WO2019111763A1 - ルーバーフィルム、面光源装置および液晶表示装置 - Google Patents

ルーバーフィルム、面光源装置および液晶表示装置 Download PDF

Info

Publication number
WO2019111763A1
WO2019111763A1 PCT/JP2018/043575 JP2018043575W WO2019111763A1 WO 2019111763 A1 WO2019111763 A1 WO 2019111763A1 JP 2018043575 W JP2018043575 W JP 2018043575W WO 2019111763 A1 WO2019111763 A1 WO 2019111763A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
layer
liquid crystal
lens
Prior art date
Application number
PCT/JP2018/043575
Other languages
English (en)
French (fr)
Inventor
恵 関口
高 玉田
晋也 渡邉
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201880078183.5A priority Critical patent/CN111448486A/zh
Priority to JP2019558153A priority patent/JPWO2019111763A1/ja
Publication of WO2019111763A1 publication Critical patent/WO2019111763A1/ja
Priority to US16/885,749 priority patent/US20200292878A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1323Arrangements for providing a switchable viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/123Optical louvre elements, e.g. for directional light blocking
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/003Light absorbing elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • G02F1/133507Films for enhancing the luminance
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133536Reflective polarizers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/34Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 reflector
    • G02F2201/343Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 reflector cholesteric liquid crystal reflector

Definitions

  • the present invention relates to a louver film and a surface light source device and a liquid crystal display device provided with the louver film.
  • a liquid crystal display device (hereinafter, also referred to as LCD (Liquid Crystal Display)) has low power consumption, and its use is expanding year by year as a space-saving image display device.
  • the liquid crystal display device is usually composed of a surface light source device and a liquid crystal panel.
  • organic EL (Electro Luminescence) display devices like liquid crystal display devices, consume less power and are increasingly used as space-saving image display devices.
  • a wide viewing angle is required as the viewing angle characteristics of the various image display devices described above.
  • the display image of the image display device may be displayed at a place where the user does not want to see. In this case, it is necessary to limit the viewing angle of the image display device.
  • the viewing angle is set so as not to be seen by others. There is a need to limit. As described above, depending on the application of the image display device, it is necessary to limit the viewing angle.
  • Patent Document 1 As a method of limiting the viewing angle described above, it has been proposed to dispose a louver film (Patent Document 1). Further, Patent Document 2 discloses an optical sheet in which a light reflecting portion is provided on the back surface of a lenticular lens.
  • Patent No. 4856805 Specification Patent No. 4389938
  • the louver film of Patent Document 1 has a low light utilization efficiency, a low luminance of a display image, and a dark image.
  • the aperture ratio of the opening and the distance from the opening to the lens portion are defined using equations.
  • Patent Document 2 also describes that excessive directivity is not good.
  • the application of the louver film is an in-vehicle monitor, it is necessary to further improve the directivity regarding visibility as compared with Patent Document 2 while reducing the side band.
  • the application is an on-vehicle monitor, it is necessary to control not only the direction of the directivity but also the direction of the directivity.
  • an object of the present invention is to provide a louver film, a surface light source device, and a liquid crystal display device in which the directivity regarding the visibility is further improved while maintaining the light utilization efficiency.
  • louver films A lens which is used in a surface light source device and which is disposed on the light source side with a plurality of lenses arranged at a constant pitch on the light emission side of the light source and is closer to the light source than the lens has a thickness equal to or greater than the lens pitch and a refractive index of 1. And a light absorbing layer disposed closer to the light source than the first support, the light absorbing layer having a first opening, the first opening Louver film, whose aperture ratio is 30% to 70% The present invention has been completed.
  • louver films A lens with a refractive index of 1.65 to 1.9, which is used in a surface light source device and arranged at a constant pitch on the light emission side of the light source, and which is disposed closer to the light source than the lens
  • the first support having a small refractive index of 1.4 to 1.65, and a light absorption layer disposed closer to the light source than the first support, the light absorption layer having a first opening
  • the louver film is a film having improved directivity, and in a liquid crystal display device provided with a surface light source device including the film, the directivity regarding the visibility is improved as compared to the case without the film, for example, It is a film that can suppress visual recognition from an oblique direction. In addition, it is a film in which the viewing angle is limited, and the reflection to the area that is not desired to be displayed is improved. The limitation of the viewing angle is that it can be viewed at a certain range of angles with respect to the louver film surface.
