat dissipation fins 16, which may be, for example, heat dissipation scales, and the plurality of heat dissipation fins 16 may be arranged at intervals in the heat dissipation air duct 6 to form a plurality of sub heat dissipation portions.
  • the air passage so that the airflow can flow out from the plurality of sub-heat dissipation air passages, increases the heat dissipation area, and is beneficial to improving the heat dissipation effect.
  • the airflow inlet 11 of the heat dissipation fan 3 corresponds to the air inlet 4 of the heat dissipation air duct 6, and the airflow outlet 12 may be disposed on the adjacent side wall of the surface where the airflow inlet 11 is located.
  • Each of the sheets 16 may extend through the air outlet 12 of the heat dissipation fan 3 to the air outlet 5 of the heat dissipation air duct 6, that is, the length of each of the heat dissipation fins 16 may extend from the air outlet 12 of the heat dissipation fan 3 to the air distribution duct 6. Air outlet. In order to maximize the heat sink effect of the heat sink 16 is increased.
  • the plurality of heat sinks 16 can have various design forms, as follows:
  • the plurality of fins 16 may be located at the bottom of the inner side of the second heat sink 2, and the height of the plurality of fins 16 may be equal to or smaller than the height of the heat dissipating duct 6.
  • a plurality of fins 16 may be disposed on the inner side of the second heat dissipating member 2, that is, the side facing the heat dissipating air passage 6.
  • the plurality of fins 16 may be arranged on the first heat dissipating member 2 at corresponding intervals to form a plurality of sub-heat dissipating air passages.
  • the height of the plurality of fins 16 may be equal to the height of the heat dissipating ducts 6, so that when the first fins 1 and the second fins 2 are connected, a closed sub-cooling duct may be formed;
  • the height of the plurality of fins 16 may also be smaller than the height of the heat dissipating ducts 6, so that when the first fins 1 and the second fins 2 are connected, the sub-heat dissipating ducts may be formed in the closed fins 6 .
  • the accommodation such as the preset device in the heat dissipation duct 6 can be realized without changing the height of the heat dissipation duct 6.
  • the heights of the plurality of heat sinks 16 can be uniform to be in the closed heat dissipation air passage.
  • the open sub-cooling air duct is formed in the 6th, or the heights of the plurality of fins 16 may be inconsistent, so that the closed sub-cooling can be formed in the closed heat dissipating air duct 6 with the cooperation of the preset device.
  • Wind tunnels are not specifically limited here.
  • the plurality of heat sinks 16 may be located on a side of the first heat sink 1 adjacent to the heat dissipation air duct 6, and the height of the plurality of heat sinks 6 may be equal to or smaller than the height of the heat dissipation air duct 6.
  • a plurality of fins 16 may be disposed on a side of the first heat dissipating member 1 facing the heat dissipating air passage 6,
  • the heat sinks 16 may be arranged at a corresponding interval on one side of the first heat sink 1 to form a plurality of sub-heat dissipating air passages.
  • the height of the plurality of fins 16 may be equal to the height of the heat dissipating ducts 6, so that when the first fins 1 and the second fins 2 are connected, a closed sub-cooling duct may be formed;
  • the height of the plurality of fins 16 may also be smaller than the height of the heat dissipating ducts 6, so that when the first fins 1 and the second fins 2 are connected, the sub-heat dissipating ducts may be formed in the closed fins 6 .
  • the accommodation such as the preset device in the heat dissipation duct 6 can be realized without changing the height of the heat dissipation duct 6.
  • the heights of the plurality of heat sinks 16 can be uniform to be in the closed heat dissipation air passage.
  • the open sub-cooling air duct is formed in the 6th, or the heights of the plurality of fins 16 may be inconsistent, so that the closed sub-cooling can be formed in the closed heat dissipating air duct 6 with the cooperation of the preset device.
  • Wind tunnels are not specifically limited here.
  • the first form when a preset device is disposed in the heat dissipation air duct 6, if the second heat sink 2 functions as a heat collector and a heat conductor of the heat generating device 7, the first form may be adopted. In order to avoid the adverse contact between the heat of the heat generating device 7 on the side of the second heat sink 2, such as support, the contact between the preset device and the second heat sink 2 may be prevented.
  • the form of the column raises the support height of the preset device within the heat dissipation duct 6.
  • the plurality of heat sinks 16 may include a first heat sink and a second heat sink.
  • the first heat sink may be located on a side of the first heat sink 1 adjacent to the heat dissipation air duct 6
  • the second heat sink may be located in the second heat sink 2 .
  • the inner bottom portion, the first heat sink and the second heat sink may be arranged according to a preset rule, and the heights of the first heat sink and the second heat sink may be less than or equal to the height of the heat dissipation air duct 6.
  • the plurality of fins 16 may include a first fin and a second fin.
  • the first heat sink is on the side of the first heat sink 1
  • the second heat sink is on the side of the second heat sink 2
  • the first heat sink and the second heat sink are on the first heat sink 1 and the second heat sink 2 .
  • a plurality of sub-heat dissipating air passages may be formed through corresponding arrangement according to preset rules.
  • the height of the first heat sink and the second heat sink may be less than or equal to the height of the heat dissipation air duct 6.
  • the height of the first heat sink may be the same as the height of the second heat sink, or may be different.
  • the height of the sheet and the height of each of the second fins may also be different.
  • the first heat sink and the second heat sink may form a closed sub-heat dissipation air passage by being engaged in the closed heat dissipation air duct 6.
  • the preset device when a preset device is disposed in the heat dissipation air duct 6, the preset device may be carried on the second heat sink to avoid the bonding contact between the preset device and the second heat sink 2.
  • first heat sink and the second heat sink may form a plurality of sub-heat dissipating air passages by being engaged, or may be arranged according to other preset rules, for example, the first heat sink and The second heat sinks may be staggered one by one, and a plurality of first heat sinks may be alternately arranged with a different number of second heat sinks, which are not specifically limited herein.
  • the design manner of the plurality of heat sinks 16 may be in other forms as long as the heat dissipation area can be increased and the heat dissipation effect can be improved. Make specific limits.
  • the first heat dissipation member 1 and/or the second heat dissipation member 2 may be made of, but not limited to, an aluminum alloy material to enhance the heat dissipation effect.
  • the embodiment of the present application further provides a remote control device, which is specifically described below:
  • an embodiment of the remote control device in the embodiment of the present application includes:
  • the heat dissipation structure is placed on the heat generating device 7;
  • the housing 17 is provided with an air inlet hole and an air outlet hole.
  • the air inlet hole corresponds to the air inlet 4 of the heat dissipation air duct 6 of the heat dissipation structure
  • the air outlet hole corresponds to the air outlet 5 of the heat dissipation air duct 6 of the heat dissipation structure.
  • the heat dissipation structure described in the foregoing embodiment may be applied to a remote control device, and the remote control device may include a housing 17, wherein the housing 17 serves as a protective housing, and the heat generating device 7 may be disposed inside, and the heat dissipation structure may be disposed at On the heating device 7, the casing 17 may further be provided with an air inlet hole and an air outlet hole, and the air inlet hole may correspond to the air inlet port 4 of the heat dissipation air passage 6 in the heat dissipation structure, and the air outlet hole may be disposed in the heat dissipation structure.
  • the outlet of the road 6 corresponds.
  • a wind direction diagram as shown in b of FIG. 3 the outside air can enter through the air inlet hole on the outer casing 17 of the remote control device, and enter the air inlet 4 of the heat dissipation air duct 6 in the heat dissipation structure by the air inlet hole.
  • the outside air can flow in the heat dissipating air duct 6 under the operation of the heat dissipating fan 3, and can remove the heat transferred from the heat generating device 7 during the flowing process, and then can carry the heat to the heat dissipating air duct 6
  • the tuyere 5 is discharged from the air outlet 5 to the outside of the air outlet of the casing 17 of the remote control device, and the cycle is repeated to complete the heat dissipation of the heat generating device 7.
  • the second heat dissipation member 2 may be provided with a fifth mounting portion 18, and the housing 17 may be provided with a sixth matching portion of the fifth mounting portion 18.
