WO2019117144A1 - 作業車両 - Google Patents

作業車両 Download PDF

Info

Publication number
WO2019117144A1
WO2019117144A1 PCT/JP2018/045506 JP2018045506W WO2019117144A1 WO 2019117144 A1 WO2019117144 A1 WO 2019117144A1 JP 2018045506 W JP2018045506 W JP 2018045506W WO 2019117144 A1 WO2019117144 A1 WO 2019117144A1
Authority
WO
WIPO (PCT)
Prior art keywords
turning
ratio
operation member
turning ratio
traveling
Prior art date
Application number
PCT/JP2018/045506
Other languages
English (en)
French (fr)
Inventor
幸一 樫本
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Publication of WO2019117144A1 publication Critical patent/WO2019117144A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D11/00Steering non-deflectable wheels; Steering endless tracks or the like
    • B62D11/02Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides
    • B62D11/04Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides by means of separate power sources

Definitions

  • the present invention relates to a work vehicle including a pair of left and right traveling devices such as a combine.
  • the power of the engine is input to the transmission, and the power shifted by the transmission is transmitted to the left and right crawlers.
  • the machine goes straight, and the gear transmission mechanism and the clutch provided in the transmission are switched, and the left and right crawlers are driven with a speed difference. Turns left or right.
  • a slow turning mode As a turning mode, a slow turning mode, a brake turning mode, and a spin turning mode are provided.
  • the slow turning mode the crawler outside the turning is driven at a constant speed, and the crawler inside the turning is decelerated and driven at a constant reduction ratio with respect to the crawler outside the turning.
  • the brake turning mode the crawler outside the turning is driven at a constant speed, and the crawler inside the turning is stopped.
  • the spin turning mode the crawler on the outside of the turning is driven at a constant speed, and the crawler on the inside of the turning is reversely driven with respect to the crawler on the turning outside.
  • a steering lever capable of tilting to the left and right is disposed in order to switch straight advance, left turn and right turn of the machine body.
  • a dial-type turning mode switching switch is provided on the operation panel.
  • the brake turning mode is set by the turning mode switch and the machine goes straight and the steering lever is tilted from the neutral position to one of the left side or the right side, turning from the straight state to the brake turning mode Switch to the state.
  • the spin turning mode is set by the turning mode switch, and while the machine goes straight, when the steering lever is tilted from the neutral position to one of the left side or the right side, the straight turning state changes to the turning state in the spin turning mode. Switch.
  • the speed ratio that is, the turning ratio, of the crawler inside the turning with respect to the crawler outside the turning in each turning mode of the slow turning mode, the brake turning mode, and the spin turning mode is fixed. Therefore, to adjust the position of the aircraft after turning or turning according to the size of the turning place in the field, it is necessary to stop for switching back and forth and turning mode by forward and backward movement and turning of the aircraft.
  • An object of the present invention is to provide a work vehicle capable of turning the machine with a turning radius according to the size of the turning place and the position of the machine after turning.
  • a working vehicle corresponding to each of an engine, a pair of left and right traveling devices for supporting the vehicle so as to travel and a traveling device, and is driven by engine power.
  • the adjustment operating member is operated with the target turning ratio set to a constant value and the target turning ratio set to a constant value, the target turning ratio is changed from the fixed value to a value according to the operation of the adjusting operation member Do.
  • the continuously variable transmission is provided with the pump driven by the power of the engine and the motor driven by the pressure oil discharged by the pump corresponding to each of the left and right traveling devices. Power is transmitted from each continuously variable transmission to a corresponding traveling device, whereby the airframe supported by the traveling device goes straight and turns.
  • a steering operation member is provided to be operable between the straight movement position and the turning position in order to switch between straight movement and turning of the vehicle body. Further, an adjusting operation member is provided which is operated to adjust a turning ratio at the turning of the machine body.
  • the continuously variable transmission is controlled to generate a turning ratio of a constant value between the traveling device inside the turning and the traveling device inside the turning, so that the vehicle body Turns.
  • the adjustment operation member is operated while the body is turning, the turning ratio is changed from a constant value to a value according to the operation. Therefore, when the operator operates the adjusting operation member, it is possible to turn the machine with the turning radius according to the size of the turning place in the field and the position of the machine after turning. As a result, in order to adjust the turning or the position of the machine after turning according to the size of the turning place, forward and backward movement of the body and turning back by turning are unnecessary, and the efficiency of work by the work vehicle can be improved.
  • the control device may control the continuously variable transmission such that the speed of the traveling device inside the turning is lower than the speed of the traveling device outside the turning when the vehicle turns. As a result, it is possible to prevent the turning speed of the vehicle from becoming too high.
  • control device changes the target turning ratio to a smaller value as the operation amount of the adjusting operation member increases.
  • the operator can intuitively operate the adjusting operation member for changing the turning radius of the airframe.
  • the “operation amount” may be the operation amount of one operation of the adjustment operation member, or may be the accumulated amount of the operation amount of a plurality of operations of the adjustment operation member. .
  • the control device more preferably limits the maximum speed of the traveling device to a smaller value as the target turning ratio decreases. As a result, it is possible to suppress an increase in the centrifugal force acting on the airframe and to suppress the fluctuation of the airframe due to the centrifugal force.
  • the maximum speed of the traveling device is limited to a smaller value as the target turning ratio decreases, it is preferable that the maximum speed of the traveling device is quadratically reduced with respect to the change of the turning radius. Thereby, the increase in the centrifugal force acting on the airframe can be effectively suppressed.
  • the adjustment operation member may be provided alone or may be provided on the steering operation member.
  • the configuration in which the adjustment operation member is provided to the steering operation member is that the operator can operate the adjustment operation member while operating the steering operation member with the hand operating the steering operation member. Excellent.
  • the adjustment operation member may be provided to the shift operation member operated to switch the traveling and the stop of the machine body.
  • the configuration in which the adjustment operation member is provided on the shift operation member is excellent in operability because the operator can operate the adjustment operation member while operating the shift operation member with the hand operating the shift operation member. There is.
  • the adjustment operation member is a momentary operation type operation member configured to be operable on one side and the other side from the neutral position, and the control device is operated each time the adjustment operation member is operated from the neutral position to one side.
  • the target turning ratio may be increased by the second predetermined amount each time the target turning ratio is decreased by the first predetermined amount and each time one operation is performed from the neutral position to the other side.
  • the adjusting operation member is configured to be capable of rotating or linearly moving on one side and the other side, and the target turning ratio is lowered by the control device in proportion to the operation amount to one side of the adjusting operation member.
  • the target turning ratio may be increased in proportion to the operation amount to the other side of the operating member.
  • the work vehicle further includes a selection operation member operated to selectively set the validity and invalidation of the adjustment of the turning ratio by the operation of the adjustment operation member, and the rotation ratio by the operation of the adjustment operation member by the operation of the selection operation member
  • the target turning ratio may be changed from a constant value to a value according to the operation of the adjusting operation member by the control device, when the adjustment of is effectively set.
  • a display may be provided on the work vehicle to display an image, and when the aircraft is turned, the current turning ratio or turning radius may be displayed on the display. The operator can look at the display to grasp the current turning ratio or turning radius.
  • FIG. 2 is a left side view of the steering lever shown in FIG. 1 ; It is a figure which shows the structure of a part of drive transmission system of a combine. It is sectional drawing which shows a part of remainder of a drive transmission system, and shows the structure to the traveling device from the hydraulic motor of left HST and right HST. It is a block diagram which shows the principal part of an electrical configuration of a combine. It is a flowchart which shows the flow of turning control. It is a figure which shows the 2nd form (joystick) of the adjustment operation member. It is a figure which shows the 3rd form (dial) of the adjustment operation member. It is a figure which shows the structure by which the turning ratio change trigger as another form of the adjustment operation member was provided in the main speed change lever.
  • FIG. 10 is a side view of a portion of the configuration shown in FIG. 9 ;
  • FIG. 1 is a right side view showing a front portion of a combine 1 according to an embodiment of the present invention.
  • the combine 1 is a work vehicle that performs harvesting of grain grit and threshing from grit while traveling on a field.
  • the fuselage 11 of the combine 1 is supported by a pair of left and right traveling devices 12.
  • the traveling device 12 employs a crawler having an ability to run on irregular terrain in order to allow the combine 1 to travel in a field.
  • the airframe 11 is provided with a cab 13, a reaper 14, a threshing device 15 and a grain tank 16.
  • the cab 13 is disposed above the front end of the traveling device 12.
  • a driver's seat 17 on which a worker is seated is provided in the cab 13.
  • an operation panel 18 operated by the worker is provided in front of and to the left of the driver's seat 17.
  • the operation panel 18 is provided with a main shift lever 21 and a steering lever 22 and the like.
  • the main shift lever 21 is provided to be able to tilt in the front-rear direction. By the tilting operation of the main shift lever 21, the forward and reverse movements of the machine body 11 can be switched, and the forward or reverse speed can be changed.
  • the steering lever 22 is provided to be able to tilt in the left-right direction and the front-rear direction. By the tilting operation of the steering lever 22 in the left-right direction, it is possible to switch between straight running, left turning and right turning of the machine body 11. Further, the reaper 14 can be moved up and down by tilting operation of the steering lever 22 in the front-rear direction.
  • the reaper 14 is disposed in front of the traveling device 12.
  • the reaper 14 is provided with a dividing weir 23 at its front end and a cutting blade 24 behind the dividing weir 23.
  • the dividing weir 23 and the cutting blade 24 are supported by the cutting frame 25F.
  • a reaper horizontal frame 25L extending in the left-right direction is provided.
  • One end of a reaper main frame 25M is connected to the reaper horizontal frame 25L.
  • the reaper main frame 25M extends rearward from the reaper lateral frame 25L, and the other end (rear end) is rotatably connected to the frame of the airframe 11.
  • a cylinder (not shown) can be operated to swing the reaper main frame 25M, and by the swinging, the split weir 23 and the cutting blade 24 are on the ground From the lower to the lower position where the fork 23 and the cutting blade 24 are lowered closer to the ground.
  • the machine body 11 moves forward with the dividing weir 23 and the cutting blade 24 positioned at the lowered position, the grain weirs of the grain weir are separated by the dividing weir 23 while the origin of the grain weed is planted in the field. It is reaped by
  • the threshing device 15 and the grain tank 16 are disposed side by side at a position above the traveling device 12 and behind the reaper 14.
  • the cropped wheat straw is transported by the reaper 14 to the threshing device 15.
  • the threshing device 15 conveys the original side of the grain scale backward by the threshing feed chain, supplies the tip side of the grain scale to the stalking chamber, and performs threshing.
  • the grain is transported from the threshing device 15 to the grain tank 16, and the grain is stored in the grain tank 16.
  • a grain discharge auger 26 is connected to the grain tank 16 and the grains stored in the grain tank 16 can be discharged to the outside by the grain discharge auger 26.
  • FIG. 2 is a left side view of the steering lever 22. As shown in FIG.
  • the upper end portion 27 of the steering lever 22 is formed in a hemispherical shape convexly curved to the front side so that the operator can easily grasp the steering lever 22 when operating the steering lever 22.
  • a swing ratio change trigger 28 is provided to project forward from the hemispherical surface.
  • the turning ratio change trigger 28 can be turned from the neutral position to the front and rear sides about an axis extending in the left and right direction in the neutral state of the steering lever 22, and momentary force always acts on the neutral position. It is configured to operate.
  • the turning ratio change trigger 28 is formed in a substantially C shape in a side view, and hooks a finger (for example, a middle finger or ring finger) while the operator holds the upper end 27 of the steering lever 22 by hand. Can. As a result, the operator can move the finger hooked to the turning ratio change trigger 28 back and forth to turn the turning ratio change trigger 28 back and forth.
  • FIG. 3 is a diagram showing the configuration of part of the drive transmission system 32 of the combine 1.
  • the power transmission system from the engine 31 to the drive transmission system 32 is shown in a skeleton diagram, and the configuration regarding the left HST 33 and the right HST 34 of the drive transmission system 32 is shown in a hydraulic circuit diagram.
  • an engine 31 and a drive transmission system 32 for transmitting the power of the engine 31 to the traveling device 12 are mounted.
  • the drive transmission system 32 includes a left HST (Hydro Static Transmission) 33 and a right HST 34.
  • HST Hydro Static Transmission
  • the left side HST 33 is configured as a closed circuit in which the hydraulic pump 41 and the hydraulic motor 42 are connected by the first oil passage 43 and the second oil passage 44 so that the hydraulic oil circulates between the hydraulic pump 41 and the hydraulic motor 42. have.
  • the first oil passage 43 is connected to the first port 45 of the hydraulic pump 41 and the first port 46 of the hydraulic motor 42.
  • the second oil passage 44 is connected to the second port 47 of the hydraulic pump 41 and the second port 48 of the hydraulic motor 42.
  • a charge pump 51 is additionally provided on the left side HST 33.
  • the charge pump 51 is a fixed displacement hydraulic pump, and discharges hydraulic fluid to the charge oil passage 53 by the rotation of the pump rotation shaft 52.
  • the charge oil passage 53 is connected to the first oil passage 43 via the first check valve 54 and is connected to the second oil passage 44 via the second check valve 55. Further, the charge oil passage 53 is connected to the oil tank 57 via the charge relief valve 56.
  • the hydraulic pressure of the charge oil passage 53 is maintained at a predetermined charge pressure.
  • the first check valve 54 is opened and the first oil passage from the charge oil passage 53 via the first check valve 54 Hydraulic oil is supplied to 43.
  • the second check valve 55 is opened, and the hydraulic fluid is supplied from the charge oil passage 53 to the second oil passage 44 via the second check valve 55. Be done. As a result, the hydraulic pressure of the first oil passage 43 and the second oil passage 44 is maintained at or above the charge pressure.
  • the left side HST 33 is a case in which the hydraulic pump 41, the hydraulic motor 42, the first oil passage 43, the second oil passage 44, the first check valve 54, the second check valve 55, the charge relief valve 56, etc. It is configured as a figure HST.
  • the hydraulic pump 41 is a variable displacement swash plate type piston pump, and includes a cylinder block, a plurality of pistons radially arranged in the cylinder block, and a pump swash plate on which the pistons slide.
  • the hydraulic pump 41 and the charge pump 51 have the pump rotary shaft 52 in common, and the cylinder block is provided to rotate integrally with the pump rotary shaft 52.
  • an electronically controlled servo piston 58 is provided.
  • the servo piston 58 has a first pressure chamber 62 to which the hydraulic pressure is supplied from the forward pressure control valve 61 and a second pressure chamber 64 to which the hydraulic pressure is supplied from the reverse pressure control valve 63. Further, the servo piston 58 has a rod 65 which is linearly moved by the differential pressure between the first pressure chamber 62 and the second pressure chamber 64. The linear motion of the rod 65 changes the inclination angle of the pump swash plate Be done.
  • the hydraulic motor 42 is a variable displacement swash plate type piston motor, and includes a motor rotation shaft 71, a cylinder block 72 (see FIG. 3 ) that rotates integrally with the motor rotation shaft 71, and a plurality of radial arrangement in the cylinder block 72. and a like piston 73 motor swash plate 74 (see FIG. 3) and the piston 73 is pressed (see FIG. 3).
  • an auxiliary transmission piston 75 is provided in order to change the inclination angle of the motor swash plate 74 of the hydraulic motor 42.
  • a low speed switching valve 76 and a high speed switching valve 77 are connected to the auxiliary transmission piston 75.
  • the low speed switching valve 76 is turned on, the high speed switching valve 77 is turned off, and the oil pressure is supplied from the low speed switching valve 76 to the auxiliary transmission piston 75, whereby the rod 78 of the auxiliary transmission piston 75 is positioned at the low speed position.
  • the inclination angle of the motor swash plate 74 becomes relatively large.
  • the low speed switching valve 76 is turned off, the high speed switching valve 77 is turned on, and the hydraulic pressure is supplied from the high speed switching valve 77 to the sub transmission piston 75, so that the rod 78 of the sub transmission piston 75 is in the high speed position. And the inclination angle of the motor swash plate 74 becomes relatively small. Therefore, by switching on / off of the low speed switching valve 76 and the high speed switching valve 77, the high speed stage where the rotational speed of the motor rotating shaft 71 becomes relatively large and the low speed where the rotational speed of the motor rotating shaft 71 becomes relatively small It can be switched to two stages with the stage.
  • the right side HST 34 has the same configuration as the left side HST 33, in the right side HST 34, the portions corresponding to the portions of the left side HST 33 are given the same reference numerals as those portions, and the description thereof is omitted.
  • the power of the engine 31 is input to the pump rotary shafts 52 of the left side HST 33 and the right side HST 34.
  • a pulley 82 is provided on the output shaft 81 of the engine 31 such that relative rotation is not possible.
  • the drive transmission system 32 includes an input shaft 83 extending in parallel to the output shaft 81 of the engine 31.
  • a pulley 84 is provided on the input shaft 83 such that relative rotation is not possible.
  • An endless belt 85 is wound between the pulleys 82 and 84.
  • the input gear 86 is provided on the input shaft 83 so as not to be relatively rotatable.
  • An intermediate gear 87 meshes with the input gear 86, and a pump gear 88 provided non-rotatably with the pump rotary shaft 52 of the right side HST 34 meshes with the intermediate gear 87.
  • the pump gear 88 meshes with a pump gear 89 provided non-rotatably relative to the pump rotary shaft 52 of the left side HST 33.
  • the power of the engine 31 is transmitted from the output shaft 81 to the pulley 84 through the pulley 82 and the belt 85, and rotates the input shaft 83 integrally with the pulley 84.
  • the power (rotation) of the input shaft 83 is transmitted from the input gear 86 via the intermediate gear 87 to the pump gear 88 of the right HST 34, and integrally rotates the pump rotary shaft 52 of the right HST 34 in a predetermined direction.
  • the power of the input shaft 83 is transmitted from the input gear 86 to the pump gear 88 of the right HST 34 via the intermediate gear 87, and further transmitted from the pump gear 88 to the pump gear 89 and integrated with the pump gear 89.
  • the rotating shaft 52 is rotated in the direction opposite to the predetermined direction. Therefore, when the inclination angle of the pump swash plate of each hydraulic pump 41 on the left HST 33 and the right HST 34 is the same, the motor rotation shaft 71 of the oil motor 42 on the left HST 33 and the motor rotation shaft 71 of the hydraulic motor 42 on the right HST 34 Rotate in opposite directions.
  • FIG. 4 is a cross-sectional view showing a part of the drive transmission system 32, showing a configuration from the hydraulic motor 42 of the left HST 33 and the right HST 34 to the traveling device 12. As shown in FIG.
  • the hydraulic motors 42 of the left side HST 33 and the right side HST 34 are arranged such that the motor rotation shafts 71 are aligned on the same axis (with common axes), and the axes are parallel to the left and right axles 91L and 91R. , Are arranged symmetrically to each other.
  • motor rotation shaft 71 of the left side HST 33 is referred to as “motor rotation shaft 71L”
  • motor rotation shaft 71R the motor rotation shaft 71 of the right side HST 34
  • End portions in the left-right direction of the motor rotation shafts 71L and 71R are rotatably supported by a unit case 101 which is an outer shell of the drive transmission system 32 via bearings 102L and 102R, respectively.
  • the motor output gears 103L and 103R are respectively supported by the end portions on the inner side in the left-right direction of the motor rotation shafts 71L and 71R so as not to be relatively rotatable.
  • a first intermediate shaft 104, a second intermediate shaft 105, and a third intermediate shaft 106 are provided parallel to the axles 91L and 91R at an interval.
  • the first intermediate shaft 104 is non-rotatably supported by the unit case 101.
  • the left end portion and the right end portion of the second intermediate shaft 105 are rotatably supported by the unit case 101 via bearings 107L and 107R, respectively.
  • the left end portion and the right end portion of the third intermediate shaft 106 are rotatably supported by the unit case 101 via bearings 108L and 108R, respectively.
  • the motor output gears 103L and 103R mesh with the first intermediate gears 111L and 111R rotatably held by the first intermediate shaft 104, respectively.
  • the second intermediate gear 112 ⁇ / b> L and the third intermediate gear 113 ⁇ / b> L are supported by the left side portion of the second intermediate shaft 105 so as not to be relatively rotatable.
  • a third intermediate gear 113R is relatively rotatably supported via a needle bearing.
  • an annular second intermediate gear 112R is provided on the outer side of the third intermediate gear 113R so as to surround the third intermediate gear 113R.
  • the inner peripheral portion of the second intermediate gear 112R is fixed to the third intermediate gear 113R.
  • the second intermediate gear 112R rotates integrally with the third intermediate gear 113R.
  • the second intermediate gears 112L and 112R mesh with the first intermediate gears 111L and 111R, respectively.
  • the third intermediate gears 113L and 113R mesh with the fourth intermediate gears 114L and 114R, respectively.
  • the fifth intermediate gears 115 ⁇ / b> L and 115 ⁇ / b> R are supported by the third intermediate shaft 106 such that relative rotation is not possible.
  • the fourth intermediate gears 114L and 114R are annular, and are provided so as to surround the outer sides of the fifth intermediate gears 115L and 115R, respectively.
  • the inner circumferential portions of the fourth intermediate gears 114L and 114R are fixed to the fifth intermediate gears 115L and 115R, respectively. Accordingly, the fourth intermediate gears 114L and 114R rotate integrally with the fifth intermediate gears 115L and 115R, respectively.
  • the fifth intermediate gears 115L and 115R mesh with the sixth intermediate gears 116L and 116R.
  • the sixth intermediate gear 116L is formed with a through hole 117 extending along the central axis.
  • the right end of the axle 91L is inserted into the through hole 117 from the left side, and the right end is splined.
  • a cylindrical portion 118 having an outer diameter smaller than the inner diameter of the through hole 117 of the sixth intermediate gear 116L is formed at the left end of the sixth intermediate gear 116R.
  • the cylindrical portion 118 is inserted into the through hole 117 from the right side, and is rotatably held by the sixth intermediate gear 116L via a needle bearing.
  • a circular recessed portion 119 which is recessed to the left side is formed.
  • the left end of the axle 91R is inserted into the recess 119, and the left end is splined.
  • the bearings 121L and 121R are externally fitted to the left end of the sixth intermediate gear 116L and the right end of the sixth intermediate gear 116R, and the outer rings of the 121L and 121R are fixedly held in the unit case 101.
  • the sixth intermediate gears 116L and 116R are rotatably held by the unit case 101.
  • the left end of the axle 91L and the right end of the axle 91R are rotatably held by the unit case 101 via the bearings 122L and 122R, whereby the axles 91L and 91R are rotatably held by the unit case 101.
  • the left end of the axle 91L and the right end of the axle 91R are coupled to drive wheels 123L and 123R of the traveling device 12 so as to be relatively non-rotatable.
  • the drive transmission system 32 is provided with a clutch 131.
  • the clutch 131 is engaged and released to connect and disconnect the second intermediate shaft 105 and the third intermediate gear 113R. That is, by the engagement of the clutch 131, the second intermediate shaft 105 and the third intermediate gear 113R are connected, and the second intermediate shaft 105 and the third intermediate gear 113R rotate integrally. By releasing the clutch 131, the second intermediate shaft 105 and the third intermediate gear 113 are separated, and the third intermediate gear 113 can rotate with respect to the second intermediate shaft 105.
  • the drive transmission system 32 is provided with a parking brake 132.
  • the parking brake 132 is engaged and released to brake and release the second intermediate shaft 105. That is, by engagement of the parking brake 132, the second intermediate shaft 105 is braked against rotation with respect to the unit case 101. By releasing the parking brake 132, the braking of the second intermediate shaft 105 is released, and the second intermediate shaft 105 becomes rotatable relative to the unit case 101.
  • FIG. 5 is a block diagram showing the main part of the electrical configuration of the combine 1.
  • the combine 1 is equipped with a plurality of ECUs (Electronic Control Units: electronic control units) for individual and specific control, and a single main ECU 141 for overall control of the whole.
  • ECUs Electronic Control Units: electronic control units
  • main ECU 141 for overall control of the whole.
  • a traveling / turning ECU (T / M) 142 for traveling / turning control of the airframe 11
  • a turning ratio changing ECU 143 for change control of the turning ratio
  • 11 includes an attitude ECU (4PC) 144 for attitude control.
  • the main ECU 141, the traveling / turning ECU 142, the turning ratio changing ECU 143, and the posture ECU 144 are all configured to include a microcontroller unit (MCU: Micro Controller Unit).
  • MCU Micro Controller Unit
  • the main ECU 141 is communicably connected to the individual ECUs for specific control, that is, the traveling / turning ECU 142, the turning ratio changing ECU 143, the posture ECU 144, and the like.
  • the main ECU 141 receives information that each ECU for specific control individually acquires from detection signals of various sensors, and transmits a command or information required for control by each ECU to each ECU.
  • a meter panel 151 disposed on the operation panel 18 (see FIG. 1 ) of the cab 13 is connected to the main ECU 141 as a control target, and the main CU 141 is provided with a travel distance provided in the meter panel 151 It controls various instruments such as a meter and the display 152.
  • the display 152 is, for example, a liquid crystal display.
  • the main transmission lever sensor 153 that outputs a detection signal according to the operation position of the main transmission lever 21 and the steering lever sensor 154 that outputs a detection signal according to the operation position of the steering lever 22
  • the left vehicle speed sensor 155 outputs a pulse signal synchronized with the rotation of the left axle 91L as a detection signal
  • the right vehicle speed sensor 156 outputs a pulse signal synchronized with the rotation of the right axle 91R as a detection signal.
  • the left side HST 33 and the right side HST 34 are provided with piston position sensors for outputting detection signals according to the position of the servo piston 58 in order to detect the inclination angle of the swash plate of the hydraulic pump 41. ing.
  • Each piston position sensor is connected to the traveling / turning ECU 142, and a detection signal of each piston position sensor is input.
  • a soft turning mode, a brake turning mode, a spin turning mode, and a linear turning mode are set as modes (turn control modes) of turn control of the machine body 11.
  • the operation panel 18 of the cab 13 is provided with a turning mode switch 157 for switching the turning control mode.
  • the turning mode switch 157 is a dial type switch, and a soft position, a brake position, a spin position, and a linear position corresponding to the turning control mode are set in its movable range.
  • the turning mode switch 157 has a knob 158 which is manually held by the operator's finger and turned and outputs different signals depending on whether the knob 158 is in the soft position, the brake position, the spin position or the linear position. Do.
  • An output signal of the turning mode switch 157 is input to the turning ratio changing ECU 143.
  • the swing ratio change sensor 159 that outputs a detection signal according to the operation position of the swing ratio change trigger 28 is connected to the swing ratio change ECU 143, and the detection signal of the swing ratio change sensor 159 Is input.
  • the turning ratio change ECU 143 is communicably connected to the traveling / turning ECU 142.
  • the orientation ECU 144 is connected to a rolling sensor 161 that detects an inclination of the machine body 11 relative to the horizontal, and a detection signal of the rolling sensor 161 is input.
  • the attitude ECU 144 controls the attitude of the airframe 11 by adjusting the heights of the four positions in the front, rear, left, and right of the airframe 11.
  • the traveling / turning ECU 142 obtains information obtained from detection signals of various sensors such as the main shift lever sensor 153, the steering lever sensor 154, the left side vehicle speed sensor 155 and the right side vehicle speed sensor 156, and the main ECU 141 and the turning ratio change ECU 143.
  • the forward pressure control valve 61, the reverse pressure control valve 63, the low speed switching valve 76, and the high speed switching included in each of the left HST 33 and the right HST 34 to control traveling and turning of the vehicle 11 based on the information input from Control the operation of the valve 77.
  • ⁇ Travel control> The traveling of the fuselage 11 is controlled by the traveling / turning ECU 142. In this traveling control, the position of the main shift lever 21 is determined from the detection signal of the main shift lever sensor 153.
  • the control of the current supplied to the forward pressure control valve 61 and the reverse pressure control valve 63 adjusts the respective openings for the left HST 33 and the right HST 34 respectively.
  • the inclination angle of the pump swash plate of the hydraulic pump 41 is 90 °. Since hydraulic fluid is not discharged from hydraulic pump 41 by this, hydraulic motor 42 does not rotate, and the power of hydraulic motor 42 is not transmitted to axles 91L and 91R. Therefore, the traveling device 12 does not operate, and the machine body 11 is stopped.
  • the reverse pressure control valve 63 is controlled by controlling the current supplied to the forward pressure control valve 61 and the reverse pressure control valve 63 for the left HST 33 and the right HST 34 respectively.
  • the hydraulic pressure supplied to the second pressure chamber 64 is larger than the hydraulic pressure supplied from the forward pressure control valve 61 to the first pressure chamber 62 of the servo piston 58.
  • a differential pressure is generated in the first pressure chamber 62 and the second pressure chamber 64, and the differential pressure causes the inclination angle of the pump swash plate of the hydraulic pump 41 to be larger than 90 °.
  • the hydraulic fluid is discharged from the hydraulic pump 41 in the reverse direction to that in the forward direction, and the hydraulic motor 42 receives the hydraulic fluid and rotates in the reverse direction to the forward direction. Then, the rotation (power) of the hydraulic motor 42 is transmitted to the axles 91L, 91R, and the drive wheels 123L, 123R of the traveling device 12 rotate in the reverse direction integrally with the axles 91L, 91R respectively, whereby the fuselage 11 reverses.
  • the clutch 131 is engaged during forward and reverse travel of the airframe 11.
  • the second intermediate shaft 105 and the third intermediate gear 113R are connected, and the second intermediate shaft 105 and the third intermediate gear 113R rotate integrally, so the fourth intermediate gears 114L and 114R Rotate at the same speed. Therefore, the fifth intermediate gears 115L and 115R rotate at the same speed, the sixth intermediate gears 116L and 116R rotate at the same speed, and the axles 91L and 91R rotate at the same speed.
  • the left and right drive wheels 123L, 123R of the traveling device 12 are rotated at the same speed, the vehicle body 11 moves forward or backward with excellent straight running stability.
  • the on / off switching of the low speed switching valve 76 and the high speed switching valve 77 reduces the rotational speed of the hydraulic motor 42 relatively to the high speed stage relatively large. It can be switched to two stages with the low speed stage. Therefore, the forward and reverse speeds of the airframe 11 can be changed also by switching between the high speed stage and the low speed stage.
  • an auxiliary shift lever (not shown) be provided on the operation panel 18 of the driver's cab 13 and that switching between the high gear and the low gear be instructed by the operation of the auxiliary shift lever.
  • FIG. 6 is a flowchart showing the flow of turning control.
  • the traveling / turning ECU 142 causes the body 11 to be moved. Turning control for turning is started.
  • the position of the turning mode switch 157 (hereinafter simply referred to as the “position of the turning mode switch 157”) is transmitted from the turning ratio change ECU 143 to the traveling / turning ECU 142. Specifically, whether the position of the turning mode switch 157 is a soft position, a brake position, a spin position, or a linear position is determined from the output signal of the turning mode switch 157 by the turning ratio changing ECU 143, for example.
  • the position of the turning mode switch 157 is soft position, brake position, spin position or Information indicating which of the linear positions is indicated is transmitted from the turning ratio changing ECU 143 to the traveling / turning ECU 142.
  • the traveling / turning ECU 142 that has received the information on the position of the turning mode switch 157 determines whether the position of the turning mode switch 157 is a linear position (step S12).
  • Step S13 When the position of the turning mode switch 157 is not a linear position, that is, when the position of the turning mode switch 157 is a soft position, a brake position or a spin position (NO in step S12), the traveling / turning ECU 142 performs normal turning control. (Step S13).
  • the content differs depending on the position of the turning mode switch 157.
  • the turning control mode is set to the soft turning mode.
  • a target turning ratio which is a target value of the turning ratio is set to 0.3.
  • the current supplied to the forward pressure control valve 61 and the reverse pressure control valve 63 of the left HST 33 and the right HST 34 the inclination of the pump swash plate of the hydraulic pump 41 so that the actual turning ratio matches the target turning ratio By controlling the angle), the rotational speed of the traveling device 12 (one of the drive wheels 123L and 123R) inside the turning is reduced.
  • the turning ratio is the speed ratio of the traveling device 12 inside the turning relative to the traveling device 12 outside the turning, and specifically, when the turning outside is the left side, the right side being the inside inside for the rotational speed of the left axle 91L. It is the ratio of the rotational speed of the axle 91R, and the ratio of the rotational speed of the left axle 91L, which is the inside of turning, to the rotational speed of the right axle 91R when the turning outside is the right.
  • the rotational speed of the left axle 91 L can be calculated from the detection signal of the left vehicle speed sensor 155
  • the rotational speed of the right axle 91 R can be calculated from the detection signal of the right vehicle speed sensor 156.
  • the ratio of the rotation speed of the axle 91R calculated from the detection signal of the right vehicle speed sensor 156 to the rotation speed of the axle 91L calculated from the detection signal of the left vehicle speed sensor 155 is determined.
  • the turning ratio can be calculated.
  • the ratio of the rotation speed of the axle 91L calculated from the detection signal of the left vehicle speed sensor 155 to the rotation speed of the axle 91R calculated from the detection signal of the right vehicle speed sensor 156 is determined.
  • the turning ratio can be calculated.
  • the turning control mode is set to the brake turning mode.
  • the target turning ratio is set to zero. Then, by controlling the current supplied to the forward pressure control valve 61 and the reverse pressure control valve 63 of the left side HST 33 and the right side HST 34 so that the actual turning ratio matches the target turning ratio, the turning inside can be performed. The rotational speed of the traveling device 12 is reduced. When the target turning ratio is zero, the target speed of the traveling device 12 inside the turning is zero.
  • the forward pressure control valve 61 and the reverse pressure control valve of the left HST 33 and the right HST 34 are controlled such that the traveling device 12 inside the turning is stopped in the normal turning control when the position of the turning mode switch 157 is the brake position.
  • the current supplied to 63 is controlled.
  • the turning control mode is set to the spin turning mode.
  • the rotational direction of the traveling device 12 inside the turning is reversed, and the value of the rotational speed of the traveling device 12 inside the turning is given a negative sign (-).
  • the target value of the turning ratio (target turning ratio) is set to -0.3. Then, the current supplied to the forward pressure control valve 61 and the reverse pressure control valve 63 of the left HST 33 and the right HST 34 is controlled so that the actual turning ratio matches the target turning ratio.
  • the traveling / turning ECU 142 sets the turning control mode to the linear turning mode.
  • the initial value of the target turning ratio is set to 0 (step S14).
  • the advancing pressure control valve 61 of the left HST 33 and the right HST 34 is controlled so that the traveling device 12 inside the turning is stopped as in the normal turning control in the brake turning mode.
  • the current supplied to the reverse pressure control valve 63 is controlled.
  • the aircraft 11 starts to turn.
  • the current turning ratio is determined, and information on the turning ratio is transmitted from the traveling / turning ECU 142 to the main ECU 141. Then, the display 152 of the meter panel 151 is controlled by the main ECU 141 that has received the information on the turning ratio, and the current turning ratio is displayed on the display 152 (step S15).
  • the traveling / turning ECU 142 determines whether the turning ratio change trigger 28 has been operated to the front side or the rear side (step S16).
  • the turning ratio change trigger 28 is operated and the detection signal of the turning ratio change sensor 159 changes
  • the turning ratio change trigger 143 is forward or backward from the detection signal of the turning ratio change sensor 159 after the change by the turning ratio change ECU 143 It is determined to which side the operation was performed. According to the determination result, the front operation information indicating that the turning ratio change trigger 28 is operated to the front side or the turning ratio change trigger 28 is operated to the rear side from the turning ratio change ECU 143 to the traveling / turning ECU 142 Post-operation information is sent.
  • step S16 the traveling / turning ECU 142 has not received the front operation information or the back operation information by the time it is determined whether the turning ratio change trigger 28 is operated to the front side or the rear side. It is determined that the change trigger 28 has not been operated (NO in step S16). In this case, following the determination as to whether or not the turning ratio change trigger 28 has been operated, the detection signal of the steering lever sensor 154 is confirmed, and the steering lever 22 moves from the left or right turning position to the center straight position It is determined whether or not it is returned (step S17).
  • step S17 If the turning ratio change trigger 28 is not operated and the steering lever 22 is not returned from the turning position to the straight position (NO in step S17), the current turning ratio is determined again, and The turning ratio is displayed on the display 152 of the meter panel 151 (step S15). Thus, during turning of the airframe 11 by the turning control in the linear turning mode, it is determined whether or not the turning ratio change trigger 28 is operated, and whether or not the steering lever 22 is returned from the turning position to the straight position. , And the calculation and display of the present turning ratio are repeated.
  • the turning ratio change trigger 28 When the turning ratio change trigger 28 is operated to the rear side (operator side) while the body 11 is turning and the turn operation information is transmitted from the turning ratio change ECU 143 to the traveling / turning ECU 142, the traveling / turning ECU 142 subsequently In response to receiving the operation information, it is determined that the turning ratio change trigger 28 has been operated rearward (YES in step S16).
  • the target turning ratio is changed by the traveling / turning ECU 142 to a value obtained by adding a predetermined value ⁇ ( ⁇ : natural number) to the current value (step S18).
  • the maximum speed of the traveling device 12 outside the turning is changed (step S19).
  • the maximum speed of the traveling device 12 outside the turning is limited to a smaller value as the target turning ratio decreases. Specifically, the maximum speed of the traveling device 12 outside the turning is changed so as to decrease quadratically with respect to the change of the turning radius.
  • the traveling / turning ECU 142 receives the front operation information Accordingly, it is determined that the turning ratio change trigger 28 has been operated to the front side (YES in step S16).
  • the traveling / turning ECU 142 changes the target turning ratio from the current value to a value obtained by adding the predetermined value + ⁇ to the value (step S18).
  • step S19 the maximum speed of the traveling device 12 outside the turning is changed.
  • the target turning ratio is changed to the larger side
  • the maximum speed of the traveling device 12 outside the turning is changed to a large value.
  • step S17 After the change of the maximum speed of the traveling device 12 outside the turning, it is judged whether or not the steering lever 22 is returned from the turning position on the left or right side to the straight advance position in the center (step S17).
  • step S17 If the steering lever 22 is not returned from the turning position to the straight position (NO in step S17), the current turning ratio is determined again and displayed (step S15), and the turning ratio change trigger 28 is on the front side. Alternatively, it is determined again whether or not the rear side is operated (step S16).
  • the target turning ratio is changed according to the operation each time the turning ratio change trigger 28 is operated, and the maximum value of the traveling device 12 outside the turning is changed each time the target turning ratio is changed. Speed is changed. Then, when the steering lever 22 is returned from the turning position on the left or right to the straight-ahead position at the center (step S17: YES), this series of turning control is ended.
  • the left HST 33 and the right HST 34 are provided corresponding to the left and right traveling devices 12 respectively.
  • the left side HST 33 and the right side HST 34 are provided with a hydraulic pump 41 driven by the power of the engine 31 and a hydraulic motor 42 driven by pressure oil discharged by the hydraulic pump 41.
  • a hydraulic pump 41 driven by the power of the engine 31
  • a hydraulic motor 42 driven by pressure oil discharged by the hydraulic pump 41.
  • the machine body 11 supported by the traveling devices 12 goes straight and turns.
  • a steering lever 22 is provided so as to be operable between the straight movement position and turning positions on the left and right sides thereof.
  • the steering lever 22 is provided with a turning ratio change trigger 28 operated to adjust the turning ratio of the body 11 when turning.
  • the left HST 33 and the right HST 34 are controlled to generate a turning ratio between the traveling device 12 inside the turning and the traveling device 12 inside the turning.
  • the airframe 11 turns at a turning radius corresponding to the turning ratio.
  • the turning ratio change trigger 28 is activated and the turning ratio change trigger 28 is operated during turning of the machine body 11, the turning ratio Changed to the corresponding value. Therefore, when the operator operates the turning ratio change trigger 28, the body 11 can be turned at the turning radius according to the size of the turning place in the field and the position of the body 11 after turning.
  • the left HST 33 and the right HST 34 are controlled such that the speed of the traveling device 12 inside the turning becomes lower than the speed of the traveling device 12 outside the turning. Thereby, it can suppress that the turning speed of the body 11 becomes large too much.
  • the target turning ratio is changed to a smaller value.
  • the operator can intuitively operate the turning ratio change trigger 28 to change the turning radius of the airframe 11.
  • the maximum speed of the traveling device 12 outside the turning is limited to a small value. Specifically, the maximum speed of the traveling device 12 outside the turning is changed so as to decrease quadratically with respect to the change of the turning radius. Thereby, the increase in the centrifugal force acting on the airframe 11 can be effectively suppressed, and the fluctuation of the airframe 11 due to the centrifugal force can be suppressed.
  • the turning ratio change trigger 28 is provided on the steering lever 22. Therefore, the operator can operate the turning ratio change trigger 28 while operating the steering lever 22 with the hand operating the steering lever 22.
  • the present turning ratio is displayed on the display 152 of the meter panel 151, the operator can see the display 152 to grasp the present turning ratio.
  • the turning ratio change trigger 28 is operated to the front side once, the target turning ratio is changed from the current value to a value obtained by adding the predetermined value - ⁇ to the value, and the turning ratio change trigger 28 goes to the rear side.
  • the target turning ratio is changed to the value obtained by adding the predetermined value + ⁇ to the current value each time it is operated once, one operation on the front side of the turning ratio change trigger 28 and the rear side
  • the change amount of the target turning ratio may be different in one operation.
  • the adjusting operation member may be the joystick 171 as shown in FIG. 7 .
  • the joystick 171 protrudes leftward from the steering lever 22 and is configured to be operable at least forward and backward.
  • the target turning ratio is changed from the current value to a value obtained by adding the predetermined value - ⁇ to that value, and the joystick 171 is operated one time forward Every time the target turning ratio is changed from the current value to the value obtained by adding the predetermined value + ⁇ to the value.
  • the adjustment operating member may be a dial 181.
  • the dial 181 is provided rotatably on the steering lever 22, and a part of the dial 181 protrudes to the left of the steering lever 22.
  • the target turning ratio is lowered in proportion to the turning operation amount
  • the dial 181 is turned to the front side, the turning operation amount
  • the target turning ratio may be raised in proportion to.
  • the adjustment operation member may be provided on the main transmission lever 21.
  • the turning ratio change trigger 191 can be turned from the neutral position to the front side and the rear side about an axis extending in the left and right direction, and is configured in a momentary operation type in which a biasing force always acts toward the neutral position.
  • the turning ratio change trigger 191 is formed in a disk shape, and a part thereof protrudes upward from the main transmission lever 21. And the protrusion 192 which can catch a finger is formed in the protruding part.
  • the turning ratio change trigger 191 each time the turning ratio change trigger 191 is operated one time backward, the target turning ratio is changed from the current value to a value obtained by adding the predetermined value - ⁇ to the value, and the turning ratio change trigger 191 is changed. Each time the rear side is operated once, the target turning ratio is changed from the current value to a value obtained by adding the predetermined value + ⁇ to the value. Since the turning ratio change trigger 191 is provided on the main transmission lever 21, the turning ratio change trigger 191 can be operated while operating the main transmission lever 21 with the hand operating the main transmission lever 21.
  • the adjusting operation member may be provided alone on the operation panel 18 or the like.
  • the combine 1 was taken up as an example of a work vehicle, a tractor, a rice transplanter, etc. may be sufficient as this invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Non-Deflectable Wheels, Steering Of Trailers, Or Other Steering (AREA)

Abstract

【課題】旋回場所の広さや旋回後の機体位置に応じた旋回半径で機体を旋回させることができる、作業車両を提供する。 【解決手段】左右の走行装置12のそれぞれに対応して、左側HST33および右側HST34が設けられている。各左側HST33および右側HST34から対応する走行装置12に動力が伝達されることにより、走行装置12に支持される機体11が直進および旋回する。機体11の直進と旋回とを切り替えるために、操向レバー22が設けられている。また、操向レバー22には、旋回比変更トリガー28が設けられている。操向レバー22が直進位置から旋回位置に操作されると、旋回内側の走行装置12と旋回内側の走行装置12との間に旋回比が生じて、その旋回比に応じた旋回半径で機体11が旋回する。機体11の旋回中に旋回比変更トリガー28が操作されると、旋回比が当該操作に応じた値に変更される。

Description

作業車両
  本発明は、コンバインなど、左右一対の走行装置を備える作業車両に関する。
  従来、左右一対のクローラを備える作業車両として、圃場を走行しながら穀稈の刈り取りおよび穀稈からの脱穀を行うコンバインが広く知られている。
  コンバインでは、エンジンの動力が変速機に入力され、変速機により変速された動力が左右のクローラに伝達される。左右のクローラが同速度で駆動されることにより、機体が直進し、変速機に備えられるギヤ伝達機構やクラッチが切り替えられて、左右のクローラが速度差を有して駆動されることにより、機体が左旋回または右旋回する。
  旋回モードとして、緩旋回モード、ブレーキ旋回モードおよびスピン旋回モードが設けられている。緩旋回モードでは、旋回外側のクローラが定速で駆動され、旋回内側のクローラが旋回外側のクローラに対して一定の減速比で減速して駆動される。ブレーキ旋回モードでは、旋回外側のクローラが定速で駆動され、旋回内側のクローラが停止状態にされる。スピン旋回モードでは、旋回外側のクローラが定速で駆動され、旋回内側のクローラが旋回外側のクローラに対して逆回転駆動される。
  運転台の操作パネルには、機体の直進、左旋回および右旋回を切り替えるために、たとえば、左右に傾動可能な操向レバーが配設されている。また、操作パネルには、旋回モードの設定を切り替えるために、たとえば、ダイヤル式の旋回モード切替スイッチが設けられている。旋回モード切替スイッチにより緩旋回モードが設定され、機体が直進している状態で、操向レバーが中立位置から左側または右側の一方に傾動されると、直進状態から緩旋回モードでの旋回状態に切り替わる。また、旋回モード切替スイッチによりブレーキ旋回モードが設定され、機体が直進している状態で、操向レバーが中立位置から左側または右側の一方に傾動されると、直進状態からブレーキ旋回モードでの旋回状態に切り替わる。旋回モード切替スイッチによりスピン旋回モードが設定され、機体が直進している状態で、操向レバーが中立位置から左側または右側の一方に傾動されると、直進状態からスピン旋回モードでの旋回状態に切り替わる。
特開平8-275617号公報
  ところが、緩旋回モード、ブレーキ旋回モードおよびスピン旋回モードの各旋回モードでの旋回外側のクローラに対する旋回内側のクローラの速度比、つまり旋回比が固定である。そのため、圃場における旋回場所の広さに応じた旋回や旋回後の機体位置の調整に、機体の前後進および旋回による切り返しや旋回モードを切り替えるための停車が必要になる。
  本発明の目的は、旋回場所の広さや旋回後の機体位置に応じた旋回半径で機体を旋回させることができる、作業車両を提供することである。
  前記の目的を達成するため、本発明に係る作業車両は、エンジンと、機体を走行可能に支持する左右一対の走行装置と、走行装置のそれぞれに対応して設けられ、エンジンの動力で駆動されるポンプおよびポンプが吐出する圧油によって駆動されるモータを備え、モータの動力を走行装置に伝達する無段変速装置と、機体の直進と旋回とを切り替えるために、直進位置と旋回位置との間で操作される操向操作部材と、機体の旋回時の旋回外側の走行装置の速度に対する旋回内側の走行装置の速度の比である旋回比を調整するために操作される調整操作部材と、旋回比の目標値である目標旋回比を設定して、目標旋回比に基づいて無段変速機を制御する制御装置とを含み、制御装置は、操向操作部材が旋回位置に操作されたことに応じて、目標旋回比を一定値に設定し、目標旋回比が一定値に設定されている状態で調整操作部材が操作されたとき、目標旋回比を一定値から調整操作部材の操作に応じた値に変更する。
  この構成によれば、左右の走行装置のそれぞれに対応して、エンジンの動力で駆動されるポンプおよびポンプが吐出する圧油によって駆動されるモータを備える無段変速装置が設けられている。各無段変速装置から対応する走行装置に動力が伝達されることにより、走行装置に支持される機体が直進および旋回する。機体の直進と旋回とを切り替えるために、操向操作部材が直進位置と旋回位置との間で操作可能に設けられている。また、機体の旋回時の旋回比を調整するために操作される調整操作部材が設けられている。
  操向操作部材が直進位置から旋回位置に操作されると、無段変速機が制御されて、旋回内側の走行装置と旋回内側の走行装置との間に一定値の旋回比が生じて、機体が旋回する。機体の旋回中に調整操作部材が操作されると、旋回比が一定値から当該操作に応じた値に変更される。そのため、作業者が調整操作部材を操作することにより、圃場における旋回場所の広さや旋回後の機体位置に応じた旋回半径で機体を旋回させることができる。その結果、旋回場所の広さに応じた旋回や旋回後の機体位置の調整のために、機体の前後進および旋回による切り返しなどが不要となり、作業車両による作業の効率を向上させることができる。
  制御装置は、機体の旋回の際に、旋回内側の走行装置の速度が旋回外側の走行装置の速度よりも低くなるように無段変速機を制御してもよい。これにより、機体の旋回速度が大きくなり過ぎることを抑制できる。
  また、制御装置は、調整操作部材の操作量が大きくなるにつれて目標旋回比を小さい値に変更することが好ましい。これにより、機体の旋回半径の変更のために、作業者が調整操作部材を直感的に操作することができる。
  なお、ここでの「操作量」は、調整操作部材の1回の操作での操作量であってもよいし、調整操作部材の複数回の操作での操作量の累積量であってもよい。
  目標旋回比が小さくなるにつれて、旋回半径が小さくなり、機体に作用する遠心力が大きくなる。そのため、制御装置は、目標旋回比が小さくなるにつれて走行装置の最高速度を小さい値に制限することがより好ましい。これにより、機体に作用する遠心力の増大を抑制でき、遠心力による機体のふらつきを抑制できる。
  目標旋回比が小さくなるにつれて走行装置の最高速度が小さい値に制限される場合、旋回半径の変化に対して走行装置の最高速度が二次関数的に小さくなるように変更されることが好ましい。これにより、機体に作用する遠心力の増大を効果的に抑制することができる。
  調整操作部材は、それ単独で設けられていてもよいが、操向操作部材に設けられていてもよい。調整操作部材が操向操作部材に設けられた構成は、作業者が操向操作部材を操作している手で操向操作部材を操作しながら調整操作部材を操作することができるので、操作性に優れている。
  調整操作部材は、機体の走行および停止を切り替えるために操作される変速操作部材に設けられていてもよい。調整操作部材が変速操作部材に設けられた構成は、作業者が変速操作部材を操作している手で変速操作部材を操作しながら調整操作部材を操作することができるので、操作性に優れている。
  調整操作部材は、中立位置から一方側および他方側に操作可能に構成されたモーメンタリ動作式の操作部材であり、調整操作部材が中立位置から一方側への1回の操作の度に、制御装置により、目標旋回比が第1所定量下げ、中立位置から他方側への1回の操作の度に、目標旋回比が第2所定量上げてもよい。
  また、調整操作部材は、一方側および他方側に回動または直動可能に構成されて、制御装置により、調整操作部材の一方側への操作量に比例して目標旋回比が下げられ、調整操作部材の他方側への操作量に比例して目標旋回比が上げられてもよい。
  作業車両は、調整操作部材の操作による旋回比の調整の有効および無効を選択的に設定するために操作される選択操作部材をさらに含み、選択操作部材の操作により調整操作部材の操作による旋回比の調整が有効に設定されている場合に、制御装置により、目標旋回比が一定値から調整操作部材の操作に応じた値に変更されてもよい。
  作業車両に画像を表示する表示器が備えられて、機体の旋回時に、現在の旋回比または旋回半径が表示器に表示されてもよい。作業者が表示器を見て現在の旋回比または旋回半径を把握することができる。
  本発明によれば、旋回場所の広さや旋回後の機体位置に応じた旋回半径で機体を旋回させることができる。
本発明の一実施形態に係るコンバインの前部を示す右側面図である。 図1に示される操向レバーの左側面図である。 コンバインの駆動伝達系の一部の構成を示す図である。 駆動伝達系の残りの一部を示す断面図であり、左側HSTおよび右側HSTの油圧モータから走行装置までの構成を示す。 コンバインの電気的構成の要部を示すブロック図である。 旋回制御の流れを示すフローチャートである。 調整操作部材の第2の形態(ジョイスティック)を示す図である。 調整操作部材の第3の形態(ダイヤル)を示す図である。 調整操作部材のさらに他の形態としての旋回比変更トリガーが主変速レバーに設けられた構成を示す図である。 図9に示される構成の一部の側面図である。
  以下では、本発明の実施の形態について、添付図面を参照しつつ詳細に説明する。
<コンバイン>
  図1は、本発明の一実施形態に係るコンバイン1の前部を示す右側面図である。
  コンバイン1は、圃場を走行しながら穀稈の刈り取りおよび穀稈からの脱穀を行う作業車両である。コンバイン1の機体11は、左右一対の走行装置12に支持されている。走行装置12には、圃場でのコンバイン1の走行可能にするため、不整地走破能力を有するクローラが採用されている。
  機体11には、運転台13、刈取装置14、脱穀装置15および穀粒タンク16が設けられている。
  運転台13は、走行装置12の前端部の上方に配置されている。運転台13には、作業者が着座する運転座席17が設けられており、たとえば、運転座席17の前方および左方には、作業者により操作される操作パネル18が設けられている。操作パネル18には、主変速レバー21および操向レバー22などが備えられている。
  主変速レバー21は、前後方向に傾動可能に設けられている。主変速レバー21の傾動操作により、機体11の前進および後進を切り替えることができ、また、その前進または後進の速度を変更することができる。
  操向レバー22は、左右方向および前後方向に傾動可能に設けられている。操向レバー22の左右方向の傾動操作により、機体11の直進、左旋回および右旋回を切り替えることができる。また、操向レバー22の前後方向の傾動操作により、刈取装置14を昇降させることができる。
  刈取装置14は、走行装置12の前方に配置されている。刈取装置14は、その前端に分草杆23を備え、分草杆23の後方に刈刃24を備えている。分草杆23および刈刃24は、刈取フレーム25Fに支持されている。刈取フレーム25Fの後端部には、左右方向に延びる刈取横フレーム25Lが設けられている。刈取横フレーム25Lには、刈取主フレーム25Mの一端部が接続されている。刈取主フレーム25Mは、刈取横フレーム25Lから後側に延び、その他端部(後端部)が機体11のフレームに回動可能に接続されいる。操向レバー22の前後方向の傾動操作により、シリンダ(図示せず)を動作させて、刈取主フレーム25Mを揺動させることができ、その揺動により、分草杆23および刈刃24が地面から高く上昇した上昇位置と、分草杆23および刈刃24が地面近くに下降した下降位置とに昇降する。分草杆23および刈刃24が下降位置に位置した状態で機体11が前進すると、圃場に植立されている穀稈の株元が分草杆23によって分けられながら、穀稈が刈刃24によって刈り取られる。
  脱穀装置15および穀粒タンク16は、走行装置12の上方かつ刈取装置14の後方の位置で左右に並べて配置されている。刈り取られた穀稈は、刈取装置14により脱穀装置15へと搬送される。脱穀装置15は、穀稈の株元側を脱穀フィードチェーンによって後方向きに搬送し、穀稈の穂先側を扱室に供給して脱穀する。そして、脱穀装置15から穀粒タンク16に穀粒が搬送されて、穀粒が穀粒タンク16に貯留される。穀粒タンク16には、穀粒排出オーガ26が連設されており、穀粒タンク16に貯留された穀粒は、穀粒排出オーガ26により機外に排出することができる。
<操向レバー>
  図2は、操向レバー22の左側面図である。
  操向レバー22の上端部27は、作業者が操向レバー22を操作する際に手で握りやすいように、前側に凸湾曲した半球状に形成されている。
  その半球状面から前側に突出するように、旋回比変更トリガー28が設けられている。旋回比変更トリガー28は、操向レバー22の中立状態で左右方向に延びる軸線を中心に中立位置から前側および後側に回動操作可能であり、中立位置に向けて常に付勢力が作用するモーメンタリ動作式に構成されている。また、旋回比変更トリガー28は、側面視略C字状に形成されており、作業者が操向レバー22の上端部27を手で握った状態で手指(たとえば、中指または薬指)を引っ掛けることができる。これにより、作業者は、旋回比変更トリガー28に引っ掛けた手指を前後に動かして、旋回比変更トリガー28を前後に回動操作することができる。
  旋回比変更トリガー28の機能については、後述する。
<無段変速装置>
  図3は、コンバイン1の駆動伝達系32の一部の構成を示す図である。図3では、エンジン31から駆動伝達系32までの動力伝達系がスケルトン図で示され、駆動伝達系32の左側HST33および右側HST34に関する構成が油圧回路図で示されている。
  コンバイン1には、エンジン31と、エンジン31の動力を走行装置12に伝達する駆動伝達系32とが搭載されている。
  駆動伝達系32は、左側HST(Hydro Static Transmission:静油圧式変速機)33および右側HST34を備えている。
  左側HST33は、油圧ポンプ41と油圧モータ42との間で作動油が循環するように、油圧ポンプ41と油圧モータ42とを第1油路43および第2油路44で接続した閉回路の構成を有している。第1油路43は、油圧ポンプ41の第1ポート45と油圧モータ42の第1ポート46とに接続されている。第2油路44は、油圧ポンプ41の第2ポート47と油圧モータ42の第2ポート48とに接続されている。
  また、左側HST33には、チャージポンプ51が付随して設けられている。チャージポンプ51は、固定容量型の油圧ポンプであり、ポンプ回転軸52の回転により、チャージ油路53に作動油を吐出する。チャージ油路53は、第1チェックバルブ54を介して第1油路43に接続され、第2チェックバルブ55を介して第2油路44に接続されている。また、チャージ油路53は、チャージリリーフバルブ56を介して、オイルタンク57に接続されている。
  チャージリリーフバルブ56の機能により、チャージ油路53の油圧が所定のチャージ圧に維持される。第1油路43の油圧がチャージ油路53の油圧、つまりチャージ圧よりも低くなると、第1チェックバルブ54が開成して、チャージ油路53から第1チェックバルブ54を介して第1油路43に作動油が供給される。また、第2油路44の油圧がチャージ圧よりも低くなると、第2チェックバルブ55が開成して、チャージ油路53から第2チェックバルブ55を介して第2油路44に作動油が供給される。これにより、第1油路43および第2油路44の油圧がチャージ圧以上に維持される。
  左側HST33は、油圧ポンプ41、油圧モータ42、第1油路43、第2油路44、第1チェックバルブ54、第2チェックバルブ55およびチャージリリーフバルブ56などを単一のケースに収容した一体型HSTとして構成されている。
  油圧ポンプ41は、可変容量型の斜板式ピストンポンプであり、シリンダブロック、シリンダブロック内に放射状に配置された複数のピストンおよびピストンが摺動するポンプ斜板などを備えている。油圧ポンプ41とチャージポンプ51とは、ポンプ回転軸52を共通に有しており、シリンダブロックは、ポンプ回転軸52と一体回転するように設けられている。
  油圧ポンプ41のポンプ斜板の傾斜角度を変更するため、電子制御式のサーボピストン58が設けられている。サーボピストン58は、前進圧力制御弁61から油圧が供給される第1圧力室62と、後進圧力制御弁63から油圧が供給される第2圧力室64とを有している。また、サーボピストン58は、第1圧力室62と第2圧力室64との差圧により直動するロッド65を有しており、このロッド65の直動により、ポンプ斜板の傾斜角度が変更される。
  油圧ポンプ41のポンプ回転軸52の軸線(シリンダブロックの回転軸線)に対するポンプ斜板の傾斜角度が大きいほど、油圧ポンプ41からの作動油の吐出量が少なくなり、ポンプ斜板の傾斜角度が90°であるとき、油圧ポンプ41からの作動油の吐出が停止する。また、ポンプ斜板の傾斜角度が90°を超えると(傾きが逆転すると)、傾斜角度が90°未満のときと油圧ポンプ41からの作動油の吐出方向が逆転する。
  油圧モータ42は、可変容量型の斜板式ピストンモータであり、モータ回転軸71、モータ回転軸71と一体に回転するシリンダブロック72(図3参照)、シリンダブロック72内に放射状に配置された複数のピストン73(図3参照)およびピストン73が押しつけられるモータ斜板74(図3参照)などを備えている。油圧モータ42のモータ回転軸71の軸線(シリンダブロックの回転軸線)に対するモータ斜板74の傾斜角度が一定である場合、油圧モータ42に供給される作動油の量、つまり油圧ポンプ41から吐出される作動油の量が多いほど、モータ回転軸71の回転数が増加する。
  また、油圧モータ42に供給される作動油の量が一定である場合、モータ斜板74の傾斜角度が大きいほど、モータ回転軸71の回転数が低下する。油圧モータ42のモータ斜板74の傾斜角度を変更するため、副変速ピストン75が設けられている。副変速ピストン75には、低速切替弁76および高速切替弁77が接続されている。低速切替弁76がオンにされ、高速切替弁77がオフにされて、低速切替弁76から副変速ピストン75に油圧が供給されることにより、副変速ピストン75のロッド78が低速位置に位置し、モータ斜板74の傾斜角度が相対的に大きくなる。一方、低速切替弁76がオフにされ、高速切替弁77がオンにされて、高速切替弁77から副変速ピストン75に油圧が供給されることにより、副変速ピストン75のロッド78が高速位置に位置し、モータ斜板74の傾斜角度が相対的に小さくなる。したがって、低速切替弁76および高速切替弁77のオン/オフの切り替えにより、モータ回転軸71の回転数が相対的に大きくなる高速段と、モータ回転軸71の回転数が相対的に小さくなる低速段との2段に切り替えることができる。
  右側HST34は、左側HST33と同様の構成であるから、右側HST34について、左側HST33の各部に相当する部分にそれらの各部と同一の参照符号を付して、その説明を省略する。
  左側HST33および右側HST34の各ポンプ回転軸52には、エンジン31の動力が入力される。具体的には、エンジン31の出力軸81には、プーリ82が相対回転不能に設けられている。駆動伝達系32は、エンジン31の出力軸81と平行に延びる入力軸83を備えている。入力軸83には、プーリ84が相対回転不能に設けられている。プーリ82,84間には、無端状のベルト85が巻き掛けられている。また、入力軸83には、入力ギヤ86が相対回転不能に設けられている。入力ギヤ86には、中間ギヤ87が噛合し、中間ギヤ87には、右側HST34のポンプ回転軸52に相対回転不能に設けられたポンプギヤ88が噛合している。ポンプギヤ88は、左側HST33のポンプ回転軸52に相対回転不能に設けられたポンプギヤ89と噛合している。
  これにより、エンジン31の動力は、出力軸81からプーリ82およびベルト85を介してプーリ84に伝達され、プーリ84と一体に、入力軸83を回転させる。そして、入力軸83の動力(回転)は、入力ギヤ86から中間ギヤ87を介して右側HST34のポンプギヤ88に伝達され、そのポンプギヤ88と一体に、右側HST34のポンプ回転軸52を所定方向に回転させる。また、入力軸83の動力は、入力ギヤ86から中間ギヤ87を介して右側HST34のポンプギヤ88に伝達され、さらにポンプギヤ88からポンプギヤ89に伝達されて、そのポンプギヤ89と一体に、左側HST33のポンプ回転軸52を所定方向と逆方向に回転させる。そのため、左側HST33および右側HST34の各油圧ポンプ41のポンプ斜板の傾斜角度が同じであるときには、左側HST33の油モータ42のモータ回転軸71と右側HST34の油圧モータ42のモータ回転軸71とが互いに逆方向に回転する。
  図4は、駆動伝達系32の一部を示す断面図であり、左側HST33および右側HST34の油圧モータ42から走行装置12までの構成を示す。
  左側HST33および右側HST34の各油圧モータ42は、モータ回転軸71が同一の軸線上に(共通の軸線を有するように)並び、かつ、その軸線が左右の車軸91L,91Rと平行をなすように、互いに左右対称に配置されている。
  なお、以下の説明において、左側HST33のモータ回転軸71を「モータ回転軸71L」といい、右側HST34のモータ回転軸71を「モータ回転軸71R」という。
  モータ回転軸71L,71Rの左右方向外側の端部は、それぞれベアリング102L,102Rを介して、駆動伝達系32の外殻をなすユニットケース101に回転可能に支持されている。モータ回転軸71L,71Rの左右方向内側の端部には、それぞれモータ出力ギヤ103L,103Rが相対回転不能に支持されている。
  モータ回転軸71L,71Rと車軸91L,91Rとの間には、第1中間軸104、第2中間軸105および第3中間軸106が互いに間隔を空けて車軸91L,91Rと平行に設けられている。第1中間軸104は、ユニットケース101に回転不能に支持されている。第2中間軸105の左端部および右端部は、それぞれベアリング107L,107Rを介して、ユニットケース101に回転可能に支持されている。第3中間軸106の左端部および右端部は、それぞれベアリング108L,108Rを介して、ユニットケース101に回転可能に支持されている。
  モータ出力ギヤ103L,103Rは、それぞれ第1中間軸104に回転可能に保持された第1中間ギヤ111L,111Rと噛合している。
  第2中間軸105の左側部分には、第2中間ギヤ112Lおよび第3中間ギヤ113Lが相対回転不能に支持されている。一方、第2中間軸105の右側部分には、第3中間ギヤ113Rがニードルベアリングを介して相対回転可能に支持されている。また、第3中間ギヤ113Rの外側には、円環状の第2中間ギヤ112Rが第3中間ギヤ113Rを取り囲むように設けられている。第2中間ギヤ112Rの内周部分は、第3中間ギヤ113Rに固定されている。これにより、第2中間ギヤ112Rは、第3中間ギヤ113Rと一体をなして回転する。第2中間ギヤ112L,112Rは、それぞれ第1中間ギヤ111L,111Rと噛合している。第3中間ギヤ113L,113Rは、それぞれ第4中間ギヤ114L,114Rと噛合している。
  第3中間軸106には、第5中間ギヤ115L,115Rが相対回転不能に支持されている。第4中間ギヤ114L,114Rは、円環状をなし、それぞれ第5中間ギヤ115L,115Rの外側を取り囲むように設けられている。第4中間ギヤ114L,114Rの内周部分は、それぞれ第5中間ギヤ115L,115Rに固定されている。これにより、第4中間ギヤ114L,114Rは、それぞれ第5中間ギヤ115L,115Rと一体をなして回転する。第5中間ギヤ115L,115Rは、第6中間ギヤ116L,116Rと噛合している。
  第6中間ギヤ116Lには、中心軸線上を延びる貫通孔117が形成されている。貫通孔117には、左側から車軸91Lの右端部が挿入されて、その右端部がスプライン結合している。第6中間ギヤ116Rの左端部には、第6中間ギヤ116Lの貫通孔117の内径よりも小さい外径を有する円柱部118が形成されている。円柱部118は、貫通孔117に右側から挿通されて、ニードルベアリングを介して、第6中間ギヤ116Lに相対回転可能に保持されている。また、第6中間ギヤ116Rの右端部には、左側に窪む円形の凹部119が形成されている。凹部119には、車軸91Rの左端部が挿入されて、の左端部がスプライン結合している。そして、第6中間ギヤ116Lの左端部および第6中間ギヤ116Rの右端部には、それぞれベアリング121L,121Rが外嵌されており、それらの121L,121Rの外輪がユニットケース101に固定的に保持されることにより、第6中間ギヤ116L,116Rは、ユニットケース101に回転可能に保持されている。また、車軸91Lの左端部および車軸91Rの右端部がそれぞれベアリング122L,122Rを介してユニットケース101に回転可能に保持されることにより、車軸91L,91Rがユニットケース101に回転可能に保持されている。
  車軸91Lの左端部および車軸91Rの右端部は、それぞれ走行装置12の駆動輪123L,123Rに相対回転不能に結合されている。
  また、駆動伝達系32には、クラッチ131が備えられている。クラッチ131は、第2中間軸105と第3中間ギヤ113Rとを連結および分離するために係合および解放される。すなわち、クラッチ131の係合により、第2中間軸105と第3中間ギヤ113Rとが連結されて、第2中間軸105と第3中間ギヤ113Rとが一体回転する。クラッチ131の解放により、第2中間軸105と第3中間ギヤ113とが分離されて、第3中間ギヤ113が第2中間軸105に対して回転可能となる。