  • the luminance in the direction inclined 45 ° with respect to the line perpendicular to the surface of the louver film is lower than the luminance of the reference.
  • the viewing angle is limited near the front of the louver film.
  • the luminance in the 45 ° inclined direction is higher than the reference luminance, the viewing angle is limited to the oblique direction of the louver film.
  • the above-mentioned light utilization efficiency means the value measured by the following method. Using the measuring device “EZ-Contrast XL88” (manufactured by ELDIM) on the light emission surface of the surface light source device, the brightness (Y0) in 1 ° increments from polar angle 0 ° (front direction) to polar angle 88 ° Of the luminance value is taken as the maximum luminance. The maximum luminance is measured in the case where the louver film is not arranged in the surface light source device (T0) and in the arranged state (T), the ratio (T / T0) is calculated, and the maximum luminance ratio is determined. As the maximum luminance ratio is larger, the light utilization efficiency is higher.
  • the above-mentioned directivity means the value evaluated by the following method.
  • EZ-Contrast XL88 manufactured by ELDIM
  • the minimum polar angle at which the luminance value in the direction is half the luminance value is defined as the half width at half width, and the directivity is higher as the half width at half width is smaller.
  • EZ-Contrast XL88 manufactured by ELDIM
  • SN ratio luminance in the front direction / luminance minimum value at a polar angle of 60 °
  • the refractive index of the first support is 1.6 or more.
  • the light reflection layer includes a light reflection layer disposed on the light source side of the light absorption layer and including the second opening, the light reflection layer having a reflectance of 90% or more, and an aperture ratio of the second opening Is the same as the light absorbing layer, and the light absorbing layer and the light reflecting layer are disposed in a state where the first opening and the second opening are aligned.
  • each first aperture is provided for each lens, and the first aperture is offset from the optical axis of the lens.
  • each first aperture and each second aperture is provided for each lens, and the aligned first and second apertures are offset from the optical axis of the lens ing.
  • the second support is disposed closer to the light source than the light absorption layer. In one aspect, the second support is disposed closer to the light source than the light reflecting layer. In one aspect, the light reflecting layer comprises a cholesteric liquid crystal layer. In one aspect, the refractive index of the second support is 1.6 or more.
  • a further aspect of the present invention relates to a surface light source device including the louver film described above and a light source.
  • it has a reflective polarizer disposed between the louver film and the light source.
  • a further aspect of the present invention relates to a liquid crystal display device including the louver film described above, a surface light source device, and a liquid crystal panel.
  • louver film capable of further improving directivity with respect to visibility while maintaining light utilization efficiency, and a surface light source device and a liquid crystal display device provided with the louver film.
  • FIG. 13 is a cross-sectional view taken along the line BB in FIG. 12;
  • FIG. 13 is a cross-sectional view taken along the line CC of FIG. 12;
  • FIG. 1 is a schematic cross-sectional view showing a schematic configuration of a surface light source device 1 having a louver film 2A according to an embodiment of the first aspect of the present invention.
  • the louver film of the present invention is used in a surface light source device, and the lenses 11A arranged at a constant pitch on the emission side of the light source 16 and the lens 11A having a thickness equal to that described above disposed closer to the light source 16 than the lens 11A.
  • the first support 12A having a refractive index of 1.5 or more, and is disposed closer to the light source 16 than the first support 12B described above, and has a first opening 18b.
  • the present invention relates to a louver film 2A including the light absorption layer 18 in which the aperture ratio of the first opening 18b is 30% to 70%.
  • the first opening 18b of the light absorption layer 18 is on the optical axis CL of the plurality of lenses 11A.
  • the surface light source device 1A shown in FIG. 1 has the louver film 2A described above, the diffusion plate 14 disposed on the light absorbing layer 18 side of the louver film 2A, the light source 16, and the reflection plate 15 in this order.
