WO2019117381A1 - 3차원 이종 기공을 가지며 촉매 비활성화 방지를 위한 인이 첨가된 수소제조용 촉매 지지체 및 이의 제조방법 - Google Patents

3차원 이종 기공을 가지며 촉매 비활성화 방지를 위한 인이 첨가된 수소제조용 촉매 지지체 및 이의 제조방법 Download PDF

Info

Publication number
WO2019117381A1
WO2019117381A1 PCT/KR2017/014865 KR2017014865W WO2019117381A1 WO 2019117381 A1 WO2019117381 A1 WO 2019117381A1 KR 2017014865 W KR2017014865 W KR 2017014865W WO 2019117381 A1 WO2019117381 A1 WO 2019117381A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
ethylene oxide
aluminum
alumina support
support
Prior art date
Application number
PCT/KR2017/014865
Other languages
English (en)
French (fr)
Inventor
임동하
문건대
임은미
서호준
정해영
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Publication of WO2019117381A1 publication Critical patent/WO2019117381A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a reforming catalyst support for hydrogen production using phosphoric acid having three-dimensional heterogeneous pores and a method for preparing the same. More particularly, the present invention relates to a catalyst support having a mesopore of less than 20 nm The present invention relates to a reforming catalyst support having a large specific surface area and having three-dimensional heterogeneous pores by simultaneously forming macropores of 100 nm or more, and a method for producing the same.
  • Hydrogen energy is attracting attention as a renewable future energy source to replace conventional fossil fuels with limited available reserves.
  • the importance of hydrogen fuel cells accelerated from the middle of the 20th century has been acknowledged as a result of research and market expansion.
  • reforming reaction Generally, hydrogen is produced through a reforming reaction using hydrocarbons and alcohols as main ingredients.
  • Known reforming reactions include steam reforming (partial reforming), partial oxidation Oxidation, and Auto-thermal Reforming.
  • the steam reforming reaction has been widely used commercially since it has a relatively high yield of hydrogen production and is capable of stable operation.
  • the steam reforming reaction is advantageous in the production of hydrogen and synthesis gas for various purposes because the ratio of hydrocarbon and steam used as a reactant and the reaction temperature can be appropriately adjusted to maximize the yield of hydrogen finally obtained.
  • methane is used as the main raw material of steam reforming reaction.
  • This methane is mainly composed of Liquefied Natural Gas (LNG), which is vaporized and supplied to the industrial, residential complex, hydrogen station, etc. through the city gas pipeline So that it can be easily supplied.
  • LNG Liquefied Natural Gas
  • Rhodium, palladium, ruthenium, platinum, iridium and the like, which are precious metals, and nickel, which is a non-noble metal, have been mainly studied as the active metals of the steam reforming catalyst.
  • the noble metal-based catalyst has the advantage of high reactivity and strong resistance to deactivation, but it is not used in commercial processes because it is disadvantageous from the economical point of view.
  • nickel-based catalysts among non-noble metal-based catalysts exhibit excellent activity comparable to noble metal-based catalysts, and are widely used in hydrogen production processes through hydrocarbon-based steam reforming because they are superior in price competitiveness to noble metal- .
  • the nickel-based catalyst is disadvantageous in that the catalyst is inactivated due to carbon deposition, sintering by heat, and poisoning by sulfur in the hydrocarbon-based reforming reaction, which makes stable operation for a long time difficult. Therefore, a series of studies have been carried out to enhance the activity of the nickel-based catalyst and to ensure long-term stability.
  • the method for preparing the catalyst support according to the present invention is a method for preparing various types of alumina phase having excellent thermal stability through heat treatment at 500 ° C or higher based on the synthesis method of a sol-gel process using a polymer template It can be used as a catalyst support in various fields.
  • a block copolymer which is a polymeric template for forming mesopores, and an alumina precursor in a solvent in a strong acidic atmosphere
  • the support is formed by using a block copolymer and polystyrene beads as polymer molds for forming pores having different mesopores and macropores simultaneously on the alumina support, To provide a support specific to a reforming catalyst for hydrogen production having different sized three-dimensional heterogeneous pores minimizing carbon deposition and deterioration problems in the hydrocarbon reforming reaction.
  • the support of the reforming catalyst for hydrogen production having different three-dimensional heterogeneous pores according to the present invention has mesopores and macropores simultaneously formed on the alumina support to have a large specific surface area,
  • the reaction gas can be efficiently delivered and the catalytic activity can be increased.
  • non-metallic phosphoric acid to the support, it is possible to manufacture a reforming catalyst for high-efficiency hydrogen production having long-term stability by minimizing the problem of catalyst deactivation due to carbon deposition and thermal sintering in the hydrocarbon reforming reaction.
  • the process for producing a reforming catalyst support according to the present invention can provide a simple synthesis process of mixing polymer molds for forming heterogeneous pores having different sizes, and drying and firing, the production process is very simple, It is economical in terms of manufacturing cost.
  • FIG. 1 is a cross-sectional view of a reforming catalyst support for hydrogen production having three-dimensional heterogeneous pores of different sizes according to an embodiment of the present invention, including a Scanning Electron Microscope (SEM) and a Transmission Electron Microscope (TEM) It is a picture for.
  • SEM Scanning Electron Microscope
  • TEM Transmission Electron Microscope
  • FIG. 2 is a SEM photograph showing a polystyrene bead as a polymer mold for macropore formation of uniform and uniform size according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of a polymer mold for forming different pores according to an embodiment of the present invention.
  • the block copolymer and polystyrene beads are added to form three-dimensional heterogeneous pores of different sizes.
  • FIG. 7 is a photograph showing the procedure of the production method of the reforming catalyst support for production.
  • FIG. 4 is a graph showing the hydrogen production activity evaluation results of a reforming catalyst for hydrogen production and a single pore support-based catalyst having phosphorus-added three-dimensional double pores according to an embodiment of the present invention and for preventing catalyst deactivation .
  • a method for producing a catalyst support for hydrogen production which has three-dimensional heterogeneous pores and phosphorus added thereto to prevent catalyst deactivation
  • a block copolymer which is a polymeric template for forming mesopores, and an alumina precursor in a solvent in a strong acidic atmosphere
  • the block copolymer is flu in nikgye or Tetronic-base block copolymer F108 ((Ethylene Oxide) 132 ( Propylene Oxide) 50 (Ethylene Oxide) 132), F98 ((Ethylene Oxide) 123 ( Propylene Oxide) 47 (Ethylene Oxide) 123), F88 ((Ethylene Oxide) 103 (Propylene Oxide) 39 (Ethylene Oxide) 103), P123 ((Ethylene Oxide) 20 (Propylene Oxide) 70 (Ethylene Oxide) 20), P105 characterized in that at least one member selected from the group consisting of ((Ethylene Oxide) 37 (Propylene Oxide) 58 (Ethylene Oxide) 37) , and P104 ((Ethylene Oxide) 27 ( Propylene Oxide) 61 (Ethylene Oxide) 57).
  • F108 ((Ethylene Oxide) 132 ( Propylene
  • the block copolymer which is a template of the mesopores, can form a circular pore structure on the principle that a self-assembly is formed through arrangement of hydrophilic groups and hydrophobic groups through interaction between molecules.
  • the block copolymer may be contained in an amount of 25 to 30% by weight based on 100% by weight of the solvent.
  • the block copolymer can form a circular pore structure on the principle that a self-assembly is formed through arrangement of hydrophilic groups and hydrophobic groups through interaction between molecules.
  • the structure of the pores may be changed by a lamella structure, a 2-d hexagonal P6mm structure, or a cybic Im3m structure depending on the amount and type of the block copolymer.
  • the alumina precursor is preferably an aluminum alkoxide.
  • the alumina precursor is preferably selected from the group consisting of aluminum secondary-butoxide, aluminum ethoxide, aluminum tert- Aluminum tert-butoxide, aluminum isopropoxide, aluminum tri-sec-butoxide and aluminum tri-tert-butoxide, ≪ / RTI >
  • the alumina precursor may be contained in an amount of 50 to 60% by weight based on 100% by weight of the solvent. If the content of the alumina precursor does not satisfy the above range, a change in the structural form may occur depending on the ratio of the alumina to the template.
  • the strong acidic atmosphere can be formed in the presence of a strong acid.
  • strong acid examples include, but are not limited to, hydrochloric acid (HCl), nitric acid (HNO 3 ), sulfuric acid (H 2 SO 4 ), and the like.
  • the strong acid may be contained in an amount of 6.0 to 6.5% by weight based on 100% by weight of the solvent.
