WO2019117118A1 - エチレン-ビニルアルコール共重合体水溶液 - Google Patents

エチレン-ビニルアルコール共重合体水溶液 Download PDF

Info

Publication number
WO2019117118A1
WO2019117118A1 PCT/JP2018/045420 JP2018045420W WO2019117118A1 WO 2019117118 A1 WO2019117118 A1 WO 2019117118A1 JP 2018045420 W JP2018045420 W JP 2018045420W WO 2019117118 A1 WO2019117118 A1 WO 2019117118A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethylene
mass
aqueous solution
vinyl alcohol
alcohol copolymer
Prior art date
Application number
PCT/JP2018/045420
Other languages
English (en)
French (fr)
Inventor
圭介 森川
達也 谷田
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2019559385A priority Critical patent/JP6715395B2/ja
Priority to CA3085148A priority patent/CA3085148A1/en
Priority to EP18889086.7A priority patent/EP3725845A1/en
Priority to US16/771,399 priority patent/US11414563B2/en
Priority to CN201880089188.8A priority patent/CN111684009B/zh
Priority to KR1020207019950A priority patent/KR102641576B1/ko
Publication of WO2019117118A1 publication Critical patent/WO2019117118A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/05Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from solid polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
    • C08F216/04Acyclic compounds
    • C08F216/06Polyvinyl alcohol ; Vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0853Vinylacetate
    • C08L23/0861Saponified vinylacetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/02Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D123/04Homopolymers or copolymers of ethene
    • C09D123/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D129/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Coating compositions based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Coating compositions based on derivatives of such polymers
    • C09D129/02Homopolymers or copolymers of unsaturated alcohols
    • C09D129/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids

Definitions

  • the present invention relates to an ethylene-vinyl alcohol copolymer excellent in water solubility, an aqueous solution containing a specific alcohol and water.
  • the present invention also relates to a coated article using an aqueous solution containing the ethylene-vinyl alcohol copolymer.
  • a vinyl alcohol polymer represented by polyvinyl alcohol (hereinafter sometimes abbreviated as "PVA") is known as a water-soluble synthetic polymer, a raw material of vinylon which is a synthetic fiber, a paper processing agent It is widely used in applications such as fiber processing agents, adhesives, stabilizers for emulsion polymerization and suspension polymerization, binders of inorganic substances, films and the like.
  • PVA is used as a barrier film, a barrier paper, an oil resistant paper, a silicone retention agent for release paper, and the like because it has high film forming property and crystallinity.
  • a filler layer (barrier layer) containing PVA is generally used for the purpose of reducing the gaps between pulp fibers constituting the paper and improving the surface yield of silicone coated on the paper surface. It is used. Among them, partially saponified PVA is preferably used because of its excellent barrier properties.
  • partially saponified PVA is inferior in water resistance, and therefore, there is a problem that PVA is eluted and blocked due to humidification in the adhesion processing step or the like. Furthermore, there is also a problem that the water dispersible varnish can not be used in the post-processing step.
  • Patent Document 1 describes that barrier properties and water resistance can be compatible by using a mixture of ethylene-vinyl alcohol copolymer and carboxymethyl cellulose.
  • the ethylene-vinyl alcohol copolymer contains a hydrophobic ethylene unit, its solubility in water is lower than that of unmodified PVA, and it is necessary to dissolve it for a long time at high temperature when preparing an aqueous solution. And the cost increase at the time of dissolution can not be avoided.
  • the degree of saponification is lowered in order to avoid cost increase at the time of dissolution, the dissolution time is rather extended since the particles aggregate at the time of dissolution to form a continuous powder.
  • the present invention has been made based on the above-mentioned circumstances, and contains an ethylene-vinyl alcohol copolymer excellent in water solubility, a specific alcohol and water, and is fibrillated even when shear stress is applied.
  • An object of the present invention is to provide an aqueous solution in which the generation of precipitates is reduced.
  • Another object of the present invention is to provide a coated product obtained by coating the aqueous solution.
  • the above-mentioned subject is an aqueous solution containing ethylene-vinyl alcohol copolymer (A), alcohol having 1-4 carbon atoms (B) and water (C); ethylene-vinyl alcohol copolymer (A) is ethylene unit
  • the crystallization degree Cw (30 ° C) in water at 30 ° C and the crystallization degree Cw (70 ° C) in water at 70 ° C determined by pulse NMR are as follows: (I) is satisfied, and 0.1 to 100 parts by mass of ethylene-vinyl alcohol copolymer (A) is contained per 100 parts by mass of water (C), and alcohol (B) is contained per 100 parts by mass of water (C)
  • the present invention is solved by providing an aqueous solution containing 0.01 to 30 parts by mass of
  • the alcohol (B) is preferably a monohydric alcohol having 1 to 4 carbon atoms.
  • the viscosity-average polymerization degree of the ethylene-vinyl alcohol copolymer (A) is preferably 200 to 5,000. Furthermore, at this time, it is also preferable that the degree of saponification of the ethylene-vinyl alcohol copolymer (A) is 80 to 99.99 mol%.
  • a coated product obtained by applying the aqueous solution to the surface of the substrate is also a preferred embodiment of the present invention.
  • the aqueous solution of the present invention has a low level of seaming, high solubility of ethylene-vinyl alcohol copolymer, and reduced generation of fibrillar precipitates even when shear stress is applied. Moreover, by applying the aqueous solution to a substrate, the roughness of the coated surface is reduced, and a coated article having excellent oxygen barrier properties can be obtained.
  • the aqueous solution of the present invention is an aqueous solution containing ethylene-vinyl alcohol copolymer (A), alcohol having 1-4 carbon atoms (B) and water (C); ethylene-vinyl alcohol copolymer (A)
  • the following formula (I) is satisfied, and 0.1 to 100 parts by mass of ethylene-vinyl alcohol copolymer (A) is contained with respect to 100 parts by mass of water (C), and alcohol (per 100 parts by mass of water (C) B) in an amount of 0.01 to 30 parts by mass.
  • the ethylene-vinyl alcohol copolymer (A) contained in the aqueous solution of the present invention has an ethylene unit content of 1 mol% or more and less than 20 mol%, and is 30 ° C. determined by pulse NMR (nuclear magnetic resonance absorption method)
  • the crystallization degree in water Cw at 30 ° C. and the crystallization degree in water at 70 ° C. Cw (70 ° C.) satisfy the above-mentioned formula (I). This point will be described below.
  • the magnetization intensity (y) at time (t) can be expressed by the following formula using relaxation strength (A) in the excited state, relaxation time (Tau) and constant (y 0 , W) It is shown in (II).
  • the relaxation curve shows the sum of the relaxation component derived from the crystal part having a short relaxation time and the relaxation component derived from the amorphous part having a long relaxation time.
  • the relaxation strength derived from the crystal part is A 1
  • the relaxation strength derived from the amorphous part is A 2
  • the relaxation time derived from the crystal part is Tau 1
  • the relaxation time derived from the amorphous part is Tau 2
  • time (t) The magnetization intensity (y) of the whole sample at is expressed by the following formula (III) using a constant (y 0 ).
  • a 1 / (A 1 + A 2 ) derived from this formula is the degree of crystallinity obtained by pulse NMR.
  • a pulse sequence called Solid-echo method was used for measurement using pulsed NMR.
  • the ratio of the crystalline component to the amorphous component in the polymer sample can be obtained from the relaxation curve measured by pulse NMR.
  • the ethylene-vinyl alcohol copolymer is a hydrophilic polymer having a large number of hydroxyl groups, and swells in water to lower the degree of crystallinity, but the degree is greatly affected by the water temperature. The higher the water temperature, the greater the degree of swelling, and consequently the lower the degree of crystallinity.
  • the crystallization degree in water Cw (30 ° C.) (%) at 30 ° C. and the crystallization degree Cw (70 ° C.) (%) in water at 70 ° C. determined by pulse NMR were noted.
  • the ethylene-vinyl alcohol copolymer (A) of the present invention satisfies the following formula (I).
  • [(100-Cw (30 ° C.)) / 100] represents the ratio of amorphous parts at 30 ° C., and takes a value of 0 to 1.
  • [Cw (30 ° C.)-Cw (70 ° C.)] is a difference between the degree of crystallization in water at 30 ° C. and 70 ° C., that is, an index of the increase in the amorphous part with the rise in water temperature.
  • the formula (I) obtained by multiplying these is an index of the solubility of the ethylene-vinyl alcohol copolymer (A), and the value of the formula (I) has a large absolute value [Cw (30 ° C.) ⁇ Cw (70 ° C.) has a greater effect.
  • an ethylene-vinyl alcohol copolymer having a content of ethylene units of 1% by mole or more and less than 20% by mole dissolves in water because the content of ethylene units is small.
  • Such a water-soluble ethylene-vinyl alcohol copolymer generally has a large value of [(100-Cw (30 ° C.)) / 100] and a value of [Cw (30 ° C.)-Cw (70 ° C.)]
  • the value of formula (I) is small as a result of the small value of [(100-Cw (30.degree. C.)) / 100]
  • [Cw (30.degree. C.)-Cw (70.degree. C.)] As a result, the value of formula (I) may become large.
  • the lower limit of Formula (I) is preferably 5 or more, and more preferably 6 or more.
  • the upper limit of Formula (I) is preferably 21 or less, more preferably 20 or less.
  • the ethylene-vinyl alcohol copolymer (A) satisfying the above formula (I) is a process for producing a special ethylene-vinyl alcohol copolymer, including a polymerization step, a saponification step, a grinding step, a liquid removal step and a drying step. Can be obtained by The manufacturing method will be described in detail later. In the present invention, by adopting such a special production method, it is possible to obtain for the first time an ethylene-vinyl alcohol copolymer (A) which satisfies the above formula (I) and is excellent in water solubility. The The ethylene-vinyl alcohol copolymer (A) will be described in more detail below.
  • the ethylene-vinyl alcohol copolymer (A) is obtained by including the step of saponifying the ethylene-vinyl ester copolymer obtained by copolymerizing ethylene and a vinyl ester.
  • the vinyl ester to be used include vinyl formate, vinyl acetate, vinyl propionate, vinyl valerate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl pivalate and vinyl versatate. Among them, vinyl acetate is preferred.
  • the ethylene unit content of the ethylene-vinyl alcohol copolymer (A) is 1% by mole or more and less than 20% by mole. When the content of ethylene units is less than 1 mol%, the oxygen barrier property under high humidity of the resulting coated product is reduced.
  • the ethylene unit content is preferably 1.5 mol% or more, more preferably 2 mol% or more. On the other hand, if the ethylene unit content is 20 mol% or more, the ethylene-vinyl alcohol copolymer (A) becomes insoluble in water, making it difficult to prepare an aqueous solution.
  • the ethylene unit content is preferably 15 mol% or less, more preferably 10 mol% or less, and still more preferably 8.5 mol% or less.
  • the ethylene unit content can be determined, for example, from the 1 H-NMR of an ethylene-vinyl ester copolymer which is a precursor or reacetylate of ethylene-vinyl alcohol copolymer (A). After reprecipitation purification of the ethylene-vinyl ester copolymer of the sample using a mixed solution of n-hexane and acetone three or more times, it is dried under reduced pressure at 80 ° C. for 3 days, and ethylene-vinyl ester co-weight for analysis Make a union. The ethylene-vinyl ester copolymer for analysis is dissolved in DMSO-d 6 and measured at 80 ° C. by 1 H-NMR (500 MHz).
  • the ethylene unit content is determined using the peak (4.7-5.2 ppm) derived from the main chain methine of the vinyl ester and the peak (0.8-1.6 ppm) derived from the main chain methylene of the ethylene and vinyl ester. It can be calculated.
  • the degree of saponification of the ethylene-vinyl alcohol copolymer (A) is not particularly limited, but is preferably 80 to 99.99 mol%. If the degree of saponification is less than 80 mol%, the solubility of the ethylene-vinyl alcohol copolymer (A) in the resulting aqueous solution will be insufficient.
  • the degree of saponification is more preferably 82 mol% or more, still more preferably 85 mol% or more. On the other hand, when the degree of saponification exceeds 99.99 mol%, it tends to be difficult to stably produce the ethylene-vinyl alcohol copolymer (A).
  • the degree of saponification is more preferably 99.5 mol% or less, still more preferably 99 mol% or less, and particularly preferably 98.5 mol% or less.
  • the degree of saponification of the ethylene-vinyl alcohol copolymer (A) can be measured according to JIS K 6726 (1994).
  • the viscosity average degree of polymerization of the ethylene-vinyl alcohol copolymer (A) is not particularly limited, but is preferably 200 to 5,000. When the viscosity average degree of polymerization is less than 200, the strength of the coated surface of the resulting coated product is reduced.
  • the viscosity average degree of polymerization is more preferably 250 or more, still more preferably 300 or more, and particularly preferably 400 or more. On the other hand, when the viscosity average degree of polymerization exceeds 5,000, the viscosity of the ethylene-vinyl alcohol copolymer aqueous solution tends to be too high, and the handling tends to be difficult.
  • the viscosity average degree of polymerization is more preferably 4500 or less, still more preferably 4000 or less, and particularly preferably 3500 or less.
  • the ethylene-vinyl alcohol copolymer (A) may contain vinyl alcohol units, ethylene units and monomer units other than vinyl ester units, as long as the effects of the present invention are not impaired.
  • monomers such as propylene, n-butene and isobutylene; acrylic acid and salts thereof; acrylic acid esters; methacrylic acid and salts thereof; methacrylic esters; acrylic amides; N-methyl acrylamide, N Acrylamide derivatives such as N-ethyl acrylamide, N, N-dimethyl acrylamide, diacetone acrylamide, acrylamidopropane sulfonic acid and salts thereof, acrylamidopropyldimethylamine and salts thereof or quaternary salts thereof, N-methylol acrylamide and derivatives thereof; methacrylamide N-methyl methacrylamide, N-ethyl methacrylamide, methacrylamidopropane
  • the content of these monomers varies depending on the purpose and application to be used, but is preferably 10 mol% or less, more preferably less than 5 mol%, and still more preferably less than 1 mol%. It is particularly preferred that it is less than 0.5 mol%.
  • a preferred process for producing ethylene-vinyl alcohol copolymer (A) comprises the step of copolymerizing ethylene and a vinyl ester to obtain an ethylene-vinyl ester copolymer; saponification of the ethylene-vinyl ester copolymer Saponification step of obtaining a solid block containing ethylene-vinyl alcohol copolymer and a solvent; grinding step of grinding the solid block to obtain wet particles; mechanically dewatering a part of the solvent from the wet particles
  • a method for producing an ethylene-vinyl alcohol copolymer comprising the steps of: draining to obtain drained particles; and drying to remove dried particles from the drained particles by heating the remainder of the solvent.
  • the liquid removal particles contain 40 to 65% by mass of the solvent, and the content of particles passing through the sieve with an opening of 5.6 mm in the liquid removal particles is 80% by mass or more, and the opening 1
  • Examples of the copolymerization method of ethylene and vinyl ester include known methods such as bulk polymerization method, solution polymerization method, suspension polymerization method and emulsion polymerization method. Among them, bulk polymerization and solution polymerization which can be carried out in the absence of a solvent or in an organic solvent such as alcohol can usually be employed, but solution polymerization is preferred. As said alcohol, lower alcohols, such as methanol and ethanol, are mentioned, Methanol is especially preferable. In the polymerization operation, any polymerization method of batch method, semi-batch method and continuous method can be adopted. As a polymerization reactor, a batch reactor, a tubular reactor, a continuous tank reactor, etc. may be mentioned.
  • 2,2'-azobis isobutyronitrile
  • 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile)
  • 2,2'-azobis Examples include known initiators such as azo initiators such as (2,4-dimethyl-valeronitrile), benzoyl peroxide and n-propyl peroxydicarbonate, and peroxide initiators.
  • the polymerization temperature there is no particular limitation on the polymerization temperature, and about 0 to 180 ° C. is preferable, room temperature to 160 ° C. is more preferable, and 30 to 150 ° C. is more preferable.
  • any one of reduced pressure boiling polymerization and normal pressure non-boiling polymerization can be selected.
  • any of pressure non-boiling polymerization and pressure boiling polymerization can be selected.
  • the ethylene pressure in the polymerization reactor at the time of polymerization is preferably 0.01 to 0.9 MPa, more preferably 0.05 to 0.7 MPa, and still more preferably 0.1 to 0.65 MPa.
  • the polymerization rate at the outlet of the polymerization reactor is not particularly limited, but is preferably 10 to 90%, more preferably 15 to 85%.
  • a chain transfer agent may be coexistent for the purpose of adjusting the viscosity average polymerization degree of the obtained ethylene-vinyl ester copolymer and the like.
  • chain transfer agents include aldehydes such as acetaldehyde, propionaldehyde, butyraldehyde and benzaldehyde; ketones such as acetone, methyl ethyl ketone, hexanone and cyclohexanone; mercaptans such as 2-hydroxyethanethiol; thiocarboxylic acids such as thioacetic acid; trichloroethylene and perchloro Halogenated hydrocarbons such as ethylene and the like can be mentioned.
  • aldehydes and ketones are preferably used.
  • the amount of chain transfer agent added is determined according to the chain transfer constant of the chain transfer agent to be added and the viscosity average degree of polymerization of the target ethylene-vinyl ester copolymer, but generally 100 parts by mass of vinyl ester used To 0.1 parts by mass to 10 parts by mass.
  • the ethylene-vinyl ester copolymer obtained in the polymerization step is saponified by alcoholysis or hydrolysis in an organic solvent in the presence of a catalyst.
  • a catalyst used in the saponification step include basic catalysts such as sodium hydroxide, potassium hydroxide and sodium methoxide; and acidic catalysts such as sulfuric acid, hydrochloric acid and p-toluenesulfonic acid.
  • the organic solvent used in the saponification step is not particularly limited, and examples thereof include alcohols such as methanol and ethanol; esters such as methyl acetate and ethyl acetate; ketones such as acetone and methyl ethyl ketone; aromatic hydrocarbons such as benzene and toluene. These can be used alone or in combination of two or more. Among them, it is convenient and preferable to carry out the saponification reaction in the presence of sodium hydroxide which is a basic catalyst, using methanol or a mixed solution of methanol and methyl acetate as a solvent.
  • the amount of the saponification catalyst used is preferably 0.001 to 0.5 in molar ratio to vinyl ester monomer unit in the ethylene-vinyl ester copolymer.
  • the molar ratio is more preferably 0.002 or more.
  • the molar ratio is more preferably 0.4 or less, and still more preferably 0.3 or less.
  • the preferred embodiment of the saponification step is as follows. First, a saponification catalyst such as sodium hydroxide is added to and mixed with the ethylene-vinyl ester copolymer solution obtained in the polymerization step.
  • the solvent at this time is preferably methanol. Although it is a homogeneous liquid at the beginning of mixing, when the saponification reaction proceeds and the vinyl ester units in the polymer are saponified and converted to vinyl alcohol units, the solubility in the solvent decreases and the polymer precipitates in solution. Do. At this time, the solution contains methyl acetate produced by alcoholysis with methanol. As the saponification reaction proceeds, the amount of polymer precipitation gradually increases to form a slurry and then loses fluidity. Therefore, in order to allow the saponification reaction to proceed uniformly, it is important to mix sufficiently before losing fluidity.
  • a saponification catalyst such as sodium hydroxide
  • the method of mixing the ethylene-vinyl ester copolymer solution and the saponification catalyst is not particularly limited, and various methods such as a static mixer, a kneader, and a stirring blade can be adopted, but using the static mixer continuously mixes uniformly. Possible and preferred.
  • a saponification catalyst is added to the ethylene-vinyl ester copolymer solution after the polymerization step in a pipe connected to the polymerization tank, and then passed through a static mixer for mixing to obtain a paste.
  • the temperature of the reaction solution in the static mixer is usually 20-80 ° C.
  • the method for promoting the saponification reaction of the ethylene-vinyl ester copolymer in the paste passed through the static mixer is not particularly limited, but the paste is placed on a moving belt to keep the belt at a constant temperature. It is preferable to allow the saponification reaction to proceed while moving in a stacked tank.
  • the paste on the belt loses its fluidity and becomes solid, and the saponification reaction proceeds in the solid state.
  • the saponification reaction can be allowed to proceed continuously in the solid state, and a solid block comprising an ethylene-vinyl alcohol copolymer and a solvent can be obtained.
  • the saponification temperature is preferably 20 to 60.degree. If the saponification temperature is too low, the reaction rate is reduced.
  • the saponification temperature is more preferably 25 ° C. or more, still more preferably 30 ° C. or more.
  • the saponification temperature is more preferably 55 ° C. or less, still more preferably 50 ° C. or less.
  • the saponification time is preferably 5 minutes or more and 2 hours or less.
  • the saponification time is more preferably 8 minutes or more, further preferably 10 minutes or more. Further, the saponification time is more preferably 1 hour or less, and further preferably 45 minutes or less.
  • crushed particles containing a solvent By grinding the solid block obtained in the saponification step, wet particles containing a solvent are obtained.
  • the crusher used at this time is not particularly limited as long as the rotation speed of the crusher can be adjusted and the particle size distribution described later can be obtained, and known crushers and crushers can be used.