  • the first opening 18b is provided for each lens 11A, and the first opening 18b is provided in one lens 11A.
  • the louver film 2A of the first aspect described above enables the directivity to be further improved with respect to the visibility while maintaining the light utilization efficiency
  • the aperture ratio of the first opening 18b of the light absorption layer 18 is preferably 30% or more to improve directivity, and the utilization ratio of light when the aperture ratio is less than 30% Decreases rapidly.
  • the aperture ratio exceeds 70%, light is not collected.
  • the aperture ratio is around 40%, the peak (side band) of the light intensity becomes high at a polar angle of 35 ° or more, and the light collection effect becomes insufficient.
  • the first opening of the light absorption layer 18 is obtained.
  • the directivity of light passing through 18b is enhanced, and the generation of sidebands can be suppressed.
  • the light absorbing layer 18 absorbs light reflected by the lens or the light reflecting layer 13 or the like, or light which is repeatedly reflected in the first support 12 from light incident from the outside, and generation of stray light can be suppressed. Thereby, the generation of side bands can be suppressed.
  • the louver film 2A can reduce the side band, and can further improve the directivity with respect to the visibility while maintaining the light utilization efficiency.
  • the above includes the inference by the present inventors, and the present invention is not limited at all.
  • FIG. 2 is a schematic cross-sectional view showing a schematic configuration of a surface light source device 1B having a louver film 2B according to an embodiment of the second aspect of the present invention.
  • the louver film of the present invention is used in a surface light source device, and a plurality of lenses 11B having a refractive index of 1.65 to 1.9 arranged at a constant pitch on the emission side of the light source 16 and the light source 16 side ,
  • the first support 12B having a thickness smaller than the pitch of the lens 11B and having a refractive index of 1.4 to 1.65, which is disposed closer to the light source 16 than the first support 12B.
  • the present invention relates to a louver film 2B made of a light absorbing layer 18 having a first opening 18b and having an aperture ratio of 10% to 70%.
  • the surface light source device 1B shown in FIG. 2 includes the louver film 2B described above, the diffusion plate 14 disposed on the light reflecting layer 13 side of the louver film 2B, the light source 16, and the reflection plate 15 in this order.
  • the first opening 18b is provided for each lens 11B, and the first opening 18b is provided in one lens 11B.
  • louver film 2B of the second aspect described above enables the directivity to be further improved with respect to the visibility while maintaining the light utilization efficiency.
  • the inventors think as follows. When the thickness of the first support 12B is smaller than the pitch of the lenses 11B, light from adjacent openings other than the openings on the optical axis CL of the lens 11B is less likely to be guided, and the side bands Although this can be reduced, the focal position of the lens 11B is largely shifted to the outside (the opposite side to the lens 11B) than the first opening 18b of the light absorption layer 18, and the directivity is lowered.
  • the refractive index of the first support 12B is 1.4 to 1.65, the refractive index of the lens 11B is 1.65 to 1.9, and the refractive index of the first support 12B is higher than that of the first support 12B.
  • the refractive index of the first support 12B is 1.4 to 1.65, the refractive index of the lens 11B is 1.65 to 1.9, and the refractive index of the lens 11B is more than the refractive index of the first support 12B.
  • the light absorbing layer 18 absorbs light reflected by the lens or the light reflecting layer 13 (see FIG. 5) or the like, or light which is incident from the outside and is repeatedly reflected in the first support 12. The occurrence can be suppressed. Thereby, the generation of side bands can be suppressed. From the above, as a result, the louver film 2B can reduce the side band, and can further improve directivity with respect to visibility while maintaining light utilization efficiency.
  • the above includes the inference by the present inventors, and the present invention is not limited at all.
  • louver film 2A of the first embodiment and the louver film 2B of the second embodiment are collectively referred to as the louver film 2 when it is not necessary to distinguish them.
  • the louver film 2 when there is no need to distinguish between the surface light source device 1A and the surface light source device 1B, they are collectively referred to as the surface light source device 1.
  • the lens 11A and the lens 11B when it is not necessary to distinguish between the lens 11A and the lens 11B, they are collectively referred to as the lens 11.
