WO2019117433A1 - 그라프트 공중합체, 이를 포함하는 열가소성 수지 조성물 및 열가소성 수지 성형품 - Google Patents

그라프트 공중합체, 이를 포함하는 열가소성 수지 조성물 및 열가소성 수지 성형품 Download PDF

Info

Publication number
WO2019117433A1
WO2019117433A1 PCT/KR2018/010716 KR2018010716W WO2019117433A1 WO 2019117433 A1 WO2019117433 A1 WO 2019117433A1 KR 2018010716 W KR2018010716 W KR 2018010716W WO 2019117433 A1 WO2019117433 A1 WO 2019117433A1
Authority
WO
WIPO (PCT)
Prior art keywords
acrylate
weight
monomer
graft copolymer
thermoplastic resin
Prior art date
Application number
PCT/KR2018/010716
Other languages
English (en)
French (fr)
Inventor
김민정
안봉근
황용연
조왕래
박장원
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180107120A external-priority patent/KR102074489B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP18855164.2A priority Critical patent/EP3517557B1/en
Priority to US16/339,308 priority patent/US11384189B2/en
Priority to JP2019528535A priority patent/JP6768957B2/ja
Priority to CN201880003958.2A priority patent/CN110167978B/zh
Publication of WO2019117433A1 publication Critical patent/WO2019117433A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F285/00Macromolecular compounds obtained by polymerising monomers on to preformed graft polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/14Copolymers of styrene with unsaturated esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds

Definitions

  • the present invention relates to a graft copolymer, a thermoplastic resin composition containing the same, and a thermoplastic resin molded article.
  • an ABS resin obtained by graft copolymerizing an aromatic vinyl monomer and a vinyl cyan monomer to a diene rubber polymer prepared by polymerizing a conjugated diene monomer has excellent impact resistance and processability, is excellent in mechanical strength and heat distortion temperature, And is widely used for electric appliances, automobile parts, and office equipment.
  • the rubber polymer used in the production of the ABS resin contains chemically unstable unsaturated bonds, the rubber polymer easily ages due to ultraviolet rays, and the weather resistance is very weak.
  • a method of adding a stabilizer capable of improving the weatherability when the ABS resin is extruded to produce a resin composition has been proposed in which a polymer obtained by polymerizing a mixture of a diene monomer and an acrylic monomer is used or a chemically more stable acrylic rubber polymer is used in place of a diene rubber polymer containing a double bond.
  • a typical example of the weather-resistant thermoplastic resin using an acrylic rubber polymer containing no unstable double bond is an acrylate-styrene-acrylonitrile (ASA) copolymer, which contains an unstable double bond in the polymer (ASA / ABS bi-layer sheet, non-woven fabric, etc.), which are excellent in weatherability, chemical resistance, chemical resistance and thermal stability, Profile extrusion, road signs, outdoor products, PVC for construction materials, leisure goods, sporting goods, and automobile parts.
  • ASA acrylate-styrene-acrylonitrile
  • a process for producing an ASA polymer having excellent weather resistance and aging resistance is disclosed in German Patent No. 1,260,135.
  • the core used herein is a large diameter latex of crosslinked acrylate having an average particle size of 150 to 800 nm and a narrow particle size distribution.
  • polymers comprising large diameter polyacrylate latexes have improved notched impact strength, greater hardness and reduced shrinkage.
  • the large-diameter acrylonitrile-acrylate-styrene graft copolymer is disadvantageous in that it is hard to color compared to a small-diameter acrylonitrile-acrylate-styrene graft copolymer.
  • U.S. Patent No. 4,224,419 discloses a weather resistant high impact resistant thermoplastic resin that can be readily colored.
  • the crosslinked acrylate polymer having an average particle size of about 50 to 150 nm as the core, a styrene- and acrylonitrile-
  • the present inventors have found that the appearance and weatherability of the ASA-based graft copolymer are improved by using an alkyl methacrylate-based monomer as a main component, and the grain size of the core and the graft ratio of the shell are also improved by weatherability and appearance And thus the present invention has been completed.
  • a graft copolymer excellent in weatherability and coloring property a thermoplastic resin composition containing the same, and a thermoplastic resin molded article.
  • One embodiment of the present invention is directed to a composition
  • a composition comprising: (A) a seed comprising a unit derived from an alkyl methacrylate monomer; (B) a core formed on the seed and comprising an alkyl acrylate monomer derived unit; And (C) a shell formed on the core and containing at least one derived unit of an aromatic vinyl monomer, a vinyl cyanide monomer and an alkyl methacrylate monomer, wherein the core has an average particle diameter of 40 to 90 nm , And the graft ratio of the shell is 10 to 30%.
  • Another embodiment of the present invention relates to the aforementioned graft copolymer; And an aromatic vinyl-cyanide vinyl copolymer.
  • thermoplastic resin molded article comprising the thermoplastic resin composition.
  • the graft copolymer of the present invention contains alkyl methacrylate in the seed, and the core particle size and the shell graft ratio are controlled to a specific range, thereby exhibiting excellent properties of weather resistance, coloring property and impact strength.
  • thermoplastic resin molded article produced by injection molding the resin composition containing the graft copolymer of the present invention is also excellent in weatherability and appearance.
  • the average particle diameter (D 50 ) can be defined as a particle diameter corresponding to 50% of the volume accumulation amount in the particle diameter distribution curve of the particles.
  • the average particle diameter (D 50 ) can be measured using, for example, a laser diffraction method.
  • the laser diffraction method generally enables measurement of a particle diameter of several millimeters from a submicron region, resulting in high reproducibility and high degradability.
  • the graft copolymer comprises: (A) a seed comprising a unit derived from an alkyl methacrylate monomer; (B) a core formed on the seed and comprising an alkyl acrylate monomer derived unit; And (C) a shell formed on the core and containing at least one derived unit of an aromatic vinyl monomer, a vinyl cyanide monomer and an alkyl methacrylate monomer, the core having an average particle diameter of 40 to 90 nm, The graft rate of the shell is 10 to 30%.
  • the alkylmethacrylate monomer, the crosslinking agent, the initiator and the emulsifier may be polymerized to prepare a seed.
  • one or more of an electrolyte, a grafting agent and an oxidation- may be used.
  • the alkyl methacrylate monomer may be a methacrylate containing an alkyl methacrylate having 1 to 10 carbon atoms or a branched alkyl group, preferably a chain alkyl group having 1 to 4 carbon atoms. Specifically, it may be at least one selected from the group consisting of methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, hexyl methacrylate, octyl methacrylate and 2-ethylhexyl methacrylate .
  • the alkyl methacrylate monomer may be used alone in the seed preparation step, but an alkyl acrylate monomer may be further used. As a result, the mechanical strength of the graft copolymer can be improved.
  • the alkyl acrylate monomer further used may be an acrylate comprising a chain alkyl having 1 to 10 carbon atoms or a branched alkyl group, preferably an acrylate containing a chain alkyl group having 1 to 4 carbon atoms. Specifically, it may be at least one selected from the group consisting of methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, hexyl acrylate, octyl acrylate and 2-ethylhexyl acrylate.
  • the derived unit of the alkyl methacrylate monomer constituting the seed (A) and the derived unit of the alkyl acrylate monomer optionally are contained in an amount of 4 to 30 wt%, preferably 4 to 20 wt%, based on the total weight of the graft copolymer, , And more preferably 4 to 15 wt%.
  • a graft copolymer having excellent impact resistance, weather resistance, physical property balance and the like can be produced.
  • the average particle diameter (D 50 ) of the seed obtained from the seed preparation step may be 30 to 70 nm, preferably 30 to 60 nm. In the above range, the resin molded article using the graft copolymer is excellent in appearance and impact resistance.
  • an acrylic compound which contains an unsaturated vinyl group as a crosslinking agent and can perform a crosslinking agent can be used.
  • the cross-linking agent may be used in an amount of 0.01 to 3 parts by weight, 0.01 to 1 part by weight, 0.05 to 1 part by weight, 0.01 to 0.5 part by weight, or 0.1 to 0.5 part by weight, based on 100 parts by weight of the total amount of monomers used for preparing the graft copolymer .
  • a water-soluble initiator a fat-soluble initiator or a mixture of these initiators can be used as an initiator.
  • the water-soluble initiator may be, for example, at least one selected from the group consisting of sodium persulfate, potassium persulfate, ammonium persulfate, potassium persulfate, and hydrogen peroxide.
  • oil-soluble initiator examples include t-butyl peroxide, cumene hydroperoxide, p-methane hydroperoxide, di-t-butyl peroxide, t-butyl cumyl peroxide, acetyl peroxide, isobutyl peroxide, There may be mentioned peroxide, dibenzoyl peroxide, diisopropylbenzene hydroperoxide, 3,5,5-trimethylhexanol peroxide, t-butyl peroxyisobutyrate, azobisisobutyronitrile, azobis-2,4 But are not limited to, dimethylvaleronitrile, azobiscyclohexanecarbonitrile, and azobisisobutyric acid (butyl acid) methyl.
  • the seed preparation step it is preferable to use a water-soluble initiator.
  • a water-soluble initiator it is possible to easily produce a polymer of a desired size by controlling the reaction rate, thereby improving the physical properties of the graft copolymer.
  • the initiator may be used in an amount of 0.01 to 3 parts by weight, preferably 0.01 to 1 part by weight based on 100 parts by weight of the total amount of the monomers used for preparing the graft copolymer.
  • derivatives of C12-C18 alkylsulfosuccinates metal salts, alkyl sulfate esters having C12-C20 carbon atoms or derivatives of sulfonic acid metal salts can be used.
  • Examples of the derivative of the C12-C18 alkylsulfosuccinate metal salt include dicyclohexylsulfonate, sodium or potassium salt of dicyclohexylsuccinate, and C12-C20 sulfuric acid esters or sulfonic acid metal salts such as sodium lauroyl Alkyl sulfate metal salts such as sodium sulfate, potassium sulfate, potassium sulfate, potassium sulfate, sodium sulfate, sodium sulfate, sodium sulfate, sodium sulfate, sodium sulfate, sodium sulfate, sodium sulfate, sodium sulfate, sodium sulfate, sodium sulfate, sodium sulfate, sodium sulfate, sodium sulfate, sodium sulfate, sodium sulfate, sodium sulfate, As the emulsifier, there can be used a derivative of a carboxy
  • fatty acid metal salt examples include phytic acid, lauric acid and oleic acid Sodium salt or potassium salt, and rosin acid metal salts include sodium rosinate and potassium rosinate. These emulsifiers may be used singly or in combination of two or more.
  • a derivative of a compound means a compound in which one or more of the hydrogen or functional groups of the compound is replaced with another organic or inorganic group.
  • the emulsifier may be used in an amount of 0.01 to 5 parts by weight, 0.01 to 3 parts by weight, 0.1 to 2 parts by weight, 0.1 to 1 part by weight, or 0.5 to 1.5 parts by weight, based on 100 parts by weight of the total amount of the monomers used in the production of the graft copolymer .
  • the electrolyte is selected from the group consisting of KCl, NaCl, KHCO 3 , NaHCO 3 , K 2 CO 3 , Na 2 CO 3 , KHSO 3 , NaHSO 3 , K 4 P 2 O 7 , Na 4 P 2 O 7 , K 3 PO 4 , Na 3 PO 4, K 2 HPO 4 , Na 2 HPO 4 , KOH, NaOH, and Na 2 S 2 O 7 , but the present invention is not limited thereto.
  • the electrolyte may be used in an amount of 0.0001 to 1 part by weight, 0.001 to 1 part by weight, or 0.05 to 1 part by weight based on 100 parts by weight of the total amount of the monomers used for preparing the graft copolymer. Within this range, .
  • a compound containing two or more reactive unsaturated vinyl groups may be used.
  • the grafting agent may be used in an amount of 0.01 to 3 parts by weight, 0.01 to 1 part by weight, or 0.01 to 0.1 part by weight based on 100 parts by weight of the total amount of the monomers used in the production of the graft copolymer. Within this range, Can be improved.
  • the oxidation-reduction catalyst may be at least one selected from the group consisting of sodium pyrophosphate, textrose, ferrous sulfide, sodium sulfite, sodium formaldehyde sulfoxylate, and sodium ethylenediamine tetraacetate.
  • the oxidation-reduction catalyst may be used in an amount of 0.01 to 3 parts by weight based on 100 parts by weight of the total amount of the monomers used for preparing the graft copolymer.
  • the core may be prepared by polymerizing an alkyl acrylate monomer, a crosslinking agent, an initiator and an emulsifier in the presence of the seed, and optionally, one or more of an electrolyte, a grafting agent and an oxidation- And further polymerization can be carried out.
  • the alkyl acrylate monomers of the core (B) may include, but are not limited to, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, hexyl acrylate, octyl acrylate and 2-ethylhexyl acrylate ≪ / RTI >
  • the unit derived from the alkyl acrylate monomer constituting the core (B) may be 20 to 60% by weight, 30 to 60% by weight or 35 to 50% by weight based on the total weight of the graft copolymer.
  • the content is within the above range, a graft copolymer having excellent impact resistance, weather resistance, and physical property balance can be produced.
  • the average particle diameter (D 50 ) of the core obtained from the core preparation step, that is, the core containing the seed is 40 to 90 nm, preferably 40 to 80 nm, more preferably 45 to 80 nm, still more preferably 50 to 70 nm to be.
  • the core average particle diameter is smaller than 40 nm, the impact strength is lowered.
  • the core average particle diameter is larger than 90 nm, the improvement of weatherability is limited.
  • cross-linking agent examples and contents of the cross-linking agent, initiator, emulsifier, electrolyte, grafting agent and oxidation-reduction catalyst used in the core production step may be the same as those described above in the seed preparation step.
  • the shell may be prepared by polymerizing an aromatic vinyl monomer, a vinyl cyanide monomer, and an alkyl methacrylate monomer, at least one monomer, an initiator, and an emulsifier in the presence of the core in the production step of the shell, , An electrolyte, a grafting agent, an oxidation-reduction catalyst, and a molecular weight regulator.
  • the shell essentially contains an aromatic vinyl monomer and a vinyl cyanide monomer.
  • it may further include an alkyl methacrylate monomer, whereby the weather resistance and appearance quality of the graft copolymer can be improved.
  • the aromatic vinyl-based monomer may be at least one member selected from the group consisting of styrene,? -Methylstyrene, p-methylstyrene and vinyltoluene, preferably styrene.
  • the vinyl cyanide monomer may be at least one selected from the group consisting of acrylonitrile, methacrylonitrile, and ethacrylonitrile, and is preferably acrylonitrile.
