WO2019117299A1 - 電子デバイス用封止剤及び有機el表示素子用封止剤 - Google Patents

電子デバイス用封止剤及び有機el表示素子用封止剤 Download PDF

Info

Publication number
WO2019117299A1
WO2019117299A1 PCT/JP2018/046157 JP2018046157W WO2019117299A1 WO 2019117299 A1 WO2019117299 A1 WO 2019117299A1 JP 2018046157 W JP2018046157 W JP 2018046157W WO 2019117299 A1 WO2019117299 A1 WO 2019117299A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
group
sealant
represented
electronic devices
Prior art date
Application number
PCT/JP2018/046157
Other languages
English (en)
French (fr)
Inventor
七里 徳重
山本 拓也
勝則 西出
千鶴 金
美香 笹野
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to KR1020207003509A priority Critical patent/KR102657208B1/ko
Priority to JP2019515668A priority patent/JP7117294B2/ja
Priority to KR1020247011857A priority patent/KR20240052999A/ko
Priority to CN201880080039.5A priority patent/CN111480392B/zh
Publication of WO2019117299A1 publication Critical patent/WO2019117299A1/ja
Priority to JP2022118858A priority patent/JP7385715B2/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/296Organo-silicon compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details

Definitions

  • the present invention relates to a sealant for an electronic device which is excellent in low outgassing property and wettability to a substrate or an inorganic material film.
  • the present invention also relates to a sealant for an organic EL display element formed by using the sealant for an electronic device.
  • organic thin film elements such as organic electroluminescence (hereinafter, also referred to as organic EL) display elements and organic thin film solar cell elements has been advanced.
  • organic thin film element can be easily manufactured by vacuum deposition, solution coating or the like, and therefore, is excellent in productivity.
  • the organic EL display element has a laminate structure in which an organic light emitting material layer is sandwiched between a pair of electrodes facing each other, and electrons are injected from one of the electrodes into the organic light emitting material layer and positive from the other electrode. By injecting holes, electrons and holes are combined in the organic light emitting material layer to emit light.
  • the organic EL display element since the organic EL display element emits light by itself, it has better visibility than a liquid crystal display element requiring a backlight, can be thinned, and can be driven by a low DC voltage. It has the advantage of
  • Non-Patent Document 1 discloses an organic solar cell element using a laminated film of phthalocyanine copper and a perylene dye.
  • Patent Document 1 discloses a method of sealing an organic light emitting material layer and an electrode of an organic EL display element with a laminated film of a silicon nitride film and a resin film formed by a CVD method.
  • the resin film has a role of preventing pressure on the organic layer and the electrode due to internal stress of the silicon nitride film.
  • Patent Document 1 discloses a method of alternately depositing an inorganic material film and a resin film as a method for preventing the entry of moisture into the organic layer, and Patent Document 3 and Patent Document 4 disclose the method. A method of forming a resin film on an inorganic material film is disclosed.
  • a method of forming a resin film there is a method of applying a liquid curable resin composition on a substrate and then curing the curable resin composition. If an inkjet method or the like is used as a coating method, a resin film can be formed at high speed and uniformly.
  • a method of adjusting the viscosity of the sealant for an electronic device it is conceivable to use a method of blending an organic solvent in the sealant for an electronic device, or to use one having a low molecular weight as a curable resin to be blended. In the method, there are problems such as the tendency to generate outgassing.
  • JP 2000-223264 A Japanese Patent Publication No. 2005-522891 JP 2001-307873 A JP, 2008-149710, A
  • An object of the present invention is to provide a sealant for an electronic device which is low in outgassing property and excellent in wettability and spreadability to a substrate or an inorganic material film.
  • Another object of the present invention is to provide a sealing agent for an organic EL display element, which comprises the sealing agent for an electronic device.
  • the present invention is a sealant for an electronic device, which comprises a curable resin and a polymerization initiator and / or a thermosetting agent, wherein the curable resin is a silicone compound represented by the following formula (1): It is a sealing agent for electronic devices containing the silicone compound represented by following formula (3).
  • R 1 represents an alkyl group having 1 or more and 10 or less carbon atoms, which may be the same or different.
  • Each of X 1 and X 2 independently represents an alkyl group having 1 to 10 carbon atoms, or the following formula (2-1), (2-2), (2-3), or (2-4) Represents a group represented by However, at least one of X 1 and X 2 represents a group represented by the following formula (2-1), (2-2), (2-3) or (2-4).
  • R 2 represents a bond or an alkylene group having 1 to 6 carbon atoms
  • R 3 represents hydrogen or 1 carbon atom
  • R 4 represents a bond or a methylene group
  • R 5 represents hydrogen or a methyl group.
  • R 6 represents an alkyl group having 1 or more and 10 or less carbon atoms, which may be the same or different.
  • X 3 and X 4 each independently represent an alkyl group having 1 to 10 carbon atoms, or the following formula (4-1), (4-2), (4-3), or (4-4)
  • X 5 represents a group represented by the following formula (4-1), (4-2), (4-3) or (4-4).
  • m is an integer of 0 or more and 1000 or less
  • n is an integer of 1 or more and 100 or less.
  • R 7 represents a bond or an alkylene group having 1 to 6 carbon atoms
  • R 8 represents hydrogen or 1 carbon atom
  • R 6 represents an alkyl group of 6 or less
  • R 9 represents a bond or a methylene group
  • R 10 represents hydrogen or a methyl group.
  • the present inventors have found that a specific silicone compound having a short molecular chain having a polymerizable group at the end is excellent in low outgassing property.
  • a specific silicone compound having a short molecular chain having a polymerizable group at such an end is used, there is a problem that the obtained sealant is inferior in wettability to the substrate or the inorganic material film.
  • a specific silicone compound having a long molecular chain having a polymerizable group at the end is excellent in the wettability and spreadability to the inorganic material film, but there is a problem that the outgas is easily generated by cutting the silicone chain.
  • the present inventors examined using in combination a short silicone compound having a specific molecular chain having a polymerizable group at the end and a specific silicone compound having a polymerizable group on the side chain.
  • a sealant for an electronic device which is excellent in low outgassing property and wettability to a substrate or an inorganic material film can be obtained, and the present invention has been completed.
  • the sealant for an electronic device of the present invention can be easily thinned by the inkjet method.
  • the sealant for electronic devices of the present invention contains a curable resin.
  • the said curable resin contains the silicone compound represented by the said Formula (1).
  • the sealant for an electronic device of the present invention is excellent in low outgassing, and the cured product is excellent in impact resistance and heat resistance. It becomes.
  • R 1 represents an alkyl group having 1 to 10 carbon atoms, which may be the same or different.
  • the R 1 is preferably an alkyl group having 1 to 6 carbon atoms, and more preferably a methyl group.
  • X 1 and X 2 are each independently an alkyl group having 1 to 10 carbon atoms, or the above formulas (2-1), (2-2), (2-3), Or a group represented by (2-4). However, at least one of X 1 and X 2 represents a group represented by the above formula (2-1), (2-2), (2-3) or (2-4).
  • both of X 1 and X 2 in the above formula (1) are each represented by the above formulas (2-1), (2-2), (2-3), Or it is preferable that it is a compound which is group represented by (2-4), and is group represented by said Formula (2-1), (2-2), or (2-3), respectively. It is more preferable that it is a compound.
  • R 2 represents a bond or an alkylene group having 1 to 6 carbon atoms.
  • the above R 2 is preferably an alkylene group having 1 to 3 carbon atoms, and more preferably a dimethylene group or a trimethylene group.
  • R 3 represents hydrogen or an alkyl group having 1 to 6 carbon atoms.
  • R 3 is preferably hydrogen or an alkyl group having 1 to 3 carbon atoms, and more preferably hydrogen or an ethyl group.
  • R 4 represents a bond or a methylene group.
  • the R 4 is preferably a bond.
  • R 5 represents hydrogen or a methyl group.
  • the above R 5 is preferably a methyl group.
  • the preferable lower limit of the content of the silicone compound represented by the formula (1) in 100 parts by weight of the curable resin is 5 parts by weight, and the preferable upper limit is 90 parts by weight.
  • the content of the silicone compound represented by the above formula (1) is in this range, the obtained sealant for an electronic device is excellent in low outgassing property and wettability to a substrate or an inorganic material film.
  • a more preferable lower limit of the content of the silicone compound represented by the above formula (1) is 10 parts by weight, a still more preferable lower limit is 30 parts by weight, and a particularly preferable lower limit is 50 parts by weight.
  • the more preferable upper limit of content of the silicone compound represented by said Formula (1) is 70 weight part.
  • the said curable resin contains the silicone compound represented by the said Formula (3).
  • the sealing compound for electronic devices of this invention becomes what is excellent in the wettability and spreading
  • R 6 represents an alkyl group having 1 to 10 carbon atoms, which may be the same or different.
  • the R 6 is preferably an alkyl group having 1 to 6 carbon atoms, and more preferably a methyl group.
  • X 3 and X 4 each independently represent an alkyl group having 1 to 10 carbon atoms, or the above formulas (4-1), (4-2), (4-3), Or a group represented by (4-4).
  • both X 3 and X 4 in the above formula (3) may each be an alkyl group having 1 to 10 carbon atoms, or one of them is carbon It may be an alkyl group of the number 1 or more and 10 or less, both of which are a group represented by the above formulas (4-1), (4-2), (4-3), or (4-4). It may be.
  • X 5 represents a group represented by the above formula (4-1), (4-2), (4-3) or (4-4).
  • said X 3 and said X 4 in becoming a group represented by said Formula (4-1), (4-2), (4-3), or (4-4)
  • a group represented by the formula (4-1), (4-2), (4-3) or (4-4) in the above X 5 is a polymerizable group.
  • the polymerizable group is preferably a group represented by the formula (4-1), (4-2) or (4-3).
  • the preferable lower limit of the polymerizable group equivalent of the silicone compound represented by the said Formula (3) is 300 g / mol, and a preferable upper limit is 5000 g / mol.
  • the polymerizable group equivalent of the silicone compound represented by the above formula (3) is in this range, the obtained sealing agent for an electronic device is excellent in low outgassing property and wetting and spreading property to the substrate or the inorganic material film Become.
  • a more preferable lower limit of the polymerizable group equivalent of the silicone compound represented by the above formula (3) is 400 g / mol, and a more preferable upper limit is 2000 g / mol.
  • the polymerizable group equivalent of the silicone compound represented by the said Formula (3) is the weight (g) of the silicone compound represented by the said Formula (3) in the silicone compound represented by the said Formula (3) It is a value obtained by dividing by the number of moles (mol) of the polymerizable group contained.
  • m is an integer of 0 or more and 1000 or less.
  • the preferable lower limit of m in the above formula (3) is 1, the preferable upper limit is 20, the more preferable lower limit is 3, and the more preferable upper limit is 10.
  • n is an integer of 1 or more and 100 or less.
  • the preferable lower limit of n in the above formula (3) is 2, the preferable upper limit is 20, and the more preferable upper limit is 10.
  • R 7 represents a bond or an alkylene group having 1 to 6 carbon atoms.
  • the above R 7 is preferably an alkylene group having 1 to 3 carbon atoms, and more preferably a dimethylene group or a trimethylene group.
  • R 8 represents hydrogen or an alkyl group having 1 to 6 carbon atoms.
  • the above R 8 is preferably hydrogen or an alkyl group having 1 to 3 carbon atoms, and more preferably hydrogen or an ethyl group.
  • R 9 represents a bond or a methylene group.
  • the above R 9 is preferably a bond.
  • R 10 represents hydrogen or a methyl group.
  • the above R 10 is preferably a methyl group.
  • the preferable lower limit of the content of the silicone compound represented by the above formula (3) in 100 parts by weight of the curable resin is 0.01 parts by weight, and the preferable upper limit is 30 parts by weight.
  • the content of the silicone compound represented by the above formula (3) is in this range, the obtained sealant for an electronic device is excellent in the low outgassing property and the wettability and spreading property to the substrate or the inorganic material film.
  • the content of the silicone compound represented by the above formula (3) in 100 parts by weight of the above curable resin The lower limit of is preferably 0.01 parts by weight, more preferably 0.1 parts by weight, and the upper limit is preferably 30 parts by weight, more preferably 20 parts by weight, and still more preferably 10 parts by weight.
  • the polymerizable group equivalent of the silicone compound represented by said Formula (3) is less than 300 g / mol, content of the silicone compound represented by said Formula (3) in 100 weight part of said curable resins
  • the preferred lower limit of is 0.1 parts by weight, the preferred upper limit is 30 parts by weight, and the more preferred upper limit is 20 parts by weight.
  • the polymeric group equivalent of the silicone compound represented by the said Formula (3) has a number average value. means.
  • the above-mentioned curable resin contains, in addition to the silicone compound represented by the above formula (1) and the silicone compound represented by the above formula (3), other curable resins for the purpose of improving adhesion and the like.
  • the epoxy compound (Hereafter, it is also mentioned “the other epoxy compound") which does not have a structure represented by said Formula (1) and said Formula (3), said Formula (1), and An oxetane compound not having a structure represented by the above formula (3) (hereinafter, also referred to as "other oxetane compound”), a structure not having a structure represented by the above formula (1) or the above formula (3)
  • At least one selected from the group consisting of a meta) acrylic compound (hereinafter also referred to as "other (meth) acrylic compound”) and a vinyl ether compound is preferable.
  • (meth) acrylic means acrylic or methacrylic
  • (meth) acrylic compound means a compound having a (meth) acryloyl group
  • (meth) acryloyl means a compound having a (meth) acryloyl group
  • (meth) acryloyl” Means acryloyl or methacryloyl.
  • Examples of the other epoxy compounds include bisphenol A epoxy resin, bisphenol E epoxy resin, bisphenol F epoxy resin, bisphenol S epoxy resin, bisphenol O epoxy resin, 2,2′-diallyl bisphenol A epoxy Resin, alicyclic epoxy resin, hydrogenated bisphenol epoxy resin, propylene oxide added bisphenol A epoxy resin, resorcinol epoxy resin, biphenyl epoxy resin, sulfide epoxy resin, diphenyl ether epoxy resin, dicyclopentadiene epoxy resin Naphthalene type epoxy resin, phenol novolac type epoxy resin, ortho cresol novolac type epoxy resin, dicyclopentadiene novolac type epoxy resin, bif Examples thereof include henyl novolac epoxy resin, naphthalenephenol novolac epoxy resin, glycidyl amine epoxy resin, alkyl polyol epoxy resin, rubber modified epoxy resin, glycidyl ester compound and the like.
  • alicyclic epoxy resins are preferable.
  • the alicyclic epoxy resin by Daicel Co., Ltd. the alicyclic epoxy resin by Shin Nippon Rika Kogyo Co., Ltd., etc. are mentioned, for example.
  • the alicyclic epoxy resin manufactured by Daicel Corporation include Celoxide 2000, Celoxide 2021P, Celoxide 2081, Celoxide 3000, Celoxide 8000, Cyclomer M-100 and the like.
  • Examples of the alicyclic epoxy resin manufactured by Shin Nippon Rika Kogyo Co., Ltd. include Sanssoizer EPS.
  • alicyclic epoxy resins those having no ether bond other than that contained in the epoxy group and no ester bond are preferable from the viewpoint of suppressing the generation of outgassing.
  • Celoxide 2000, Celoxide 3000, Celoxide 8000 etc. are mentioned, for example. These other epoxy compounds may be used alone or in combination of two or more.
  • Examples of the other oxetane compounds include 3- (allyloxy) oxetane, phenoxymethyl oxetane, 3-ethyl-3-hydroxymethyl oxetane, 3-ethyl-3- (phenoxymethyl) oxetane, 3-ethyl-3- ( (2-ethylhexyloxy) methyl) oxetane, 3-ethyl-3-((3- (triethoxysilyl) propoxy) methyl) oxetane, 3-ethyl-3-(((3-ethyloxetan-3-yl) methoxy And (iii) methyl) oxetane, oxetanyl silsesquioxane, phenol novolac oxetane, 1,4-bis (((3-ethyl-3-oxetanyl) methoxy) methyl) benzene and the like.