  • the acidity is an important factor in the self-assembling arrangement of the template and the alumina precursor, and the shape may vary depending on the type and amount.
  • solvent examples include methanol, ethanol, propanol, isopropanol, 1-butanol, and 2-butanol. It is not.
  • polystyrene (PS) beads which are macroporous polymeric macromolecules, have expandable nanoparticles, which increase in molecular weight in proportion to the reaction time and can be easily controlled in size . It can be easily removed through heat treatment and is suitable for use as a mold.
  • PS polystyrene
  • styrene and divinyl benzene were used as cross linking agents to make particles of uniform shape and size.
  • the particle size of the polystyrene beads is preferably 200 to 400 nm.
  • the polystyrene beads may be contained in an amount of 10 to 50% by weight based on 100% by weight of the solvent.
  • the arrangement of the macrostructure of the macropores varies depending on the amount of the polystyrene beads, and when the excessive polystyrene beads are used, ≪ / RTI >
  • the phosphoric acid to be added for preventing catalyst deactivation may be contained in an amount of 0.1 to 10.0% by weight based on 100% by weight of the solvent.
  • the degree of bonding between the phosphorus component and the support varies depending on the amount of phosphoric acid added. Therefore, the addition of a very small amount of phosphoric acid causes little prevention of carbon deposition, and the excessive addition of phosphoric acid may lower the bonding activity between the supports and reduce the catalytic activity.
  • the drying can be carried out at 60 to 70 DEG C for 12 to 60 hours.
  • the solvent may be removed through the drying process to produce a powdery catalyst support.
  • the calcination may be performed at 600 to 1100 ⁇ for 3 to 4 hours.
  • the method for preparing a reforming catalyst support according to the present invention is characterized in that it has high thermal stability through heat treatment at 500 ° C. or more and that phases of alumina are changed according to firing temperature so that phases can be selectively synthesized according to applications.
  • the alumina support according to the present invention has a high thermal stability at a firing temperature of 500 ° C. or higher, and is formed of an alumina structure having a boehmite structure.
  • the alumina support has an ⁇ -alumina - Phase change to alumina is possible.
  • the firing temperature is preferably 600 to 1000 ° C, more preferably 700 to 1000 ° C.
  • the alumina phase may be broken and the mesoporous phase may collapse and the catalyst support volume function may be lost.
  • the present invention relates to a reforming catalyst support for producing hydrogen having phosphorus for preventing catalyst deactivation and having three-dimensional heterogeneous pores of different sizes by the above production method,
  • the support may be prepared by using a block copolymer and polystyrene beads as polymer molds having different pores to form mesopores and macropores simultaneously in the alumina support and adding phosphorus for the purpose of preventing catalyst deactivation to remove carbon in the hydrocarbon reforming reaction Minimizing deposition and deterioration problems.
  • the present invention also relates to a reforming catalyst for hydrogen production using the modified catalyst alumina support for hydrogen production, which has the above-described three-dimensional heterogeneous pores and has phosphorus added thereto for preventing catalyst inactivation.
  • the alumina support according to one embodiment of the present invention A process for producing a catalyst for producing hydrogen
  • a method for producing a reforming catalyst for hydrogen production by a methane steam reforming reaction A method for producing a reforming catalyst for hydrogen production by a methane steam reforming reaction
  • the nickel precursor is selected from the group consisting of Nickel Nitrate Hexahydrate, Nickel Chloride Hexahydrate, Nickel Acetate Tetrahydrate, Nickel Bromide Hydrate ) And nickel nitrate nonahydrate (nickel nitrate nonahydrate).
  • the nickel precursor is preferably contained in an amount of 5 to 40 wt%, more preferably 5 to 15 wt%, based on 100 wt% of the catalyst support. When the content of the nickel precursor is excessive, aggregation due to strong interaction between the nickel metals may occur.
  • the present invention relates to a reforming catalyst for hydrogen production using a phosphoric acid-added alumina support having three-dimensional heterogeneous pores and for preventing catalyst deactivation,
  • the reforming catalyst may be prepared by using a block copolymer and polystyrene beads as polymer molds so that mesopores and macropores are formed at the same time and 5 to 40 parts by weight of 100 parts by weight of phosphorus- By weight of nickel is carried.
  • Example 1 Preparation of modified catalytic alumina support for hydrogen production having a three-dimensional porous double structure and phosphoric acid added
  • the catalyst was dried in an oven at a temperature of 60 ° C for 2 days, and then calcined at 700 ° C for 3 hours through a sintering furnace to prepare a reformed catalytic alumina support for hydrogen generation (temperature raising rate: 0.4 / min).
  • Nickel hydrate nonahydrate (12 wt%) was dissolved in 150 mL of purified water (D.I. water) based on 100 wt% of the modified catalytic alumina support prepared in Example 1 above. Then, the catalyst was dried in an oven at a temperature of 110 ° C for one day, and then calcined at 700 ° C for 3 hours through a sintering furnace to prepare a catalyst for hydrogen generation (heating rate: 10 / min).
  • Comparative Example 1 Preparation of a catalyst support for producing hydrogen having a three-dimensional single structure
  • a support having only a single mesopore free pore was prepared using the same method as that of the catalyst support prepared in Example 1 except that polystyrene beads were not used.
  • a catalyst was prepared in the same manner as in Example 2, except that the catalyst support prepared in Comparative Example 1 was used in place of the catalyst support prepared in Example 1 above.
  • Example 1 The specific surface area and pore size were measured to evaluate the physical properties of the modified catalytic alumina support prepared in Example 1 and Comparative Example 1.
  • Example 1 had a larger specific surface area than that of the catalyst support of Comparative Example 1.
  • Experimental Example 2 Evaluation of physical properties of a catalyst for producing hydrogen supported on activated metal nickel on a reforming catalytic alumina support for producing hydrogen
  • the catalyst having the active metal nickel supported on the alumina support of Example 2 has a higher specific surface area and a larger pore size and volume than the catalyst having the active metal nickel supported on the alumina support of Comparative Example 2 Respectively.
  • the hydrogen production reaction experiment was performed by the steam reforming reaction of liquefied natural gas (LNG) composed of a mixed gas of methane and ethane using the reforming catalyst for hydrogen production produced by the method of Example 2 and Comparative Example 2.
  • LNG liquefied natural gas
  • the reforming catalyst was filled in the reactor for the steam reforming reaction, and the reforming catalyst was reduced with a mixed gas of nitrogen (30 ml) and hydrogen (3 ml) at 800 ° C. for 3 hours before the reaction, and the reactants methane and ethane
  • the reforming reaction was allowed to proceed while the mixed gas was continuously passed through the catalyst bed in the reactor.
  • the space velocity of the reactants was maintained at 30,180 ml / h ⁇ g-catalyst, and the volume ratio of reactant steam / liquefied natural gas (LNG) was maintained at 1.5.
  • the steam reforming reaction of liquefied natural gas was carried out at 650 ° C.
  • the conversion of liquefied natural gas and the composition of hydrogen in the dry gas are calculated by the following formulas 1 and 2, respectively, and the values are shown in Table 3.
  • Table 3 shows average values of hydrogen production evaluation results of the catalysts of Example 2 and Comparative Example 2 (see Fig. 4).
  • the reforming catalyst for hydrogen production according to the present invention can improve the specific surface area by macropores and mesopores and improve the mass transfer capability through macropores, It was confirmed that hydrogen production ability and deactivation were greatly improved by the effect of reducing carbon deposition on the catalyst surface by acting as an electron donor.
  • the catalyst support according to the present invention improves the specific surface area and mass transferring ability by forming three-dimensional heterogeneous pores in alumina support and minimizes carbon deposition and thermal sintering by adding phosphorus element Therefore, it can be applied as a catalyst support for the production of a reforming catalyst for high-efficiency hydrogen production.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 3차원 이종 기공을 가지며 탄화수소 개질반응에서의 니켈계 촉매의 비활성화 문제해결을 위해 인산이 첨가된 수소제조용 개질촉매 알루미나 지지체 및 그의 제조방법에 관한 것으로, 보다 상세하게는 이종의 고분자 주형을 이용하여 크기 50nm 미만의 메조기공(Mesopore)과 200 nm 이상의 마크로기공(Macropore)을 동시에 형성되므로, 비표면적이 우수하고 활성금속 촉매의 담지량이 증가될 뿐만 아니라 마크로기공(Macropore)에 의한 물질전달 능력이 향상된3차원 이종 기공을 가지는 동시에 촉매 비활성화 방지를 위한 인이 첨가된 수소제조용 개질촉매 알루미나 지지체 및 그의 제조방법에 관한 것이다.