  • cutter-type crushers such as cutter mills, guillotine-type cutters, reciprocating cutter-type, uniaxial, biaxial, and triaxial shear crushers are preferable.
  • the Rockwell hardness (HRC) of the crushing blade that contacts the solid block during crushing is preferably 40-70. The hardness is more preferably 45 or more.
  • the hardness is more preferably 65 or less.
  • the number of revolutions of the crushing blade is preferably 200 to 550 rpm.
  • the number of revolutions is more preferably 225 rpm or more, further preferably 250 rpm or more.
  • the rotation speed is more preferably 500 rpm or less, and still more preferably 450 rpm or less.
  • a grinder equipped with a crushing blade having a Rockwell hardness of less than 40 and operated at a rotational speed exceeding 550 rpm has generally been used. Since the Rockwell hardness of the crushing blade to be used is low, the abrasion of the crushing blade tends to progress, and the crushing unevenness due to cutting with the worn crushing blade tends to occur. In addition, when the solid block is crushed at a high rotation speed, the solid block vibrates up and down largely at the crusher insertion port due to the impact of the crushing, and breakage unevenness occurs at the time of crushing. Under such circumstances, conventionally, it has been difficult to stably obtain particles having a specific particle size distribution described later.
  • washing step may be added to wash the wet particles for the purpose of removing impurities such as sodium acetate.
  • the washing solution include lower alcohols such as methanol and ethanol, lower fatty acid esters such as methyl acetate, and mixtures thereof.
  • the conditions of the washing step are not particularly limited, but it is preferable to wash for about 30 minutes to 10 hours at a temperature of 20 ° C. to the boiling point of the washing solution.
  • liquid drained particles are obtained by mechanically draining a part of the solvent from the wet particles.
  • the dewatering machine used at this time is preferably a centrifugal dewatering machine.
  • the centrifugal dewatering machine one capable of continuous centrifugal dewatering is preferable.
  • an automatic discharge type centrifugal dewatering machine, screw discharge type centrifugal dewatering machine, vibration discharge type centrifugal dewatering machine, push plate type centrifugal dewatering A liquid machine etc. are mentioned.
  • a squeeze drainer has been used to drain the crushed particles.
  • the drained particles obtained in this way contain 40 to 65% by weight of solvent.
  • the content of the solvent is less than 40% by mass, the particles which are too dry are mixed, and the ethylene-vinyl alcohol copolymer which is difficult to dissolve after the drying step is mixed, and the above formula (I) is satisfied.
  • Ethylene-vinyl alcohol copolymer (A) can not be obtained.
  • the content of the solvent is preferably 42% by mass or more, more preferably 45% by mass or more.
  • the content of the solvent exceeds 65% by mass, a difference in heat history occurs between the surface and the inside of the particles, and an ethylene-vinyl alcohol copolymer (A) satisfying the above formula (I) can not be obtained.
  • the content of the solvent is preferably 62% by mass or less, more preferably 59% by mass or less.
  • the solvent content is the average value of the drained particles.
  • the content of the solvent in the drained particles is preferably 3% by mass or more lower than the content of the solvent in the wet particles, more preferably 5% by mass or lower, and still more preferably 10% by mass or lower.
  • the content of particles passing through the sieve with an aperture of 5.6 mm in the liquid drainage particles is 80% by mass or more, and the content of particles passing through the sieve with an aperture of 1.0 mm is less than 2% by mass It is important to be. That is, it is important not to contain a lot of coarse particles and also not to contain a lot of fine particles.
  • the mesh size of the sieve conforms to the nominal mesh size of JIS Z 8801-1 (2006).
  • the content of particles passing through the sieve with an aperture of 5.6 mm in the drained particles is 80% by mass or more.
  • high temperature or long time drying is required to sufficiently dry to the center of the particles, and energy required for drying increases.
  • crystallization of smaller particles proceeds too much, and ethylene-vinyl alcohol copolymer particles that are difficult to dissolve after the drying step are mixed.
  • heat transfer unevenness occurs in the dryer. Under the circumstances as described above, the ethylene-vinyl alcohol copolymer (A) satisfying the above formula (I) can not be obtained.
  • the content of particles passing through a sieve with an opening of 5.6 mm is preferably 82% by mass or more, and more preferably 85% by mass or more.
  • the content of particles passing through the sieve with an aperture of 5.6 mm is preferably 99% by mass or less, and more preferably 98% by mass or less.
  • the content of particles passing through the 1.0 mm sieve in the liquid drainage particles is less than 2% by mass.
  • drying is performed thereafter, whereby the crystallization of the fine particles proceeds too much, and a large amount of ethylene-vinyl alcohol copolymer particles which are difficult to dissolve after the drying step are mixed.
  • the fine particles stay at the bottom of the drier and receive excessive heat to increase the degree of crystallinity too much, and ethylene-vinyl alcohol copolymer particles having reduced solubility are also mixed. Under these circumstances, the ethylene-vinyl alcohol copolymer (A) satisfying the above formula (I) can not be obtained.
  • the content of particles passing through a 1.0 mm mesh sieve is preferably 1.9% by mass or less, more preferably 1.8% by mass or less.
  • the content of particles passing through a sieve with a 1.0 mm opening is preferably 0.05% by mass or more, and more preferably 0.1% by mass or more.
  • An ethylene-vinyl alcohol copolymer can be obtained by subjecting the drained particles to a drying step after the draining step.
  • a drying step After the draining step.
  • hot air drying using a cylindrical dryer is preferable, and the temperature of particles at the time of drying is preferably 80 to 120.degree. If the temperature is too low, the production efficiency is reduced.
  • the temperature is more preferably 90 ° C. or more.
  • grain which crystallization advances too much will arise and solubility will deteriorate.
  • the temperature is more preferably 110 ° C. or less.
  • the drying time is preferably 2 to 10 hours, more preferably 3 to 8 hours.
  • An additional grinding step After the drying step, in order to further reduce the particle size, it is preferable to provide an additional grinding step. By this, particles having a high dissolution rate in water can be obtained.
  • the grinder used in the additional grinding step can be the same grinder as used in the grinding step.
  • the ethylene-vinyl alcohol copolymer (A) obtained in the additional pulverizing step is preferably one having a content of particles passing through a sieve with an opening of 2.5 mm is 80% by mass or more.
  • the content of particles passing through a sieve with an opening of 2.5 mm is more preferably 83% by mass or more, and still more preferably 85% by mass or more.
  • the content of particles passing through a sieve with an opening of 1.0 mm is preferably 80% by mass or more. This further improves the dissolution rate in water.
  • the content of particles passing through a sieve having an opening of 1.0 mm is more preferably 83% by mass or more, and still more preferably 85% by mass or more.
  • the ethylene-vinyl alcohol copolymer (A) obtained in the additional pulverizing step preferably has a content of particles passing through a sieve having an opening of 0.15 mm at 20% by mass or less.
  • the content of particles passing through a sieve with an opening of 0.15 mm exceeds 20% by mass, seam powder tends to be easily generated in an aqueous solution containing the ethylene-vinyl alcohol copolymer (A).
  • the content of particles passing through a sieve with an opening of 0.15 mm is more preferably 17% by mass or less, and still more preferably 15% by mass or less.
  • the alcohol (B) contained in the aqueous solution of the present invention is an alcohol having 1 to 4 carbon atoms, preferably a monohydric alcohol having 1 to 4 carbon atoms.
  • examples of such alcohol (B) include at least one selected from the group consisting of methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol and tert-butyl alcohol, Two or more kinds of alcohols having 1 to 4 carbon atoms may be used in combination.
  • methanol, ethanol, 1-propanol and 2-propanol are preferable from the viewpoint of easy removal of the solvent as the lower boiling point and better processability when coating the obtained aqueous solution. From the viewpoint of further reducing the generation of fibrillar precipitates, ethanol, 1-propanol and 2-propanol are more preferable.
  • the aqueous solution containing a specific amount of alcohol (B) having 1 to 4 carbon atoms is fibrillated even if the aqueous solution is subjected to shear stress Generation of precipitates can be reduced.
  • the presence of the alcohol (B) in the aqueous solution alleviates the hydrophobic interaction between the ethylene-vinyl alcohol copolymer (A) in the aqueous solution, so fibrillar precipitation is caused. It is presumed that the generation of objects is suppressed.
  • the aqueous solution of the present invention contains ethylene-vinyl alcohol copolymer (A) described above, alcohol (B) having 1 to 4 carbon atoms, and water, and ethylene-vinyl alcohol co-weight relative to 100 parts by weight of water (C) It contains 0.1 to 100 parts by mass of the combined (A), and 0.01 to 30 parts by mass of the alcohol (B) with respect to 100 parts by mass of water (C).
  • the content of the ethylene-vinyl alcohol copolymer (A) is 0.1 to 100 parts by mass with respect to 100 parts by mass of water (C).
  • the content of the ethylene-vinyl alcohol copolymer (A) is in the above range, so that the amount of powder is small and the generation of fibrillar precipitates is further reduced. It is possible to easily obtain an aqueous solution.
  • the content of the ethylene-vinyl alcohol copolymer (A) is preferably 0.5 parts by mass or more, and more preferably 1 part by mass or more.
  • the content of the ethylene-vinyl alcohol copolymer (A) is preferably 70 parts by mass or less, more preferably 50 parts by mass or less, and still more preferably 30 parts by mass or less.
  • the content of alcohol (B) is 0.01 to 30 parts by mass with respect to 100 parts by mass of water (C).
  • the content of the alcohol (B) is preferably 0.05 parts by mass or more, more preferably 0.1 parts by mass or more, still more preferably 0.5 parts by mass or more, and particularly preferably Is 1.0 parts by mass or more.
  • the content of the alcohol (B) is preferably 25 parts by mass or less, more preferably 20 parts by mass or less, and still more preferably 15 parts by mass or less.
  • the method for producing the aqueous solution of the present invention is not particularly limited, but a method in which ethylene-vinyl alcohol copolymer (A) is dissolved in alcohol (B) and water (C) is preferable.
  • the ethylene-vinyl alcohol copolymer (A) can be dissolved in a mixed solvent of alcohol (B) and water (C) to obtain an aqueous solution.
  • ethylene-vinyl alcohol copolymer (A) is dissolved or impregnated in either alcohol (B) or water (C) solvent, and then the other solvent is added and dissolved to obtain an aqueous solution. You can also get it.
  • aqueous solution of the present invention in addition to ethylene-vinyl alcohol copolymer (A), alcohol having 1-4 carbon atoms (B) and water, aliphatic alcohol having 5 or more carbon atoms, inorganic layered compound, crosslinking agent, Surfactants, leveling agents, mildewproofing agents, preservatives and the like may be added.
  • Examples of the inorganic layered compound include micas, talc, montmorillonite, kaolinite, vermiculite and the like. By adding the inorganic stratiform compound, the strength and the handleability of the resulting coated product are improved.
  • crosslinking agent an epoxy compound, an isocyanate compound, an aldehyde compound, a titanium type compound, a silica compound, an aluminum compound, a zirconium compound, a boron compound etc. are mentioned, for example. Among them, silica compounds such as colloidal silica and alkyl silicate are preferable. Water resistance can be imparted by adding a crosslinking agent.
  • a coated product obtained by applying an aqueous solution containing ethylene-vinyl alcohol copolymer (A), alcohol having 1 to 4 carbon atoms (B) and water to the surface of the substrate is also a preferred embodiment of the present invention.
  • Examples of the substrate on which the aqueous solution of the present invention is applied include films such as polyolefin films, polyester films and polyamide films, paper, nonwoven fabrics and the like.
  • the thickness of the substrate (final thickness in the case of drawing) is preferably 5 to 100 ⁇ m.
  • the temperature at the time of coating is preferably 20 to 80.degree.
  • the coating method is not particularly limited, but gravure roll coating method, reverse gravure coating method, reverse roll coating method, Mayer bar coating method, curtain coater method, size press method, blade coater method, knife coater method, slot die method, The shim sizer method, the cast method, etc. are preferably used.
  • a coating method the method of coating after extending and heat-processing a base film, and the method of extending
  • the coated material may be used as it is as a laminate, or may be peeled from the substrate and used as a single layer film.
  • the obtained single layer film may be laminated to another film and used.
  • the coating amount of the aqueous solution of the present invention is preferably 0.3 to 200 g / m 2 in dry mass, and more preferably 0.5 to 150 g / m 2 . If the coating amount is less than 0.3 g / m 2 , the air permeability of the resulting coated product tends to decrease. On the other hand, when the coating amount exceeds 200 g / m 2 , air bubbles tend to bite in the drying step and there is a tendency that a smooth coated surface can not be obtained.
  • various heating and drying methods such as hot air heating, gas heater heating, infrared heater heating and the like can be appropriately adopted.
  • An adhesive component layer can be inserted between the coating layer which consists of aqueous solution of this invention, and a base material layer in the viewpoint which improves adhesiveness.
  • the adhesive component can be applied to the surface of the substrate film or mixed in an aqueous solution before applying the aqueous solution.
  • oxygen permeability was measured using MOCON OX-TRAN 2/20 manufactured by Modern Control Co., Ltd. according to the method described in JIS K 7126 (isostatic pressure method) as a method for evaluating the oxygen barrier property of a coated material. .
  • the aqueous solution of the present invention containing ethylene-vinyl alcohol copolymer (A) can be used for various applications. Examples are given below, but the invention is not limited thereto.
  • Vinyl chloride dispersant Applications Dispersion stabilizers and dispersion aids for suspension polymerization of vinyl chloride and vinylidene chloride
  • Coating applications Size agents, fiber finishing agents, leather finishing agents, paints, antifogging agents, Metal corrosion inhibitors, brighteners for galvanizing, antistatic agents
  • dispersion stabilizers Dispersion stabilizer for organic and inorganic pigments such as paints and adhesives, dispersion stabilizer for emulsion polymerization of various vinyl compounds, post-emulsifier such as bitumen
  • Paper processing application Paper strength agent, oil and oil resistance imparting agent , Smoothness improver, Surface gloss improver
  • the present invention includes embodiments in which the above-described configurations are variously combined within the technical scope of the present invention as long as the effects of the present invention can be obtained.
  • the ethylene unit content is calculated using the peak (4.7 to 5.2 ppm) derived from the main chain methine of vinyl ester and the peak (0.8 to 1.6 ppm) derived from ethylene and the main chain methylene of vinyl ester. Calculated.
  • Viscosity average degree of polymerization of ethylene-vinyl alcohol copolymer (A) The viscosity average polymerization degree of the ethylene-vinyl alcohol copolymer (A) was determined by the method described in JIS K 6726 (1994).
  • Production Example 1 (Polymerization process) A continuous polymerization tank equipped with a reflux condenser, a raw material feed line, a reaction liquid outlet line, a thermometer, a nitrogen inlet, an ethylene inlet, and a stirring blade was used.
  • the ethylene pressure in the tank was adjusted to 0.61 MPa.
  • the polymerization liquid was continuously taken out from the continuous polymerization tank so that the liquid level in the polymerization tank became constant.
  • the polymerization rate at the outlet of the continuous polymerization tank was adjusted to 43%.
  • the residence time of the continuous polymerization tank was 5 hours.
  • the temperature at the outlet of the continuous polymerization tank was 60.degree.
  • the polymerization solution is recovered from the continuous polymerization tank, and the unreacted vinyl acetate monomer is removed by introducing methanol vapor into the recovered solution to obtain a methanol solution (concentration 40% by mass) of ethylene-vinyl ester copolymer (PVAc). Got).
  • the dried particles obtained in the drying step were additionally ground in a hammer mill and passed through a filter with an aperture of 1.4 mm to obtain an ethylene-vinyl alcohol copolymer 1.
  • the ethylene unit content in copolymer 1 was 6 mol%, the viscosity average degree of polymerization was 1,000, and the degree of saponification was 99.2 mol%.
  • the Cw (30 ° C.) of the copolymer 1 was 51.4%, the Cw (70 ° C.) was 16.8%, and the value of the formula (I) was 16.8.
  • the ratio which passed the filter of 2.5 mm of openings among the whole copolymer 1 is 99 mass%
  • the ratio which passed the filter of 1.0 mm of openings is 93 mass%
  • the ratio of passing through the 15 mm filter was 7% by mass.
  • the degree of polymerization of copolymer 1, the degree of saponification, the degree of crystallization in water at 30 ° C. and 70 ° C., and the value of formula (I) were evaluated according to the above-described method, and the results are summarized in Table 3.
  • Example 1 (Preparation of aqueous solution and evaluation of powdering properties)
  • aqueous solution prepared by aqueous solution and evaluation of powdering properties
  • 255 g of water as a solvent and 288 g of an aqueous solution of 33.2 g of 2-propanol were added, and the temperature was raised to 70 ° C.
  • 32 g of ethylene-vinyl alcohol copolymer 1 was added while stirring at 150 rpm.
  • the content of 2-propanol with respect to 100 parts by mass of water was 13.0 parts by mass
  • the content of copolymer 1 with respect to 100 parts by mass of water was 12.5 parts by mass.
  • the state of the copolymer 1 immediately after the addition was visually observed, and the particle size was evaluated by the following index, but no particle size was observed.
  • non-volatile content B (g) was determined by drying the ethylene-vinyl alcohol copolymer 1 in the same amount as the ethylene-vinyl alcohol copolymer added to the aqueous solution for 3 hours at 125 ° C.
  • solubility (mass%) A / Bx100 was computed. The calculated solubility was 56%, and the solubility was determined as B.
  • the aqueous solution prepared to confirm the presence or absence of fibrillar precipitates by the above-mentioned method is coated on a corona-treated polyethylene terephthalate film using a bar coater and then dried at 100 ° C. for 5 minutes to obtain ethylene-
  • the coated material in which the vinyl alcohol copolymer 1 was coated was produced.
  • the coating amount was 26 g / m 2 .
  • oxygen barrier property of coating The coated material obtained above was subjected to an oxygen transmission rate at 20 ° C. under 85% RH conditions using MOCON OX-TRAN 2/20 manufactured by Modern Control in accordance with the isobaric method described in JIS K 7126 (2006). It was measured.
  • oxygen permeability here is the value (cc ⁇ 20 ⁇ m / m 2 ⁇ day ⁇ atm) obtained by converting the oxygen permeability (measured in cc / m 2 ⁇ day ⁇ atm) at an arbitrary film thickness into a film thickness of 20 ⁇ m. ). The lower the oxygen permeability, the better the oxygen barrier property.
  • Examples 2 to 6, Comparative Examples 1 to 7 An aqueous solution was prepared in the same manner as in Example 1 except that the type and amount of ethylene-vinyl alcohol copolymer (A) and the type and amount of alcohol (B) used were changed as described in Table 4. .
  • the obtained aqueous solution was evaluated in the same manner as in Example 1 for the presence of powdery particles, solubility, and fibrillar precipitates.
  • the coated material was produced by the method similar to Example 1 using the obtained aqueous solution, and the external appearance and oxygen barrier property were evaluated.
  • fibrillar precipitates were present in the aqueous solution, and further, bumps were also observed in the coated product, so no evaluation of oxygen barrier properties was made.
  • Comparative Examples 5 and 7 the ethylene-vinyl alcohol copolymer (A) was not dissolved in the aqueous solution, and therefore the subsequent evaluation was stopped. The results are shown in Table 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Paints Or Removers (AREA)