  • the mounting portion, the fifth mounting portion 18 and the sixth mounting portion may be used to mount the second heat sink 2 on the housing 17 to complete the fixed connection of the heat dissipation structure on the housing 17.
  • the fifth mounting portion 18 may be a through hole structure, and the sixth mounting portion may be a screw hole structure. Thereby, the screw is passed through the fifth mounting portion 18 and screwed to the sixth mounting portion to achieve a fixed connection of the housing 17 and the heat dissipation structure.
  • the intermediate member may be used for connection.
  • the intermediate member may serve as a transition piece for the housing 17 and the heat dissipation structure, and the intermediate member may be a separately provided intermediate member, or may be a housing 17 or a sub-assembly in the heat dissipation structure. Therefore, the fifth mounting portion 18 and the sixth mounting portion may not be designed, and may be adjusted according to different connection manners, which is not specifically limited herein.
  • the heat generating device 7 in this embodiment may be a circuit board member, because the circuit board member can be used as the main heating element of the remote control device during the operation of the remote control device.
  • the heat generating device 7 may be a circuit board member as shown in the figure. In practical applications, it may also be another heat generating device in the remote control device, that is, the heat dissipation structure in this embodiment. It can be applied to different heat-generating devices in the remote control device to realize heat dissipation of different heat-generating devices, and is not specifically limited herein.
  • the surface of the heat generating device 7 may be provided with a shield cover, which may be made of a material such as copper.
  • the housing 17 in the illustration is a mounting housing of the heat dissipation structure.
  • the remote control device may further include another housing adapted to the assembly housing. Forms the outer casing of the remote control device and acts as a corresponding outer casing.
  • the flow channel of the outside air is the air inlet of the remote control device, the air inlet of the heat dissipation air duct 6 in the heat dissipation structure, the air outlet of the heat dissipation air duct 6, the air outlet 5 of the heat dissipation air duct 6, and the air outlet of the remote control device.
  • a closed passage, such as water vapor, dust, etc., even entering the air intake hole of the casing 17, will fall into the heat dissipation air duct 6 from the air inlet hole to the air inlet port 4 of the heat dissipation air duct 6, and will not occur in the air passage.
  • the contact of the heat generating device 7 is advantageous in preventing adverse effects such as moisture, dust, and the like on the heat generating device 7, and is advantageous for protecting the heat generating device 7.
  • another embodiment of the remote control device in the embodiment of the present application includes:
  • the remote control device may further include an air inlet structure, and the air inlet structure may be configured to cooperate with the air inlet hole and the air inlet port 4 of the heat dissipation air duct 6 so that the air inlet hole of the air inlet hole flows from the air inlet structure to the air inlet port of the heat dissipation air duct 6. 4.
  • the heat dissipation structure may need to be adjusted accordingly, so in order to reduce the adaptive adjustment of the heat dissipation structure and improve the adaptability of the heat dissipation structure and different types of remote control devices, the remote control The device may include an air inlet structure, and the air inlet structure may be disposed between the air inlet hole of the housing 17 and the air inlet 4 of the heat dissipation air duct 6 to enter the heat dissipation air passage 6 from the air inlet hole of the housing 17 as outside air.
  • the air inlet structure and the closed position of the air inlet 4 of the heat dissipation air duct 6 may be provided with a sealing material to prevent the air inlet structure and the heat dissipation wind.
  • a gap occurs at the closed position of the air inlet 4 of the duct 6, causing such as water vapor, dust, and the like to fall on the heat generating device 7, thereby causing an adverse effect on the heat generating device 7.
  • the sealing material in this embodiment may include, but is not limited to, a foam or a silicone gasket.
  • the first filter screen may be disposed on the side of the air inlet structure close to the air inlet hole, and the first filter network may utilize, for example, The waterproof glue is fixed on the air intake structure and can be adapted to the air inlet hole in the housing 17 of the remote control device.
  • the material, the mesh size, the mesh density, and the like of the first filter in the embodiment may be correspondingly set and adjusted according to actual needs, and is not specifically limited herein.
  • another embodiment of the remote control device in the embodiment of the present application includes:
  • the remote control device may further include an air outlet structure, and the air inlet structure may be used to cooperate with the air outlet 5 and the air inlet hole of the heat dissipation air duct 6 so that the outlet airflow of the air outlet 5 of the heat dissipation air duct 6 flows from the air outlet structure to the air outlet hole. .
  • the remote control device may further include an air outlet structure, and the air outlet structure may be disposed in the housing. Between the air outlet hole of the air outlet 16 and the air outlet 5 of the heat dissipation air duct 6, the air inlet port 4 serving as the heat radiation air passage 6 is discharged to the air passage hole of the casing 17.
  • a second filter net may be disposed on the side of the air outlet structure near the air outlet hole, and the second filter network may utilize, for example, The waterproof glue is fixed on the air outlet structure and can be adapted to the air outlet hole on the housing 17 of the remote control device.
  • the material, the mesh size, the mesh density, and the like of the second filter in this embodiment may be correspondingly set and adjusted according to actual needs, and this is not specifically limited.
  • the remote control device may be provided with a corresponding control area, and the user may hold the remote control device and control the device corresponding to the remote control device by operating the control area on the remote control device.
  • the remote control since the heat dissipation air duct 6 is provided with the air inlet 4 of the heat dissipation fan 3, and the plane of the air inlet 4 and the air inlet hole of the housing 17 may be non-parallel, the remote control may be used.
  • the air inlet structure of the device may be a bent structure, and the air outlet 5 of the heat dissipation air duct 6 in the heat dissipation structure may be parallel to the plane where the air outlet hole on the housing 17 is located, and the heat dissipation air duct 6 in the heat dissipation structure is close to the air outlet 5
  • One end can be a bent structure. Therefore, not only the flexible design of the structure of the remote control device is facilitated, but more importantly, the air inlet hole and the air outlet hole on the housing 17 can be disposed in the handheld area of the remote control device remote from the user handheld remote control device, so as to be staggered.
  • the hand-held area of the body 17 is such that when the user performs corresponding operations on the remote control device, neither the air inlet hole and the air outlet hole are blocked due to the user holding the remote control device, nor is the heat generated at the air outlet hole
  • the discharge of the airflow affects the user's handheld experience.
  • the installation position of the heat dissipation structure in the remote control device can be staggered by the user to the handheld area of the remote control device to avoid the heat of the user at the installation position of the heat dissipation structure.
  • the remote control device in this embodiment may be a device for controlling a mobile platform, which may include, but is not limited to, an object moving on land, on water, or in the air.
  • the mobile platform may be an unmanned aerial vehicle to enhance the adaptability of the remote control device of the unmanned aerial vehicle to a harsh environment.
  • the embodiment of the present application further provides an unmanned aerial vehicle set, which may include an unmanned aerial vehicle body, and may further include the remote control device described above.
  • the remote control device can be used to control the movement of the unmanned aerial vehicle, and can be used to control the unmanned aerial vehicle to perform corresponding functions, and is applied to corresponding industries, such as aerial photography, surveying, surveying, and the like.
  • the remote control device can be used to control an unmanned aerial vehicle in the agricultural industry.
  • the unmanned aerial vehicle is mostly used for irrigation, pesticide spraying, etc., and the working environment is relatively dusty and multi-water vapor.
  • the heat dissipation air passage 6 in the heat dissipation structure of the remote control device will enter.

