WO2019114243A1 - 真空测量装置 - Google Patents

真空测量装置 Download PDF

Info

Publication number
WO2019114243A1
WO2019114243A1 PCT/CN2018/092739 CN2018092739W WO2019114243A1 WO 2019114243 A1 WO2019114243 A1 WO 2019114243A1 CN 2018092739 W CN2018092739 W CN 2018092739W WO 2019114243 A1 WO2019114243 A1 WO 2019114243A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum
diaphragm
front stage
chamber
vacuum gauge
Prior art date
Application number
PCT/CN2018/092739
Other languages
English (en)
French (fr)
Inventor
赵青松
南建辉
Original Assignee
北京创昱科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京创昱科技有限公司 filed Critical 北京创昱科技有限公司
Publication of WO2019114243A1 publication Critical patent/WO2019114243A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/04Means for compensating for effects of changes of temperature, i.e. other than electric compensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L21/00Vacuum gauges
    • G01L21/02Vacuum gauges having a compression chamber in which gas, whose pressure is to be measured, is compressed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/06Means for preventing overload or deleterious influence of the measured medium on the measuring device or vice versa
    • G01L19/0627Protection against aggressive medium in general
    • G01L19/0645Protection against aggressive medium in general using isolation membranes, specially adapted for protection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0026Transmitting or indicating the displacement of flexible, deformable tubes by electric, electromechanical, magnetic or electromagnetic means
    • G01L9/003Transmitting or indicating the displacement of flexible, deformable tubes by electric, electromechanical, magnetic or electromagnetic means using variations in capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L21/00Vacuum gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0072Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance

Definitions

  • the invention relates to the field of vacuum measurement technology, and in particular to a vacuum measuring device.
  • Ordinary vacuum gauges are suitable for detecting very clean vacuum environments such as nitrogen or air ambient container vacuum. If there is corrosive gas in the vacuum environment, the diaphragm of the vacuum gauge will be corroded and affect the detection of the vacuum degree. If there is a substance that is easy to deposit in the vacuum environment, these substances will slowly detect the inner wall of the chamber and the vacuum in the vacuum gauge.
  • Measuring the deposition on the diaphragm will cause the airflow passage of the vacuum gauge head to become blocked, causing the vacuum gauge to measure the deformation of the diaphragm, measuring the capacitance drift of the diaphragm and the precision capacitance analysis component, and affecting the detection accuracy; if the detection chamber is a high temperature gas, the high temperature gas is very It is easy to transfer heat to the vacuum gauge to measure the diaphragm, causing the vacuum gauge to measure the deformation of the diaphragm, affecting the measurement accuracy or burning the capacitance analysis component of the vacuum gauge.
  • the technical problem to be solved by the present invention is to solve the problem that the measurement diaphragm of the existing vacuum gauge measuring device is prone to deposits, affects measurement accuracy, and is difficult to work under extreme conditions such as high temperature and corrosion.
  • the present invention provides a vacuum measuring apparatus including a front stage chamber and a vacuum gauge which are sequentially disposed in a pressure conduction direction, the front stage chamber being in communication with the vacuum gauge, the front stage chamber A pre-stage diaphragm is disposed in the chamber, and a measuring diaphragm is disposed in the vacuum gauge.
  • a pressure conducting chamber is formed between the front stage diaphragm and the measuring diaphragm, and the pressure conducting chamber is filled with a pressure conducting liquid.
  • the front stage chamber is in communication with the vacuum gauge through a pipe.
  • the pipe comprises a spiral pipe and a straight pipe.
  • the pipeline is provided with a heat dissipating component.
  • the heat dissipating component is a uniformly distributed heat dissipating fin.
  • the front stage chamber is provided with a filling port of pressure conducting liquid.
  • the vacuum gauge is further provided with a capacitor element, a capacitance analyzing component and an input and output unit, the capacitor component and the pressure conducting fluid are respectively located on two sides of the measuring diaphragm, and the capacitor analyzing component and the capacitor component Connected and connected to the input and output unit through electrodes.
  • the vacuum gauge is provided with a heat insulating baffle at a communication with the pipe.
  • the vacuum measuring device further comprises a getter, and the getter is disposed in the vacuum gauge.
  • the vacuum measuring device further comprises a heater for heating the front stage chamber, the heating temperature not exceeding 500 °C.
  • the pressure transmitting liquid is glycerin or silicone oil.
  • the pipe comprises a spiral pipe and two linear pipes, the spiral pipe is located between the two linear pipes, and the two straight pipes are respectively associated with the front stage chamber and the vacuum Connection.
  • the pressure-conducting liquid filled between the front-stage diaphragm and the measuring diaphragm of the present invention can be used in a vacuum environment with corrosive gas to avoid the problem that the measuring diaphragm of the vacuum gauge is corroded.
  • the pre-stage chamber is preset, even if the deposition material causes the front
  • the blockage of the inlet of the stage chamber causes the deformation of the front stage diaphragm, and does not affect the detection accuracy.
  • the present invention is not only suitable for vacuum measurement in a conventional environment, but also suitable for vacuum measurement under extreme conditions.
  • FIG. 1 is a schematic structural view of a vacuum gauge measuring device according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a pipe of a vacuum gauge measuring device according to an embodiment of the present invention.
  • connection In the description of the present invention, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or integrally connected; can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • Connected, or integrally connected can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • multiple means two or more, “several”, “several roots”, “several” unless otherwise stated.
  • “Group” means one or more.
  • a vacuum measuring device includes a front stage chamber 1 and a vacuum gauge 2 which are sequentially disposed along a pressure conduction direction, and the front stage chamber 1 is connected to a vacuum gauge 2, and the front stage chamber 1 is connected.
  • the front stage diaphragm 11 is disposed therein, and the measuring diaphragm 21 is disposed in the vacuum gauge 2, and a pressure conducting chamber is formed between the front stage diaphragm 11 and the measuring diaphragm 21, and the pressure conducting chamber is filled with the pressure conducting liquid 8.
  • the ordinary vacuum gauge 2 is connected to the front stage chamber 1 with the front stage diaphragm 11, and the pressure transmitting liquid 8 is filled between the front stage diaphragm 11 and the measuring diaphragm 21 in the vacuum gauge 2, before
  • the inlet of the stage chamber 1 is directly connected to the vacuum chamber to be tested through the front stage connecting pipe 7, and the pressure of the vacuum chamber is transmitted to the front stage diaphragm 11 through the front stage connecting pipe 7, and the front stage diaphragm 11 is passed through the pressure transmitting liquid 8
  • the chamber pressure is transmitted to the measuring diaphragm 21, causing deformation of the measuring diaphragm 21, which in turn causes a change in the detected value of the subsequent detecting element in the vacuum gauge 2, thereby judging the degree of vacuum of the vacuum chamber.
  • the pressure transmitting liquid 8 filled between the front stage diaphragm 11 and the measuring diaphragm 21 of the present invention can be used in a vacuum environment having corrosive gas, avoiding the problem that the measuring diaphragm 21 of the vacuum gauge 2 is corroded, and also avoiding the vacuum.
  • the depositable substance in the environment is deposited on the inner wall of the vacuum gauge 2 and the measuring diaphragm 21, causing deformation of the measuring diaphragm 21, affecting the problem of detection accuracy of the degree of vacuum; pre-setting the chamber 1 in advance, even if depositing substances may cause the front stage