  • the first support 12A and the first support 12B are collectively referred to as the first support 12 when it is not necessary to distinguish them.
  • the louver film when used in a surface light source device, includes a plurality of lenses arranged on the light emission side of the light source, a first support disposed on the light source side of the lens, and the first support described above It consists of a light absorption layer which has a 1st opening on the optical axis of the above-mentioned a plurality of lenses arranged rather than a light source side. As shown in FIG. 3, the second support 17 may be disposed closer to the light source than the light absorption layer 18. In the louver film, for example, as shown in FIG.
  • the lens 11 is a semicylindrical convex cylindrical lens
  • the first opening 18b of the light absorption layer 18 is an extension of the semicylindrical convex cylindrical lens. Is a strip-shaped opening extending in the direction of One strip-shaped opening is provided for one semi-cylindrical convex cylindrical lens.
  • the louver film 2A and the louver film 2B described above are arranged closer to the light source (not shown) than the first support 12 as shown in FIG. 5, and the second opening 13b
  • the light reflecting layer 13 may be provided.
  • the light reflection layer 13 is provided on the back surface 18 c of the light absorption layer 18 opposite to the first support 12.
  • the light reflection layer 13 has a reflectance of 90% or more, and the aperture ratio of the second opening 13 b is the same as that of the light absorption layer 18.
  • the light absorbing layer 18 and the light reflecting layer 13 have the same pattern of the opening.
  • the light reflection layer 13 and the light absorption layer 18 are disposed in a state where the first opening 18 b of the light absorption layer 18 and the second opening 13 b of the light reflection layer 13 are aligned. Also in the configuration shown in FIG. 5, as described above, the second support 17 may be disposed closer to the light source than the light reflection layer 13.
  • the first opening 18 b of the light absorbing layer 18 may be separated from the optical axis CL of the lens 11.
  • the center of the first opening 18b of the light absorbing layer 18 and the center of the second opening 13b of the light reflecting layer 13 are May be deviated from the optical axis CL of the lens 11.
  • the direction of directivity can be adjusted by shifting the center position of the opening to a position offset from the optical axis CL of the lens.
  • the louver film 2 shown in the above-mentioned FIG. 6 and FIG. 7 is the structure which the center of all the opening parts has remove
  • any opening may be determined in advance, depending on the direction of directivity, etc., from the optical axis of the lens.
  • the lens may be a semi-cylindrical convex cylindrical lens or a hemispherical convex lens.
  • the lens may be an aspheric lens.
  • the size of the pitch and the radius of curvature of the plurality of lenses may be random. In that case, the constant pitch is an average value of the pitches of a plurality of lenses arranged.
  • the lens pitch has a size equal to or less than the thickness of the first support.
  • the lens pitch is reduced to 30 ⁇ m or less in combination with the thickness of the first support since the thickness is reduced to 30 ⁇ m or less from the viewpoint of preventing deterioration of the brittleness.
  • the refractive index of the lens is preferably lower than that of the first support from the viewpoint of directivity and is 1.9 or less. More preferably, 1.7 or less is good.
  • the lens pitch has a size greater than the thickness of the first support.
  • the lens pitch is reduced to 30 ⁇ m or less in combination with the thickness of the first support since the thickness is reduced to 30 ⁇ m or less from the viewpoint of preventing deterioration of the brittleness.
  • the refractive index of the lens is 1.65 to 1.9 from the viewpoint of directivity. Preferably, it is 1.65 to 1.75.
  • the thickness of the first support is equal to or greater than the lens pitch in terms of directivity.
  • the thickness of the first support is smaller than the pitch of the lens.
  • the thickness is preferably 30 ⁇ m or less from the viewpoint of not deteriorating the brittleness. More preferably, it is 10 ⁇ m or less, more preferably around 1 ⁇ m.
  • the refractive index of the first support is 1.5 or more, preferably 1.60 or more, more preferably 1.65 or more, and 1.80 or more. Is more preferred.
  • the average refractive index of the high refractive index layer is preferably 2.50 or less, more preferably 2.20 or less, and 2.10. It is more preferably less than 2.05 and still more preferably 2.05 or less.