  • Examples of the other (meth) acrylic compounds include glycidyl (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate and dicyclopentenyl (meth) acrylate. , Dicyclopentenyl oxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate, benzyl (meth) acrylate, trimethylolpropane tri (meth) arylate, 1, 12-dodecanediol di (meth) acrylate, lauryl (meth) And the like. These other (meth) acrylic compounds may be used alone or in combination of two or more. In the present specification, the above "(meth) acrylate” means acrylate or methacrylate.
  • vinyl ether compounds examples include benzyl vinyl ether, cyclohexane dimethanol monovinyl ether, dicyclopentadiene vinyl ether, 1,4-butanediol divinyl ether, cyclohexane dimethanol divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether, dipropylene glycol Divinyl ether, tripropylene glycol divinyl ether and the like can be mentioned. These vinyl ether compounds may be used alone or in combination of two or more.
  • alicyclic epoxy resins 3- (allyloxy) oxetane, 3-ethyl-3-((2-ethylhexyloxy) methyl) oxetane as the above-mentioned and other curable resins because of low viscosity and high reactivity.
  • the preferred lower limit of the content of the other curable resin in 100 parts by weight of the curable resin is 5 parts by weight, and the preferred upper limit is 90 parts by weight.
  • the adhesive property can be improved by the effect such as the improvement of the coating property without deteriorating the coating property and the like.
  • a more preferable lower limit of the content of the other curable resin is 20 parts by weight.
  • the upper limit of the content of the other curable resin is preferably 70 parts by weight, more preferably 60 parts by weight, and particularly preferably 40 parts by weight.
  • the sealant for electronic devices of the present invention contains a polymerization initiator and / or a thermosetting agent.
  • a polymerization initiator a photocationic polymerization initiator, a thermal cationic polymerization initiator, a radical photopolymerization initiator, and a thermal radical polymerization initiator are used suitably.
  • the photo cationic polymerization initiator is not particularly limited as long as it generates a protonic acid or a Lewis acid upon irradiation with light, and may be an ionic photoacid generating type or a nonionic photoacid generating type. May be
  • anionic moiety of the above-mentioned ionic photoacid-generating photocationic polymerization initiator examples include BF 4 ⁇ , PF 6 ⁇ , SbF 6 ⁇ , (BX 4 ) ⁇ (wherein X represents at least two or more fluorine atoms). Or a phenyl group substituted with a trifluoromethyl group) and the like.
  • anionic moiety PF m (C n F 2n + 1) 6-m - ( In the formula, m is 0 to 5 integer, n represents 1 to 6 of an integer), such as also It can be mentioned.
  • Examples of the above-mentioned ionic photoacid-generating photocationic polymerization initiator include an aromatic sulfonium salt, an aromatic iodonium salt, an aromatic diazonium salt, an aromatic ammonium salt, and an aromatic ammonium salt having the above-mentioned anion moiety. And pentadien-1-yl) ((1-methylethyl) benzene) -Fe salt and the like.
  • aromatic sulfonium salt examples include bis (4- (diphenylsulfonio) phenyl) sulfide bishexafluorophosphate, bis (4- (diphenylsulfonio) phenyl) sulfide bishexafluoroantimonate, bis (4- (diphenyl) Diphenylsulfonio) phenyl) sulfide bis tetrafluoroborate, bis (4- (diphenylsulfonio) phenyl) sulfide tetrakis (pentafluorophenyl) borate, diphenyl-4- (phenylthio) phenylsulfonium hexafluorophosphate, diphenyl-4- (4) Phenylthio) phenylsulfonium hexafluoroantimonate, diphenyl-4- (phenylthio) phenylsulfon
  • aromatic iodonium salt examples include diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, diphenyliodonium tetrafluoroborate, diphenyliodonium tetrakis (pentafluorophenyl) borate, bis (dodecylphenyl) iodonium hexafluorophosphate, bis (Dodecylphenyl) iodonium hexafluoroantimonate, bis (dodecylphenyl) iodonium tetrafluoroborate, bis (dodecylphenyl) iodonium tetrakis (pentafluorophenyl) borate, 4-methylphenyl-4- (1-methylethyl) phenyliodonium hexa Fluorophosphate, 4-methylphenyl-4- (1-methylethy
  • aromatic diazonium salt examples include phenyl diazonium hexafluorophosphate, phenyl diazonium hexafluoro antimonate, phenyl diazonium tetrafluoroborate, phenyl diazonium tetrakis (pentafluorophenyl) borate and the like.
  • aromatic ammonium salt examples include 1-benzyl-2-cyanopyridinium hexafluorophosphate, 1-benzyl 2-cyanopyridinium hexafluoroantimonate, 1-benzyl 2-cyanopyridinium tetrafluoroborate, 1-benzyl 2-Cyanopyridinium tetrakis (pentafluorophenyl) borate, 1- (naphthylmethyl) -2-cyanopyridinium hexafluorophosphate, 1- (naphthylmethyl) -2-cyanopyridinium hexafluoroantimonate, 1- (naphthylmethyl) Examples thereof include -2-cyanopyridinium tetrafluoroborate, 1- (naphthylmethyl) -2-cyanopyridinium tetrakis (pentafluorophenyl) borate and the like.
  • Examples of the (2,4-cyclopentadien-1-yl) ((1-methylethyl) benzene) -Fe salt include, for example, (2,4-cyclopentadien-1-yl) ((1-methylethyl) benzene ) -Fe (II) hexafluorophosphate, (2,4-cyclopentadien-1-yl) ((1-methylethyl) benzene) -Fe (II) hexafluoroantimonate, (2,4-cyclopentadiene-1) -Yl) ((1-methylethyl) benzene) -Fe (II) tetrafluoroborate, (2,4-cyclopentadien-1-yl) ((1-methylethyl) benzene) -Fe (II) tetrakis (penta) And fluorophenyl) borate and the like.
  • nonionic cationic photoacid generation type cationic photopolymerization initiator examples include nitrobenzyl ester, sulfonic acid derivative, phosphoric acid ester, phenol sulfonic acid ester, diazonaphthoquinone, N-hydroxyimidosulfonate and the like.
  • photo cationic polymerization initiators commercially available ones are, for example, a photo cationic polymerization initiator manufactured by Midori Chemical Co., a photo cationic polymerization initiator manufactured by Union Carbide, a photo cationic polymerization initiator manufactured by ADEKA, Examples thereof include a cationic photopolymerization initiator manufactured by 3M, a cationic photopolymerization initiator manufactured by BASF, and a cationic photopolymerization initiator manufactured by Rhodia. Examples of the photocationic polymerization initiator manufactured by Midori Kagaku Co., Ltd. include DTS-200.
  • Examples of the cationic photopolymerization initiator manufactured by Union Carbide include UVI6990, UVI6974 and the like.
  • Examples of the cationic photopolymerization initiator manufactured by ADEKA include SP-150 and SP-170.
  • Examples of the photocationic polymerization initiator manufactured by 3M include FC-508, FC-512 and the like.
  • Examples of the cationic photopolymerization initiator manufactured by BASF include IRGACURE 261 and IRGACURE 290.
  • Examples of the cationic photopolymerization initiator manufactured by Rhodia include PI 2074 and the like.
  • the anionic part is substituted by BF 4 ⁇ , PF 6 ⁇ , SbF 6 ⁇ or (BX 4 ) ⁇ (wherein X is at least two or more fluorine or trifluoromethyl groups) And a sulfonium salt, a phosphonium salt, an ammonium salt and the like. Among these, sulfonium salts and ammonium salts are preferable.
  • sulfonium salt examples include triphenylsulfonium tetrafluoroborate and triphenylsulfonium hexafluoroantimonate.
  • Examples of the phosphonium salt include ethyltriphenylphosphonium hexafluoroantimonate, tetrabutylphosphonium hexafluoroantimonate and the like.
  • ammonium salt examples include dimethylphenyl (4-methoxybenzyl) ammonium hexafluorophosphate, dimethylphenyl (4-methoxybenzyl) ammonium hexafluoroantimonate, and dimethylphenyl (4-methoxybenzyl) ammonium tetrakis (pentafluorophenyl).
  • thermal cationic polymerization initiator As what is marketed among the said thermal cationic polymerization initiators, the thermal cationic polymerization initiator by Sanshin Chemical Industry Co., Ltd., the thermal cationic polymerization initiator by King Industries Ltd., etc. are mentioned, for example.
  • the thermal cationic polymerization initiator manufactured by Sanshin Chemical Industry Co., Ltd. include San Aid SI-60, San Aid SI-80, San Aid SI-B3, San Aid SI-B3A, San Aid SI-B4 and the like.
  • thermal cationic polymerization initiator manufactured by King Industries, Ltd. include CXC 1612, CXC 1821 and the like.
  • photoradical polymerization initiator examples include benzophenone compounds, acetophenone compounds, acyl phosphine oxide compounds, titanocene compounds, oxime ester compounds, benzoin ether compounds, benzyl and thioxanthone compounds.
  • the radical photopolymerization initiator by BASF AG As what is marketed among the said radical photopolymerization initiators, the radical photopolymerization initiator by BASF AG, the radical photopolymerization initiator by Tokyo Chemical Industry Co., Ltd., etc. are mentioned, for example.
  • the above-mentioned radical photopolymerization initiator manufactured by BASF include IRGACURE 184, IRGACURE 369, IRGACURE 379, IRGACURE 651, IRGACURE 819, IRGACURE 907, IRGACURE 2959, IRGACURE OXE01, Lucirin TPO and the like.
  • the radical photopolymerization initiator manufactured by Tokyo Chemical Industry Co., Ltd. include benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether and the like.
  • thermal radical polymerization initiator what consists of an azo compound, an organic peroxide, etc. is mentioned, for example.
  • the azo compound include 2,2′-azobis (2,4-dimethylvaleronitrile), azobisisobutyronitrile and the like.
  • the organic peroxide include benzoyl peroxide, ketone peroxide, peroxy ketal, hydroperoxide, dialkyl peroxide, peroxy ester, diacyl peroxide, peroxy dicarbonate and the like.
  • thermal radical polymerization initiators commercially available ones are, for example, VPE-0201, VPE-0401, VPE-0601, VPS-0501, VPS-1001 and V-501 (all are Fujifilm Wako Pure Chemical Industries, Ltd. And the like.
  • the content of the polymerization initiator is preferably 0.01 parts by weight with a preferable lower limit and 10 parts by weight with a preferable upper limit based on 100 parts by weight of the curable resin.
  • the content of the polymerization initiator is 0.01 parts by weight or more, the obtained sealant for an electronic device is more excellent in curability.
  • the content of the polymerization initiator is 10 parts by weight or less, the curing reaction of the obtained sealing agent for electronic devices does not become too fast, and becomes more excellent in workability, and makes the cured product more uniform. be able to.
  • the more preferable lower limit of the content of the polymerization initiator is 0.05 parts by weight, and the more preferable upper limit is 5 parts by weight.
  • thermosetting agent examples include hydrazide compounds, imidazole derivatives, acid anhydrides, dicyandiamides, guanidine derivatives, modified aliphatic polyamines, and addition products of various amines and epoxy resins.
  • hydrazide compound examples include 1,3-bis (hydrazinocarbonoethyl) -5-isopropylhydantoin, sebacic acid dihydrazide, isophthalic acid dihydrazide, adipic acid dihydrazide, malonic acid dihydrazide and the like.
  • imidazole derivatives examples include 1-cyanoethyl-2-phenylimidazole, N- (2- (2-methyl-1-imidazolyl) ethyl) urea, 2,4-diamino-6- (2′-methylimidazolyl- (1 ′))-Ethyl-s-triazine, N, N′-bis (2-methyl-1-imidazolylethyl) urea, N, N ′-(2-methyl-1-imidazolylethyl) -adipamide, 2- Examples include phenyl-4-methyl-5-hydroxymethylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole and the like.
  • acid anhydride examples include tetrahydrophthalic anhydride, ethylene glycol bis (anhydrotrimellitate) and the like. These thermosetting agents may be used alone or in combination of two or more.
  • thermosetting agent As what is marketed among the said thermosetting agent, the thermosetting agent by Otsuka Chemical Co., Ltd., the thermosetting agent by Ajinomoto fine techno, etc. are mentioned, for example.
  • thermosetting agent manufactured by Otsuka Chemical Co., Ltd. include SDH and ADH.
  • thermosetting agent manufactured by Ajinomoto Fine Techno Co., Ltd. include Amicure VDH, Amicure VDH-J, Amicure UDH and the like.
  • a preferable lower limit is 0.5 parts by weight and a preferable upper limit is 30 parts by weight with respect to 100 parts by weight of the curable resin.
  • the content of the thermosetting agent is 0.5 parts by weight or more, the obtained sealant for an electronic device is more excellent in thermosetting.
  • the content of the thermosetting agent is 30 parts by weight or less, the obtained sealant for an electronic device is more excellent in storage stability, and the cured product is more excellent in moisture resistance.
  • the more preferable lower limit of the content of the thermosetting agent is 1 part by weight, and the more preferable upper limit is 15 parts by weight.
  • the sealant for electronic devices of the present invention may contain a sensitizer.
  • the sensitizer has a role of further improving the polymerization initiation efficiency of the polymerization initiator to further accelerate the curing reaction of the sealant for an electronic device of the present invention.
  • Examples of the sensitizer include thioxanthone compounds, 2,2-dimethoxy-1,2-diphenylethane-1-one, benzophenone, 2,4-dichlorobenzophenone, methyl o-benzoylbenzoate, 4,4. Examples thereof include '-bis (dimethylamino) benzophenone, 4-benzoyl-4'-methyldiphenyl sulfide and the like. Examples of the thioxanthone compounds include 2,4-diethylthioxanthone and the like.
  • the lower limit of the content of the sensitizer is preferably 0.01 parts by weight and the upper limit is 3 parts by weight with respect to 100 parts by weight of the curable resin.
  • the content of the sensitizer is 0.01 parts by weight or more, the sensitizing effect is more exhibited.
  • the content of the sensitizer is 3 parts by weight or less, light can be transmitted to the deep part without the absorption becoming too large.
  • a more preferable lower limit of the content of the sensitizer is 0.1 parts by weight, and a more preferable upper limit is 1 part by weight.
  • the sealant for electronic devices of the present invention may further contain a silane coupling agent.
  • the said silane coupling agent has a role of improving the adhesiveness of the sealing agent for electronic devices of this invention, a board
  • silane coupling agent examples include 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-isocyanatopropyltrimethoxysilane and the like. These silane compounds may be used alone or in combination of two or more.
  • the preferable lower limit of the content of the silane coupling agent is 0.1 parts by weight and the preferable upper limit is 10 parts by weight with respect to 100 parts by weight of the curable resin.
  • the content of the silane coupling agent is in this range, the adhesive property of the obtained sealing agent for an electronic device can be improved while suppressing the bleed out due to the excess silane coupling agent.
  • a more preferable lower limit of the content of the silane coupling agent is 0.5 parts by weight, and a more preferable upper limit is 5 parts by weight.
  • the sealant for electronic devices of the present invention may contain a curing retarder.
  • a curing retarder By containing the above-mentioned curing retarder, the pot life of the obtained sealant for an electronic device can be extended.
  • a polyether compound etc. are mentioned, for example.
  • the polyether compound include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and crown ether compounds. Among them, crown ether compounds are preferable.
  • a preferable lower limit is 0.05 parts by weight and a preferable upper limit is 5.0 parts by weight with respect to 100 parts by weight of the curable resin.
  • the delay effect can be further exhibited while suppressing the generation of outgassing at the time of curing the obtained sealant for an electronic device.
  • a more preferable lower limit of the content of the curing retarder is 0.1 parts by weight, and a more preferable upper limit is 3.0 parts by weight.
  • the sealant for electronic devices of the present invention may further contain a surface modifier, as long as the object of the present invention is not hindered.
  • a surface modifier By containing the surface modifier, the flatness of the coating film can be imparted to the sealant for an electronic device of the present invention.
  • surfactant As said surface modifier, surfactant, a leveling agent, etc. are mentioned, for example.
  • Examples of the surface modifier include those of silicone type, acrylic type and fluorine type. As what is marketed among the said surface modifiers, the surface modifier by BIC Chemie Japan company, the surface modifier by AGC Seimi Chemical Co., Ltd., etc. are mentioned, for example. Examples of the surface modifying agent manufactured by Bick Chemie Japan Ltd. include BYK-340 and BYK-345. Examples of the surface modifying agent manufactured by AGC Seimi Chemical Co., Ltd. include Surfron S-611.
  • the sealing agent for electronic devices of the present invention is a compound or ion exchange resin that reacts with the acid generated in the sealing agent in order to improve the durability of the device electrode within the range that does not inhibit the transparency of the cured product. You may contain.
  • Examples of the compound that reacts with the acid generated in the sealing agent include substances that can be neutralized with an acid, such as carbonates or hydrogencarbonates of alkali metals or alkaline earth metals.