Abstract

一种散热结构、遥控设备、无人机套装,用于提供封闭式散热,避免诸如灰尘、水汽对发热器件的接触,以有效降低诸如灰尘、水汽对发热器件的不利影响。上述散热结构置于发热器件上,可包括:第一散热件(1)、第二散热件(2)、散热风扇(3);第一散热件(1)和第二散热件(2)配合形成具有进风口(4)和出风口(5)的封闭式的散热风道(6);散热风道(6)内设有散热风扇(3),散热风扇(3)用于在散热风道(6)内将进风口(4)的入口气流排出至出风口(5)。

Description

一种散热结构、遥控设备、无人机套装 技术领域
本申请实施例涉及散热技术领域,尤其涉及一种散热结构、遥控设备、无人机套装。
背景技术
随着电子技术的发展,电器的种类越来越多,使用范围也越来越广泛,并越来越便捷于人们的生活。为了方便电器的使用,可以通过与其相对应的遥控设备进行相应的控制。
一般来说,遥控设备的体积较小,但其内部设有相应地设有电路板件,且在遥控器的工作过程中,电路板件将会产生较多的热量,该热量如不及时从体积较小的遥控设备内散发出去,不仅会影响遥控设备的使用,也会影响遥控设备的使用寿命。
目前,无人机在多种领域中均有较为广泛的研究与应用,如军事、影视、农业等,而在不同行业中,对无人机进行相应操控的遥控器的使用环境大相径庭。其中,农用无人机的遥控器的使用环境相对而言较为恶劣,如多灰尘多水汽,然而,现有的农用无人机的遥控器多采用开放式散热,使得灰尘和水汽容易通过开放式散热结构进入电路板件,从而影响连接器的接触性能,且容易导致水汽对电路板件的腐蚀。
发明内容
本申请实施例提供了一种散热结构、遥控设备、无人机套装,用于提供封闭式散热,避免诸如灰尘、水汽对发热器件的接触,以有效降低诸如灰尘、水汽对发热器件的不利影响。
有鉴于此,本申请第一方面提供一种散热结构,该散热结构置于发热器件上,该散热结构包括:
第一散热件、第二散热件、散热风扇;
第一散热件和第二散热件配合形成具有进风口和出风口的封闭式的散热风道;
散热风道内设有散热风扇,散热风扇用于在散热风道内将进风口的入口气流排出至出风口。
本申请第二方面提供一种遥控设备,该遥控设备包括壳体和设于壳体内的发热器件,该遥控设备还包括:
上述第一方面提供的散热结构;
散热结构置于发热器件上;
壳体上设有进风孔和出风孔,进风孔与散热结构的散热风道的进风口相对应,出风孔与散热结构的散热风道的出风口相对应。
本申请第三方面提供一种无人机套装,该无人机套装包括无人飞行器本体,还包括上述第二方面提供的遥控设备。
从以上技术方案可以看出,本申请实施例具有以下优点:
本申请实施例提供了一种散热结构,该散热结构置于发热器件上,可以包括第一散热件、第二散热件和散热风扇。其中,第一散热件和第二散热件可以配合形成具有进风口和出风口的封闭式的散热风道,散热风扇则可以设于散热风道中,散热风扇可以用于在散热风道内将进风口的入口气流排出至出风口。
在上述散热结构的应用过程中,当发热器件由于工作产生热量时,该热量可以传导至散热结构上,并由散热风扇通过旋转带动进风口的入口气流在散热风道内的流动,以使得入口气流带走相应的热量并排出至出风口,达到对发热器件进行散热的目的。同时,由于散热风道为封闭式,则在特殊使用环境下,诸如水汽、灰尘等将从进风口进入散热风道内,并可能由散热风道的出风口排出,则避免了诸如水汽、灰尘与发热器件的接触,从而可以防止诸如水汽、灰尘等对发热器件的不利影响,加强了对发热器件的保护。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例中散热结构的结构示意图;
图2为本申请实施例中遥控设备的结构示意图;
图3为本申请实施例中遥控设备的截面示意图;
具体实施方式
本申请实施例提供了一种散热结构、遥控设备、无人机套装,用于提供封闭式散热,避免诸如灰尘、水汽对发热器件的接触,以有效降低诸如灰尘、水汽对发热器件的不利影响。
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
为便于理解,下面对本发明实施例中的具体结构进行描述,请参阅图1、图2,本申请实施例中散热结构一个实施例包括:
第一散热件1、第二散热件2、散热风扇3;
第一散热件1和第二散热件2配合形成具有进风口4和出风口5的封闭式的散热风道6;
散热风道6内设有散热风扇3,散热风扇3用于在散热风道6内将进风口4的入口气流排出至出风口5。
具体的,散热结构可以置于发热器件7上,用于对发热器件7进行散热。该散热结构可以包括第一散热件1、第二散热件2和散热风扇3,其中,第一 散热件1和第二散热件2可以形成一个封闭式的散热风道6,即散热风道6除了进风口4和出风口5,其它位置为封闭结构,外界的入口气流将经由进风口4至散热风道6再至出风口5这一通道排出,从而可以有效避免诸如水汽、灰尘等对发热器件产生不利影响的外来物与发热器件的接触。
其中,为了保障散热风道6的封闭性以及良好的散热效果,散热风扇3可以设于散热风道6内,散热风扇3工作时,可以实现或加速从进风口4进入的入口气流在散热风道6内的流动,入口气流在流动过程中则可以带走发热器件7产生的相应热量。
其中,在电子设备的部件中,由于电路板件是电子元器件的支撑体,是电子元器件电气连接的载体,承担着十分重要的功能作用,且在电子设备的运行过程中,为电子设备的主要发热元件,由此,本实施例中的发热器件7可以为电路板件。
需要说明的是,本实施例中,发热器件7除了可以为图例所示的电路板件外,在实际应用中,也可以为其它类型的器件,即本实施例中的散热结构可以适用于不同发热器件,实现对不同发热器件的散热,此处不做具体限定。
可以理解的是,当发热器件7为电路板件时,发热器件7的表面可以设有屏蔽罩,该屏蔽罩可以为诸如铜材质。
在上述散热结构的应用过程中,当发热器件7由于工作产生热量时,该热量可以传导至散热结构上,并由散热风扇3通过旋转带动进风口4的入口气流在散热风道6内的流动,以使得入口气流带走相应的热量并排出至出风口5,达到对发热器件7进行散热的目的。同时,由于散热风道6为封闭式,则在特殊使用环境下,诸如水汽、灰尘等将从进风口4进入散热风道6内,并可能由散热风道6的出风口5排出,则避免了诸如水汽、灰尘与发热器件7的接触,从而可以防止诸如水汽、灰尘等对发热器件7的不利影响,加强了对发热器件7的保护。
在上述实施例的基础上,请参阅图1、图2,本申请实施例中散热结构另一实施例包括:
第二散热件2包括侧壁结构8,第一散热件2设于侧壁结构8上;
散热风扇3位于侧壁结构8的内侧。
具体的,为了实现散热风道6的封闭式,第二散热件2可以包括侧壁结构 8,该侧壁结构8可以设于第二散热件2除对应散热风道6的出风口5的侧边上,第一散热件1则相当于第二散热件2的盖板结构,从而在第一散热件1设于第二散热件2的侧壁结构8上时,除了进风口4用于进风和出风口5用于出风之外,经过第一散热件1和第二散热件2的配合,可以形成封闭式的散热通道6。由此,散热风扇3可以位于第二散热件2的侧壁结构8的内侧,以有效避免散热风扇3的风能的分散,加强对发热器件7的散热效果。
可以理解的是,本实施例中,封闭式的散热风道6的形成除了采用上述说明的结构,在实际应用中,还可以采用如下其它结构,此处不做具体限定:
例如,第二散热件2可以相当于第一散热件1的底部结构,第一散热件1除对应散热风道6的出风口5的侧壁上则可以设有相应的侧壁,以与第二散热件2配合形成封闭式的散热风道6;
又例如,第一散热件1和第二散热件2的侧边上,除对应散热风道6的出风口5的位置外,均可以设有相应的侧壁,通过第一散热件1的侧壁和第二散热件2的侧壁的配合,可以形成封闭式的散热风道6;
还例如,第一散热件1或第二散热件2可以为设有出风口5的风道结构,相应的,第一散热件1或第二散热件2可以为设有进风口4的盖板结构,通过该盖板结构与风道结构的配合,可以形成封闭式的散热风道6。
进一步的,为了固定连接第一散热件1和第二散热件2,第一散热1上可以设有第三安装部9,第二散热件2上可以设有配合第三安装部9的第四安装部10,第三安装部9和第四安装部10可以用于在第二散热件2上固定第一散热件1。
其中,第三安装部9可以为通孔结构,第四安装部10可以为螺孔结构。由此利用螺钉穿过第三安装部9,并与第四安装部10螺纹连接,可以达到第一散热件1和第二散热件2的固定连接。
需要说明的是,本实施例中,第一散热件1和第二散热件2的连接方式除了上述说明的内容,在实际应用中,还可以采用其它方式,如卡扣连接、滑扣连接、粘合剂连接等,又例如,可以采用中间部件来连接,中间部件可以作为第一散热件1和第二散热件2的过渡连接件,该中间部件可以为单独提供的中间部件,也可以为第一散热件1或第二散热件2中的子部件,由此,相应的,第三安装部9和第四安装部10可以不进行设计,也可以随不同的连接方式而 进行相应的调整,此处不做具体限定。