  • the alkyl methacrylate monomer of the shell (C) may be a methacrylate containing alkyl alkyl methacrylate having 1 to 10 carbon atoms or a branched alkyl group, preferably a chain alkyl group having 1 to 4 carbon atoms . Specifically, it may be at least one selected from the group consisting of methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, hexyl methacrylate, octyl methacrylate and 2-ethylhexyl methacrylate .
  • the unit derived from the aromatic vinyl monomer, the vinyl cyanide monomer and the alkyl methacrylate monomer constituting the shell (C) is 20 to 60% by weight, 30 to 60% by weight based on the total weight of the graft copolymer, 60% by weight or 35 to 50% by weight.
  • the graft copolymer may contain 20 to 40% by weight, preferably 25 to 40% by weight, of the unit derived from the aromatic vinyl monomer based on the total weight of the graft copolymer, and may be derived from a vinyl cyanide monomer May contain 5 to 20% by weight, preferably 10 to 20% by weight. Within this range, the mechanical strength and appearance quality of the graft copolymer can be improved.
  • the average particle diameter (D 50 ) of the graft copolymer particles obtained from the shell preparation step may be 60 to 120 nm, preferably 65 to 120 nm, more preferably 65 to 110 nm. Within the above range, the graft copolymer may have excellent weather resistance and impact strength.
  • the graft rate of the shell is 10 to 30%, preferably 20 to 30% or 15 to 25%.
  • the shell graft rate is 10% or less, impact and coloring properties are lowered.
  • the shell graft rate is 30% or more, improvement in weatherability is limited.
  • the graft rate of the shell can be calculated as a monomer content / seed and a core content * 100 (%) of one or more derived units of an aromatic vinyl monomer, a vinyl cyanide monomer and an alkyl methacrylate monomer bonded to the core.
  • the graft ratio of the shell is determined by dissolving 1 g of the graft copolymer in acetone, separating the gel and the sol with a centrifuge (15000 rpm), drying the gel portion in a vacuum oven to weigh the gel content (gel content- Core content) / seed and core content * 100 (%).
  • the seed and core content can be calculated by multiplying the graft copolymer by the fraction of the seed and core in the graft copolymer.
  • cross-linking agent As specific examples of the cross-linking agent, initiator, emulsifier, electrolyte, grafting agent and oxidation-reduction catalyst used in the shell-making step, the same contents as those described in the seed preparation step can be applied.
  • a liposoluble initiator may be used in the shell preparation step.
  • a fat-soluble initiator By using a fat-soluble initiator, a high degree of polymerization can be achieved, and thereby the productivity of the resin can be obtained.
  • the shell preparation step can be carried out further including a molecular weight modifier.
  • a molecular weight modifier for example, mercaptan compounds such as tertiary dodecyl mercaptan may be used, but the present invention is not limited thereto.
  • the molecular weight modifier may be used in an amount of 0.01 to 2 parts by weight, 0.05 to 2 parts by weight or 0.05 to 1 part by weight based on 100 parts by weight of the total amount of the monomers used in the production of the graft copolymer, Can be easily produced.
  • the graft copolymer latex obtained through the seed, core and shell production steps may be subjected to a conventional process such as agglomeration, washing and drying to obtain a graft copolymer in powder form.
  • a metal salt or an acid may be added to the graft copolymer latex and agglomerated at a temperature of 60 to 100 ° C, followed by aging, dehydration, washing and drying, but the present invention is not limited thereto.
  • Another embodiment of the present invention relates to the aforementioned graft copolymer; And an aromatic vinyl-cyanide vinyl copolymer.
  • thermoplastic resin composition may be prepared by mixing the graft copolymer and the aromatic vinyl-cyanide vinyl copolymer, followed by extrusion kneading.
  • the extrusion may be carried out under the conditions of, for example, 200 to 300 ° C and 30 to 100 rpm, or 200 to 280 ° C and 30 to 70 rpm, and within this range, a thermoplastic resin composition having excellent workability and desired physical properties .
  • aromatic vinyl-cyanide vinyl copolymer usual ones can be used.
  • the aromatic vinyl-based monomer is at least one member selected from the group consisting of styrene,? -Methylstyrene, p-methylstyrene, and vinyltoluene, and is preferably styrene.
  • the vinyl cyanide monomer is at least one selected from the group consisting of acrylonitrile, methacrylonitrile, and ethacrylonitrile, and is preferably acrylonitrile.
  • the aromatic vinyl-cyanide vinyl copolymer may further include a unit derived from an alkyl (meth) acrylate monomer.
  • the alkyl (meth) acrylate monomer may be an alkyl (meth) acrylate containing a chain alkyl or branched alkyl group having 1 to 10 carbon atoms, preferably a (meth) acrylate containing a chain alkyl group having 1 to 4 carbon atoms have.
  • the alkyl (meth) acrylate monomers are selected from the group consisting of methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, hexyl methacrylate, octyl methacrylate, 2-ethylhexyl methacrylate May be at least one selected from the group consisting of
  • the added alkyl (meth) acrylate monomer may be provided as a copolymer with the aromatic vinyl monomer and the vinyl cyanide monomer, or may be added as a single polymer.
  • the aromatic vinyl-cyanide vinyl copolymer may contain 60 to 85% by weight of an aromatic vinyl monomer-derived unit and 15 to 40% by weight of a vinyl cyanide monomer-derived monomer based on the total weight of the copolymer, The mechanical strength, weather resistance and appearance quality of the final thermoplastic resin composition are excellent.
  • thermoplastic resin composition of the present invention comprises 20 to 60 wt%, preferably 30 to 60 wt%, more preferably 40 to 50 wt% of the graft copolymer relative to the total weight of the resin composition, and the aromatic vinyl- 40 to 80% by weight, preferably 40 to 70% by weight, more preferably 50 to 60% by weight, of the vinyl cyanide copolymer.
  • aromatic vinyl- 40 to 80% by weight preferably 40 to 70% by weight, more preferably 50 to 60% by weight, of the vinyl cyanide copolymer.
  • thermoplastic resin composition At the production of the thermoplastic resin composition, at least one selected from the group consisting of a flame retardant, a lubricant, an antibacterial agent, a releasing agent, a nucleating agent, a plasticizer, a heat stabilizer, an antioxidant, a light stabilizer, a pigment, a dye and a compatibilizer may be further added.
  • the additive may be added in an amount of 0.1 to 10 parts by weight, preferably 1 to 7 parts by weight, more preferably 1 to 5 parts by weight based on 100 parts by weight of the total amount of the thermoplastic resin composition.
  • the effect of the additive can be exhibited without deteriorating the inherent physical properties of the resin within the above range.
  • thermoplastic resin composition may have a chromaticity change value (DELTA E) of 3 or less, preferably 1 to 2.5, measured after being left for 5,000 hours in accordance with WOM SAE J1960 for evaluation of weatherability.
  • DELTA E chromaticity change value
  • the blackness (L) value of the thermoplastic resin composition measured using a spectral colorimeter can be 26.6 or less, preferably 26.0 or less.
  • the Izod impact strength of the thermoplastic resin composition measured according to ASTM 256 may be 7 to 9 kgf ⁇ cm / cm, preferably 8 to 9 kgf ⁇ cm / cm.
  • thermoplastic resin composition of the present invention can be produced into a thermoplastic resin molded article through a thermoforming process such as injection molding.
  • injection can be carried out at a temperature of 190 to 300 ° C or 200 to 250 ° C and at a pressure of 30 to 80 bar or 30 to 70 bar, and within this range, excellent workability and desired mechanical and appearance properties have.
  • thermoplastic graft copolymer resin composition and other conditions not explicitly described in the molded article are not particularly limited if they are within the range usually practiced in the technical field of the present invention and can be appropriately selected as needed.
  • the average size of the rubber polymer particles obtained after the completion of the reaction was measured by the following method and found to be 48 nm.
  • the average size of the rubber polymer particles obtained after completion of the reaction was confirmed to be 70 nm.
  • the polymer core 28 parts by weight of styrene, 12 parts by weight of acrylonitrile, 0.5 part by weight of sodium dodecyl sulfate, 0.1 part by weight of tertiary dodecyl mercaptan (TDDM) and 0.05 part by weight of cumene hydroperoxide , 0.09 part by weight of sodium pyrophosphate, 0.12 part by weight of text rose, and 0.002 part by weight of ferrous sulfate was added to the mixture at 75 DEG C for 3 hours. After the addition of the emulsion and the mixed solution was completed, the mixture was further reacted at 75 DEG C for 1 hour and cooled to 60 DEG C to complete the polymerization reaction, thereby preparing a graft copolymer latex.
  • TDDM tertiary dodecyl mercaptan
  • the final graft average size of the prepared graft copolymer latex was 88 nm and the graft rate was 25%.
  • the graft ratio was determined by dissolving 1 g of the graft copolymer in acetone, separating the gel and the sol with a centrifuge (15000 rpm), and drying the gel portion in a vacuum oven.
  • the grafted rate of the shell was calculated by subtracting the seed and core content from the measured gel content and calculating the grafted amount as a percentage by dividing the grafted amount of the shell by the total amount of the seed and core.
  • aqueous calcium chloride solution 0.8 part by weight was applied to the prepared graft copolymer latex, aged at 70 ° C under agitation at 93 ° C, dehydrated and washed, dried by hot air at 90 ° C for 30 minutes, Powder.
  • graft copolymer powder 50 parts by weight of the graft copolymer powder, 50 parts by weight of a hard matrix styrene-acrylonitrile copolymer (30% by weight of acrylonitrile and 70% by weight of styrene), 1.5 parts by weight of a lubricant, 1.0 part by weight of an antioxidant, Parts by weight were added and mixed.
  • the mixture was molded into a pellet shape at a cylinder temperature of 220 ⁇ using a 36 pie extrusion kneader, and the pellet-shaped resin was injected (injection temperature: 200 to 230 ⁇ , injection pressure: 40 to 60 bar) .
  • Example 1 The procedure of Example 1 was repeated except that 3.0 parts by weight of sodium dodecyl sulfate was used in the step of preparing the polymer seed of Example 1 to prepare a graft copolymer having an average particle diameter of 50 nm of (B).
  • Example 1 The procedure of Example 1 was repeated, except that (A) and (B) in Example 1 were used in the amounts shown in Table 1 below.
  • Example 1 The procedure of Example 1 was repeated, except that (C) was used in the same manner as in Example 1, except that the components and the contents shown in the following Table 1 were used.
  • Example 1 The procedure of Example 1 was repeated, except that component (A) was used in the same manner as in Example 1, except that the components and the contents shown in the following Table 1 were used.
  • thermoplastic resin composition of Example 1 Except that 20 parts by weight of the methyl methacrylate polymer was used in 30 parts by weight of the hard matrix styrene-acrylonitrile copolymer (30% by weight of acrylonitrile and 70% by weight of styrene) in the step of preparing the thermoplastic resin composition of Example 1 was carried out in the same manner as in Example 1 above.
  • Example 1 The procedure of Example 1 was repeated except that a graft copolymer (B) having an average particle size of 100 nm was prepared by using 0.5 part by weight of sodium dodecyl sulfate in the polymer seed preparation step of Example 1.
  • Example 5 parts by weight of sodium dodecyl sulfate was used in the polymer seed preparation step of Example 1 and the components (A), (B) and (C) was prepared in the same manner as in Example 1, except that a graft copolymer having an average particle size of 35 nm was prepared.
  • Example 3 3 parts by weight of sodium dodecyl sulfate was used in the polymer seed preparation step of Example 1 and the components (B) and (C) were used in the amounts shown in the following Table 1 to obtain a graft copolymer having a graft ratio of 5% Was prepared in the same manner as in Example 1,
  • Example 1 (A), (B) and (C) were used in the amounts shown in the following Table 1 in the step of preparing the polymer seed of Example 1, the graft copolymer having a graft ratio of 40% The procedure of Example 1 was repeated.
  • Example 1 The procedure of Example 1 was repeated except that component (A) in Example 1 was used as the components listed in Table 1 below.
  • the color value was measured by a weather-o-meter (ATLAS Ci35A) according to SAE J1960 for 5000 hours, and the color value was compared with the initial color value according to the following equation (1) Respectively.
  • E is an arithmetic mean value of CIE Lab values before and after the weathering test, and the closer the value is to 0, the smaller the degree of color change and the better the weatherability.
  • the impact strength of the 1/4 "thick thermoplastic resin composition specimen was measured by the standard measurement ASTM 256 method.
  • thermoplastic resin composition comprising the AN-MMA-SN graft copolymer of Examples 1 to 6 is excellent in impact strength, appearance, and weather resistance.
  • Comparative Example 1 in which the average particle diameter of the core exceeded 90 nm, the weatherability was lowered.
  • Comparative Example 2 in which the average particle diameter of the core was less than 30 nm, the weather resistance and coloring property were maintained, but the impact strength was greatly decreased.
  • Comparative Example 3 in which the graft ratio of the shell was less than 10%, the colorability and the impact strength were lowered, and in Comparative Example 4 in which the graft rate was more than 30%, the weatherability was lowered.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