  • carbonates or hydrogencarbonates of alkali metals or alkaline earth metals such as calcium carbonate, calcium hydrogen carbonate, sodium carbonate, sodium hydrogen carbonate and the like are used.
  • any of cation exchange type, anion exchange type, and both ion exchange types can be used, and in particular, cation exchange type or both ion exchange type capable of adsorbing chloride ions. Is preferred.
  • the sealant for an electronic device of the present invention may contain, if necessary, various known additives such as a reinforcing agent, a softener, a plasticizer, a viscosity modifier, an ultraviolet absorber, an antioxidant and the like. Good.
  • a curable resin for example, a curable resin, a polymerization using a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, and a 3-roll machine,
  • a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, and a 3-roll machine
  • the method etc. which mix an initiator and / or a thermosetting agent, and additives, such as a silane coupling agent added as needed, are mentioned.
  • the preferable lower limit of the viscosity measured under conditions of 25 ° C. and 100 rpm using an E-type viscometer is 5 mPa ⁇ s, and the preferable upper limit is 200 mPa ⁇ s.
  • the sealant for an electronic device of the present invention is excellent in ink jet coatability and shape retention after application.
  • a more preferable lower limit of the viscosity of the sealing agent for an electronic device is 10 mPa ⁇ s, and a more preferable upper limit is 80 mPa ⁇ s.
  • the coating material for electronic devices of this invention may be heated at the time of application
  • the preferable lower limit of the total light transmittance of light at wavelengths of 380 nm to 800 nm of the cured product of the sealant for electronic devices of the present invention is 80%.
  • the total light transmittance is 80% or more, it can be suitably used for an organic EL display element or the like.
  • a more preferable lower limit of the total light transmittance is 85%.
  • the total light transmittance can be measured, for example, using a spectrometer such as AUTOMATIC HAZE METER MODEL TC-III DPK (manufactured by Tokyo Denshoku Co., Ltd.).
  • curing material used for the measurement of the said total light transmittance is a photocurable sealing agent, it will obtain by irradiating 3000 mJ / cm ⁇ 2 > of ultraviolet rays with a wavelength of 365 nm to LED light for example to a sealing agent.
  • the thermosetting sealant can be obtained, for example, by heating at 80 ° C. for one hour.
  • the sealant for an electronic device of the present invention is preferably such that the transmittance at 400 nm after irradiating the cured product with ultraviolet light for 100 hours is 85% or more at an optical path length of 20 ⁇ m.
  • the transmittance after irradiation with ultraviolet light for 100 hours is 85% or more, the transparency is more excellent, the loss of light emission is small, and the color reproducibility is excellent.
  • the more preferable lower limit of the transmittance after irradiation with ultraviolet light for 100 hours is 90%, and the further preferable lower limit is 95%.
  • a light source which irradiates the said ultraviolet-ray conventionally well-known light sources, such as a xenon lamp and a carbon arc lamp, can be used, for example.
  • the ultraviolet-ray of wavelength 365nm will be 3000 mJ / cm with a LED lamp to a sealing agent, for example. (2 ) It can be obtained by irradiation, and if it is a thermosetting sealant, it can be obtained, for example, by heating at 80 ° C. for 1 hour.
  • the sealant for electronic devices of the present invention has a moisture permeability of 100 g / m 2 at a thickness of 100 ⁇ m measured by exposing the cured product to an environment of 85 ° C. and 85% RH for 24 hours according to JIS Z 0208. It is preferable that it is the following.
  • the moisture permeability is 100 g / m 2 or less, for example, when used for manufacturing an organic EL display device as an electronic device, the effect of suppressing generation of dark spots due to water reaching the organic light emitting material layer is suppressed. It will be excellent.
  • cured material used for the measurement of the said moisture permeability will be obtained by irradiating 3000 mJ / cm ⁇ 2 > of ultraviolet rays with a wavelength of 365 nm by LED lamp to a sealing agent, for example.
  • a thermosetting sealant can be obtained, for example, by heating at 80 ° C. for 1 hour.
  • cured material is less than 0.5%, when the hardened
  • the moisture content of the cured product is less than 0.5%, for example, when used for manufacturing an organic EL display device as an electronic device, the effect of suppressing the deterioration of the organic light emitting material layer due to the moisture in the cured product It will be excellent.
  • cured material is 0.3%.
  • Examples of the method of measuring the water content include a method of obtaining by Karl Fischer according to JIS K 7251, and a method of obtaining a weight increment after water absorption according to JIS K 7209-2.
  • cured material used for the measurement of the said moisture content will be obtained by irradiating 3000 mJ / cm ⁇ 2 > of ultraviolet rays with a wavelength of 365 nm with LED lamp to a sealing agent, for example.
  • a thermosetting sealant can be obtained, for example, by heating at 80 ° C. for 1 hour.
  • the method etc. which have the process of hardening the sealing agent for electronic devices by light irradiation and / or heating, and the process of bonding together the said 2 base material are mentioned.
  • the sealant for electronic devices of the present invention may be applied to the entire surface of the substrate, and It may be applied to a part.
  • the sealant for electronic devices of the present invention may be applied to the entire surface of the substrate, and It may be applied to a part.
  • the shape of a sealing portion of the sealing agent for an electronic device of the present invention formed by coating the laminate having the organic light emitting material layer is protected from the outside air
  • the shape may be such that the laminate is completely covered, or a closed pattern may be formed on the periphery of the laminate, or a partial opening is provided on the periphery of the laminate.
  • a pattern of shapes may be formed.
  • coating the sealing agent for electronic devices of this invention the inkjet method is preferable.
  • a substrate (hereinafter also referred to as one substrate) to which the sealant for an electronic device of the present invention is applied is a laminate having an organic light emitting material layer Or the base on which the laminate is not formed.
  • the one base is a base on which the laminate is not formed, the other base may be protected from the air when the other base is attached to the one base according to the present invention.
  • a sealant for an electronic device may be applied. That is, when the other substrate is bonded, the entire surface is applied to the position of the laminate, or when the other substrate is bonded, the position of the laminate is complete.
  • a closed pattern sealant portion may be formed in a shape that fits within the
  • the laminate may be coated with an inorganic material film.
  • the inorganic material constituting the inorganic material film conventionally known materials can be used, and examples thereof include silicon nitride (SiN x ) and silicon oxide (SiO x ).
  • the inorganic material film may be composed of a single layer, or may be a laminate of multiple types of layers.
  • the laminate may be coated by alternately repeating the above-mentioned inorganic material film and the resin film composed of the sealant for electronic devices of the present invention.
  • the step of curing the sealing agent for an electronic device by light irradiation and / or heating may be performed before the step of bonding the two substrates, or in the step of bonding the two substrates. It may be done later.
  • the sealing agent for electronic devices of the present invention is light irradiation and It is preferable that the pot life is 1 minute or more after heating and until curing reaction progresses and adhesion can not be performed.
  • the said usable time being 1 minute or more, advancing of hardening before bonding two base materials together can be suppressed, and the adhesive strength after bonding can be made higher.
  • an electronic device for sealant of the present invention irradiation with light of a wavelength and 300 mJ / cm 2 or more 3000 mJ / cm 2 or less of accumulated light quantity 400nm or 300nm It can be suitably cured by carrying out.
  • a light source used for the light irradiation for example, low pressure mercury lamp, medium pressure mercury lamp, high pressure mercury lamp, super high pressure mercury lamp, excimer laser, chemical lamp, black light lamp, microwave excitation mercury lamp, metal halide lamp, sodium lamp, halogen lamp, xenon A lamp, an LED lamp, a fluorescent lamp, sunlight, an electron beam irradiation apparatus etc. are mentioned. These light sources may be used alone or in combination of two or more. These light sources are suitably selected according to the absorption wavelength of the said photocationic polymerization initiator or the said radical photopolymerization initiator.
  • Examples of means for irradiating light to the sealant for an electronic device of the present invention include simultaneous irradiation of various light sources, sequential irradiation with time difference, combined irradiation of simultaneous irradiation and sequential irradiation, and the like. Irradiation means may be used.
  • the heating temperature is preferably 50 ° C. or more and 120 ° C. or less.
  • the method of bonding the two substrates is not particularly limited, but bonding under a reduced pressure atmosphere is preferable.
  • the preferable lower limit of the vacuum degree in the said pressure-reduced atmosphere is 0.01 kPa, and a preferable upper limit is 10 kPa.
  • the degree of vacuum under the reduced pressure atmosphere is in this range, two substrates can be bonded together without spending a long time to achieve a vacuum state from the airtightness of the vacuum device and the ability of the vacuum pump. Air bubbles can be more efficiently removed from the sealant for electronic devices of the present invention.
  • the sealant for an electronic device of the present invention can be suitably used particularly as a sealant for an organic EL display element because it has low outgassing properties and excellent wettability to a substrate or an inorganic material film.
  • a sealant for an organic EL display element formed using the sealant for an electronic device of the present invention is also one of the present invention.
  • the sealing agent for electronic devices which is excellent in the low outgassing property and the wetting and spreading property with respect to a board
  • Examples 1 to 14, Comparative Examples 1 and 2 Electrons of Examples 1 to 14 and Comparative Examples 1 and 2 are obtained by uniformly stirring and mixing each material at a stirring speed of 3000 rpm using a homodisper type stirring mixer according to the compounding ratio described in Tables 1 to 3 The sealing agent for devices was produced. A homodisper L type (manufactured by Primix) was used as the homodisper type stirring mixer.
  • the silicone compound represented by Formula (1) and the silicone compound represented by Formula (3) in the table will be described in detail below.
  • X-22-163 is a table of formula (1) in which R 1 is a methyl group, and X 1 and X 2 are a group represented by the above formula (2-1) (R 2 is a trimethylene group) It is a silicone compound (polymerizable group equivalent of 200 g / mol).
  • SIB1092.0 is represented by the formula (1) in which R 1 is a methyl group, and X 1 and X 2 are a group represented by the above formula (2-2) (R 2 is a dimethylene group) It is a silicone compound (polymerizing group equivalent 191 g / mol).
  • R 1 is a methyl group
  • X 1 and X 2 are a group represented by the above formula (2-4)
  • R 2 is a trimethylene group and R 5 is a methyl group
  • It is a silicone compound (polymerizable group equivalent of 190 g / mol) represented by Formula (1).
  • silicone compound having an oxetanyl group all R 1 s are methyl groups, and a group in which X 1 and X 2 are represented by the above formula (2-3) (R 2 is a trimethylene group, R 3 is an ethyl group, R 4 is a silicone compound represented by the formula (1) is a methylene group) (polymerizable group equivalent 223 g / mol).
  • X-22-343 a group in which R 6 is a methyl group, X 3 and X 4 are a methyl group, and X 5 is a group represented by the above formula (4-1) (R 7 is a trimethylene group) It is a silicone compound (polymerizable group equivalent 525 g / mol) represented by Formula (3) whose m is 7 and n is 2.
  • KF-102 is a group in which R 6 is a methyl group, X 3 and X 4 are a methyl group, and X 5 is a group represented by the above formula (4-2) (R 7 is a methylene group) And m is 90 and n is 2 (3600 g / mol of the polymerizable group equivalent) represented by the formula (3).
  • X-22-9002 is a group (R 7 is a trimethylene group) in which R 6 is a methyl group, X 3 , X 4 and X 5 are each represented by the above formula (4-1), It is a silicone compound (polymerizable group equivalent of 5000 g / mol) represented by the formula (3) in which m is 260 and n is 2.
  • viscosity The viscosity under the conditions of 25 ° C. and 100 rpm was measured using an E-type viscometer for each of the sealants for electronic devices obtained in Examples and Comparative Examples.
  • E-type viscometer VISCOMETER TV-22 (manufactured by Toki Sangyo Co., Ltd.) was used.
  • Example 13 In addition, about the sealing agent obtained in Example 13, it was made to harden
  • the low outgassing properties were evaluated as " ⁇ " when the generated gas was less than 300 ppm, " ⁇ ” when it was 300 ppm or more and less than 500 ppm, and " ⁇ ” when it was 500 ppm or more.
  • Display performance of organic EL display element (Fabrication of a substrate on which a laminate having an organic light emitting material layer is disposed)
  • An ITO electrode was formed on a glass having a length of 25 mm, a width of 25 mm, and a thickness of 0.7 mm so as to have a thickness of 1000 ⁇ as a substrate.
  • the substrate is ultrasonically cleaned with acetone, an aqueous alkaline solution, ion-exchanged water and isopropyl alcohol for 15 minutes each, and then washed with boiled isopropyl alcohol for 10 minutes, and further treated immediately with a UV-ozone cleaner went.
  • NL-UV253 manufactured by Nippon Laser Electronics Co., Ltd.
  • the substrate after the immediately preceding treatment is fixed to a substrate holder of a vacuum deposition apparatus, and 200 mg of N, N'-di (1-naphthyl) -N, N'-diphenylbenzidine (.alpha.-NPD) is put in an unglazed pot.
  • 200 mg of tris (8-quinolinolato) aluminum (Alq 3 ) was placed in another unglazed pot, and the pressure in the vacuum chamber was reduced to 1 ⁇ 10 ⁇ 4 Pa.
  • the crucible containing ⁇ -NPD was heated, and ⁇ -NPD was deposited on the substrate at a deposition rate of 15 ⁇ / s to form a hole transport layer having a film thickness of 600 ⁇ .
  • the crucible containing Alq 3 was heated to form an organic light emitting material layer having a film thickness of 600 ⁇ at a deposition rate of 15 ⁇ / s.
  • the substrate on which the hole transport layer and the organic light emitting material layer are formed is transferred to another vacuum evaporation apparatus having a tungsten resistance heating boat, and lithium fluoride is used as one of the tungsten resistance heating boats in the vacuum evaporation apparatus.
  • a mask having an opening of 13 mm ⁇ 13 mm was placed on a substrate on which the obtained laminate was disposed, and an inorganic material film A was formed by plasma CVD to cover the entire laminate.
  • SiH 4 gas and nitrogen gas are used as source gases, the flow rates are 10 sccm for SiH 4 gas and 200 sccm for nitrogen gas, RF power is 10 W (frequency 2.45 GHz), chamber temperature is 100 ° C., chamber The internal pressure was 0.9 Torr.
  • the thickness of the formed inorganic material film A was about 1 ⁇ m.
  • the sealants for electronic devices obtained in Examples and Comparative Examples were pattern-coated at 40 ° C. using an ink jet discharge device.
  • a material printer DMP-2831 manufactured by FUJIFILM Corporation
  • ultraviolet light of wavelength 365 nm was irradiated at 3000 mJ / cm 2 using an LED lamp to cure the sealing agent for electronic devices, and a resin protective film was formed.
  • the sealing agent obtained in Example 13 it was made to harden
  • the obtained organic EL display element is exposed for 100 hours under an environment of a temperature of 85 ° C. and a humidity of 85%, a voltage of 3 V is applied, and the light emission state of the organic EL display element (the presence or absence of dark spots and extinction around the pixel) was visually observed.
  • the case where light emission uniformly occurs without dark spots and peripheral quenching is " ⁇ ”
  • the case where dark spots and peripheral quenching are recognized is " ⁇ ”
  • the case where the non-light emitting part is significantly enlarged is "X”.
  • the display performance was evaluated.
  • the sealing agent for electronic devices which is excellent in the low outgassing property and the wetting and spreading property with respect to a board