  • the blockage of the inlet of the chamber 1 causes the deformation of the front stage diaphragm 11 and does not affect the detection accuracy.
  • the present invention is not only suitable for vacuum measurement in a conventional environment, but also suitable for vacuum measurement under extreme conditions.
  • the front stage chamber 1 and the vacuum gauge 2 are in communication through the duct 3.
  • the duct 3 includes a spiral duct 31 and a linear duct 32.
  • the pipe 3 of the pre-stage chamber 1 that communicates with the vacuum gauge 2 is spiraled in order to prevent heat from reaching the vacuum gauge 2 through the pressure-conducting fluid 8, affecting the detection accuracy of the vacuum gauge 2 and damaging the vacuum gauge 2.
  • the pipe 3 is all or part of the outer wall of the pressure transmission cavity, and two linear pipes 32 are connected at both ends of the spiral pipe 31, and the two linear pipes 32 are respectively connected to the front stage chamber 1 and the vacuum gauge 2 .
  • the heat dissipation element 4 is disposed on the pipe 3 to facilitate further heat dissipation.
  • the heat dissipating component 4 can be a heat sink, a heat dissipating fin, or the like.
  • the heat dissipating component 4 is preferably a heat dissipating fin, and the heat dissipating fins are evenly disposed on the linear duct 32.
  • the front chamber 1 is provided with a filling port 12 for the pressure transmitting liquid 8.
  • the pressure transmitting liquid 8 between the front stage diaphragm 11 and the measuring diaphragm 21 reduces or generates impurities, and can be filled and replaced through the filling port 12 of the pressure transmitting liquid 8 on the front stage chamber 1 to ensure pressure transmission.
  • the liquid 8 is filled between the front stage diaphragm 11 and the measuring diaphragm 21, so that the vacuum pressure received by the front stage diaphragm 11 can be accurately transmitted to the measuring diaphragm 21.
  • front stage chamber 1 can be opened from the front stage diaphragm 11 to facilitate cleaning or replacement of the front stage diaphragm 11.
  • the vacuum gauge 2 is further provided with a capacitor element 22, a capacitance analyzing component 23 and an input and output unit 24.
  • the capacitor element 22 and the pressure transmitting fluid 8 are respectively located on both sides of the measuring diaphragm 21, and the capacitance analyzing component 23 is connected to the capacitor element 22, And connected to the input and output unit 24 through the electrode 6.
  • the capacitance analyzing element 23 obtains a change in capacitance of the capacitive element 22, and is introduced into the input/output unit 24 through the two electrodes 6, and the input/output unit 24 is connected to an external device to detect the degree of vacuum of the vacuum chamber.
  • the change in the degree of vacuum in the vacuum chamber causes the measurement diaphragm 21 to be deformed to a different extent.
  • the capacitance analysis component 23 obtains a change in the capacitance value of the capacitance element 22, and outputs a capacitance value change signal to the input/output unit 24, and the input/output unit 24 sends the signal.
  • the external device processes the signal to obtain the vacuum of the vacuum chamber.
  • the vacuum gauge 2 is provided with a heat insulating baffle 25 at the communication with the duct 3.
  • a heat shield baffle 25 is designed in the vacuum gauge 2 to further prevent heat radiation from directly entering the inside of the vacuum gauge 2, and to prevent deposits of large particles from directly entering the inside of the vacuum gauge 2.
  • the vacuum measuring device of the present invention further includes a getter 5, and the getter 5 is disposed in the vacuum gauge 2.
  • the getter 5 is for ensuring the absolute vacuum inside the vacuum gauge 2.
  • the vacuum measuring device of the present invention further includes a heater that heats the front stage chamber 1 and the heating temperature does not exceed 500 °C.
  • the pre-stage chamber 1 can be heated up to 500 ° C.
  • the high temperature of 500 ° C can prevent most of the volatile materials from being deposited, even if a small amount of deposition occurs. It is much easier to maintain the front stage chamber 1 than the vacuum gauge 2.
  • the pressure transmitting liquid 8 is glycerin or silicone oil.
  • materials with different boiling points such as silicone oil and glycerin, can be selected.
  • the vacuum gauge 2 of the glycerin pressure-conducting liquid can measure the vacuum degree of the high-temperature chamber at 150-180 ° C, and conduct the liquid through the silicone oil pressure.
  • the vacuum gauge 2 can measure the vacuum degree of the high temperature chamber of 200 to 300 ° C.
  • the pressure transmitting liquid which has been tested now can withstand the vacuum degree of the high temperature chamber of 500 ° C.
  • the pressure conducting fluid When the pressure conducting fluid is made of a high temperature resistant liquid, it can be used in a vacuum environment with a high temperature gas, and can prevent the high temperature gas from transferring heat to the measuring diaphragm 21, causing deformation of the measuring diaphragm 21, affecting the measurement accuracy or burning the capacitor element of the vacuum gauge 2. twenty two.
  • the front stage diaphragm 11 can be made of a corrosion-resistant material, and different materials can be selected depending on the type of corrosion resistant gas, and a non-metal material can also be used. In extreme cases, the vacuum gauge 2 can be protected by sacrificing the front diaphragm 11.
  • the pressure-conducting liquid filled between the front-stage diaphragm and the measuring diaphragm of the present invention can be used in a vacuum environment with corrosive gas, avoiding the problem that the measuring diaphragm of the vacuum gauge is corroded, and also avoiding the vacuum.
  • the deposits in the environment are deposited on the inner wall of the vacuum gauge and the measuring diaphragm, causing the deformation of the measuring diaphragm to affect the accuracy of the detection of the degree of vacuum; the pre-stage chamber is preset, even if the deposited material causes the inlet of the front chamber Blockage, causing deformation of the front-stage diaphragm, does not affect the detection accuracy.
  • the present invention is not only suitable for vacuum measurement in a conventional environment, but also suitable for vacuum measurement under extreme conditions.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