Description

3차원 이종 기공을 가지며 촉매 비활성화 방지를 위한 인이 첨가된 수소제조용 촉매 지지체 및 이의 제조방법
본 발명은 3차원 이종 기공을 가지는 인산이 첨가된 수소제조용 개질촉매 지지체 및 그의 제조방법에 관한 것으로, 보다 상세하게는 서로 다른 크기의 이종 고분자 주형을 이용하여 20 nm 미만의 메조기공(Mesopore)과 100 nm 이상의 마크로기공(Macropore)을 동시에 형성함으로써 넓은 비표면적의 3차원 이종 기공을 가지는 수소제조용 개질촉매 지지체 및 그의 제조방법에 관한 것이다.
수소에너지는 가용 매장량이 한정적인 기존의 화석연료를 대체할 재생 가능한 차세대 미래에너지원으로 주목 받고 있다. 특히, 20세기 중반부터 가속화된 수소연료전지 실용화에 관한 연구 성과 및 시장 확대로 지속적으로 그 중요성을 인정받고 있다.
일반적으로 수소는 탄화수소류 및 알코올류를 주원료로 한 개질반응(Reforming Reaction)을 통해서 제조되는데, 알려진 개질반응으로는 주원료와 함께 수소제조 방법에 따라 수증기 개질반응(Steam Reforming), 부분 산화반응(Partial Oxidation), 자열 개질반응(Auto-thermal Reforming) 등으로 구분된다.
이러한 개질반응 중에서, 수증기 개질반응이 수소생산 수율이 상대적으로 높을 뿐만 아니라 안정적인 운전이 가능하기 때문에 상업적으로 널리 사용되고 있다. 또한, 수증기 개질반응은 반응물로 사용되는 탄화수소와 수증기의 비율 및 반응온도를 적절히 조절하여 최종적으로 얻어지는 수소의 수율을 최대한 높일 수 있기 때문에 다양한 용도의 수소 및 합성가스를 제조하는데 용이한 장점이 있다.
특히 메탄은 수증기 개질반응의 주원료로서 활용되고 있는데, 이러한 메탄은 액화천연가스(Liquefied Natural Gas; LNG)의 주성분으로 이루어져 있으며, 이를 기화시켜 도시가스 배관망 등을 통해 공업 및 주거 단지, 수소 스테이션 등으로 용이하게 공급될 수 있는 장점을 가진다.
수증기 개질반응 촉매의 활성금속으로 귀금속계인 로듐, 팔라듐, 류테늄, 백금, 이리듐 등과 비귀금속계인 니켈 등이 주로 연구되어 왔다. 귀금속계 촉매는 반응활성이 높고 비활성화에 저항성이 강하다는 장점이 있으나, 경제성 측면에서 불리하기 때문에 상용 공정에서는 사용되지 않고 있다.
이에 반해, 비귀금속계 촉매 중 대표적인 니켈계 촉매는 귀금속계 촉매와 비교해도 손색없는 우수한 활성을 보일 뿐만 아니라 귀금속계 촉매보다 가격 경쟁력이 월등하기 때문에 탄화수소계 수증기 개질반응을 통한 수소생산 공정에 널리 이용되고 있다. 하지만 니켈계 촉매는 탄화수소계 개질반응에서 탄소 침적, 열에 의한 소결 및 황에 의한 피독 등으로 인한 촉매 비활성화가 심각하여 장시간 안정적인 운전이 어렵다는 단점이 있다. 따라서 니켈계 촉매의 활성을 증진시킴과 동시에 장시간 안정성을 확보하기 위한 일련의 연구들이 진행되어 왔다.
그러나, 니켈계 촉매의 반응활성은 니켈 금속 자체의 특성뿐만 아니라 지지체와의 물리 및 화학적 특성에 많은 영향을 받는 것으로 알려져 있다. 따라서 효율적인 니켈계 촉매의 제조를 위해 지지체로 주로 사용되는 알루미나의 물리 및 화학적 특성을 조절하는 연구가 진행되고 있다. 그 중에서도 특히 알루미나 지지체에 기공 형성을 통한 비표면적을 증대시키거나 다른 물질을 첨가하여 지지체의 물리 및 화학적 특성을 증진시키기 위한 연구가 많이 진행되고 있다.
본 발명의 3차원 이종 기공을 가지는 인산이 첨가된 수소제조용 개질촉매 지지체 및 그의 제조방법에 있어서 상기한 문제점을 해결하고자 예의 연구 검토한 결과, 서로 다른 크기의 고분자 주형을 이용함으로써 상기 지지체에 20 nm 미만의 메조기공(Mesopore)과 100 nm 이상의 마크로기공(Macropore)을 동시에 형성할 수 있어, 종래 상용 알루미나 지지체와 비교 시 넓은 비표면적을 가짐으로써 활성금속의 담지량을 최소화시킴과 동시에 반응가스를 효율적으로 전달하여 촉매활성을 높일 수 있음을 확인하였고, 또한 상기 개질촉매 지지체에 높은 전기음성도 및 많은 원자가전자를 가지는 비금속원소 인을 첨가하여 니켈계 촉매 표면의 화학적 특성변화를 통해 탄화수소 개질반응에서의 탄소침적, 열적 소결 등의 촉매 비활성화 문제를 동시에 해결됨을 확인하고 본 발명을 통해 완성하게 되었다.
본 발명에 따른 촉매 지지체의 제조방법은 고분자 주형을 사용한 졸-겔법(Sol-Gel Process)의 합성방법을 기반으로 500 ℃ 이상에서의 열처리를 통해 우수한 열적 안정성을 가지는 여러 형태의 알루미나상을 제조할 수 있어 다양한 분야의 촉매 지지체로 활용이 가능하다.
따라서, 본 발명의 목적은 서로 다른 크기의 이종 기공을 형성함에 따라 비표면적 증대, 물질전달 능력을 향상시킴과 동시에 비금속계 원소인 인을 첨가하여 탄소 침적 및 열적 소결현상을 최소화하는 고효율 수소제조용 개질촉매 를 위한 촉매 지지체 및 그의 제조방법을 제공하는 것이다.
한편으로, 본 발명은
메탄 수증기 개질반응에 의한 수소제조용 개질촉매 지지체의 제조방법에 있어서,
i) 메조기공(Mesopore) 형성을 위한 고분자 주형인 블럭 공중합체(Block Co-polymer) 및 알루미나 전구체를 강한 산성 분위기에서 용매에 용해하는 단계;
ii) 상기 용매에 마크로기공(Macropore) 형성을 위한 고분자 주형인 폴리스티렌 비드(Polystylene Bead)를 첨가하는 단계;
iii) 상기 용매에 촉매 비활성화 방지 성분인 인을 첨가하기 위하여 인산(Phosphoric acid)을 첨가하여 혼합하는 단계; 및
iv) 건조 및 소성하는 단계;를 포함하는 3차원 이종 기공을 가지며 촉매 비활성화 방지를 위한 방지 성분인 인을 첨가하기 위하여 인산(Phosphoric acid)이 첨가된 수소제조용 촉매 지지체의 제조방법을 제공한다.
다른 한편으로, 본 발명은
메탄 수증기 개질반응에 의한 수소제조용 개질촉매의 알루미나 지지체에 있어서,
상기 지지체는 블록 공중합체 및 폴리스티렌 비드를 서로 다른 기공 형성의 고분자 주형으로 사용하여 상기 알루미나 지지체에 메조기공(Mesopore)과 마크로기공(Macropore)이 동시에 형성될 뿐만 아니라 전기음성도 및 원자가전자가 높은 인을 첨가하여 탄화수소 개질반응에서의 탄소침적과 열화문제를 최소화하는 서로 다른 크기의 3차원 이종 기공을 가지는 수소제조용 개질촉매에 특화된 지지체를 제공한다.