  • the refractive index of the first support is 1.4 to 1.65 from the viewpoint of directivity. Preferably, it is 1.45 to 1.65.
  • the refractive index can be measured by a known refractive index measuring device.
  • a multi-wavelength Abbe refractometer DR-M2 manufactured by Atago Co., Ltd. can be mentioned.
  • the refractive index in the present invention refers to the refractive index for light having a wavelength of 550 nm.
  • the refractive index of the first support can be adjusted according to the type of component used to form the layer.
  • a component used to form a layer it can form using the polymeric composition containing a polymeric compound and a polymerization initiator.
  • it may be a resin layer containing a resin as a main component.
  • the term "main component" as used herein means that the resin occupies the most of the components constituting the layer.
  • the resin contained may be one kind or two or more kinds.
  • the amount of resin in the resin layer is, for example, 50% by mass or more, and preferably 70% by mass or more based on the total mass of the resin layer, and the amount of resin in the resin layer is based on the total mass of the resin layer For example, although it is 99 mass% or less or 95 mass% or less, 100 mass% may be sufficient.
  • a thermoplastic resin layer can be mentioned as a specific example of a resin layer.
  • thermoplastic resin for example, polymethyl methacrylate resin (PMMA), polycarbonate resin, polystyrene resin, polymethacrylic styrene (MS) resin, acrylonitrile styrene (AS) resin, polypropylene resin, polyethylene resin, polyethylene terephthalate resin, polyvinyl chloride Resin (PVC), cellulose acylate, cellulose triacetate, cellulose acetate propionate, cellulose diacetate, thermoplastic elastomer, or copolymer thereof, cycloolefin polymer and the like can be mentioned.
  • PMMA polymethyl methacrylate resin
  • MS polymethacrylic styrene
  • AS acrylonitrile styrene
  • PVC polyvinyl chloride Resin
  • cellulose acylate cellulose triacetate
  • cellulose acetate propionate cellulose diacetate
  • thermoplastic elastomer or copolymer thereof
  • Such a resin layer is preferably a cured layer formed by subjecting this composition to a polymerization treatment (hardening treatment) using a polymerizable composition, from the viewpoint of the ease of formation of the layer.
  • the polymerizable composition may be a photopolymerizable composition which is cured by light irradiation or a thermally polymerizable composition which is cured by heating. From the viewpoint of improving the productivity, a photopolymerizable composition is preferable in that the curing treatment can be completed in a short time.
  • Particles may be included to adjust the refractive index of the first support.
  • the particles are not particularly limited, and may be inorganic particles or organic particles. Specific examples of the above-mentioned particles include inorganic particles such as ZrO 2 , TiO 2 , Al 2 O 3 , In 2 O 3 , ZnO, SnO 2 , Sb 2 O 3 , polymethyl methacrylate particles, crosslinked polymethyl methacrylate particles, Examples thereof include organic particles such as acryl-styrene copolymer particles, melamine particles, polycarbonate particles, polystyrene particles, cross-linked polystyrene particles, polyvinyl chloride particles, and benzoguanamine-melamine formaldehyde particles.
  • particles in which a coating layer is formed on the surface so-called core-shell particles, may be used which is surface-treated to suppress the activity of the particle surface and to improve the dispersibility in the layer.
  • core-shell particles for such particles, reference can be made, for example, to JP-A-2013-251067, paragraphs 0022 to 0025.
  • the particles described above may be organic-inorganic composite particles such as particles having an organic film on the surface of inorganic particles.
  • the above-mentioned particles may be used alone or in combination of two or more.
  • the particle size is preferably 1 nm or more as the primary particle diameter.
  • grains measures a particle size about 50 particle
  • SEM scanning electron microscope
  • the content of particles in the layer containing the particles described above may be suitably set so that an average refractive index in the above-mentioned range is preferably obtained.
  • the refractive index of the above-mentioned particles is preferably 2.00 or more and 3.00 or less, and preferably 2.05 or more and 2.50 or less from the viewpoint of refractive index adjustment. More preferable.
  • the refractive index of the particles is a value measured by the following method.
  • the particles are doped in a resin material of known refractive index to make a resin material in which the particles are dispersed.