본 발명은 (A) 알킬 메타크릴레이트 단량체의 유래단위를 포함하는 시드; (B) 상기 시드 상에 형성되고 알킬 아크릴레이트 단량체의 유래단위를 포함하는 코어; 및 (C) 상기 코어 상에 형성되고 방향족 비닐계 단량체, 시안화 비닐계 단량체 및 알킬 메타크릴레이트 단량체 중 1종 이상의 유래단위를 포함하는 쉘;을 포함하고, 상기 코어의 평균 입경은 40 내지 90nm이며, 쉘의 그라프트율은 10 내지 30%인 것을 특징으로 하는 그라프트 공중합체, 이를 포함하는 열가소성 수지 조성물 및 열가소성 수지 성형품을 제공한다.

Description

그라프트 공중합체, 이를 포함하는 열가소성 수지 조성물 및 열가소성 수지 성형품
관련출원과의 상호인용
본 출원은 2017년 12월 14일자 출원된 한국 특허 출원 제10-2017-0171962호 및 2018년 9월 7일자 출원된 한국 특허 출원 제10-2018-0107120호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 그라프트 공중합체 및 이를 포함하는 열가소성 수지 조성물 및 열가소성 수지 성형품에 관한 것이다.
일반적으로 공액 디엔계 단량체를 중합하여 제조된 디엔계 고무 중합체에 방향족 비닐 단량체와 비닐 시안 단량체를 그라프트 공중합시킨 ABS계 수지는 내충격성과 가공성이 뛰어나고 기계적 강도나 열변형 온도 등이 우수하며 착색성이 양호하여 전기전자용품, 자동차부품, 사무용기기 등 광범위하게 사용되고 있다. 그러나 ABS계 수지 제조에 사용되는 고무 중합체에 화학적으로 불안정한 불포화 결합을 함유하고 있어 자외선에 의해 고무 중합체가 쉽게 노화되어 내후성이 매우 취약하다는 문제점이 있다.
이러한 단점을 개선하기 위해 ABS계 수지를 압출하여 수지 조성물을 제조할 시에 내후성을 향상시킬 수 있는 안정제를 첨가하는 방법이 제안되었으나, 그 효과가 미비하며 여전히 자외선 등에 취약하다는 문제점이 있었다. 이에 디엔계 단량체와 아크릴계 단량체를 혼합하여 중합시킨 중합체를 사용하거나, 이중결합을 포함하는 디엔계 고무 중합체 대신에 화학적으로 보다 안정한 아크릴계 고무 중합체를 사용하는 방법이 제안되었다.
상기와 같이 불안정한 이중 결합을 포함하지 않는 아크릴계 고무 중합체를 사용한 내후성 열가소성 수지의 대표적인 예는 아크릴레이트-스티렌-아크릴로니트릴 공중합체(Acrylate-Styrene-Acrylonitrile, ASA)로, 중합체 내에 불안정한 이중결합을 포함하지 않음에 따라 내후성, 내화학성, 내약품성, 열 안정성 등이 매우 우수하고 이와 같은 특성이 요구되는 분야, 일 예로 옥외용 전기·전자 부품, 건축용 자재, 농기구소재, ASA/ABS 이층 시트(Sheet), 프로파일(Profile) 압출, 도로표지판, 옥외제품, 건재용 PVC, 레져용품, 스포츠용품, 자동차부품 등에 광범위하게 사용되고 있다.
내후성과 내노화성이 우수한 ASA 중합체의 제법은 독일특허 제1,260,135호에 개시되어 있으며, 여기서 사용된 코어는 평균 입경이 150 내지 800nm이고, 입도 분포가 좁은 가교된 아크릴레이트의 대구경 라텍스이다. 소구경 폴리아크릴레이트 라텍스를 사용하여 제조된 중합체에 비해, 대구경 폴리아크릴레이트 라텍스를 포함하는 중합체는 노치 충격강도가 개선되고 경도가 크며 수축이 감소된다. 그러나 대구경 아크릴로니트릴-아크릴레이트-스티렌 그라프트 공중합체는 소구경 아크릴로니트릴-아크릴레이트-스티렌 그라프트 공중합체에 비해 착색이 어렵다는 단점이 있다.
착색 성형물을 제조하기 위해 상응하는 ASA 중합체의 사용은 제한되는데, 즉 밝은 색깔이 아닌 흐릿한 파스텔 색상이 얻어진다.
또한, 미국특허 제4,224,419호에는 용이하게 착색될 수 있는 내후성의 고내충격 열가소성 수지에 있어서, 코어로서 평균 입경이 약 50 내지 150 nm인 가교된 아크릴레이트 중합체, 그라프트 쉘로서 스티렌과 아크릴로니트릴로부터 제조된 제1 아크릴로니트릴-아크릴레이트-스티렌 그라프트 공중합체, 코어로서 평균 입경이 약 200 내지 500 nm인 가교된 아크릴레이트 중합체, 그라프트 쉘로서 스티렌과 아크릴로니트릴로부터 별도 제조된 제2 아크릴로니트릴-아크릴레이트-스티렌 그라프트 공중합체, 및 아크릴로니트릴과 스티렌 또는 α-메틸 스티렌과의 공중합체를 포함하는 경질 성분을 포함하며, 코어 성분간의 중량비가 90:10 내지 35:65이고 2개의 코어 성분의 합의 비율이 혼합물을 기준으로 하여 약 10 내지 35 중량%인 성형재료가 기술되어 있다.
현재까지 공지된 재료는 내후성 및 기계적 물성이 우수하며 개선된 착색성을 갖는다. 하지만 계속 높아지는 고객이 요구하는 외관 특성 및 내후성 수준에는 아직 미흡하다.
이에, 본 발명자들은 ASA계 그라프트 공중합체의 시드 제조시 알킬 메타크릴레이트계 단량체를 주요 성분으로 사용함으로써 외관 특성 및 내후성이 향상되는 것을 확인하고, 코어의 입경 및 쉘의 그라프트율 또한 내후성 및 외관 특성에 영향을 줄 수 있음을 발견하여 본 발명을 완성하였다.
본 발명은 내후성 및 착색성이 우수한 그라프트 공중합체, 이를 포함하는 열가소성 수지 조성물 및 열가소성 수지 성형품을 제공하는 것을 목적으로 한다.
본 발명의 일 구현 예는 (A) 알킬 메타크릴레이트 단량체의 유래단위를 포함하는 시드; (B) 상기 시드 상에 형성되고 알킬 아크릴레이트 단량체의 유래단위를 포함하는 코어; 및 (C) 상기 코어 상에 형성되고 방향족 비닐계 단량체, 시안화 비닐계 단량체 및 알킬 메타크릴레이트 단량체 중 1종 이상의 유래단위를 포함하는 쉘;을 포함하고, 상기 코어의 평균 입경은 40 내지 90nm이며, 쉘의 그라프트율은 10 내지 30%인 그라프트 공중합체를 제공한다.
본 발명의 다른 구현 예는 상기 그라프트 공중합체; 및 방향족 비닐-시안화 비닐계 공중합체를 포함하는 열가소성 수지 조성물을 제공한다.
본 발명의 또 다른 구현 예는 상기 열가소성 수지 조성물을 포함하는 열가소성 수지 성형품을 제공한다.
본 발명의 그라프트 공중합체는 시드에 알킬 메타크릴레이트를 포함하고 코어 입경 및 쉘 그라프트율이 특정 범위로 제어됨으로써 내후성, 착색성 및 충격 강도가 모두 우수한 특성을 나타낸다.
따라서, 본 발명의 그라프트 공중합체를 포함하는 수지 조성물을 사출하여 제조된 열가소성 수지 성형품 또한 내후성이 우수하면서도 외관 특성이 우수하다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서에서 평균 입경(D50)은 입자의 입경 분포 곡선에 있어서, 체적 누적량의 50%에 해당하는 입경으로 정의할 수 있다. 상기 평균 입경(D50)은 예를 들어, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 상기 레이저 회절법은 일반적으로 서브미크론(submicron) 영역에서부터 수 mm 정도의 입경의 측정이 가능하며, 고 재현성 및 고 분해성의 결과를 얻을 수 있다.
본 발명의 일 구현 예로서, 그라프트 공중합체는 (A) 알킬 메타크릴레이트 단량체의 유래단위를 포함하는 시드; (B) 상기 시드 상에 형성되고 알킬 아크릴레이트 단량체의 유래단위를 포함하는 코어; 및 (C) 상기 코어 상에 형성되고 방향족 비닐계 단량체, 시안화 비닐계 단량체 및 알킬 메타크릴레이트 단량체 중 1종 이상의 유래단위를 포함하는 쉘을 포함하고, 상기 코어의 평균 입경은 40 내지 90nm이며, 쉘의 그라프트율은 10 내지 30%이다.
이하, 본 발명의 그라프트 공중합체의 제조방법을 단계별로 상세하게 설명한다.
그라프트 공중합체의 제조
(A) 시드의 제조
시드의 제조 단계에서, 알킬 메타크릴레이트계 단량체, 가교제, 개시제 및 유화제를 중합시켜 시드를 제조할 수 있으며, 선택적으로 전해질, 그라프팅제 및 산화-환원계 촉매 중 1종 이상을 더 첨가하여 중합할 수 있다.
상기 알킬 메타크릴레이트 단량체는 탄소수 1 내지 10개의 사슬 알킬 또는 분지형 알킬기를 포함하는 알킬 메타크릴레이트, 바람직하게는 탄소수 1 내지 4개의 사슬 알킬기를 포함하는 메타크릴레이트일 수 있다. 구체적으로, 메틸 메타크릴레이트, 에틸 메타크릴레이트, 프로필 메타크릴레이트, 부틸 메타크릴레이트, 헥실 메타크릴레이트, 옥틸 메타크릴레이트, 2-에틸헥실 메타크릴레이트로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
또한, 상기 시드 제조 단계에서 상기 알킬 메타크릴레이트 단량체를 단독으로 사용할 수 있으나, 알킬 아크릴레이트 단량체를 추가로 사용할 수도 있다. 이로써 그라프트 공중합체의 기계적 강도를 향상시킬 수 있다.
추가로 사용되는 알킬 아크릴레이트 단량체는 탄소수 1 내지 10개의 사슬 알킬 또는 분지형 알킬기를 포함하는 아크릴레이트, 바람직하게는 탄소수 1 내지 4개의 사슬 알킬기를 포함하는 아크릴레이트일 수 있다. 구체적으로, 메틸 아크릴레이트, 에틸 아크릴레이트, 프로필 아크릴레이트, 부틸 아크릴레이트, 헥실 아크릴레이트, 옥틸 아크릴레이트, 2-에틸헥실 아크릴레이트로 이루어진 군에서 선택된 1종 이상일 수 있다.
상기 (A) 시드를 구성하는 알킬 메타크릴레이트계 단량체의 유래단위 및 선택적으로 알킬 아크릴레이트 단량체의 유래단위는 그라프트 공중합체 총 중량을 기준으로 4 내지 30 중량%, 바람직하게 4 내지 20 중량%, 보다 바람직하게 4 내지 15 중량% 일 수 있다. 상기 함량 범위인 경우 내충격성, 내후성, 물성 밸런스 등이 우수한 그라프트 공중합체를 제조할 수 있다.
상기 시드 제조 단계로부터 수득된 시드의 평균입경(D50)은 30 내지 70nm일 수 있으며, 바람직하게 30 내지 60nm 이다. 상기 범위인 경우 그라프트 공중합체를 이용한 수지 성형품의 외관 특성 및 내충격성이 우수하다.
본 발명에서 가교제로서 불포화 비닐기를 포함하고 가교제 역할을 수행할 수 있는 아크릴계 화합물을 사용할 수 있다. 일 예로 폴리에틸렌글리콜 디아크릴레이트, 폴리에틸렌글리콜 디메타크릴레이트, 폴리프로필렌글리콜 디아크릴레이트, 폴리프로필렌글리콜 디메타크릴레이트, 에틸렌글리콜 디아크릴레이트, 에틸렌글리콜 디메타크릴레이트, 디비닐벤젠, 디에틸렌글리콜 디메타크릴레이트, 트리에틸렌글리콜 디메타크릴레이트, 1,3-부타디올 디메타크릴레이트, 헥산디올프로폭시레이트 디아크릴레이트, 네오펜틸글리콜 디메타크릴레이트, 네오펜틸글리콜 에톡시레이트 디아크릴레이트, 네오펜틸글리콜 프로폭시레이트 디아크릴레이트, 트리메틸올프로판 트리메타크릴레이트, 트리메틸올메탄 트리아크릴레이트, 트리메틸프로판에톡시레이트 트리아크릴레이트, 트리메틸프로판프로폭시레이트 트리아크릴레이트, 펜타에리트리톨에톡시레이트 트리아크릴레이트, 펜타에리트로톨프로폭시레이트 트리아크릴레이트 및 비닐트리메톡시실란으로 이루어지는 군으로부터 선택된 1종 이상일 수 있으나 이에 한정되는 것은 아니다.
상기 가교제는 그라프트 공중합체 제조에 사용되는 단량체 총 100 중량부를 기준으로 0.01 내지 3 중량부, 0.01 내지 1 중량부, 0.05 내지 1 중량부, 0.01 내지 0.5 중량부, 또는 0.1 내지 0.5 중량부로서 사용될 수 있다.
본 발명에서 개시제로서 수용성 개시제, 지용성 개시제 또는 이들 개시제를 혼합하여 사용할 수 있다.
상기 수용성 개시제는 일 예로 과황산 나트륨, 과황산 칼륨, 과황산 암모늄, 과인산 칼륨, 과산화 수소로 이루어진 군으로부터 선택되는 1종 이상일 수 있으나 이에 한정되지 않는다.
상기 지용성 개시제는 일 예로 t-부틸 퍼옥사이드, 큐멘 하이드로 퍼옥사이드, p-메탄 하이드로 퍼옥사이드, 디-t-부틸 퍼옥사이드, t-부틸쿠밀 퍼옥사이드, 아세틸 퍼옥사이드, 이소부틸 퍼옥사이드, 옥타노일 퍼옥사이드, 디벤조일 퍼옥사이드, 디이소프로필벤젠 하이드로 퍼옥사이드, 3,5,5-트리메틸헥산올 퍼옥사이드, t-부틸 퍼옥시 이소부틸레이트, 아조비스 이소부티로니트릴, 아조비스-2,4-디메틸발레로니트릴, 아조비스시클로헥산카르보니트릴, 및 아조비스 이소 낙산(부틸산) 메틸로 이루어진 군으로부터 선택된 1종일 수 있으나 이에 한정되는 것은 아니다.