본 발명에 따른 서로 다른 크기의 3차원 이종 기공을 가지는 수소제조용 개질촉매의 지지체는 알루미나 지지체에 메조기공(Mesopore)과 마크로기공(Macropore)이 동시에 형성되어 넓은 비표면적을 가짐으로써 활성금속의 담지량을 최소화할 뿐만 아니라 반응가스를 효율적으로 전달하여 촉매활성을 높일 수 있다. 또한, 상기 지지체 제조 시 비금속계 인산을 첨가하여 탄화수소 개질반응에서의 탄소침적 및 열적 소결현상에 따른 촉매 비활성화 문제를 최소화함으로써 장기안정성을 가지는 고효율 수소제조용 개질촉매 제조가 가능하다.
또한, 본 발명에 따른 개질촉매 지지체의 제조방법은 서로 다른 크기의 이종 기공을 형성하기 위한 고분자 주형을 혼합하고 건조 및 소성하는 간단한 합성공정을 제공할 수 있으므로, 생산공정이 매우 간단하여 대량생산 및 제조단가 측면에서 경제성이 우수하다.
도 1은 본 발명의 일 실시형태에 따른 서로 다른 크기의 3차원 이종 기공을 가지는 수소제조용 개질촉매 지지체를 나타낸 주사전자현미경(Scanning Electron Microscope, SEM), 투과전자현미경(Transmission Electron Microscope, TEM)에 대한 사진이다.
도 2는 본 발명의 일 실시형태에 따른 균일하고 일정한 크기로 제조된 마크로기공(Macropore) 형성을 위한 고분자 주형인 폴리스틸렌 비드를 나타낸 SEM 사진이다.
도 3 는 본 발명의 일 실시형태에 따른 서로 다른 기공 형성을 위한 고분자 주형으로 블록 공중합체 및 폴리스티렌 비드를 첨가하여 서로 다른 크기의 3차원 이종 기공을 가지며, 촉매 비활성화 방지를 위해 인을 첨가하는 수소제조용 개질촉매 지지체의 제조방법 순서를 나타낸 사진이다.
도 4는 본 발명의 일 실시형태에 따른 서로 다른 크기의 3차원 이중 기공을 가지며 촉매 비활성화 방지를 위한 인이 첨가된 수소제조용 개질촉매와 단일기공 지지체 기반 촉매의 수소제조 활성평가 결과를 나타난 그래프이다.
이하, 본 발명을 보다 상세히 설명한다.
본 발명의 일 실시형태에 3차원 이종 기공을 가지며 촉매 비활성화 방지를 위한 인이 첨가된 수소제조용 촉매 지지체의 제조방법은
메탄 수증기 개질반응에 의한 수소제조용 개질촉매 지지체의 제조방법에 있어서,
i) 메조기공(Mesopore) 형성을 위한 고분자 주형인 블럭 공중합체(Block Co-polymer) 및 알루미나 전구체를 강한 산성 분위기에서 용매에 용해하는 단계;
ii) 상기 용매에 마크로기공(Macropore) 형성을 위한 고분자 주형인 폴리스티렌 비드(Polystylene Bead)를 첨가하는 단계;
iii) 상기 용매에 촉매 비활성화 방지 성분인 인을 첨가하기 위하여 인산(Phosphoric acid)을 첨가하여 혼합하는 단계; 및
iv) 건조 및 소성하는 단계;를 포함한다.
본 발명의 일 실시형태에서, 상기 블럭 공중합체는 플루로닉계 또는 테트로닉계 블럭 공중합체인 F108((Ethylene Oxide)132(Propylene Oxide)50(Ethylene Oxide)132), F98((Ethylene Oxide)123(Propylene Oxide)47(Ethylene Oxide)123), F88((Ethylene Oxide)103(Propylene Oxide)39(Ethylene Oxide)103), P123((Ethylene Oxide)20(Propylene Oxide)70(Ethylene Oxide)20), P105((Ethylene Oxide)37(Propylene Oxide)58(Ethylene Oxide)37) 및 P104((Ethylene Oxide)27(Propylene Oxide)61(Ethylene Oxide)57)로 구성된 군으로부터 선택된 1종 이상인 것을 특징으로 한다.
상기 메조기공의 주형인 블록 공중합체는 분자들 간의 상호작용을 통하여 친수성기 및 소수성기의 배열을 통하여 자기조립체를 형성하는 원리로 원형 형태의 기공구조를 만들 수 있다.
상기 블럭 공중합체는 상기 용매 100 중량%에 대하여 25 내지 30 중량%로 포함될 수 있다. 상기 블록 공중합체의 함량이 상기 범위를 만족하는 경우, 상기 블록 공중합체는 분자들 간의 상호작용을 통하여 친수성기 및 소수성기의 배열을 통하여 자기조립체를 형성하는 원리로 원형 형태의 기공구조를 만들 수 있다. 하지만 상기 블록 공중합체의 함량이 상기 범위를 만족하지 못하는 경우, 블록 공중합체의 양과 종류에 따라 라멜라 (lamella) 구조, 2-d hexagonal P6mm 구조, cybic Im3m 구조로 기공의 구조 형태가 바뀔 수 있다.
본 발명의 일 실시형태에서, 상기 알루미나 전구체는 알루미늄 알콕사이드(Aluminum Alcoxide)가 바람직하며, 구체적으로는 알루미늄 세컨더리-부톡사이드(Aluminum sec-Butoxide), 알루미늄 에톡사이드(Aluminum Ethoxide), 알루미늄 터셔리-부톡사이드(Aluminum tert-Butoxide), 알루미늄 이소프로폭사이드(Aluminum Isopropoxide), 알루미늄 트리-세컨더리-부톡사이드(Aluminum tri-sec-Butoxide) 및 알루미늄 트리-터셔리-부톡사이드(Aluminum tri-tert-Butoxide)로 구성된 군으로부터 선택된 1종 이상인 것을 특징으로 한다.
상기 알루미나 전구체는 상기 용매 100 중량%에 대하여 50 내지 60 중량%로 포함될 수 있다. 상기 알루미나 전구체의 함량이 상기 범위를 만족하지 않는 경우, 알루미나와 주형의 비에 따라 구조적 형태의 변화가 생길 수 있다.
본 발명의 일 실시형태에서, 상기 강한 산성 분위기는 강산의 존재 하에 형성될 수 있다.
상기 강산으로는 염산(HCl), 질산(HNO3), 황산(H2SO4) 등이 사용될 수 있으나, 이에 제한되는 것은 아니다.
상기 강산은 상기 용매 100 중량%에 대하여 6.0 내지 6.5 중량%로 포함될 수 있다. 산도는 주형과 알루미나 전구체의 자가조립배열에 있어 중요한 요소로 종류 및 양에 따라 그 형태가 달라질 수 있다.