基于上述结构,本实施例中,可以在第一散热件1上设有进风口4,且该进风口4可以与散热风扇3的气流入口11对应设置,即从进风口4进入的外界的入口气流可以直接进入散热风扇3的气流入口11。由此,入口气流在散热风扇3的工作下,可以从散热风扇3的气流出口12在散热风道6内流动至出风口5。从而可以保证入口气流的分散,且可以最大限度地从散热风道6的出风口5排出。
其中,由于散热风道6的出风口5的设计,第二散热件2的侧壁结构8可以有相应的开口端与闭合端,开口端即对应出风口5,闭合端即对应散热风道6的另一端。为了增加进风口4的入口气流的流动速度,以带走更多发热器件7产生的热量,散热风扇3可以位于侧壁结构8的闭合端,即散热风道6的一端口可以设有出风口5(位于散热风道6的一侧面),另一端口可以设有进风口4(位于散热风道6的一侧面的相邻表面),同时,经过此设计,可以使得入口气流从散热风道6的一端流向另一端,加大了入口气流的流动长度,增加了入口气流与散热结构的接触面积,有利于增加散热效果。
进一步的,本实施例中,散热风扇3的气流入口11的尺寸可以不大于进风口4的尺寸,以使得进风口4可以有较多的入口气流可以进入散热风扇3的气流入口11,并有效利用入口气流。
需要说明的是,本实施例中,当第一散热件1上设有进风口4时,第二散热件2将作为发热器件7的热量收集体与热量传导体,为了优化热量传递以及散热效果,第二散热件2的底部可以完全与发热器件7贴合,以使得第二散热件2吸收发热器件7的热量后,可以利用散热风扇3对气流的传输而带走第二散热件2传导的热量,并达到对第二散热件2的冷却,如此反复循环,从而实现对发热器件7的散热。
在上述实施例的基础上,请参阅图1、图2,本申请实施例中散热结构另一实施例包括:
第一散热件1上设有第一安装部13,第二散热件2上设有配合第一安装部13的第二安装部14,第一安装部13与第二安装部14用于在散热风道6内装配预设器件。
具体的,在散热结构安装于应用的电子设备时,为了充分利用电子设备部 的装配空间,散热结构中还可以安装有预设器件,以充分利用散热风道6的容纳空腔。其中,第一散热件1上可以设有第一安装部13,第二散热件2上则可以设有配合第一安装部13的第二安装部14,预设器件设于散热风道6内时,可以通过第一安装部13和第二安装部14的配合对预设器件进行固定。
在实际应用中,第二安装部14可以设于第二散热件2的内部,预设器件可以先与第二安装部14连接,而后在第一散热件1与第二散热件2连接时,可以固定第一安装部13和第二安装部14,从而实现预设器件在散热风道6内的固定。
其中,第一安装部13可以为通孔结构,第二安装部14可以为螺孔结构。由此利用螺钉穿过第一安装部13,并与第二安装部14螺纹连接,可以达到预设器件的固定安装。
需要说明的是,本实施例中,预设器件在散热风道6内的安装除了上述说明的内容,在实际应用中,还可以采用其它方式,如利用卡扣装配、利用滑扣装配、利用粘合剂粘合等,由此,相应的,第一安装部13和第二安装部14可以不进行设计,也可以随不同的安装方式而进行相应的调整,此处不做具体限定。
进一步的,本实施例中,第一散热件1上可以设有开口结构15,该开口结构15可以用于预设器件与外部的信号连接,如当发热器件7为电路板件时,预设器件通过开口结构15可以与电路板件电连接。在实际应用中,实现预设器件与外部的信号连接后,该开口结构15可以进行封闭处理,如用防水胶进行封闭,以保持散热风道6除进风口4、出风口5的封闭式结构,并防止散热风道6内气流的分散而造成的散热效果不佳,或诸如灰尘、水汽等与发热器件7的接触而对发热器件7的不利影响。
更进一步的,本实施例中,第一散热件1还可以包括第一导热体,该第一导热体可以位于第一散热件1面向预设器件的发热区的一侧。即预设器件在工作时,也可以产生热量,为了辅助达到对预设器件的散热,预设器件的发热区可以面向第一散热件1,以通过第一散热件1上的第一导热体进行预设器件的热量的传递,并由散热风扇3带动的气流实现对预设器件的散热,从而不仅有效利用了散热风道6的容纳空腔,也充分利用了散热风扇3的散热资源,达到对发热器件7与预设器件的双重散热。
其中,第一导热体有多种形式,具体如下:
1、第一导热体可以为独立的导热片状结构,该第一导热体的上表面可以贴合第一散热件1面向预设器件的发热区的侧面,下表面则可以贴合预设器件的发热区,以将预设器件产生的热量传导至第一散热件1上。
可以理解的是,第一导热体可以为一个,该第一导热体可以布满预设器件的发热区所在的整个表面,也可以只布满预设器件的发热区表面或主发热区表面;第一导热体也可以为多个,以便于对预设器件的各个发热区分别进行热传导,此处不做具体限定。
需要说明的是,本实施例中,第一导热体的形状、贴合面积大小、高度可以与预设器件的发热区或主发热区相适配,也可以根据实际需要进行其它设计,此处不做具体限定。
其中,导热片状结构可以包括但不限于金属导热片,如铝合金或铜等金属导热片,又如硅胶导热片。
2、第一导热体也可为独立的导热结构,但第一导热体可以为第一热管,该第一热管的一端可以与第一散热件1面向预设器件的发热区的一侧接触,另一端则可以与预设器件的发热区接触。
该第一热管的一端为蒸发端,另外一端为冷凝端,当第一热管的蒸发端由于预设器件产生热量受热时,第一热管中的液体迅速蒸发,蒸汽在微小的压力差下流向冷凝端,并且释放出热量,重新凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发端,如此循环不止,从而将预设器件的热量由第一热管的蒸发端传至冷凝端,再至第一散热件1上。
3、第一导热体可以不为独立的导热结构,第一导热体可以为第一散热件1面向预设器件的发热区的一侧的第一凸起结构,该第一凸起结构可以与预设器件的发热区相适配。
该第一导热体与第一散热件1为一体成型得到,第一导热体的材质可以与第一散热件1的材质相同,为了配合预设器件的发热区,第一导热体的个数、形状、尺寸、高度可以与预设器件的发热区相适配,则在制备第一散热件1时,可以先行制备与预设器件的发热区相适配的模具,并利用该模具制备第一散热件1,由此得到具有第一导热体的第一散热件1。
从上述三种形式可以看出,第一种形式、第二种形式具有较大的灵活性, 即第一散热件1在第一导热体的调整下,可以适配多种预设器件,第三种形式则可以简化装配流程,安装效率高。
进一步的,在上述三种形式中,为了提高第一散热件1的使用寿命,第一散热件1与预设器件的发热区的非接触面可以设有第一保护膜,以使得第一保护膜可以防止第一散热件1与预设器件的非接触面的氧化或腐蚀等,且第一散热件1与预设器件的发热区的接触面可以实现热量传递。
例如,假设第一散热件1的第一导热体与第一散热件1为一体成型,那么在制备第一散热件1后,可以对第一散热件1进行钝化处理,也可以在第一散热件1上进行喷油处理,使得第一散热件1的表面设有一层第一保护膜,而后则可以对第一散热件1与预设器件的发热区的接触面进行去保护膜处理,从而第一散热件1与预设器件的发热区的非接触面可以得到第一保护膜的诸如抗氧化、抗腐蚀等保护。
其中,由于预设器件也有可能产生热量,那么为了加强第一散热件1对预设器件的热传递,本实施例中,第一散热件1与预设器件的发热区的贴合面之间可以设有导热材料,该导热材料可以包括但不限于导热膏或导热硅胶片等。
可以理解的是,本实施例中,第一导热体除了上述说明的内容,在实际应用中,还可以采用其它形式或其它材质等其它设计,只要能够优化第一散热件1的热传递即可,此处不做具体限定。
本实施例中,为了减小散热结构的尺寸,以合理设计散热结构所在电子设备的空间设计或精细化设计,可以对散热结构的形状以及尺寸进行相应的调整,以实现对发热器件散热的同时,可以实现在散热风道6内对预设器件的容纳。其中,第一散热件1面向散热风道6的一侧上可以设有与预设器件相适配的凹槽结构,当预设器件置于第二散热件2的内部时,若连接第一散热件1与第二散热件2,预设器件可以容置于上述凹槽结构中,从而实现在散热风道6内容纳该预设器件,从图中可以看出,第一散热件1对应该凹槽结构的位置的外在平台高度可以高于第一散热件1的其它位置,由此第一散热件1可以对预设器件的对应位置处进行相应的结构调整即可,同时可以在有效的空间内实现散热风道6的散热效果。
可以理解的是,本实施例中为了配合预设器件的尺寸而做的结构调整除了上述说明的内容,在实际应用中,还可以采用其它结构设计,只要能够在散热 风道6内容纳预设器件的同时,达到较好的空间设计以及散热效果即可,此处不做具体限定。
本实施例中,基于散热结构所属的电子设备的应用,该预设器件可以为射频器。基于射频器的用途,当射频器设于散热风道6内时,第一散热件1上的开口结构15可以为3个,其中第一散热件1一端的2个开口结构15可以为射频器用于天线连接,另一端的另一开口结构15则可以用于射频器与电路板件(即发热器件7)的连接。