상기 시드 제조 단계에서는 수용성 개시제를 사용하는 것이 바람직하다. 이로써 반응속도를 제어하여 원하는 크기의 중합체를 용이하게 제조할 수 있으며, 따라서 그라프트 공중합체의 물성이 향상되는 효과가 있다.
상기 개시제는 그라프트 공중합체 제조에 사용되는 단량체 총 100 중량부를 기준으로 0.01 내지 3 중량부, 바람직하게 0.01 내지 1 중량부로서 사용될 수 있다.
본 발명에서 유화제로서 C12∼C18 의 알킬 설포 석시네이트 금속염의 유도체, C12∼C20 의 탄소수를 가진 알킬 황산 에스테르 또는 설폰산 금속염의 유도체를 사용할 수 있다. 상기 C12∼C18 의 알킬 설포 석시네이트 금속염의 유도체로는 디사이클로헥실 설포네이트, 디헥실설포석시네이트의 나트륨 또는 칼륨염 등을 사용할 수 있고, C12∼C20 의 황산 에스테르 또는 설폰산 금속염으로는 나트륨 라우릭 설페이트, 나트륨 도데실 설페이트, 나트륨 도데실 벤젠 설페이트, 나트륨 옥타데실 설페이트, 나트륨 올레익 설페이트, 칼륨 도데실 설페이트, 칼륨 옥타 데실 설페이트 등의 알킬 설페이트 금속염 등을 사용할 수 있다. 또한, 유화제로서 그 수용액의 pH가 9∼13인, C12∼C20 의 지방산 금속염, 로진산 금속염 등의 카르복시산 금속염의 유도체를 사용할 수 있으며, 지방산 금속염의 예로는 페티산, 라우릴산 및 올레익산의 나트륨염 또는 칼륨염이 있으며, 로진산 금속염으로는 로진산 나트륨이나 로진산 칼륨이 있다. 상기 유화제는 단독 또는 2종 이상 혼합하여 사용할 수 있다.
본 명세서에서 어떤 화합물의 유도체는 그 화합물의 수소 또는 관능기 1개 또는 2개 이상이 다른 유기기 또는 무기기로 치환된 화합물을 의미한다.
상기 유화제는 그라프트 공중합체 제조시 사용되는 단량체 총 100 중량부를 기준으로 0.01 내지 5 중량부, 0.01 내지 3 중량부, 0.1 내지 2 중량부, 0.1 내지 1 중량부, 또는 0.5 내지 1.5 중량부로서 사용될 수 있다.
본 발명에서 전해질은 KCl, NaCl, KHCO3, NaHCO3, K2CO3, Na2CO3, KHSO3, NaHSO3, K4P2O7, Na4P2O7, K3PO4, Na3PO4, K2HPO4, Na2HPO4, KOH, NaOH, Na2S2O7으로 이루어진 군으로부터 선택되는 1종 이상일 수 있으나 이에 한정되는 것은 아니다.
상기 전해질은 그라프트 공중합체 제조에 사용되는 단량체 총 100 중량부를 기준으로 0.0001 내지 1 중량부, 0.001 내지 1 중량부, 또는 0.05 내지 1 중량부로 사용될 수 있으며, 이 범위 내에서 중합반응 및 라텍스의 안정성이 향상된다.
본 발명에서 그라프팅제로서 2 이상의 다른 반응성을 가지는 불포화 비닐기를 포함하는 화합물을 사용할 수 있다. 일 예로 알릴 메타크릴레이트, 트리알릴 이소시아누레이트, 트리알릴 아민 및 디알릴 아민으로 이루어진 군으로부터 선택된 1종 이상일 수 있으나 이에 한정되는 것은 아니다.
상기 그라프팅제는 그라프트 공중합체 제조에 사용되는 단량체 총 100 중량부를 기준으로 0.01 내지 3 중량부, 0.01 내지 1 중량부 또는 0.01 내지 0.1 중량부로 사용될 수 있으며, 이 범위 내에서 그라프트 공중합체의 그라프트율이 향상될 수 있다.
상기 산화-환원계 촉매는 피로인산 나트륨, 텍스트로즈, 황화 제 1철, 아황산나트륨, 소듐포름알데히드 설폭실레이트, 소듐에틸렌디아민 테트라아세테이트로 이루어진 군으로부터 선택된 1종 이상일 수 있으나 이에 한정되는 것은 아니다.
상기 산화-환원계 촉매는 그라프트 공중합체 제조에 사용되는 단량체 총 100 중량부를 기준으로 0.01 내지 3 중량부로서 사용될 수 있다.
(B) 코어의 제조
코어의 제조 단계에서, 상기 시드의 존재 하에, 알킬 아크릴레이트계 단량체, 가교제, 개시제 및 유화제를 중합시켜 코어를 제조할 수 있으며, 선택적으로 전해질, 그라프팅제 및 산화-환원계 촉매 중 1종 이상을 더 첨가하여 중합할 수 있다.
상기 (B) 코어의 알킬 아크릴레이트 단량체는 이에 제한되는 것은 아니나, 메틸 아크릴레이트, 에틸 아크릴레이트, 프로필 아크릴레이트, 부틸 아크릴레이트, 헥실 아크릴레이트, 옥틸 아크릴레이트, 2-에틸헥실 아크릴레이트로 이루어진 군에서 선택된 1종 이상일 수 있다.
상기 (B) 코어를 구성하는 알킬 아크릴레이트계 단량체의 유래단위는 그라프트 공중합체 총 중량을 기준으로 20 내지 60 중량%, 30 내지 60 중량% 또는 35 내지 50 중량% 일 수 있다. 상기 함량 범위인 경우 내충격성, 내후성, 물성 밸런스가 우수한 그라프트 공중합체를 제조할 수 있다.
상기 코어 제조 단계로부터 수득된 코어, 즉 상기 시드를 포함하는 코어의 평균입경(D50)은 40 내지 90nm이며, 바람직하게 40 내지 80nm, 보다 바람직하게는 45 내지 80nm, 보다 더 바람직하게 50 내지 70nm 이다. 코어 평균 입경이 40nm보다 작은 경우 충격강도가 저하되며 90nm보다 큰 경우에 내후성 향상에 한계가 있다.
코어 제조 단계에서 사용되는 가교제, 개시제, 유화제, 전해질, 그라프팅제 및 산화-환원계 촉매의 구체적인 예와 함량은 앞서 시드 제조 단계에서 살펴본 바와 동일한 내용이 적용될 수 있다.
(C) 쉘의 제조
쉘의 제조 단계에서, 상기 코어의 존재 하에, 방향족 비닐계 단량체, 시안화 비닐계 단량체 및 알킬 메타크릴레이트계 단량체 중 1종 이상의 단량체, 개시제 및 유화제를 중합시켜 쉘을 제조할 수 있으며, 선택적으로 가교제, 전해질, 그라프팅제, 산화-환원계 촉매 및 분자량 조절제 중 1종 이상을 더 첨가하여 중합할 수 있다.
상기 쉘은 방향족 비닐계 단량체 및 시안화 비닐계 단량체를 필수적으로 포함하는 것이 바람직하다. 또한, 알킬 메타크릴레이트 단량체를 추가로 포함할 수 있으며, 이로써 그라프트 공중합체의 내후성 및 외관 품질이 향상될 수 있다.
상기 방향족 비닐계 단량체는 스티렌, α-메틸스티렌, p-메틸스티렌 및 비닐 톨루엔으로 이루어진 군으로부터 선택되는 1종 이상일 수 있으며, 바람직하게는 스티렌이다.
상기 시안화 비닐계 단량체는 아크릴로니트릴, 메타크릴로니트릴 및 에타크릴로니트릴로 이루어진 군으로부터 선택되는 1종 이상일 수 있으며, 바람직하게는 아크릴로니트릴이다.
상기 (C) 쉘의 알킬 메타크릴레이트 단량체는 탄소수 1 내지 10개의 사슬 알킬 또는 분지형 알킬기를 포함하는 알킬 메타크릴레이트, 바람직하게는 탄소수 1 내지 4개의 사슬 알킬기를 포함하는 메타크릴레이트일 수 있다. 구체적으로, 메틸 메타크릴레이트, 에틸 메타크릴레이트, 프로필 메타크릴레이트, 부틸 메타크릴레이트, 헥실 메타크릴레이트, 옥틸 메타크릴레이트, 2-에틸헥실 메타크릴레이트로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 (C) 쉘을 구성하는 방향족 비닐계 단량체, 시안화 비닐계 단량체 및 알킬 메타크릴레이트계 단량체 중 1종 이상의 단량체의 유래단위는 그라프트 공중합체 총 중량을 기준으로 20 내지 60 중량%, 30 내지 60 중량% 또는 35 내지 50 중량% 일 수 있다.
일 예로 상기 그라프트 공중합체는 그라프트 공중합체 총 중량을 기준으로 방향족 비닐계 단량체의 유래단위를 20 내지 40 중량%, 바람직하게 25 내지 40 중량부% 포함할 수 있으며, 시안화 비닐계 단량체의 유래단위를 5 내지 20 중량%, 바람직하게 10 내지 20 중량%를 포함할 수 있다. 이 범위 내에서 그라프트 공중합체의 기계적 강도 및 외관 품질이 향상될 수 있다.
상기 쉘 제조 단계로부터 수득된 그라프트 공중합체 입자의 평균입경(D50)은 60 내지 120nm, 바람직하게 65 내지 120nm, 더욱 바람직하게 65 내지 110nm일 수 있다. 상기 범위 내인 경우 그라프트 공중합체의 내후성 및 충격강도가 우수할 수 있다.
상기 쉘의 그라프트율은 10 내지 30%이고, 바람직하게 20 내지 30% 또는 15 내지 25%이다. 쉘 그라프트율이 10% 이하인 경우 충격 및 착색성이 저하되며 쉘 그라프트율이 30% 이상인 경우 내후성 향상에 한계가 있다.
상기 쉘의 그라프트율은, 코어에 결합된 방향족 비닐계 단량체, 시안화 비닐계 단량체 및 알킬 메타크릴레이트 단량체 중 1종 이상의 유래단위의 단량체 함량 / 시드 및 코어 함량 * 100(%)로 계산될 수 있다.
예를 들어, 상기 쉘의 그라프트율은 그라프트 공중합체 1g을 아세톤에 녹여 원심분리기(15000rpm)로 겔과 졸을 분리시키고 겔 부분을 진공 오븐에 건조시켜 무게를 측정한 다음, (겔 함량 - 시드 및 코어 함량) / 시드 및 코어 함량 * 100(%)로 계산하여 수득된 값일 수 있다. 상기 시드 및 코어 함량은 그라프트 공중합체에 그라프트 공중합체 내 시드 및 코어의 분율을 곱하여 계산될 수 있다.
쉘 제조 단계에서 사용되는 가교제, 개시제, 유화제, 전해질, 그라프팅제 및 산화-환원계 촉매의 구체적인 예는 앞서 시드 제조 단계에서 살펴본 바와 동일한 내용이 적용될 수 있다.
바람직하게는, 쉘 제조 단계에서는 지용성 개시제를 사용할 수 있다. 지용성 개시제를 사용함으로써 높은 중합도를 달성할 수 있으며, 이에 의해 수지의 생산성이 될 수 있다.
또한, 쉘 제조 단계는 분자량 조절제를 더 포함하여 수행될 수 있다. 일 예로 3급 도데실머캅탄 등의 머캅탄류 화합물을 사용할 수 있으나 이에 한정되는 것은 아니다.
상기 분자량 조절제는 그라프트 공중합체 제조에 사용되는 단량체 총 100 중량부를 기준으로 0.01 내지 2 중량부, 0.05 내지 2 중량부 또는 0.05 내지 1 중량부로 사용될 수 있으며, 이 범위 내에서 목적하는 크기를 갖는 중합체를 용이하게 제조할 수 있다.
상기 시드, 코어 및 쉘 제조 단계를 통해 수득된 그라프트 공중합체 라텍스에 대하여 응집, 세척, 건조 등의 통상적인 공정을 거쳐 분말형태의 그라프트 공중합체를 수득할 수 있다. 일 예로 상기 그라프트 공중합체 라텍스에 금속염 또는 산을 첨가하여 60 내지 100℃의 온도 조건에서 응집시킨 다음, 숙성, 탈수, 세척 및 건조 공정을 거칠 수 있으나, 이에 한정되는 것은 아니다.
상기 그라프트 공중합체의 제조방법에서 명시하지 않은 다른 조건들, 예컨대 중합 전환율, 반응압력, 반응시간, 겔 함량 등은 본 발명이 속한 기술분야에서 통상적으로 사용되는 범위 내인 경우 특별히 제한되지 않으며, 필요에 따라 적절히 선택하여 실시할 수 있음을 명시한다.
열가소성 수지 조성물
본 발명의 다른 구현 예는 상기 그라프트 공중합체; 및 방향족 비닐-시안화 비닐계 공중합체를 포함하는 열가소성 수지 조성물을 제공한다.
상기 열가소성 수지 조성물은 상기 그라프트 공중합체 및 방향족 비닐-시안화 비닐계 공중합체를 혼합하여 압출혼련하는 단계를 포함하여 제조될 수 있다.
상기 압출은 일 예로 200 내지 300 ℃ 및 30 내지 100 rpm, 또는 200 내지 280 ℃ 및 30 내지 70 rpm인 조건에서 수행될 수 있고, 이 범위 내에서 가공성이 우수하고 목적하는 물성을 갖는 열가소성 수지 조성물이 제조될 수 있다.
상기 추가되는 방향족 비닐-시안화 비닐계 공중합체는 통상의 것을 사용할 수 있다. 예를 들어, 상기 방향족 비닐계 단량체는 스티렌, α-메틸스티렌, p-메틸스티렌 및 비닐 톨루엔으로 이루어진 군으로부터 선택되는 1종 이상이며, 바람직하게는 스티렌이다.