상기 용매로는 메탄올(Methanol), 에탄올(Ethanol), 프로판올(Propanol), 이소프로판올(Isopropanol), 1-부탄올(1-Butanol) 및 2-부탄올(2-Butanol) 등이 사용될 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 일 실시형태에서, 상기 마크로기공(Macropore)의 고분자 주형인 폴리스티렌(polystyrene, PS) 비드(beads)는 발포성을 가지는 나노입자로서, 반응시간에 비례하여 분자량이 증가하며 크기 조절이 용이하다. 또한 열처리를 통하여 쉽게 제거가 가능하여 주형으로 사용하기에 적합한 고분자이다. 본 발명에 사용된 폴리스티렌 비드의 경우, 스티렌과 다이비닐벤젠(Divinyl benzene)을 가교제(Cross linking agent)로 사용하여 모양과 크기가 균일한 형태의 입자로 제조하였다.
상기 폴리스티렌 비드의 입자 크기는 200 내지 400 nm 인 것이 바람직하다.
상기 폴리스티렌 비드는 상기 용매 100 중량%에 대하여 10 내지 50 중량%로 포함될 수 있다. 상기 폴리스티렌 비드의 함량이 상기 범위를 만족하지 않는 경우, 폴리스티렌 비드의 양에 따라 마크로기공(Macropore)의 뼈대구조의 배열이 달라지며, 과량의 폴리스티렌 비드를 사용할 경우 뼈대구조가 깨지는 등의 구조적인 변형을 초래할 수 있다.
상기 촉매 비활성화 방지용으로 첨가되는 인산은 상기 용매 100 중량%에 대하여 0.1 내지 10.0 중량%으로 포함될 수 있다. 인산의 첨가 양에 따라 인 성분과 지지체 사이의 결합도가 달라지게 된다. 따라서 인산의 극소량 첨가는 탄소침적 예방이 거의 생기지 않으며, 인산의 과량첨가는 오히려 지지체 사이의 결합도가 떨어져 촉매활성이 저감될 수 있다.
상기 건조는 60 내지 70 ℃에서 12 내지 60시간 동안 수행할 수 있다. 상기 건조과정을 통해 상기 용매가 제거되어 분말 형태의 촉매 지지체를 제조할 수 있다.
상기 소성은 600 내지 1100 ℃에서 3 내지 4시간 동안 수행할 수 있다. 본 발명에 따른 개질촉매 지지체의 제조방법은 500 ℃ 이상의 열처리를 통해 높은 열적 안정성을 가지며, 소성온도에 따라 알루미나의 상이 변화하여 용도에 맞게 상을 선택적으로 합성할 수 있다는 점에서 특징이 있다.
구체적으로, 본 발명에 따른 알루미나 지지체는 500 ℃ 이상의 소성온도에서 높은 열적 안정성을 가지며, 보헤마이트 구조의 알루미나 구조체로 형성되어 소성온도에 따라 γ- 알루미나, θ-알루미나를 거쳐 1000 ℃ 이상의 온도에서 α-알루미나로 상변화가 가능하다.
상기 소성 온도는 600 내지 1000 ℃에서 수행되는 것이 바람직하고, 700 내지 1000℃에서 수행되는 것이 보다 바람직하다.
상기 소성온도, 소성시간이 상기 범위를 만족하지 않는 경우, 예를 들어 1300 ℃ 이상의 고온에서는 알루미나 상이 파괴되고 메조기공 형태의 상이 무너져 촉매 지지체적 기능을 상실할 수 있다.
본 발명은 상기 제조방법에 의해 서로 다른 크기의 3차원 이종 기공을 가지며 촉매 비활성화 방지를 위한 인이 첨가된 수소제조용 개질촉매 지지체에 관한 것으로, 본 발명의 일 실시형태에 따른 서로 다른 크기의 3차원 이종 기공을 가지는 수소제조 개질촉매용 알루미나 지지체는
메탄 수증기 개질반응에 의한 수소제조 개질촉매용 알루미나 지지체에 있어서,
상기 지지체는 블록 공중합체 및 폴리스티렌 비드를 서로 다른 기공 형성의 고분자 주형으로 사용하여 상기 알루미나 지지체에 메조기공과 마크로기공이 동시에 형성되며 촉매 비활성화 방지를 목적으로 하는 인을 첨가하여 탄화수소 개질반응에서의 탄소침적과 열화문제를 최소화시킨 것을 특징으로 한다.
또한, 본 발명은 상기 3차원 이종 기공을 가지며 촉매 비활성화 방지를 위한 인이 첨가된 수소제조용 개질촉매 알루미나 지지체를 이용한 수소제조용 개질촉매에 관한 것으로, 본 발명의 일 실시형태에 따른 상기 알루미나 지지체를 이용한 수소제조용 촉매의 제조방법은
메탄 수증기 개질반응에 의한 수소제조용 개질촉매의 제조방법에 있어서,
i) 상기 개질촉매 지지체 100 중량%에 대하여 5 내지 40 중량%의 니켈 전구체를 용매에 용해하는 단계; 및
ii) 세척, 여과, 건조 및 소성하는 단계;를 포함한다.
본 발명의 일 실시형태에서, 상기 니켈 전구체는 니켈 나이트레이트 헥사하이드레이트(Nickel Nitrate Hexahydrate), 니켈 크로라이드 헥사 하이드레이트(Nickel Chloride Hexahydrate), 니켈 아세테이트 테트라하이드레이트(Nickel Acetate Tetrahydrate), 니켈 브로마이드(Nickel Bromide Hydrate) 및 니켈 나이트레이트 노나하이드레이트(Nickel Nitrate nonahydrate)로 구성된 군으로부터 선택된 1종 이상인 것을 특징으로 한다.
상기 니켈 전구체는 촉매 지지체 100 중량 %에 대하여 5 내지 40 중량%로 포함되는 것이 바람직하고, 5 내지 15 중량%로 포함되는 것이 더욱 바람직하다. 상기 니켈 전구체의 함량이 과량으로 포함 되는 경우, 니켈 금속간의 강한 상호작용에 의한 응집 (Aggregation) 현상이 발생할 수 있다.
본 발명은 3차원 이종 기공을 가지며 촉매 비활성화 방지를 위한 인산이 첨가된 알루미나 지지체를 이용한 수소제조용 개질촉매에 관한 것으로,
메탄 수증기 개질반응에 의한 수소제조용 개질촉매에 있어서,
상기 개질촉매는 블록 공중합체 및 폴리스티렌 비드를 고분자 주형으로 사용하여 메조기공(Mesopore)과 마크로기공(Macropore)이 동시에 형성되고 촉매 비활성화 방지를 위한 인이 첨가된 알루미나 지지체 100 중량%에 대하여 5 내지 40 중량%의 니켈이 담지된 것을 특징으로 한다.
이하, 실시예에 의해 본 발명을 보다 구체적으로 설명하고자 한다. 이들 실시예는 오직 본 발명을 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업자에게 있어서 자명하다.
실시예 1: 3차원 다공성 이중구조를 가지며 인산이 첨가된 수소제조용 개질촉매 알루미나 지지체의 제조
메조기공(Mesopore) 고분자 주형인 삼블럭 공중합체(triblock copolymer) Pluronic® P123(Sigma-Aldrich社) 3.0 g 및 알루미나 전구체로서 알루미늄 이소프로폭사이드(Aluminum isopropoxide) 6.12 g 를 60 mL의 무수 에탄올(anhydrous ethanol)에 용해시켰다. 그런 다음, 용해물에 4.5 mL의 질산(65 wt%), 인산(Phosphoric acid) 8 wt% 추가하여 교반하고, 이후 마크로기공(Macropore) 고분자 주형인 폴리스티렌 비드(Polystyrene beads) 3.0 g를 첨가하여 교반하였다.