需要说明的是,本实施例中,预设器件除了上述说明的射频器,在实际应用中还可以为其它器件,可以根据实际需要进行设置,相应的,第一散热件1上的开口结构的形状、尺寸、个数可以进行调整,此处不做具体限定。
在上述实施例的基础上,请参阅图1、图2,本申请实施例中散热结构另一实施例包括:
第二散热件2包括第二导热体,第二导热体设于第二散热件2面向发热器件7的发热区的一侧。
具体的,第二散热件2还可以包括第二导热体,该第二导热体可以位于第二散热件2面向发热器件7的发热区的一侧。即在发热器件7由于工作产生热量时,可以通过第二散热件2上的第二导热体进行发热器件7的热量的传递,并由散热风扇3带动的气流实现对发热器件7的散热。
其中,第二导热体有多种形式,具体如下:
1、第二导热体可以为独立的导热片状结构,该第二导热体的上表面可以贴合第二散热件2面向发热器件7的发热区的侧面,下表面则可以贴合发热器件7的发热区,以将发热器件7产生的热量传导至第二散热件2上。
可以理解的是,第二导热体可以为一个,该第二导热体可以布满发热器件7的发热区所在的整个表面,也可以只布满发热器件7的发热区表面或主发热区表面;第二导热体也可以为多个,以便于对发热器件7的各个发热区分别进行热传导,此处不做具体限定。
需要说明的是,本实施例中,第二导热体的形状、贴合面积大小、高度可以与发热器件7的发热区或主发热区相适配,也可以根据实际需要进行其它设计,此处不做具体限定。
其中,导热片状结构可以包括但不限于金属导热片,如铝合金或铜等金属 导热片,又如硅胶导热片。
2、第二导热体也可为独立的导热结构,但第二导热体可以为第二热管,该第二热管的一端可以与第二散热件2面向发热器件7的发热区的一侧接触,另一端则可以与发热器件7的发热区接触。
该第二热管的一端为蒸发端,另外一端为冷凝端,当第二热管的蒸发端由于发热器件7产生热量受热时,第二热管中的液体迅速蒸发,蒸汽在微小的压力差下流向冷凝端,并且释放出热量,重新凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发端,如此循环不止,从而将发热器件7的热量由第二热管的蒸发端传至冷凝端,再至第二散热件2上。
3、第二导热体可以不为独立的导热结构,第二导热体可以为第二散热件2面向发热器件7的发热区的一侧的第二凸起结构,该第二凸起结构可以与发热器件7的发热区相适配。
该第二导热体与第二散热件2为一体成型得到,第二导热体的材质可以与第二散热件2的材质相同,为了配合发热器件2的发热区,第二导热体的个数、形状、尺寸、高度可以与发热器件7的发热区相适配,则在制备第二散热件2时,可以先行制备与发热器件2的发热区相适配的模具,并利用该模具制备第二散热件2,由此得到具有第二导热体的第二散热件2。
从上述三种形式可以看出,第一种形式、第二种形式具有较大的灵活性,即第二散热件2在第二导热体的调整下,可以适配多种发热器件7,第三种形式则可以简化装配流程,安装效率高。
进一步的,在上述三种形式中,为了提高第二散热件2的使用寿命,第二散热件2与发热器件7的发热区的非接触面可以设有第二保护膜,以使得第二保护膜可以防止第二散热件2与发热器件7的非接触面的氧化或腐蚀等,且第二散热件2与发热器件7的发热区的接触面可以实现热量传递。
例如,假设第二散热件2的第二导热体与第二散热件2为一体成型,那么在制备第二散热件2后,可以对第二散热件2进行钝化处理,也可以在第二散热件2上进行喷油处理,使得第二散热件2的表面设有一层第二保护膜,而后则可以对第二散热件2与发热器件7的发热区的接触面进行去保护膜处理,从而第二散热件2与发热器件7的发热区的非接触面可以得到第二保护膜的诸如抗氧化、抗腐蚀等保护。
其中,为了加强第二散热件2对发热器件7的热传递,本实施例中,第二散热件2与发热器件7的发热区的贴合面之间可以设有导热材料,该导热材料可以包括但不限于导热膏或导热硅胶片等。
可以理解的是,本实施例中,第二导热体除了上述说明的内容,在实际应用中,还可以采用其它形式或其它材质等其它设计,只要能够优化第二散热件2的热传递即可,此处不做具体限定。
进一步的,本实施例中,发热器件7上可能设置有其它元器件,例如,发热器件7为电路板件时,为了在散热结构置于发热器件7上时,减少散热结构对发热器件7上的元器件的重力冲击作用,第二散热件2面向发热器件7的一侧还可以设有缓冲结构,该缓冲结构可以用于给发热器件7上的元器件提供减缓作用。其中,该缓冲结构的材质可以包括但不限于海绵。
在上述实施例的基础上,请参阅图1,本申请实施例中散热结构另一实施例包括:
散热风道6内设有多个散热片16,以在散热风道6内形成多个子散热风道。
具体的,散热风道6可以设有多个散热片16,该多个散热片16可以为诸如散热鳞片,多个散热片16可以以间隔地排列在散热风道6中,以形成多个子散热风道,从而气流可以从多个子散热风道中流出,加大了散热面积,有利于提高散热效果。
本实施例中,散热风扇3的气流入口11与散热风道6的进风口4对应,该气流入口11所在的表面的相邻侧壁上则可以设有气流出口12,由此,多个散热片16中的每一个可以贯穿于散热风扇3的气流出口12至散热风道6的出风口5,即每一个散热片16的长度可以有散热风扇3的气流出口12延伸至散发风道6的出风口。以最大限度地增加散热片16对散热效果的提升。
其中,多个散热片16可以有多种设计形式,具体如下:
1、多个散热片16可以位于第二散热件2内侧的底部,多个散热片16的高度可以等于或小于散热风道6的高度。
示例性的,当第二散热件2作为发热器件7的热量收集体与热量传导体时,在第二散热件2的内侧,即面向散热风道6的一侧可以设有多个散热片16,这多个散热片16可以在第一散热件2上按照相应间隔进行排布,以形成多个 子散热风道。
其中,一方面,多个散热片16的高度可以等于散热风道6的高度,从而在第一散热件1与第二散热件2连接时,可以形成封闭式的子散热风道;另一方面,多个散热片16的高度也可以小于散热风道6的高度,从而在第一散热件1与第二散热件2连接时,可以形成在封闭式的散热风道6内形成子散热风道的同时,可以在不改变散热风道6的高度的基础上实现诸如预设器件在散热风道6内的容纳。
可以理解的是,本实施例中,在散热风道6内设有预设器件时,在多个散热片6中,这多个散热片16的高度可以一致,以在封闭式的散热风道6内形成开放式的子散热风道,或者,这多个散热片16的高度也可以不一致,以在预设器件的配合下,可以在封闭式的散热风道6内形成封闭式的子散热风道,此处不做具体限定。
2、多个散热16可以位于第一散热件1靠近散热风道6的一侧,多个散热片6的高度可以等于或小于散热风道6的高度。
示例性的,当第二散热件2作为发热器件7的热量收集体与热量传导体时,在第一散热件1面向散热风道6的一侧可以设有多个散热片16,这多个散热片16可以在第一散热件1的一侧按照相应间隔进行排布,以形成多个子散热风道。
其中,一方面,多个散热片16的高度可以等于散热风道6的高度,从而在第一散热件1与第二散热件2连接时,可以形成封闭式的子散热风道;另一方面,多个散热片16的高度也可以小于散热风道6的高度,从而在第一散热件1与第二散热件2连接时,可以形成在封闭式的散热风道6内形成子散热风道的同时,可以在不改变散热风道6的高度的基础上实现诸如预设器件在散热风道6内的容纳。
可以理解的是,本实施例中,在散热风道6内设有预设器件时,在多个散热片6中,这多个散热片16的高度可以一致,以在封闭式的散热风道6内形成开放式的子散热风道,或者,这多个散热片16的高度也可以不一致,以在预设器件的配合下,可以在封闭式的散热风道6内形成封闭式的子散热风道,此处不做具体限定。
可选的,在上述两种形式中,当散热风道6内设有预设器件时,若第二散 热件2作为发热器件7的热量收集体和热量传导体,可以采用第一种形式,以避免预设器件与第二散热件2的贴合接触而导致发热器件7的热量对预设器件的不利影响,或者,在第二散热件2靠近散热风道6的一侧可以采用诸如支撑柱的形式抬高预设器件在散热风道6内的支撑高度。
3、多个散热片16可以包括第一散热片和第二散热片,第一散热片可以位于第一散热件1靠近散热风道6的一侧,第二散热片可以位于第二散热件2内侧的底部,第一散热片和第二散热片可以按照预设规则排布,第一散热片和第二散热片的高度可以小于或等于散热风道6的高度。
示例性的,多个散热片16可以包括第一散热片和第二散热片。其中,第一散热片在第一散热件1一侧,第二散热片在第二散热件2一侧,第一散热片和第二散热片在第一散热件1、第二散热件2的配合下,按照预设规则经过相应的排布可以形成多个子散热风道。
其中,第一散热片和第二散热片的高度可以小于或等于散热风道6的高度,第一散热片的高度可以与第二散热片的高度相同,也可以不同,同时,各个第一散热片的高度、各个第二散热片的高度也可以不尽相同。在实际应用中,第一散热片和第二散热片可以通过咬合在封闭式的散热风道6内形成封闭式的子散热风道。