Abstract

エチレン-ビニルアルコール共重合体(A)、炭素数1~4のアルコール(B)及び水(C)を含む水溶液であって;エチレン-ビニルアルコール共重合体(A)はエチレン単位の含有率が1モル%以上20モル%未満であり、パルスNMRで求められる30℃での水中結晶化度Cw(30℃)及び70℃での水中結晶化度Cw(70℃)が下記式(I)を満たし、水(C)100質量部に対してエチレン-ビニルアルコール共重合体(A)を0.1~100質量部含み、水(C)100質量部に対してアルコール(B)を0.01~30質量部含む水溶液とする。これにより、継粉が少なく、かつせん断応力がかかってもフィブリル状析出物の発生が低減される、エチレン-ビニルアルコール共重合体を含む水溶液が提供される。

Description

エチレン-ビニルアルコール共重合体水溶液
 本発明は、水への溶解性に優れるエチレン-ビニルアルコール共重合体、特定のアルコール及び水を含有する水溶液に関する。また本発明は、当該エチレン-ビニルアルコール共重合体を含有する水溶液を用いた塗工物に関する。
 ポリビニルアルコール(以下、「PVA」と略記することがある。)に代表されるビニルアルコール系重合体は、水溶性の合成高分子として知られており、合成繊維であるビニロンの原料、紙加工剤、繊維加工剤、接着剤、乳化重合及び懸濁重合用の安定剤、無機物のバインダー、フィルム等の用途に広く用いられている。特に、PVAは高い造膜性と結晶性を有することから、バリアフィルム、バリア紙、耐油紙、剥離紙のシリコーン歩留まり剤などに使用されている。
 特に剥離紙においては、紙を構成するパルプ繊維間の空隙を低減させ、紙表面に塗工するシリコーンの表面歩留まりを向上させる目的で、PVAを含有する目止め層(バリア層)が一般的に用いられている。中でも部分けん化PVAは、バリア性に優れるため好適に使用される。
 しかしながら、部分けん化PVAは、耐水性に劣るため、粘着加工工程等での加湿によりPVAが溶出し、ブロッキングするという問題があった。さらに、後加工工程で水分散性ワニスが使用できないという問題もあった。
 上記課題に対し、特許文献1では、エチレン-ビニルアルコール共重合体とカルボキシメチルセルロースの混合物を用いることで、バリア性及び耐水性を両立できることが記載されている。しかしながら、当該エチレン-ビニルアルコール共重合体は疎水性のエチレンユニットを含んでいるため、未変性のPVAよりも水への溶解性が低く、水溶液を調製する際に高温で長時間の溶解が必要となり、溶解時のコストアップが避けられない。溶解時のコストアップを回避するためにけん化度を下げた場合、溶解時に粒子同士が凝集して継粉となるためにむしろ溶解時間が延長されていた。
 また、当該エチレン-ビニルアルコール共重合体の水溶液は、水溶液の作製時及び塗工時には溶液にせん断応力がかかることに起因して、塗工液中にフィブリル状析出物の発生が多く見られ、工程通過性に改善の余地があった。
特開平11-21788号公報
 本発明は、上述のような事情に基づいてなされたものであり、水への溶解性に優れるエチレン-ビニルアルコール共重合体、特定のアルコール及び水を含有し、せん断応力がかかってもフィブリル状析出物の発生が低減された水溶液を提供することを目的とする。また、該水溶液を塗工してなる塗工物を提供することを目的とする。
 上記課題は、エチレン-ビニルアルコール共重合体(A)、炭素数1~4のアルコール(B)及び水(C)を含む水溶液であって;エチレン-ビニルアルコール共重合体(A)はエチレン単位の含有率が1モル%以上20モル%未満であり、パルスNMRで求められる30℃での水中結晶化度Cw(30℃)及び70℃での水中結晶化度Cw(70℃)が下記式(I)を満たし、水(C)100質量部に対してエチレン-ビニルアルコール共重合体(A)を0.1~100質量部含み、水(C)100質量部に対してアルコール(B)を0.01~30質量部含む水溶液を提供することによって解決される。
Figure JPOXMLDOC01-appb-M000002
 このとき、アルコール(B)が、炭素数1~4の1価アルコールであることが好ましい。
 またこのとき、エチレン-ビニルアルコール共重合体(A)の粘度平均重合度が200~5000であることが好ましい。さらにこのとき、エチレン-ビニルアルコール共重合体(A)のけん化度が80~99.99モル%であることも好ましい。
 当該水溶液を基材表面に塗工してなる塗工物も本発明の好適な実施態様である。
 本発明の水溶液は、継粉が少なく、エチレン-ビニルアルコール共重合体の溶解度が高く、かつせん断応力がかかってもフィブリル状析出物の発生が低減されている。また、当該水溶液を基材に塗布することによって、塗工面のブツが低減され、酸素バリア性に優れる塗工物が得られる。
 本発明の水溶液は、エチレン-ビニルアルコール共重合体(A)、炭素数1~4のアルコール(B)及び水(C)を含む水溶液であって;エチレン-ビニルアルコール共重合体(A)はエチレン単位の含有率が1モル%以上20モル%未満であり、パルスNMRで求められる30℃での水中結晶化度Cw(30℃)及び70℃での水中結晶化度Cw(70℃)が下記式(I)を満たし、水(C)100質量部に対してエチレン-ビニルアルコール共重合体(A)を0.1~100質量部含み、水(C)100質量部に対してアルコール(B)を0.01~30質量部含むことを特徴とする。
Figure JPOXMLDOC01-appb-M000003
[エチレン-ビニルアルコール共重合体(A)]
 本発明の水溶液に含まれるエチレン-ビニルアルコール共重合体(A)は、エチレン単位の含有率が1モル%以上20モル%未満であり、パルスNMR(核磁気共鳴吸収法)で求められる30℃での水中結晶化度Cw(30℃)と70℃での水中結晶化度Cw(70℃)が上記式(I)を満足することが大きな特徴である。この点について以下説明する。
(水中結晶化度)
 まず、パルスNMRによってポリマー試料を測定することの意味を説明する。パルスNMR装置には装置中の電磁石によって発生した静磁場が存在する。静磁場中では水素核の核スピンの向きが静磁場と同方向に配向する。ここにパルス磁場を与えると、水素核の核スピンは静磁場方向から90°倒れた励起状態になる。その後、励起された核スピンの向きが巨視的に元の静磁場方向に戻るまでの過程をT緩和、もしくは横緩和と呼び、この過程に要する時間を緩和時間(Tau)と呼ぶ。単一成分の緩和の場合、時間(t)における磁化強度(y)は、励起状態での緩和強度(A)、緩和時間(Tau)及び定数(y、W)を用いて、以下の式(II)で示される。なお、Wはワイブル係数であり、W=1の時に式(II)はExp型に、W=2の時はGauss型になる。一般的なポリマー試料の場合は1≦W≦2である。
Figure JPOXMLDOC01-appb-M000004
 T緩和の場合、水素核は他の水素核とエネルギー交換を行いながら減衰する。したがって、試料の分子運動性が高い場合、相互に近接するプロトンとの相互作用が小さいため系全体のエネルギー減衰が起こりにくく、緩和時間が長くなる。一方、分子運動性が低い場合には、緩和時間が短くなる。したがって、結晶性ポリマー材料であれば、結晶部では緩和時間が短く、非晶部では緩和時間が長くなる。実際の結晶性ポリマーでは、結晶部と非晶部が存在し、その緩和曲線では緩和時間の短い結晶部由来の緩和成分と緩和時間の長い非晶部由来の緩和成分の和が観測される。結晶部由来の緩和強度をA、非晶部由来の緩和強度をA、結晶部由来の緩和時間をTau、非晶部由来の緩和時間をTau、とすれば、時間(t)における試料全体の磁化強度(y)は定数(y)を用いて、以下の式(III)で示される。結晶成分はGauss型緩和を示すことが多いため、式(III)の結晶成分を表す第1項においてはW=2で固定した。この式から導かれるA/(A+A)が、パルスNMRによって得られる結晶化度である。本明細書において、パルスNMRを用いた測定にはSolid-echo法と呼ばれるパルスシークエンスを使用した。
Figure JPOXMLDOC01-appb-M000005
 以上のようにして、ポリマー試料中の結晶成分と非晶成分の割合を、パルスNMRで測定される緩和曲線から得ることができる。エチレン-ビニルアルコール共重合体は多数の水酸基を有する親水性ポリマーであり、水中では膨潤して結晶化度が低下するが、その程度は水温の影響を大きく受ける。水温が高くなれば膨潤度が大きくなり、その結果結晶化度は低下する。本発明では、パルスNMRで求められる30℃での水中結晶化度Cw(30℃)(%)及び70℃での水中結晶化度Cw(70℃)(%)に着目した。本発明のエチレン-ビニルアルコール共重合体(A)は下記式(I)を満足する。
Figure JPOXMLDOC01-appb-M000006
 上記式(I)において、[(100-Cw(30℃))/100]は、30℃での非晶部の比率を表しており、0~1の値をとる。また[Cw(30℃)-Cw(70℃)]は、30℃と70℃の水中結晶化度の差、すなわち水温上昇に伴う非晶部増加量の指標であり、0~100の値をとる。したがって、これらを掛け合わせた式(I)はエチレン-ビニルアルコール共重合体(A)の易溶解性の指標であり、式(I)の値には絶対値の大きい[Cw(30℃)-Cw(70℃)]の方が大きく影響する。通常エチレン単位の含有率が1モル%以上20モル%未満のエチレン-ビニルアルコール共重合体は、エチレン単位の含有率が少ないため水に溶解する。このような水溶性のエチレン-ビニルアルコール共重合体は、通常[(100-Cw(30℃))/100]の値が大きく、かつ[Cw(30℃)-Cw(70℃)]の値が小さいため、結果として式(I)の値が小さくなる場合と、[(100-Cw(30℃))/100]の値が小さく、かつ[Cw(30℃)-Cw(70℃)]の値が大きいため、結果として式(I)の値が大きくなる場合がある。すなわち、式(I)の値が4未満の場合は、低温で溶解しやすい一方で継粉となりやすく、さらに一度生成した継粉は水に溶解しにくいため、全溶するまでの溶解時間が長くなる。式(I)の下限は好適には5以上であり、より好適には6以上である。一方、式(I)の値が22を超える場合は、水への溶解性が低下し、全溶するまでの溶解時間が長くなる。式(I)の上限は好適には21以下であり、より好適には20以下である。上記式(I)が特定の範囲を満たすことで、溶解速度が速く、かつ溶解時に継粉になりにくいエチレン-ビニルアルコール共重合体(A)が得られる。
 測定に際しては、エチレン-ビニルアルコール共重合体(A)の試料を、各温度(30℃、70℃)のHO-d中に40分静置した後に、静置時の温度と同一の温度下でパルスNMR測定を行う。得られた緩和曲線の0~0.8msの範囲を、上記式(III)にて誤差最小二乗法を用いてフィッティングする。
 上記式(I)を満足するエチレン-ビニルアルコール共重合体(A)は、重合工程、けん化工程、粉砕工程、脱液工程及び乾燥工程を含む、特別なエチレン-ビニルアルコール共重合体の製造方法によって得ることができる。この製造方法については後に詳細に説明する。本発明においては、このような特別な製造方法を採用することによって、上記式(I)を満足し、水に対する溶解性に優れたエチレン-ビニルアルコール共重合体(A)を初めて得ることができた。以下、エチレン-ビニルアルコール共重合体(A)についてより詳細に説明する。
(ビニルエステル)
 エチレン-ビニルアルコール共重合体(A)は、エチレンとビニルエステルを共重合して得られたエチレン-ビニルエステル共重合体をけん化する工程を含んで得られる。用いられるビニルエステルとしては、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、ピバリン酸ビニル及びバーサティック酸ビニル等が挙げられ、中でも酢酸ビニルが好ましい。
(エチレン単位の含有率)
 エチレン-ビニルアルコール共重合体(A)のエチレン単位の含有率は1モル%以上20モル%未満である。エチレン単位の含有率が1モル%未満の場合は、得られる塗工物の高湿度下での酸素バリア性が低下する。エチレン単位の含有率は、好適には1.5モル%以上であり、より好適には2モル%以上である。一方、エチレン単位の含有率が20モル%以上の場合は、エチレン-ビニルアルコール共重合体(A)が水に不溶となり、水溶液の調製が困難となる。エチレン単位の含有率は、好適には15モル%以下であり、より好適には10モル%以下であり、さらに好適には8.5モル%以下である。