그런 다음, 오븐에서 60 ℃ 온도로 2일간 건조시킨 후, 소성로를 통하여 700℃ 에서 3시간 소성하여 수소제조용 개질촉매 알루미나 지지체를 제조하였다(승온속도: 0.4 /min).
실시예 2: 수소제조용 촉매의 제조
상기 실시예 1에서 제조된 개질촉매 알루미나 지지체 100 중량% 대비 12 중량%의 니켈 전구체(Nickel hydrate nonahydrate)를 150 mL의 정제수(D.I water)에 용해시켰다. 그런 다음 오븐에서 110 ℃ 온도로 1일간 건조시킨 후, 소성로를 통하여 700 ℃에서 3시간 소성하여 수소제조용 촉매를 제조하였다(승온속도: 10 /min).
비교예 1: 3차원 단일구조를 가지는 수소제조용 촉매 지지체의 제조
폴리스티렌 비드를 사용하지 않는 것을 제외하고는 상기 실시예 1에서 제조된 촉매 지지체의 제조법과 동일한 방법을 사용하여, 마크로기공(Macropore)을 포함하지 않는 메조 단일기공만을 가지는 지지체를 제조하였다.
비교예 2: 수소제조용 촉매의 제조
상기 실시예 1에서 제조된 촉매 지지체 대신에 상기 비교예 1에서 제조된 촉매 지지체를 사용하는 것을 제외하고는, 실시예 2와 동일한 방법으로 촉매를 제조하였다.
실험예 1: 수소제조용 개질촉매 알루미나 지지체의 물리적 특성 평가
상기 실시예 1 및 비교예 1에 의해 제조된 개질촉매 알루미나 지지체의 물리적 특성을 평가하기 위해, 비표면적 및 기공 크기를 측정하였다.
구분 실시예 1 비교예 1
비표면적 (m2/g) 261.71 250.16
메조기공 크기 (nm) 5.93 5.93
마크로기공 크기 (nm) 300 -
기공 부피 (cm3/g) 0.60 0.60
상기 표 1을 참조로, 실시예 1의 개질촉매 알루미나 지지체가 비교예 1의 촉매 지지체보다 넓은 비표면적을 보이는 것을 확인할 수 있었다.
실험예 2: 수소제조용 개질촉매 알루미나 지지체 상에 활성금속 니켈 담지한 수소제조용 촉매의 물리적 특성 평가
상기 실시예 2 및 비교예 2에 의해 제조된 수소제조용 촉매의 물리적 특성을 평가하기 위해, 비표면적 및 기공 크기를 측정하였다.
구분 실시예 2 비교예 2
비표면적(m2/g) 238.41 143.87
메조기공 크기(nm) 4.65 2.5
마크로기공 크기 (nm) 290 -
기공 부피 (cm3/g) 0.52 0.21
상기 표 2를 참조로, 실시예 2의 알루미나 지지체 상에 활성금속 니켈을 담지한 촉매가 비교예 2의 알루미나 지지체 상에 활성금속 니켈을 담지한 촉매 대비 높은 비표면적 및 넓은 기공 크기와 부피를 가지는 것을 확인하였다.
이는 비교예 2의 촉매에 형성된 단일구조의 작은 메조기공(Mesopore)을 활성금속인 니켈 입자가 막음(Blocking) 현상에 의해 비표면적이 감소한 것으로, 메조기공(Mesopore)과 마크로기공(Macropore)을 동시에 가지는 실시예 2의 이중구조 알루미나 지지체 기반 촉매의 경우에는 이와 같은 막음현상이 발생하지 않으므로 활성금속 니켈 담지 전과 후의 비표면적 차이가 거의 없는 특성을 가진다.
실험예 3: 수소제조용 촉매의 수소 제조 효과 평가
실시예 2 및 비교예 2의 방법에 의해 제조된 수소제조용 개질촉매를 이용하여 메탄과 에탄의 혼합가스로 구성된 액화천연가스(LNG)의 수증기 개질반응에 의한 수소제조 반응실험을 수행하였다.
수증기 개질반응을 위해 상기 개질촉매를 반응기에 충진시키고, 반응 전에 800 ℃에서 질소(30 ml)와 수소(3 ml)의 혼합가스로 개질촉매를 3시간 동안 환원시킨 후, 반응물인 메탄과 에탄의 혼합가스가 반응기 내 촉매층을 연속적으로 통과하면서 개질반응이 진행되도록 하였다. 반응물의 공간속도(Space Velocity)는 30,180 ml/h·g-촉매로 유지하였으며, 반응물인 수증기/액화천연가스(LNG)의 부피비는 1.5로 유지하였다. 액화천연가스의 수증기 개질반응은 650 ℃에서 수행되었다. 액화천연가스의 전환율, 건가스 중 수소의 조성은 하기의 식 1 및 2에 의해 각각 계산하고 그 값을 표 3에 기재하였다.
[식 1]
Figure PCTKR2017014865-appb-I000001
[식 2]
Figure PCTKR2017014865-appb-I000002
구분 실시예 2 비교예 2
전환율(%) 92.7 -
건가스 중 수소 조성(%) 76.4 -
상기 표 3은 실시예 2와 비교예 2의 촉매의 수소제조 평가 결과의 평균값이다(도 4 참조).
상기 표 3을 참조로, 12 시간동안 탄화수소 개질반응을 통한 메탄 전환율 및 건가스 중 수소 조성을 평균 값으로 계산하였을 때, 실시예 2의 경우 평균 92.7 %의 전환율을 나타냈고, 생성가스 중 수소 조성이 76.4 %로 높게 측정되어 수소제조 촉매활성이 크게 향상됨을 확인할 수 있었다. 그러나 비교예 2의 촉매는 반응초기 메탄 전환율이 약 50 %에서 촉매 반응 6시간 후 완전히 촉매가 비활성화되어 일정 평균값으로의 계산이 불가피하였다.
따라서, 본 발명에 따른 수소제조용 개질촉매는 마크로기공(Macropore) 및 메조기공(Mesopore)에 의한 비표면적 향상과 마크로기공(Macropore)을 통한 물질전달 능력의 향상뿐만 아니라 인첨가를 통해 인의 풍부한 전자가 전자주개(electron donor)로 작용하여 촉매표면에서 탄소침적을 줄이는 효과에 의해 수소제조 능력 및 비활성화가 크게 향상됨을 확인하였다.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 본 발명이 속한 기술분야에서 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아님은 명백하다. 본 발명이 속한 기술분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.
따라서, 본 발명의 실질적인 범위는 첨부된 특허청구범위와 그의 등가물에 의하여 정의된다고 할 것이다.
본 발명에 따른 촉매 지지체는 알루미나 지지체에 서로 다른 크기의 3차원 이종 기공을 형성함에 따라 비표면적 증대, 물질전달 능력을 향상시킴과 동시에 비금속계 원소인 인을 첨가하여 탄소 침적 및 열적 소결현상을 최소화할 수 있으므로, 고효율 수소제조용 개질촉매 제조를 위한 촉매 지지체로 적용할 수 있다.