상기 시안화 비닐계 단량체는 아크릴로니트릴, 메타크릴로니트릴 및 에타크릴로니트릴로 이루어진 군으로부터 선택되는 1종 이상이며, 바람직하게는 아크릴로니트릴이다.
또한, 상기 방향족 비닐-시안화 비닐계 공중합체는 알킬(메트)아크릴레이트 단량체의 유래단위를 더 포함할 수 있다. 상기 알킬(메트)아크릴레이트 단량체는 탄소수 1 내지 10개의 사슬 알킬 또는 분지형 알킬기를 포함하는 알킬(메트)아크릴레이트, 바람직하게는 탄소수 1 내지 4개의 사슬 알킬기를 포함하는 (메트)아크릴레이트일 수 있다.
바람직하게, 상기 알킬(메트)아크릴레이트 단량체는 메틸 메타크릴레이트, 에틸 메타크릴레이트, 프로필 메타크릴레이트, 부틸 메타크릴레이트, 헥실 메타크릴레이트, 옥틸 메타크릴레이트, 2-에틸헥실 메타크릴레이트로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
또한, 상기 추가되는 알킬(메트)아크릴레이트 단량체는 상기 방향족 비닐계 단량체 및 시안화 비닐계 단량체와의 공중합물로서 제공되거나, 단독 중합물로 추가될 수 있다.
상기 방향족 비닐-시안화 비닐계 공중합체는 공중합체 총 중량에 대하여 방향족 비닐계 단량체의 유래단위 60 내지 85 중량% 및 시안화 비닐계 단량체의 유래단위 15 내지 40 중량% 를 포함할 수 있으며, 이 범위인 경우 최종 열가소성 수지 조성물의 기계적 강도, 내후성 및 외관 품질이 우수하다.
또한, 본 발명의 열가소성 수지 조성물은 수지 조성물 총 중량에 대하여 상기 그라프트 공중합체를 20 내지 60 중량%, 바람직하게 30 내지 60 중량%, 보다 바람직하게 40 내지 50 중량% 포함하고, 상기 방향족 비닐-시안화 비닐계 공중합체를 40 내지 80 중량%, 바람직하게 40 내지 70 중량%, 보다 바람직하게 50 내지 60 중량% 포함할 수 있다. 상기 범위 내에서 기계적 물성, 외관 품질 및 가공성이 우수한 이점이 있다.
상기 열가소성 수지 조성물의 제조 시, 난연제, 활제, 항균제, 이형제, 핵제, 가소제, 열안정제, 산화방지제, 광안정제, 안료, 염료, 상용화제로 이루어진 군으로부터 선택된 1종 이상을 더 첨가할 수 있다.
상기 첨가제는 열가소성 수지 조성물 총 100 중량부에 대하여 0.1 내지 10 중량부로서 첨가될 수 있으며, 바람직하게 1 내지 7 중량부, 보다 바람직하게 1 내지 5 중량부이다. 상기 범위 내에서 수지의 고유한 물성이 저하되지 않으면서도 첨가제의 효과가 발현될 수 있다.
상기 열가소성 수지 조성물은 내후성 평가를 위해 WOM SAE J1960에 의거하여 5000 시간 동안 방치 후 측정한 색도 변화값(△E)이 3 이하, 바람직하게는 1 내지 2.5일 수 있다.
또한, 상기 열가소성 수지 조성물에 대하여 분광색차계를 이용하여 측정된 흑색도(L) 값은 26.6 이하, 바람직하게 26.0 이하일 수 있다.
또한, 상기 열가소성 수지 조성물에 대하여 ASTM 256에 의거하여 측정된 아이조드 충격강도는 7 내지 9 kgf·cm/cm, 바람직하게 8 내지 9 kgf·cm/cm 일 수 있다.
열가소성 수지 성형품
본 발명의 열가소성 수지 조성물은 사출 등의 열 성형 공정을 통해 열가소성 수지 성형품으로 제조될 수 있다.
일 예로 사출은 190 내지 300 ℃ 또는 200 내지 250 ℃ 온도에서 및 30 내지 80 bar 또는 30 내지 70 bar 압력에서 수행될 수 있고, 이 범위 내에서 가공성이 우수하고 목적하는 기계적 특성 및 외관 특성을 가질 수 있다.
상기 열가소성 그라프트 공중합체 수지 조성물 및 성형품에서 명시적으로 기재하지 않은 다른 조건들은 본 발명이 속하는 기술분야에서 통상적으로 실시되고 있는 범위 내인 경우 특별히 제한되지 않으며, 필요에 따라 적절히 선택할 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
실시예
실시예 1
<시드(A)의 형성>
질소 치환된 반응기에 메틸 메타크릴레이트 20 중량부, 나트륨 도데실설페이트 2.0 중량부, 에틸렌 글리콜 디메타크릴레이트 0.1 중량부, 알릴메타크릴레이트 0.1 중량부 및 수산화 칼륨 0.1 중량부를 일괄 투여하고, 70℃까지 승온시킨 후, 칼륨 퍼설페이트 0.1 중량부를 넣어 반응을 개시시켰다. 이후 1시간 동안 중합을 진행하였다.
반응 종료 후 수득한 고무 중합체 입자의 평균크기는 하기 방법으로 측정한 결과, 48nm로 확인되었다.
- 평균입경 측정: 중합체 라텍스 1g을 증류수 100g과 혼합한 다음, 다이나믹 레이저라이트 스케트링법으로 Nicomp 380HPL(미국, PSS·Nicomp사)을 사용하여 가우시안 모드로 측정하였다.
<코어(B)의 형성>
상기 고분자 시드에 부틸 아크릴레이트 40 중량부, 나트륨 도데실설페이트 0.5 중량부, 에틸렌 글리콜 디메타크릴레이트 0.25 중량부, 알릴메타크릴레이트 0.25 중량부 및 칼륨 퍼설페이트 0.1 중량부를 혼합한 혼합물을 70℃ 에서 2.0 시간 동안 연속 투입하고, 투입 종료 후 1시간 동안 더 중합을 실시하였다.
상기 반응 종료 후 수득한 고무 중합체 입자의 평균크기는 70nm로 확인되었다.
<그라프트 쉘(C)의 형성>
상기 고분자 코어에 존재 하에 스티렌 28 중량부, 아크릴로니트릴 12 중량부를 포함하는 단량체 혼합물, 나트륨 도데실설페이트 0.5 중량부, 3급 도데실 머캅탄(TDDM) 0.1 중량부 및 큐멘 하이드로퍼옥사이드 0.05 중량부를 포함하는 유화액과 피로인산 나트륨 0.09 중량부, 텍스트로즈 0.12 중량부, 황화 제 1철 0.002 중량부를 포함하는 혼합액을 각각 75℃에서 3시간 동안 연속 투입하면서 중합반응을 실시하였다. 중합 전환율을 높이기 위하여 상기 유화액과 혼합액의 투입이 완료된 후 75℃에서 1시간 동안 더 반응시키고 60℃까지 냉각시켜 중합반응을 종료하여 그라프트 공중합체 라텍스를 제조하였다.
제조된 그라프트 공중합체 라텍스의 최종 입자 평균크기는 88nm 이고, 그라프트율은 25%이다.
상기 그라프트율은, 그라프트 공중합체 1g을 아세톤에 녹여 원심분리기(15000rpm)로 겔과 졸을 분리시킨 다음 겔 부분을 진공 오븐에 잘 건조시켜 무게를 측정하였다. 상기 측정된 겔 함량에서 시드 및 코어 함량을 빼서 쉘의 그라프트된 양을 계산하고, 이를 시드 및 코어의 총량으로 나누어 백분율로서 상기 그라프트율을 계산하였다.
<그라프트 공중합체 분말의 제조>
상기 제조된 그라프트 공중합체 라텍스에 염화칼슘 수용액 0.8 중량부를 적용하여 70℃에서 상압 응집을 진행한 후, 93℃에서 숙성하고, 탈수 및 세척하여 90℃의 열풍으로 30분 동안 건조한 후 그라프트 공중합체 분말을 수득하였다.
<열가소성 수지 조성물의 제조>
상기 그라프트 공중합체 분말 50 중량부, 경질 매트릭스 스티렌-아크릴로니트릴 공중합체(아크릴로 니트릴 30 중량% 및 스티렌 70 중량%) 50 중량부, 활제 1.5 중량부, 산화방지제 1.0 중량부, 자외선 안정제 1.0 중량부를 첨가하고 혼합하였다. 상기 혼합물을 220℃ 실린더 온도에서 36파이 압출 혼련기를 사용하여 펠렛 형태로 제조하고, 상기 펠렛 형태의 수지를 사출(사출온도 200 내지 230℃, 사출압력 40 내지 60 bar)하여 물성측정을 위한 시편을 제조하였다.
실시예 2
상기 실시예 1의 고분자 시드 제조 단계에서 나트륨 도데실설페이트 3.0 중량부를 사용하여 (B)의 평균입경이 50nm인 그라프트 공중합체를 제조한 것을 제외하고는 상기 실시예 1과 동일하게 수행하였다.
실시예 3
상기 실시예 1에서 (A), (B)를 하기 표 1에 기재된 함량으로 사용한 것을 제외하고는 상기 실시예 1과 동일하게 수행하였다.
실시예 4
상기 실시예 1에서 (C)를 하기 표 1에 기재된 성분 및 함량으로 사용한 것을 제외하고는 상기 실시예 1과 동일하게 수행하였다.
실시예 5
상기 실시예 1에서 (A)를 하기 표 1에 기재된 성분 및 함량으로 사용한 것을 제외하고는 상기 실시예 1과 동일하게 수행하였다.
실시예 6
상기 실시예 1의 열가소성 수지 조성물의 제조 단계에서 경질 매트릭스 스티렌-아크릴로니트릴 공중합체(아크릴로 니트릴 30 중량%, 스티렌 70 중량%) 30 중량부에 메틸 메타크릴레이트 중합체 20 중량부를 사용한 것을 제외하고는 상기 실시예 1과 동일하게 수행하였다.
비교예 1
상기 실시예 1의 고분자 시드 제조 단계에서 나트륨 도데실설페이트 0.5 중량부를 사용하여 (B)의 평균입경이 100nm인 그라프트 공중합체를 제조한 것을 제외하고는 상기 실시예 1과 동일하게 수행하였다.
비교예 2
실시예 1의 고분자 시드 제조 단계에서 나트륨 도데실 설페이트를 5 중량부 사용하고, 각 성분 (A), (B), (C)를 하기 표 1에 기재된 함량으로 사용하여 (B)의 평균입경이 35nm인 그라프트 공중합체를 제조한 것을 제외하고는 상기 실시예 1과 동일하게 수행하였다.
비교예 3
실시예 1의 고분자 시드 제조 단계에서 나트륨 도데실 설페이트를 3 중량부 사용하고, 각 성분 (B), (C)를 하기 표 1에 기재된 함량으로 사용하여, 쉘의 그라프트율이 5%인 그라프트 공중합체를 제조한 것을 제외하고는 상기 실시예 1과 동일하게 수행하였다.
비교예 4
실시예 1의 고분자 시드 제조 단계에서 (A), (B), (C)를 하기 표 1에 기재된 함량으로 사용하여, 쉘의 그라프트율이 40%인 그라프트 공중합체를 제조한 것을 제외하고는 상기 실시예 1과 동일하게 수행하였다.
비교예 5
상기 실시예 1에서 (A)를 하기 표 1에 기재된 성분으로 사용한 것을 제외하고는 상기 실시예 1과 동일하게 수행하였다.
[표 1]
Figure PCTKR2018010716-appb-I000001
실험예
상기 실시예 및 비교예에 따라 제조된 ASA계 그라프트 공중합체 및 이를 포함하는 열가소성 수지 조성물의 물성을 하기와 같은 방법으로 측정하였으며, 그 결과를 하기 표 2에 나타냈다.
1) 내후성(△E)
웨더로메터(weather-o-meter)(ATLAS사 Ci35A)로 SAE J1960에 의거하여 5000 시간 동안 방치 후 색상 값을 측정하여 하기 수학식 1에 따라 초기 색상 값과 비교하여 변색도(△E)를 구하였다. 여기서 △E는 내후성 실험 전후의 CIE Lab 값의 산술 평균값으로, 값이 0에 가까울수록 색 변화 정도가 작은 것이며 내후성이 우수함을 나타낸다.
[수학식 1]
Figure PCTKR2018010716-appb-I000002
(상기 수학식 1에서, L, a, b는 사출 직후 측정한 초기 색상 값이고, L', a', b'는 5000 시간 경과 후 측정한 색상 값이다.)
2) 수지 착색성(L)
수지 조성물 가공시 1 wt% 카본블랙을 첨가하고, 색차계를 이용하여 착색성 측정 시편의 L값을 측정하였다. L값이 낮을수록 진한 흑색을 띠게 되어 안료 착색성이 좋음을 의미한다.
3) 아이조드 충격강도 (kgf·cm/cm)
두께 1/4"의 열가소성 수지 조성물 시편에 대하여 표준측정 ASTM 256의 방법으로 충격강도를 측정하였다.
[표 2]
Figure PCTKR2018010716-appb-I000003
상기 표 2에서, 실시예 1 내지 6의 AN-MMA-SN 그라프트 공중합체를 포함하는 열가소성 수지 조성물은 충격강도, 외관 특성 및 내후성이 우수한 것을 확인할 수 있다. 반면, 코어의 평균입경이 90nm를 초과하는 비교예 1의 경우 내후성이 저하되었으며, 코어의 평균입경이 30nm 미만인 비교예 2의 경우 내후성 및 착색성은 유지되었으나 충격강도가 크게 저하되었다. 또한, 쉘의 그라프트율이 10% 미만인 비교예 3의 경우 착색성 및 충격강도가 저하되었으며, 그라프트율이 30% 초과인 비교예 4의 경우 내후성이 저하된다.
또한, 시드에 메틸 메타크릴레이트 대신 부틸 아크릴레이트를 사용한 비교예 5의 경우 내후성 및 착색성이 모두 저하되는 것을 확인하였다.