一种真空测量装置,包括沿压力传导方向依次设置的前级腔室和真空规,前级腔室与真空规连通,前级腔室内设有前级隔膜,真空规内设有测量隔膜,前级隔膜与测量隔膜之间形成压力传导腔,压力传导腔内填充有压力传导液。压力传导液体可用于有腐蚀性气体的真空环境中,避免造成真空规的测量隔膜被腐蚀的问题,也避免了真空环境中的易沉积物质在真空规的内壁和测量隔膜上沉积,引起测量隔膜的变形,影响真空度的检测精度的问题。

Description

真空测量装置 技术领域
本发明涉及真空测量技术领域,尤其涉及一种真空测量装置。
背景技术
在半导体行业、太阳能行业LED行业、平板显示行业快速发展的今天,有毒材料、易燃易爆材料和腐蚀性材料广泛应用,在生产设备的真空反应腔室和真空排气管道上这些材料大量沉积,还有一些低熔点的副产物也大量沉积。这些材料很容易沉积到安装在真空反应腔室或真空排气管道真空规的内部,严重影响真空测量精度和影响真空规的适用寿命。在这些设备上的真空规一旦出现问题,就要更换新品,很少有维修人员愿意接触这些有剧毒沉积物的真空规。对于某些真空工作环境恶劣又不得不用真空规的设备,真空规变成了一种奢侈的耗材,是困扰不少设备厂家和工厂一个头疼的问题。
普通型真空规适合检测很洁净的真空环境,比如说氮气或空气的环境容器真空度。若真空环境中有腐蚀性气体就会造成真空规的测量隔膜被腐蚀掉,影响真空度的检测;若真空环境中有容易沉积的物质,这些物质会慢慢在真空规检测腔体内壁和真空规测量隔膜上沉积,会造成真空规结头的气流通道堵塞,引起真空规测量隔膜的变形、测量隔膜与精密电容分析元件电容漂移,影响检测精度;若检测腔室是高温气体,高温气体很容易把热传到真空规测量隔膜上,引起真空规测量隔膜的变形,影响测量精度或烧毁真空规的电容分析元件。
目前,市场上已经有耐腐蚀型号的真空规和耐高温型号的真空规,但价格是普通真空规的10倍以上,耐高温一般最高耐温也只有200℃。市场上一直没有真正意义耐沉积的真空规出现,现在也只能是通过提高真空规的工作温度来减少真空规内沉积物产生,但最高加热温度也 只有200℃,真空规检测腔体内部一旦有沉积产生,就需要对真空规返厂清洗和维修,费时、费力成本高。
发明内容
(一)要解决的技术问题
本发明要解决的技术问题是解决现有的真空规测量装置的测量隔膜上容易产生沉积物,影响测量精度,且难以在高温、腐蚀等极端工况下工作的问题。
(二)技术方案
为了解决上述技术问题,本发明提供了一种真空测量装置,包括沿压力传导方向依次设置的前级腔室和真空规,所述前级腔室与所述真空规连通,所述前级腔室内设有前级隔膜,所述真空规内设有测量隔膜,所述前级隔膜与所述测量隔膜之间形成压力传导腔,所述压力传导腔内填充有压力传导液。
其中,所述前级腔室与所述真空规通过管道连通。
其中,所述管道包括螺旋状管道和直线状管道。
其中,所述管道上设有散热元件。
其中,所述散热元件为均匀分布的散热翅片。
其中,所述前级腔室上设有压力传导液的填充口。
其中,所述真空规内还设有电容元件、电容分析元件和输入输出单元,所述电容元件与所述压力传导液分别位于所述测量隔膜两侧,所述电容分析元件与所述电容元件连接,且通过电极与所述输入输出单元连接。
其中,所述真空规在与所述管道的连通处设有隔热挡板。
其中,所述真空测量装置还包括吸气剂,所述吸气剂设置于所述真空规内。
其中,所述真空测量装置还包括加热器,所述加热器用于对所述前级腔室加热,加热温度不超过500℃。
其中,所述压力传导液为甘油或硅油。
其中,所述管道包括螺旋状管道和两个直线状管道,所述螺旋状管道位于两个所述直线状管道之间,两个所述直线管道分别与所述前级腔室与所述真空规连接。
(三)有益效果
本发明的上述技术方案具有如下优点:本发明在前级隔膜与测量隔膜之间填充的压力传导液体,可用于有腐蚀性气体的真空环境中,避免造成真空规的测量隔膜被腐蚀的问题,同时也避免了真空环境中的易沉积物质在真空规的内壁和测量隔膜上沉积,引起测量隔膜的变形,影响真空度的检测精度的问题;预先设置前级腔室,即使沉积物质会造成前级腔室入口的堵塞,造成前级隔膜变形,也不会影响检测精度,即使腐蚀性气体或高温气体造成前级隔膜损坏,位于前级腔室中也便于前级隔膜更换,不会影响到后续真空规;本发明还可用于有高温气体的真空环境中,能够避免高温气体把热传到测量隔膜上,引起测量隔膜的变形,影响测量精度或烧毁真空规的电容元件的问题。因此本发明不仅适合常规环境下的真空度测量,而且适合极端工况下的真空度测量。
除了上面所描述的本发明解决的技术问题、构成的技术方案的技术特征以及有这些技术方案的技术特征所带来的优点之外,本发明的其他技术特征及这些技术特征带来的优点,将结合附图作出进一步说明。
附图说明
图1是本发明实施例真空规测量装置的结构示意图;
图2是本发明实施例真空规测量装置的管道的结构示意图。
图中:1、前级腔室;2、真空规;3、管道;4、散热元件;5、吸气剂;6、电极;7、前级连接管道;8、压力传导液;11、前级隔膜;12、填充口;21、测量隔膜;22、电容元件;23、电容分析元件;24、 输入输出单元;25、隔热挡板;31、螺旋状管道;32、直线状管道。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
此外,在本发明的描述中,除非另有说明,“多个”、“多根”、“多组”的含义是两个或两个以上,“若干个”、“若干根”、“若干组”的含义是一个或一个以上。