Claims (11)

  1. 메탄 수증기 개질반응에 의한 수소제조용 개질촉매 알루미나 지지체의 제조방법에 있어서,
    i) 메조기공(Mesopore) 형성을 위한 고분자 주형인 블럭 공중합체(Block Co-polymer) 및 알루미나 전구체를 강한 산성 분위기에서 용매에 용해하는 단계;
    ii) 상기 용매에 마크로기공(Macropore) 형성을 위한 고분자 주형인 폴리스티렌 비드(Polystylene Bead)를 첨가하는 단계;
    iii) 상기 용매에 촉매 비활성화 방지 성분인 인을 첨가하기 위하여 인산(Phosphoric acid)을 첨가하여 혼합하는 단계; 및
    iv) 건조 및 소성하는 단계;를 포함하는 것을 특징으로 하는 3차원 이종 기공을 가지며 촉매 비활성화 방지를 위한 인이 첨가된 수소제조용 촉매 지지체의 제조방법.
  2. 제1항에 있어서, 상기 블럭 공중합체는 플루로닉계 또는 테트로닉계 블럭 공중합체인 F108((Ethylene Oxide)132(Propylene Oxide)50(Ethylene Oxide)132), F98((Ethylene Oxide)123(Propylene Oxide)47(Ethylene Oxide)123), F88((Ethylene Oxide)103(Propylene Oxide)39(Ethylene Oxide)103), P123((Ethylene Oxide)20(Propylene Oxide)70(Ethylene Oxide)20), P105((Ethylene Oxide)37(Propylene Oxide)58(Ethylene Oxide)37) 및 P104((Ethylene Oxide)27(Propylene Oxide)61(Ethylene Oxide)57)로 구성된 군으로부터 선택된 1종 이상인 것을 특징으로 하는 3차원 이종 기공을 가지며 촉매 비활성화 방지를 위한 인이 첨가된 수소제조용 촉매 지지체의 제조방법.
  3. 제1항에 있어서, 상기 알루미나 전구체는 알루미늄 알콕사이드가 바람직하며, 구체적으로는 알루미늄 세컨더리-부톡사이드(Aluminum sec-Butoxide), 알루미늄 에톡사이드(Aluminum Ethoxide), 알루미늄 터셔리-부톡사이드(Aluminum tert-Butoxide), 알루미늄 이소프로폭사이드(Aluminum Isopropoxide), 알루미늄 트리-세컨더리-부톡사이드(Aluminum tri-sec-Butoxide) 및 알루미늄 트리-터셔리-부톡사이드(Aluminum tri-tert-Butoxide)로 구성된 군으로부터 선택된 1종 이상인 것을 특징으로 하는 3차원 이종 기공을 가지며 촉매 비활성화 방지를 위한 인이 첨가된 수소제조용 촉매 지지체의 제조방법.
  4. 제1항에 있어서, 상기 소성은 700 내지 1000 ℃의 온도에서 3 내지 4시간 동안 수행하는 것을 특징으로 하는 3차원 이종 기공을 가지며 촉매 비활성화 방지를 위한 인이 첨가된 수소제조용 촉매 지지체의 제조방법.
  5. 메탄 수증기 개질반응에 의한 수소제조용 개질촉매 알루미나 지지체에 있어서,
    상기 알루미나 지지체는 블록 공중합체 및 폴리스티렌 비드를 고분자 주형으로 사용하여 상기 알루미나 지지체에 메조기공(Mesopore)과 마크로기공(Macropore)이 동시에 형성된 3차원 이종 기공을 가지며, 촉매 비활성화 방지를 위한 인을 첨가되는 것을 특징으로 하는 3차원 이종 기공을 가지며 촉매 비활성화 방지를 위한 인이 첨가된 수소제조용 개질촉매 알루미나 지지체.
  6. 제5항에 있어서, 상기 블럭 공중합체는 플루로닉계 또는 테트로닉계 블럭 공중합체인 F108((Ethylene Oxide)132(Propylene Oxide)50(Ethylene Oxide)132), F98((Ethylene Oxide)123(Propylene Oxide)47(Ethylene Oxide)123), F88((Ethylene Oxide)103(Propylene Oxide)39(Ethylene Oxide)103), P123((Ethylene Oxide)20(Propylene Oxide)70(Ethylene Oxide)20), P105((Ethylene Oxide)37(Propylene Oxide)58(Ethylene Oxide)37) 및 P104((Ethylene Oxide)27(Propylene Oxide)61(Ethylene Oxide)57)로 구성된 군으로부터 선택된 1종 이상인 것을 특징으로 하는 3차원 이종 기공을 가지며 촉매 비활성화 방지를 위한 인이 첨가된 수소제조용 개질촉매 알루미나 지지체.
  7. 제5항에 있어서, 상기 알루미나 전구체는 알루미늄 알콕사이드가 바람직하며, 구체적으로는 알루미늄 세컨더리-부톡사이드(Aluminum sec-Butoxide), 알루미늄 에톡사이드(Aluminum Ethoxide), 알루미늄 터셔리-부톡사이드(Aluminum tert-Butoxide), 알루미늄 이소프로폭사이드(Aluminum Isopropoxide), 알루미늄 트리-세컨더리-부톡사이드(Aluminum tri-sec-Butoxide) 및 알루미늄 트리-터셔리-부톡사이드(Aluminum tri-tert-Butoxide)로 구성된 군으로부터 선택된 1종 이상인 것을 특징으로 하는 3차원 이종 기공을 가지며 촉매 비활성화 방지를 위한 인이 첨가된 수소제조용 개질촉매 알루미나 지지체.
  8. 제5항에 있어서, 상기 개질반응에서의 탄소침적과 고온반응에 의한 열적 소결현상을 줄이고자 전기음성도가 크고 원자가 전자수가 높은 인(Phosphorus)을 첨가하는 것을 특징으로 하는 3차원 이종 기공을 가지며 촉매 비활성화 방지를 위한 인이 첨가된 수소제조용 개질촉매 알루미나 지지체.
  9. 메탄 수증기 개질반응에 의한 수소제조용 개질촉매의 제조방법에 있어서,
    i) 상기 개질촉매 알루미나 지지체 100 중량%에 대하여 5 내지 40 중량%의 니켈 전구체를 용매에 용해하는 단계; 및
    ii) 건조 및 소성하는 단계;를 포함하는 것을 특징으로 하는 3차원 이종 기공을 가지며 촉매 비활성화 방지를 위한 인이 첨가된 알루미나 지지체를 이용한 수소제조용 개질촉매의 제조방법.
  10. 제9항에 있어서, 상기 니켈 전구체는 니켈 나이트레이트 헥사하이드레이트(Nickel Nitrate Hexahydrate), 니켈 크로라이드 헥사 하이드레이트(Nickel Chloride Hexahydrate), 니켈 아세테이트 테트라하이드레이트(Nickel Acetate Tetrahydrate), 니켈 브로마이드(Nickel Bromide Hydrate) 및 니켈 나이트레이트 노나하이드레이트(Nickel Nitrate nonahydrate)로 구성된 군으로부터 선택된 1종 이상인 것을 특징으로 하는 3차원 이종 기공을 가지며 촉매 비활성화 방지를 위한 인이 첨가된 알루미나 지지체를 이용한 수소제조용 개질촉매의 제조방법.
  11. 메탄 수증기 개질반응에 의한 수소제조용 개질촉매에 있어서,
    상기 개질촉매는 블록 공중합체 및 폴리스티렌 비드를 고분자 주형으로 사용하여 메조기공(Mesopore)과 마크로기공(Macropore)이 동시에 형성된 알루미나 지지체 100 중량%에 대하여 5 내지 40 중량%의 니켈이 담지된 것을 특징으로 하는 3차원 이종 기공을 가지며 촉매 비활성화 방지를 위한 인이 첨가된 알루미나 지지체를 이용한 수소제조용 개질촉매.
PCT/KR2017/014865 2017-12-14 2017-12-15 3차원 이종 기공을 가지며 촉매 비활성화 방지를 위한 인이 첨가된 수소제조용 촉매 지지체 및 이의 제조방법 WO2019117381A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170172236A KR20190071297A (ko) 2017-12-14 2017-12-14 3차원 이종 기공을 가지며 촉매 비활성화 방지를 위한 인이 첨가된 수소제조용 촉매 지지체의 제조방법
KR10-2017-0172236 2017-12-14

Publications (1)