Claims (14)

  1. (A) 알킬 메타크릴레이트 단량체의 유래단위를 포함하는 시드;
    (B) 상기 시드 상에 형성되고 알킬 아크릴레이트 단량체의 유래단위를 포함하는 코어; 및
    (C) 상기 코어 상에 형성되고 방향족 비닐계 단량체, 시안화 비닐계 단량체 및 알킬 메타크릴레이트 단량체 중 1종 이상의 유래단위를 포함하는 쉘;을 포함하고,
    상기 코어의 평균 입경은 40 내지 90nm이며, 쉘의 그라프트율은 10 내지 30%인 것을 특징으로 하는 그라프트 공중합체.
  2. 제1항에 있어서,
    상기 시드의 평균입경은 30 내지 70nm인 것을 특징으로 하는 그라프트 공중합체.
  3. 제1항에 있어서,
    상기 코어의 평균 입경은 50 내지 70nm인 것을 특징으로 하는 그라프트 공중합체.
  4. 제1항에 있어서,
    상기 쉘의 그라프트율은 15 내지 25%인 것을 특징으로 하는 그라프트 공중합체.
  5. 제1항에 있어서,
    상기 (A) 시드의 알킬 메타크릴레이트 단량체는 메틸 메타크릴레이트, 에틸 메타크릴레이트, 프로필 메타크릴레이트, 부틸 메타크릴레이트, 헥실 메타크릴레이트, 옥틸 메타크릴레이트, 2-에틸헥실 메타크릴레이트로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는 그라프트 공중합체.
  6. 제1항에 있어서,
    상기 (A) 시드는 알킬 아크릴레이트 단량체의 유래단위를 더 포함하는 것을 특징으로 하는 그라프트 공중합체.
  7. 제6항에 있어서,
    상기 (A) 시드의 알킬 아크릴레이트 단량체는 메틸 아크릴레이트, 에틸 아크릴레이트, 프로필 아크릴레이트, 부틸 아크릴레이트, 헥실 아크릴레이트, 옥틸 아크릴레이트, 2-에틸헥실 아크릴레이트로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는 그라프트 공중합체.
  8. 제1항에 있어서,
    상기 (B) 코어의 알킬 아크릴레이트 단량체는 메틸 아크릴레이트, 에틸 아크릴레이트, 프로필 아크릴레이트, 부틸 아크릴레이트, 헥실 아크릴레이트, 옥틸 아크릴레이트, 2-에틸헥실 아크릴레이트로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는 그라프트 공중합체.
  9. 제1항에 있어서,
    상기 공중합체는 공중합체의 총 중량에 대하여
    (A) 시드 4 내지 30 중량%;
    (B) 코어 20 내지 60 중량%; 및
    (C) 쉘 20 내지 60 중량%를 포함하는 것을 특징으로 하는 그라프트 공중합체.
  10. 제1항 내지 제9항 중 어느 한 항의 그라프트 공중합체; 및
    방향족 비닐-시안화 비닐계 공중합체를 포함하는 것을 특징으로 하는 열가소성 수지 조성물.
  11. 제10항에 있어서,
    상기 방향족 비닐-시안화 비닐계 공중합체는 알킬(메트)아크릴레이트 단량체의 유래단위를 더 포함하는 것을 특징으로 하는 열가소성 수지 조성물.
  12. 제10항에 있어서,
    열가소성 수지 조성물은 수지 조성물 총 중량에 대하여
    상기 그라프트 공중합체 20 내지 60 중량%; 및
    방향족 비닐-시안화 비닐계 공중합체 40 내지 80 중량%를 포함하는 것을 특징으로 하는 열가소성 수지 조성물.
  13. 제10항에 있어서,
    웨더로메터(weather-o-meter)(ATLAS사 Ci35A)로 SAE J1960에 의거하여 5000 시간 동안 방치 후 측정된 색도 변화값(△E)이 3 이하인 것을 특징으로 하는 열가소성 수지 조성물.
  14. 제10항의 열가소성 수지 조성물을 포함하는 것을 특징으로 하는 열가소성 수지 성형품.
PCT/KR2018/010716 2017-12-14 2018-09-12 그라프트 공중합체, 이를 포함하는 열가소성 수지 조성물 및 열가소성 수지 성형품 WO2019117433A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18855164.2A EP3517557B1 (en) 2017-12-14 2018-09-12 Graft copolymer, and thermoplastic resin composition and thermoplastic resin molded product which comprise same
US16/339,308 US11384189B2 (en) 2017-12-14 2018-09-12 Graft copolymer, and thermoplastic resin composition and thermoplastic resin molded article comprising the same
JP2019528535A JP6768957B2 (ja) 2017-12-14 2018-09-12 グラフト共重合体、これを含む熱可塑性樹脂組成物、および熱可塑性樹脂成形品
CN201880003958.2A CN110167978B (zh) 2017-12-14 2018-09-12 接枝共聚物、包含该接枝共聚物的热塑性树脂组合物和热塑性树脂模制品