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Sealing Material Composition (AREA)
  • Epoxy Resins (AREA)
  • Electroluminescent Light Sources (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyethers (AREA)

Abstract

本発明は、低アウトガス性及び基板又は無機材料膜に対する濡れ広がり性に優れる電子デバイス用封止剤を提供することを目的とする。また、本発明は、該電子デバイス用封止剤を用いてなる有機EL表示素子用封止剤を提供することを目的とする。 本発明は、硬化性樹脂と、重合開始剤及び/又は熱硬化剤とを含有する電子デバイス用封止剤であって、前記硬化性樹脂は、下記式(1)で表されるシリコーン化合物と下記式(3)で表されるシリコーン化合物とを含有する電子デバイス用封止剤である。 式(1)中、R1は、炭素数1以上10以下のアルキル基を表し、それぞれ同一であってもよいし、異なっていてもよい。X1、X2は、それぞれ独立に、炭素数1以上10以下のアルキル基、又は、下記式(2-1)、(2-2)、(2-3)、若しくは、(2-4)で表される基を表す。ただし、X1及びX2のうち少なくとも一方は、下記式(2-1)、(2-2)、(2-3)、又は、(2-4)で表される基を表す。 式(2-1)~(2-4)中、R2は、結合手又は炭素数1以上6以下のアルキレン基を表し、式(2-3)中、R3は、水素又は炭素数1以上6以下のアルキル基を表し、R4は、結合手又はメチレン基を表し、式(2-4)中、R5は、水素又はメチル基を表す。 式(3)中、R6は、炭素数1以上10以下のアルキル基を表し、それぞれ同一であってもよいし、異なっていてもよい。X3、X4は、それぞれ独立に、炭素数1以上10以下のアルキル基、又は、下記式(4-1)、(4-2)、(4-3)、若しくは、(4-4)で表される基を表し、X5は、下記式(4-1)、(4-2)、(4-3)、又は、(4-4)で表される基を表す。mは、0以上1000以下の整数であり、nは、1以上100以下の整数である。 式(4-1)~(4-4)中、R7は、結合手又は炭素数1以上6以下のアルキレン基を表し、式(4-3)中、R8は、水素又は炭素数1以上6以下のアルキル基を表し、R9は、結合手又はメチレン基を表し、式(4-4)中、R10は、水素又はメチル基を表す。