  さらに、駆動伝達系32には、駐車ブレーキ132が備えられている。駐車ブレーキ132は、第2中間軸105を制動および制動解除するために係合および解放される。すなわち、駐車ブレーキ132の係合により、第2中間軸105がユニットケース101に対して回転不能に制動される。駐車ブレーキ132の解放により、第2中間軸105の制動が解除されて、第2中間軸105がユニットケース101に対して回転可能になる。
<電気的構成>
  図5は、コンバイン1の電気的構成の要部を示すブロック図である。
  コンバイン1には、個別の具体的な制御のための複数のECU(Electronic Control Unit:電子制御ユニット)と、全体の統括的な制御のための単一のメインECU141とが搭載されている。個別の具体的な制御のためのECUには、たとえば、機体11の走行/旋回制御のための走行/旋回ECU(T/M)142、旋回比の変更制御のための旋回比変更ECU143および機体11の姿勢制御のための姿勢ECU(4PC)144などが含まれる。メインECU141、走行/旋回ECU142、旋回比変更ECU143および姿勢ECU144は、いずれもマイクロコントローラユニット(MCU:Micro Controller Unit)を含む構成である。
  メインECU141は、個別の具体的な制御のための各ECU、つまり走行/旋回ECU142、旋回比変更ECU143および姿勢ECU144などと通信可能に接続されている。メインECU141は、個別の具体的な制御のための各ECUが各種センサの検出信号などから取得する情報を受信し、それらの各ECUが制御に必要とする指令や情報を各ECUに送信する。また、メインECU141には、運転台13の操作パネル18(図1参照)に配置されているメータパネル151が制御対象として接続されており、メインCU141は、メータパネル151に設けられている走行距離計などの各種の計器類や表示器152を制御する。表示器152は、たとえば、液晶表示器からなる。
  走行/旋回ECU142には、主変速レバー21の操作位置に応じた検出信号を出力する主変速レバーセンサ153と、操向レバー22の操作位置に応じた検出信号を出力する操向レバーセンサ154と、左側の車軸91Lの回転に同期したパルス信号を検出信号として出力する左側車速センサ155と、右側の車軸91Rの回転に同期したパルス信号を検出信号として出力する右側車速センサ156とが接続されており、これらの検出信号が入力される。
  なお、図示されていないが、左側HST33および右側HST34には、油圧ポンプ41の斜板の傾斜角度を検出するために、サーボピストン58の位置に応じた検出信号を出力するピストン位置センサが設けられている。走行/旋回ECU142には、各ピストン位置センサが接続されており、各ピストン位置センサの検出信号が入力される。
  また、コンバイン1では、機体11の旋回制御のモード(旋回制御モード)として、ソフト旋回モード、ブレーキ旋回モード、スピン旋回モードおよびリニア旋回モードが設定されている。そして、運転台13の操作パネル18には、旋回制御モードを切り替えるための旋回モードスイッチ157が設けられている。旋回モードスイッチ157は、ダイヤル式スイッチであり、その可動域には、旋回制御モードに対応したソフト位置、ブレーキ位置、スピン位置およびリニア位置が設定されている。旋回モードスイッチ157は、作業者の手指で摘ままれて回動操作されるノブ158を有し、ノブ158がソフト位置、ブレーキ位置、スピン位置およびリニア位置のいずれに位置するかによって異なる信号を出力する。
  旋回モードスイッチ157の出力信号は、旋回比変更ECU143に入力される。旋回比変更ECU143には、旋回モードスイッチ157のほか、旋回比変更トリガー28の操作位置に応じた検出信号を出力する旋回比変更センサ159が接続されており、その旋回比変更センサ159の検出信号が入力される。また、旋回比変更ECU143は、走行/旋回ECU142と通信可能に接続されている。
  姿勢ECU144には、機体11の水平に対する傾きを検出するローリングセンサ161が接続されており、そのローリングセンサ161の検出信号が入力される。姿勢ECU144は、機体11の前後左右の4つの位置の高さを調節することにより、機体11の姿勢を制御する。
  そして、走行/旋回ECU142は、主変速レバーセンサ153、操向レバーセンサ154、左側車速センサ155および右側車速センサ156などの各種センサの検出信号から取得される情報、ならびにメインECU141および旋回比変更ECU143から入力される情報に基づいて、機体11の走行および旋回を制御するために、左側HST33および右側HST34のそれぞれに含まれる前進圧力制御弁61、後進圧力制御弁63、低速切替弁76および高速切替弁77の動作を制御する。
<走行制御>
  機体11の走行は、走行/旋回ECU142によって制御される。この走行制御では、主変速レバーセンサ153の検出信号から主変速レバー21の位置が判定される。
  主変速レバー21の位置が停止位置であるときには、左側HST33および右側HST34のそれぞれについて、前進圧力制御弁61および後進圧力制御弁63に供給される電流の制御により、それらの各開度が調節されて、油圧ポンプ41のポンプ斜板の傾斜角度が90°にされる。これにより、油圧ポンプ41から作動油が吐出されないので、油圧モータ42が回転せず、車軸91L,91Rに油圧モータ42の動力が伝達されない。よって、走行装置12が作動せず、機体11が停止している。
  主変速レバー21が停止位置から前側に傾動されると、左側HST33および右側HST34のそれぞれについて、前進圧力制御弁61および後進圧力制御弁63に供給される電流の制御により、前進圧力制御弁61からサーボピストン58の第1圧力室62に供給される油圧が後進圧力制御弁63から第2圧力室64に供給される油圧よりも大きくされる。これにより、第1圧力室62と第2圧力室64とに差圧が生じ、この差圧により油圧ポンプ41のポンプ斜板の傾斜角度が90°よりも小さくなる。その結果、油圧ポンプ4から作動油が吐出され、油圧モータ42がその作動油を受けて回転する。そして、油圧モータ42の回転(動力)が車軸91L,91Rに伝達されて、走行装置12の駆動輪123L,123Rがそれぞれ車軸91L,91Rと一体に前進方向に回転することにより、機体11が前進する。
  主変速レバー21が停止位置から後側に傾動されると、左側HST33および右側HST34のそれぞれについて、前進圧力制御弁61および後進圧力制御弁63に供給される電流の制御により、後進圧力制御弁63から第2圧力室64に供給される油圧が前進圧力制御弁61からサーボピストン58の第1圧力室62に供給される油圧よりも大きくされる。これにより、第1圧力室62と第2圧力室64とに差圧が生じ、この差圧により油圧ポンプ41のポンプ斜板の傾斜角度が90°よりも大きくなる。その結果、油圧ポンプ41から作動油が前進時と逆方向に吐出され、油圧モータ42がその作動油を受けて前進時と逆方向に回転する。そして、油圧モータ42の回転(動力)が車軸91L,91Rに伝達されて、走行装置12の駆動輪123L,123Rがそれぞれ車軸91L,91Rと一体に後進方向に回転することにより、機体11が後進する。
  機体11の前進時および後進時には、クラッチ131が係合される。クラッチ131の係合により、第2中間軸105と第3中間ギヤ113Rとが連結されて、第2中間軸105と第3中間ギヤ113Rとが一体回転するので、第4中間ギヤ114L,114Rが同速度で回転する。そのため、第5中間ギヤ115L,115Rが同速度で回転し、第6中間ギヤ116L,116Rが同速度で回転して、車軸91L,91Rが同速度で回転する。その結果、走行装置12の左右の駆動輪123L,123Rが同速度で回転されるので、機体11が優れた直進安定性で前進または後進する。
  また、前進時または後進時に、前進圧力制御弁61および後進圧力制御弁63に供給される電流の制御により、油圧ポンプ41のポンプ斜板の傾斜角度が変更されると、油圧ポンプ41からの作動油の吐出量が変化し、油圧モータ42の回転数が変化する。したがって、主変速レバー21の停止位置からの傾動量に応じて、油圧ポンプ41のポンプ斜板の傾斜角度を調節することにより、機体11の前進および後進の速度を無段階に変化させることができる。
  さらに、駆動伝達系32では、前述したように、低速切替弁76および高速切替弁77のオン/オフの切り替えにより、油圧モータ42の回転数が相対的に大きくなる高速段と相対的に小さくなる低速段との2段に切り替えることができる。したがって、その高速段と低速段との切り替えによっても、機体11の前進および後進の速度を変化させることができる。なお、運転台13の操作パネル18に副変速レバー(図示せず)が設けられて、その副変速レバーの操作により、高速段と低速段との切り替えが指示されるとよい。
<旋回制御>
  図6は、旋回制御の流れを示すフローチャートである。
  機体11の直進(前進・後進)走行時に、操向レバー22が中央の直進位置から左側または右側の旋回位置に傾動操作されると(ステップS11のYES)、走行/旋回ECU142により、機体11を旋回させるための旋回制御が開始される。
  旋回制御では、旋回比変更ECU143から走行/旋回ECU142に、旋回モードスイッチ157のノブ158の位置(以下、単に「旋回モードスイッチ157の位置」という。)の情報が送信される。具体的には、旋回モードスイッチ157の位置がソフト位置、ブレーキ位置、スピン位置またはリニア位置のいずれであるかは、たとえば、旋回比変更ECU143により、旋回モードスイッチ157の出力信号から判定される。走行/旋回ECU142から旋回比変更ECU143に旋回モードスイッチ157の位置の情報の送信要求が送信されると、その送信要求に応じて、旋回モードスイッチ157の位置がソフト位置、ブレーキ位置、スピン位置またはリニア位置のいずれであるかを示す情報が旋回比変更ECU143から走行/旋回ECU142に送信される。旋回モードスイッチ157の位置の情報を受信した走行/旋回ECU142では、旋回モードスイッチ157の位置がリニア位置であるか否かを判定する(ステップS12)。
  旋回モードスイッチ157の位置がリニア位置ではない場合、つまり旋回モードスイッチ157の位置がソフト位置、ブレーキ位置またはスピン位置である場合(ステップS12のNO)、走行/旋回ECU142により、通常旋回制御が実行される(ステップS13)。
  通常旋回制御は、旋回モードスイッチ157の位置に応じてその内容(旋回制御モード)が異なる。
  旋回モードスイッチ157の位置がソフト位置である場合、旋回制御モードがソフト旋回モードに設定される。ソフト旋回モードでの通常旋回制御では、たとえば、旋回比の目標値である目標旋回比が0.3に設定される。そして、実際の旋回比が目標旋回比に一致するように、左側HST33および右側HST34のそれぞれの前進圧力制御弁61および後進圧力制御弁63に供給される電流(油圧ポンプ41のポンプ斜板の傾斜角度)が制御されることにより、旋回内側の走行装置12(駆動輪123L,123Rの一方)の回転速度が下げられる。
  旋回比は、旋回外側の走行装置12に対する旋回内側の走行装置12の速度比であり、具体的には、旋回外側が左側である場合、左側の車軸91Lの回転速度に対する旋回内側である右側の車軸91Rの回転速度の比であり、旋回外側が右側である場合、右側の車軸91Rの回転速度に対する旋回内側である左側の車軸91Lの回転速度の比である。左側の車軸91Lの回転速度は、左側車速センサ155の検出信号から算出することができ、右側の車軸91Rの回転速度は、右側車速センサ156の検出信号から算出することができる。旋回外側が左側である場合、左側車速センサ155の検出信号から算出される車軸91Lの回転速度に対する右側車速センサ156の検出信号から算出される車軸91Rの回転速度の比を求めることにより、実際の旋回比を算出することができる。旋回外側が右側である場合、右側車速センサ156の検出信号から算出される車軸91Rの回転速度に対する左側車速センサ155の検出信号から算出される車軸91Lの回転速度の比を求めることにより、実際の旋回比を算出することができる。
  旋回モードスイッチ157の位置がブレーキ位置である場合、旋回制御モードがブレーキ旋回モードに設定される。ブレーキ旋回モードでの通常旋回制御では、たとえば、目標旋回比が0に設定される。そして、実際の旋回比が目標旋回比に一致するように、左側HST33および右側HST34のそれぞれの前進圧力制御弁61および後進圧力制御弁63に供給される電流が制御されることにより、旋回内側の走行装置12の回転速度が下げられる。目標旋回比が0であるとき、旋回内側の走行装置12の目標速度が0となる。したがって、旋回モードスイッチ157の位置がブレーキ位置である場合の通常旋回制御で、旋回内側の走行装置12が停止するように、左側HST33および右側HST34のそれぞれの前進圧力制御弁61および後進圧力制御弁63に供給される電流が制御される。