 エチレン単位の含有率は、例えばエチレン-ビニルアルコール共重合体(A)の前駆体又は再酢化物であるエチレン-ビニルエステル共重合体のH-NMRから求められる。試料のエチレン-ビニルエステル共重合体の再沈精製をn-ヘキサンとアセトンの混合溶液を用いて3回以上行った後、80℃で3日間減圧乾燥して分析用のエチレン-ビニルエステル共重合体を作製する。分析用のエチレン-ビニルエステル共重合体をDMSO-dに溶解し、80℃でH-NMR(500MHz)測定する。ビニルエステルの主鎖メチンに由来するピーク(4.7~5.2ppm)とエチレン及びビニルエステルの主鎖メチレンに由来するピーク(0.8~1.6ppm)を用いてエチレン単位の含有率を算出できる。
(けん化度)
 エチレン-ビニルアルコール共重合体(A)のけん化度に特に制限はないが、80~99.99モル%が好ましい。けん化度が80モル%未満の場合は、得られる水溶液におけるエチレン-ビニルアルコール共重合体(A)の溶解性が不十分となる。けん化度は、より好適には82モル%以上であり、さらに好適には85モル%以上である。一方、けん化度が99.99モル%を超える場合は、エチレン-ビニルアルコール共重合体(A)を安定に製造することが困難となる傾向がある。けん化度は、より好適には99.5モル%以下であり、さらに好適には99モル%以下であり、特に好適には98.5モル%以下である。エチレン-ビニルアルコール共重合体(A)のけん化度はJIS K6726(1994年)に準じて測定できる。
(粘度平均重合度)
 エチレン-ビニルアルコール共重合体(A)の粘度平均重合度に特に制限はないが、200~5000が好ましい。粘度平均重合度が200未満の場合は、得られる塗工物における塗工面の強度が低下する。粘度平均重合度は、より好適には250以上であり、さらに好適には300以上であり、特に好適には400以上である。一方、粘度平均重合度が5000を超える場合は、エチレン-ビニルアルコール共重合体水溶液の粘度が高くなりすぎ、取り扱いが困難となる傾向がある。粘度平均重合度は、より好適には4500以下であり、さらに好適には4000以下であり、特に好適には3500以下である。粘度平均重合度PはJIS K6726(1994年)に準じて測定できる。すなわち、エチレン-ビニルアルコール共重合体(A)をけん化度99.5モル%以上に再けん化し、精製した後、30℃の水中で測定した極限粘度[η](L/g)から次式により求めることができる。
 P=([η]×10000/8.29)(1/0.62)
(他の単量体単位)
 エチレン-ビニルアルコール共重合体(A)は、本発明の効果を損なわない範囲であれば、ビニルアルコール単位、エチレン単位及びビニルエステル単位以外の単量体単位を含有していてもよい。このような単量体としては、プロピレン、n-ブテン、イソブチレン等のα-オレフィン;アクリル酸及びその塩;アクリル酸エステル;メタクリル酸及びその塩;メタクリル酸エステル;アクリルアミド;N-メチルアクリルアミド、N-エチルアクリルアミド、N,N-ジメチルアクリルアミド、ジアセトンアクリルアミド、アクリルアミドプロパンスルホン酸及びその塩、アクリルアミドプロピルジメチルアミン及びその塩またはその4級塩、N-メチロールアクリルアミド及びその誘導体等のアクリルアミド誘導体;メタクリルアミド;N-メチルメタクリルアミド、N-エチルメタクリルアミド、メタクリルアミドプロパンスルホン酸及びその塩、メタクリルアミドプロピルジメチルアミン及びその塩またはその4級塩、N-メチロールメタクリルアミド及びその誘導体等のメタクリルアミド誘導体; メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテル、i-ブチルビニルエーテル、t-ブチルビニルエーテル、ドデシルビニルエーテル、ステアリルビニルエーテル等のビニルエーテル;アクリロニトリル、メタクリロニトリル等のニトリル;塩化ビニル、フッ化ビニル等のハロゲン化ビニル;塩化ビニリデン、フッ化ビニリデン等のハロゲン化ビニリデン;酢酸アリル、塩化アリル等のアリル化合物;マレイン酸、イタコン酸、フマル酸等の不飽和ジカルボン酸及びその塩またはそのエステル;ビニルトリメトキシシラン等のビニルシリル化合物;酢酸イソプロペニル等が挙げられる。これらの単量体の含有率は、使用される目的や用途等によって異なるが、好ましくは10モル%以下であり、より好ましくは5モル%未満であり、さらに好ましくは1モル%未満であり、0.5モル%未満であることが特に好ましい。
[エチレン-ビニルアルコール共重合体(A)の製造方法]
 エチレン-ビニルアルコール共重合体(A)の好適な製造方法は、エチレンとビニルエステルとを共重合してエチレン-ビニルエステル共重合体を得る重合工程;前記エチレン-ビニルエステル共重合体をけん化して、エチレン-ビニルアルコール共重合体と溶媒とを含む固体ブロックを得るけん化工程;前記固体ブロックを粉砕してウェット粒子を得る粉砕工程;前記ウェット粒子から前記溶媒の一部を機械的に脱液して脱液粒子を得る脱液工程;及び前記脱液粒子から前記溶媒の残部を加熱することにより除去して乾燥粒子を得る乾燥工程;を含むエチレン-ビニルアルコール共重合体の製造方法であって;
 前記脱液粒子が40~65質量%の前記溶媒を含有し、かつ
 前記脱液粒子中の、目開き5.6mmの篩を通過する粒子の含有率が80質量%以上であり、目開き1.0mmの篩を通過する粒子の含有率が2質量%未満である製造方法である。
 上記製造方法のように、けん化工程後の固体ブロックを粉砕してから脱液して得られる脱液粒子が、特定割合の溶媒を含み、かつ特定の粒度分布を有することが重要であり、これらによって、エチレン-ビニルアルコール共重合体(A)の水溶液を調製する際に、継粉にならず、溶解速度が大きくなる。以下、製造方法の各工程について詳細に説明する。
(重合工程)
 エチレンとビニルエステルとの共重合の方法としては、塊状重合法、溶液重合法、懸濁重合法、乳化重合法等の公知の方法が挙げられる。中でも、無溶媒又はアルコール等の有機溶媒中で重合する塊状重合法や溶液重合法を通常採用できるが、溶液重合法が好ましい。上記アルコールとしては、メタノール、エタノール等の低級アルコールが挙げられ、メタノールが特に好ましい。重合操作にあたっては、回分法、半回分法及び連続法のいずれの重合方式も採用できる。重合反応器としては、回分反応器、管型反応器、連続槽型反応器等が挙げられる。共重合に使用される開始剤としては、2,2'-アゾビス(イソブチロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2,4-ジメチル-バレロニトリル)、過酸化ベンゾイル、n-プロピルパーオキシジカーボネート等のアゾ系開始剤または過酸化物系開始剤等の公知の開始剤が挙げられる。
 重合温度に特に限定はなく、0~180℃程度が好ましく、室温~160℃がより好ましく、30~150℃がさらに好ましい。重合時に使用する溶媒の沸点以下で重合する際は減圧沸騰重合、常圧非沸騰重合のいずれも選択できる。また重合時に使用する溶媒の沸点以上で重合する際は加圧非沸騰重合、加圧沸騰重合のいずれも選択できる。
 重合時における重合反応器内のエチレン圧力は0.01~0.9MPaが好ましく、0.05~0.7MPaがより好ましく、0.1~0.65MPaがさらに好ましい。重合反応器出口での重合率は特に限定されないが、10~90%が好ましく、15~85%がより好ましい。
 重合工程において、得られるエチレン-ビニルエステル共重合体の粘度平均重合度を調節すること等を目的として、連鎖移動剤を共存させてもよい。連鎖移動剤としては、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド、ベンズアルデヒド等のアルデヒド;アセトン、メチルエチルケトン、ヘキサノン、シクロヘキサノン等のケトン;2-ヒドロキシエタンチオール等のメルカプタン;チオ酢酸等のチオカルボン酸;トリクロロエチレン、パークロロエチレン等のハロゲン化炭化水素等が挙げられる。中でも、アルデヒド及びケトンが好適に用いられる。連鎖移動剤の添加量は、添加する連鎖移動剤の連鎖移動定数及び目的とするエチレン-ビニルエステル共重合体の粘度平均重合度に応じて決定されるが、通常、使用するビニルエステル100質量部に対して0.1~10質量部である。
(けん化工程)
 重合工程で得られたエチレン-ビニルエステル共重合体を、有機溶媒中において、触媒の存在下で加アルコール分解又は加水分解反応によってけん化する。けん化工程で用いられる触媒としては、水酸化ナトリウム、水酸化カリウム、ナトリウムメトキシド等の塩基性触媒;または、硫酸、塩酸、p-トルエンスルホン酸等の酸性触媒が挙げられる。けん化工程で用いられる有機溶媒は特に限定されないが、メタノール、エタノール等のアルコール;酢酸メチル、酢酸エチル等のエステル;アセトン、メチルエチルケトン等のケトン;ベンゼン、トルエン等の芳香族炭化水素等が挙げられる。これらは1種を単独で、または2種以上を併用できる。中でも、メタノール、又はメタノールと酢酸メチルとの混合溶液を溶媒として用い、塩基性触媒である水酸化ナトリウムの存在下にけん化反応を行うのが簡便であり好ましい。けん化触媒の使用量は、エチレン-ビニルエステル共重合体中のビニルエステル単量体単位に対するモル比で0.001~0.5が好ましい。当該モル比は、より好適には0.002以上である。一方、当該モル比は、より好適には0.4以下であり、さらに好適には0.3以下である。
 けん化工程の好適な実施態様は以下の通りである。まず、重合工程において得られたエチレン-ビニルエステル共重合体溶液に対し、水酸化ナトリウムのようなけん化触媒を添加して混合する。この時の溶媒は、メタノールであることが好ましい。混合当初は均一な液体であるが、けん化反応が進行してポリマー中のビニルエステル単位がけん化されてビニルアルコール単位に変換されると、溶媒への溶解度が低下して、ポリマーが溶液中に析出する。このとき、溶液中にはメタノールによるアルコリシスで生成した酢酸メチルが含まれる。けん化反応が進行するに従って、ポリマーの析出量が徐々に増加してスラリー状になり、その後流動性を失う。したがって、けん化反応を均一に進行させるためには流動性を失うまでに十分に混合することが重要である。
 エチレン-ビニルエステル共重合体溶液とけん化触媒を混合する方法は特に限定されず、スタティックミキサー、ニーダー、撹拌翼など様々な方法が採用できるが、スタティックミキサーを用いることが、連続的に均一に混合できて好ましい。この場合、重合槽に接続された配管中で重合工程後のエチレン-ビニルエステル共重合体溶液にけん化触媒を添加し、その後スタティックミキサーを通過させて混合してペーストを得る。スタティックミキサー中の反応液の温度は通常20~80℃である。
 スタティックミキサーを通過したペースト中のエチレン-ビニルエステル共重合体のけん化反応を進行させる方法は特に限定されないが、移動するベルトの上に当該ペーストを載置して、当該ベルトを一定の温度に保たれた槽の中で移動させながらけん化反応を進行させる方法が好適である。ベルト上のペーストは流動性が失われて固体状態となり、さらに固体状態でけん化反応が進行する。この方法によって、固体状態で連続的にけん化反応を進行させることができ、エチレン-ビニルアルコール共重合体と溶媒とを含む固体ブロックが得られる。けん化温度は好適には20~60℃である。けん化温度が低すぎる場合には反応速度が低下する。けん化温度はより好適には25℃以上であり、さらに好適には30℃以上である。一方、けん化温度が高すぎると、多量の溶媒が蒸発して、得られる固体ブロック中の溶媒の含有率が低くなり、得られるエチレン-ビニルアルコール共重合体の溶解性が悪化してしまう。けん化温度は、より好適には55℃以下であり、さらに好適には50℃以下である。けん化時間は5分以上2時間以下であることが好ましい。けん化時間はより好適には8分以上であり、さらに好適には10分以上である。また、けん化時間はより好適には1時間以下であり、さらに好適には45分以下である。
(粉砕工程)
 けん化工程で得られた固体ブロックを粉砕することによって溶媒を含有するウェット粒子が得られる。このとき用いられる粉砕機は、粉砕機の回転数等を調整して、後述する粒度分布にできるものであれば特に限定されず、公知の粉砕機、破砕機を使用できる。けん化工程を経て得られるエチレン-ビニルアルコール共重合体の力学的特性上、カッターミル、ギロチン式切断機、往復カッター式、一軸、二軸、三軸せん断破砕機等の切断型破砕機が好ましい。粉砕の際に固体ブロックと接触する破砕刃のロックウェル硬度(HRC)は40~70であることが好ましい。当該硬度は45以上であることがより好ましい。一方、当該硬度は65以下であることがより好ましい。また、破砕刃の回転数は200~550rpmであることが好ましい。当該回転数は、225rpm以上であることがより好ましく、250rpm以上であることがさらに好ましい。一方、当該回転数は、500rpm以下であることがより好ましく、450rpm以下であることがさらに好ましい。