进一步的,本实施例中,当散热风道6内设有预设器件时,预设器件可以承载于第二散热片上,以避免预设器件与第二散热件2的贴合接触。
需要说明的是,本实施例中,第一散热片和第二散热片除了通过咬合的方式形成多个子散热风道,还可以为根据其它预设规则进行排布,例如,第一散热片和第二散热片可以一一交错排布,还可以不同数量的第一散热片与不同数量的第二散热片交错排布,此处不做具体限定。
可以理解的是,本实施例中,多个散热片16的设计方式除了上述说明内容,在实际应用中,还可以采用其它形式,只要能够增大散热面积并提高散热效果即可,此处不做具体限定。
在上述实施例中,第一散热件1和/或第二散热件2可以为包括但不限于铝合金材质,以加强散热效果。
基于上述对散热结构的说明,本申请实施例还提供了一种遥控设备,下面进行具体说明:
请参阅图1至图3,本申请实施例中遥控设备一个实施例包括:
壳体17、设于壳体17内的发热器件7以及散热结构;
散热结构置于发热器件7上;
壳体17上设有进风孔和出风孔,进风孔与散热结构的散热风道6的进风口4相对应,出风孔与散热结构的散热风道6的出风口5相对应。
具体的,上述实施例中说明的散热结构可以应用于遥控设备中,该遥控设备可以包括壳体17,其中,壳体17作为保护外壳,内部可以设有发热器件7,散热结构则可以设于发热器件7上,壳体17上还可以设有进风孔和出气孔,进风孔可以与散热结构中散热风道6的进风口4相对应,出风孔则可以与散热结构中散热风道6的出风口相对应。
由此,如图3中b所示的风向走向示意图:外界的空气可以由遥控设备的外壳17上的进风孔进入,并由进风孔进入散热结构中散热风道6的进风口4,外界的空气在散热风扇3的工作下,可以在散热风道6中流动,在流动过程中可以带走散热结构从发热器件7上传递的热量,而后可以带着热量流向散热风道6的出风口5,再由出风口5排出至遥控设备的壳体17的出风孔外,如此反复循环,以完成发热器件7的散热。
进一步的,为了在遥控设备中安装散热结构,示例性的,散热结构中第二散热件2上可以设有第五安装部18,壳体17上可以设有配合第五安装部18的第六安装部,第五安装部18和第六安装部可以用于在壳体17上安装第二散热件2,以完成散热结构在壳体17上的固定连接。
其中,第五安装部18可以为通孔结构,第六安装部可以为螺孔结构。由此利用螺钉穿过第五安装部18,并与第六安装部螺纹连接,可以达到壳体17和散热结构的固定连接。
需要说明的是,本实施例中,散热结构的安装方式除了上述说明的内容,在实际应用中,还可以采用其它方式,如卡扣连接、滑扣连接、粘合剂连接等,又例如,可以采用中间部件来连接,例如,中间部件可以作为壳体17和散热结构的过渡连接件,该中间部件可以为单独提供的中间部件,也可以为壳体17或散热结构中的子部件,由此,相应的,第五安装部18和第六安装部可以不进行设计,也可以随不同的连接方式而进行相应的调整,此处不做具体限定。
其中,在遥控设备的运行过程中,由于电路板件可以作为遥控设备的主要 发热元,则本实施例中的发热器件7可以为电路板件。
需要说明的是,本实施例中,发热器件7除了可以为图例所示的电路板件外,在实际应用中,也可以为遥控设备中的其它发热的器件,即本实施例中的散热结构可以适用于遥控设备中的不同发热器件,实现对不同发热器件的散热,此处不做具体限定。
可以理解的是,当发热器件7为遥控设备的电路板件时,发热器件7的表面可以设有屏蔽罩,该屏蔽罩可以为诸如铜材质。
需要说明的是,本实施例中,图示中的壳体17为散热结构的装配壳体,在实际应用中,遥控设备中还可以包括与该装配壳体适配的另一壳体,以形成遥控设备的外壳,并起到相应的外壳保护作用。
从上述过程可知,外界空气的流动通道为遥控设备的进气孔、散热结构中散热风道6的进风口、散热风道6、散热风道6的出风口5至遥控设备的出气孔的这一封闭式通道,则诸如水汽、灰尘等即使进入壳体17的进气孔,也将从进气孔至散热风道6的进风口4中落入散热风道6内,而不会发生于发热器件7的接触,从而有利于防止诸如水汽、灰尘等对发热器件7的不利影响,有利于保护发热器件7。
在上述实施例的基础上,请参阅图2,本申请实施例中遥控设备另一实施例包括:
遥控设备还可以包括进风结构,进风结构可以用于配合进风孔与散热风道6的进风口4,以使得进风孔的入孔气流从进风结构流向散热风道6的进风口4。
具体的,当遥控设备的尺寸或形状等发生变化时,可能散热结构需要作出相应的调整,那么为了减少散热结构的适应性调整,并提高散热结构与不同类型的遥控设备的适配性,遥控设备可以包括进风结构,该进风结构可以设于壳体17的进风孔与散热风道6的进风口4之间,以作为外界空气从壳体17的进风孔进入散热风道6的进风口4的过渡通道。
在实际应用中,为了防止外界空气的分散,进一步保证散热过程的封闭性,进风结构与散热风道6的进风口4的闭合位置处可以设有密封材料,以防止进风结构与散热风道6的进风口4的闭合位置处出现缝隙,而导致诸如水汽、灰尘等落入发热器件7上,进而造成对发热器件7的不利影响。
其中,本实施例中的密封材料可以包括但不限于泡棉或硅胶垫片。
进一步的,本实施例中,为了有效阻挡除外界空气以外的物质进入散热风道6内,进风结构靠近进风孔的侧面上可以设有第一过滤网,该第一过滤网可以利用诸如防水胶在进风结构上进行固定,并可以与遥控设备的壳体17上的进风孔相适配。
可以理解的是,本实施例中第一过滤网的材质、网孔大小、网孔密度等可以根据实际需要进行相应的设置与调整,此次不做具体限定。
在上述实施例的基础上,请参阅图2,本申请实施例中遥控设备另一实施例包括:
遥控设备还可以包括出风结构,进风结构可以用于配合散热风道6的出风口5与进风孔,以使得散热风道6的出风口5的出口气流从出风结构流向出风孔。
具体的,为了进一步减少散热结构对遥控设备的适应性调整,并提高散热结构与不同类型的遥控设备的适配性,遥控设备也可以进一步包括出风结构,该出风结构可以设于壳体17的出风孔与散热风道6的出风口5之间,以作为散热气体散热风道6的进风口4排出至壳体17的出风孔的过渡通道。
进一步的,本实施例中,为了有效阻挡除外界空气以外的物质进入散热风道6内,出风结构靠近出风孔的侧面上可以设有第二过滤网,该第二过滤网可以利用诸如防水胶在出风结构上进行固定,并可以与遥控设备的壳体17上的出风孔相适配。
可以理解的是,本实施例中第二过滤网的材质、网孔大小、网孔密度等可以根据实际需要进行相应的设置与调整,此次不做具体限定。
更进一步的,本实施例中,遥控设备可以设有相应的控制区域,用户可以手持遥控设备,并通过操作遥控设备上的控制区域对遥控设备对应的设备进行控制。在实际应用中,由于散热结构中散热风道6设有配合散热风扇3的进风口4,且该进风口4与壳体17上的进风孔所在的平面可能存在不平行的情况,则遥控设备的进风结构可以为折弯结构,而散热结构中散热风道6的出风口5可以与壳体17上的出风孔所在的平面平行,则散热结构中散热风道6靠近出风口5的一端可以为折弯结构。由此,不仅有利于遥控设备的结构的灵活设计,更为重要的是,壳体17上的进风孔与出风孔可以设于遥控设备的远离用户手 持遥控设备的手持区域,以错开壳体17的手持区域,从而在用户对遥控设备进行相应操作时,既不会由于用户手持遥控设备而造成进风孔的、出风孔的堵塞,也不会由于出风孔处带有热量的气流的排出而影响用户的手持体验,同时,还可以通过相应的设计,使得遥控设备中的散热结构的安装位置错开用户对遥控设备的手持区域,以避免用户对散热结构的安装位置处的热感受。
基于上述实施例的说明,本实施例中的遥控设备可以为用于控制移动平台的设备,该移动平台可以包括但不限于在陆地上、水上或空中移动的物体。可选的,本实施例中移动平台可以为无人飞行器,以加强无人飞行器的遥控设备对恶劣环境的适应性。
本申请实施例还提供了一种无人机套装,该无人机套装可以包括无人飞行器本体,还可以包括上述说明的遥控设备。其中,该遥控设备可以用于操控无人飞行器的移动,并可以用于操控无人飞行器执行相应的功能,以应用于相应的行业,如航拍、测绘、勘察等。
可选的,该遥控设备可以用于操控农业行业的无人飞行器,在农业行业中,无人飞行器多用于灌溉、农药喷洒等,所处的工作环境相对而言,一般多灰尘、多水汽,通过上述的遥控设备的设计,诸如灰尘和水汽即使可能从遥控设备的进风孔或出风孔进入遥控设备的壳体中时,也将会进入遥控设备的散热结构中的散热风道6,从而有效避免了诸如水汽、灰尘进入遥控设备的壳体17的腔体内,并防止了诸如水汽、灰尘等对遥控设备中电路板件的不利影响,加强了对遥控设备的电路板件的保护。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
在本申请所提供的几个实施例中,应该理解到,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (45)