如图1所示,本发明实施例提供的真空测量装置,包括沿压力传导方向依次设置的前级腔室1和真空规2,前级腔室1与真空规2连通,前级腔室1内设有前级隔膜11,真空规2内设有测量隔膜21,前级隔膜11与测量隔膜21之间形成压力传导腔,压力传导腔内填充有压力传导液8。
本发明真空测量装置,将普通的真空规2与带有前级隔膜11的前级腔室1连通,在前级隔膜11与真空规2中的测量隔膜21之间充满压力传导液8,前级腔室1的入口通过前级连接管道7直接与被测真空腔体连接,真空腔体的压力通过前级连接管道7传给前级隔膜11,前级隔膜11再通过压力传导液8把腔室压力传到测量隔膜21,引起测量 隔膜21的变形,继而引起真空规2中后续检测元件的检测值发生变化,从而判断真空腔体的真空度。
本发明在前级隔膜11与测量隔膜21之间填充的压力传导液8,可用于有腐蚀性气体的真空环境中,避免造成真空规2的测量隔膜21被腐蚀的问题,同时也避免了真空环境中的易沉积物质在真空规2的内壁和测量隔膜21上沉积,引起测量隔膜21的变形,影响真空度的检测精度的问题;预先设置前级腔室1,即使沉积物质会造成前级腔室1入口的堵塞,造成前级隔膜11变形,也不会影响检测精度,即使腐蚀性气体或高温气体造成前级隔膜11损坏,位于前级腔室1中也便于前级隔膜11更换,不会影响到后续真空规2;本发明还可用于有高温气体的真空环境中,能够避免高温气体把热传到测量隔膜21上,引起测量隔膜21的变形,影响测量精度或烧毁真空规2的电容元件22的问题。因此本发明不仅适合常规环境下的真空度测量,而且适合极端工况下的真空度测量。
其中,如图2所示,前级腔室1与真空规2通过管道3连通。其中,管道3包括螺旋状管道31和直线状管道32。前级腔室1连通真空规2的管道3做成螺旋状是为了防止热量通过压力传导液8到达真空规2,影响真空规2的检测精度和损坏真空规2。本实施例中,管道3为压力传导腔的全部或部分外壁,螺旋状管道31的两端连接有两个直线状管道32,两个直线状管道32分别连接前级腔室1和真空规2。
具体的,管道3上设有散热元件4,有助于进一步散热。其中,散热元件4可为散热器、散热翅片等,本实施例中优选散热元件4为散热翅片,且散热翅片在直线状管道32上均匀设置。
其中,前级腔室1上设有压力传导液8的填充口12。在装置使用后,前级隔膜11与测量隔膜21之间的压力传导液8会减少或产生杂质,可通过前级腔室1上压力传导液8的填充口12进行填充、更换,保证压力传导液8充满前级隔膜11与测量隔膜21之间,使前级隔膜11受到的真空压力能够准确传递到测量隔膜21上。
此外,前级腔室1可从前级隔膜11处打开,便于清理或更换前级隔膜11。
进一步的,真空规2内还设有电容元件22、电容分析元件23和输入输出单元24,电容元件22与压力传导液8分别位于测量隔膜21两侧,电容分析元件23与电容元件22连接,且通过电极6与输入输出单元24连接。电容分析元件23获得电容元件22的电容变化,并通过两个电极6导入输入输出单元24,输入输出单元24连接外部设备,检测出真空腔体的真空度。真空腔体内的真空度变化会引起测量隔膜21不同程度的变形,电容分析元件23获得电容元件22的电容值变化,并将电容值变化信号输出至输入输出单元24,输入输出单元24将信号送至外部设备,外部设备处理信号从而获得真空腔体的真空度。
其中,真空规2在与管道3的连通处设有隔热挡板25。真空规2内设计有隔热挡板25,进一步防止热辐射直接进入真空规2的内部,并防止大颗粒的沉积物直接进入真空规2内部。
本发明真空测量装置还包括吸气剂5,吸气剂5设置于真空规2内。吸气剂5是为了保证真空规2内部的绝对真空度。
本发明真空测量装置还包括加热器,加热器对前级腔室1加热,加热温度不超过500℃。为了防止前级腔室1内有沉积物产生,可以对前级腔室1加热,最高可以加热到500℃,500℃的高温可以防止大部分易于挥发的材料沉积,即使有少量的沉积产生,维护前级腔室1要比真空规2要容易很多。
其中,压力传导液8为甘油或硅油。根据真空规2的使用环境的不同,可以选择不同沸点的材料,如硅油、甘油,通过甘油压力传导液体的真空规2可以测量150~180℃高温腔室的真空度,通过硅油压力传导液体的真空规2可以测量200~300℃高温腔室的真空度,现在已经实验过的压力传导液体最高可以耐500℃高温腔室的真空度。压力传导液采用耐高温液体时,可用于有高温气体的真空环境中,能够避免高温气体把热传到测量隔膜21上,引起测量隔膜21的变形,影响 测量精度或烧毁真空规2的电容元件22。
使用时,为了适应腐蚀性的真空测量场合,前级隔膜11可以采用耐腐蚀材料,可以根据抵抗腐蚀气体种类的不同选择不同的材料,也可以选用非金属材料。在极端的场合可以通过牺牲前级隔膜11保护真空规2。
综上所述,本发明在前级隔膜与测量隔膜之间填充的压力传导液体,可用于有腐蚀性气体的真空环境中,避免造成真空规的测量隔膜被腐蚀的问题,同时也避免了真空环境中的易沉积物质在真空规的内壁和测量隔膜上沉积,引起测量隔膜的变形,影响真空度的检测精度的问题;预先设置前级腔室,即使沉积物质会造成前级腔室入口的堵塞,造成前级隔膜变形,也不会影响检测精度,即使腐蚀性气体或高温气体造成前级隔膜损坏,位于前级腔室中也便于前级隔膜更换,不会影响到后续真空规;本发明还可用于有高温气体的真空环境中,能够避免高温气体把热传到测量隔膜上,引起测量隔膜的变形,影响测量精度或烧毁真空规的电容元件的问题。因此本发明不仅适合常规环境下的真空度测量,而且适合极端工况下的真空度测量。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (12)