 従来、けん化工程で得られた固体ブロックの粉砕には、ロックウェル硬度40未満の破砕刃を備え、550rpmを超える回転数で運転される粉砕機が一般的に用いられていた。使用される破砕刃のロックウェル硬度が低いために、破砕刃の摩耗が進行しやすく、摩耗した破砕刃で切断したことによる粉砕ムラが生じやすかった。また、高回転数で固体ブロックを粉砕した場合は、粉砕の衝撃によって固体ブロックが破砕機投入口で大きく上下に振動してしまい、粉砕時の破断ムラが生じてしまっていた。このような事情により、従来は、後述する特定の粒度分布を有する粒子を安定的に得ることが困難であった。一方、破砕刃のロックウェル硬度が70を超える場合は、高硬度である一方で靱性が低下するために、粉砕時に破砕刃の微小チッピングが発生してしまい、それにより粉砕ムラを生じる傾向がある。また、粉砕機の回転数が200rpm未満の場合は、粉砕効率が低下する傾向がある。
(洗浄工程)
 粉砕工程の後、必要に応じて、酢酸ナトリウム等の不純物の除去を目的に洗浄工程を加えてウェット粒子を洗浄してもよい。洗浄液としては、メタノール、エタノール等の低級アルコール、酢酸メチル等の低級脂肪酸エステル、及びそれらの混合物などが挙げられる。洗浄工程の条件は特に限定されないが、20℃~洗浄液の沸点の温度で、30分~10時間程度洗浄することが好ましい。
(脱液工程)
 粉砕工程後、場合によっては洗浄工程後、前記ウェット粒子から前記溶媒の一部を機械的に脱液することによって脱液粒子が得られる。このとき用いられる脱液機は、遠心脱液機が好ましい。遠心脱液機としては、連続的な遠心脱液が可能なものが好ましく、例えば自動排出型遠心脱液機、スクリュー排出型遠心脱液機、振動排出型遠心脱液機、押し出し板型遠心脱液機等が挙げられる。従来、粉砕粒子の脱液には圧搾脱液機が使用されていた。しかしながら、得られる脱液粒子の溶媒含有率を上記特定の範囲にするためには圧搾強度を強める必要があり、その結果脱液粒子の変形や破壊が生じて粒度分布が後述する範囲を外れていた。すなわち、従来の方法では、後述する脱液粒子の粒度分布及び溶媒含液率の値を同時に達成することは困難であった。脱液工程においては、上述する遠心脱液機を用いることで、後述する粒度分布及び溶媒含有率を有する脱液粒子を容易に得ることができる。
 こうして得られる脱液粒子が、40~65質量%の溶媒を含有することが重要である。溶媒の含有率が40質量%未満の場合、乾燥しすぎた粒子が混じることになって、乾燥工程後に溶解しにくいエチレン-ビニルアルコール共重合体が混じることになり、上記式(I)を満足するエチレン-ビニルアルコール共重合体(A)が得られない。溶媒の含有率は、好適には42質量%以上であり、より好適には45質量%以上である。一方、溶媒の含有率が65質量%を超える場合、粒子の表面と内部で熱履歴に差が生じて、上記式(I)を満足するエチレン-ビニルアルコール共重合体(A)が得られないし、乾燥に必要なエネルギーが増加する。溶媒の含有率は、好適には62質量%以下であり、より好適には59質量%以下である。溶媒の含有率は、脱液粒子の平均値である。脱液粒子における溶媒の含有率は、ウェット粒子における溶媒の含有率に比べて、3質量%以上低いことが好ましく、5質量%以上低いことがより好ましく、10質量%以上低いことがさらに好ましい。
 また、前記脱液粒子中の、目開き5.6mmの篩を通過する粒子の含有率が80質量%以上であり、目開き1.0mmの篩を通過する粒子の含有率が2質量%未満であることが重要である。すなわち、粗大粒子を多く含まず、しかも微粒子も多く含まないことが重要である。本発明において、篩の目開きは、JIS Z 8801-1(2006年)の公称目開きに準拠する。
 前記脱液粒子中の目開き5.6mmの篩を通過する粒子の含有率は80質量%以上である。脱液粒子が粗大粒子を多く含んでいる場合には、その粒子の中心まで十分に乾燥するために高温又は長時間の乾燥が必要になり、乾燥に必要なエネルギーが増加する。しかも高温又は長時間の乾燥を施すことによって、より小さい粒子の結晶化が進行し過ぎて、乾燥工程後に溶解しにくいエチレン-ビニルアルコール共重合体粒子が混じることになる。また、粗大粒子の存在によって乾燥機内での伝熱ムラが生じてしまう。以上のような事情によって、上記式(I)を満足するエチレン-ビニルアルコール共重合体(A)が得られない。目開き5.6mmの篩を通過する粒子の含有率は、好適には82質量%以上であり、より好適には85質量%以上である。一方、生産効率を考慮すれば、目開き5.6mmの篩を通過する粒子の含有率は、好適には99質量%以下であり、より好適には98質量%以下である。
 前記脱液粒子中の目開き1.0mmの篩を通過する粒子の含有率は2質量%未満である。脱液粒子が微粒子を多く含んでいる場合には、その後に乾燥を施すことによって、当該微粒子の結晶化が進行し過ぎて、乾燥工程後に溶解しにくいエチレン-ビニルアルコール共重合体粒子が多く混じってしまう。また、微粒子が乾燥機の底部に滞留して過剰に熱を受けて結晶化度が高くなりすぎ、やはり溶解性が低下したエチレン-ビニルアルコール共重合体粒子が混じる。これらの事情によって、上記式(I)を満足するエチレン-ビニルアルコール共重合体(A)が得られない。目開き1.0mmの篩を通過する粒子の含有率は、好適には1.9質量%以下であり、より好適には1.8質量%以下である。一方、生産効率を考慮すれば、目開き1.0mmの篩を通過する粒子の含有率は、好適には0.05質量%以上であり、より好適には0.1質量%以上である。
(乾燥工程)
 脱液工程後に前記脱液粒子を乾燥工程に供することで、エチレン-ビニルアルコール共重合体を得ることができる。具体的には、円筒乾燥機を使用する熱風乾燥が好ましく、乾燥時の粒子の温度は80~120℃が好ましい。当該温度が低すぎると、生産効率が低下する。当該温度は90℃以上がより好ましい。一方、当該温度が高すぎると、結晶化が進行しすぎる粒子が生じ、溶解性が悪化する。当該温度は110℃以下がより好ましい。また、乾燥時間は2~10時間が好ましく、3~8時間がより好ましい。乾燥時の条件を上記範囲にすることで、式(I)を満たすエチレン-ビニルアルコール共重合体を簡便に製造できる。
(追加粉砕工程)
 乾燥工程後、さらに粒径を小さくするために、追加粉砕工程を設けることが好ましい。これによって、水への溶解速度が大きい粒子にすることができる。追加粉砕工程で使用する粉砕機は、前記粉砕工程で用いたのと同様の粉砕機を用いることができる。
 追加粉砕工程で得られたエチレン-ビニルアルコール共重合体(A)は、目開き2.5mmの篩を通過する粒子の含有率が80質量%以上であるものであることが好ましい。目開き2.5mmの篩を通過する粒子が80質量%未満の場合、エチレン-ビニルアルコール共重合体粒(A)を水に溶解させて水溶液を調製する際に、溶解速度が低くなり、高温で長時間の加熱が必要となる。目開き2.5mmの篩を通過する粒子の含有率が83質量%以上であることがより好ましく、85質量%以上であることがさらに好ましい。さらに、エチレン-ビニルアルコール共重合体粒子は、目開き1.0mmの篩を通過する粒子の含有率が80質量%以上であることが好ましい。これにより、水への溶解速度がより一層向上する。目開き1.0mmの篩を通過する粒子の含有率が83質量%以上であることがより好ましく、85質量%以上であることがさらに好ましい。
 一方、追加粉砕工程で得られたエチレン-ビニルアルコール共重合体(A)は、目開き0.15mmの篩を通過する粒子の含有率が20質量%以下のものであることが好ましい。目開き0.15mmの篩を通過する粒子の含有率が20質量%を超える場合、エチレン-ビニルアルコール共重合体(A)を含む水溶液中に継粉が発生しやすくなる傾向がある。目開き0.15mmの篩を通過する粒子の含有率が17質量%以下であることがより好ましく、15質量%以下であることがさらに好ましい。
[アルコール(B)]
 本発明の水溶液に含まれるアルコール(B)は、炭素数1~4のアルコールであり、炭素数1~4の1価アルコールが好ましい。このようなアルコール(B)としては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコールからなる群から選ばれる少なくとも1種が挙げられ、2種以上の炭素数1~4のアルコールを併用してもよい。中でも、得られる水溶液を塗工する際、低沸点ほど溶媒除去が容易であり工程通過性に優れる観点から、メタノール、エタノール、1-プロパノール、2-プロパノールが好ましい。フィブリル状析出物の発生をより一層低減する観点から、エタノール、1-プロパノール、2-プロパノールがより好ましい。
 エチレン-ビニルアルコール共重合体(A)の水溶液を調製する際に、炭素数1~4のアルコール(B)を特定量含有する水溶液とすることで、該水溶液にせん断応力がかかってもフィブリル状析出物の発生が低減できる。その理由については明らかではないが、アルコール(B)が水溶液中に存在することで、水溶液中におけるエチレン-ビニルアルコール共重合体(A)同士の疎水性相互作用が緩和されるため、フィブリル状析出物の発生が抑制されるものと推測される。
[水溶液]
 本発明の水溶液は、上述のエチレン-ビニルアルコール共重合体(A)及び炭素数1~4のアルコール(B)及び水を含み、水(C)100質量部に対してエチレン-ビニルアルコール共重合体(A)を0.1~100質量部含み、水(C)100質量部に対してアルコール(B)を0.01~30質量部含む。
 エチレン-ビニルアルコール共重合体(A)の含有量は、水(C)100質量部に対して0.1~100質量部である。エチレン-ビニルアルコール共重合体(A)の含有量が上記範囲にあることで、得られる水溶液の粘度が適度な範囲となるため、継粉が少なく、フィブリル状析出物の発生がより一層低減された水溶液を容易に得ることが可能となる。エチレン-ビニルアルコール共重合体(A)の含有量は、好適には0.5質量部以上であり、より好適には1質量部以上である。エチレン-ビニルアルコール共重合体(A)の含有量は、好適には70質量部以下であり、より好適には50質量部以下であり、さらに好適には30質量部以下である。
 アルコール(B)の含有量は、水(C)100質量部に対して0.01~30質量部である。アルコール(B)の含有量が上記範囲にあることで、有機揮発分が多くなりすぎず、かつ継粉が少なく、フィブリル状析出物の発生がより一層低減された水溶液を容易に得ることが可能となる。アルコール(B)の含有量は、好適には0.05質量部以上であり、より好適には0.1質量部以上であり、さらに好適には0.5質量部以上であり、特に好適には1.0質量部以上である。アルコール(B)の含有量は、好適には25質量部以下であり、より好適には20質量部以下であり、さらに好適には15質量部以下である。
 本発明の水溶液の製造方法は特に限定されないが、エチレン-ビニルアルコール共重合体(A)をアルコール(B)及び水(C)に溶解させる方法が好適である。この方法において、エチレン-ビニルアルコール共重合体(A)をアルコール(B)及び水(C)の混合溶媒に溶解させて水溶液を得ることができる。またこの方法において、エチレン-ビニルアルコール共重合体(A)をアルコール(B)又は水(C)のいずれか一方の溶媒に溶解又は含浸させてから、他方の溶媒を加えて溶解させて水溶液を得ることもできる。
[その他の成分]
 本発明の水溶液には、エチレン-ビニルアルコール共重合体(A)、炭素数1~4のアルコール(B)及び水に加えて、炭素数5以上の脂肪族アルコール、無機層状化合物、架橋剤、界面活性剤、レベリング剤、防黴剤、防腐剤等を添加してもよい。
 無機層状化合物としては、例えば雲母類、タルク、モンモリロナイト、カオリナイト、バーミキュライト等が挙げられる。無機層状化合物を添加することで、得られる塗工物の強度及び取扱い性が向上する。
 架橋剤としては、例えばエポキシ化合物、イソシアネート化合物、アルデヒド化合物、チタン系化合物、シリカ化合物、アルミ化合物、ジルコニウム化合物、硼素化合物等が挙げられる。中でも、コロイダルシリカ、アルキルシリケート等のシリカ化合物が好ましい。架橋剤を添加することで、耐水性を付与できる。
[塗工物]
 エチレン-ビニルアルコール共重合体(A)、炭素数1~4のアルコール(B)及び水を含む水溶液を基材表面に塗工してなる塗工物も、本発明の好適な実施態様である。
 本発明の水溶液を塗工する基材としては、ポリオレフィンフィルム、ポリエステルフィルム、ポリアミドフィルム等のフィルムや紙、不織布などが挙げられる。基材の厚み(延伸する場合には最終的な厚み)としては、5~100μmが好ましい。
 塗工時の温度は、20~80℃が好ましい。塗工方法は、特に限定されないが、グラビアロールコーティング法、リバースグラビアコーティング法、リバースロールコーティング法、マイヤーバーコーティング法、カーテンコーター法、サイズプレス法、ブレードコーター法、ナイフコーター法、スロットダイ法、シムサイザー法、キャスト法などが好適に用いられる。塗工方法としては、基材フィルムの延伸や熱処理をした後に塗工する方法、塗工した後に積層体を延伸や熱処理する方法が挙げられる。