  1. 一种散热结构,所述散热结构置于发热器件上,其特征在于,所述散热结构包括:
    第一散热件、第二散热件、散热风扇;
    所述第一散热件和所述第二散热件配合形成具有进风口和出风口的封闭式的散热风道;
    所述散热风道内设有所述散热风扇,所述散热风扇用于在所述散热风道内将所述进风口的入口气流排出至所述出风口。
  2. 根据权利要求1所述的散热结构,其特征在于,所述发热器件为电路板件。
  3. 根据权利要求1或2所述的散热结构,其特征在于,所述第二散热件包括侧壁结构,所述第一散热件设于所述侧壁结构上;
    所述散热风扇位于所述侧壁结构的内侧。
  4. 根据权利要求3所述的散热结构,其特征在于,所述第一散热件上设有所述进风口,所述进风口与所述散热风扇的气流入口对应设置。
    所述散热风扇位于所述侧壁结构的闭合端。
  5. 根据权利要求4所述的散热结构,其特征在于,所述散热风扇的气流入口的尺寸不大于所述进风口的尺寸。
  6. 根据权利要求1至5中任一项所述的散热结构,其特征在于,所述第一散热件上设有第一安装部,所述第二散热件上设有配合所述第一安装部的第二安装部,所述第一安装部与所述第二安装部用于在所述散热风道内装配预设器件。
  7. 根据权利要求6所述的散热结构,其特征在于,所述第一安装部为通孔结构,所述第二安装部为螺孔结构。
  8. 根据权利要求6或7所述的散热结构,其特征在于,所述第一散热件上设有开口结构,所述开口结构用于所述预设器件与外部的信号连接。
  9. 根据权利要求6至8中任一项所述的散热结构,其特征在于,所述第一散热件包括第一导热体,所述第一导热体位于所述第一散热件面向所述预设 器件的发热区的一侧。
  10. 根据权利要求9所述的散热结构,其特征在于,所述第一导热体的上下面分别与所述第一散热件面向所述预设器件的发热区的侧面、所述预设器件的发热区相贴合。
  11. 根据权利要求9所述的散热结构,其特征在于,所述第一导热体为所述第一散热件面向所述预设器件的发热区的一侧的第一凸起结构,所述第一凸起结构与所述预设器件的发热区相适配;
    所述第一导热体与所述第一散热件为一体成型。
  12. 根据权利要求9所述的散热结构,其特征在于,所述第一导热体为第一热管,所述第一热管的一端与所述第一散热件面向所述预设器件的发热区的一侧接触,所述第一热管的另一端与所述预设器件的发热区接触。
  13. 根据权利要求6至12中任一项所述的散热结构,其特征在于,所述第一散热件面向所述散热风道的一侧上设有与所述预设器件相适配的凹槽结构,以在所述散热风道内容纳所述预设器件。
  14. 根据权利要求6至13中任一项所述的散热结构,其特征在于,所述第一散热件与所述预设器件的发热区的非接触面设有第一保护膜。
  15. 根据权利要求6至14中任一项所述的散热结构,其特征在于,所述预设器件为射频器。
  16. 根据权利要求1至15中任一项所述的散热结构,其特征在于,所述第二散热件包括第二导热体,所述第二导热体设于所述第二散热件面向所述发热器件的发热区的一侧。
  17. 根据权利要求16所述的散热结构,其特征在于,所述第二导热体的上下面分别与所述第二散热件面向所述发热器件的发热区的侧面、所述发热器件的发热区相贴合。
  18. 根据权利要求16所述的散热结构,其特征在于,所述第二导热体为所述第二散热件面向所述发热器件的发热区的一侧的第二凸起结构,所述第二凸起结构与所述发热器件的发热区相适配;
    所述第二导热体与所述第二散热件为一体成型。
  19. 根据权利要求16所述的散热结构,其特征在于,所述第二导热体为第二热管,所述第二热管的一端与所述第二散热件面向所述发热器件的发热区 的一侧接触,所述第二热管的另一端与所述发热器件的发热区接触。
  20. 根据权利要求16至19中任一项所述的散热结构,其特征在于,所述第二散热件与所述发热器件的发热区的非接触面设有第二保护膜。
  21. 根据权利要求16至20中任一项所述的散热结构,其特征在于,所述第二散热件的面向所述发热器件的一侧还设有缓冲结构,所述缓冲结构用于给所述发热器件上的元器件提供减缓作用。
  22. 根据权利要求1至21中任一项所述的散热结构,其特征在于,所述散热风道内设有多个散热片,以在所述散热风道内形成多个子散热风道。
  23. 根据权利要求22所述的散热结构,其特征在于,所述多个所述散热片中的每一个贯穿于所述散热风扇的侧壁上的气流出口至所述散热风道的出风口。
  24. 根据权利要求22或23所述的散热结构,其特征在于,多个所述散热片位于所述第二散热件内侧的底部,多个所述散热片的高度等于或小于所述散热风道的高度。
  25. 根据权利要求22或23所述的散热结构,其特征在于,多个所述散热片位于所述第一散热件靠近所述散热风道的一侧,多个所述散热片的高度等于或小于所述散热风道的高度。
  26. 根据权利要求22或23所述的散热结构,其特征在于,多个散热片包括第一散热片和第二散热片;
    所述第一散热片位于所述第一散热件靠近所述散热风道的一侧,所述第二散热片位于所述第二散热件内侧的底部,所述第一散热片和所述第二散热片按照预设规则排布,所述第一散热片和所述第二散热片的高度小于或等于所述散热风道的高度。
  27. 根据权利要求26所述的散热结构,其特征在于,所述第一散热片与所述第二散热片通过咬合形成所述子散热风道。
  28. 根据权利要求26所述的散热结构,其特征在于,当所述散热风道内设有预设器件时,所述预设器件承载于所述第二散热片上,
  29. 根据权利要求1至28中任一项所述的散热结构,其特征在于,所述第一散热件上设有第三安装部,所述第二散热件上设有配合所述第三安装部的第四安装部,所述第三安装部和所述第四安装部用于在所述第二散热件上固定 所述第一散热件。
  30. 根据权利要求29所述的散热结构,其特征在于,所述第三安装部为通孔结构,所述第四安装部为螺孔结构。
  31. 根据权利要求1至30中任一项所述的散热结构,其特征在于,所述散热结构与所述发热器件的发热区的贴合面之间设有导热材料。
  32. 根据权利要求31所述的散热结构,其特征在于,所述导热材料包括硅胶导热片或导热膏。
  33. 根据权利要求1至32中任一项所述的散热结构,其特征在于,所述第一散热件和/或所述第二散热件为铝合金材质。
  34. 一种遥控设备,所述遥控设备包括壳体和设于所述壳体内的发热器件,其特征在于,所述遥控设备还包括:
    如权利要求1至33中任一项所述的散热结构;
    所述散热结构置于所述发热器件上;
    所述壳体上设有进风孔和出风孔,所述进风孔与所述散热结构中散热风道的进风口相对应,所述出风孔与所述散热结构中散热风道的出风口相对应。
  35. 根据权利要求34所述的遥控设备,其特征在于,所述发热器件为电路板件。
  36. 根据权利要求34或35所述的遥控设备,其特征在于,所述遥控设备还包括进风结构,所述进风结构用于配合所述进风孔与所述散热风道的进风口,以使得所述进风孔的入孔气流从所述进风结构流向所述散热风道的进风口。
  37. 根据权利要求36所述的遥控设备,其特征在于,所述进风结构与所述散热风道的进风口的闭合位置处设有密封材料。
  38. 根据权利要求37所述的遥控设备,其特征在于,所述密封材料包括泡棉或硅胶垫片。
  39. 根据权利要求36至38中任一项所述的遥控设备,其特征在于,所述进风结构靠近所述进风孔的侧面上设有第一过滤网。
  40. 根据权利要求36至39所述的遥控设备,其特征在于,所述散热风道靠近所述出风口的一端以及所述进风结构分别为折弯结构,以错开所述进风孔、所述出风孔与所述壳体的手持区域。
  41. 根据权利要求34至40中任一项所述的遥控设备,其特征在于,所述遥控设备还包括出风结构,所述出风结构用于配合所述散热风道的出风口与所述出风孔,以使得所述散热风道的出风口的出口气流从所述出风结构流向所述出风孔。
  42. 根据权利要求41所述的遥控设备,其特征在于,所述出风结构靠近所述出风孔的侧面上设有第二过滤网。
  43. 根据权利要求34至42中任一项所述的遥控设备,所述遥控设备为用于控制移动平台的设备。
  44. 根据权利要求43所述的遥控设备,所述移动平台为无人飞行器。
  45. 一种无人机套装,所述无人机套装包括无人飞行器本体,其特征在于,所述无人机套装还包括如权利要求34至44中任一项所述的遥控设备。
PCT/CN2017/117161 2017-12-19 2017-12-19 一种散热结构、遥控设备、无人机套装 WO2019119266A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780007041.5A CN108702855A (zh) 2017-12-19 2017-12-19 一种散热结构、遥控设备、无人机套装
PCT/CN2017/117161 WO2019119266A1 (zh) 2017-12-19 2017-12-19 一种散热结构、遥控设备、无人机套装