  1. 一种真空测量装置,其特征在于:包括沿压力传导方向依次设置的前级腔室和真空规,所述前级腔室与所述真空规连通,所述前级腔室内设有前级隔膜,所述真空规内设有测量隔膜,所述前级隔膜与所述测量隔膜之间形成压力传导腔,所述压力传导腔内填充有压力传导液。
  2. 根据权利要求1所述的真空测量装置,其特征在于:所述前级腔室与所述真空规通过管道连通。
  3. 根据权利要求2所述的真空测量装置,其特征在于:所述管道包括螺旋状管道和直线状管道。
  4. 根据权利要求2所述的真空测量装置,其特征在于:所述管道上设有散热元件。
  5. 根据权利要求4所述的真空测量装置,其特征在于:所述散热元件为均匀分布的散热翅片。
  6. 根据权利要求1所述的真空测量装置,其特征在于:所述前级腔室上设有压力传导液的填充口。
  7. 根据权利要求1所述的真空测量装置,其特征在于:所述真空规内还设有电容元件、电容分析元件和输入输出单元,所述电容元件与所述压力传导液分别位于所述测量隔膜两侧,所述电容分析元件与所述电容元件连接,且通过电极与所述输入输出单元连接。
  8. 根据权利要求2所述的真空测量装置,其特征在于:所述真空规在与所述管道的连通处设有隔热挡板。
  9. 根据权利要求1所述的真空测量装置,其特征在于:所述真空测量装置还包括吸气剂,所述吸气剂设置于所述真空规内。
  10. 根据权利要求1所述的真空测量装置,其特征在于:所述真空测量装置还包括加热器,所述加热器用于对所述前级腔室加热,加热温度不超过500℃。
  11. 根据权利要求1-10任意一项所述的真空测量装置,其特征在于:所述压力传导液为甘油或硅油。
  12. 根据权利要求2所述的真空测量装置,其特征在于:所述管道包括螺旋状管道和两个直线状管道,所述螺旋状管道位于两个所述直线状管道之间,两个所述直线管道分别与所述前级腔室与所述真空规连接。
PCT/CN2018/092739 2017-12-15 2018-06-26 真空测量装置 WO2019114243A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711353301.2 2017-12-15
CN201711353301.2A CN107976279A (zh) 2017-12-15 2017-12-15 一种真空测量装置

Publications (1)

Publication Number Publication Date
WO2019114243A1 true WO2019114243A1 (zh) 2019-06-20

Family

ID=62006484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092739 WO2019114243A1 (zh) 2017-12-15 2018-06-26 真空测量装置

Country Status (5)