 塗工物については、積層体のまま用いてもよいし、基材から剥離し、単層膜として用いてよい。また、得られた単層膜を別の膜にラミネートして用いても良い。
 本発明の水溶液の塗工量は、乾燥質量で0.3~200g/mが好ましく、0.5~150g/mがより好ましい。塗工量が0.3g/m未満の場合は、得られる塗工物の透気度が低下する傾向がある。一方、塗工量が200g/mを超える場合は、乾燥工程で気泡が噛み込み平滑な塗工面が得られない傾向がある。
 本発明の水溶液を基材表面に塗工した後の乾燥方法としては、例えば、熱風加熱、ガスヒーター加熱、赤外線ヒーター加熱等の各種加熱乾燥方法を適宜採用することができる。
 本発明の水溶液からなる塗工層と基材層との間には、接着性を向上させる観点で、接着性成分層を挿入できる。接着性成分は、水溶液を塗工する前に、基材フィルムの表面に塗布したり、水溶液中に混合して使用できる。
 本発明において、塗工物の酸素バリア性を評価する手法として、JIS K7126(等圧法)に記載の方法に準じてモダンコントロール社製 MOCON OX-TRAN2/20型を用いて酸素透過率を測定した。
(その他の用途)
 エチレン-ビニルアルコール共重合体(A)を含有する本発明の水溶液は種々の用途に使用できる。以下にその例を挙げるがこれに限定されるものではない。
(1)塩化ビニル分散剤用途:塩化ビニル、塩化ビニリデンの懸濁重合用分散安定剤および分散助剤
(2)被覆剤用途:サイズ剤、繊維加工剤、皮革仕上剤、塗料、防曇剤、金属腐食防止剤、亜鉛メッキ用光沢剤、帯電防止剤
(3)接着剤・バインダー用途:接着剤、粘着剤、再湿接着剤、各種バインダー、セメントやモルタル用添加剤
(4)分散安定剤用途:塗料や接着剤等の有機・無機顔料の分散安定剤、各種ビニル化合物の乳化重合用分散安定剤、ビチュメン等の後乳化剤
(5)紙加工用途:紙力増強剤、耐油・耐溶剤付与剤、平滑性向上剤、表面光沢改良助剤、目止剤、バリア剤、耐光性付与剤、耐水化剤、染料・顕色剤分散剤、接着力改良剤、バインダー
(6)農業用途:農薬用バインダー、農薬用展着剤、農業用被覆剤、土壌改良剤、エロージョン防止剤、農薬用分散剤
(7)医療・化粧品用途:造粒バインダー、コーティング剤、乳化剤、貼付剤、結合剤、フィルム製剤基材、皮膜形成剤
(8)粘度調整剤用途:増粘剤、レオロジー調整剤
(9)凝集剤用途:水中懸濁物および溶存物の凝集剤、金属凝集剤
(10)フィルム用途:水溶性フィルム、偏光フィルム、バリアフィルム、繊維製品包装用フィルム、種子養生シート、植生シート、シードテープ、吸湿性フィルム
(11)成形物用途:繊維、フィルム、シート、パイプ、チューブ、防漏膜、ケミカルレース用水溶性繊維、スポンジ
(12)樹脂原料用途:ポリビニルブチラール用原料、感光性樹脂原料、グラフト重合体原料、各種ゲル原料
(13)後反応用途:低分子有機化合物、高分子有機化合物、無機化合物との後反応用途
 本発明は、本発明の効果を奏する限り、本発明の技術的範囲内において、上記の構成を種々組み合わせた態様を含む。
 次に、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。
[エチレン-ビニルアルコール共重合体(A)のエチレン単位の含有率]
 エチレン-ビニルアルコール共重合体の前駆体又は再酢化物であるエチレン-ビニルエステル共重合体のH-NMRから求めた。すなわち、得られたエチレン-ビニルエステル共重合体の再沈精製をn-ヘキサンとアセトンの混合溶液を用いて3回以上行った後、80℃での減圧乾燥を3日間行って、分析用のエチレン-ビニルエステル共重合体を作製した。分析用のエチレン-ビニルエステル共重合体をDMSO-dに溶解し、80℃でH-NMR(500MHz)測定した。ビニルエステルの主鎖メチンに由来するピーク(4.7~5.2ppm)とエチレン、ビニルエステルの主鎖メチレンに由来するピーク(0.8~1.6ppm)を用いてエチレン単位の含有率を算出した。
[エチレン-ビニルアルコール共重合体(A)の粘度平均重合度]
 エチレン-ビニルアルコール共重合体(A)の粘度平均重合度は、JIS K6726(1994年)に記載の方法により求めた。
[エチレン-ビニルアルコール共重合体(A)のけん化度]
 エチレン-ビニルアルコール共重合体(A)のけん化度は、JIS K6726(1994年)に記載の方法により求めた。
[エチレン-ビニルアルコール共重合体(A)の水中結晶化度]
 エチレン-ビニルアルコール共重合体(A)の試料を、各温度(30℃、70℃)のHO-d中に40分静置した後に、静置時の温度と同一の温度下でパルスNMR測定を行った。得られた緩和曲線の0~0.8msの範囲を、下記式(III)にて誤差最小二乗法を用いてフィッティングした。
Figure JPOXMLDOC01-appb-M000007
[製造例1]
(重合工程)
 還流冷却器、原料供給ライン、反応液取出ライン、温度計、窒素導入口、エチレン導入口及び攪拌翼を備えた連続重合槽を用いた。連続重合槽に酢酸ビニル631L/hr、メタノール160L/hr、開始剤として2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)の1%メタノール溶液7.6L/hrを定量ポンプを用いて連続的に供給した。槽内エチレン圧力が0.61MPaになるように調整した。重合槽内の液面が一定になるように連続重合槽から重合液を連続的に取り出した。連続重合槽出口の重合率が43%になるよう調整した。連続重合槽の滞留時間は5時間であった。連続重合槽出口の温度は60℃であった。連続重合槽より重合液を回収し、回収した液にメタノール蒸気を導入することで未反応の酢酸ビニルモノマーの除去を行い、エチレン-ビニルエステル共重合体(PVAc)のメタノール溶液(濃度40質量%)を得た。
(けん化工程)
 前記重合工程で得た、エチレン-ビニルエステル共重合体のメタノール溶液(濃度40質量%)に、けん化触媒である水酸化ナトリウムのメタノール溶液(濃度4質量%)を、前記エチレン-ビニルエステル共重合体中の酢酸ビニルユニットに対する水酸化ナトリウムのモル比が0.02となるように添加した。エチレン-ビニルエステル共重合体溶液及びけん化触媒溶液をスタティックミキサーで混合し混合物を得た。得られた混合物のペーストをベルト上に載置し、40℃で18分保持してけん化反応を進行させた。これにより、エチレン-ビニルアルコール共重合体と溶媒とを含む固体ブロックが得られた。重合条件及びけん化条件について、表1にまとめた。
(粉砕工程)
 前記けん化工程で得られた固体ブロックを一軸せん断破砕機で粉砕してウェット粒子を得た。当該破砕機にはロックウェル硬度が55の破砕刃が装着され、破砕刃の回転数は500rpmであった。
(脱液工程)
 前記粉砕工程で得られたウェット粒子を、スクリュー排出型遠心脱液機で脱液することで、目開き5.6mmの篩を通過した粒子の割合が87質量%であり、目開き1.0mmの篩を通過した粒子の割合が0.5質量%であり、溶媒の含有率が44質量%である脱液粒子を得た。粉砕条件及び脱液条件について、表2にまとめた。
(乾燥工程)
 前記脱液工程で得られた脱液粒子600kg/hr(固形分)を粒子温度が100℃となるように乾燥機内の温度を制御した乾燥機に連続的に供給した。乾燥機内の粒子の平均滞留時間は4時間であった。
(追加粉砕工程)
 前記乾燥工程で得られた乾燥粒子をハンマーミルで追加粉砕し、目開き1.4mmのフィルターを通過させて、エチレン-ビニルアルコール共重合体1を得た。共重合体1中のエチレン単位の含有率は6モル%であり、粘度平均重合度は1000であり、けん化度は99.2モル%であった。共重合体1のCw(30℃)は51.4%であり、Cw(70℃)は16.8%であり、式(I)の値は16.8であった。また、共重合体1全体のうち、目開き2.5mmのフィルターを通過した割合は99質量%であり、目開き1.0mmのフィルターを通過した割合は93質量%であり、目開き0.15mmのフィルターを通過した割合は7質量%であった。共重合体1の重合度、けん化度、30℃および70℃の水中結晶化度、式(I)の値を上述の方法に沿って評価した結果を表3にまとめて示す。
[製造例2~6]
 重合条件、けん化条件、粉砕条件及び脱液条件を表1及び表2に示すように変更した以外は、製造例1と同様の方法によりエチレン-ビニルアルコール共重合体(共重合体2~6)を製造した。得られた共重合体を製造例1と同様に評価した結果を表3にまとめて示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
[実施例1]
(水溶液の調製及び継粉性の評価)
 冷却管付きの500mlセパラブルフラスコに、溶媒として水255g及び2-プロパノール33.2gの水溶液288gを入れ、内温が70℃になるまで昇温した。昇温後、150rpmの撹拌下にエチレン-ビニルアルコール共重合体1を32g添加した。このとき、水100質量部に対する2-プロパノールの含有量は13.0質量部であり、水100質量部に対する共重合体1の含有量は12.5質量部であった。添加直後の共重合体1の状態を目視で観察し、継粉性を以下の指標で評価したが、継粉は観察されなかった。
 A:継粉にならない。
 B:継粉になるが、5分間の撹拌により継粉が解消された。
 C:継粉になり、5分間撹拌しても継粉は解消されなかった。
(エチレン-ビニルアルコール共重合体(A)の溶解性の評価)
 継粉性を観察した後、内温が85℃になるまで昇温し、150prmでさらに30分間撹拌した。30分経過した段階でエチレン-ビニルアルコール共重合体水溶液を採取した。採取した水溶液をNo.5Aのろ紙でろ過し、そのろ液を125℃、3時間乾燥することで水溶液中に溶解したエチレン-ビニルアルコール共重合体の質量A(g)を求めた。また、水溶液に添加したエチレン-ビニルアルコール共重合体と同量のエチレン-ビニルアルコール共重合体1を125℃、3時間乾燥することで、その不揮発分量B(g)を求めた。そして、溶解度(質量%)=A/B×100を算出した。算出した溶解度は、56%であり、溶解性についてはB判定であった。
 A:60質量%以上
 B:50質量%以上60質量%未満
 C:50質量%未満
(水溶液におけるフィブリル状析出物発生有無の評価)
 継粉性を観察した後、内温が95℃になるまで昇温し、95℃、150prmで1時間撹拌することでエチレン-ビニルアルコール共重合体1が溶解した水溶液を得た。得られた水溶液を室温(20℃)まで冷却し、300mlマイヤーに100ml移し、4cmのマグネットスターラーを投入後、200rpmで5分撹拌させた後、撹拌を停止しフィブリル状析出物の発生を以下の指標で評価したが、フィブリル状析出物は発生していなかった。
 A:フィブリル状析出物が発生しなかった。
 B:フィブリル状析出物が発生した。
(塗工物の作製)
 上述の方法により、フィブリル状析出物発生の有無を確認するために作製した水溶液を、コロナ処理したポリエチレンテレフタレートフィルム上に、バーコーターを用いて塗工後、100℃で5分間乾燥させ、エチレン-ビニルアルコール共重合体1が塗工された塗工物を作製した。塗工量は26g/mであった。
(塗工物の外観)
 塗工物における塗工面のブツを目視で確認し、下記の指標で評価した。
 A:ブツが観察されなかった。
 B:ブツが観察された。
(塗工物の酸素バリア性)
 上記で得た塗工物をJIS K7126(2006年)に記載の等圧法に準じてモダンコントロール社製 MOCON OX-TRAN2/20型を用い、85%RHの条件下、20℃で酸素透過率を測定した。なおここでの「酸素透過率」は任意の膜厚で測定した酸素透過率(単位:cc/m・day・atm)を膜厚20μm換算した値(cc・20μm/m・day・atm)である。酸素透過率が少ないほど酸素バリア性に優れている。
[実施例2~6、比較例1~7]
 用いたエチレン-ビニルアルコール共重合体(A)の種類及びその量、アルコール(B)の種類及びその量を表4に記載のように変更した以外は実施例1と同様にして水溶液を調製した。得られた水溶液について、実施例1と同様の方法により、継粉性、溶解性及びフィブリル状析出物の有無を評価した。さらに、得られた水溶液を用いて実施例1と同様の方法により、塗工物を作製し、外観および酸素バリア性を評価した。比較例3、4および7については、水溶液にフィブリル状析出物が存在し、さらに塗工物にブツも観察されたため、酸素バリア性の評価は行わなかった。また、比較例5および7は水溶液にエチレン-ビニルアルコール共重合体(A)が溶解しなかったため、その後の評価を中止した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000011

