WO2019113933A1 - 一种3d打印的可光致固化组合物 - Google Patents

一种3d打印的可光致固化组合物 Download PDF

Info

Publication number
WO2019113933A1
WO2019113933A1 PCT/CN2017/116440 CN2017116440W WO2019113933A1 WO 2019113933 A1 WO2019113933 A1 WO 2019113933A1 CN 2017116440 W CN2017116440 W CN 2017116440W WO 2019113933 A1 WO2019113933 A1 WO 2019113933A1
Authority
WO
WIPO (PCT)
Prior art keywords
photocurable composition
composition according
weight
photosensitive resin
functional group
Prior art date
Application number
PCT/CN2017/116440
Other languages
English (en)
French (fr)
Inventor
罗小帆
胡梦龙
Original Assignee
苏州聚复高分子材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州聚复高分子材料有限公司 filed Critical 苏州聚复高分子材料有限公司
Priority to CN201780003231.XA priority Critical patent/CN110167979A/zh
Priority to PCT/CN2017/116440 priority patent/WO2019113933A1/zh
Publication of WO2019113933A1 publication Critical patent/WO2019113933A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/10Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers containing more than one epoxy radical per molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/20Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern

Definitions

  • the invention relates to a 3D printing material, in particular to a photocurable composition which can be used for stereolithography (SLA) or digital light processing (DLP) 3D printing and Laser direct structuring method.
  • SLA stereolithography
  • DLP digital light processing
  • MID Molded Interconnect Device
  • LDS Laser Direct Structuring
  • Laser direct structuring has great flexibility in forming conductive traces compared to conventional molded metal, flexible printed circuit boards, and two-stage molding methods, but special molds are still required to produce MID components.
  • the development cycle is long, prototype verification is difficult, and design changes are expensive.
  • the present invention proposes a photocurable composition which can be used for Stereolithography (SLA) or Digital Light Processing (DLP). 3D printing and laser direct structuring methods.
  • SLA Stereolithography
  • DLP Digital Light Processing
  • a photocurable composition comprises: a polymerizable or crosslinked photosensitive resin; a laser direct structuring additive; and a dispersing agent.
  • the laser direct structuring additive is added in an amount of from 0.5% by weight to 20% by weight based on the amount of the polymerizable or crosslinked photosensitive resin.
  • the dispersant is added in an amount of from 0.1% by weight to 20% by weight relative to the laser direct structuring additive in the photocurable composition.
  • the photosensitive resin is a photosensitive resin which can undergo photocationic curing, a photosensitive resin which can undergo photo-radical curing, or a combination thereof.
  • the photo-cation-curable photosensitive resin comprises:
  • the cationic initiator is added in an amount of from 0.1 to 20% by weight (w/w) based on the total mass of the photosensitive resin.
  • the epoxy polymerizable functional group is an oxirane ring, a propylene oxide ring, an epoxycyclohexane group, or one of the above Kind or more A derivative of a functional group.
  • the cationic initiator is a photoinitiator that can be excited by ultraviolet light, visible light or infrared light.
  • the cationic initiator is an aryl diazonium salt, a diaryliodonium salt, a triarylsulfonium salt, a triarylselenium salt, an aromatic ferrocene salt. Salt, or a mixture of the above.
  • the cationic initiator is diaryliodonium hexafluoroarsenate, diaryliodonium hexafluoroantimonate, diaryliodonium sulfonate a salt, a diaryliodonium borate, a triarylsulfonium sulfonate, a triarylsulfonium borate, a triarylsulfonium hexafluoroantimonate, or a mixture of the above.
  • the photo-radically curable photosensitive resin comprises: a monomer capable of undergoing radical curing, an oligomer or a high a polymer having at least one free-radically polymerizable functional group, wherein the oligomer has a molecular weight of from 200 to 1,000, a polymer having a molecular weight of from 1,000 to 30,000, and a radical initiator.
  • the radical initiator is added in an amount of from 0.1 to 20% (w/w) based on the total mass of the photosensitive resin.
  • the photo-radically curable photosensitive resin comprises a monomer, an oligomer or a polymer having at least one mercapto group.
  • the content of the monomer, oligomer or polymer having at least one mercapto group in the photocurable composition is from 1 to 20% by weight based on the total weight of the photosensitive resin.
  • the oligomer or polymer having at least one mercapto group has a degree of polymerization of not more than 40 in the photocurable composition.
  • the radical initiator is a photoinitiator which is excited by ultraviolet light, visible light or infrared light.
  • the free radical initiator is benzoin diethyl ether, methyl benzoylformate, hydroxycycloethane benzophenone, phenyl bis (2) , 4,6-trimethylbenzoyl)phosphine oxide, benzothiazole, Irgacure 651, Irgacure 907, Darocur 2959, camphorquinone, alpha-ketoglutaric acid, or a mixture of the above.
  • the laser direct structuring additive is selected from the group consisting of heavy metal oxides, heavy metal mixed oxide spinels, copper salts, and organometallic chelate complexes. Or a combination comprising at least one of the foregoing.
  • the laser direct structuring additive is selected from one or more of tin oxide, copper chromium oxide spinel or basic copper phosphate. kind.
  • the dispersing agent for uniformly dispersing a laser direct structuring additive into a photosensitive resin in the photocurable composition is selected from the group consisting of an acrylic dispersant and polyvinylpyrrolidone.
  • a dispersant a polyethylene glycol dispersant or a polyether dispersant.
  • a 3D printed article obtained by stereolithography (SLA) or digital light processing (DLP) 3D printing of the photocurable composition.
  • SLA stereolithography
  • DLP digital light processing
  • the interior is a non-solid structure with voids.
  • the non-solid structure having a void is a hollow structure that is regularly arranged by programming.
  • a molded interconnect device comprising Stereolithography (SLA) or digital light processing (DLP) 3D from the photocurable composition.
  • SLA Stereolithography
  • DLP digital light processing
  • direct laser structuring comprises performing laser etching at a power of from about 1 w to about 10 w, a frequency of from about 30 kHz to about 110 kHz, and a speed of from about 1 m/s to about 5 m/s.
  • the present invention achieves a shortened MID by providing a photocurable composition suitable for 3D printing and direct laser structuring, combining laser direct structuring materials with stereolithography (SLA) or digital light processing (DLP) techniques. Development cycle, reducing design costs and improving design flexibility.
  • SLA stereolithography
  • DLP digital light processing
  • FIG. 1 is a schematic diagram of the working principle of the SLA
  • Figure 2 shows the smooth and internal porous structure of the various upper and lower surfaces of a variety of complex designs printed by stereolithography (SLA) or digital light processing (DLP) technology.
  • SLA stereolithography
  • DLP digital light processing
  • the invention proposes a new MID component manufacturing method, which is printed by 3D printing, that is, additive manufacturing or rapid prototyping, especially by stereo light curing (SLA) or digital light processing (DLP) technology.
  • the surface is smooth and the interior can have a complex design of the porous model structure, and then use the laser direct structuring technology to activate the surface of the model, and then plate the metal, the MID of the form design.
  • the method of the invention can greatly shorten the MID development cycle, reduce the design cost, and improve the design flexibility. Since materials are stacked in layers during printing, 3D printing does not have the limitations of conventional processes; at the same time, the cost of producing small batches using 3D printing is much lower compared to conventional production processes.
  • the 3D printing process begins with a computer-generated data source that describes the object.
  • This computer generated data source can be based on real objects or virtual objects. For example, a real object can be scanned by a 3D scanner, and the acquired data can be used to generate a data source. Or the data source can be designed to be generated.
  • data sources are typically converted to standard tessellation language files (STLs).
  • STLs standard tessellation language files
  • the 3D printing software will read the file and convert it into hundreds or even millions of slices.
  • the 3D printing software then outputs the machine language (such as Gcode) to the 3D printer.
  • the 3D printer starts to print these slice information layer by layer according to the instruction, and finally generates this object.
  • the print platform 29 is immersed in the resin at a distance from the resin level (this distance is the height at which the lower layer needs to be printed).
  • a laser beam 26 (generally ultraviolet light) is irradiated from the resin bath 21 on the liquid surface of the photosensitive resin. Under the reflection of the galvanometer, the laser draws each layer pattern according to the program.
  • the photosensitive resin is cured as the laser is irradiated.
  • the print platform 29 is controlled by software to move down a distance (this distance is the layer height at which the lower layer needs to be printed).
  • the photosensitive resin flows until it covers the printed layer (if the photosensitive resin has a large viscosity and poor self-flow, a doctor blade is required to help coat the layer). This one The steps are repeated until the entire item is printed. Then, the printing platform moves up out of the resin tank to facilitate the removal of the printed items.
  • Digital light processing as described in US 6,942,830 B2, has a similar principle and structure to that of SLA: it is also the use of ultraviolet light (or visible light) to cure the layer of photosensitive resin liquid in the resin bath. But the difference is that the SLA uses laser spot scanning, and each layer of the pattern is drawn point by point according to the program under the reflection of the galvanometer; while the DLP uses the surface light source, and the layer pattern is projected once by the dynamic photomask. The photosensitive resin is liquid level, and after the layer is cured, the next layer of the pattern is projected.
  • the dynamic generation can reticle using an LCD screen, an optical modulator (lightmodulator), or digital micromirror device (DMD), such as the Texas Instruments DLP (TM) chip.
  • high dielectric constant (Dk) and/or low loss factor also known as dissipation factor, Df are advantageous features.
  • Dk dielectric constant
  • Df dissipation factor
  • a high Dk will reduce the size of the antenna while a low Df minimizes energy loss (heat) and/or maximizes the energy of the radiation. Therefore, it is advantageous to provide a high dielectric constant and/or low loss factor material.
  • an advantageous solution is to provide an internal porous structure to thereby reduce the relative dielectric constant without affecting the electrical conductivity of the circuit and the mechanical properties of the component.
  • Figure 2 shows some examples of such a complex design of porous structures.
  • This complex design of porous structures is difficult to manufacture using conventional processes.
  • the 3D printing method using the stereoscopic light curing (SLA) or digital light processing (DLP) technology proposed by the present invention is capable.
  • the 3D printed article obtained by the SLA or DLP technique of the present invention may have a dielectric constant of less than 2.6, less than 2.5, less than 2.4, less than 2.3, less than 2.2, less than 2.1, or less than 2.0.
  • the traditional method is difficult to obtain a smooth MID model.
  • the so-called surface smoothness refers to the object The surface does not exist or there are almost no structures such as micropores or micropits, and the subsequent processed circuits are not damaged or defective.
  • the 3D printed article obtained by the present invention in SLA or DLP technology can be surface smooth.
  • a photocurable composition comprising: (a) a photosensitive resin capable of polymerization or crosslinking; (b) a a laser direct structuring additive; (c) a dispersing agent.
  • the main components of the photosensitive resin include monomers, oligomers or polymers, photoinitiators, and optionally other additives.
  • the photoinitiator absorbs ultraviolet or visible light, it initiates polymerization of the monomer (or oligomer or polymer) to form a long polymer chain.
  • the macroscopic performance is that liquid monomers (or oligomers or polymers) gradually solidify under illumination.
  • the effects of the additive include toning, anti-oxidation, changing the wavelength of absorption of the photoinitiator, accelerating the curing rate, and enhancing the strength after curing.
  • the photosensitive resin used in the present invention includes acrylates and epoxies.
  • the acrylate monomer is used in combination with a free radical photoinitiator. Under illumination, the initiator generates free radicals and initiates free radical polymerization to form long chains of polymers.
  • the advantage of free radical polymerization is that it has a fast reaction speed and a short curing time.
  • the epoxy resin monomer is used in combination with a cationic photoinitiator. Under illumination, such initiators generate cations that initiate ionic polymerization to form long chains of polymers.
  • the epoxy resin has better mechanical properties, solvent resistance and thermal stability after curing than the radically polymerized acrylate resin.
  • the photocurable composition of the present invention comprises not only (a) a polymerizable or crosslinked photosensitive resin comprising a monomer, oligomer or polymer having a functional group capable of undergoing polymerization or crosslinking,
  • the crosslinking agent or initiator, the polymerizable or crosslinked photosensitive resin may undergo radical polymerization or epoxy polymerization; and further comprise (b) a laser direct structuring additive; (c) a dispersing agent.
  • the concentration of the agent can adjust the rheological properties of the photocurable composition and the physical properties after curing to achieve specific printing parameters and print requirements.
  • the radical-curable monomer, oligomer or polymer comprises at least one free-radically polymerizable functional group.
  • the initiator is a free radical initiator.
  • the photosensitive resin undergoes radical polymerization under light conditions.
  • the photosensitive resin may further comprise (iii) at least one fluorenyl group in addition to (i) a monomer capable of radically curing, an oligomer or a high polymer, and (ii) a radical initiator. Monomer, oligomer or polymer.
  • the photosensitive resin undergoes radical decyl olefin polymerization under light conditions.
  • the oxygen inhibition effect of free radical polymerization is the biggest obstacle to SLA/DLP 3D printing. Oxygen quenches the increase in photoinitiator production, which hinders free radical polymerization. In SLA/DLP 3D printing, the curing depth of each layer is only 25-100um, and the oxygen inhibition effect is more obvious. The oxygen inhibition effect causes the surface of the photosensitive resin to not be completely cured or even cured. Therefore, for SLA/DLP 3D printing, the oxygen inhibition effect is a major obstacle. It is possible to avoid the effect of oxygen inhibition on the curing of the material: printing under nitrogen protection; using very high intensity UV light; or increasing the concentration of photoinitiator. However, all three approaches complicate the 3D printing process, limiting the application of this technology and increasing the cost of use.
  • the present invention utilizes a thiol-ene reaction to avoid the inhibition of oxygen inhibition by SLA/DLP 3D printing.
  • Oxygen molecules react with carbon radicals or thiol radicals to form peroxy radicals.
  • the peroxy radical does not quench the polymer chain growth reaction, but will take away the hydrogen atom on the thiol to form another thiol radical, thereby continuing the polymer chain growth reaction. In this way, the oxygen inhibition effect will be avoided.
  • the content of the monomer, oligomer or polymer having at least one mercapto group in the photocurable composition is from 1 to 20% by weight, preferably based on the total weight of the photosensitive resin. It is from 1 to 10% by weight, more preferably from 5 to 10% by weight, which is advantageous for improving the curing efficiency of the composition.
  • the oligomer or polymer having at least one mercapto group has a degree of polymerization of not more than 40, and more preferably, the degree of polymerization is not more than 20.
  • the radically polymerizable functional group has the following structure:
  • X is C or Si;
  • R 1 , R 2 and R 3 are the same or different and are H, halogen, alkyl, haloalkyl, hydroxy, cyano, alkoxy, aryl or aryloxy.
  • the radically polymerizable functional group has the following structure:
  • R 1 and R 2 are the same or different and are H, halogen, alkyl, haloalkyl, hydroxy, cyano, alkoxy, aryl or aryloxy.
  • the radically polymerizable functional group has the following structure:
  • X is O, S, SO 2 ; and R 1 is H, halogen, alkyl, haloalkyl, hydroxy, cyano, alkoxy, aryl or aryloxy.
  • the radically polymerizable functional group has the following structure:
  • the radically polymerizable functional group has the following structure:
  • X is C or Si;
  • R 1 , R 2 , R 3 , R 4 are the same or different and are H, halogen, alkyl, haloalkyl, hydroxy, cyano, alkoxy, aryl or aryloxy base.
  • the radically polymerizable functional group has the following structure:
  • R 1 and R 2 are the same or different and are H, halogen, alkyl, haloalkyl, hydroxy, cyano, alkoxy, aryl or aryloxy.
  • the radically polymerizable functional group has the following structure:
  • R 1 is H, halogen, alkyl, haloalkyl, hydroxy, cyano, alkoxy, aryl or aryloxy.
  • the radically polymerizable functional group may be an acryloxyalkyl group, an acrylate functional group, an alkenyloxy group, an alkene group, an alkyne group or the like.
  • acryloxyalkyl groups include, but are not limited to, acryloyloxymethyl, methacryloxymethyl, 2-acryloyloxyethyl, 2-methacryloyloxyethyl, 3-acryloyloxypropane Base, 3-methacryloxypropyl or 4-acryloxybutyl.
  • olefinic groups include, but are not limited to, vinyl, allyl, butenyl, pentenyl, hexenyl, and the like.
  • the free radical initiator used can be photoexcited.
  • Optional free radical initiators include, but are not limited to, benzoin diethyl ether, methyl benzoylformate, hydroxycycloethane benzophenone (Irgacure 184 from BASF Corporation), phenyl bis(2,4,6-trimethylbenzene) Formyl)phosphine oxide (XBPO), albendazole, Irgacure 651 (from BASF), Irgacure 907 (from BASF), Darocur 2959 (from BASF), camphorquinone (CQ), alpha-ketoglutarate (KGA), Or a mixture of the above.
  • the radical initiator used may be a single radical initiator or a mixture of a plurality of radical initiators.
  • concentration of the radical initiator is generally 0.1 to 20% (w/w), preferably 1 to 10% (w/w), more preferably 1 to 5% (w/) based on the total mass of the photosensitive resin in the component. w), most preferably from 1 to 3% (w/w).
  • the photosensitive resin which can undergo epoxy polymerization comprises a functional group having at least one epoxy polymerizable.
  • the initiator is a cationic initiator.
  • the photosensitive resin undergoes epoxy polymerization under light conditions.
  • Epoxy polymerizable functional group means a monovalent oxygen-containing three-membered or four-membered ring-shaped ether compound.
  • Epoxy polymerizable functional groups include, but are not limited to, 2,3-epoxypropane, 3,4-epoxycyclobutane, 4,5-epoxycyclopentyl, 2-glycidoxyethyl , 3-glycidoxypropyl, 4-glycidoxybutyl, 2-(3,4-epoxycyclohexane)ethyl, 3-(3,4-epoxycyclohexane) Propyl, or a derivative thereof.
  • the cationic initiator used can be photoexcited.
  • Optional cationic initiators include, but are not limited to, iodonium salts, diaryliodonium sulfonates, triarylsulfonium sulfonates, diaryliodonium borate, triarylsulfonium borate.
  • Optional iodonium salt initiators include, but are not limited to, diaryliodonium salts such as bis(alkylbenzene)iodonium hexafluoroantimonate or bis(alkylbenzene)iodohexafluoroarsenate, further, for example, double (Dodecane benzene) iodine hexafluoroantimonate or bis(dodecane benzene) iodine hexafluoroarsenate.
  • diaryliodonium salts such as bis(alkylbenzene)iodonium hexafluoroantimonate or bis(alkylbenzene)iodohexafluoroarsenate, further, for example, double (Dodecane benzene) iodine hexafluoroantimonate or bis(dodecane benzene) iodine hexafluoroarsenate.
  • diaryliodonium sulfonate initiators include, but are not limited to, diaryliodonium perfluoroalkyl sulfonates such as diaryliodonium perfluoroethyl sulfonate, diaryliodonium perfluorooctane sulfonate Acid salt, diaryliodonium perfluorobutyl sulfonate, diaryliodonium perfluoromethyl sulfonate; diaryl iodoaryl sulfonate, such as diaryliodonium p-toluenesulfonate, diaryl Iodododecanebenzenesulfonate, diaryliodonium sulfonate, diaryliodonium 3-nitrobenzenesulfonate.
  • diaryliodonium perfluoroalkyl sulfonates such as diaryliodonium perfluoroethyl sulf
  • Optional triarylsulfonium sulfonate initiators include but triarylsulfonium perfluoroalkyl sulfonates such as triarylsulfonium perfluoroethylsulfonate, triarylsulfonium perfluorooctanesulfonate, triarylsulfonium Perfluorobutyl sulfonate, triarylsulfonium perfluoromethanesulfonate; triarylsulfonyl sulfonate, such as triarylsulfonium p-toluenesulfonate, triarylsulfonium dodecylbenzenesulfonate, triaryl Benzobenzenesulfonate, triarylsulfonium 3-nitrobenzenesulfonate.
  • triarylsulfonium perfluoroalkyl sulfonates such as triaryls
  • Optional diaryliodonium borate initiators include, but are not limited to, diaryliodonium perhaloaryl borate.
  • Optional triarylsulfonium borate initiators include, but are not limited to, triarylsulfonium perhaloaryl borate.
  • the cationic initiator used may be a single cationic initiator or a mixture of a plurality of cationic initiators.
  • concentration of the cationic initiator is generally 0.1 to 20% (w/w), preferably 1 to 10% (w/w), more preferably 1 to 5% (w/w), based on the mass of the photosensitive resin in the component. Most preferably, it is 1 to 3% (w/w).
  • laser direct structuring is also included (laserdirect) Structuring, LDS) additives.
  • the LDS additive is selected to enable the composition to be used in a laser direct structuring process.
  • a laser beam exposes the LDS additive to place it at the surface of the thermoplastic composition and activates the metal atoms from the LDS additive.
  • the LDS additive is selected such that upon exposure to the laser beam, the metal atoms are activated and exposed to form metal particles. At the same time, no metal atoms are exposed in the unexposed areas of the laser beam.
  • these exposed metal particles crystallize as a core to form a conductive path.
  • LDS additives useful in the present invention include, but are not limited to, heavy metal mixture oxide spinel, such as copper chromium oxide spinel, and copper salts, such as copper hydroxide phosphate, in accordance with a preferred embodiment of the present invention. , copper phosphate, copper sulfate, cuprous thiocyanate; or a combination comprising at least one of the foregoing LDS additives.
  • the LDS additive is present in an amount of from 0.5% by weight to 20% by weight based on the total weight of the photosensitive resin.
  • the LDS additive is present in an amount from 1% by weight to 15% by weight based on the total weight of the photosensitive resin.
  • the LDS additive is present in an amount of from 3 wt% to 10 wt%, based on the total weight of the photosensitive resin, and further preferably, the LDS additive is present in an amount of from 5 wt% to 10 wt%, based on the total mass of the photosensitive resin.
  • LDS additive it is essential in the present invention to uniformly disperse the LDS additive in the photosensitive resin and to obtain a 3D printed material that meets the SLA/DLP requirements.
  • SLA/DLP the rheological properties of the printed material are critical, affecting whether the print is perfectly immersed in the resin; whether the photosensitive resin can flow after printing a layer until it covers the printed layer; Whether the blade can coat the printed layer and the like.
  • uniform dispersion of LDS additives is also important. If the LDS additive in the 3D printed MID component is not uniformly dispersed, laser etching and plating will be greatly affected, resulting in a decrease in the performance of the resulting conductive path. Photosensitive resins mixed with LDS additives also need to be very good Stability. Otherwise the LDS additive may settle, causing 3D printing failure and laser etch failure.
  • the present invention helps to adjust the rheological properties of the printed material by selecting a suitable dispersant, and improves the dispersion effect and stability.
  • Suitable dispersing agents include, but are not limited to, acrylic dispersants, polyvinylpyrrolidone dispersants, polyethylene glycol dispersants, polyether dispersants, and the like.
  • Preferred acrylic dispersants include, but are not limited to: (RTVanderbilt).
  • Preferred polyvinylpyrrolidone dispersants include, but are not limited to: (RTVanderbilt) and PVPK-15 (ISP Technologies).
  • the dispersant is used in an amount of usually 0.1 to 20% (w/w), preferably 1 to 10% (w/w), more preferably 1 to 5% (w/w), based on the mass of the LDS additive in the component.
  • the photocurable composition of the present invention may further contain various additives which are usually added to this type of resin composition. In one case, multiple additives can be used simultaneously. In another case, these additives may be mixed with the LDS additive and dispersant into the photosensitive resin. Additives that may be selected include, but are not limited to, heat stabilizers, process stabilizers, antioxidants, light stabilizers, plasticizers, antistatic agents, pigments, dyes, colorants, or combinations of one or more of the foregoing.
  • Suitable heat stabilizers include, for example, organic phosphites such as triphenyl phosphite, tris-(2,6-dimethylphenyl) phosphite, etc.; phosphonates such as dimethylphenyl phosphonate A phosphate such as trimethyl phosphate or the like, or a combination comprising at least one of the foregoing heat stabilizers.
  • the heat stabilizer is usually used in an amount of from 0.001 to 0.5 parts by weight based on 100 parts by weight of the photosensitive resin.
  • Suitable antioxidants include, for example, organic phosphites such as tris-(nonylphenyl) phosphite, tris(2,4-di-tert-butylphenyl)phosphite, di(2,4-di) -tert-butylphenyl)pentaerythritol diphosphite, distearyl pentaerythritol diphosphite, etc.; alkylated monohydric phenol or polyhydric phenol; reaction product of alkylation of polyhydric phenol with diene, for example four [ Methylene (3,5-di-tert-butyl-4-hydroxyl) Cinnamate)] methane, etc.; butylated reaction product of p-cresol or dicyclopentadiene; alkylated hydroquinone; hydroxylated thiodiphenyl ether; benzyl compound; An ester of (3,5-di-tert-butyl
  • Suitable light stabilizers include, for example, benzotriazoles such as 2-(2-hydroxy-5-methylphenyl)benzotriazole, 2-(2-hydroxy-5-tert-octylphenyl)-benzene And triazole and 2-hydroxy-4-n-octyloxybenzophenone, etc., or a combination comprising at least one of the foregoing light stabilizers.
  • the light stabilizer is usually used in an amount of from 0.1 to 1.0 part by weight based on 100 parts by weight of the photosensitive resin.
  • Suitable plasticizers include, for example, phthalates such as dioctyl-4,5-epoxy-hexahydrophthalate, tris-(octyloxycarbonylethyl)isocyanurate, A glyceryl tristearate, an epoxidized soybean oil, or the like, or a combination comprising at least one of the foregoing plasticizers.
  • the plasticizer is usually used in an amount of from 0.5 to 3.0 parts by weight based on 100 parts by weight of the photosensitive resin.
  • Suitable antistatic agents include glyceryl monostearate, sodium stearyl sulfonate, sodium dodecyl benzene sulfonate, and the like, or a combination of the foregoing antistatic agents.
  • the antistatic agent is usually used in an amount of from 0.5 to 3.0 parts by weight based on 100 parts by weight of the photosensitive resin.
  • Suitable pigments include, for example, inorganic pigments such as metal oxides and mixed metal oxides such as zinc oxide, titanium dioxide, iron oxide, etc.; sulfides such as zinc sulfide, etc.; aluminates; sodium thiosilicates; Sulfate, chromate, etc.; carbon black; zinc ferrite; ultramarine blue; pigment brown M; pigment red 101; pigment yellow 119; organic pigments such as azo, diazo, quinacridone, anthracene, naphthalene tetracarboxylate Acid, flavanone, isoindolinone, tetrachloroisoindolinone, anthraquinone, anthraquinone, dioxazine, phthalocyanine, and azo lake; pigment blue 60, pigment red 122 Pigment Red 149, Pigment Red 177, Pigment Red 179, Pigment Red 202, Pigment Violet IV, Pigment Blue 15, Pigment Green 7, Pigment Yellow 147
  • Suitable dyes include, for example, organic materials such as coumarin 460 (blue), coumarin 6 (green), nile red, etc.; lanthanide complexes; hydrocarbons and substituted hydrocarbon dyes; polycyclic aromatic hydrocarbon dyes; scintillation dyes (preferably oxazole and oxadiazole dyes); aryl or heteroaryl substituted poly(C2-8) olefin dyes; carbocyanine dyes; indanthrone dyes; phthalocyanine dyes and pigments; oxazine dyes; quinolones Carbostyryl) dye; porphyrin dye; acridine dye; anthraquinone dye; aryl methane dye; azo dye; diazo dye; nitro dye; quinone imine dye; tetrazole dye; thiazole dye; anthraquinone dye; Dye; bis-benzoxazolylthiophene (BBOT); and xant
  • Suitable colorants include, for example, titanium dioxide, cerium, perylene, perinone, ⁇ , quinacridone, xanthene, chewable, chexozoline, thioxanthene, indigo, thiopurine, naphthalene diimide, cyanine, xanthene, methine, lactone, couma , bis-benzoxazolylthiophene (BBOT), naphthalene tetracarboxylic acid derivatives, monoazo and diazo pigments, triarylmethane, aminoketone, bis(styryl)biphenyl derivatives, and the like, and A combination comprising at least one of the foregoing colorants.
  • the colorant is usually used in an amount of from 0.1 to 5 parts by weight based on 100 parts by weight of the photosensitive resin.
  • the photocurable composition of the present patent may also include a flame retardant.
  • the flame retardant is a phosphorus-containing flame retardant such as an organic phosphate and/or an organic compound containing a phosphorus-nitrogen bond.
  • compositions of the present invention may comprise one or more fillers. These fillers can be selected to impart additional impact strength and/or provide additional properties based on the ultimately selected characteristics of the photocurable composition.
  • Suitable fillers or reinforcing agents include, for example, TiO 2 ; fibers such as asbestos, etc.; silicate and silica powders such as aluminum silicate (mullite), synthetic calcium silicate, zirconium silicate, fused Silica, crystalline silica, graphite, natural silica sand, etc.; boron powder such as boron-nitride powder, boron-silicate powder, etc.; oxides such as TiO 2 , alumina, magnesia, etc.; calcium sulfate (as its anhydrate, Dihydrate or trihydrate); calcium carbonate such as chalk, limestone, marble, synthetic precipitated calcium carbonate, etc.; talc, including fibrous, modular, needle-shaped, layered talc, etc.; wollastonite; Surface treated wollast
  • a cerium compound such as barium titanate, barium ferrite, barium sulfate, barite, etc.
  • a fibrous filler for example, a short inorganic fiber such as at least one of aluminum silicate, aluminum oxide, magnesium oxide, and calcium sulfate hemihydrate.
  • a blend of those obtained; natural fillers and reinforcing materials such as wood chips obtained by pulverizing wood, fibrous products such as cellulose, cotton, sisal, jute, starch, softwood flour, lignin, peanut shell, corn a rice outer shell or the like; a reinforced organic fibrous filler formed of an organic polymer capable of forming fibers such as poly(ether ketone), polyimide, poly(phenylene sulfide), polyester , polyethylene, aramid, aromatic polyimide, polyetherimide, polytetrafluoroethylene, acrylic resin, poly(vinyl alcohol), etc.; and other fillers and reinforcing agents such as mica, clay, long Stone, soot, inert silicate microspheres, quartz, quartzite, perlite, diatomaceous earth, diatomaceous earth, carbon black, etc., or a combination comprising at least one of the foregoing fillers or reinforcing agents.
  • the filler and reinforcing agent may be surface treated with
  • the photocurable composition of the present invention can be prepared by uniformly stirring at room temperature to uniformly disperse the laser direct structuring additive and other additives into the photosensitive resin. According to a preferred embodiment, it can be stirred at a temperature of 500-4000 r/min for 10 minutes to 1 hour at room temperature.
  • the prepared composition can also be sieved with a sieve of about 65 mesh, which is more advantageous.
  • the viscosity of the prepared composition mixture is not particularly limited as long as the rheological requirements for 3D printing by SLA or DLP are satisfied. Considering the efficiency of printing and the convenience of cleaning, the general viscosity is below 3000cps.
  • the concentration of the polymer and the crosslinking agent, etc. can adjust the rheological properties of the photocurable composition and the physical properties after curing to meet specific printing parameters and print requirements.
  • the prepared composition mixture is subjected to 3D printing by stereoscopic light curing (SLA) or digital light processing (DLP) technology.
  • SLA stereoscopic light curing
  • DLP digital light processing
  • the resulting The 3D printed article has a regularly arranged internal hollow structure.
  • a laser direct structuring technique is used, i.e., laser etch is used to form an activated surface on the surface of a 3D printed article to provide a basis for subsequent plating to form a conductive path.
  • the laser etching is carried out at a power of from about 1 w to about 10 w and a frequency of from about 30 kHz to about 110 kHz and a speed of from about 1 m/s to about 5 m/s.
  • laser etching is performed at a power of from about 1 w to about 10 w and a frequency of from about 40 kHz to about 100 kHz and a speed of from about 2 m/s to about 4 m/s.
  • laser etching is performed at a power of about 3.5 watts and a frequency of about 40 kHz and a speed of about 2 m/s.
  • the metal layer is plated onto the electrically conductive path in a metallized manner.
  • the metallization comprises the steps of: a) cleaning the etched surface; b) constructing the trajectory; and c) plating.
  • the plated metal layer is typically a copper layer.
  • Example 1 Example 2
  • Example 3 Example 4 1,4-butanediol vinyl ether 90 copies 1,7-octadiene 90 copies N,N'-methylenebisacrylamide 90 copies
  • BYK111 is a dispersant from BYK Chemical Company; “parts” in the table means “parts by weight”, the same below.
  • Preparation of the composition The components were uniformly mixed at room temperature, the stirring speed was 500 r/min, and the stirring time was 10 minutes. The resulting mixture was sieved through a 65 mesh screen to give the desired photocurable composition.
  • One drop of the obtained photocurable composition was dropped on a glass slide, and a laser having a power of 1 W and a wavelength of 355 nm was irradiated at a position of 3 cm above it, and visually observed, the liquidity loss of the liquid droplet was used as an index for judging whether or not it was cured. Record the curing time.
  • compositions of Examples 1, 3 and 4 have a shorter curing time, which is advantageous for the improvement of printing efficiency, and N, N'-methylenebisacrylamide is used.
  • the curing time of the composition of Example 3 was the shortest and most advantageous.
  • Example 5 Polyethylene glycol diacrylate 98 copies 90 copies Tetrakis(3-mercaptopropionic acid) pentaerythritol ester 8 servings Methyl benzoylformate 1 serving 1 serving Tin oxide 1 serving 1 serving BYK111 0.1 parts 0.1 parts Whether the surface of the print is completely cured no Yes
  • BYK111 is a dispersant from BYK Chemical Company
  • Preparation of the composition The components were uniformly mixed at room temperature, the stirring speed was 1000 r/min, and the stirring time was 45 minutes. The resulting mixture was sieved through a 65 mesh screen to obtain the desired photocurable Composition.
  • 3D printing experiment Using the configured photocurable composition to print a test model of size 50mm*50mm*10mm on Formlab's Form1+ model (SLA) (at room temperature, using Form1+ printer's built-in print settings, setting code For "FLGPWH01").
  • SLA Formlab's Form1+ model
  • the surface of the printing member still has a photosensitive resin which is not completely cured, and the touch is sticky.
  • Example 6 the surface of the printed article was completely cured, and the touch was smooth.
  • the inclusion of a suitable amount of a monomer or oligomer having a mercapto functional group in the photocurable composition can more effectively improve the curing properties of the composition.
  • BYK9076 is a dispersant from BYK Chemical Company.
  • Preparation of the composition The components were uniformly mixed at room temperature, the stirring speed was 3300 r/min, and the stirring time was 20 minutes. The resulting mixture was sieved through a 65 mesh screen to give the desired photocurable composition.
  • the test method for the dispersion effect and stability of copper sulfate in the photosensitive resin is as follows: the mixed composition is placed in a transparent measuring cylinder, and the liquid level is recorded; if it is at rest for 1 month, the height of the supernatant is higher than the total liquid level. 5%; the smaller the height of the supernatant, the better the dispersion and the higher the stability.
  • a dispersing agent having a mass of about 1-5% (w/w) based on the mass of the LDS additive in the component is used, and the dispersion effect and stability are better; and the mass of the LDS additive based on the component is 3% ( W/w) dispersant
  • the resulting composition has the best dispersion and highest stability.
  • Preparation of the composition The components were uniformly mixed at room temperature, the stirring speed was 3300 r/min, and the stirring time was 20 minutes. The resulting mixture was sieved through a 65 mesh screen to give the desired photocurable composition.
  • 3D printing experiment A test model with a size of 50 mm*50 mm*10 mm was printed on SprintRay's MoonRay model (DLP technology) using the configured photocurable composition (at room temperature, exposure intensity 50%, exposure time per layer) 30 seconds).
  • test model was laser etched with LPKF's Fusion3D 1100 model (laser power is 5W, laser pulse is 60KHz, laser speed is 2m / s), can form a conductive path, followed by plating treatment (coating time 30min, the thickness of the plated copper layer is 30 ⁇ 35um), forming a circuit circuit.
  • the Qualitative Adhesion Test (ASTM D3359-09) is used to determine if the material is capable of being plated.
  • This test method (ASTM D3359-09) requires the formation of an X-cut in the conductive metal plating applied to the laser etched region.
  • a pressure sensitive tape applied to the X-cut provides a qualitative measurement of the adhesion of the metal to the substrate upon removal from the test material.
  • a suitable scale can be used to evaluate the adhesion of the metal to the substrate to indicate release or retention of the metal. Among them, the level is as follows:
  • the LDS additive copper sulfate based on the mass of the photosensitive resin in the component is more than 5% (w/w), and the adhesion of the obtained circuit is cured by laser etching and plating. Power is excellent. Considering the cost, it is desirable to add LDS additive as little as possible, so the use of LDS additive copper sulfate based on the mass of photosensitive resin in the component of 5% (w/w) is the best choice, about 3-10% (w/w). The amount of addition is preferred.
  • FR-2025 is a flame retardant from 3M Company.
  • Preparation of the composition The components were uniformly mixed at room temperature, the stirring speed was 3300 r/min, and the stirring time was 20 minutes. The resulting mixture was sieved through a 65 mesh screen to give the desired photocurable composition.
  • 3D printing experiment A test model with a size of 50 mm*50 mm*10 mm was printed on SprintRay's MoonRay model (DLP technology) using the configured photocurable composition (at room temperature, exposure intensity 50%, exposure time per layer) 30 seconds).
  • the test model was laser etched with LPKF's Fusion3D 1100 model (laser power is 5W, laser pulse is 60KHz, laser speed is 2m/s), and a conductive path can be formed, followed by plating (coating time 30min, plating)
  • the thickness of the covered copper layer is 30 to 35 um), forming a circuit line.
  • the photocurable composition of the present invention can be surface-cleaned by stereoscopic light curing (SLA) or digital light processing (DLP) technology, and the interior can have The complex design of the porous structure not only does not affect the electrical conductivity of the circuit and the mechanical properties of the component, but also reduces the relative dielectric constant in the subsequent direct laser structuring to meet the performance requirements of the molded interconnect device.
  • the invention utilizes the advantages of high-speed forming and high molding precision by using stereo light curing (SLA) or digital light processing (DLP) technology, and stereoscopic curing (SLA) or digital light processing (DLP) technology of materials. Combined with laser direct structuring (SDL) technology to shorten the MID development cycle, reduce design costs, and increase design flexibility.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

一种可光致固化组合物,其包含光敏树脂、激光直接结构化添加剂、以及分散剂。该组合物可用于立体光固化成型法(Stereolithography,SLA)或数字光处理成型法(Digital Light Processing,DLP)3D打印以及激光直接结构化方法制造模塑互连器件,从而用于多种应用例如个人电脑、笔记本电脑和便携式电脑、手机天线和其他这类通信设备、医疗应用、RFID应用、以及汽车等应用。

Description

一种3D打印的可光致固化组合物 技术领域
发明涉及一种3D打印材料,特别是涉及一种能够光致固化组合物,其能够用于立体光固化成型法(Stereolithography,SLA)或数字光处理成型法(Digital Light Processing,DLP)3D打印以及激光直接结构化方法。
背景技术
随着手机和笔记本电脑日益小型化,模塑互连器件(Molded Interconnect Device,MID)技术被广泛应用。MID技术将电气功能和机械功能结合在单一的结构单位里,例如将电路线路集成在壳体上,以取代传统的印制电路板。这种技术可以有效地减少组件的重量,也节约装配空间,降低制造成本。
使用激光直接结构化(Laser Direct Structuring,LDS)方法形成MID正在变得越来越流行。现有的激光直接结构化技术使用热塑性高聚物单组件注射模制产生MID坯料(MID Blank)。该单个组件包含激光可激活的添加剂以在激光蚀刻的区域上形成金属簇,再经过镀覆过程形成设计的MID原件。借助于激光直接结构化方法,可获得150微米或者更小的导电路径宽度。此外,导电路径之间的间隔也可以是150微米或者更小。
与传统模压金属、安装柔性印刷电路板和两段模塑方法相比,激光直接结构化技术在形成导电线路有着极大的灵活性,但是仍需要专用模具才可以生产MID元件。在手机和笔记本电脑的研发中,往往需要在6-9个月中开发多个版本的电路板,完成模具制造、注塑成型、激光直接结构化、验证、改进等步骤。开发周期长,原型验证困难,设计变化昂贵。
因此,本领域需要提供一种更为快速和方便的MID元件制造方法以及相 应的材料。
发明内容
针对现有技术中存在的技术问题,本发明提出了一种能够光致固化组合物,其能够用于立体光固化成型法(Stereolithography,SLA)或数字光处理成型法(Digital Light Processing,DLP)3D打印以及激光直接结构化方法。
根据本发明的一个方面,一种可光致固化的组合物,包含:可聚合或交联的光敏树脂;激光直接结构化添加剂;以及分散剂。
根据本发明的优选的实施方式,所述可光致固化的组合物中,所述激光直接结构化添加剂相对于可聚合或交联的光敏树脂的添加量是0.5wt%至20wt%。
根据本发明的优选的实施方式,所述可光致固化的组合物中所述分散剂相对于激光直接结构化添加剂的添加量是0.1wt%至20wt%。
根据本发明的优选实施方式,所述的可光致固化的组合物中,所述光敏树脂是可发生光致阳离子固化的光敏树脂、可发生光致自由基固化的光敏树脂、或其组合。
根据本发明的优选实施方式,所述的可光致固化的组合物中,所述的可发生光致阳离子固化的光敏树脂包含:
可发生阳离子固化的单体、寡聚物或高聚物,其具有至少一个可环氧聚合的官能团,其中寡聚物分子量为200-1000或高聚物分子量为1000-30000;以及阳离子引发剂。
根据本发明的优选实施方式,所述的可光致固化的组合物中,阳离子引发剂的添加量是光敏树脂总重量的0.1至20%(w/w)。
根据本发明的优选实施方式,所述的可光致固化的组合物中,所述可环氧聚合的官能团是环氧乙烷环、环氧丙烷环、环氧环己烷基、或上述一种或多种 官能团的衍生物。
根据本发明的优选实施方式,所述的可光致固化的组合物中,所述阳离子引发剂是一种可被紫外光、可见光或红外光激发的光引发剂。
根据本发明的优选实施方式,所述的可光致固化的组合物中,阳离子引发剂是芳基重氮盐、二芳基碘鎓盐、三芳基锍盐、三芳基硒盐、芳茂铁盐,或者是以上多种的混合物。
根据本发明的优选实施方式,所述的可光致固化的组合物中,阳离子引发剂是二芳基碘六氟砷酸盐、二芳基碘六氟锑酸盐、二芳基碘磺酸盐、二芳基碘硼酸盐、三芳基锍磺酸盐、三芳基锍硼酸盐、三芳基锍六氟锑酸盐,或者是以上多种的混合物。
根据本发明的优选实施方式,所述的可光致固化的组合物中,所述的可发生光致自由基固化的光敏树脂包含:可发生自由基固化的单体、寡聚物或是高聚物,其具有至少一个可自由基聚合的官能团,其中寡聚物分子量为200-1000,高聚物分子量为1000-30000;以及自由基引发剂。
根据本发明的优选实施方式,所述的可光致固化的组合物中,所述自由基引发剂的添加量是基于光敏树脂总重量的0.1至20%(w/w)。
根据本发明的优选实施方式,所述的可光致固化的组合物中,所述可发生光致自由基固化的光敏树脂包含具有至少一个巯基的单体、寡聚物或是高聚物。
根据本发明的优选实施方式,所述的可光致固化的组合物中,具有至少一个巯基的单体、寡聚物或高聚物相对于光敏树脂总重量的含量是1至20wt%。
根据本发明的优选实施方式,所述的可光致固化的组合物中,具有至少一个巯基的寡聚物或高聚物的聚合度不大于40。
根据本发明的优选实施方式,所述的可光致固化的组合物中,所述自由基引发剂是一种可被紫外光、可见光或是红外光激发的光引发剂。
根据本发明的优选实施方式,所述的可光致固化的组合物中,所述自由基引发剂是安息香二乙醚、苯甲酰甲酸甲酯、羟基环乙烷苯酮、苯基双(2,4,6-三甲基苯甲酰基)氧化膦、巯苯噻唑、Irgacure651、Irgacure907、Darocur2959、樟脑醌、α-酮戊二酸,或者是以上多种的混合物。
根据本发明的优选实施方式,所述的可光致固化的组合物中,所述激光直接结构化添加剂选自重金属氧化物、重金属混合氧化物尖晶石、铜盐、有机金属螯合络合物,或包含上述的至少一种的组合。
根据本发明的优选实施方式,所述的可光致固化的组合物中,所述激光直接结构化添加剂选自氧化锡、铜铬氧化物尖晶石或碱式磷酸铜中的一种或多种。
根据本发明的优选实施方式,所述的可光致固化的组合物中,用于将激光直接结构化添加剂均匀分散到光敏树脂中的所述分散剂,选自丙烯酸类分散剂、聚乙烯吡咯烷酮类分散剂、聚乙二醇类分散剂或聚醚类分散剂中的一种或多种。
根据本发明的另一方面,提供一种3D打印制品,其由所述的光致固化组合物通过立体光固化成型法(Stereolithography,SLA)或数字光处理成型(digitallightprocessing,DLP)3D打印得到,而且其内部为具有空洞的非实心结构。
根据本发明的优选实施方式,所述的3D打印制品中,所述具有空洞的非实心结构,是通过程序设计,规则排布的中空结构。
根据本发明的又一个方面,提供一种模塑互连器件,其包含由所述的光致固化组合物通过立体光固化成型法(Stereolithography,SLA)或数字光处理成型(digitallightprocessing,DLP)3D打印得到的3D打印制品;在所述的3D打印制品上通过激光直接结构化而形成的导电路径;在所述的导电路径上通过镀覆金属而形成的金属层。
根据本发明的优选实施方式,激光直接结构化包括在约1w至约10w的功率,约30kHz至约110kHz的频率和约1m/s至约5m/s的速度下实施激光蚀刻
本发明通过提供适合3D打印以及激光直接结构化的光致固化组合物,将激光直接结构化材料与立体光固化成型(SLA)或数字光处理成型(DLP)技术相结合,从而达到了缩短MID开发周期,降低设计成本,提高设计灵活性的目的。
附图说明
下面,将结合附图对本发明的优选实施方式进行进一步详细的说明,其中:
图1是SLA的工作原理示意图;以及
图2是用立体光固化成型(SLA)或数字光处理成型(DLP)技术3D打印技术打印完成的多种复杂设计的上下表面光洁而内部多孔的结构。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在以下的详细描述中,可以参看作为本申请一部分用来说明本申请的特定实施例的各个说明书附图。在附图中,相似的附图标记在不同图式中描述大体上类似的组件。本申请的各个特定实施例在以下进行了足够详细的描述,使得具备本领域相关知识和技术的普通技术人员可实施本申请的技术方案。应当理解,还可以利用其它实施例或者对本申请的实施例进行结构、逻辑或者电性的改变。
本发明提出了一种新的MID元件制造方法,以3D打印的方式,即增材制造或快速成型方式,特别是利用立体光固化成型(SLA)或数字光处理成型(DLP)技术,打印出表面光洁而内部可以具有复杂设计的多孔的模型结构,再利用激光直接结构化技术激活模型表面,再镀覆金属,形式设计的MID。相比于现有的MID开发方式,本发明的方法能够极大缩短MID开发周期,降低设计成本,提高设计灵活性。由于材料在打印过程中被层层堆积,3D打印没有传统工艺中的种种限制;同时,与传统生产工艺相比,使用3D打印小批量生产的成本要低得多。
3D打印过程都是从一个描述物体的计算机生成的数据源开始。这一计算机生成的数据源可以是基于真实的物体或者虚拟的物体。比如说,真实的物体可以被3D扫描仪扫描,所取得的数据可以用来产生数据源。或者该数据源可以是被设计生成的。这类数据源一般会被转化为标准曲面细分语言文件(STL)。3D打印软件将会读取该文件,并将其转化为成百上千,甚至上百万的切片。随后3D打印软件输出机器语言(如Gcode)给3D打印机。3D打印机按照指令,开始层层打印这些切片信息,最终生成这一物体。
立体光固化成型(SLA),如US4,575,330A所述,其工作原理如图1所示:树脂槽21中装满光敏树脂液体。打印平台29浸没在树脂中,与树脂液面保持一段距离(该距离即下层需要打印的层高)。激光26(一般为紫外光)从树脂槽21上方照在光敏树脂的液面上。激光在振镜的反射下,按照程序画出每层图案。随着激光的照射,光敏树脂固化。打印平台29由软件控制向下移动一段距离(该距离即下层需要打印的层高)。光敏树脂流动直到覆盖已打印的这层(如果光敏树脂黏度较大,自流性较差,需要刮刀帮助涂覆这一层)。这个 步骤不断重复,直到完成整个物品的打印。而后,打印平台向上移动出树脂槽,方便取下已打印好的物品。
数字光处理成型(digitallightprocessing,DLP),如US6,942,830B2所述,其原理和结构与SLA有类似之处:同样是使用紫外光(或可见光)将树脂槽中的光敏树脂液体层层固化。但是区别在于:SLA使用激光点扫描,在振镜的反射下,按照程序逐点画出每层图案;而DLP则是使用面光源,透过动态光掩膜版,将该层图案一次投影在光敏树脂液面,待该层固化后,再投影下一层图案。在DLP中,动态光掩膜版的产生可以利用LCD屏,光调制器(lightmodulator),或是数字微镜器件(DMD)比如德州仪器生产的DLPTM芯片。
对于MID一些类型的应用(例如天线),高介电常数(Dk)和/或低损耗因子(也称为耗散因子,Df)是有利的特征。高Dk会使天线的尺寸降低,同时低的Df最小化了能量损失(热)和/或最大化了辐射的能量。因此,有利的是提供高介电常数和/或低损耗因子材料。
一种有利的办法在于提供内部多孔的结构,以从而达到在不影响电路导电性能和元件机械性能的同时,降低相对介电常数。图2示出了这种复杂设计的多孔结构的一些实例。这种复杂设计的多孔结构难以使用传统工艺生产制造。而用本发明提出的立体光固化成型(SLA)或数字光处理成型(DLP)技术的3D打印方法却可以胜任。根据本发明的一些实施例,本发明以SLA或DLP技术获得的3D打印制品的介电常数可以为:小于2.6、小于2.5、小于2.4、小于2.3、小于2.2、小于2.1、或小于2.0。
传统的方法难以得到表面光洁的MID模型。所谓表面光洁是指在物体的 表面不存在或者几乎不存在微孔或微坑等结构,而不会使后续加工的电路造成损伤和缺陷。根据本发明的另一些实施例,本发明以SLA或DLP技术获得的3D打印制品可以做到表面光洁。
根据本发明的一些实施例,为了应用本发明的MID制造方法,提出了一种能够光致固化的组合物,其包含:(a)一种能够聚合或交联的光敏树脂;(b)一种激光直接结构化添加剂;(c)一种分散剂。
光敏树脂的主要成分包括单体、寡聚物或高聚物、光引发剂、和可选的其他添加剂。当光引发剂吸收紫外或可见光,从而引发单体(或寡聚体或高聚物)聚合形成高分子长链。在宏观上的表现,就是液态的单体(或寡聚体或高聚物)在光照下逐渐固化。而添加剂的作用包括调色、抗氧化、改变光引发剂吸收波长、加快固化速率、增强固化后的强度等用途。
本发明所用的光敏树脂包括丙烯酸酯类和环氧树脂类。丙烯酸酯类的单体与自由基光引发剂配合使用。在光照下,该类引发剂产生自由基,引发自由基聚合反应形成高分子长链。自由基聚合反应的优势在于其反应速度快,所需的固化时间较短。而环氧树脂类的单体与阳离子光引发剂配合使用。在光照下,该类引发剂产生阳离子,引发离子聚合反应形成高分子长链。与自由基聚合的丙烯酸酯类树脂相比,环氧树脂固化后有更好的机械性能、溶剂抗性和热稳定性。
本发明的可光致固化组合物不仅包含(a)一种可聚合或交联的光敏树脂,其中包含带有可以发生聚合或交联的官能团的单体、寡聚物或高聚物,交联剂或引发剂,可聚合或交联的光敏树脂可以发生自由基聚合或环氧聚合;还包含(b)一种激光直接结构化添加剂;(c)一种分散剂。
通过调节的分子量,单体、寡聚物或是高聚物的种类或是官能团数目,分子结构(线性结构或多支化结构),以及单体、寡聚物或是高聚物和交联剂的浓度,可以调节可光致固化组合物的流变性能和固化后的物理性能,以达到特定的打印参数和打印件的要求。
根据本发明的一种实施方式,(i)可发生自由基固化的单体、寡聚物或是高聚物包含至少一个可自由基聚合的官能团。在这种情况中,(ii)引发剂是自由基引发剂。该种光敏树脂在光照的条件下发生自由基聚合反应。在另一种情况中,除了(i)可发生自由基固化的单体、寡聚物或是高聚物和(ii)自由基引发剂外,光敏树脂还可以包含(iii)具有至少一个巯基的单体、寡聚物或是高聚物。该种光敏树脂在光照的条件下发生自由基巯基烯聚合反应。
自由基聚合的氧阻聚效应是SLA/DLP 3D打印的最大阻碍。氧气会淬熄光引发剂产生的增加,从而阻碍自由基聚合。而在SLA/DLP 3D打印中,每层固化深度只有25-100um,这时的氧阻聚效应就更加明显。氧阻聚效应会导致光敏树脂表面没有完全固化,甚至于无法固化。所以,对于SLA/DLP 3D打印,氧阻聚效应是一种主要阻碍。可能避免氧阻聚效应影响材料固化的途径有:在氮气保护下打印;使用极高强度的UV光照射;或是提高光引发剂的浓度。但是,这三种途径都使3D打印过程复杂化,限制了这种技术的应用,并增加了使用成本。
本发明利用硫醇-烯反应来避免氧阻聚效应对SLA/DLP 3D打印的阻碍。氧气分子会和碳自由基或是硫醇自由基反应生成过氧自由基。过氧自由基并不会淬熄高分子链增长反应,而会夺去硫醇上的氢原子,从而形成另一个硫醇自由基,从而继续高分子链增长反应。以这种方式,氧阻聚效应将会被避免。
根据本发明的优选实施方式,所述的可光致固化的组合物中,具有至少一个巯基的单体、寡聚物或高聚物相对于光敏树脂总重量的含量为1至20wt%,优选的是1至10wt%,更优选是5-10wt%,对于改善组合物的固化效率比较有利。
根据本发明的优选实施方式,所述的可光致固化的组合物中,具有至少一个巯基的寡聚物或高聚物的聚合度不大于40,更优选地,聚合度不大于20。
根据本发明的优选实施方式,能够自由基聚合的官能团具有以下结构:
Figure PCTCN2017116440-appb-000001
其中,X是C或Si;R1、R2、R3相同或不同,而且是H、卤素、烷基、卤烷基、羟基、氰基、烷氧基、芳香基或芳氧基。
根据本发明的优选实施方式,所述能够自由基聚合的官能团具有以下结构:
Figure PCTCN2017116440-appb-000002
其中,R1、R2相同或不同,而且是H、卤素、烷基、卤烷基、羟基、氰基、烷氧基、芳香基或芳氧基。
根据本发明的优选实施方式,所述能够自由基聚合的官能团具有以下结构:
Figure PCTCN2017116440-appb-000003
其中,X是O、S、SO2;R1是H、卤素、烷基、卤烷基、羟基、氰基、烷氧基、芳香基或芳氧基。
根据本发明的优选实施方式,所述能够自由基聚合的官能团具有以下结构:
Figure PCTCN2017116440-appb-000004
其中,X是C或Si;R1、R2、R3相同或不同,而且是H、卤素、烷基、卤烷基、羟基、氰基、烷氧基、芳香基或芳氧基。
根据本发明的优选实施方式,所述能够自由基聚合的官能团具有以下结构:
Figure PCTCN2017116440-appb-000005
其中,X是C或Si;R1、R2、R3、R4相同或不同,而且是H、卤素、烷基、卤烷基、羟基、氰基、烷氧基、芳香基或芳氧基。
根据本发明的优选实施方式,所述能够自由基聚合的官能团具有以下结构:
Figure PCTCN2017116440-appb-000006
其中,R1、R2相同或不同,而且是H、卤素、烷基、卤烷基、羟基、氰基、烷氧基、芳香基或芳氧基。
根据本发明的优选实施方式,所述能够自由基聚合的官能团具有以下结构:
Figure PCTCN2017116440-appb-000007
其中,R1是H、卤素、烷基、卤烷基、羟基、氰基、烷氧基、芳香基或芳氧基。
根据本发明的更优选的实施方式,可自由基聚合的官能团可以是丙烯酰氧基烷基、丙烯酸酯官能团、烯氧基、烯烃基、炔烃基等。丙烯酰氧基烷基的例子包括但不限于丙烯酰氧甲基、甲基丙烯酰氧甲基、2-丙烯酰氧乙基、2-甲基丙烯酰氧乙基、3-丙烯酰氧丙基、3-甲基丙烯酰氧丙基或者4-丙烯酰氧丁基。烯烃基的例子包括但不限于乙烯基、烯丙基、丁烯基、戊烯基、己烯基等。
所使用的自由基引发剂可以被光激发。可选用的自由基引发剂包括但不限于安息香二乙醚,苯甲酰甲酸甲酯,羟基环乙烷苯酮(Irgacure184,来自巴斯夫公司),苯基双(2,4,6-三甲基苯甲酰基)氧化膦(XBPO),巯苯噻唑,Irgacure651(来自巴斯夫公司),Irgacure907(来自巴斯夫公司),Darocur2959(来自巴斯夫公司),樟脑醌(CQ),α-酮戊二酸(KGA),或者是以上多种的混合物。
所使用的自由基引发剂可以是单种自由基引发剂,也可以是多种自由基引发剂的混合物。自由基引发剂的浓度基于组分中光敏树脂的总质量,一般是0.1至20%(w/w),优选是1至10%(w/w),更优选是1至5%(w/w),最优选是1至3%(w/w)。
根据本发明的另一种实施方式,(i)可以发生环氧聚合的光敏树脂包含具有至少一个可环氧聚合的官能团。在这种情况中,(ii)引发剂是阳离子引发剂。该种光敏树脂在光照的条件下发生环氧聚合反应。
“可环氧聚合的官能团”是指单价的含氧三元环或四元环的醚类化合物。可环氧聚合的官能团包括但不限于2,3-环氧丙烷基、3,4-环氧环丁烷基、4,5-环氧环戊烷基、2-环氧丙氧基乙基、3-环氧丙氧基丙基、4-环氧丙氧基丁基、2-(3,4-环氧环己烷)乙基、3-(3,4-环氧环己烷)丙基、或其衍生物。
所使用的阳离子引发剂可以被光激发。可选用的阳离子引发剂包括但不限于碘鎓盐、二芳基碘磺酸盐、三芳基锍磺酸盐、二芳基碘硼酸盐、三芳基锍硼酸盐。
可选用的碘鎓盐引发剂包括但不限于二芳基碘盐,比如双(烷基苯)碘六氟锑酸盐或双(烷基苯)碘六氟砷酸盐,进一步地,例如双(十二烷苯)碘六氟锑酸盐或双(十二烷苯)碘六氟砷酸盐。
可选用的二芳基碘磺酸盐引发剂包括但不限于二芳基碘全氟烷基磺酸盐,比如二芳基碘全氟乙基磺酸盐、二芳基碘全氟辛基磺酸盐、二芳基碘全氟丁基磺酸盐、二芳基碘全氟甲基磺酸盐;二芳基碘芳基磺酸盐,比如二芳基碘对甲苯磺酸盐、二芳基碘十二烷苯磺酸盐、二芳基碘苯磺酸盐、二芳基碘3-硝基苯磺酸盐。
可选用的三芳基锍磺酸盐引发剂包括但三芳基锍全氟烷基磺酸盐,比如三芳基锍全氟乙基磺酸盐、三芳基锍全氟辛基磺酸盐、三芳基锍全氟丁基磺酸盐、三芳基锍全氟甲基磺酸盐;三芳基锍芳基磺酸盐,比如三芳基锍对甲苯磺酸盐、三芳基锍十二烷苯磺酸盐、三芳基锍苯磺酸盐、三芳基锍3-硝基苯磺酸盐。
可选用的二芳基碘硼酸盐引发剂包括但不限于二芳基碘全卤芳基硼酸盐。可选用的三芳基锍硼酸盐引发剂包括但不限于三芳基锍全卤芳基硼酸盐。
所使用的阳离子引发剂可以是单种阳离子引发剂,也可以是多种阳离子引发剂的混合物。阳离子引发剂的浓度基于组分中光敏树脂的质量,一般是0.1至20%(w/w),优选是1至10%(w/w),更优选是1至5%(w/w),最优选是1至3%(w/w)。
本发明的组合物中,除热塑性树脂之外,还包含激光直接结构化(laserdirect  structuring,LDS)添加剂。选择LDS添加剂以使组合物能够用于激光直接结构化方法。在LDS方法中,激光束暴露LDS添加剂以在热塑性组合物的表面处放置它,并且激活来自LDS添加剂的金属原子。这样,选择LDS添加剂使得当暴露于激光束后,金属原子被激活和暴露,形成金属颗粒。同时,在激光束未暴露的区域中,没有金属原子被暴露。在随后的镀覆过程(如镀铜过程)期间,这些暴露的金属颗粒作为核进行晶体生长,从而形成导电路径。
根据本发明的优选实施方式,可用于本发明的LDS添加剂的实例包括但不限于,重金属混合物氧化物尖晶石,例如铜铬氧化物尖晶石;铜盐,例如碱式磷酸铜(copperhydroxidephosphate),磷酸铜,硫酸铜,硫氰酸亚铜(cuprousthiocyanate);或者包括至少一种前述LDS添加剂的组合。在一种情况中,以光敏树脂总重量为基准,LDS添加剂以0.5wt%至20wt%的量存在。优选地,以光敏树脂总重量为基准,LDS添加剂以1wt%至15wt%的量存在。更优选地,以光敏树脂总重量为基准,LDS添加剂以3wt%至10wt%的量存在,进一步优选地,以光敏树脂总重量为基准,LDS添加剂以5wt%至10wt%的量存在。
本发明中至关重要的一点就是将LDS添加剂均匀地分散在光敏树脂中,并得到符合SLA/DLP要求的3D打印材料。对于SLA/DLP来说,打印材料的流变学性质至关重要,其影响着打印件能否完美地浸没入树脂中;打印一层后光敏树脂是否能流动直到覆盖已打印的这一层;刮刀是否能涂覆已打印的这一层等步骤。同时,LDS添加剂的均匀分散也十分重要。如果3D打印的MID元件中的LDS添加剂没有均匀地分散,激光蚀刻和镀覆将会受到很大影响,导致得到的导电路径性能下降。混合了LDS添加剂的光敏树脂也需要有很好 的稳定性。否则LDS添加剂可能会沉降,导致3D打印失败以及激光蚀刻失败。
本发明通过选择合适的分散剂有助于调整打印材料的流变学性质,提高分散效果和稳定性。合适的分散剂包括但不限于:丙烯酸类分散剂、聚乙烯吡咯烷酮类分散剂、聚乙二醇类分散剂、聚醚类分散剂等。优选的丙烯酸类分散剂包括但不限于:
Figure PCTCN2017116440-appb-000008
(R.T.Vanderbilt)。优选的聚乙烯吡咯烷酮类分散剂包括但不限于:
Figure PCTCN2017116440-appb-000009
(R.T.Vanderbilt)和PVPK-15(I.S.P.Technologies)。分散剂的用量基于组分中LDS添加剂的质量,一般是0.1至20%(w/w),优选是1至10%(w/w),更优选是1至5%(w/w)。
除了所述光敏树脂,LDS添加剂和分散剂,本发明的可光致固化组合物还可包含通常添加到这种类型的树脂组合物中的各种添加剂。在一种情况中,可同时使用多种添加剂。在另一种情况中,可将这些添加剂与LDS添加剂和分散剂一同混合入光敏树脂中。可以选择的添加剂包括但不限于热稳定剂,工艺稳定剂,抗氧化剂,光稳定剂,增塑剂,防静电剂,颜料,染料,着色剂,或者一种或者多种前述添加剂的组合。
合适的热稳定剂包括,例如,有机亚磷酸酯例如亚磷酸三苯酯,三-(2,6-二甲基苯基)亚磷酸酯等;膦酸酯例如膦酸二甲基苯酯等,磷酸酯例如磷酸三甲酯等,或者包括至少一种前述热稳定剂的组合。热稳定剂通常的用量为0.001至0.5重量份,基于100重量份的光敏树脂。
合适的抗氧化剂包括,例如,有机亚磷酸酯例如三-(壬基苯基)亚磷酸酯,三(2,4-二-叔丁基苯基)亚磷酸酯,二(2,4-二-叔丁基苯基)季戊四醇二亚磷酸酯,二硬脂基季戊四醇二亚磷酸酯等;烷基化的一元酚或者多元酚;多元酚与二烯的烷基化的反应产物,例如四[亚甲基(3,5-二叔丁基-4-羟基氢 化肉桂酸酯)]甲烷等;对-甲酚或者二环戊二烯的丁基化的反应产物;烷基化的氢醌;羟基化的硫基二苯基醚;苄基化合物;β-(3,5-二叔丁基-4-羟基苯基-丙酸与一元醇或者多元醇的酯;β-(5-叔丁基-4-羟基-3-甲基苯基)丙酸与一元醇或者多元醇的酯;硫基烷基或者硫基芳基化合物的酯例如二硬脂基硫基丙酸酯,二月桂基硫基丙酸酯,二-十三烷基硫基二丙酸酯,十八烷基-3-(3,5-二叔丁基-4-羟基苯基)丙酸酯,季戊四基-四[3-(3,5-二叔丁基-4-羟基苯基)丙酸酯等;β-(3,5-二叔丁基-4-羟基苯基)-丙酸的酰胺等,或者包括至少一种前述抗氧化剂的组合。抗氧化剂通常的用量为0.001至0.5重量份,基于100重量份的光敏树脂。
合适的光稳定剂包括,例如,苯并三唑例如2-(2-羟基-5-甲基苯基)苯并三唑,2-(2-羟基-5-叔辛基苯基)-苯并三唑和2-羟基-4-正辛氧基二苯甲酮等,或者包括至少一种前述光稳定剂的组合。光稳定剂通常的用量为0.1至1.0重量份,基于100重量份的光敏树脂。
合适的增塑剂包括例如邻苯二甲酸酯例如二辛基-4,5-环氧-六氢邻苯二甲酸酯,三-(辛氧基羰基乙基)异氰脲酸酯,三硬脂酸甘油酯,环氧化的大豆油等,或者包括至少一种前述增塑剂的组合。增塑剂通常的用量为0.5至3.0重量份,基于100重量份的光敏树脂。
合适的防静电剂包括,甘油单硬脂酸酯,硬脂基磺酸钠,十二烷基苯磺酸钠等,或者前述防静电剂的组合。防静电剂通常的用量为0.5至3.0重量份,基于100重量份的光敏树脂。
合适的颜料包括例如无机颜料例如金属氧化物和混合的金属氧化物如氧化锌、二氧化钛、氧化铁等;硫化物,如硫化锌等;铝酸盐;钠硫代硅酸盐; 硫酸盐、铬酸盐等;炭黑;铁酸锌;群青蓝;颜料棕M;颜料红101;颜料黄119;有机颜料,如偶氮、重氮、喹吖啶酮、茈、萘四羧酸、黄烷士酮、异吲哚啉酮、四氯异吲哚啉酮、蒽醌、蒽嵌蒽二醌、二噁嗪、酞菁、和偶氮色淀;颜料蓝60、颜料红122、颜料红149、颜料红177、颜料红179、颜料红202、颜料紫四、颜料蓝15、颜料绿7、颜料黄147和颜料黄150,或包含至少一种前述颜料的组合。颜料通常的用量为0.01至10重量份,基于100重量份的光敏树脂。
合适的染料包括例如有机材料,例如香豆素460(蓝)、香豆素6(绿),尼罗红等;镧系络合物;烃和取代的烃染料;多环芳烃染料;闪烁染料(优选噁唑和噁二唑染料);芳基或杂芳基取代的聚(C2-8)烯烃染料;羰花青染料;阴丹酮染料;酞菁染料和颜料;噁嗪染料;喹诺酮(carbostyryl)染料;卟啉染料;吖啶染料;蒽醌染料;芳基甲烷染料;偶氮染料;重氮染料;硝基染料;醌亚胺染料;四唑染料;噻唑染料;茈染料;茈酮染料;二-苯并噁唑基噻吩(BBOT);和咕吨染料;噻吨染料;荧光团,如抗斯托克司频移染料,其吸收近红外波长并发射可见波长等;发光染料,如5-氨基-9-二乙基亚氨基苯并(a)吩嗪阳离子过氣酸盐(5-amino-9-diethyliminobenzo(a)phenoxazoniumperchlorate);尼罗红;罗丹明700;噁嗪750;罗丹明800;IR125;IR144;IR140;IR132;IR26;IR5;二苯基己三烯;二苯基丁二烯;四苯基丁二烯;萘;蒽;9,10-二苯基蒽;芘;屈(chrysene);红荧烯(Rubrene);晕苯(coronene);菲等,或者包括至少一种前述染料的组合。染料通常的用量为0.1至5重量份,基于100重量份的光敏树脂。
合适的着色剂包括,例如二氧化钛,蒽醌,二萘嵌苯,茈酮(perinone), 靛蒽醌,喹吖啶酮,氧杂蒽,嚼嗪,嚼唑啉,噻吨,靛蓝,硫靛,萘二酰亚胺,花青,氧杂蒽,次甲基,内酯,香豆素,二-苯并噁唑基噻吩(BBOT),萘四羧酸衍生物,一偶氮和二偶氮颜料,三芳基甲烷,氨基酮,二(苯乙烯基)联苯衍生物等,以及包含至少一种前述着色剂的组合。着色剂通常的用量为0.1至5重量份,基于100重量份的光敏树脂。
此外,在某些应用例如手机或笔记本电脑天线的设计中,常常需要VO阻燃性。除了前述组分之外,本专利的可光致固化组合物还可以包括阻燃剂。在一种情况中,所述阻燃剂是含磷阻燃剂,例如有机磷酸酯和/或含有磷-氮键的有机化合物。
本发明的组合物可以包含一种或者多种填料。可选择这些填料来赋予另外的冲击强度和/或提供另外的特性,这可基于所述可光致固化组合物的最终选择的特性。合适的填料或者增强剂包括,例如,TiO2;纤维,例如石棉等;硅酸盐和二氧化硅粉末,例如硅酸铝(莫来石),合成的硅酸钙,硅酸锆,熔凝硅石,结晶硅石,石墨,天然硅砂等;硼粉如硼-氮化物粉末,硼-硅酸盐粉末等;氧化物如TiO2,氧化铝,氧化镁等;硫酸钙(作为其无水物,二水合物或三水合物);碳酸钙如白垩,石灰石,大理石,合成沉淀的碳酸钙等;滑石,包括纤维状的,模块的(modular),针形,层状滑石等;硅灰石;表面处理的硅灰石;玻璃球如中空和实心玻璃球,硅酸盐球,空心煤胞,铝硅酸盐(armospheres)等;高岭土,包括硬高岭土,软高岭土,煅烧高岭土,包含本领域已知的用于促进与聚合物基质树脂的相容性的各种涂层的高岭土等;单晶纤维或"晶须"如碳化硅,氧化铝,碳化硼,铁,镍,铜等;玻璃纤维;硫化物如硫化钼,硫化锌等;钡化合物如钛酸钡,铁酸钡,硫酸钡,重晶石等;纤维 填料,例如,短的无机纤维如由包含硅酸铝、氧化铝、氧化镁和硫酸钙半水合物等中的至少一种的共混物获得的那些;天然填料和增强材料,如通过粉碎木材获得的木屑,纤维状产品如纤维素,棉花,剑麻,黄麻,淀粉,软木粉,木质素,花生壳,玉米,稻谷外壳等;增强的有机纤维状填料,由能够形成纤维的有机聚合物形成,所述有机聚合物如聚(醚酮),聚酰亚胺,聚(亚苯基硫化物),聚酯,聚乙烯,芳族聚酰胺,芳族聚酰亚胺,聚醚酰亚胺,聚四氟乙烯,丙烯酸类树脂,聚(乙烯醇)等;以及其它填料和增强剂如云母,粘土,长石,烟灰,惰性硅酸盐微球,石英,石英岩,珍珠岩,硅藻石,硅藻土,碳黑等,或者包含至少一种前述填料或增强剂的组合。所述填料和增强剂可用硅烷表面处理,以改进粘合性和与聚合物基体树脂的分散。
本发明的光致固化组合物可以在室温下通过均匀搅拌,从而使激光直接结构化添加剂及其他添加剂均匀分散到光敏树脂中来制备组合物的混合液。根据优选的实施方式,可以在室温下,以500-4000r/min的转速搅拌10分钟到1小时。制备的组合物还可以以65目左右的滤网过筛,更为有利。
对于所制备的组合物混合液,其黏度没有特别限定,只要满足利用SLA或DLP进行3D打印的流变性要求即可。考虑到打印的效率和清理的便捷,一般黏度在3000cps以下比较有利。在本发明的范围内通过调节单体、寡聚物或是高聚物的种类或是官能团数目,分子结构(线性结构或多支化结构)和分子量,以及单体、寡聚物或是高聚物和交联剂的浓度等,可以调节可光致固化组合物的流变性能和固化后的物理性能,达到特定的打印参数和打印件的要求。
根据本发明的实施方式,制备的组合物混合液通过立体光固化成型(SLA)或数字光处理成型(DLP)技术进行3D打印。通过程序设计,使得所形成的 3D打印制品具有规则排布的内部中空结构。
以图2所示的复杂设计多孔结构为例,采用本发明的组合物,利用立体光固化成型(SLA)或数字光处理成型(DLP)技术3D打印技术能够轻松完成的多种复杂设计的上下表面光洁而内部多孔的模型结构。
根据本发明的实施方式,使用激光直接结构化技术,亦即利用激光蚀刻在3D打印的制品表面形成激活的表面,为后续镀覆提供基础,从而形成导电路径。
根据本发明的优选实施方式,在约1w至约10w的功率以及约30kHz至约110kHz的频率和约1m/s至约5m/s的速度下实施激光蚀刻。在更优选的情况中,在约1w至约10w的功率以及约40kHz至约100kHz的频率和约2m/s至约4m/s的速度下实施激光蚀刻。在进一步优选的情况中,在约3.5w功率以及约40kHz的频率和约2m/s的速度下实施激光蚀刻。
根据本发明的优选实施方式,以金属化的方式将金属层镀覆至上述导电路径上。根据本发明的优选实施方式,金属化包括以下步骤:a)清理蚀刻表面;b)构建轨迹;和c)镀覆。
根据本发明的优选实施方式,镀覆的金属层通常为铜层。
实施例
1.不同的可自由基聚合单体对固化速度的影响参见表1中实施例
表1
  实施例1 实施例2 实施例3 实施例4
1,4-丁二醇乙烯醚 90份      
1,7-辛二烯   90份    
N,N'-亚甲基双丙烯酰胺     90份  
聚乙二醇二丙烯酸酯       90份
四(3-巯基丙酸)季戊四醇酯 8份 8份 8份 8份
安息香二乙醚 1份 1份 1份 1份
碱式磷酸铜 1份 1份 1份 1份
BYK111 0.1份 0.1份 0.1份 0.1份
固化时间 67s 135s 15s 33s
注:BYK111是来自毕克化学公司的分散剂;表中“份”指“重量份”,下同。
组合物的制备:室温下将各个组分混合均匀,搅拌的转速为500r/min,搅拌时间为10分钟。将所得混合液以65目滤网过筛后,得到所需的可光致固化组合物。取一滴所得的可光致固化组合物滴于载玻片上,使用功率为1W,波长为355nm的激光器在其上方3cm处照射,肉眼观察,以液滴丧失流动性为判断其是否固化的指标,记录固化时间。在上述实施例1、2、3和4中,实施例1、3和4组合物的固化时间较短,有利于打印效率的提高,而使用了N,N'-亚甲基双丙烯酰胺的实施例3组合物的固化时间最短,最有利。
2.自由基巯基烯聚合反应对氧阻聚效应的影响参见表2中实施例
表2
  实施例5 实施例6
聚乙二醇二丙烯酸酯 98份 90份
四(3-巯基丙酸)季戊四醇酯   8份
苯甲酰甲酸甲酯 1份 1份
氧化锡 1份 1份
BYK111 0.1份 0.1份
打印件表面是否完全固化
注:BYK111是来自毕克化学公司的分散剂
组合物的制备:室温下将各个组分混合均匀,搅拌的转速为1000r/min,搅拌时间为45分钟。将所得混合液以65目滤网过筛后,得到所需的可光致固 化组合物。
3D打印实验:使用所配置的可光致固化组合物在Formlabs公司的Form1+机型(SLA)上打印尺寸为50mm*50mm*10mm的测试模型(室温下,使用Form1+打印机内置的打印设置,设置代码为“FLGPWH01”)。在上述实施例5中,打印件表面依然有未能完全固化的光敏树脂,触感粘手。而实施例6中,打印件表面完全固化,触感光滑。在光致固化组合物中包含适量的具有巯基官能团的单体或寡聚物可以更为有效地改善组合物的固化性质。
3.硫醇单体、寡聚物和高聚物对组合物黏度的影响参见表3中实施例
表3
  实施例7 实施例8 实施例9 实施例10
聚乙二醇二丙烯酸酯 90份 90份 90份 95份
四(3-巯基丙酸)季戊四醇酯 8份      
4arm-PEGn-SH(n=10)   8份    
4arm-PEGn-SH(n=40)     8份 3份
巯苯噻唑 1份 1份 1份 1份
铜铬氧化物尖晶石 1份 1份 1份 1份
BYK9076 0.1份 0.1份 0.1份 0.1份
黏度 300cps 1500cps 6000cps 2800cps
注1:其中4arm-PEGn-SH的化学结构式如下图。当n=10-20时,为寡聚物;当n>20时,为高聚物。
Figure PCTCN2017116440-appb-000010
注2:BYK9076是来自毕克化学公司的分散剂。
组合物的制备:室温下将各个组分混合均匀,搅拌的转速为3500r/min,搅拌时间为20分钟。将所得混合液以65目滤网过筛后,得到所需的可光致固化组合物。使用锥板黏度仪测量其黏度。可以看出,硫醇的分子量越大,得到的组合物的黏度越大。在上述实施例7-10中,使用四(3-巯基丙酸)季戊四醇酯和4arm-PEGn-SH(n=10)的实施例7和8以及使用4arm-PEGn-SH(n=40)的实施例10的黏度都适合用于SLA或DLP 3D打印,而四(3-巯基丙酸)季戊四醇酯所带来的黏度更低,更为合适。
4.基于环氧树脂的组合物中分散剂含量对分散效果的影响参见表4
表4
Figure PCTCN2017116440-appb-000011
注:
Figure PCTCN2017116440-appb-000012
是来自R.T.Vanderbilt公司的分散剂。
组合物的制备:室温下将各个组分混合均匀,搅拌的转速为3300r/min,搅拌时间为20分钟。将所得混合液以65目滤网过筛后,得到所需的可光致固化组合物。
硫酸铜在光敏树脂中的分散效果及稳定性的测试方法为:将混合好的组合物至于透明量筒中,记录液面高度;静止1个月,看上层清液的高度是否超过 总液面高度的5%;上层清液的高度越小,说明分散效果越好,稳定性越高。在上述实施例中,使用基于组分中LDS添加剂质量为约1-5%(w/w)的分散剂,分散效果和稳定性较好;而使用基于组分中LDS添加剂质量为3%(w/w)左右的分散剂
Figure PCTCN2017116440-appb-000013
所得到的组合物的分散效果最好,稳定性最高。
5.LDS添加剂含量对LDS效果的影响参见表5中实施例
表5
Figure PCTCN2017116440-appb-000014
注:
Figure PCTCN2017116440-appb-000015
是来自R.T.Vanderbilt公司的分散剂。
组合物的制备:室温下将各个组分混合均匀,搅拌的转速为3300r/min,搅拌时间为20分钟。将所得混合液以65目滤网过筛后,得到所需的可光致固化组合物。
3D打印实验:使用所配置的可光致固化组合物在SprintRay公司的MoonRay机型(DLP技术)上打印尺寸为50mm*50mm*10mm的测试模型(室温下,曝光强度50%,每层曝光时间30秒)。
测试模型用LPKF公司的Fusion3D 1100机型进行激光刻蚀(激光功率是 5W,激光脉冲是60KHz,激光速度是2m/s),能够形成导电路径,随后进行镀覆处理(涂覆时间30min,镀覆的铜层厚度是30~35um),形成电路线路。
定性粘着力试验(ASTM D3359-09)用于测定该材料是否能够进行镀覆。该试验方法(ASTM D3359-09)需要在施加到激光蚀刻区域的导电金属镀层中形成X-切口。施加在所述X-切口上的压敏带在从所述试验材料上移除时提供了金属与基板粘着力的定性测量。在移除试验带之后,可使用合适的等级(scale)来评价金属与基板的粘着力,来表明金属的释放(release)或者保留。其中,等级如下:
5A:没有剥离
4A:在切口处有轻微剥离
3A:沿切口有不超过1.6mm的锯齿状剥离
2A:沿切口有不超过3.2mm的锯齿状剥离
1A:X-切口区域的绝大部分都被剥离
0A:X-切口区域外的部分也被剥离
在上述实施例中,使用基于组分中光敏树脂质量大于5%(w/w)的LDS添加剂硫酸铜,所得到的组合物固化后,激光刻蚀并镀覆处理所得到的电路线路的粘着力为优。考虑到成本,希望尽可能少的加入LDS添加剂,所以使用基于组分中光敏树脂质量5%(w/w)左右的LDS添加剂硫酸铜为最优选择,约3-10%(w/w)的添加量较为优选。
6.含有其他添加剂的实施例参见表6
表6
Figure PCTCN2017116440-appb-000016
注1:
Figure PCTCN2017116440-appb-000017
是来自R.T.Vanderbilt公司的分散剂。
注2:FR-2025是来自3M公司的阻燃剂。
组合物的制备:室温下将各个组分混合均匀,搅拌的转速为3300r/min,搅拌时间为20分钟。将所得混合液以65目滤网过筛后,得到所需的可光致固化组合物。
3D打印实验:使用所配置的可光致固化组合物在SprintRay公司的MoonRay机型(DLP技术)上打印尺寸为50mm*50mm*10mm的测试模型(室温下,曝光强度50%,每层曝光时间30秒)。
测试模型用LPKF公司的Fusion3D 1100机型进行激光刻蚀(激光功率是5W,激光脉冲是60KHz,激光速度是2m/s),能够形成导电路径,随后进行镀覆处理(涂覆时间30min,镀覆的铜层厚度是30~35um),形成电路线路。
通过以上实施例结果可见,本发明的光固化组合物利用立体光固化成型(SLA)或数字光处理成型(DLP)技术3D打印出表面光洁而内部可以具有 复杂设计的多孔的结构,在后续的激光直接结构化中不仅不影响电路导电性能和元件机械性能的同时,还能降低相对介电常数,从而满足模塑互连器件的性能要求。本发明由于利用了立体光固化成型(SLA)或数字光处理成型(DLP)技术的成型速度快、成型精度高等优势,将材料的立体光固化成型(SLA)或数字光处理成型(DLP)技术与激光直接结构化(SDL)技术相结合,从而达到缩短MID开发周期,降低设计成本,提高设计灵活性的目的。
上述实施例仅供说明本发明之用,而并非是对本发明的限制,有关技术领域的普通技术人员,在不脱离本发明范围的情况下,还可以做出各种变化和变型,因此,所有等同的技术方案也应属于本发明公开的范畴。

Claims (33)

  1. 一种可光致固化的组合物,包含:
    可聚合或交联的光敏树脂;
    激光直接结构化添加剂;以及
    分散剂。
  2. 根据权利要求1所述的可光致固化的组合物,其中所述激光直接结构化添加剂相对于可聚合或交联的光敏树脂的添加量是0.5wt%至20wt%,优选1wt%至15wt%,更优选3wt%至10wt%,最优选5-10wt%。
  3. 根据权利要求1或2所述的可光致固化的组合物,其中所述分散剂相对于激光直接结构化添加剂的添加量是0.1wt%至20wt%,优选1wt%至10wt%,更优选1wt%至5wt%。
  4. 根据权利要求1-3中任一所述的可光致固化的组合物,其中所述光敏树脂是可发生光致阳离子固化的光敏树脂、可发生光致自由基固化的光敏树脂、或其组合。
  5. 根据权利要求4所述的可光致固化的组合物,其中所述的可发生光致阳离子固化的光敏树脂包含:
    可发生阳离子固化的单体、寡聚物或高聚物,其具有至少一个可环氧聚合的官能团,其中寡聚物分子量为200-1000或高聚物分子量为1000-30000;以及
    阳离子引发剂。
  6. 根据权利要求5所述的可光致固化的组合物,其中阳离子引发剂的添加量是光敏树脂总重量的0.1至20wt%,优选1至10wt%,更优选1至5wt%。
  7. 根据权利要求5或6所述的可光致固化的组合物,其中所述可环氧聚合的官能团是环氧乙烷环、环氧丙烷环、环氧环己烷基、或上述一种或多种官能团的衍生物。
  8. 根据权利要求5-7中任一所述的可光致固化的组合物,其中所述阳离子引发剂是一种可被紫外光、可见光或红外光激发的光引发剂。
  9. 根据权利要求8所述的可光致固化的组合物,其中阳离子引发剂是芳基重氮盐、二芳基碘鎓盐、三芳基锍盐、三芳基硒盐、芳茂铁盐,或者是以上多种的混合物。
  10. 根据权利要求8所述的可光致固化的组合物,其中阳离子引发剂是二芳基碘六氟砷酸盐、二芳基碘六氟锑酸盐、二芳基碘磺酸盐、二芳基碘硼酸盐、三芳基锍磺酸盐、三芳基锍硼酸盐、三芳基锍六氟锑酸盐,或者是以上多种的混合物。
  11. 根据权利要求4所述的可光致固化的组合物,其中所述的可发生光致自由基固化的光敏树脂包含:
    可发生自由基固化的单体、寡聚物或是高聚物,其具有至少一个可自由基聚合的官能团,其中寡聚物分子量为200-1000,高聚物分子量为1000-30000;以及
    自由基引发剂。
  12. 根据权利要求11所述的可光致固化的组合物,所述自由基引发剂的添加量是基于光敏树脂总重量的0.1至20wt%,优选1至10wt%,更优选1至5wt%。
  13. 根据权利要求11或12所述的可光致固化的组合物,其中所述可发 生光致自由基固化的光敏树脂包含具有至少一个巯基的单体、寡聚物或是高聚物。
  14. 根据权利要求11-13中任一所述的可光致固化的组合物,其中具有至少一个巯基的单体、寡聚物或是高聚物相对于光敏树脂总重量的含量是1至20wt%,优选是1-10wt%,更优选是5-10wt%。
  15. 根据权利要求11-14中任一所述的可光致固化的组合物,其中具有至少一个巯基的寡聚物或高聚物的聚合度不大于20。
  16. 根据权利要求11-15中任一所述的可光致固化的组合物,其中可自由基聚合的官能团具有以下结构:
    Figure PCTCN2017116440-appb-100001
    其中,X是C或Si;R1、R2、R3相同或不同,而且是H、卤素、烷基、卤烷基、羟基、氰基、烷氧基、芳香基或芳氧基。
  17. 根据权利要求11-15中任一所述的可光致固化的组合物,其中所述可自由基聚合的官能团具有以下结构:
    Figure PCTCN2017116440-appb-100002
    其中,R1、R2相同或不同,而且是H、卤素、烷基、卤烷基、羟基、氰基、烷氧基、芳香基或芳氧基。
  18. 根据权利要求11-15中任一所述的可光致固化的组合物,所述可自由基聚合的官能团具有以下结构:
    Figure PCTCN2017116440-appb-100003
    其中,X是O、S、SO2;R1是H、卤素、烷基、卤烷基、羟基、氰基、烷氧基、芳香基或芳氧基。
  19. 根据权利要求11-15中任一所述的可光致固化的组合物,其中所述可自由基聚合的官能团具有以下结构:
    Figure PCTCN2017116440-appb-100004
    其中,X是C或Si;R1、R2、R3相同或不同,而且是H、卤素、烷基、卤烷基、羟基、氰基、烷氧基、芳香基或芳氧基。
  20. 根据权利要求11-15中任一所述的可光致固化的组合物,其中所述可自由基聚合的官能团具有以下结构:
    Figure PCTCN2017116440-appb-100005
    其中,X是C或Si;R1、R2、R3、R4相同或不同,而且是H、卤素、烷基、卤烷基、羟基、氰基、烷氧基、芳香基或芳氧基。
  21. 根据权利要求11-15中任一所述的可光致固化的组合物,其中所述可自由基聚合的官能团具有以下结构:
    Figure PCTCN2017116440-appb-100006
    其中,R1、R2相同或不同,而且是H、卤素、烷基、卤烷基、羟基、氰基、烷氧基、芳香基或芳氧基。
  22. 根据权利要求11-15中任一所述的可光致固化的组合物,其中所述可自由基聚合的官能团具有以下结构:
    Figure PCTCN2017116440-appb-100007
    其中,R1是H、卤素、烷基、卤烷基、羟基、氰基、烷氧基、芳香基或芳氧基。
  23. 根据权利要求11-22中任一所述的可光致固化的组合物,其中所述自由基引发剂是一种可被紫外光、可见光或是红外光激发的光引发剂。
  24. 根据权利要求23所述的可光致固化的组合物,其中所述自由基引发剂是安息香二乙醚、苯甲酰甲酸甲酯、羟基环乙烷苯酮、苯基双(2,4,6-三甲基苯甲酰基)氧化膦、巯苯噻唑、Irgacure651、Irgacure907、Darocur2959、樟脑醌、α-酮戊二酸,或者是以上多种的混合物。
  25. 根据权利要求1-24中任一所述的可光致固化的组合物,其中所述激光直接结构化添加剂选自重金属氧化物、重金属混合氧化物尖晶石、铜盐、有机金属螯合络合物,或包含上述的至少一种的组合。
  26. 根据权利要求1-24中任一所述的可光致固化的组合物,其中所述激光直接结构化添加剂选自氧化锡、铜铬氧化物尖晶石或碱式磷酸铜中的一种或多种。
  27. 根据权利要求1-24中任一所述的可光致固化的组合物,其中所述分散剂选自丙烯酸类分散剂、聚乙烯吡咯烷酮类分散剂、聚乙二醇类分散剂或聚醚类分散剂中的一种或多种。
  28. 根据权利要求1-27中任一所述的可光致固化的组合物,其还包含选自以下添加剂中的一种或多种:热稳定剂、工艺稳定剂、抗氧化剂、光稳定剂、增塑剂、防静电剂、颜料、染料、着色剂、阻燃剂和填料。
  29. 一种3D打印制品,其为以下方法制造:将权利要求1-28任一所述的组合物通过立体光固化成型法(Stereolithography,SLA)或数字光处理成型(digital light processing,DLP)3D打印。
  30. 根据权利要求29所述的3D打印制品,其介电常数为:小于2.6、小于2.5、小于2.4、小于2.3、小于2.2、小于2.1、或小于2.0。
  31. 根据权利要求29所述的3D打印制品,其表面光洁。
  32. 一种模塑互连器件,包括:
    如权利要求29-31任一所述的3D打印制品;
    激光直接结构化形成的导电路径,其设置在如权利要求29-31任一所述的3D打印制品上;以及
    金属层,其至少镀覆于部分导电路径上。
  33. 一种模塑互连器件的制造方法,包括:
    通过立体光固化成型法SLA或数字光处理成型DLP方式3D打印如权利要求1-31任一所述的组合物形成3D打印制品;
    以激光直接结构化在3D打印制品上形成导电路径;以及
    在至少部分导电路径上镀覆金属。
PCT/CN2017/116440 2017-12-15 2017-12-15 一种3d打印的可光致固化组合物 WO2019113933A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780003231.XA CN110167979A (zh) 2017-12-15 2017-12-15 一种3d打印的可光致固化组合物
PCT/CN2017/116440 WO2019113933A1 (zh) 2017-12-15 2017-12-15 一种3d打印的可光致固化组合物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/116440 WO2019113933A1 (zh) 2017-12-15 2017-12-15 一种3d打印的可光致固化组合物

Publications (1)

Publication Number Publication Date
WO2019113933A1 true WO2019113933A1 (zh) 2019-06-20

Family

ID=66819763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/116440 WO2019113933A1 (zh) 2017-12-15 2017-12-15 一种3d打印的可光致固化组合物

Country Status (2)

Country Link
CN (1) CN110167979A (zh)
WO (1) WO2019113933A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112029236A (zh) * 2020-08-06 2020-12-04 东南大学 一种光固化3d打印树脂及其制备方法和应用、3d打印产品
WO2023097383A1 (pt) * 2021-12-01 2023-06-08 Universidade Estadual De Campinas Composição de resina híbrida omnifílica para manufatura aditiva de dispositivos médicos, processo para obtenção da referida resina e seu uso

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020018958A1 (en) * 2000-06-20 2002-02-14 Jsr Corporation Polymeric material for laser processing and a laminated body for laser processing thereof, flexographic printing plate and the method of producing the same, and a seal material
CN106062040A (zh) * 2014-02-25 2016-10-26 普立万公司 含有激光直接成型添加剂的导热聚酰胺复合物
CN107001813A (zh) * 2014-12-12 2017-08-01 沙特基础工业全球技术公司 激光直接结构化材料及其制备方法
CN107312136A (zh) * 2017-07-04 2017-11-03 大族激光科技产业集团股份有限公司 用于激光快速成型的光固化树脂组合物及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9931771B2 (en) * 2013-04-24 2018-04-03 The Board Of Regents Of The University Of Texas System Softening materials based on thiol-ene copolymers
WO2017110458A1 (ja) * 2015-12-24 2017-06-29 三菱エンジニアリングプラスチックス株式会社 レーザーダイレクトストラクチャリング層形成用組成物、キット、およびメッキ層付樹脂成形品の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020018958A1 (en) * 2000-06-20 2002-02-14 Jsr Corporation Polymeric material for laser processing and a laminated body for laser processing thereof, flexographic printing plate and the method of producing the same, and a seal material
CN106062040A (zh) * 2014-02-25 2016-10-26 普立万公司 含有激光直接成型添加剂的导热聚酰胺复合物
CN107001813A (zh) * 2014-12-12 2017-08-01 沙特基础工业全球技术公司 激光直接结构化材料及其制备方法
CN107312136A (zh) * 2017-07-04 2017-11-03 大族激光科技产业集团股份有限公司 用于激光快速成型的光固化树脂组合物及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112029236A (zh) * 2020-08-06 2020-12-04 东南大学 一种光固化3d打印树脂及其制备方法和应用、3d打印产品
WO2023097383A1 (pt) * 2021-12-01 2023-06-08 Universidade Estadual De Campinas Composição de resina híbrida omnifílica para manufatura aditiva de dispositivos médicos, processo para obtenção da referida resina e seu uso

Also Published As

Publication number Publication date
CN110167979A (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
WO2019210568A1 (zh) 一种可光致固化的组合物
KR100994024B1 (ko) 양이온 경화성 조성물을 위한 경화제
JP7447096B2 (ja) 部分硬化を含む付加製造の方法
TWI794298B (zh) 組合物、硬化物及硬化物之製造方法
JP6150178B2 (ja) 光導波路および光導波路作製用のドライフィルム
JP2009067987A (ja) 印刷回路基板用難燃性樹脂組成物とそれを用いた印刷回路基板及びその製造方法
WO2005091027A1 (ja) 光導波路形成用感光性樹脂組成物および光導波路
WO2019113933A1 (zh) 一种3d打印的可光致固化组合物
CN107698718B (zh) 用于激光3d打印的光敏树脂及其制备方法
CN108250838A (zh) 一种用于直写法3d打印硅酮结构的墨水组合物
JP7406193B2 (ja) ナノインプリント用硬化性樹脂組成物、硬化物の製造方法、及び凹凸構造体の製造方法
JP2010280844A (ja) カチオン重合性樹脂組成物、及びその硬化物
CN108026194A (zh) 图案形成材料、图案形成方法及图案形成装置
TW201529704A (zh) 光學立體造形用光硬化性組成物、及立體造形物之製造方法
JP2018080309A (ja) レプリカモールド形成用樹脂組成物、レプリカモールド、及び前記レプリカモールドを用いたパターン形成方法
WO2021066084A1 (ja) 紫外線硬化性オルガノポリシロキサン組成物およびその用途
JP2010260230A (ja) 光学的立体造形物の処理方法
CN1795215A (zh) 可固化树脂组合物、光学部件和光波导管
TWI801634B (zh) 光波導形成用感光性環氧樹脂組成物、光波導形成用感光性薄膜及使用其之光波導、光電傳輸用混合撓性印刷配線板
CN1813003A (zh) 可光固化树脂组合物
JP7393205B2 (ja) 化合物、潜在性紫外線吸収剤、組成物、硬化物及び硬化物の製造方法
KR20040075353A (ko) 양이온성 개시제로서 약하게 배위된 이미다졸리딘음이온을 포함하는 오늄 염
TW201930458A (zh) 組成物、包含其之絕緣材料及其製法
JP6420666B2 (ja) 着色剤分散液、着色組成物及びカラーフィルタ
JP2023514315A (ja) 逐次硬化相互侵入ポリマーによる付加製造高ガラス転移温度材料の網目構造強靭化

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17934948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17934948

Country of ref document: EP

Kind code of ref document: A1