Country Link
US (1) US20190187018A1 (zh)
JP (1) JP6538243B6 (zh)
KR (1) KR20190072388A (zh)
CN (1) CN107976279A (zh)
WO (1) WO2019114243A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107976279A (zh) * 2017-12-15 2018-05-01 北京创昱科技有限公司 一种真空测量装置
CN111044602A (zh) * 2019-12-31 2020-04-21 中国科学院微电子研究所 检测膜片式真空压力计沉积物的方法
CN111473805B (zh) * 2020-04-17 2021-09-21 江苏多维科技有限公司 一种微机电环境传感器及其制备方法
CN111766013B (zh) * 2020-07-09 2021-11-30 苏州大观信息技术有限公司 智能真空表、真空压力智能监控系统和监控方法
CN114812925B (zh) * 2022-05-05 2023-08-22 国电内蒙古东胜热电有限公司 一种电厂凝汽器真空识别计算检测装置及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000131164A (ja) * 1998-10-28 2000-05-12 Hitachi Ltd 絶対圧力伝送器
WO2007057433A1 (de) * 2005-11-18 2007-05-24 Endress+Hauser Gmbh+Co.Kg Vorrichtung und verfahren zur befüllung eines druckmessaufnehmers
CN101720427A (zh) * 2007-04-16 2010-06-02 Mks仪器公司 电容压力计和涉及自动漂移校正的方法
CN101776502A (zh) * 2008-12-24 2010-07-14 佳能安内华股份有限公司 电容式隔膜真空计和真空装置
CN202141553U (zh) * 2011-05-13 2012-02-08 上海依易自动化设备有限公司 测压敏感元件及带有该元件的电容式压力传感器
CN204439273U (zh) * 2015-02-11 2015-07-01 上海集成电路研发中心有限公司 一种真空压力计
WO2016206923A1 (de) * 2015-06-26 2016-12-29 Endress+Hauser Gmbh+Co. Kg Druckübertragungsmodul und druckmessaufnehmer mit einem druckübertragungsmodul
CN206683816U (zh) * 2017-04-17 2017-11-28 西安创联新能源设备有限公司 一种水冷真空测量缓冲管
CN107976279A (zh) * 2017-12-15 2018-05-01 北京创昱科技有限公司 一种真空测量装置

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3977391A (en) * 1974-07-16 1976-08-31 Hittman Corporation Pressure sensor apparatus
US4227418A (en) * 1979-09-24 1980-10-14 Fischer & Porter Company Capacitive pressure transducer
US4370890A (en) * 1980-10-06 1983-02-01 Rosemount Inc. Capacitive pressure transducer with isolated sensing diaphragm
US4735098A (en) * 1985-11-19 1988-04-05 Kavlico Corporation Dual diaphragm differential pressure transducer
JPS63155038U (zh) * 1987-03-30 1988-10-12
US5271277A (en) * 1991-12-23 1993-12-21 The Boc Group, Inc. Capacitance pressure transducer
US5808206A (en) * 1996-01-16 1998-09-15 Mks Instruments, Inc. Heated pressure transducer assembly
JPH10274587A (ja) * 1997-03-28 1998-10-13 Yamatake:Kk 差圧発信器
JPH1194671A (ja) * 1997-09-16 1999-04-09 Yokogawa Electric Corp 圧力センサ
US6295875B1 (en) * 1999-05-14 2001-10-02 Rosemount Inc. Process pressure measurement devices with improved error compensation
US6351993B1 (en) * 2000-05-09 2002-03-05 Visteon Global Technologies, Inc. Fluid level sensor without moving parts
JP2002055008A (ja) * 2000-08-11 2002-02-20 Anelva Corp 薄膜ゲッター内蔵型真空センサ
US6993973B2 (en) * 2003-05-16 2006-02-07 Mks Instruments, Inc. Contaminant deposition control baffle for a capacitive pressure transducer
US6883380B2 (en) * 2003-05-16 2005-04-26 Rosemount Inc Pressure sensor capsule
JP2004361159A (ja) * 2003-06-03 2004-12-24 Fuji Electric Systems Co Ltd リモートシール形圧力・差圧発信器
JP2008501512A (ja) * 2004-06-03 2008-01-24 インテグリス・インコーポレーテッド 供給および出口側ベントを備える流体濾過装置
JP4014006B2 (ja) * 2004-06-17 2007-11-28 株式会社山武 圧力センサ
US7201057B2 (en) * 2004-09-30 2007-04-10 Mks Instruments, Inc. High-temperature reduced size manometer
US7137301B2 (en) * 2004-10-07 2006-11-21 Mks Instruments, Inc. Method and apparatus for forming a reference pressure within a chamber of a capacitance sensor
KR20060032043A (ko) * 2004-10-11 2006-04-14 삼성전자주식회사 불순물 흡착을 방지하기 위한 다이어프램식 압력센서
US7574920B2 (en) * 2005-01-18 2009-08-18 Rutherford Robert B Tire pressure gauge with sensor support
US20090038785A1 (en) * 2007-08-06 2009-02-12 Zagalsky Harry Y Tubes for heat exchange
US7497123B1 (en) * 2007-12-18 2009-03-03 Rosemount Inc. Direct mount for pressure transmitter with thermal management
US8042401B2 (en) * 2008-06-12 2011-10-25 Rosemount, Inc. Isolation system for process pressure measurement
US7681456B2 (en) * 2008-06-20 2010-03-23 Rosemount Inc. Field device including a capillary tube having a non-cylindrical lumen
US7918134B2 (en) * 2008-10-06 2011-04-05 Rosemount Inc. Thermal-based diagnostic system for process transmitter
US9228866B2 (en) * 2012-06-06 2016-01-05 Dieterich Standard, Inc. Process fluid flow transmitter with finned coplanar process fluid flange
JP2015129684A (ja) * 2014-01-08 2015-07-16 株式会社アルバック 金属セラミック接合体、隔膜真空計、金属とセラミックとの接合方法、および、隔膜真空計の製造方法
RU2649042C1 (ru) * 2014-04-25 2018-03-29 Роузмаунт Инк. Коррозионностойкий модуль давления для измерительного преобразователя давления технологической текучей среды
US20180238646A1 (en) * 2017-02-23 2018-08-23 Larry Baxter Methods For Negating Deposits Using Cavitation Induced Shock Waves
JP6895289B2 (ja) * 2017-03-29 2021-06-30 株式会社堀場エステック 圧力センサ
JP7285621B2 (ja) * 2017-11-29 2023-06-02 株式会社堀場エステック 真空計
CN207832378U (zh) * 2017-12-15 2018-09-07 北京创昱科技有限公司 一种真空测量装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000131164A (ja) * 1998-10-28 2000-05-12 Hitachi Ltd 絶対圧力伝送器
WO2007057433A1 (de) * 2005-11-18 2007-05-24 Endress+Hauser Gmbh+Co.Kg Vorrichtung und verfahren zur befüllung eines druckmessaufnehmers
CN101720427A (zh) * 2007-04-16 2010-06-02 Mks仪器公司 电容压力计和涉及自动漂移校正的方法
CN101776502A (zh) * 2008-12-24 2010-07-14 佳能安内华股份有限公司 电容式隔膜真空计和真空装置
CN202141553U (zh) * 2011-05-13 2012-02-08 上海依易自动化设备有限公司 测压敏感元件及带有该元件的电容式压力传感器
CN204439273U (zh) * 2015-02-11 2015-07-01 上海集成电路研发中心有限公司 一种真空压力计
WO2016206923A1 (de) * 2015-06-26 2016-12-29 Endress+Hauser Gmbh+Co. Kg Druckübertragungsmodul und druckmessaufnehmer mit einem druckübertragungsmodul
CN206683816U (zh) * 2017-04-17 2017-11-28 西安创联新能源设备有限公司 一种水冷真空测量缓冲管
CN107976279A (zh) * 2017-12-15 2018-05-01 北京创昱科技有限公司 一种真空测量装置

Also Published As

Publication number Publication date
CN107976279A (zh) 2018-05-01
KR20190072388A (ko) 2019-06-25
JP2019109216A (ja) 2019-07-04
JP6538243B1 (ja) 2019-07-03
US20190187018A1 (en) 2019-06-20
JP6538243B6 (ja) 2019-07-31

Similar Documents

Publication Publication Date Title
WO2019114243A1 (zh) 真空测量装置
CN104995726B (zh) 多区加热器中的温度测量
US8423304B2 (en) Thermal, flow measuring device
CN109632573B (zh) 一种用于等热流加热条件下超临界压力流体流动传热可视化实验装置
CN104931373B (zh) 一种腐蚀疲劳裂纹扩展试验装置
WO2018105142A1 (ja) 配管診断方法、装置およびシステム
CN105865701B (zh) 一种高温氟盐压力计
JP2004505268A (ja) 溶融スチールの温度を連続的に測定するための方法とこの方法に用いられる管
CN105043570A (zh) 测温元件表贴在管壁上测试温差的方法
CN103713013B (zh) 测试管状材料轴向导热系数的装置
CN208043152U (zh) 一种用于化工品生产的质量流量计
CN102110387B (zh) 测量微管对流传热系数的教学实验装置
CN207832378U (zh) 一种真空测量装置
CN113267468B (zh) 一种用于分子近红外吸收光谱分析的高温高压吸收池装置
KR101153872B1 (ko) 복사간섭 보정이 가능한 기체 온도 측정기
CN105300556B (zh) 一种双层套管内管内壁温度的测量方法
CN209910832U (zh) 一种应用于石墨高温烧结炉的测温装置
CN114942078A (zh) 一种红外测温传感器及测温方法
TWI542859B (zh) A method for detecting the height of a powder or liquid in a closed container
CN112730507B (zh) 一种液体比热容测量系统及测量方法
CN107560744A (zh) 温度计套管装置
JP2012154855A (ja) 物理量測定装置及び物理量測定方法
CN202003554U (zh) 一种测量微管对流传热系数的教学实验装置
CN204202809U (zh) 真空度测量装置
CN212321380U (zh) 用于光学粉尘仪的除汽装置及粉尘监测设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18888875

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/10/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18888875

Country of ref document: EP

Kind code of ref document: A1