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/117161 WO2019119266A1 (zh) 2017-12-19 2017-12-19 一种散热结构、遥控设备、无人机套装

Publications (1)

Publication Number Publication Date
WO2019119266A1 true WO2019119266A1 (zh) 2019-06-27

Family

ID=63844096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117161 WO2019119266A1 (zh) 2017-12-19 2017-12-19 一种散热结构、遥控设备、无人机套装

Country Status (2)

Country Link
CN (1) CN108702855A (zh)
WO (1) WO2019119266A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220192058A1 (en) * 2019-04-02 2022-06-16 Lg Innotek Co., Ltd. Converter

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206865924U (zh) * 2017-05-19 2018-01-09 深圳市大疆创新科技有限公司 无人机及散热结构
US10906652B2 (en) * 2017-07-28 2021-02-02 Intel Corporation Thermal management systems for unmanned aerial vehicles
WO2020118629A1 (zh) * 2018-12-13 2020-06-18 深圳市大疆创新科技有限公司 电子设备
CN109688768A (zh) * 2018-12-29 2019-04-26 青岛小鸟看看科技有限公司 一种智能交互设备
CN111466161B (zh) * 2019-01-25 2021-06-18 深圳市大疆创新科技有限公司 图传设备和具有该图传设备的无人机
CN109665113B (zh) * 2019-02-18 2022-03-15 北京奥航坤宇科技有限公司 一种超音速无人机仪器设备保护结构
CN111086619A (zh) * 2019-03-04 2020-05-01 苏州臻迪智能科技有限公司 散热装置及飞行器
CN111010857B (zh) * 2019-12-30 2022-02-01 维沃移动通信有限公司 电子设备
CN111163200A (zh) * 2020-02-26 2020-05-15 努比亚技术有限公司 一种终端散热风管及终端
CN113597233B (zh) * 2021-09-28 2022-01-04 北京远度互联科技有限公司 散热装置、控制装置及使用其控制的无人机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2604550Y (zh) * 2003-03-17 2004-02-25 微星科技股份有限公司 散热装置
CN1502821A (zh) * 2002-11-22 2004-06-09 上海百利恒电器有限公司 无回流低噪音电脑散热风扇
CN1967438A (zh) * 2005-11-16 2007-05-23 富准精密工业(深圳)有限公司 散热装置
CN201435898Y (zh) * 2009-06-05 2010-03-31 深圳市宾利达智能科技有限公司 新型散热装置及使用该散热装置的长卡
US20170146027A1 (en) * 2015-11-25 2017-05-25 Corsair Memory, Inc. Blower fan cooling system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202260975U (zh) * 2011-09-09 2012-05-30 杭州优迈科技有限公司 一种变频器散热结构
CN202372910U (zh) * 2011-09-28 2012-08-08 深圳市顶星数码网络技术有限公司 一种散热装置
CN205356118U (zh) * 2015-12-11 2016-06-29 深圳市禾望电气股份有限公司 变频器散热结构
CN105899046A (zh) * 2016-05-19 2016-08-24 成都宇珩智能家居科技有限公司 一种具有外部散热风道的手机散热装置
CN206479934U (zh) * 2017-02-27 2017-09-08 太仓市华盈电子材料有限公司 基于无锡焊接技术的散热器
CN206674410U (zh) * 2017-03-21 2017-11-24 深圳市大疆创新科技有限公司 遥控器
CN206686503U (zh) * 2017-03-28 2017-11-28 昊翔电能运动科技(昆山)有限公司 散热装置及遥控器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1502821A (zh) * 2002-11-22 2004-06-09 上海百利恒电器有限公司 无回流低噪音电脑散热风扇
CN2604550Y (zh) * 2003-03-17 2004-02-25 微星科技股份有限公司 散热装置
CN1967438A (zh) * 2005-11-16 2007-05-23 富准精密工业(深圳)有限公司 散热装置
CN201435898Y (zh) * 2009-06-05 2010-03-31 深圳市宾利达智能科技有限公司 新型散热装置及使用该散热装置的长卡
US20170146027A1 (en) * 2015-11-25 2017-05-25 Corsair Memory, Inc. Blower fan cooling system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220192058A1 (en) * 2019-04-02 2022-06-16 Lg Innotek Co., Ltd. Converter
US11937411B2 (en) * 2019-04-02 2024-03-19 Lg Innotek Co., Ltd. Converter

Also Published As

Publication number Publication date
CN108702855A (zh) 2018-10-23

Similar Documents

Publication Publication Date Title
WO2019119266A1 (zh) 一种散热结构、遥控设备、无人机套装
WO2021129443A1 (zh) 无线充电设备
CN104812222B (zh) 散热结构及具有该散热结构的电子装置
CN201418225Y (zh) 外循环式密封散热机箱
CN207604129U (zh) 一种pcb电路板机箱散热装置
CN110703541A (zh) 散热机构以及工业相机
CN113885274B (zh) 一种影视灯
CN109874281B (zh) 通讯设备及其具有散热结构的光模块
CN208386995U (zh) 电路板组件和具有其的电子设备
WO2019227393A1 (zh) 散热系统及摄影摄像设备
WO2020000182A1 (zh) 散热装置及具有该散热装置的无人机
WO2019100527A1 (zh) 摄像头模组及烹饪装置
CN208210525U (zh) 一种防水防尘散热系统
CN213152665U (zh) 一种散热装置及电子设备
CN110475466A (zh) 一种风冷散热器以及电气设备
CN108174587B (zh) 一种显示装置
KR102001029B1 (ko) 펠티에 소자를 이용한 태양광 발전 접속반 다이오드 모듈 방열 모듈
CN212081759U (zh) 半导体制冷器件的安装结构、柜体及制冷设备
CN211321892U (zh) 一种新型无线通信网关
CN211128733U (zh) 散热装置及用户驻地设备
CN209248452U (zh) 一种服务器设备散热结构
TWI692294B (zh) 變頻器
CN107769525B (zh) 功率单元自循环风冷辅助散热结构及功率单元驱动装置
CN208425101U (zh) 一种适用于充电桩模块的隔离式散热结构
CN109975766A (zh) 雷达散热组件及雷达

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17935349

Country of ref document: EP

Kind code of ref document: A1