  旋回モードスイッチ157の位置がスピン位置である場合、旋回制御モードがスピン旋回モードに設定される。スピン旋回モードでの通常旋回制御では、旋回内側の走行装置12の回転方向が逆転し、かつ、その旋回内側の走行装置12の回転速度の値に負の符号(-)を付して求められる旋回比の目標値(目標旋回比)が-0.3に設定される。そして、実際の旋回比が目標旋回比に一致するように、左側HST33および右側HST34のそれぞれの前進圧力制御弁61および後進圧力制御弁63に供給される電流が制御される。
  一方、旋回モードスイッチ157の位置がリニア位置である場合(ステップS12のYES)、走行/旋回ECU142により、旋回制御モードがリニア旋回モードに設定される。リニア旋回モードでの旋回制御では、目標旋回比の初期値が0に設定される(ステップS14)。目標旋回比が0に設定されることにより、ブレーキ旋回モードでの通常旋回制御と同様に、旋回内側の走行装置12が停止するように、左側HST33および右側HST34のそれぞれの前進圧力制御弁61および後進圧力制御弁63に供給される電流が制御される。これにより、機体11が旋回し始める。
  その後、現在の旋回比が求められて、その旋回比の情報が走行/旋回ECU142からメインECU141に送信される。そして、旋回比の情報を受信したメインECU141により、メータパネル151の表示器152が制御されて、表示器152に現在の旋回比が表示される(ステップS15)。
  機体11の旋回の開始後、走行/旋回ECU142により、旋回比変更トリガー28が前側または後側に操作されたか否かが判別される(ステップS16)。旋回比変更トリガー28が操作されて、旋回比変更センサ159の検出信号が変化すると、旋回比変更ECU143により、その変化後の旋回比変更センサ159の検出信号から旋回比変更トリガー28が前側または後側のどちら側に操作されたかが判別される。この判別結果に応じて、旋回比変更ECU143から走行/旋回ECU142に、旋回比変更トリガー28が前側に操作されたことを表す前操作情報または旋回比変更トリガー28が後側に操作されたことを表す後操作情報が送信される。
  旋回比変更トリガー28が前側または後側に操作されたか否かの判別の時点までに、走行/旋回ECU142が前操作情報または後操作情報を受信していなければ、走行/旋回ECU142により、旋回比変更トリガー28が操作されていないと判別される(ステップS16のNO)。この場合、旋回比変更トリガー28が操作されたか否かの判別に続いて、操向レバーセンサ154の検出信号が確認されて、操向レバー22が左側または右側の旋回位置から中央の直進位置に戻されたか否かが判別される(ステップS17)。
  旋回比変更トリガー28が操作されておらず、かつ、操向レバー22が旋回位置から直進位置に戻されていない場合には(ステップS17のNO)、現在の旋回比が再び求められて、その旋回比がメータパネル151の表示器152に表示される(ステップS15)。このようにして、リニア旋回モードでの旋回制御による機体11の旋回中は、旋回比変更トリガー28の操作の有無の判別、操向レバー22が旋回位置から直進位置に戻されたか否かの判別、ならびに、現在の旋回比の算出および表示が繰り返される。
  機体11の旋回中に旋回比変更トリガー28が後側(作業者側)に操作されて、旋回比変更ECU143から走行/旋回ECU142に後操作情報が送信された場合、走行/旋回ECU142により、その後操作情報を受信したことに応じて、旋回比変更トリガー28が後側に操作されたと判別される(ステップS16のYES)。
  この場合、走行/旋回ECU142により、目標旋回比が現在の値からその値に所定値-α(α:自然数)を加えた値に変更される(ステップS18)。
  その後、旋回外側の走行装置12の最高速度が変更される(ステップS19)。機体11の旋回の際には、その旋回比が小さいほど、旋回半径が小さいので、機体11に生じる遠心力が大きくなる。そのため、旋回比が小さいほど、機体11の傾きが大きくなり、機体11が不安定な姿勢となる。そこで、旋回比変更トリガー28の操作に応じた目標旋回比の変更により、目標旋回比が小さくなるにつれて、旋回外側の走行装置12の最高速度が小さい値に制限される。具体的には、旋回半径の変化に対して、旋回外側の走行装置12の最高速度が二次関数的に小さくなるように変更される。
  機体11の旋回中に旋回比変更トリガー28が前側に操作されて、旋回比変更ECU143から走行/旋回ECU142に前操作情報が送信された場合、走行/旋回ECU142により、その前操作情報を受信したことに応じて、旋回比変更トリガー28が前側に操作されたと判別される(ステップS16のYES)。
  この場合、走行/旋回ECU142により、目標旋回比が現在の値からその値に所定値+αを加えた値に変更される(ステップS18)。
  その後、旋回外側の走行装置12の最高速度が変更される(ステップS19)。この場合、目標旋回比が大きくなる側に変更されるので、旋回外側の走行装置12の最高速度が大きな値に変更される。
  旋回外側の走行装置12の最高速度の変更後は、操向レバー22が左側または右側の旋回位置から中央の直進位置に戻されたか否かが判別される(ステップS17)。
  操向レバー22が旋回位置から直進位置に戻されていない場合には(ステップS17のNO)、現在の旋回比が再び求められて表示された後(ステップS15)、旋回比変更トリガー28が前側または後側に操作されたか否かが再び判別される(ステップS16)。
  こうして処理が繰り返されることにより、旋回比変更トリガー28が操作される度に、その操作に応じて目標旋回比が変更され、目標旋回比が変更される度に、旋回外側の走行装置12の最高速度が変更される。そして、操向レバー22が左側または右側の旋回位置から中央の直進位置に戻されると(ステップS17:YES)、この一連の旋回制御が終了される。
<作用効果>
  以上のように、左右の走行装置12のそれぞれに対応して、左側HST33および右側HST34が設けられている。左側HST33および右側HST34は、エンジン31の動力で駆動される油圧ポンプ41および油圧ポンプ41が吐出する圧油によって駆動される油圧モータ42を備えている。各左側HST33および右側HST34から対応する走行装置12に動力が伝達されることにより、走行装置12に支持される機体11が直進および旋回する。機体11の直進と旋回とを切り替えるために、操向レバー22が直進位置とその左側および右側の旋回位置との間で操作可能に設けられている。また、操向レバー22には、機体11の旋回時の旋回比を調整するために操作される旋回比変更トリガー28が設けられている。
  操向レバー22が直進位置から旋回位置に操作されると、左側HST33および右側HST34が制御されて、旋回内側の走行装置12と旋回内側の走行装置12との間に旋回比が生じて、その旋回比に応じた旋回半径で機体11が旋回する。旋回モードスイッチ157の位置がリニア位置にされている状態では、旋回比変更トリガー28が有効化されて、機体11の旋回中に旋回比変更トリガー28が操作されると、旋回比が当該操作に応じた値に変更される。そのため、作業者が旋回比変更トリガー28を操作することにより、圃場における旋回場所の広さや旋回後の機体11位置に応じた旋回半径で機体11を旋回させることができる。その結果、旋回場所の広さに応じた旋回や旋回後の機体11位置の調整のために、機体11の前後進および旋回による切り返しなどが不要となり、作業車両による作業の効率を向上させることができる。
  機体11の旋回の際には、旋回内側の走行装置12の速度が旋回外側の走行装置12の速度よりも低くなるように、左側HST33および右側HST34が制御される。これにより、機体11の旋回速度が大きくなり過ぎることを抑制できる。
  また、旋回比変更トリガー28が後側に操作される度に、目標旋回比が小さい値に変更される。これにより、機体11の旋回半径の変更のために、作業者が旋回比変更トリガー28を直感的に操作することができる。
  目標旋回比が小さくなるにつれて、旋回半径が小さくなり、機体11に作用する遠心力が大きくなる。そのため、目標旋回比が小さくなるにつれて、旋回外側の走行装置12の最高速度が小さい値に制限される。具体的には、旋回半径の変化に対して、旋回外側の走行装置12の最高速度が二次関数的に小さくなるように変更される。これにより、機体11に作用する遠心力の増大を効果的に抑制することができ、遠心力による機体11のふらつきを抑制できる。
  旋回比変更トリガー28は、操向レバー22に設けられている。そのため、作業者が操向レバー22を操作している手で、操向レバー22を操作しながら、旋回比変更トリガー28を操作することができる。
  また、現在の旋回比がメータパネル151の表示器152に表示されるので、作業者が表示器152を見て現在の旋回比を把握することができる。
  なお、旋回比変更トリガー28が前側に1回操作される度に、目標旋回比が現在の値からその値に所定値-αを加えた値に変更され、旋回比変更トリガー28が後側に1回操作される度に、目標旋回比が現在の値からその値に所定値+αを加えた値に変更されるとしたが、旋回比変更トリガー28の前側の1回の操作と後側の1回の操作とで目標旋回比の変更量が異なっていてもよい。
<変形例>
  以上、本発明の一実施形態について説明したが、本発明は、他の形態で実施することも可能である。
  たとえば、旋回比を調整するために操作される調整操作部材として、旋回比変更トリガー28を例に挙げたが、調整操作部材は、図7に示されるように、ジョイスティック171であってもよい。ジョイスティック171は、操向レバー22から左側に突出し、少なくとも前後に操作可能に構成されている。この場合、たとえば、ジョイスティック171が後側に1回操作される度に、目標旋回比が現在の値からその値に所定値-αを加えた値に変更され、ジョイスティック171が前側に1回操作される度に、目標旋回比が現在の値からその値に所定値+αを加えた値に変更される。
  また、調整操作部材は、図8に示されるように、ダイヤル181であってもよい。ダイヤル181は、操向レバー22に回動操作可能に設けられて、操向レバー22の左側にその一部が突出している。この構成では、ダイヤル181が後側に回動操作されたときには、その回動操作量に比例して目標旋回比が下げられ、ダイヤル181が前側に回動操作されたときには、その回動操作量に比例して目標旋回比が上げられてもよい。
  さらには、調整操作部材は、主変速レバー21に設けられていてもよく、たとえば、図9および図10に示されるように、主変速レバー21に設けられた旋回比変更トリガー191であってもよい。旋回比変更トリガー191は、左右方向に延びる軸線を中心に中立位置から前側および後側に回動操作可能であり、中立位置に向けて常に付勢力が作用するモーメンタリ動作式に構成されている。また、旋回比変更トリガー191は、円板状に形成され、その一部が主変速レバー21から上側に突出している。そして、その突出した部分には、手指を引っ掛けることができる突起192が形成されている。
  この構成では、旋回比変更トリガー191が後側に1回操作される度に、目標旋回比が現在の値からその値に所定値-αを加えた値に変更され、旋回比変更トリガー191が後側に1回操作される度に、目標旋回比が現在の値からその値に所定値+αを加えた値に変更される。旋回比変更トリガー191が主変速レバー21に設けられているので、主変速レバー21を操作している手で、主変速レバー21を操作しながら、旋回比変更トリガー191を操作することができる。
  調整操作部材は、それ単独で操作パネル18などに設けられていてもよい。
  また、作業車両の一例として、コンバイン1を取り上げたが、本発明は、トラクタや田植機などであってもよい。
  その他、前述の構成には、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。
  1:コンバイン(作業車両)
  11:機体
  12:走行装置
  21:主変速レバー(変速操作部材)
  22:操向レバー(操向操作部材)
  28,191:旋回比変更トリガー(調整操作部材)
  31:エンジン
  33:左側HST(無段変速装置)
  34:右側HST(無段変速装置)
  41:油圧ポンプ(ポンプ)
  42:油圧モータ(モータ)
  142:操向/旋回ECU(制御装置)
  143:旋回比変更ECU
  152:表示器
  157:旋回モードスイッチ(選択操作部材)
  171:ジョイスティック(調整操作部材)
  181:ダイヤル(調整操作部材)