Description

電子デバイス用封止剤及び有機EL表示素子用封止剤
本発明は、低アウトガス性及び基板又は無機材料膜に対する濡れ広がり性に優れる電子デバイス用封止剤に関する。また、本発明は、該電子デバイス用封止剤を用いてなる有機EL表示素子用封止剤に関する。
近年、有機エレクトロルミネッセンス(以下、有機ELともいう)表示素子や有機薄膜太陽電池素子等の有機薄膜素子を用いた電子デバイスの研究が進められている。有機薄膜素子は真空蒸着や溶液塗布等により簡便に作製できるため、生産性にも優れる。
有機EL表示素子は、互いに対向する一対の電極間に有機発光材料層が挟持された積層体構造を有し、この有機発光材料層に一方の電極から電子が注入されるとともに他方の電極から正孔が注入されることにより有機発光材料層内で電子と正孔とが結合して発光する。このように有機EL表示素子は自己発光を行うことから、バックライトを必要とする液晶表示素子等と比較して視認性がよく、薄型化が可能であり、しかも直流低電圧駆動が可能であるという利点を有している。
有機薄膜太陽電池素子は、無機半導体を使用した太陽電池に比べ、コスト、大面積化、製造工程の容易さ等の点で優れており、種々の構成のものが提案されている。具体的には例えば、非特許文献1には、フタロシアニン銅とペリレン系色素の積層膜を使用した有機太陽電池素子が開示されている。
これらの有機薄膜素子は、有機層や電極が外気に曝されると、その性能が急激に劣化してしまうという問題がある。従って、安定性及び耐久性を高めるために、有機薄膜素子を封止して大気中の水分や酸素から遮断することが不可欠となる。
有機薄膜素子を封止する方法としては、従来、内部に吸水剤を設けた封止缶によって封止する方法が一般的であった。しかしながら、封止缶により封止する方法では、電子デバイスを薄型化することが困難となる。そこで、封止缶を使用しない有機薄膜素子の封止方法の開発が進められている。
特許文献1には、有機EL表示素子の有機発光材料層と電極とを、CVD法により形成した窒化珪素膜と樹脂膜との積層膜により封止する方法が開示されている。ここで樹脂膜は、窒化珪素膜の内部応力による有機層や電極への圧迫を防止する役割を有する。
特許文献1に開示された窒化珪素膜で封止を行う方法では、有機薄膜素子の表面の凹凸や異物の付着、内部応力によるクラックの発生等により、窒化珪素膜を形成する際に有機薄膜素子を完全に被覆できないことがある。窒化珪素膜による被覆が不完全であると、水分が窒化珪素膜を通して有機層内に浸入してしまう。
有機層内への水分の浸入を防止するための方法として、特許文献2には、無機材料膜と樹脂膜とを交互に蒸着する方法が開示されており、特許文献3や特許文献4には、無機材料膜上に樹脂膜を形成する方法が開示されている。
樹脂膜を形成する方法として、基材上に液状の硬化性樹脂組成物を塗布した後、該硬化性樹脂組成物を硬化させる方法がある。塗布方法としてインクジェット法等を用いれば、高速かつ均一に樹脂膜を形成することができる。硬化性樹脂組成物からなる電子デバイス用封止剤を基材に塗布する場合、塗布性の観点から封止剤の粘度を低粘度とする必要がある。電子デバイス用封止剤の粘度を調整する方法としては、電子デバイス用封止剤に有機溶剤を配合する方法や、配合する硬化性樹脂として分子量の低いものを用いることが考えられるが、これらの方法ではアウトガスを発生しやすくなる等の問題があった。
特開2000-223264号公報 特表2005-522891号公報 特開2001-307873号公報 特開2008-149710号公報
Applied Physics Letters(1986、Vol.48、P.183)
本発明は、低アウトガス性及び基板又は無機材料膜に対する濡れ広がり性に優れる電子デバイス用封止剤を提供することを目的とする。また、本発明は、該電子デバイス用封止剤を用いてなる有機EL表示素子用封止剤を提供することを目的とする。
本発明は、硬化性樹脂と、重合開始剤及び/又は熱硬化剤とを含有する電子デバイス用封止剤であって、上記硬化性樹脂は、下記式(1)で表されるシリコーン化合物と下記式(3)で表されるシリコーン化合物とを含有する電子デバイス用封止剤である。
Figure JPOXMLDOC01-appb-C000005
式(1)中、Rは、炭素数1以上10以下のアルキル基を表し、それぞれ同一であってもよいし、異なっていてもよい。X、Xは、それぞれ独立に、炭素数1以上10以下のアルキル基、又は、下記式(2-1)、(2-2)、(2-3)、若しくは、(2-4)で表される基を表す。ただし、X及びXのうち少なくとも一方は、下記式(2-1)、(2-2)、(2-3)、又は、(2-4)で表される基を表す。
Figure JPOXMLDOC01-appb-C000006
式(2-1)~(2-4)中、Rは、結合手又は炭素数1以上6以下のアルキレン基を表し、式(2-3)中、Rは、水素又は炭素数1以上6以下のアルキル基を表し、Rは、結合手又はメチレン基を表し、式(2-4)中、Rは、水素又はメチル基を表す。
Figure JPOXMLDOC01-appb-C000007
式(3)中、Rは、炭素数1以上10以下のアルキル基を表し、それぞれ同一であってもよいし、異なっていてもよい。X、Xは、それぞれ独立に、炭素数1以上10以下のアルキル基、又は、下記式(4-1)、(4-2)、(4-3)、若しくは、(4-4)で表される基を表し、Xは、下記式(4-1)、(4-2)、(4-3)、又は、(4-4)で表される基を表す。mは、0以上1000以下の整数であり、nは、1以上100以下の整数である。
Figure JPOXMLDOC01-appb-C000008
式(4-1)~(4-4)中、Rは、結合手又は炭素数1以上6以下のアルキレン基を表し、式(4-3)中、Rは、水素又は炭素数1以上6以下のアルキル基を表し、Rは、結合手又はメチレン基を表し、式(4-4)中、R10は、水素又はメチル基を表す。
以下に本発明を詳述する。
本発明者らは、末端に重合性基を有する分子鎖の短い特定のシリコーン化合物が低アウトガス性に優れることを見出した。しかしながら、このような末端に重合性基を有する分子鎖の短い特定のシリコーン化合物を用いた場合、得られる封止剤が基板又は無機材料膜に対する濡れ広がり性に劣るものとなるという問題があった。一方で末端に重合性基を有する分子鎖の長い特定のシリコーン化合物は、無機材料膜に対する濡れ広がり性が優れるものの、シリコーン鎖の切断によってアウトガスを発生させ易いという問題があった。そこで本発明者らは更に鋭意検討した結果、末端に重合性基を有する特定の分子鎖の短いシリコーン化合物と側鎖に重合性基を有する特定のシリコーン化合物とを組み合わせて用いることを検討した。その結果、低アウトガス性及び基板又は無機材料膜に対する濡れ広がり性に優れる電子デバイス用封止剤を得ることができることを見出し、本発明を完成させるに至った。
本発明の電子デバイス用封止剤は、インクジェット法により容易に薄膜化することができるものとなる。
本発明の電子デバイス用封止剤は、硬化性樹脂を含有する。
上記硬化性樹脂は、上記式(1)で表されるシリコーン化合物を含有する。上記式(1)で表されるシリコーン化合物を含有することにより、本発明の電子デバイス用封止剤は、低アウトガス性に優れるものとなり、かつ、硬化物が耐衝撃性及び耐熱性に優れるものとなる。
上記式(1)中、Rは、炭素数1以上10以下のアルキル基を表し、それぞれ同一であってもよいし、異なっていてもよい。上記Rは、炭素数1以上6以下のアルキル基であることが好ましく、メチル基であることがより好ましい。
上記式(1)中、X、Xは、それぞれ独立に、炭素数1以上10以下のアルキル基、又は、上記式(2-1)、(2-2)、(2-3)、若しくは、(2-4)で表される基を表す。ただし、X及びXのうち少なくとも一方は、上記式(2-1)、(2-2)、(2-3)、又は、(2-4)で表される基を表す。
上記式(1)で表されるシリコーン化合物は、上記式(1)中のX及びXの両方が、それぞれ上記式(2-1)、(2-2)、(2-3)、又は、(2-4)で表される基である化合物であることが好ましく、それぞれ上記式(2-1)、(2-2)、又は、(2-3)で表される基である化合物であることがより好ましい。
上記式(2-1)~(2-4)中、Rは、結合手又は炭素数1以上6以下のアルキレン基を表す。上記Rは、炭素数1以上3以下のアルキレン基であることが好ましく、ジメチレン基又はトリメチレン基であることがより好ましい。
上記式(2-3)中、Rは、水素又は炭素数1以上6以下のアルキル基を表す。上記Rは、水素又は炭素数1以上3以下のアルキル基であることが好ましく、水素又はエチル基であることがより好ましい。
上記式(2-3)中、Rは、結合手又はメチレン基を表す。上記Rは、結合手であることが好ましい。
上記式(2-4)中、Rは、水素又はメチル基を表す。上記Rは、メチル基であることが好ましい。
上記硬化性樹脂100重量部中における上記式(1)で表されるシリコーン化合物の含有量の好ましい下限は5重量部、好ましい上限は90重量部である。上記式(1)で表されるシリコーン化合物の含有量がこの範囲であることにより、得られる電子デバイス用封止剤が低アウトガス性及び基板又は無機材料膜に対する濡れ広がり性により優れるものとなる。上記式(1)で表されるシリコーン化合物の含有量のより好ましい下限は10重量部、更に好ましい下限は30重量部、特に好ましい下限は50重量部である。また、上記式(1)で表されるシリコーン化合物の含有量のより好ましい上限は70重量部である。
上記硬化性樹脂は、上記式(3)で表されるシリコーン化合物を含有する。上記式(3)で表されるシリコーン化合物を含有することにより、本発明の電子デバイス用封止剤は、基板又は無機材料膜に対する濡れ広がり性に優れるものとなる。
上記式(3)中、Rは、炭素数1以上10以下のアルキル基を表し、それぞれ同一であってもよいし、異なっていてもよい。上記Rは、炭素数1以上6以下のアルキル基であることが好ましく、メチル基であることがより好ましい。
上記式(3)中、X、Xは、それぞれ独立に、炭素数1以上10以下のアルキル基、又は、上記式(4-1)、(4-2)、(4-3)、若しくは、(4-4)で表される基を表す。
上記式(3)で表されるシリコーン化合物は、上記式(3)中のX及びXの両方がそれぞれ炭素数1以上10以下のアルキル基であってもよいし、いずれか一方が炭素数1以上10以下のアルキル基であってもよいし、両方が上記式(4-1)、(4-2)、(4-3)、又は、(4-4)で表される基であってもよい。
上記式(3)中、Xは、上記式(4-1)、(4-2)、(4-3)、又は、(4-4)で表される基を表す。
上記式(3)において、上記式(4-1)、(4-2)、(4-3)、又は、(4-4)で表される基となる場合の上記X及び上記X、並びに、上記Xにおける、該式(4-1)、(4-2)、(4-3)、又は、(4-4)で表される基は、重合性基である。上記重合性基は、上記式(4-1)、(4-2)、又は、(4-3)で表される基であることが好ましい。
上記式(3)で表されるシリコーン化合物の重合性基当量の好ましい下限は300g/mol、好ましい上限は5000g/molである。上記式(3)で表されるシリコーン化合物の重合性基当量がこの範囲であることにより、得られる電子デバイス用封止剤が低アウトガス性及び基板又は無機材料膜に対する濡れ広がり性により優れるものとなる。上記式(3)で表されるシリコーン化合物の重合性基当量のより好ましい下限は400g/mol、より好ましい上限は2000g/molである。
なお、上記式(3)で表されるシリコーン化合物の重合性基当量は、上記式(3)で表されるシリコーン化合物の重量(g)を上記式(3)で表されるシリコーン化合物中に含まれる重合性基のモル数(mol)で除して求められる値である。
上記式(3)中、mは、0以上1000以下の整数である。上記式(3)中のmの好ましい下限は1、好ましい上限は20、より好ましい下限は3、より好ましい上限は10である。
上記式(3)中、nは1以上100以下の整数である。上記式(3)中のnの好ましい下限は2、好ましい上限は20、より好ましい上限は10である。
上記式(4-1)~(4-4)中、Rは、結合手又は炭素数1以上6以下のアルキレン基を表す。上記Rは、炭素数1以上3以下のアルキレン基であることが好ましく、ジメチレン基又はトリメチレン基であることがより好ましい。
上記式(4-3)中、Rは、水素又は炭素数1以上6以下のアルキル基を表す。上記Rは、水素又は炭素数1以上3以下のアルキル基であることが好ましく、水素又はエチル基であることがより好ましい。
上記式(4-3)中、Rは、結合手又はメチレン基を表す。上記Rは、結合手であることが好ましい。
上記式(4-4)中、R10は、水素又はメチル基を表す。上記R10は、メチル基であることが好ましい。
上記硬化性樹脂100重量部中における上記式(3)で表されるシリコーン化合物の含有量の好ましい下限は0.01重量部、好ましい上限は30重量部である。上記式(3)で表されるシリコーン化合物の含有量がこの範囲であることにより、得られる電子デバイス用封止剤が低アウトガス性及び基板又は無機材料膜に対する濡れ広がり性により優れるものとなる。
特に、上記式(3)で表されるシリコーン化合物の重合性基当量が300g/mol以上である場合、上記硬化性樹脂100重量部中における上記式(3)で表されるシリコーン化合物の含有量の好ましい下限は0.01重量部、より好ましい下限は0.1重量部であり、好ましい上限は30重量部、より好ましい上限は20重量部、更に好ましい上限は10重量部である。また、上記式(3)で表されるシリコーン化合物の重合性基当量が300g/mol未満である場合、上記硬化性樹脂100重量部中における上記式(3)で表されるシリコーン化合物の含有量の好ましい下限は0.1重量部であり、好ましい上限は30重量部、より好ましい上限は20重量部である。なお、上記硬化性樹脂が上記式(3)で表されるシリコーン化合物として複数種の化合物を含有する場合、上記式(3)で表されるシリコーン化合物の重合性基当量は、数平均値を意味する。
上記硬化性樹脂は、上記式(1)で表されるシリコーン化合物及び上記式(3)で表されるシリコーン化合物に加えて、接着性を向上させる等の目的で、その他の硬化性樹脂を含有してもよい。
上記その他の硬化性樹脂としては、上記式(1)及び上記式(3)で表される構造を有さないエポキシ化合物(以下、「その他のエポキシ化合物」ともいう)、上記式(1)及び上記式(3)で表される構造を有さないオキセタン化合物(以下、「その他のオキセタン化合物」ともいう)、上記式(1)及び上記式(3)で表される構造を有さない(メタ)アクリル化合物(以下、「その他の(メタ)アクリル化合物」ともいう)、及び、ビニルエーテル化合物からなる群より選択される少なくとも1種が好ましい。
なお、本明細書において上記「(メタ)アクリル」とは、アクリル又はメタクリルを意味し、「(メタ)アクリル化合物」とは、(メタ)アクリロイル基を有する化合物を意味し、「(メタ)アクリロイル」とは、アクリロイル又はメタクリロイルを意味する。
上記その他のエポキシ化合物としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールO型エポキシ樹脂、2,2’-ジアリルビスフェノールA型エポキシ樹脂、脂環式エポキシ樹脂、水添ビスフェノール型エポキシ樹脂、プロピレンオキシド付加ビスフェノールA型エポキシ樹脂、レゾルシノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、スルフィド型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ナフタレンフェノールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、アルキルポリオール型エポキシ樹脂、ゴム変性型エポキシ樹脂、グリシジルエステル化合物等が挙げられる。なかでも、脂環式エポキシ樹脂が好ましい。
上記脂環式エポキシ樹脂のうち市販されているものとしては、例えば、ダイセル社製の脂環式エポキシ樹脂、新日本理化工業社製の脂環式エポキシ樹脂等が挙げられる。
上記ダイセル社製の脂環式エポキシ樹脂としては、例えば、セロキサイド2000、セロキサイド2021P、セロキサイド2081、セロキサイド3000、セロキサイド8000、サイクロマーM-100等が挙げられる。
上記新日本理化工業社製の脂環式エポキシ樹脂としては、例えば、サンソサイザーEPS等が挙げられる。
上記脂環式エポキシ樹脂のなかでも、エポキシ基に含まれる以外のエーテル結合、及び、エステル結合を有さないものはアウトガスの発生を抑制する観点から好適である。エポキシ基に含まれる以外のエーテル結合、及び、エステル結合を有さない脂環式エポキシ樹脂のうち市販されているものとしては、例えば、セロキサイド2000、セロキサイド3000、セロキサイド8000等が挙げられる。
これらのその他のエポキシ化合物は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
上記その他のオキセタン化合物としては、例えば、3-(アリルオキシ)オキセタン、フェノキシメチルオキセタン、3-エチル-3-ヒドロキシメチルオキセタン、3-エチル-3-(フェノキシメチル)オキセタン、3-エチル-3-((2-エチルヘキシルオキシ)メチル)オキセタン、3-エチル-3-((3-(トリエトキシシリル)プロポキシ)メチル)オキセタン、3-エチル-3-(((3-エチルオキセタン-3-イル)メトキシ)メチル)オキセタン、オキセタニルシルセスキオキサン、フェノールノボラックオキセタン、1,4-ビス(((3-エチル-3-オキセタニル)メトキシ)メチル)ベンゼン等が挙げられる。これらのその他のオキセタン化合物は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
上記その他の(メタ)アクリル化合物としては、例えば、グリシジル(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ベンジル(メタ)アクリレート、トリメチロールプロパントリ(メタ)アリレート、1,12-ドデカンジオールジ(メタ)アクリレート、ラウリル(メタ)アクリレート等が挙げられる。
これらのその他の(メタ)アクリル化合物は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
なお、本明細書において上記「(メタ)アクリレート」とは、アクリレート又はメタクリレートを意味する。
上記ビニルエーテル化合物としては、例えば、ベンジルビニルエーテル、シクロヘキサンジメタノールモノビニルエーテル、ジシクロペンタジエンビニルエーテル、1,4-ブタンジオールジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、ジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、ジプロピレングリコールジビニルエーテル、トリプロピレングリコールジビニルエーテル等が挙げられる。これらのビニルエーテル化合物は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
なかでも、低粘度で反応性が高いことから、上記その他の硬化性樹脂として、脂環式エポキシ樹脂、3-(アリルオキシ)オキセタン、3-エチル-3-((2-エチルヘキシルオキシ)メチル)オキセタン、及び、3-エチル-3-(((3-エチルオキセタン-3-イル)メトキシ)メチル)オキセタンからなる群より選択される少なくとも1種を含有することが好ましい。
上記硬化性樹脂100重量部中における上記その他の硬化性樹脂の含有量の好ましい下限は5重量部、好ましい上限は90重量部である。上記その他の硬化性樹脂の含有量がこの範囲であることにより、塗布性等を悪化させることなく、接着性を向上させる等の効果により優れるものとなる。上記その他の硬化性樹脂の含有量のより好ましい下限は20重量部である。また、上記その他の硬化性樹脂の含有量のより好ましい上限は70重量部、更に好ましい上限は60重量部、特に好ましい上限は40重量部である。
本発明の電子デバイス用封止剤は、重合開始剤及び/又は熱硬化剤を含有する。
上記重合開始剤としては、光カチオン重合開始剤、熱カチオン重合開始剤、光ラジカル重合開始剤、熱ラジカル重合開始剤が好適に用いられる。
上記光カチオン重合開始剤は、光照射によりプロトン酸又はルイス酸を発生するものであれば特に限定されず、イオン性光酸発生型であってもよいし、非イオン性光酸発生型であってもよい。
上記イオン性光酸発生型の光カチオン重合開始剤のアニオン部分としては、例えば、BF 、PF 、SbF 、(BX(但し、Xは、少なくとも2つ以上のフッ素又はトリフルオロメチル基で置換されたフェニル基を表す)等が挙げられる。また、上記アニオン部分としては、PF(C2n+16-m (但し、式中、mは0以上5以下の整数であり、nは1以上6以下の整数である)等も挙げられる。
上記イオン性光酸発生型の光カチオン重合開始剤としては、例えば、上記アニオン部分を有する、芳香族スルホニウム塩、芳香族ヨードニウム塩、芳香族ジアゾニウム塩、芳香族アンモニウム塩、(2,4-シクロペンタジエン-1-イル)((1-メチルエチル)ベンゼン)-Fe塩等が挙げられる。
上記芳香族スルホニウム塩としては、例えば、ビス(4-(ジフェニルスルホニオ)フェニル)スルフィドビスヘキサフルオロホスフェート、ビス(4-(ジフェニルスルホニオ)フェニル)スルフィドビスヘキサフルオロアンチモネート、ビス(4-(ジフェニルスルホニオ)フェニル)スルフィドビステトラフルオロボレート、ビス(4-(ジフェニルスルホニオ)フェニル)スルフィドテトラキス(ペンタフルオロフェニル)ボレート、ジフェニル-4-(フェニルチオ)フェニルスルホニウムヘキサフルオロホスフェート、ジフェニル-4-(フェニルチオ)フェニルスルホニウムヘキサフルオロアンチモネート、ジフェニル-4-(フェニルチオ)フェニルスルホニウムテトラフルオロボレート、ジフェニル-4-(フェニルチオ)フェニルスルホニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルスルホニウムヘキサフルオロホスフェート、トリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムテトラフルオロボレート、トリフェニルスルホニウムテトラキス(ペンタフルオロフェニル)ボレート、ビス(4-(ジ(4-(2-ヒドロキシエトキシ))フェニルスルホニオ)フェニル)スルフィドビスヘキサフルオロホスフェート、ビス(4-(ジ(4-(2-ヒドロキシエトキシ))フェニルスルホニオ)フェニル)スルフィドビスヘキサフルオロアンチモネート、ビス(4-(ジ(4-(2-ヒドロキシエトキシ))フェニルスルホニオ)フェニル)スルフィドビステトラフルオロボレート、ビス(4-(ジ(4-(2-ヒドロキシエトキシ))フェニルスルホニオ)フェニル)スルフィドテトラキス(ペンタフルオロフェニル)ボレート、トリス(4-(4-アセチルフェニル)チオフェニル)スルホニウムテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。
上記芳香族ヨードニウム塩としては、例えば、ジフェニルヨードニウムヘキサフルオロホスフェート、ジフェニルヨードニウムヘキサフルオロアンチモネート、ジフェニルヨードニウムテトラフルオロボレート、ジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、ビス(ドデシルフェニル)ヨードニウムヘキサフルオロホスフェート、ビス(ドデシルフェニル)ヨードニウムヘキサフルオロアンチモネート、ビス(ドデシルフェニル)ヨードニウムテトラフルオロボレート、ビス(ドデシルフェニル)ヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウムヘキサフルオロホスフェート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウムヘキサフルオロアンチモネート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウムテトラフルオロボレート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。
上記芳香族ジアゾニウム塩としては、例えば、フェニルジアゾニウムヘキサフルオロホスフェート、フェニルジアゾニウムヘキサフルオロアンチモネート、フェニルジアゾニウムテトラフルオロボレート、フェニルジアゾニウムテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。
上記芳香族アンモニウム塩としては、例えば、1-ベンジル-2-シアノピリジニウムヘキサフルオロホスフェート、1-ベンジル-2-シアノピリジニウムヘキサフルオロアンチモネート、1-ベンジル-2-シアノピリジニウムテトラフルオロボレート、1-ベンジル-2-シアノピリジニウムテトラキス(ペンタフルオロフェニル)ボレート、1-(ナフチルメチル)-2-シアノピリジニウムヘキサフルオロホスフェート、1-(ナフチルメチル)-2-シアノピリジニウムヘキサフルオロアンチモネート、1-(ナフチルメチル)-2-シアノピリジニウムテトラフルオロボレート、1-(ナフチルメチル)-2-シアノピリジニウムテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。
上記(2,4-シクロペンタジエン-1-イル)((1-メチルエチル)ベンゼン)-Fe塩としては、例えば、(2,4-シクロペンタジエン-1-イル)((1-メチルエチル)ベンゼン)-Fe(II)ヘキサフルオロホスフェート、(2,4-シクロペンタジエン-1-イル)((1-メチルエチル)ベンゼン)-Fe(II)ヘキサフルオロアンチモネート、(2,4-シクロペンタジエン-1-イル)((1-メチルエチル)ベンゼン)-Fe(II)テトラフルオロボレート、(2,4-シクロペンタジエン-1-イル)((1-メチルエチル)ベンゼン)-Fe(II)テトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。
上記非イオン性光酸発生型の光カチオン重合開始剤としては、例えば、ニトロベンジルエステル、スルホン酸誘導体、リン酸エステル、フェノールスルホン酸エステル、ジアゾナフトキノン、N-ヒドロキシイミドスルホネート等が挙げられる。
上記光カチオン重合開始剤のうち市販されているものとしては、例えば、みどり化学社製の光カチオン重合開始剤、ユニオンカーバイド社製の光カチオン重合開始剤、ADEKA社製の光カチオン重合開始剤、3M社製の光カチオン重合開始剤、BASF社製の光カチオン重合開始剤、ローディア社製の光カチオン重合開始剤等が挙げられる。
上記みどり化学社製の光カチオン重合開始剤としては、例えば、DTS-200等が挙げられる。
上記ユニオンカーバイド社製の光カチオン重合開始剤としては、例えば、UVI6990、UVI6974等が挙げられる。
上記ADEKA社製の光カチオン重合開始剤としては、例えば、SP-150、SP-170等が挙げられる。
上記3M社製の光カチオン重合開始剤としては、例えば、FC-508、FC-512等が挙げられる。
上記BASF社製の光カチオン重合開始剤としては、例えば、IRGACURE261、IRGACURE290等が挙げられる。
上記ローディア社製の光カチオン重合開始剤としては、例えば、PI2074等が挙げられる。
上記熱カチオン重合開始剤としては、アニオン部分がBF 、PF 、SbF 、又は、(BX(但し、Xは、少なくとも2つ以上のフッ素又はトリフルオロメチル基で置換されたフェニル基を表す)で構成される、スルホニウム塩、ホスホニウム塩、アンモニウム塩等が挙げられる。なかでも、スルホニウム塩、アンモニウム塩が好ましい。
上記スルホニウム塩としては、トリフェニルスルホニウムテトラフルオロボレート、トリフェニルスルホニウムヘキサフルオロアンチモネート等が挙げられる。
上記ホスホニウム塩としては、エチルトリフェニルホスホニウムヘキサフルオロアンチモネート、テトラブチルホスホニウムヘキサフルオロアンチモネート等が挙げられる。
上記アンモニウム塩としては、例えば、ジメチルフェニル(4-メトキシベンジル)アンモニウムヘキサフルオロホスフェート、ジメチルフェニル(4-メトキシベンジル)アンモニウムヘキサフルオロアンチモネート、ジメチルフェニル(4-メトキシベンジル)アンモニウムテトラキス(ペンタフルオロフェニル)ボレート、ジメチルフェニル(4-メチルベンジル)アンモニウムヘキサフルオロホスフェート、ジメチルフェニル(4-メチルベンジル)アンモニウムヘキサフルオロアンチモネート、ジメチルフェニル(4-メチルベンジル)アンモニウムヘキサフルオロテトラキス(ペンタフルオロフェニル)ボレート、メチルフェニルジベンジルアンモニウムヘキサフルオロホスフェート、メチルフェニルジベンジルアンモニウムヘキサフルオロアンチモネート、メチルフェニルジベンジルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、フェニルトリベンジルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、ジメチルフェニル(3,4-ジメチルベンジル)アンモニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジメチル-N-ベンジルアニリニウムヘキサフルオロアンチモネート、N,N-ジエチル-N-ベンジルアニリニウムテトラフルオロボレート、N,N-ジメチル-N-ベンジルピリジニウムヘキサフルオロアンチモネート、N,N-ジエチル-N-ベンジルピリジニウムトリフルオロメタンスルホン酸等が挙げられる。
上記熱カチオン重合開始剤のうち市販されているものとしては、例えば、三新化学工業社製の熱カチオン重合開始剤、King Industries社製の熱カチオン重合開始剤等が挙げられる。
上記三新化学工業社製の熱カチオン重合開始剤としては、例えば、サンエイドSI-60、サンエイドSI-80、サンエイドSI-B3、サンエイドSI-B3A、サンエイドSI-B4等が挙げられる。
上記King Industries社製の熱カチオン重合開始剤としては、例えば、CXC1612、CXC1821等が挙げられる。
上記光ラジカル重合開始剤としては、例えば、ベンゾフェノン系化合物、アセトフェノン系化合物、アシルフォスフィンオキサイド系化合物、チタノセン系化合物、オキシムエステル系化合物、ベンゾインエーテル系化合物、ベンジル、チオキサントン系化合物等が挙げられる。
上記光ラジカル重合開始剤のうち市販されているものとしては、例えば、BASF社製の光ラジカル重合開始剤、東京化成工業社製の光ラジカル重合開始剤等が挙げられる。
上記BASF社製の光ラジカル重合開始剤としては、例えば、IRGACURE184、IRGACURE369、IRGACURE379、IRGACURE651、IRGACURE819、IRGACURE907、IRGACURE2959、IRGACURE OXE01、ルシリンTPO等が挙げられる。
上記東京化成工業社製の光ラジカル重合開始剤としては、例えば、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル等が挙げられる。
上記熱ラジカル重合開始剤としては、例えば、アゾ化合物、有機過酸化物等からなるものが挙げられる。
上記アゾ化合物としては、例えば、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、アゾビスイソブチロニトリル等が挙げられる。
上記有機過酸化物としては、例えば、過酸化ベンゾイル、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、パーオキシエステル、ジアシルパーオキサイド、パーオキシジカーボネート等が挙げられる。
上記熱ラジカル重合開始剤のうち市販されているものとしては、例えば、VPE-0201、VPE-0401、VPE-0601、VPS-0501、VPS-1001、V-501(いずれも富士フイルム和光純薬社製)等が挙げられる。
上記重合開始剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が0.01重量部、好ましい上限が10重量部である。上記重合開始剤の含有量が0.01重量部以上であることにより、得られる電子デバイス用封止剤が硬化性により優れるものとなる。上記重合開始剤の含有量が10重量部以下であることにより、得られる電子デバイス用封止剤の硬化反応が速くなりすぎず、作業性により優れるものとなり、硬化物をより均一なものとすることができる。上記重合開始剤の含有量のより好ましい下限は0.05重量部、より好ましい上限は5重量部である。
上記熱硬化剤としては、例えば、ヒドラジド化合物、イミダゾール誘導体、酸無水物、ジシアンジアミド、グアニジン誘導体、変性脂肪族ポリアミン、各種アミンとエポキシ樹脂との付加生成物等が挙げられる。
上記ヒドラジド化合物としては、例えば、1,3-ビス(ヒドラジノカルボノエチル)-5-イソプロピルヒダントイン、セバシン酸ジヒドラジド、イソフタル酸ジヒドラジド、アジピン酸ジヒドラジド、マロン酸ジヒドラジド等が挙げられる。
上記イミダゾール誘導体としては、例えば、1-シアノエチル-2-フェニルイミダゾール、N-(2-(2-メチル-1-イミダゾリル)エチル)尿素、2,4-ジアミノ-6-(2’-メチルイミダゾリル-(1’))-エチル-s-トリアジン、N,N’-ビス(2-メチル-1-イミダゾリルエチル)尿素、N,N’-(2-メチル-1-イミダゾリルエチル)-アジポアミド、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール等が挙げられる。
上記酸無水物としては、例えば、テトラヒドロ無水フタル酸、エチレングリコールビス(アンヒドロトリメリテート)等が挙げられる。
これらの熱硬化剤は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
上記熱硬化剤のうち市販されているものとしては、例えば、大塚化学社製の熱硬化剤、味の素ファインテクノ社製の熱硬化剤等が挙げられる。
上記大塚化学社製の熱硬化剤としては、例えば、SDH、ADH等が挙げられる。
上記味の素ファインテクノ社製の熱硬化剤としては、例えば、アミキュアVDH、アミキュアVDH-J、アミキュアUDH等が挙げられる。
上記熱硬化剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が0.5重量部、好ましい上限が30重量部である。上記熱硬化剤の含有量が0.5重量部以上であることにより、得られる電子デバイス用封止剤が熱硬化性により優れるものとなる。上記熱硬化剤の含有量が30重量部以下であることにより、得られる電子デバイス用封止剤が保存安定性により優れるものとなり、かつ、硬化物が耐湿性により優れるものとなる。上記熱硬化剤の含有量のより好ましい下限は1重量部、より好ましい上限は15重量部である。
本発明の電子デバイス用封止剤は、増感剤を含有してもよい。上記増感剤は、上記重合開始剤の重合開始効率をより向上させて、本発明の電子デバイス用封止剤の硬化反応をより促進させる役割を有する。
上記増感剤としては、例えば、チオキサントン系化合物や、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、ベンゾフェノン、2,4-ジクロロベンゾフェノン、o-ベンゾイル安息香酸メチル、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド等が挙げられる。
上記チオキサントン系化合物としては、例えば、2,4-ジエチルチオキサントン等が挙げられる。
上記増感剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が0.01重量部、好ましい上限が3重量部である。上記増感剤の含有量が0.01重量部以上であることにより、増感効果がより発揮される。上記増感剤の含有量が3重量部以下であることにより、吸収が大きくなりすぎずに深部まで光を伝えることができる。上記増感剤の含有量のより好ましい下限は0.1重量部、より好ましい上限は1重量部である。
本発明の電子デバイス用封止剤は、更に、シランカップリング剤を含有してもよい。上記シランカップリング剤は、本発明の電子デバイス用封止剤と基板等との接着性を向上させる役割を有する。
上記シランカップリング剤としては、例えば、3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-イソシアネートプロピルトリメトキシシラン等が挙げられる。これらのシラン化合物は単独で用いられてもよいし、2種以上が併用されてもよい。
上記シランカップリング剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が0.1重量部、好ましい上限が10重量部である。上記シランカップリング剤の含有量がこの範囲であることにより、余剰のシランカップリング剤によるブリードアウトを抑制しつつ、得られる電子デバイス用封止剤の接着性を向上させる効果により優れるものとなる。上記シランカップリング剤の含有量のより好ましい下限は0.5重量部、より好ましい上限は5重量部である。
本発明の電子デバイス用封止剤は、硬化遅延剤を含有してもよい。上記硬化遅延剤を含有することにより、得られる電子デバイス用封止剤のポットライフを長くすることができる。
上記硬化遅延剤としては、例えば、ポリエーテル化合物等が挙げられる。
上記ポリエーテル化合物としては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、クラウンエーテル化合物等が挙げられる。なかでも、クラウンエーテル化合物が好適である。
上記硬化遅延剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が0.05重量部、好ましい上限が5.0重量部である。上記硬化遅延剤の含有量がこの範囲であることにより、得られる電子デバイス用封止剤を硬化させる際のアウトガスの発生を抑制しつつ、遅延効果をより発揮できる。上記硬化遅延剤の含有量のより好ましい下限は0.1重量部、より好ましい上限は3.0重量部である。
本発明の電子デバイス用封止剤は、更に、本発明の目的を阻害しない範囲において、表面改質剤を含有してもよい。上記表面改質剤を含有することにより、本発明の電子デバイス用封止剤に塗膜の平坦性を付与することができる。
上記表面改質剤としては、例えば、界面活性剤やレベリング剤等が挙げられる。
上記表面改質剤としては、例えば、シリコーン系、アクリル系、フッ素系等のものが挙げられる。
上記表面改質剤のうち市販されているものとしては、例えば、ビックケミー・ジャパン社製の表面改質剤、AGCセイミケミカル社製の表面改質剤等が挙げられる。
上記ビックケミー・ジャパン社製の表面改質剤としては、例えば、BYK-340、BYK-345等が挙げられる。
上記AGCセイミケミカル社製の表面改質剤としては、例えば、サーフロンS-611等が挙げられる。
本発明の電子デバイス用封止剤は、硬化物の透明性を阻害しない範囲で、素子電極の耐久性を向上させるために、封止剤中に発生した酸と反応する化合物又はイオン交換樹脂を含有してもよい。
上記封止剤中に発生した酸と反応する化合物としては、酸と中和する物質、例えば、アルカリ金属若しくはアルカリ土類金属の炭酸塩又は炭酸水素塩等が挙げられる。具体的には例えば、炭酸カルシウム、炭酸水素カルシウム、炭酸ナトリウム、炭酸水素ナトリウム等が用いられる。
上記イオン交換樹脂としては、陽イオン交換型、陰イオン交換型、両イオン交換型のいずれも使用することができるが、特に塩化物イオンを吸着することのできる陽イオン交換型又は両イオン交換型が好適である。
また、本発明の電子デバイス用封止剤は、必要に応じて、補強剤、軟化剤、可塑剤、粘度調整剤、紫外線吸収剤、酸化防止剤等の公知の各種添加剤を含有してもよい。
本発明の電子デバイス用封止剤を製造する方法としては、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリーミキサー、ニーダー、3本ロール等の混合機を用いて、硬化性樹脂と、重合開始剤及び/又は熱硬化剤と、必要に応じて添加するシランカップリング剤等の添加剤とを混合する方法等が挙げられる。
本発明の電子デバイス用封止剤は、E型粘度計を用いて、25℃、100rpmの条件で測定した粘度の好ましい下限が5mPa・s、好ましい上限が200mPa・sである。上記粘度がこの範囲であることにより、本発明の電子デバイス用封止剤がインクジェット塗布性や塗布後の形状保持性により優れるものとなる。上記電子デバイス用封止剤の粘度のより好ましい下限は10mPa・s、より好ましい上限は80mPa・sである。
なお、インクジェットによる塗布時に本発明の電子デバイス用封止剤を加熱し、粘度を低減して塗布しても良い。
本発明の電子デバイス用封止剤の硬化物の波長380nm以上800nm以下における光の全光線透過率の好ましい下限は80%である。上記全光線透過率が80%以上であることにより、有機EL表示素子等により好適に用いることができる。上記全光線透過率のより好ましい下限は85%である。
上記全光線透過率は、例えば、AUTOMATIC HAZE METER MODEL TC-III DPK(東京電色社製)等の分光計を用いて測定することができる。
また、上記全光線透過率の測定に用いる硬化物は、光硬化性の封止剤であれば、例えば、封止剤にLEDランプにて波長365nmの紫外線を3000mJ/cm照射することにより得ることができ、熱硬化性の封止剤であれば、例えば、80℃で1時間加熱することにより得ることができる。
本発明の電子デバイス用封止剤は、硬化物に紫外線を100時間照射した後の400nmにおける透過率が20μmの光路長にて85%以上であることが好ましい。上記紫外線を100時間照射した後の透過率が85%以上であることにより、透明性により優れるものとなって、発光の損失が小さく、かつ、色再現性により優れるものとなる。上記紫外線を100時間照射した後の透過率のより好ましい下限は90%、更に好ましい下限は95%である。
上記紫外線を照射する光源としては、例えば、キセノンランプ、カーボンアークランプ等、従来公知の光源を用いることができる。
また、上記紫外線を100時間照射した後の透過率の測定に用いる硬化物は、光硬化性の封止剤であれば、例えば、封止剤にLEDランプにて波長365nmの紫外線を3000mJ/cm照射することにより得ることができ、熱硬化性の封止剤であれば、例えば、80℃で1時間加熱することにより得ることができる。
本発明の電子デバイス用封止剤は、JIS Z 0208に準拠して、硬化物を85℃、85%RHの環境下に24時間暴露して測定した100μm厚での透湿度が100g/m以下であることが好ましい。上記透湿度が100g/m以下であることにより、例えば、電子デバイスとして有機EL表示素子の製造に用いた場合、有機発光材料層に水分が到達することによるダークスポットの発生を抑制する効果により優れるものとなる。
また、上記透湿度の測定に用いる硬化物は、光硬化性の封止剤であれば、例えば、封止剤にLEDランプにて波長365nmの紫外線を3000mJ/cm照射することにより得ることができ、熱硬化性の封止剤であれば、例えば、80℃で1時間加熱することにより得ることができる。
更に、本発明の電子デバイス用封止剤は、硬化物を85℃、85%RHの環境下に24時間暴露したときに、硬化物の含水率が0.5%未満であることが好ましい。上記硬化物の含水率が0.5%未満であることにより、例えば、電子デバイスとして有機EL表示素子の製造に用いた場合、硬化物中の水分による有機発光材料層の劣化を抑制する効果により優れるものとなる。上記硬化物の含水率のより好ましい上限は0.3%である。
上記含水率の測定方法としては、例えば、JIS K 7251に準拠してカールフィッシャー法により求める方法や、JIS K 7209-2に準拠して吸水後の重量増分を求める等の方法が挙げられる。
また、上記含水率の測定に用いる硬化物は、光硬化性の封止剤であれば、例えば、封止剤にLEDランプにて波長365nmの紫外線を3000mJ/cm照射することにより得ることができ、熱硬化性の封止剤であれば、例えば、80℃で1時間加熱することにより得ることができる。
本発明の電子デバイス用封止剤を用いて電子デバイスを製造する方法としては、例えば、本発明の電子デバイス用封止剤を2枚の基材のうち少なくとも一方に塗布する工程と、塗布した電子デバイス用封止剤を光照射及び/又は加熱により硬化させる工程と、上記2枚の基材を貼り合わせる工程とを有する方法等が挙げられる。
本発明の電子デバイス用封止剤を2枚の基材のうち少なくとも一方に塗布する工程において、本発明の電子デバイス用封止剤は、基材の全面に塗布してもよく、基材の一部に塗布してもよい。例えば、電子デバイスとして有機EL表示素子を製造する場合、塗布により形成される本発明の電子デバイス用封止剤の封止部の形状としては、有機発光材料層を有する積層体を外気から保護しうる形状であれば特に限定されない。即ち、該積層体を完全に被覆する形状であってもよいし、該積層体の周辺部に閉じたパターンを形成してもよいし、該積層体の周辺部に一部開口部を設けた形状のパターンを形成してもよい。
また、本発明の電子デバイス用封止剤を塗布する方法としては、インクジェット法が好ましい。
上記電子デバイスとして有機EL表示素子を製造する場合、本発明の電子デバイス用封止剤を塗布する基材(以下、一方の基材ともいう)は、有機発光材料層を有する積層体の形成されている基材であってもよく、該積層体の形成されていない基材であってもよい。
上記一方の基材が上記積層体の形成されていない基材である場合、他方の基材を貼り合わせた際に、上記積層体を外気から保護できるように上記一方の基材に本発明の電子デバイス用封止剤を塗布すればよい。即ち、他方の基材を貼り合わせた際に上記積層体の位置となる場所に全面的に塗布するか、又は、他方の基材を貼り合わせた際に上記積層体の位置となる場所が完全に収まる形状に、閉じたパターンの封止剤部を形成してもよい。
また、上記積層体は、無機材料膜で被覆されていてもよい。
上記無機材料膜を構成する無機材料としては、従来公知のものを用いることができ、例えば、窒化珪素(SiN)や酸化珪素(SiO)等が挙げられる。上記無機材料膜は、1層からなるものであってもよく、複数種の層を積層したものであってもよい。また、上記無機材料膜と本発明の電子デバイス用封止剤からなる樹脂膜とを、交互に繰り返して上記積層体を被覆してもよい。
上記電子デバイス用封止剤を光照射及び/又は加熱により硬化させる工程は、上記2枚の基材を貼り合わせる工程の前に行なってもよいし、上記2枚の基材を貼り合わせる工程の後に行なってもよい。
上記電子デバイス用封止剤を光照射及び/又は加熱により硬化させる工程を、上記2枚の基材を貼り合わせる工程の前に行なう場合、本発明の電子デバイス用封止剤は、光照射及び/又は加熱してから硬化反応が進行して接着ができなくなるまでの可使時間が1分以上であることが好ましい。上記可使時間が1分以上であることにより、2枚の基材を貼り合わせる前の硬化の進行を抑制し、貼り合わせた後の接着強度をより高くすることができる。
上記電子デバイス用封止剤を光照射により硬化させる場合、本発明の電子デバイス用封止剤は、300nm以上400nm以下の波長及び300mJ/cm以上3000mJ/cm以下の積算光量の光を照射することによって好適に硬化させることができる。
上記光照射に用いる光源としては、例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、エキシマレーザ、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプ、ナトリウムランプ、ハロゲンランプ、キセノンランプ、LEDランプ、蛍光灯、太陽光、電子線照射装置等が挙げられる。これらの光源は、単独で用いられてもよく、2種以上が併用されてもよい。
これらの光源は、上記光カチオン重合開始剤や上記光ラジカル重合開始剤の吸収波長に合わせて適宜選択される。
本発明の電子デバイス用封止剤への光の照射手段としては、例えば、各種光源の同時照射、時間差をおいての逐次照射、同時照射と逐次照射との組み合わせ照射等が挙げられ、いずれの照射手段を用いてもよい。
上記電子デバイス用封止剤を加熱により硬化させる場合、例えば、電子デバイスとして有機EL表示素子を製造する際の有機発光材料層を有する積層体へのダメージを低減させつつ充分に硬化させる観点から、加熱温度は50℃以上120℃以下であることが好ましい。
上記2枚の基材を貼り合わせる工程において、2枚の基材を貼り合わせる方法は特に限定されないが、減圧雰囲気下で貼り合わせることが好ましい。
上記減圧雰囲気下の真空度の好ましい下限は0.01kPa、好ましい上限は10kPaである。上記減圧雰囲気下の真空度がこの範囲であることにより、真空装置の気密性や真空ポンプの能力から真空状態を達成するのに長い時間を費やすことなく、2枚の基材を貼り合わせる際の本発明の電子デバイス用封止剤中からより効率的に気泡を除去できる。
本発明の電子デバイス用封止剤は、低アウトガス性及び基板又は無機材料膜に対する濡れ広がり性に優れるため、特に有機EL表示素子用封止剤として好適に用いることができる。本発明の電子デバイス用封止剤を用いてなる有機EL表示素子用封止剤もまた、本発明の1つである。
本発明によれば、低アウトガス性及び基板又は無機材料膜に対する濡れ広がり性に優れる電子デバイス用封止剤を提供することができる。また、本発明によれば、該電子デバイス用封止剤を用いてなる有機EL表示素子用封止剤を提供することができる。
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。
(実施例1~14、比較例1、2)
表1~3に記載された配合比に従い、各材料を、ホモディスパー型撹拌混合機を用い、撹拌速度3000rpmで均一に撹拌混合することにより、実施例1~14及び比較例1、2の電子デバイス用封止剤を作製した。ホモディスパー型撹拌混合機としては、ホモディスパーL型(プライミクス社製)を用いた。
なお、表中における、式(1)で表されるシリコーン化合物及び式(3)で表されるシリコーン化合物について、以下に詳述する。
「X-22-163」は、Rがメチル基であり、X及びXが上記式(2-1)で表される基(Rはトリメチレン基)である式(1)で表されるシリコーン化合物(重合性基当量200g/mol)である。
「SIB1092.0」は、Rがメチル基であり、X及びXが上記式(2-2)で表される基(Rはジメチレン基)である式(1)で表されるシリコーン化合物(重合性基当量191g/mol)である。
「X-22-164」は、Rがメチル基であり、X及びXが上記式(2-4)で表される基(Rはトリメチレン基、Rはメチル基)である式(1)で表されるシリコーン化合物(重合性基当量190g/mol)である。
「オキセタニル基を有するシリコーン化合物」は、Rが全てメチル基であり、X及びXが上記式(2-3)で表される基(Rはトリメチレン基、Rはエチル基、Rはメチレン基)である式(1)で表されるシリコーン化合物(重合性基当量223g/mol)である。
「X-22-343」は、Rがメチル基であり、X及びXがメチル基であり、Xが上記式(4-1)で表される基(Rはトリメチレン基)であり、mが7、nが2である式(3)で表されるシリコーン化合物(重合性基当量525g/mol)である。
「KF-102」は、Rがメチル基であり、X及びXがメチル基であり、Xが上記式(4-2)で表される基(Rはメチレン基)であり、mが90、nが2である式(3)で表されるシリコーン化合物(重合性基当量3600g/mol)である。
「X-22-9002」は、Rがメチル基であり、X、X、及び、Xが上記式(4-1)で表される基(Rはトリメチレン基)であり、mが260、nが2である式(3)で表されるシリコーン化合物(重合性基当量5000g/mol)である。
<評価>
実施例及び比較例で得られた各電子デバイス用封止剤について以下の評価を行った。結果を表1~3に示した。
(粘度)
実施例及び比較例で得られた各電子デバイス用封止剤について、E型粘度計を用いて、25℃、100rpmの条件における粘度を測定した。E型粘度計としては、VISCOMETER TV-22(東機産業社製)を用いた。
(低アウトガス性)
実施例及び比較例で得られた各電子デバイス用封止剤の硬化物の加熱時に発生するアウトガスを、以下に示すようにヘッドスペース法によるガスクロマトグラフにより測定した。
まず、各電子デバイス用封止剤100mgをアプリケーターにて300μmの厚さに塗工した。次いで、LEDランプにて波長365nmの紫外線を3000mJ/cm照射して封止剤を硬化させた後、ヘッドスペース用バイアルに硬化させた封止剤硬化物を入れてバイアルを封止し、100℃で30分間加熱して、ヘッドスペース法により発生ガスを測定した。なお、実施例13で得られた封止剤については、紫外線を照射する代わりに80℃で1時間加熱することにより硬化させた。
発生したガスが300ppm未満であった場合を「○」、300ppm以上500ppm未満であった場合を「△」、500ppm以上であった場合を「×」として低アウトガス性を評価した。
(濡れ広がり性)
実施例及び比較例で得られた各電子デバイス用封止剤を、インクジェット吐出装置を用いて、10ピコリットルの液滴量にてアルカリ洗浄した無アルカリガラス上に滴下し、滴下から5分後の無アルカリガラス上の液滴の直径を測定した。インクジェット吐出装置としては、マテリアルプリンターDMP-2831(富士フイルム社製)を用い、無アルカリガラスとしては、AN100(AGC社製)を用いた。
(有機EL表示素子の表示性能)
(有機発光材料層を有する積層体が配置された基板の作製)
長さ25mm、幅25mm、厚さ0.7mmのガラスにITO電極を1000Åの厚さとなるように成膜したものを基板とした。上記基板をアセトン、アルカリ水溶液、イオン交換水、及び、イソプロピルアルコールにてそれぞれ15分間超音波洗浄した後、煮沸させたイソプロピルアルコールにて10分間洗浄し、更に、UV-オゾンクリーナにて直前処理を行った。UV-オゾンクリーナとしては、NL-UV253(日本レーザー電子社製)を用いた。
次に、直前処理後の基板を真空蒸着装置の基板ホルダーに固定し、素焼きの坩堝にN,N’-ジ(1-ナフチル)-N,N’-ジフェニルベンジジン(α-NPD)を200mg入れ、別の素焼き坩堝にトリス(8-キノリノラト)アルミニウム(Alq)を200mg入れ、真空チャンバー内を、1×10-4Paまで減圧した。その後、α-NPDの入った坩堝を加熱し、α-NPDを蒸着速度15Å/sで基板に堆積させ、膜厚600Åの正孔輸送層を成膜した。次いで、Alqの入った坩堝を加熱し、15Å/sの蒸着速度で膜厚600Åの有機発光材料層を成膜した。その後、正孔輸送層及び有機発光材料層が形成された基板を、タングステン製抵抗加熱ボートを有する別の真空蒸着装置に移し、真空蒸着装置内のタングステン製抵抗加熱ボートの1つにフッ化リチウム200mgを入れ、別のタングステン製抵抗加熱ボートにアルミニウム線1.0gを入れた。その後、真空蒸着装置の蒸着器内を2×10-4Paまで減圧してフッ化リチウムを0.2Å/sの蒸着速度で5Å成膜した後、アルミニウムを20Å/sの速度で1000Å成膜した。窒素により蒸着器内を常圧に戻し、10mm×10mmの有機発光材料層を有する積層体が配置された基板を取り出した。
(無機材料膜Aによる被覆)
得られた積層体が配置された基板に13mm×13mmの開口部を有するマスクを設置し、プラズマCVD法にて該積層体全体を覆うように無機材料膜Aを形成した。
プラズマCVD法は、原料ガスとしてSiHガス及び窒素ガスを用い、各々の流量をSiHガス10sccm、窒素ガス200sccmとし、RFパワーを10W(周波数2.45GHz)、チャンバー内温度を100℃、チャンバー内圧力を0.9Torrとする条件で行った。
形成された無機材料膜Aの厚さは、約1μmであった。
(樹脂保護膜の形成)
無機材料膜Aによる被覆後の基板に対し、実施例及び比較例で得られた各電子デバイス用封止剤を、インクジェット吐出装置を使用して40℃にてパターン塗布した。インクジェット吐出装置としては、マテリアルプリンターDMP-2831(富士フイルム社製)を用いた。
その後、LEDランプを用いて波長365nmの紫外線を3000mJ/cm照射して、電子デバイス用封止剤を硬化させて樹脂保護膜を形成した。なお、実施例13で得られた封止剤については、紫外線を照射する代わりに80℃で1時間加熱することにより硬化させて樹脂保護膜を形成した。
(無機材料膜Bによる被覆)
樹脂保護膜を形成した後、基板に12mm×12mmの開口部を有するマスクを設置し、プラズマCVD法にて該樹脂保護膜の全体を覆うように無機材料膜Bを形成して有機EL表示素子を得た。
プラズマCVD法は、上記「(無機材料膜Aによる被覆)」と同様の条件で行った。
形成された無機材料膜Bの厚さは、約1μmであった。
(有機EL表示素子の発光状態)
得られた有機EL表示素子を、温度85℃、湿度85%の環境下で100時間暴露した後、3Vの電圧を印加し、有機EL表示素子の発光状態(ダークスポット及び画素周辺消光の有無)を目視で観察した。ダークスポットや周辺消光が無く均一に発光した場合を「○」、ダークスポットや周辺消光が認められた場合を「△」、非発光部が著しく拡大した場合を「×」として有機EL表示素子の表示性能を評価した。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
本発明によれば、低アウトガス性及び基板又は無機材料膜に対する濡れ広がり性に優れる電子デバイス用封止剤を提供することができる。また、本発明によれば、該電子デバイス用封止剤を用いてなる有機EL表示素子用封止剤を提供することができる。

Claims (7)

  1. 硬化性樹脂と、重合開始剤及び/又は熱硬化剤とを含有する電子デバイス用封止剤であって、
    前記硬化性樹脂は、下記式(1)で表されるシリコーン化合物と下記式(3)で表されるシリコーン化合物とを含有する
    ことを特徴とする電子デバイス用封止剤。
    Figure JPOXMLDOC01-appb-C000001
    式(1)中、Rは、炭素数1以上10以下のアルキル基を表し、それぞれ同一であってもよいし、異なっていてもよい。X、Xは、それぞれ独立に、炭素数1以上10以下のアルキル基、又は、下記式(2-1)、(2-2)、(2-3)、若しくは、(2-4)で表される基を表す。ただし、X及びXのうち少なくとも一方は、下記式(2-1)、(2-2)、(2-3)、又は、(2-4)で表される基を表す。
    Figure JPOXMLDOC01-appb-C000002
    式(2-1)~(2-4)中、Rは、結合手又は炭素数1以上6以下のアルキレン基を表し、式(2-3)中、Rは、水素又は炭素数1以上6以下のアルキル基を表し、Rは、結合手又はメチレン基を表し、式(2-4)中、Rは、水素又はメチル基を表す。
    Figure JPOXMLDOC01-appb-C000003
    式(3)中、Rは、炭素数1以上10以下のアルキル基を表し、それぞれ同一であってもよいし、異なっていてもよい。X、Xは、それぞれ独立に、炭素数1以上10以下のアルキル基、又は、下記式(4-1)、(4-2)、(4-3)、若しくは、(4-4)で表される基を表し、Xは、下記式(4-1)、(4-2)、(4-3)、又は、(4-4)で表される基を表す。mは、0以上1000以下の整数であり、nは、1以上100以下の整数である。
    Figure JPOXMLDOC01-appb-C000004
    式(4-1)~(4-4)中、Rは、結合手又は炭素数1以上6以下のアルキレン基を表し、式(4-3)中、Rは、水素又は炭素数1以上6以下のアルキル基を表し、Rは、結合手又はメチレン基を表し、式(4-4)中、R10は、水素又はメチル基を表す。
  2. 前記式(1)で表されるシリコーン化合物は、式(1)中のX及びXの両方が、それぞれ式(2-1)、(2-2)、(2-3)、又は、(2-4)で表される基である化合物である請求項1記載の電子デバイス用封止剤。
  3. 前記硬化性樹脂100重量部中における前記式(3)で表されるシリコーン化合物の含有量が0.01重量部以上30重量部以下である請求項1又は2記載の電子デバイス用封止剤。
  4. 前記硬化性樹脂は、更に、その他の硬化性樹脂として、前記式(1)及び前記式(3)で表される構造を有さないエポキシ化合物、前記式(1)及び前記式(3)で表される構造を有さないオキセタン化合物、前記式(1)及び前記式(3)で表される構造を有さない(メタ)アクリル化合物、及び、ビニルエーテル化合物からなる群より選択される少なくとも1種を含有する請求項1、2又は3記載の電子デバイス用封止剤。
  5. 前記硬化性樹脂は、その他の硬化性樹脂として、脂環式エポキシ樹脂、3-(アリルオキシ)オキセタン、3-エチル-3-((2-エチルヘキシルオキシ)メチル)オキセタン、及び、3-エチル-3-(((3-エチルオキセタン-3-イル)メトキシ)メチル)オキセタンからなる群より選択される少なくとも1種を含有する請求項4記載の電子デバイス用封止剤。
  6. E型粘度計を用いて、25℃、100rpmの条件で測定した粘度が5mPa・s以上200mPa・s以下である請求項1、2、3、4又は5記載の電子デバイス用封止剤。
  7. 請求項1、2、3、4、5又は6記載の電子デバイス用封止剤を用いてなる有機EL表示素子用封止剤。
PCT/JP2018/046157 2017-12-15 2018-12-14 電子デバイス用封止剤及び有機el表示素子用封止剤 WO2019117299A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020207003509A KR102657208B1 (ko) 2017-12-15 2018-12-14 전자 디바이스용 봉지제 및 유기 el 표시 소자용 봉지제
JP2019515668A JP7117294B2 (ja) 2017-12-15 2018-12-14 電子デバイス用封止剤及び有機el表示素子用封止剤
KR1020247011857A KR20240052999A (ko) 2017-12-15 2018-12-14 전자 디바이스용 봉지제 및 유기 el 표시 소자용 봉지제
CN201880080039.5A CN111480392B (zh) 2017-12-15 2018-12-14 电子设备用密封剂及有机el显示元件用密封剂
JP2022118858A JP7385715B2 (ja) 2017-12-15 2022-07-26 電子デバイス用封止剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-240667 2017-12-15
JP2017240667 2017-12-15

Publications (1)

Publication Number Publication Date
WO2019117299A1 true WO2019117299A1 (ja) 2019-06-20

Family

ID=66820421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046157 WO2019117299A1 (ja) 2017-12-15 2018-12-14 電子デバイス用封止剤及び有機el表示素子用封止剤

Country Status (4)

Country Link
JP (2) JP7117294B2 (ja)
KR (2) KR102657208B1 (ja)
CN (1) CN111480392B (ja)
WO (1) WO2019117299A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021006070A1 (ja) * 2019-07-05 2021-01-14

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6902816B1 (en) * 1999-04-06 2005-06-07 Rhodia Chimie Silicone composition used in the production of antifriction varnishes, method for the application of said varnishes to a support and support thus treated
JP2007009086A (ja) * 2005-06-30 2007-01-18 Toagosei Co Ltd カチオン硬化性組成物
JP2013525551A (ja) * 2010-04-29 2013-06-20 ハンツマン・アドヴァンスト・マテリアルズ・(スイッツランド)・ゲーエムベーハー 硬化性組成物
WO2016167347A1 (ja) * 2015-04-17 2016-10-20 積水化学工業株式会社 電子デバイス用封止剤及び電子デバイスの製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3817081B2 (ja) 1999-01-29 2006-08-30 パイオニア株式会社 有機el素子の製造方法
JP2001307873A (ja) 2000-04-21 2001-11-02 Toppan Printing Co Ltd 有機エレクトロルミネッセンス表示素子およびその製造方法
JP2002348394A (ja) 2001-05-28 2002-12-04 Nippon Valqua Ind Ltd 表面改質含フッ素系エラストマーの製造方法、表面改質含フッ素系エラストマーおよびその用途
US8808457B2 (en) 2002-04-15 2014-08-19 Samsung Display Co., Ltd. Apparatus for depositing a multilayer coating on discrete sheets
JP2005023166A (ja) 2003-06-30 2005-01-27 Toshiba Lighting & Technology Corp 自己修復性樹脂組成物、この樹脂組成物を用いた照明装置用部品及び照明装置
JP4594851B2 (ja) 2005-11-25 2010-12-08 株式会社東芝 樹脂組成物および樹脂封止型半導体装置
JP2008153211A (ja) 2006-11-22 2008-07-03 Fujifilm Corp バリア性フィルム基板およびその製造方法
JP2009102511A (ja) * 2007-10-23 2009-05-14 Hitachi Chem Co Ltd エポキシ樹脂組成物及び電子部品装置
JP2009298887A (ja) * 2008-06-11 2009-12-24 Sekisui Chem Co Ltd 光学部品用硬化性組成物
KR102072799B1 (ko) 2012-09-12 2020-02-04 삼성디스플레이 주식회사 유기 발광 장치 및 이의 제조 방법
KR20170127263A (ko) 2016-05-11 2017-11-21 모멘티브퍼포먼스머티리얼스코리아 주식회사 유기 전자 소자 봉지재용 조성물 및 이를 이용하여 형성된 봉지재

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6902816B1 (en) * 1999-04-06 2005-06-07 Rhodia Chimie Silicone composition used in the production of antifriction varnishes, method for the application of said varnishes to a support and support thus treated
JP2007009086A (ja) * 2005-06-30 2007-01-18 Toagosei Co Ltd カチオン硬化性組成物
JP2013525551A (ja) * 2010-04-29 2013-06-20 ハンツマン・アドヴァンスト・マテリアルズ・(スイッツランド)・ゲーエムベーハー 硬化性組成物
WO2016167347A1 (ja) * 2015-04-17 2016-10-20 積水化学工業株式会社 電子デバイス用封止剤及び電子デバイスの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021006070A1 (ja) * 2019-07-05 2021-01-14
JP7412430B2 (ja) 2019-07-05 2024-01-12 三井化学株式会社 有機el表示素子用封止剤および有機el表示装置

Also Published As

Publication number Publication date
JP7385715B2 (ja) 2023-11-22
JPWO2019117299A1 (ja) 2020-11-19
JP7117294B2 (ja) 2022-08-12
KR20240052999A (ko) 2024-04-23
KR20200089254A (ko) 2020-07-24
CN111480392B (zh) 2024-03-12
JP2022172071A (ja) 2022-11-15
CN111480392A (zh) 2020-07-31
KR102657208B1 (ko) 2024-04-12

Similar Documents

Publication Publication Date Title
JP6200591B2 (ja) インクジェット塗布用電子デバイス用封止剤及び電子デバイスの製造方法
JP7402281B2 (ja) 電子デバイス用封止剤
JP6427283B2 (ja) 有機el表示素子用封止剤及び有機el表示素子用封止剤の製造方法
JP6404494B2 (ja) 有機el表示素子用封止剤
JP2022027778A (ja) 有機el表示素子用封止剤
JP2023112128A (ja) 有機el表示素子用封止剤
JP7385715B2 (ja) 電子デバイス用封止剤
JP6427282B2 (ja) 有機el表示素子用封止剤
KR102680357B1 (ko) 전자 디바이스용 밀봉제 및 전자 디바이스의 제조 방법
JP7479843B2 (ja) 有機el表示素子用封止剤
JPWO2019203123A1 (ja) 有機el表示素子用封止剤及びトップエミッション型有機el表示素子

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019515668

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889436

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18889436

Country of ref document: EP

Kind code of ref document: A1