Publication Number Publication Date
WO2019117381A1 true WO2019117381A1 (ko) 2019-06-20

Family

ID=66820895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/014865 WO2019117381A1 (ko) 2017-12-14 2017-12-15 3차원 이종 기공을 가지며 촉매 비활성화 방지를 위한 인이 첨가된 수소제조용 촉매 지지체 및 이의 제조방법

Country Status (2)

Country Link
KR (1) KR20190071297A (ko)
WO (1) WO2019117381A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102411462B1 (ko) * 2020-09-09 2022-06-23 한국생산기술연구원 다공성 알루미나 조성물 및 이를 포함하는 유기 염료 흡착제 제조방법
KR102436299B1 (ko) * 2020-09-16 2022-08-26 울산대학교 산학협력단 다공성 알루미나 담체에 담지된 니켈을 포함하는 복합체 및 이의 제조방법
CN113248345B (zh) * 2021-06-11 2021-10-26 江苏华盛锂电材料股份有限公司 一种2-丁烯醇的制备方法
KR102620700B1 (ko) * 2023-05-31 2024-01-04 울산대학교 산학협력단 원-팟 방법을 이용한 메탄 건식 개질용 거대 기공 촉매의 제조방법
KR102620694B1 (ko) * 2023-05-31 2024-01-04 울산대학교 산학협력단 코킹 저항성이 향상된 메탄 건식 개질용 거대 기공 촉매의 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050116171A (ko) * 2004-06-07 2005-12-12 한남대학교 산학협력단 이중 다공성 탄소 구조체, 그의 제조방법 및 그것을이용한 연료 전지용 촉매
KR20150029879A (ko) * 2013-09-11 2015-03-19 서울대학교산학협력단 인을 포함한 중형기공성 알루미나 제어로젤 담체에 담지된 니켈 촉매, 그 제조 방법 및 상기 촉매를 이용한 액화천연가스의 수증기 개질 반응에 의한 수소가스 제조 방법
KR101570943B1 (ko) * 2014-12-19 2015-11-23 성균관대학교산학협력단 이중 세공구조의 알루미나 지지체에 담지된 혼합 개질반응용 페롭스카이트 촉매 및 이의 제조방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101040657B1 (ko) 2009-07-10 2011-06-10 서울대학교산학협력단 중형기공성 니켈-알루미나 혼성촉매, 그 제조방법 및 상기 촉매를 이용한 액화천연가스의 수증기 개질반응에 의한 수소가스 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050116171A (ko) * 2004-06-07 2005-12-12 한남대학교 산학협력단 이중 다공성 탄소 구조체, 그의 제조방법 및 그것을이용한 연료 전지용 촉매
KR20150029879A (ko) * 2013-09-11 2015-03-19 서울대학교산학협력단 인을 포함한 중형기공성 알루미나 제어로젤 담체에 담지된 니켈 촉매, 그 제조 방법 및 상기 촉매를 이용한 액화천연가스의 수증기 개질 반응에 의한 수소가스 제조 방법
KR101570943B1 (ko) * 2014-12-19 2015-11-23 성균관대학교산학협력단 이중 세공구조의 알루미나 지지체에 담지된 혼합 개질반응용 페롭스카이트 촉매 및 이의 제조방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BANG, YONGJU ET AL.: "Hydrogen production by steam reforming of simulated liquefied natural gas (LNG) over nickel catalyst supported on mesoporous phosphorus-modified alumina xerogel", APPLIED CATALYSIS B: ENVIRONMENTAL, vol. 148 - 14, 2014, pages 269 - 280, XP55617502 *
BIAN, SHAO-WEI ET AL.: "gamma-Alumina with hierarchically ordered mesopore/ macropore from dual templates", MICROPOROUS AND MESOPOROUS MATERIALS, vol. 131, no. 1-3, 2010, pages 289 - 293, XP026940844, doi:10.1016/j.micromeso.2010.01.004 *
PELLETIER, LUC ET AL.: "Stable nickel catalysts with alumina-aluminum phosphate supports for partial oxidation and carbon dioxide reforming of methane", APPLIED CATALYSIS A: GENERAL, vol. 317, no. 2, 2007, pages 293 - 298, XP005812467, doi:10.1016/j.apcata.2006.10.028 *

Also Published As

Publication number Publication date
KR20190071297A (ko) 2019-06-24

Similar Documents

Publication Publication Date Title
WO2019117381A1 (ko) 3차원 이종 기공을 가지며 촉매 비활성화 방지를 위한 인이 첨가된 수소제조용 촉매 지지체 및 이의 제조방법
US7070752B2 (en) Supported perovskite-type oxides and methods for preparation thereof
WO2021225254A1 (ko) 육방정 구조의 지지체에 촉매금속이 담지된 촉매 및 이의 제조방법
WO2019054557A1 (ko) 탄소 침적의 감소를 위해, 금속이온이 치환된 페로브스카이트 금속산화물 촉매 및 이의 제조 방법, 그리고 이를 이용한 메탄 개질 반응 방법
EP2545000A2 (en) Palladium-modified hydrotalcites and their use as catalyst precursors
WO2021135252A1 (zh) 一种一维金属氧化物/碳化物复合材料及其制备方法
KR20110047701A (ko) 메조 기공성 복합 촉매 및 그의 제조방법
WO2016060367A1 (ko) 에그-쉘 형 고분산 나노 입자-산화금속 지지체 혼성 구조체, 이의 제조방법 및 이의 용도
CN115138388B (zh) 一种高分散度钴氮碳催化剂及其制备方法
WO2023033528A1 (ko) 양이온-음이온 이중 가수분해를 이용한 암모니아 분해용 촉매 제조방법
WO2017090864A1 (ko) 저온 개질반응용 코발트 담지촉매 및 이의 제조방법
WO2018048236A1 (ko) 수증기 메탄 개질용 니켈계 촉매 성형체 및 이의 이용
CN113694914A (zh) 一种mof/石墨烯量子点纳米复合光催化剂的制备方法
Zhao et al. Mesoporous TiO 2/Zn 2 Ti 3 O 8 hybrid films synthesized by polymeric micelle assembly
WO2014204099A1 (ko) 젖산으로부터 락타이드 직접 제조용 성형 촉매 및 이의 제조 방법
WO2022197013A1 (ko) 암모니아 분해용 촉매, 이의 제조방법 및 이를 이용한 수소 생산방법
CN114045608B (zh) 一种柔性多晶氧化钛-氧化铝复合纳米纤维膜及其制备方法
WO2022108319A1 (ko) 수소 제조용 백금-텅스텐 촉매 및 이를 이용한 수소의 제조방법
KR101628695B1 (ko) 중형기공성 니켈-철-알루미나 제로젤 촉매, 그 제조 방법 및 상기 촉매를 이용한 액화천연가스의 수증기 개질 반응에 의한 수소 가스 제조 방법
CN112717907B (zh) 一种纳米片堆积中空球形结构的γ-Al2O3催化剂载体材料及其制备方法
KR101405306B1 (ko) 나노 탄소 입자를 주형 물질로 사용하여 제조된 중형기공성 니켈-알루미나 제어로젤 촉매, 그 제조 방법 및 상기 촉매를 이용한 액화천연가스(lng)의 수증기 개질 반응에 의한 수소가스 제조 방법
CN110980803B (zh) 高纯相亚氧化钛的可控合成方法
WO2024096507A1 (ko) 메탄 개질용 촉매 및 이의 제조방법
WO2016195379A1 (ko) 금속산화물-실리카 복합 에어로겔의 제조방법 및 이를 이용하여 제조된 금속산화물-실리카 복합 에어로겔
WO2016126132A1 (ko) 부정형 알파-알루미나를 함유하는 카본나노튜브 합성용 촉매 및 이를 이용한 카본나노튜브의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17934402

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17934402

Country of ref document: EP

Kind code of ref document: A1