Claims (10)

  1.   エンジンと、
      機体を走行可能に支持する左右一対の走行装置と、
      前記走行装置のそれぞれに対応して設けられ、前記エンジンの動力で駆動されるポンプおよび前記ポンプが吐出する圧油によって駆動されるモータを備え、前記モータの動力を前記走行装置に伝達する無段変速装置と、
      前記機体の直進と旋回とを切り替えるために、直進位置と旋回位置との間で操作される操向操作部材と、
      前記機体の旋回時の旋回外側の前記走行装置の速度に対する旋回内側の前記走行装置の速度の比である旋回比を調整するために操作される調整操作部材と、
      旋回比の目標値である目標旋回比を設定して、前記目標旋回比に基づいて前記無段変速装置を制御する制御装置とを含み、
      前記制御装置は、前記操向操作部材が前記旋回位置に操作されたことに応じて、前記目標旋回比を一定値に設定し、前記目標旋回比が前記一定値に設定されている状態で前記調整操作部材が操作されたとき、前記目標旋回比を前記一定値から前記調整操作部材の操作に応じた値に変更する、作業車両。
  2.   前記制御装置は、前記機体の旋回の際に、旋回内側の前記走行装置の速度が旋回外側の前記走行装置の速度よりも低くなるように前記無段変速装置を制御する、請求項1に記載の作業車両。
  3.   前記制御装置は、前記調整操作部材の操作量が大きくなるにつれて前記目標旋回比を小さい値に変更する、請求項1または2に記載の作業車両。
  4.   前記制御装置は、前記目標旋回比が小さくなるにつれて前記走行装置の最高速度を小さい値に制限する、請求項3に記載の作業車両。
  5.   前記調整操作部材は、前記操向操作部材に設けられている、請求項1~4のいずれか一項に記載の作業車両。
  6.   前記機体の走行および停止を切り替えるために操作される変速操作部材をさらに含み、  前記調整操作部材は、前記変速操作部材に設けられている、請求項1~4のいずれか一項に記載の作業車両。
  7.   前記調整操作部材は、中立位置から一方側および他方側に操作可能に構成されたモーメンタリ動作式の操作部材であり、
      前記制御装置は、前記調整操作部材が中立位置から前記一方側への1回の操作の度に、前記目標旋回比を第1所定量下げ、前記中立位置から前記他方側への1回の操作の度に、前記目標旋回比を第2所定量上げる、請求項1~6のいずれか一項に記載の作業車両。
  8.   前記調整操作部材は、一方側および他方側に回動または直動可能に構成されており、
      前記制御装置は、前記調整操作部材の前記一方側への操作量に比例して前記目標旋回比を下げ、前記調整操作部材の前記他方側への操作量に比例して前記目標旋回比を上げる、請求項1~6のいずれか一項に記載の作業車両。
  9.   前記調整操作部材の操作による旋回比の調整の有効および無効を選択的に設定するために操作される選択操作部材をさらに含み、
      前記制御装置は、前記選択操作部材の操作により前記調整操作部材の操作による旋回比の調整が有効に設定されている場合に、前記目標旋回比を前記一定値から前記調整操作部材の操作に応じた値に変更する、請求項1~8のいずれか一項に記載の作業車両。
  10.   画像を表示する表示器をさらに含み、
      前記制御装置は、前記機体の旋回時に現在の旋回比または旋回半径を前記表示器に表示させる、請求項1~9のいずれか一項に記載の作業車両。
PCT/JP2018/045506 2017-12-15 2018-12-11 作業車両 WO2019117144A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-240671 2017-12-15
JP2017240671A JP6868543B2 (ja) 2017-12-15 2017-12-15 作業車両

Publications (1)

Publication Number Publication Date
WO2019117144A1 true WO2019117144A1 (ja) 2019-06-20

Family

ID=66820887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045506 WO2019117144A1 (ja) 2017-12-15 2018-12-11 作業車両

Country Status (2)

Country Link
JP (1) JP6868543B2 (ja)
WO (1) WO2019117144A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021066059A1 (ja) 2019-10-01 2021-04-08 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6146765A (ja) * 1984-08-13 1986-03-07 Nissan Motor Co Ltd 4輪操舵車の操舵制御装置
JP2005058158A (ja) * 2003-08-19 2005-03-10 Mitsubishi Agricult Mach Co Ltd コンバインの制御装置
JP2007297050A (ja) * 2007-07-03 2007-11-15 Kubota Corp 作業機の操向構造
JP2008062866A (ja) * 2006-09-11 2008-03-21 Yanmar Co Ltd 作業車両
JP2008141999A (ja) * 2006-12-08 2008-06-26 Yanmar Co Ltd 作業車両
JP2009095288A (ja) * 2007-10-17 2009-05-07 Kubota Corp コンバイン
JP2012143178A (ja) * 2011-01-11 2012-08-02 Yanmar Co Ltd コンバイン

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05276579A (ja) * 1992-03-26 1993-10-22 Alpine Electron Inc 車載機器用リモートコントロール装置
JP4068393B2 (ja) * 2002-05-15 2008-03-26 株式会社東海理化電機製作所 シフト装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6146765A (ja) * 1984-08-13 1986-03-07 Nissan Motor Co Ltd 4輪操舵車の操舵制御装置
JP2005058158A (ja) * 2003-08-19 2005-03-10 Mitsubishi Agricult Mach Co Ltd コンバインの制御装置
JP2008062866A (ja) * 2006-09-11 2008-03-21 Yanmar Co Ltd 作業車両
JP2008141999A (ja) * 2006-12-08 2008-06-26 Yanmar Co Ltd 作業車両
JP2007297050A (ja) * 2007-07-03 2007-11-15 Kubota Corp 作業機の操向構造
JP2009095288A (ja) * 2007-10-17 2009-05-07 Kubota Corp コンバイン
JP2012143178A (ja) * 2011-01-11 2012-08-02 Yanmar Co Ltd コンバイン

Also Published As

Publication number Publication date
JP2019107932A (ja) 2019-07-04
JP6868543B2 (ja) 2021-05-12

Similar Documents

Publication Publication Date Title
WO2019117144A1 (ja) 作業車両
JP6514958B2 (ja) 作業車両
JP5035328B2 (ja) コンバイン
JP3868452B2 (ja) コンバインの操向装置
JP6910970B2 (ja) 作業車両用の制御装置
JP2011110020A5 (ja)
JP5564016B2 (ja) 農作業機の走行伝動装置
JP5564017B2 (ja) 農作業機の走行伝動装置
JP4485623B2 (ja) 移動農機
KR101995149B1 (ko) 작업 차량
JP4002777B2 (ja) 作業車
JP5313958B2 (ja) 収穫機の走行伝動装置
JP5313957B2 (ja) 収穫機の走行伝動装置
JP2001121982A (ja) クローラ走行車
JP7335207B2 (ja) 制御装置
JP2009089651A (ja) 乗用型収穫作業機
JP2007062543A (ja) 作業機の走行駆動装置
JP6910989B2 (ja) 作業車両
JPH1132512A (ja) コンバイン
JP2008220336A (ja) コンバイン
JP2002144903A (ja) トラクタ
JP2001122134A (ja) 車両のステアリング構造
JP4529985B2 (ja) コンバイン
JP2009085308A (ja) 作業車両の走行変速装置
JP2007062544A (ja) 作業機の走行駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18888605

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18888605

Country of ref document: EP

Kind code of ref document: A1