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0171962 2017-12-14
KR20170171962 2017-12-14
KR1020180107120A KR102074489B1 (ko) 2017-12-14 2018-09-07 그라프트 공중합체, 이를 포함하는 열가소성 수지 조성물 및 열가소성 수지 성형품
KR10-2018-0107120 2018-09-07

Publications (1)

Publication Number Publication Date
WO2019117433A1 true WO2019117433A1 (ko) 2019-06-20

Family

ID=66554090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/010716 WO2019117433A1 (ko) 2017-12-14 2018-09-12 그라프트 공중합체, 이를 포함하는 열가소성 수지 조성물 및 열가소성 수지 성형품

Country Status (2)

Country Link
EP (1) EP3517557B1 (ko)
WO (1) WO2019117433A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1260135B (de) 1965-01-05 1968-02-01 Basf Ag Schlagfeste thermoplastische Formmassen
US4224419A (en) 1978-06-20 1980-09-23 Basf Aktiengesellschaft Weathering-resistant, high-impact, easily colored thermoplastic compositions
JP2000186124A (ja) * 1998-12-22 2000-07-04 Kanegafuchi Chem Ind Co Ltd グラフト共重合体及び樹脂組成物
KR20050015396A (ko) * 2003-08-05 2005-02-21 주식회사 엘지화학 그라프트 공중합체 라텍스 및 그의 건조 분말 제조방법
KR20090074979A (ko) * 2008-01-03 2009-07-08 주식회사 엘지화학 투명 수지 조성물 및 이의 제조방법
KR20110088803A (ko) * 2010-01-29 2011-08-04 주식회사 엘지화학 다층 구조를 가지는 투명 아크릴계 수지 조성물 및 그 제조 방법
KR20170090765A (ko) * 2016-01-29 2017-08-08 주식회사 엘지화학 열가소성 수지 조성물

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104066757B (zh) * 2011-12-30 2017-02-22 第一毛织株式会社 具有优异的耐冲击性、耐候性、和着色性的asa接枝共聚物,以及其制备方法
KR101425754B1 (ko) * 2012-08-27 2014-08-05 주식회사 엘지화학 아크릴로니트릴―아크릴레이트―스티렌 그라프트 공중합체 및 이를 포함하는 열가소성 수지 조성물

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1260135B (de) 1965-01-05 1968-02-01 Basf Ag Schlagfeste thermoplastische Formmassen
US4224419A (en) 1978-06-20 1980-09-23 Basf Aktiengesellschaft Weathering-resistant, high-impact, easily colored thermoplastic compositions
JP2000186124A (ja) * 1998-12-22 2000-07-04 Kanegafuchi Chem Ind Co Ltd グラフト共重合体及び樹脂組成物
KR20050015396A (ko) * 2003-08-05 2005-02-21 주식회사 엘지화학 그라프트 공중합체 라텍스 및 그의 건조 분말 제조방법
KR20090074979A (ko) * 2008-01-03 2009-07-08 주식회사 엘지화학 투명 수지 조성물 및 이의 제조방법
KR20110088803A (ko) * 2010-01-29 2011-08-04 주식회사 엘지화학 다층 구조를 가지는 투명 아크릴계 수지 조성물 및 그 제조 방법
KR20170090765A (ko) * 2016-01-29 2017-08-08 주식회사 엘지화학 열가소성 수지 조성물

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3517557A4

Also Published As

Publication number Publication date
EP3517557A1 (en) 2019-07-31
EP3517557B1 (en) 2020-06-17
EP3517557A4 (en) 2019-10-23

Similar Documents

Publication Publication Date Title
KR102080102B1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
KR100509868B1 (ko) 내후성 및 외관특성이 우수한 열가소성 수지 조성물
KR102005364B1 (ko) Asa계 그라프트 공중합체의 제조방법, 이를 포함하는 열가소성 asa계 수지 조성물의 제조방법 및 asa계 성형품의 제조방법
WO2013100448A1 (ko) 내충격성, 내후성, 및 착색성이 우수한 asa 그라프트 공중합체 및 그 제조방법
KR20190071572A (ko) 그라프트 공중합체, 이를 포함하는 열가소성 수지 조성물 및 열가소성 수지 성형품
WO2017095060A1 (ko) 열가소성 수지 조성물 및 이로부터 제조되는 성형품
KR100708986B1 (ko) 다층구조의 그라프트 공중합체 및 그 제조방법
WO2017099409A1 (ko) 열가소성 그라프트 공중합체 수지, 이를 제조하는 방법, 및 이를 포함하는 열가소성 수지 조성물
WO2018174395A1 (ko) Asa계 그라프트 공중합체의 제조방법, 이를 포함하는 열가소성 수지 조성물의 제조방법 및 성형품의 제조방법
KR20200049604A (ko) 열가소성 수지 조성물
KR20120009860A (ko) Pvc공압출용 asa 수지 조성물, 이로부터 제조된 필름, 압출시트 및 건축용 외장재
KR20190064989A (ko) 열가소성 수지 조성물 및 이를 이용한 열가소성 수지 성형품
JP2004536935A (ja) アクリロニトリル−ブタジエン−スチレン(abs)熱可塑性透明樹脂
WO2018139775A1 (ko) 그라프트 공중합체, 이의 제조방법, 이를 포함하는 열가소성 수지 조성물 및 성형품
WO2015030415A1 (ko) 투명 abs 수지 및 투명 abs 수지 조성물
KR101702167B1 (ko) 열가소성 수지 조성물
KR101151166B1 (ko) 그라프트 공중합체, 그의 제조방법 및 이를 함유하는 열가소성 수지 조성물
KR20210073050A (ko) 알킬 아크릴레이트 화합물-비닐시안 화합물-방향족 비닐 화합물 그라프트 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2019117433A1 (ko) 그라프트 공중합체, 이를 포함하는 열가소성 수지 조성물 및 열가소성 수지 성형품
WO2014208965A1 (ko) 표면선명성과 광택도가 우수한 열가소성 수지 조성물의 제조방법
WO2021040269A1 (ko) (메트)아크릴레이트 그라프트 공중합체를 포함하는 열가소성 수지 조성물 및 이의 제조방법
US5777036A (en) Particulate graft copolymers and thermoplastic molding materials containing them and having improved colorability
US7195816B2 (en) Acrylic film and laminates comprising the same
KR100990586B1 (ko) 무광택 열가소성 수지 조성물
KR20200049215A (ko) 열가소성 수지 조성물

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018855164

Country of ref document: EP

Effective date: 20190321

ENP Entry into the national phase

Ref document number: 2019528535

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE