WO2019112259A1 - 기체 분리막 활성층 형성용 조성물의 제조방법, 이에 의해 제조된 기체 분리막 활성층 형성용 조성물, 기체 분리막의 제조방법 및 기체 분리막 - Google Patents

기체 분리막 활성층 형성용 조성물의 제조방법, 이에 의해 제조된 기체 분리막 활성층 형성용 조성물, 기체 분리막의 제조방법 및 기체 분리막 Download PDF

Info

Publication number
WO2019112259A1
WO2019112259A1 PCT/KR2018/015128 KR2018015128W WO2019112259A1 WO 2019112259 A1 WO2019112259 A1 WO 2019112259A1 KR 2018015128 W KR2018015128 W KR 2018015128W WO 2019112259 A1 WO2019112259 A1 WO 2019112259A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation membrane
gas separation
active layer
composition
forming
Prior art date
Application number
PCT/KR2018/015128
Other languages
English (en)
French (fr)
Inventor
이병수
방소라
신정규
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP18885820.3A priority Critical patent/EP3721978B1/en
Priority to ES18885820T priority patent/ES2908713T3/es
Priority to CN201880053264.XA priority patent/CN111065448B/zh
Priority to US16/644,068 priority patent/US11198102B2/en
Priority to JP2020509012A priority patent/JP6996049B2/ja
Publication of WO2019112259A1 publication Critical patent/WO2019112259A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/12Cellulose derivatives
    • B01D71/14Esters of organic acids
    • B01D71/16Cellulose acetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/106Membranes in the pores of a support, e.g. polymerized in the pores or voids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/12Cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/14Preparation of cellulose esters of organic acids in which the organic acid residue contains substituents, e.g. NH2, Cl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • B01D2256/245Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present invention relates to a process for producing a composition for forming a gas separation membrane, a composition for forming a gas separation membrane active layer, a process for producing a gas separation membrane, and a gas separation membrane.
  • the gas separation membrane is composed of a support layer, an active layer, and a protective layer, and selectively separates gas from the gas mixture using the pore size and structural characteristics of the active layer. Therefore, gas permeability and selectivity are used as an important index indicating the performance of the membrane, and such performance is greatly affected by the polymer material constituting the active layer.
  • the present invention is directed to a method for preparing a composition for forming a gas separation membrane active layer, a composition for forming a gas separation membrane active layer, a method for producing a gas separation membrane, and a gas separation membrane.
  • One embodiment of the present disclosure relates to a method for preparing a fluorinated polymer, comprising: reacting a cellulose compound with an acid substituted with fluorine to obtain a first reactant; And dropping the fluorine-substituted acid anhydride into the first reactant at a temperature higher than room temperature.
  • the present invention also provides a method for preparing a composition for forming a gas separation membrane active layer.
  • Another embodiment of the present disclosure provides a composition for forming a gas separation membrane active layer, which is produced according to the above-described production method.
  • One embodiment of the present invention provides a composition for forming a gas separation membrane active layer comprising a unit represented by the following general formula (1).
  • n is a repetition number of units of 1 to 1,000
  • R1 to R3 are the same as or different from each other, each independently hydrogen or - a (CO) CF 3, at least one of R1 to R3 is - (CO) is CF 3.
  • a method for producing a gas separation membrane active layer comprising the steps of: preparing a composition for forming a gas separation membrane active layer; Applying a hydrophilic polymer solution on the porous substrate to form a porous support; And applying a composition for forming a gas separation membrane active layer on the porous support to form an active layer.
  • one embodiment of the present disclosure relates to a porous support; And an active layer containing the unit represented by the formula (1) provided on the porous support.
  • the gas separation membrane according to one embodiment of the present disclosure has excellent carbon dioxide permeability and carbon dioxide selectivity for methane.
  • FIG. 1 shows a gas separation membrane according to an embodiment of the present invention.
  • a member When a member is referred to herein as being “on " another member, it includes not only a member in contact with another member but also another member between the two members.
  • One embodiment of the present disclosure relates to a method for preparing a fluorinated polymer, comprising: reacting a cellulose compound with an acid substituted with fluorine to obtain a first reactant; And dropping the fluorine-substituted acid anhydride into the first reactant at a temperature higher than room temperature.
  • the present invention also provides a method for preparing a composition for forming a gas separation membrane active layer.
  • the shortening of the reaction time in the CTFA synthesis process is due to the strong acidity of the fluorine-substituted acid and fluorine-substituted acid anhydride used in the synthesis, so that when exposed to acid for a long time, the cellulose polymer may break, It is possible to prevent cracking of the cellulose polymer.
  • the fluorine-substituted acid may be an alkanoic acid having 2 to 10 carbon atoms substituted with at least one fluorine atom.
  • the alkanoic acid may be selected from the group consisting of acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, , Pelargonic acid, or capric acid, and the like, but are not limited thereto.
  • the fluorine-substituted acid may be an alkanoic acid having 2 to 10 carbon atoms in which fluorine is substituted.
  • the fluorine-substituted acid may be an alkanoic acid having 2 to 6 carbon atoms in which fluorine is substituted.
  • the alkanoic acid may preferably be acetic acid.
  • the fluorine-substituted acid may be Trifluoroacetic acid (TFA).
  • the fluorine-substituted acid may be 99% or higher-purity acid.
  • the fluorine-substituted acid anhydride may be an acid anhydride having 3 to 10 carbon atoms substituted with at least one fluorine atom.
  • the alkanoic acid is as described above.
  • the fluorine-substituted acid anhydride may be an acid anhydride having 3 to 10 carbon atoms substituted with fluorine.
  • the fluorine-substituted acid anhydride may be an acid anhydride having 3 to 6 carbon atoms substituted with fluorine.
  • the acid anhydride is selected from the group consisting of acetic anhydride, acetic formic anhydride, acetic propionic anhydride, propionic anhydride, acetic anhydride, but are not limited to, butyric anhydride, butyric propionic anhydride, succinic anhydride, or glutaric anhydride.
  • the acid anhydride may preferably be acetic anhydride.
  • the fluorine-substituted acid anhydride may be Trifluoroacetic anhydride (TFAA).
  • the fluorine-substituted acid anhydride may be an acid anhydride with a high purity of 99% or more.
  • the cellulose-based compound may be cellulose.
  • the temperature above room temperature may be between 30 ° C and 80 ° C.
  • the temperature higher than the ambient temperature may be 40 ⁇ to 70 ⁇ , and more preferably 50 ⁇ to 60 ⁇ .
  • the reaction is carried out at room temperature in the course of the synthesis of CTFA, it is necessary to stir the reaction mixture for 2 to 3 hours and then leave the reaction solution at room temperature for about 1 hour.
  • the reaction can be terminated by reacting for 1 hour to 1.5 hours, no time is required to stand at room temperature, and the reaction time can be shortened.
  • the cellulose polymer may be broken if exposed to acid for a long period of time. In this case, the cellulose polymer is broken Can be prevented.
  • the step of dropping the fluorine-substituted acid anhydride into the first reactant at a temperature higher than room temperature may include dropping the fluorine-substituted acid anhydride for 10 minutes to 60 minutes have. Preferably 15 minutes to 50 minutes.
  • the dropping rate of dropping the fluorine-substituted acid anhydride to the first reactant at a temperature higher than room temperature may be 2 ml / min to 5 ml / min. Specifically, it is preferably 2 ml / min to 3 ml / min. If the dropping rate is less than 2 ml / min, the reaction time will be long and economical. If the dropping rate is more than 5 ml / min, stirring of the first reactant and the fluorine-substituted acid anhydride may not be sufficient.
  • the method for producing a composition for forming a gas-liberating film active layer comprises the steps of dropping the fluorine-substituted acid anhydride at a temperature higher than room temperature into the first reactant, And precipitating in a solvent.
  • the first organic solvent may be polar polarity solvent.
  • the first organic solvent may be diethyl ether, preferably diethyl ether, and more preferably diethyl ether.
  • the fluorine-substituted acid anhydride When the fluorine-substituted acid anhydride is added to the first reaction product, a gel-state mixture is obtained.
  • the gel-state mixture is gradually applied to the first organic solvent, the fluorine-substituted cellulose compound is submerged in the precipitate, and the acid substituted with fluorine or the acid anhydride substituted with fluorine is dissolved in the first organic solvent . That is, it is preferable that the first organic solvent does not dissolve the cellulosic compound substituted with fluorine, and dissolves the acid substituted with fluorine or the acid anhydride substituted with fluorine well.
  • CTFA when precipitating in diethyl ether, CTFA having poor solubility in diethyl ether is submerged in the precipitate, and TFA or TFAA having high solubility in diethyl ether is dissolved. Therefore, CTFA can be obtained as a precipitate.
  • the composition for forming a gas-freshening membrane active layer comprises a step of dropping the fluorine-substituted acid anhydride at a temperature higher than room temperature into the first reactant, ≪ / RTI >
  • the method for preparing the composition for forming a gas-liberating membrane active layer may further include a step of dissolving the precipitate in a second organic solvent.
  • the second organic solvent may be nitromethane.
  • a method for preparing a composition for forming a gas separation membrane comprising: reacting a cellulose compound with an acid substituted with fluorine to obtain a first reactant; Dropping an anhydride substituted with fluorine into the first reactant at a temperature higher than room temperature to obtain a mixture; Precipitating the mixture in a first organic solvent to obtain a precipitate; And dissolving the precipitate in a second organic solvent.
  • the composition for forming a gas-liberating membrane active layer may include nitromethane as a solvent in addition to the above-mentioned precipitate.
  • the composition for forming a gas-liberating membrane active layer may be composed of the above-mentioned precipitate and nitromethane.
  • the content of nitromethane may be 95 wt% to 97.1 wt% based on the total weight of the composition for forming a gas separation membrane active layer.
  • the content of the cellulosic compound may be from 2.9 wt% to 5 wt% based on the total weight of the composition for forming a gas separation membrane active layer.
  • the content of the cellulose compound satisfies the above range, the adsorption between the carbon dioxide and the -CF 3 functional group is facilitated, and the gas separation membrane can increase the carbon dioxide permeability and selectivity.
  • One embodiment of the present invention provides a composition for forming a gas separation membrane active layer, which is prepared according to the above-described method for producing a composition for forming a gas separation membrane active layer.
  • an embodiment of the present invention provides a composition for forming a gas separation membrane active layer comprising a unit represented by the following general formula (1).
  • n is a repetition number of units of 1 to 1,000
  • R1 to R3 are the same as or different from each other, each independently hydrogen or - a (CO) CF 3, at least one of R1 to R3 is - (CO) is CF 3.
  • R 1 is - (CO) CF 3
  • R 2 and R 3 may be hydrogen
  • R 2 is - (CO) CF 3
  • R 1 and R 3 may be hydrogen
  • R3 is - (CO) CF 3
  • R1 and R2 may be hydrogen
  • the R1 and R2 is - (CO), and CF 3, wherein R3 may be hydrogen.
  • the R1 and R3-a (CO) CF 3, wherein R2 may be hydrogen.
  • the R1 may be a hydrogen
  • R 1 to R 3 may be - (CO) CF 3 .
  • n 2 or more
  • the structures in parentheses may be the same or different from each other.
  • the composition for forming a gas-liberating membrane active layer may further include a solvent in addition to the units represented by the formula (1).
  • the description on the second organic solvent described above can be applied to the solvent.
  • n may be 100 to 500 as the number of repetitions of the unit. And preferably from 100 to 300.
  • the weight average molecular weight of the unit represented by Formula 1 may be 100 g / mol to 200,000 g / mol. Preferably from 10,000 g / mol to 200,000 g / mol, and more preferably from 100,000 g / mol to 200,000 g / mol.
  • the weight average molecular weight of the unit represented by the formula (1) satisfies the above range, the permeability of carbon dioxide in the gas separation membrane can be increased and the selectivity of carbon dioxide to methane gas can be improved.
  • One embodiment of the present invention relates to a method for producing a composition for forming a gas separation membrane, comprising the steps of: preparing a composition for forming a gas separation membrane active layer; Applying a hydrophilic polymer solution on the porous substrate to form a porous support; And applying a composition for forming a gas separation membrane active layer on the porous support to form an active layer.
  • Another embodiment of the present disclosure relates to a method of forming a porous support, comprising: applying a hydrophilic polymer solution on a porous substrate to form a porous support; And applying a composition for forming a gas separation membrane active layer on the porous support to form an active layer.
  • the porous substrate may be any material that can be used as a support of a gas separation membrane and may be, for example, polyester, polypropylene, nylon, polyethylene, It is not.
  • the porous substrate may be a nonwoven fabric.
  • the hydrophilic polymer is selected from the group consisting of polysulfone, polyethersulfone, polycarbonate, polyethylene oxide, polyimide, polyetherimide, polyetheretherketone, polypropylene, polymethylpentene, Polyvinylidene fluoride, and the like may be used but are not limited thereto.
  • the hydrophilic polymer may be polysulfones.
  • the hydrophilic polymer solution may be formed by dissolving the hydrophilic polymer in a solvent.
  • the solvent may be any solvent that can dissolve the hydrophilic polymer.
  • acetone, acetonitrile, tetrahydrofuran (THF), dimethylsulfoxide (DMSO), dimethylformamide (DMF), or hexamethylphosphoramide (HMPA) But is not limited thereto.
  • the hydrophilic polymer may be contained in an amount of 12 to 20% by weight based on the hydrophilic polymer solution.
  • the method of applying the composition for forming a gas separation membrane active layer on the porous support may be a method such as dipping, spraying or coating, but is not limited thereto.
  • the method of applying the composition for forming a gas separation membrane active layer on the porous support may be a slot coating method.
  • Another embodiment of the present disclosure provides a gas separation membrane produced according to the above-described method for producing a gas separation membrane.
  • one embodiment of the present disclosure relates to a porous support; And an active layer containing the unit represented by the formula (1) provided on the porous support.
  • the porous support may comprise a porous substrate and a hydrophilic polymer. That is, the porous substrate may be formed by applying a hydrophilic polymer solution on the porous substrate. The above description of the porous substrate and the hydrophilic polymer solution can be applied.
  • the thickness of the gas-separating membrane may be 100 m to 250 m.
  • the thickness of the gas separator satisfies the above range, the gas permeability of the gas separator is prevented from being reduced.
  • the thickness of the porous support may be 60 ⁇ to 150 ⁇ , but is not limited thereto and can be adjusted as needed.
  • the pore size of the porous support is preferably 1 nm to 500 nm, but is not limited thereto.
  • the thickness of the active layer may be 1 ⁇ to 5 ⁇ , and more preferably 1 ⁇ to 3 ⁇ .
  • the gas separation membrane may have a selectivity of carbon dioxide of 5 to 40 on the basis of methane. Specifically, it may be 10 to 35.
  • the gas-permeable membrane may have a carbon dioxide permeability of 10 to 100. Specifically, it may be 12 to 80.
  • CO 2 permeability are then entered into a gas separation membrane is in a cell (Cell) to boost the CO 2 danil gas to a gas separation membrane as 80 psi, the transmission after passing through a gas separation membrane CO 2 Can be measured by a flowmeter.
  • the gas permeability of methane (CH 4 ) was measured by changing the type of gas as described above, and the selectivity of CO 2 (CO 2 permeability / CH 4 permeability) based on methane was calculated to determine the CO 2 / CH 4 selectivity Can be measured.
  • FIG. 1 illustrates the structure of a gas separation membrane according to an embodiment of the present invention.
  • FIG. 1 illustrates a gas separation membrane 100 including a porous support 10 formed by applying a hydrophilic polymer solution on a porous substrate and an active layer 11 formed by applying a composition for forming an active layer on the porous support 10 ) Are illustrated.
  • the composition for forming an active layer may include a unit represented by the formula (1).
  • the gas barrier layer was prepared by applying the composition for forming an active layer on a UF support prepared by coating a porous nonwoven fabric with a polysulfone solution by slot coating.
  • a gas separation membrane was prepared in the same manner as in Example 1, except that the composition for forming the active layer was prepared using 2.9 wt% of CTFA instead of 5 wt% of CTFA in Example 1.
  • a gas separation membrane was prepared in the same manner as in Example 1, except that 5 wt% of cellulose acetate was used instead of 5 wt% of CTFA.
  • a gas separation membrane was prepared in the same manner as in Example 1, except that 2.5 wt% of cellulose acetate was used instead of 5 wt% of CTFA in Example 1.
  • a gas separation membrane was prepared in the same manner as in Example 1, except that 5 wt% of fluorinated cellulose acetate having the following structure was used instead of 5 wt% of CTFA in Example 1.
  • a gas separation membrane was prepared in the same manner as in Example 1, except that 2.5 wt% of fluorinated cellulose acetate having the following structure was used instead of 5 wt% of CTFA in Example 1.
  • TFC samples were prepared on the gas separation membranes prepared in Examples 1 and 2 and Comparative Examples 1 to 4 to evaluate the gas permeability. Carbon dioxide permeability, methane permeability, and carbon dioxide permeability to methane were calculated and are shown in Table 2 below.
  • gas permeation was induced by pressure difference between the top and bottom of the membrane by injecting gas of constant pressure (50 psi, 80 psi, 100 psi, 200 psi, etc.)
  • gas of constant pressure 50 psi, 80 psi, 100 psi, 200 psi, etc.
  • the flow rate of the gas permeated through the membrane was measured using a bubble flowmeter, and the permeability of the membrane was evaluated in consideration of the stabilization time (> 1 hour).
  • CTFA having a degree of substitution of 40 to 45% and reacted for about 1 hour 30 minutes after the addition of TFAA is used as the composition for forming an active layer, The process becomes easy.
  • the CO 2 / CH 4 selectivity means the gas selectivity of carbon dioxide gas based on methane gas.
  • the gas separation membranes according to Examples 1 and 2 had carbon dioxide selectivity of 10 or more based on methane, and the gas separation membrane containing CTFA (Cellulose Trifluoroacetate) in the active layer had excellent carbon dioxide permeability and selectivity Respectively.
  • CTFA Cellulose Trifluoroacetate
  • the gas separation membrane containing the CTFA according to Example 1 in the active layer had a permeability of carbon dioxide more than two times higher than that of the gas separation membrane containing cellulose acetate according to Comparative Example 1 and a permeability of methane of 7 times And has a CO 2 / CH 4 selectivity that is improved by at least 16 times.
  • the gas separation membrane containing the CTFA according to the second embodiment in the active layer has a permeability of carbon dioxide four times higher than that of the gas separation membrane comprising cellulose acetate according to the second comparative example in the active layer, and the permeability of methane is 1.6 Times lower, and CO 2 / CH 4 selectivity improved by over 5.6 times.
  • the gas separation membranes according to Examples 1 and 2 have a CO 2 / CH 4 selectivity of at least 2 times and at least 8 times that of the gas separation membranes according to Comparative Examples 3 and 4. From this, it can be seen that as the length of the substituent chain becomes longer, the permeability of the gas increases but the selectivity decreases. This is because the packing density between polymer chains composing the active layer is decreased due to the long chain, and the selectivity is decreased while the permeability of carbon dioxide and methane is simultaneously increased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

본 명세서는 셀룰로오스계 화합물과 불소로 치환된 산을 반응시켜 제1 반응물을 얻는 단계; 및 불소로 치환된 산무수물을 상온보다 높은 온도에서 상기 제1 반응물에 적하시키는 단계를 포함하는 기체 분리막 활성층 형성용 조성물의 제조방법 및 기체 분리막 활성층 형성용 조성물에 관한 것이다.

Description

기체 분리막 활성층 형성용 조성물의 제조방법, 이에 의해 제조된 기체 분리막 활성층 형성용 조성물, 기체 분리막의 제조방법 및 기체 분리막
본 출원은 2017년 12월 4일 한국 특허청에 제출된 한국 특허 출원 제 10-2017-0165055호의 출원일 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 명세서는 기체 분리막 활성층 형성용 조성물의 제조방법, 이에 따라 제조된 기체 분리막 활성층 형성용 조성물, 기체 분리막의 제조방법 및 기체 분리막에 관한 것이다.
기체 분리막은 지지층, 활성층 및 보호층으로 구성되어 있으며, 활성층의 기공 크기 및 구조적 특성을 이용하여 혼합기체로부터 선택적으로 기체를 분리하는 막이다. 따라서 기체 투과도와 선택도는 막의 성능을 나타내는 중요한 지표로 사용되며, 이러한 성능은 활성층을 구성하는 고분자 물질에 의해 큰 영향을 받는다.
따라서, 기체 분리막의 투과도 및 선택도를 증가시키기 위한 방법의 개발이 요구되고 있다.
본 명세서는 기체 분리막 활성층 형성용 조성물의 제조방법, 이에 의해 제조된 기체 분리막 활성층 형성용 조성물, 기체 분리막의 제조방법 및 기체 분리막에 대하여 제공하고자 한다.
본 명세서의 일 실시상태는, 셀룰로오스계 화합물과 불소로 치환된 산을 반응시켜 제1 반응물을 얻는 단계; 및 불소로 치환된 산무수물을 상온보다 높은 온도에서 상기 제1 반응물에 적하시키는 단계를 포함하는 기체 분리막 활성층 형성용 조성물의 제조방법을 제공한다.
본 명세서의 또 하나의 실시상태는, 전술한 제조방법에 따라 제조된 기체 분리막 활성층 형성용 조성물을 제공한다.
본 명세서의 일 실시상태는, 하기 화학식 1로 표시되는 단위를 포함하는 기체 분리막 활성층 형성용 조성물을 제공한다.
[화학식 1]
Figure PCTKR2018015128-appb-I000001
상기 화학식 1에 있어서,
n은 단위의 반복 수로, 1 내지 1,000이고,
R1 내지 R3은 서로 같거나 상이하고, 각각 독립적으로 수소 또는 -(CO)CF3이고, R1 내지 R3 중 적어도 하나는 -(CO)CF3이다.
본 명세서의 또 하나의 실시상태는, 전술한 기체 분리막 활성층 형성용 조성물의 제조방법에 따른 방법으로 기체 분리막 활성층 형성용 조성물을 제조하는 단계; 다공성 기재 상에 친수성 고분자 용액을 도포하여 다공성 지지체를 형성하는 단계; 및 상기 다공성 지지체 상에 상기 기체 분리막 활성층 형성용 조성물을 도포하여 활성층을 형성하는 단계를 포함하는 기체 분리막의 제조방법을 제공한다.
또한, 본 명세서의 일 실시상태는, 다공성 지지체; 및 상기 다공성 지지체 상에 구비된 상기 화학식 1로 표시되는 단위를 포함하는 활성층을 포함하는 기체 분리막을 제공한다.
본 명세서의 일 실시상태에 따른 기체 분리막은, 우수한 이산화탄소 투과도 및 메탄에 대한 이산화탄소 선택도를 가진다.
도 1은 본 명세서의 일 실시상태에 따른 기체 분리막을 도시한 것이다.
[부호의 설명]
100: 기체 분리막
10: 다공성 지지체
11: 활성층
이하 본 명세서에 대하여 더욱 상세하게 설명한다.
본 명세서에서 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본 명세서에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.
본 명세서의 일 실시상태는, 셀룰로오스계 화합물과 불소로 치환된 산을 반응시켜 제1 반응물을 얻는 단계; 및 불소로 치환된 산무수물을 상온보다 높은 온도에서 상기 제1 반응물에 적하시키는 단계를 포함하는 기체 분리막 활성층 형성용 조성물의 제조방법을 제공한다.
셀룰로오스 트리플루오로아세테이트(Cellulose trifluoroacetate, CTFA)의 합성과정에서 반응을 상온에서 수행하면, 반응물을 혼합한 후 2시간 내지 3시간 정도 휘젓는(stirring) 과정이 필요하고, 이후 1시간정도 상온에서 방치하는 과정이 필요하다. 그러나, 상온보다 높은 온도에서 반응하게 되는 경우, 1시간 내지 1.5시간 동안 반응시켜 반응을 종결할 수 있고, 상온에서 방치하는 시간도 필요없어, 반응 시간을 단축할 수 있는 효과가 있다.
또한, CTFA 합성과정에서 반응 시간을 단축하는 것은, 합성시 사용되는 불소로 치환된 산과 불소로 치환된 산무수물이 강한 산이기 때문에 장시간 산에 노출되면 셀룰로오스 중합체가 깨질 수 있는데, 산에 노출되는 시간을 줄임으로써 셀룰로오스 중합체가 깨지는 현상을 방지할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 불소로 치환된 산은 불소가 적어도 하나 치환된 탄소수 2 내지 10의 알칸산일 수 있다. 상기 알칸산은, 아세트산(acetic acid), 프로피온산(propionic acid), 부티르산(butyric acid), 발레르산(valeric acid), 카프로산(caproic acid), 에난트산(enanthic acid), 카프릴산(caprylic acid), 펠라르곤산(pelargonic acid), 또는 카프르산(capric acid) 등일 수 있으나, 이에 한정되는 것은 아니다.
본 명세서의 일 실시상태에 따르면, 상기 불소로 치환된 산은, 불소가 3개 치환된 탄소수 2 내지 10의 알칸산일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 불소로 치환된 산은 불소가 3개 치환된 탄소수 2 내지 6의 알칸산일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 알칸산은 바람직하게는 아세트산일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 불소로 치환된 산은 트리플루오로아세트산(Trifluoroacetic acid, TFA) 일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 불소로 치환된 산은 99% 이상의 고순도의 산일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 불소로 치환된 산무수물은 불소가 적어도 하나 치환된 탄소수 3 내지 10의 산무수물일 수 있다. 상기 알칸산은 전술한 바와 같다.
본 명세서의 일 실시상태에 따르면, 상기 불소로 치환된 산무수물은 불소가 3개 치환된 탄소수 3 내지 10의 산무수물일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 불소로 치환된 산무수물은 불소가 3개 치환된 탄소수 3 내지 6의 산무수물일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 산무수물은 아세트산무수물(acetic anhydride), 아세트포름산무수물(acetic formic anhydride), 아세트프로피온산무수물(acetic propionic anhydride), 프로피온산무수물(propionic anhydride), 아세트부티르산무수물(acetic butyric anhydride), 부티르프로피온산무수물(butyric propionic anhydride), 숙신산무수물(succinic anhydride), 또는 글루타르산무수물(glutaric anhydride) 등일 수 있으나, 이에 한정되는 것은 아니다.
본 명세서의 일 실시상태에 따르면, 상기 산무수물은 바람직하게는 아세트산무수물일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 불소로 치환된 산무수물은 트리플루오로아세트산무수물(Trifluoroacetic anhydride, TFAA) 일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 불소로 치환된 산무수물은 99% 이상의 고순도의 산무수물일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 셀룰로오스계 화합물은 셀룰로오스일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 상온보다 높은 온도는 30℃ 내지 80℃일 수 있다. 구체적으로, 상기 상온보다 높은 온도는 40℃ 내지 70℃일 수 있고, 더 바람직하게는 50℃ 내지 60℃일 수 있다. CTFA의 합성과정에서 반응 온도를 상온에서 수행하면, 반응물을 혼합한 후 2시간 내지 3시간 정도 휘젓는(stirring) 과정이 필요하고, 이후 1시간정도 상온에서 방치하는 과정이 필요하다. 그러나, 상온보다 높은 온도에서 반응하게 되는 경우, 1시간 내지 1.5시간 동안 반응시켜 반응을 종결할 수 있고, 상온에서 방치하는 시간도 필요없어, 반응시간을 단축할 수 있는 효과가 있다.
또한, CTFA 합성과정에서 반응 시간을 단축하는 것은, 합성시 사용되는 TFA와 TFAA가 강한 산이기 때문에 장시간 산에 노출되면 셀룰로오스 중합체가 깨질 수 있는데, 산에 노출되는 시간을 줄임으로써 셀룰로오스 중합체가 깨지는 현상을 방지할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 불소로 치환된 산무수물을 상온보다 높은 온도에서 상기 제1 반응물에 적하시키는 단계는, 상기 불소로 치환된 산무수물을 10분 내지 60분동안 적하시키는 것일 수 있다. 바람직하게는 15분 내지 50분동안 적하시키는 것일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 불소로 치환된 산무수물을 상온보다 높은 온도에서 상기 제1 반응물에 적하시키는 단계의 적하속도는 2ml/min 내지 5ml/min일 수 있다. 구체적으로 2ml/min 내지 3ml/min인 것이 바람직하다. 상기 적하시키는 속도가 2ml/min 미만인 경우, 반응 시간이 많이 소모되어 경제적이지 못하고, 5ml/min 초과인 경우 제1 반응물과 상기 불소로 치환된 산무수물의 교반이 충분히 되지 않을 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 기체 분리막 활성층 형성용 조성물의 제조방법은, 상기 불소로 치환된 산무수물을 상온보다 높은 온도에서 상기 제1 반응물에 적하시키는 단계 이후, 형성된 혼합물을 제1 유기용매에서 침전하는 단계를 더 포함할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 제1 유기용매는 극성 용매일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 제1 유기용매는 이써(ether) 용매일 수 있고, 더 바람직하게는 디에틸이써(diethyl ether)일 수 있다.
상기 불소로 치환된 산무수물을 상기 제1 반응물에 적하시키면, 겔(gel) 상태의 혼합물이 얻어진다. 이 겔 상태의 혼합물을 제1 유기용매에 조금씩 따라주면, 불소로 치환된 셀룰로오스계 화합물은 침전물로 가라앉게 되고, 불소로 치환된 산 또는 불소로 치환된 산무수물은 제1 유기용매에 용해되어 있다. 즉, 상기 제1 유기용매는 불소로 치환된 셀룰로오스계 화합물을 용해시키지 않으며, 불소로 치환된 산 또는 불소로 치환된 산무수물을 잘 용해시키는 것이 바람직하다.
구체적으로, 디에틸이써에서 침전하는 경우, 디에틸이써에 용해도가 좋지 않은 CTFA는 침전물로 가라앉게 되며, 디에틸이써에 용해도가 좋은 TFA 또는 TFAA는 용해되어 있다. 따라서, CTFA를 침전물로 얻을 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 기체 분리막 활성층 형성용 조성물은, 상기 불소로 치환된 산무수물을 상온보다 높은 온도에서 상기 제1 반응물에 적하시키는 단계 이후, 형성된 혼합물을 제1 유기용매에 침전하여 형성된 침전물을 포함할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 기체 분리막 활성층 형성용 조성물의 제조방법은, 상기 침전물을 제2 유기용매에 녹이는 단계를 더 포함할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 제2 유기용매는 니트로메탄(nitromethane)일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 기체 분리막 활성층 형성용 조성물의 제조방법은, 셀룰로오스계 화합물과 불소로 치환된 산을 반응시켜 제1 반응물을 얻는 단계; 불소로 치환된 무수물을 상온보다 높은 온도에서 상기 제1 반응물에 적하시켜 혼합물을 얻는 단계; 상기 혼합물을 제1 유기용매에 침전시켜 침전물을 얻는 단계; 및 상기 침전물을 제2 유기용매에 녹이는 단계를 포함할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 기체 분리막 활성층 형성용 조성물은 전술한 침전물 외에 니트로메탄(nitromethane)을 용매로 포함할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 기체 분리막 활성층 형성용 조성물은 전술한 침전물 및 니트로메탄(nitromethane)으로 이루어질 수 있다. 이 경우, 상기 니트로메탄의 함량은 상기 기체 분리막 활성층 형성용 조성물 전체 중량을 기준으로 95wt% 내지 97.1wt% 일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 기체 분리막 활성층 형성용 조성물 전체 중량을 기준으로 셀룰로오스계 화합물의 함량은 2.9wt% 내지 5wt% 일 수 있다. 상기 셀룰로오스계 화합물의 함량이 상기 범위를 만족하는 경우, 이산화탄소와 -CF3 작용기와의 흡착이 용이해져서, 기체 분리막은 이산화탄소 투과도 및 선택도를 높일 수 있다.
본 명세서의 일 실시상태는, 전술한 기체 분리막 활성층 형성용 조성물의 제조방법에 따라 제조된 기체 분리막 활성층 형성용 조성물을 제공한다.
또한, 본 명세서의 일 실시상태는, 하기 화학식 1로 표시되는 단위를 포함하는 기체 분리막 활성층 형성용 조성물을 제공한다.
[화학식 1]
Figure PCTKR2018015128-appb-I000002
상기 화학식 1에 있어서,
n은 단위의 반복 수로, 1 내지 1,000이고,
R1 내지 R3은 서로 같거나 상이하고, 각각 독립적으로 수소 또는 -(CO)CF3이고, R1 내지 R3 중 적어도 하나는 -(CO)CF3이다.
본 명세서의 일 실시상태에 따르면, 상기 R1은 -(CO)CF3이고, 상기 R2 및 R3은 수소일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 R2는 -(CO)CF3이고, 상기 R1 및 R3은 수소일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 R3은 -(CO)CF3이고, 상기 R1 및 R2는 수소일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 R1 및 R2는 -(CO)CF3이고, 상기 R3은 수소일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 R1 및 R3은 -(CO)CF3이고, 상기 R2는 수소일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 R2 및 R3은 -(CO)CF3이고, 상기 R1은 수소일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 R1 내지 R3은 -(CO)CF3일 수 있다.
상기 R1 내지 R3에 -(CO)CF3에 비해 사슬 길이가 긴 치환기가 도입될 경우, 선택도에 악영향을 미칠 수 있다. 길어진 사슬로 인해 활성층을 구성하는 고분자 사슬 간의 packing density가 감소하면서, 이산화탄소 및 메탄의 투과도가 동시에 증가하고 이에 따라 CO2/CH4 선택도가 감소하기 때문이다.
본 명세서의 일 실시상태에 따르면, 상기 n이 2 이상인 경우, 괄호 안의 구조는 서로 같거나 상이할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 기체 분리막 활성층 형성용 조성물은 상기 화학식 1로 표시되는 단위 외에 용매를 더 포함할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 용매는 전술한 제2 유기용매에 관한 설명이 적용될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 n은 단위의 반복 수로 100 내지 500일 수 있다. 바람직하게는 100 내지 300 일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1로 표시되는 단위의 중량평균분자량은 100g/mol 내지 200,000g/mol일 수 있다. 바람직하게는 10,000g/mol 내지 200,000g/mol일 수 있고, 더 바람직하게는 100,000g/mol 내지 200,000g/mol 일 수 있다. 상기 화학식 1로 표시되는 단위의 중량평균분자량이 상기 범위를 만족하는 경우, 기체 분리막의 이산화탄소의 투과도를 높이고, 메탄 기체 대비 이산화탄소의 선택도를 향상시킬 수 있다.
본 명세서의 일 실시상태는, 전술한 기체 분리막 활성층 형성용 조성물의 제조방법에 따른 방법으로 기체 분리막 활성층 형성용 조성물을 제조하는 단계; 다공성 기재 상에 친수성 고분자 용액을 도포하여 다공성 지지체를 형성하는 단계; 및 상기 다공성 지지체 상에 상기 기체 분리막 활성층 형성용 조성물을 도포하여 활성층을 형성하는 단계를 포함하는 기체 분리막의 제조방법을 제공한다.
본 명세서의 또 하나의 실시상태는, 다공성 기재 상에 친수성 고분자 용액을 도포하여 다공성 지지체를 형성하는 단계; 및 상기 다공성 지지체 상에 전술한 기체 분리막 활성층 형성용 조성물을 도포하여 활성층을 형성하는 단계를 포함하는 기체 분리막의 제조방법을 제공한다.
본 명세서의 일 실시상태에 따르면, 상기 다공성 기재는 기체 분리막의 지지체로 사용되는 재질이면 제한 없이 사용될 수 있으며, 예를 들어, 폴리에스테르, 폴리프로필렌, 나일론, 폴리에틸렌, 또는 부직포일 수 있으나, 이에 한정되는 것은 아니다. 구체적으로, 상기 다공성 기재는 부직포를 사용할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 친수성 고분자는 폴리설폰, 폴리에테르설폰, 폴리카보네이트, 폴리에틸렌옥사이드, 폴리이미드, 폴리에테르이미드, 폴리에테르에테르케톤, 폴리프로필렌, 폴리메틸펜텐, 폴리메틸클로라이드, 또는 폴리비닐리덴플루오라이드 등이 사용될 수 있으나, 반드시 이들로 제한되는 것은 아니다. 구체적으로, 상기 친수성 고분자는 폴리설폰일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 친수성 고분자 용액은 상기 친수성 고분자를 용매에 녹여 형성할 수 있다. 상기 용매는 친수성 고분자를 용해할 수 있는 용매라면 제한없이 사용할 수 있다. 예를 들어, 아세톤(acetone), 아세토니트릴(acetonitrile), 테트라하이드로퓨란(THF), 디메틸설폭사이드(DMSO), 디메틸포름아미드(DMF), 또는 헥사메틸포스포아미드(HMPA) 등이 있으나, 이에 한정되는 것은 아니다. 상기 친수성 고분자는 친수성 고분자 용액을 기준으로 12 중량% 내지 20 중량% 포함될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 다공성 지지체 상에 전술한 기체 분리막 활성층 형성용 조성물을 도포하는 방법은 침지, 스프레이 또는 코팅 등의 방법을 이용할 수 있으나, 이에 한정되는 것은 아니다.
본 명세서의 일 실시상태에 따르면, 상기 다공성 지지체 상에 전술한 기체 분리막 활성층 형성용 조성물을 도포하는 방법은 슬롯 코팅 방법일 수 있다.
본 명세서의 또 하나의 실시상태는, 전술한 기체 분리막의 제조방법에 따라 제조된 기체 분리막을 제공한다.
또한, 본 명세서의 일 실시상태는, 다공성 지지체; 및 상기 다공성 지지체 상에 구비된 상기 화학식 1로 표시되는 단위를 포함하는 활성층을 포함하는 기체 분리막을 제공한다.
본 명세서의 일 실시상태에 따르면, 상기 다공성 지지체는 다공성 기재 및 친수성 고분자를 포함할 수 있다. 즉, 상기 다공성 지지체는, 상기 다공성 기재 상에 친수성 고분자 용액을 도포하여 형성된 것일 수 있다. 상기 다공성 기재와 상기 친수성 고분자 용액은 전술한 설명이 적용될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 기체 분리막의 두께는 100㎛ 내지 250㎛일 수 있다. 상기 기체 분리막의 두께가 상기 범위를 만족하는 경우, 기체 분리막의 기체 투과도가 감소되는 현상을 방지할 수 있는 효과가 있다.
본 명세서의 일 실시상태에 따르면, 상기 다공성 지지체의 두께는 60㎛ 내지 150㎛일 수 있으나, 이에 한정되는 것은 아니고 필요에 따라 조절될 수 있다. 또한, 상기 다공성 지지체의 기공 크기는 1㎚ 내지 500㎚인 것이 바람직하나, 이에 한정되는 것은 아니다.
본 명세서의 일 실시상태에 따르면, 상기 활성층의 두께는 1㎛ 내지 5㎛일 수 있고, 더 바람직하게는 1㎛ 내지 3㎛일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 기체 분리막은 메탄을 기준으로 이산화탄소의 선택도가 5 내지 40일 수 있다. 구체적으로 10 내지 35일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 기체 분리막은 이산화탄소 투과도가 10 내지 100일 수 있다. 구체적으로 12 내지 80일 수 있다.
본 명세서에 있어서, "이산화탄소(CO2) 투과도"는 셀(Cell) 내부에 기체 분리막을 체결한 후 기체 분리막에 CO2 단일 기체를 80 psi로 밀어주고, 기체 분리막을 통과한 후 투과된CO2의 유량을 유량계(flowmeter)로 측정할 수 있다. 상기와 같은 방법으로 기체의 종류를 바꾸어 메탄(CH4)의 기체 투과도를 측정한 후 메탄을 기준으로 이산화탄소의 선택도(CO2 투과도/CH4 투과도)를 계산하여 CO2/CH4 선택도를 측정할 수 있다.
도 1은 본 명세서의 일 실시상태에 따른 기체 분리막의 구조를 예시한 것이다.
도 1에는 다공성 기재 상에 친수성 고분자 용액을 도포하여 형성한 다공성 지지체(10) 및 상기 다공성 지지체(10) 상에 구비된 활성층 형성용 조성물을 도포하여 형성된 활성층(11)을 포함하는 기체 분리막(100)이 예시되어 있다. 상기 활성층 형성용 조성물은 상기 화학식 1로 표시되는 단위를 포함할 수 있다.
이하, 본 명세서를 구체적으로 설명하기 위해 실시예를 들어 상세히 설명한다. 그러나, 본 명세서에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 명세서의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지는 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.
<실험예 1>
<실시예 1>
Cellulose powder 10g, TFA(Trifluoroacetic acid) 200ml 를 질소 분위기 하에서 저어주었다.(stirring) 그 후, TFAA(Trifluoroacetic anhydride) 70ml 를 질소 분위기를 유지하면서 1시간 동안 적하(dropping)하여 60℃에서 1시간 30분 반응시켰다. 반응 후 겔(gel) 상태의 물질을 디에틸이써(diethyl ether)용매에 조금씩 따라주어 CTFA(Cellulose trifluoroacetate)를 침전시켰다.
니트로메탄에 상기 CTFA을 5wt% 넣어주어 활성층 형성용 조성물을 제조하였다.
다공성 부직포에 폴리설폰 용액을 코팅하여 준비한 UF 지지체 상에 상기 활성층 형성용 조성물을 슬롯 코팅으로 도포하여 기체 분리막을 제조하였다.
<실시예 2>
실시예 1에서, CTFA 5wt% 대신 CTFA 2.9wt%를 사용하여 활성층 형성용 조성물을 제조한 것을 제외하고는, 실시예 1과 동일한 방법으로 기체 분리막을 제조하였다.
<비교예 1>
실시예 1에서, CTFA 5wt% 대신 Cellulose acetate 5wt%를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 기체 분리막을 제조하였다.
<비교예 2>
실시예 1에서, CTFA 5wt% 대신 Cellulose acetate 2.5wt%를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 기체 분리막을 제조하였다.
<비교예 3>
실시예 1에서, CTFA 5wt% 대신 하기 구조의 Fluorinated cellulose acetate 5wt%를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 기체 분리막을 제조하였다.
<비교예 4>
실시예 1에서, CTFA 5wt% 대신 하기 구조의 Fluorinated cellulose acetate 2.5wt%를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 기체 분리막을 제조하였다.
[Fluorinated cellulose acetate]
Figure PCTKR2018015128-appb-I000003
상기 실시예 1에서, TFAA를 첨가한 후 반응 시간 경과에 따른 치환도를 NMR로 분석한 결과를 하기 표 1에 나타내었다.
상기 실시예 1 및 2, 비교예 1 내지 4에 의하여 제조된 기체 분리막에 대하여, TFC 샘플을 만들어서 기체 투과도를 평가하였다. 이산화탄소 투과도, 메탄 투과도, 및 메탄 대비 이산화탄소 투과도 값을 계산하여 하기 표 2에 나타내었다.
상온에서 기체 투과 셀의 상부에 Pressure Regulator를 이용하여 일정 압력(50psi, 80psi, 100psi, 200psi 등)의 가스를 주입하여 막 상부와 하부의 압력차로 인한 기체 투과를 유도했다. 이때 분리막을 투과한 기체의 유량을 bubble flowmeter를 이용하여 측정하고 안정화 시간(> 1 hour)을 고려하여 분리막의 투과도를 평가하였다.
반응 시간 치환도(%)
0min 43
30min 42
60min 45
90min 40
120min 45
150min 45
180min 47
300min 48
24hr 73
상기 표 1의 결과에 따르면, 반응 후 300분까지는 치환도 45% 내외에서 큰 변화가 없음을 확인할 수 있었다. 24시간 반응시킨 70% 이상의 불소 치환 고분자는 기체 분리막으로 사용하지 못하였다. 불소 치환도가 높으면 불소에 의한 기체 흡착 능력이 향상될 수 있으나, 그에 따라 고분자의 용해도가 감소한다. 합성한 고분자를 사용하기 위해서는 고분자를 특정 용매, 즉 니트로메탄에 녹여 사용해야 하는데, 불소 치환도가 지나치게 높은 고분자의 경우, 이를 녹일 수 있는 용매가 없기 때문에 기체 분리막으로 코팅할 수 있는 가공성이 떨어지게 된다.
따라서, 본 발명의 일 실시상태에 따르면, TFAA 첨가 후 1시간 30분 정도 반응시킨 치환도 40~45% 의 CTFA를 활성층 형성용 조성물로 사용하는 경우에, 니트로메탄에도 적당히 녹으면서 활성층 형성 후 건조과정이 용이하게 된다.
활성층 고분자 물질 함량(중량%) PCO2(GPU) PCH4(GPU) Selectivity(CO2/CH4)
실시예 1 CTFA 5 12.5 0.394 32
실시예 2 CTFA 2.9 73 5 13
비교예 1 Cellulose acetate 5 5.7 2.8 2.0
비교예 2 Cellulose acetate 2.5 18.0 8.0 2.3
비교예 3 Fluorinated cellulose acetate 5 25.5 5.8 4.4
비교예 4 Fluorinated cellulose acetate 2.5 80.7 22.6 3.6
상기 CO2/CH4 선택도(Selectivity)는 메탄 기체를 기준으로한 이산화탄소 기체의 기체 선택도를 의미한다.
상기 표 2에 따르면, 실시예 1 및 2에 따른 기체 분리막은 메탄을 기준으로 이산화탄소의 선택도가 10 이상으로서, CTFA(Cellulose trifluoroacetate)를 활성층에 포함하는 기체 분리막은 이산화탄소 투과도 및 선택도가 우수한 결과를 나타내었다.
실시예 1에 따른 CTFA를 활성층에 포함하는 기체 분리막은, 비교예 1에 따른 셀룰로오스 아세테이트를 활성에 포함하는 기체 분리막과 대비하여, 이산화탄소의 투과도는 2배 이상 더 높고, 메탄의 투과도는 7배 더 낮아서, 16 배 이상 향상된 CO2/CH4 선택도를 가진다.
마찬가지로, 실시예 2에 따른 CTFA를 활성층에 포함하는 기체 분리막은, 비교예 2에 따른 셀룰로오스 아세테이트를 활성층에 포함하는 기체 분리막과 대비하여, 이산화탄소의 투과도는 4배 이상 더 높고, 메탄의 투과도는 1.6배 더 낮아서, 5.6 배 이상 향상된 CO2/CH4 선택도를 가진다.
또한, 실시예 1 및 2에 따른 기체 분리막은 비교예 3 및 4에 따른 기체 분리막에 비해 2배, 많게는 8배 이상의 CO2/CH4 선택도를 가진다. 이를 통해, 치환기 사슬의 길이가 길어지면 기체의 투과도는 증가하나 선택도가 감소하는 것을 확인할 수 있다. 이는 길어진 사슬로 인해 활성층을 구성하는 고분자 사슬 간의 packing density가 감소하였기 때문으로, 이산화탄소 및 메탄의 투과도가 동시에 증가하면서 선택도가 감소한 것이다.
이상을 통해 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 발명의 범주에 속한다.

Claims (20)

  1. 셀룰로오스계 화합물과 불소로 치환된 산을 반응시켜 제1 반응물을 얻는 단계; 및
    불소로 치환된 산무수물을 상온보다 높은 온도에서 상기 제1 반응물에 적하시키는 단계
    를 포함하는 기체 분리막 활성층 형성용 조성물의 제조방법.
  2. 청구항 1에 있어서, 상기 기체 분리막 활성층 형성용 조성물 전체 중량을 기준으로 셀룰로오스계 화합물의 함량은 2.9wt% 내지 5wt%인 것인 기체 분리막 활성층 형성용 조성물의 제조방법.
  3. 청구항 1에 있어서, 상기 불소로 치환된 산은 불소가 적어도 하나 치환된 탄소수 2 내지 10의 알칸산인 것인 기체 분리막 활성층 형성용 조성물의 제조방법.
  4. 청구항 1에 있어서, 상기 불소로 치환된 산무수물은 불소가 적어도 하나 치환된 탄소수 3 내지 10의 산무수물인 것인 기체 분리막 활성층 형성용 조성물의 제조방법.
  5. 청구항 1에 있어서, 상기 불소로 치환된 산은 트리플루오로아세트산(Trifluoroacetic acid) 인 것인 기체 분리막 활성층 형성용 조성물의 제조방법.
  6. 청구항 1에 있어서, 상기 불소로 치환된 산무수물은 트리플루오로아세트산무수물(Trifluoroacetic anhydride) 인 것인 기체 분리막 활성층 형성용 조성물의 제조방법.
  7. 청구항 1에 있어서, 상기 상온보다 높은 온도는 30℃ 내지 80℃인 것인 기체 분리막 활성층 형성용 조성물의 제조방법.
  8. 청구항 1 내지 7 중 어느 한 항에 따라 제조된 기체 분리막 활성층 형성용 조성물.
  9. 하기 화학식 1로 표시되는 단위를 포함하는 기체 분리막 활성층 형성용 조성물:
    [화학식 1]
    Figure PCTKR2018015128-appb-I000004
    상기 화학식 1에 있어서,
    n은 단위의 반복 수로, 1 내지 1,000이고,
    R1 내지 R3은 서로 같거나 상이하고, 각각 독립적으로 수소 또는 -(CO)CF3이고, R1 내지 R3 중 적어도 하나는 -(CO)CF3이다.
  10. 청구항 9에 있어서, 제2 유기용매를 더 포함하는 기체 분리막 활성층 형성용 조성물.
  11. 청구항 10에 있어서, 상기 제2 유기용매는 니트로메탄인 것인 기체 분리막 활성층 형성용 조성물.
  12. 청구항 9에 있어서, 상기 화학식 1로 표시되는 단위의 함량은, 상기 기체 분리막 활성층 형성용 조성물 전체 중량을 기준으로 2.9wt% 내지 5wt%인 것인 기체 분리막 활성층 형성용 조성물.
  13. 청구항 10에 있어서, 상기 제2 유기용매의 함량은, 상기 기체 분리막 활성층 형성용 조성물 전체 중량을 기준으로 95wt% 내지 97.1wt%인 것인 기체 분리막 활성층 형성용 조성물.
  14. 청구항 1 내지 7 중 어느 한 항에 따른 방법으로 기체 분리막 활성층 형성용 조성물을 제조하는 단계;
    다공성 기재 상에 친수성 고분자 용액을 도포하여 다공성 지지체를 형성하는 단계; 및
    상기 다공성 지지체 상에 상기 기체 분리막 활성층 형성용 조성물을 도포하여 활성층을 형성하는 단계
    를 포함하는 기체 분리막의 제조방법.
  15. 청구항 14에 있어서, 상기 다공성 기재는 다공성 부직포인 것인 기체 분리막의 제조방법.
  16. 청구항 14에 있어서, 상기 활성층 형성용 조성물을 도포하는 방법은 슬롯 코팅 방법인 것인 기체 분리막의 제조방법.
  17. 청구항 14에 있어서, 상기 친수성 고분자는 폴리설폰, 폴리에테르설폰, 폴리카보네이트, 폴리에틸렌옥사이드, 폴리이미드, 폴리에테르이미드, 폴리에테르에테르케톤, 폴리프로필렌, 폴리메틸펜텐, 폴리메틸클로라이드, 폴리비닐리덴플루오라이드 및 이들의 혼합물로 이루어진 군에서 선택되는 1종 이상인 것인 기체 분리막의 제조방법.
  18. 다공성 지지체; 및
    상기 다공성 지지체 상에 구비된 하기 화학식 1로 표시되는 단위를 포함하는 활성층
    을 포함하는 기체 분리막:
    [화학식 1]
    Figure PCTKR2018015128-appb-I000005
    상기 화학식 1에 있어서,
    n은 단위의 반복 수로, 1 내지 1,000이고,
    R1 내지 R3은 서로 같거나 상이하고, 각각 독립적으로 수소 또는 -(CO)CF3이고, R1 내지 R3 중 적어도 하나는 -(CO)CF3이다.
  19. 청구항 18에 있어서, 상기 다공성 지지체는 다공성 부직포 및 친수성 고분자를 포함하는 것인 기체 분리막.
  20. 청구항 18에 있어서, 상기 기체 분리막은 메탄을 기준으로 이산화탄소의 선택도가 5 내지 40인 것인 기체 분리막.
PCT/KR2018/015128 2017-12-04 2018-11-30 기체 분리막 활성층 형성용 조성물의 제조방법, 이에 의해 제조된 기체 분리막 활성층 형성용 조성물, 기체 분리막의 제조방법 및 기체 분리막 WO2019112259A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18885820.3A EP3721978B1 (en) 2017-12-04 2018-11-30 Method for producing composition for forming gas separation membrane active layer, composition for forming gas separation membrane active layer produced by same, method for manufacturing gas separation membrane, and gas separation membrane
ES18885820T ES2908713T3 (es) 2017-12-04 2018-11-30 Procedimiento para producir la composición destinada a formar la capa activa de la membrana de separación de gases, la composición para formar la capa activa de la membrana de separación de gases producida por la misma, el procedimiento para fabricar la membrana de separación de gases y la membrana de separación de gases
CN201880053264.XA CN111065448B (zh) 2017-12-04 2018-11-30 用于制造气体分离膜的方法和气体分离膜
US16/644,068 US11198102B2 (en) 2017-12-04 2018-11-30 Method for producing composition for forming gas separation membrane active layer, composition for forming gas separation membrane active layer produced by same, method for manufacturing gas separation membrane, and gas separation membrane
JP2020509012A JP6996049B2 (ja) 2017-12-04 2018-11-30 気体分離膜活性層形成用の組成物の製造方法、これによって製造された気体分離膜活性層形成用の組成物、気体分離膜の製造方法および気体分離膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0165055 2017-12-04
KR20170165055 2017-12-04

Publications (1)

Publication Number Publication Date
WO2019112259A1 true WO2019112259A1 (ko) 2019-06-13

Family

ID=66750541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/015128 WO2019112259A1 (ko) 2017-12-04 2018-11-30 기체 분리막 활성층 형성용 조성물의 제조방법, 이에 의해 제조된 기체 분리막 활성층 형성용 조성물, 기체 분리막의 제조방법 및 기체 분리막

Country Status (7)

Country Link
US (1) US11198102B2 (ko)
EP (1) EP3721978B1 (ko)
JP (1) JP6996049B2 (ko)
KR (1) KR102158917B1 (ko)
CN (1) CN111065448B (ko)
ES (1) ES2908713T3 (ko)
WO (1) WO2019112259A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6778829B2 (ja) * 2018-03-16 2020-11-04 株式会社東芝 電極の製造方法および製造装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991016356A1 (en) * 1990-04-16 1991-10-31 Eastman Kodak Company Preparation of low molecular weight cellulose esters
KR100212039B1 (ko) * 1997-02-27 1999-08-02 홍영근 고강도 셀룰로오스 섬유 및 그 제조 방법
US20100162887A1 (en) * 2005-08-05 2010-07-01 Hagg May-Britt Carbon membranes
KR20110118567A (ko) * 2010-04-23 2011-10-31 인하대학교 산학협력단 불소화된 셀룰로오스 아세테이트, 이의 제조 방법 및 이로부터 얻어지는 압전 종이
JP2014176795A (ja) * 2013-03-14 2014-09-25 Fujifilm Corp ガス分離複合膜

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5955307A (ja) 1982-09-22 1984-03-30 Kobunshi Oyo Gijutsu Kenkyu Kumiai 酸素ガス分離膜
US4549012A (en) 1984-08-13 1985-10-22 Sharma Ashok K Fluorinated cellulose acetate polymers
US4881954A (en) * 1987-07-31 1989-11-21 Union Carbide Corporation Permeable membranes for enhanced gas separation
JPH02212501A (ja) 1989-02-10 1990-08-23 Daikin Ind Ltd 含フッ素セルロース誘導体
WO1991014709A1 (en) 1990-03-19 1991-10-03 Eastman Kodak Company Process for preparing cellulose esters
KR950032288A (ko) 1994-05-31 1995-12-20 홍영근 셀룰로오스 트리플루오로 아세테이트 수지
JP2011518661A (ja) 2008-04-08 2011-06-30 フジフィルム・マニュファクチュアリング・ヨーロッパ・ベスローテン・フエンノートシャップ 膜の調製方法
US8614288B2 (en) 2011-06-17 2013-12-24 Uop Llc Polyimide gas separation membranes
JP2013111507A (ja) * 2011-11-25 2013-06-10 Fujifilm Corp ガス分離膜、その製造方法、それを用いたガス分離膜モジュール
KR20130137850A (ko) 2012-06-08 2013-12-18 삼성전자주식회사 분리막 및 상기 분리막을 포함하는 수처리 장치
CN104277122B (zh) 2013-07-11 2016-08-10 南通醋酸纤维有限公司 溶于丙酮的纤维素酯的直接合成方法及其产品
WO2016047351A1 (ja) 2014-09-22 2016-03-31 富士フイルム株式会社 ガス分離膜、ガス分離モジュール、ガス分離装置、及びガス分離方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991016356A1 (en) * 1990-04-16 1991-10-31 Eastman Kodak Company Preparation of low molecular weight cellulose esters
KR100212039B1 (ko) * 1997-02-27 1999-08-02 홍영근 고강도 셀룰로오스 섬유 및 그 제조 방법
US20100162887A1 (en) * 2005-08-05 2010-07-01 Hagg May-Britt Carbon membranes
KR20110118567A (ko) * 2010-04-23 2011-10-31 인하대학교 산학협력단 불소화된 셀룰로오스 아세테이트, 이의 제조 방법 및 이로부터 얻어지는 압전 종이
JP2014176795A (ja) * 2013-03-14 2014-09-25 Fujifilm Corp ガス分離複合膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3721978A4

Also Published As

Publication number Publication date
EP3721978A1 (en) 2020-10-14
CN111065448A (zh) 2020-04-24
JP6996049B2 (ja) 2022-01-17
CN111065448B (zh) 2022-07-19
US11198102B2 (en) 2021-12-14
EP3721978A4 (en) 2021-03-10
US20210060500A1 (en) 2021-03-04
KR20190065953A (ko) 2019-06-12
JP2020531259A (ja) 2020-11-05
EP3721978B1 (en) 2022-01-12
ES2908713T3 (es) 2022-05-03
KR102158917B1 (ko) 2020-09-22

Similar Documents

Publication Publication Date Title
EP1567250B1 (en) Polyimide blends for gas separation membranes
EP0321638B1 (en) Polyimide gas separation membranes
EP0422885B1 (en) Phenylindane-containing polyimide gas separation membranes
EP0648812B1 (en) Blends of polyethersulfones with aromatic polyimides, polyamides or polyamide-imides and gas separation membranes made therefrom
EP0554862A1 (en) Polyimide gas separation membranes for carbon dioxide enrichment
EP0627257A1 (en) Fluorinated aromatic polyimide, polyamide and polyamide-imide gas separation membranes
US10150840B2 (en) Carbon molecular sieve (CMS) hollow fiber membranes and preparation thereof from pre-oxidized polyimides
WO2019112259A1 (ko) 기체 분리막 활성층 형성용 조성물의 제조방법, 이에 의해 제조된 기체 분리막 활성층 형성용 조성물, 기체 분리막의 제조방법 및 기체 분리막
ES2926162T3 (es) Método mejorado para preparar membranas de fibra hueca de tamiz molecular de carbono
JPH0347890B2 (ko)
WO2019165597A1 (en) Functionalized polyimides and membranes for gas separations
US9889412B2 (en) Composite gas separation membrane, gas separation module, gas separation apparatus and gas separation method
US20030226446A1 (en) Novel block polyurethane-ether and polyurea-ether gas separation membranes
US4586939A (en) Process for separating gaseous mixtures using a semipermeable membrane constructed from substituted poly(arylene oxide) polymer
WO2019093750A1 (ko) 기체 분리막의 제조방법 및 이에 의하여 제조된 기체 분리막
WO2022015088A1 (ko) 고투과성 거터층을 포함하는 복합막 및 이의 제조방법
WO2014112681A1 (ko) 고투과 고선택성 공중합체 폴리이미드 소재 및 그의 합성 방법
CN110358086A (zh) 一种含酰胺含氟高透明聚酰亚胺及其制备方法
WO2023219223A1 (ko) 질산성 질소 제거능이 개선된 수처리 분리막, 제조방법 및 이를 포함하는 분리막 모듈
KR101833754B1 (ko) 브롬화/탈브롬화에 의해 가교된 고분자 기체 분리막 및 그 제조 방법
WO2022231222A1 (ko) 금속 유기 골격체를 이용한 동위 원소 흡착제 및 동위 원소 분리 방법
US20230182070A1 (en) Stacked membranes and their use in gas separation
JPH0224578B2 (ko)
CN116808846A (zh) 一种气体分离膜及其制备方法
KR100537809B1 (ko) 열분해성 고분자가 도입된 고분자 브랜드 전구체를 이용한기체분리용 탄소-실리카 분자체막 및 그의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18885820

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020509012

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018885820

Country of ref document: EP

Effective date: 20200706