 

Claims (5)

  1.  エチレン-ビニルアルコール共重合体(A)、炭素数1~4のアルコール(B)及び水(C)を含む水溶液であって;
     エチレン-ビニルアルコール共重合体(A)はエチレン単位の含有率が1モル%以上20モル%未満であり、パルスNMRで求められる30℃での水中結晶化度Cw(30℃)及び70℃での水中結晶化度Cw(70℃)が下記式(I)を満たし、
     水(C)100質量部に対してエチレン-ビニルアルコール共重合体(A)を0.1~100質量部含み、
     水(C)100質量部に対してアルコール(B)を0.01~30質量部含む水溶液。
    Figure JPOXMLDOC01-appb-M000001
  2.  アルコール(B)が、炭素数1~4の1価アルコールである、請求項1に記載の水溶液。
  3.  エチレン-ビニルアルコール共重合体(A)の粘度平均重合度が200~5000である、請求項1又は2に記載の水溶液。
  4.  エチレン-ビニルアルコール共重合体(A)のけん化度が80~99.99モル%である、請求項1~3のいずれかに記載の水溶液。
  5.  請求項1~4のいずれかに記載の水溶液を基材表面に塗工してなる塗工物。

     
PCT/JP2018/045420 2017-12-12 2018-12-11 エチレン-ビニルアルコール共重合体水溶液 WO2019117118A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2019559385A JP6715395B2 (ja) 2017-12-12 2018-12-11 エチレン−ビニルアルコール共重合体水溶液
CA3085148A CA3085148A1 (en) 2017-12-12 2018-12-11 Ethylene-vinylalcohol copolymer aqueous solution
EP18889086.7A EP3725845A1 (en) 2017-12-12 2018-12-11 Ethylene-vinylalcohol copolymer aqueous solution
US16/771,399 US11414563B2 (en) 2017-12-12 2018-12-11 Ethylene-vinylalcohol copolymer aqueous solution
CN201880089188.8A CN111684009B (zh) 2017-12-12 2018-12-11 乙烯-乙烯醇共聚物水溶液
KR1020207019950A KR102641576B1 (ko) 2017-12-12 2018-12-11 에틸렌-비닐알코올 공중합체 수용액

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017237503 2017-12-12
JP2017-237503 2017-12-12

Publications (1)

Publication Number Publication Date
WO2019117118A1 true WO2019117118A1 (ja) 2019-06-20

Family

ID=66819683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045420 WO2019117118A1 (ja) 2017-12-12 2018-12-11 エチレン-ビニルアルコール共重合体水溶液

Country Status (8)

Country Link
US (1) US11414563B2 (ja)
EP (1) EP3725845A1 (ja)
JP (1) JP6715395B2 (ja)
KR (1) KR102641576B1 (ja)
CN (1) CN111684009B (ja)
CA (1) CA3085148A1 (ja)
TW (1) TWI804540B (ja)
WO (1) WO2019117118A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020204120A1 (ja) * 2019-04-05 2020-10-08 株式会社クラレ 水性エマルジョン及びそれを用いた接着剤
WO2020213550A1 (ja) * 2019-04-15 2020-10-22 株式会社クラレ 紙用塗工液及びそれを用いた塗工紙
JP6810307B1 (ja) * 2019-07-08 2021-01-06 株式会社クラレ 紙ストロー用水性接着剤及びそれを用いた紙ストロー
WO2021006233A1 (ja) * 2019-07-08 2021-01-14 株式会社クラレ 水性エマルジョン及びそれを用いた接着剤
WO2021006234A1 (ja) * 2019-07-08 2021-01-14 株式会社クラレ 紙ストロー用水性接着剤及びそれを用いた紙ストロー
TWI841754B (zh) 2019-07-08 2024-05-11 日商可樂麗股份有限公司 紙吸管用水性接著劑及使用其之紙吸管

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11427663B1 (en) 2022-01-07 2022-08-30 Chang Chun Petrochemical Co., Ltd. Ethylene-vinyl alcohol copolymer resin composition and multi-layer structure comprising thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1121788A (ja) 1997-07-03 1999-01-26 Kuraray Co Ltd 紙用コーティング剤
JPH1190927A (ja) * 1997-09-17 1999-04-06 Nippon Synthetic Chem Ind Co Ltd:The エチレン−酢酸ビニル共重合体ケン化物ペレットの製造法
JP2002080606A (ja) * 2000-09-07 2002-03-19 Kuraray Co Ltd エチレン−ビニルアルコール共重合体ペレットの製造方法
JP2002121290A (ja) * 2000-08-07 2002-04-23 Kuraray Co Ltd エチレン−ビニルアルコール共重合体含水組成物の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1087860A (ja) * 1996-09-13 1998-04-07 Fukusuke Kogyo Kk エチレン−ビニルアルコール共重合体溶液のコーティング方法
US6238606B1 (en) 1997-09-08 2001-05-29 Nippon Gohsei Kagaku Kogyo Process for preparing pellets of saponified ethylene/vinyl acetate copolymer
JPH11106591A (ja) * 1997-10-02 1999-04-20 Nippon Synthetic Chem Ind Co Ltd:The エチレン−酢酸ビニル共重合体ケン化物溶液
EP1179546B8 (en) 2000-08-07 2006-06-07 Kuraray Co., Ltd. Method for producing aqueous ethylene-vinyl alcohol copolymer composition
JP2007321013A (ja) * 2006-05-30 2007-12-13 Nippon Synthetic Chem Ind Co Ltd:The エチレン−ビニルアルコール共重合体含水組成物の製造方法
EP2692780B1 (en) * 2011-03-30 2016-11-16 Kuraray Co., Ltd. method for producing ethylene-vinyl alcohol copolymer resin, ethylene-vinyl alcohol copolymer resin, and laminate
CN112521532B (zh) * 2014-10-17 2023-06-13 株式会社可乐丽 乙烯醇系聚合物及其用途

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1121788A (ja) 1997-07-03 1999-01-26 Kuraray Co Ltd 紙用コーティング剤
JPH1190927A (ja) * 1997-09-17 1999-04-06 Nippon Synthetic Chem Ind Co Ltd:The エチレン−酢酸ビニル共重合体ケン化物ペレットの製造法
JP2002121290A (ja) * 2000-08-07 2002-04-23 Kuraray Co Ltd エチレン−ビニルアルコール共重合体含水組成物の製造方法
JP2002080606A (ja) * 2000-09-07 2002-03-19 Kuraray Co Ltd エチレン−ビニルアルコール共重合体ペレットの製造方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020204120A1 (ja) * 2019-04-05 2020-10-08 株式会社クラレ 水性エマルジョン及びそれを用いた接着剤
EP3950872A4 (en) * 2019-04-05 2022-12-21 Kuraray Co., Ltd. AQUEOUS EMULSION AND ADHESIVE WITH IT
WO2020213550A1 (ja) * 2019-04-15 2020-10-22 株式会社クラレ 紙用塗工液及びそれを用いた塗工紙
CN114341303A (zh) * 2019-07-08 2022-04-12 株式会社可乐丽 纸吸管用水性粘接剂和使用其的纸吸管
WO2021006234A1 (ja) * 2019-07-08 2021-01-14 株式会社クラレ 紙ストロー用水性接着剤及びそれを用いた紙ストロー
JP6876206B1 (ja) * 2019-07-08 2021-05-26 株式会社クラレ 水性エマルジョン及びそれを用いた接着剤
WO2021006233A1 (ja) * 2019-07-08 2021-01-14 株式会社クラレ 水性エマルジョン及びそれを用いた接着剤
CN114341302A (zh) * 2019-07-08 2022-04-12 株式会社可乐丽 水性乳液和使用其的粘接剂
JP6810307B1 (ja) * 2019-07-08 2021-01-06 株式会社クラレ 紙ストロー用水性接着剤及びそれを用いた紙ストロー
CN114341303B (zh) * 2019-07-08 2023-08-18 株式会社可乐丽 纸吸管用水性粘接剂和使用其的纸吸管
US11746263B2 (en) 2019-07-08 2023-09-05 Kuraray Co., Ltd. Aqueous emulsion and adhesive using same
CN114341302B (zh) * 2019-07-08 2023-10-20 株式会社可乐丽 水性乳液和使用其的粘接剂
TWI841754B (zh) 2019-07-08 2024-05-11 日商可樂麗股份有限公司 紙吸管用水性接著劑及使用其之紙吸管

Also Published As

Publication number Publication date
JP6715395B2 (ja) 2020-07-01
CA3085148A1 (en) 2019-06-20
EP3725845A1 (en) 2020-10-21
US11414563B2 (en) 2022-08-16
CN111684009B (zh) 2023-03-14
US20200392364A1 (en) 2020-12-17
TW201930492A (zh) 2019-08-01
KR20200096622A (ko) 2020-08-12
TWI804540B (zh) 2023-06-11
JPWO2019117118A1 (ja) 2020-02-27
KR102641576B1 (ko) 2024-02-29
CN111684009A (zh) 2020-09-18

Similar Documents

Publication Publication Date Title
WO2019117118A1 (ja) エチレン-ビニルアルコール共重合体水溶液
WO2019078181A1 (ja) エチレン-ビニルアルコール共重合体粒子、その製造方法及びその用途
JP4079806B2 (ja) 側鎖に1,2−グリコール結合を有するポリビニルアルコール系樹脂およびその製造方法
JP6499813B1 (ja) エチレン−ビニルアルコール共重合体粒子、その製造方法及びその用途
JP2002241433A (ja) 新規ビニルアルコール系樹脂及びその用途
TWI703195B (zh) 樹脂材料、水溶液及接著劑
JP2006152206A (ja) ポリビニルアルコール系樹脂及びその用途
TW202100678A (zh) 紙用塗覆液及使用其之塗覆紙
JP2007126655A (ja) 新規ビニルアルコール系樹脂及びその用途
TWI812855B (zh) 水性乳液及使用其之接著劑
WO2022004636A1 (ja) 変性ビニルアルコール系重合体、水溶液、及び変性ビニルアルコール系重合体の製造方法
TW202219073A (zh) 含乙醯乙醯基之聚乙烯醇系樹脂、含乙醯乙醯基之聚乙烯醇系樹脂之製造方法
TW202309111A (zh) 乙烯醇系聚合物、包含其之粉末、此等之製造方法、紙加工劑及乳化聚合用分散劑
JP2020200460A (ja) ポリビニルアルコール、その製造方法及びその用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889086

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019559385

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3085148

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207019950

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018889086

Country of ref document: EP

Effective date: 20200713