  • the produced resin material is applied onto a silicon substrate or a quartz substrate to form a resin film.
  • the refractive index of the formed resin film is measured by an ellipsometer, and the refractive index of the particles is determined from the volume fraction of the resin material and the particles constituting the resin film.
  • the refractive index of the titanium oxide particles used in the examples described later is a value determined by the method described above.
  • the light reflection layer is made of, for example, white ink, metal foil, metal vapor deposition or silver mirror ink.
  • the light reflection layer like the light absorption layer, has a second opening for each lens, and for example, has a second opening on the optical axis of each of the plurality of lenses.
  • the light reflecting layer and the light absorbing layer have the same opening pattern. As described above, the light reflection layer and the light absorption layer are disposed in a state where the first opening of the light absorption layer and the second opening of the light reflection layer are aligned. If the aperture ratio of the second opening is too small, the light utilization efficiency is reduced. Also, if it is too large, the directivity will be worse.
  • the aperture ratio of the second opening is preferably 30% to 70%. More preferably, 30% to 60% is preferable. More preferably, 35% to 55% is preferable. In the second embodiment, the aperture ratio of the second opening is preferably 10% to 70%, and more preferably 15% to 65%.
  • the reflectance is preferably 90% or more, and more preferably 91% or more from the viewpoint of light utilization. More preferably, it is 92% or more.
  • the light utilization factor is defined by a ratio T / T0 of the maximum luminance T0 in the state where the louver film is not disposed and the maximum luminance T in the case where the louver film is disposed.
  • the reflectance of the light reflection layer is obtained as follows.
  • the material used for the light reflection layer is formed on a polyethylene terephthalate (PET) substrate, light is incident from the formed surface, and the reflectance at a wavelength of 380 nm to 780 nm Measure and calculate the average value. This average value is the reflectance of the light reflection layer.
  • the second opening of the light reflecting layer may have a pattern according to the arrangement of the LED light source used for the direct type backlight. That is, the second opening may not be provided immediately above the LED light source, and the aperture ratio of the second opening may increase as the distance from the LED light source increases.
  • the diameter of the lens is changed in-plane so that the aperture ratio of the diameter of the lens and the diameter of the lens of the second opening falls within the above-mentioned preferable range.
  • an opening can be provided in accordance with the light beam from the LED light source, and parallelization can be performed while using light more efficiently.
  • providing a reflective layer on the rear surface of the LED light source is easier to control the light beam than providing a diffuse reflective layer, and it is better from the viewpoint of light utilization.
  • the light reflection layer may also have a cholesteric liquid crystal layer.
  • the cholesteric liquid crystal layer contains a cholesteric liquid crystal phase and has wavelength selective reflectivity for circularly polarized light in one turning direction (right circularly polarized light or left circularly polarized light) in a specific wavelength range. Therefore, the light reflection layer is, for example, a cholesteric liquid crystal layer that reflects right circularly polarized light in the red wavelength range (620 nm to 750 nm) and the left of the red wavelength range according to the configuration of the color filter of the liquid crystal display device described later.
  • a cholesteric liquid crystal layer that reflects circularly polarized light a cholesteric liquid crystal layer that reflects right circularly polarized light in the green wavelength range (495 nm to 570 nm), a cholesteric liquid crystal layer that reflects left circularly polarized light in the green wavelength range, blue (420 nm)
  • a portion other than the second opening Red light, green light and blue light can be reflected.
  • the pitch of the cholesteric liquid crystal phase depends on the type of the chiral agent used with the polymerizable liquid crystal compound, or the addition concentration thereof, and by adjusting these, the desired pitch can be obtained.
  • the ⁇ n can be adjusted by the type of liquid crystal compound forming the cholesteric liquid crystal layer and the mixing ratio thereof and the temperature at the time of alignment.
  • the reflectance in the cholesteric liquid crystal phase depends on ⁇ n, and in the case of obtaining a similar reflectance, the number of helical pitches can be reduced, ie, the film thickness can be reduced, as ⁇ n is larger. it can.
  • the method of measuring the sense and pitch of the spiral use the method described in “Introduction to Liquid Crystal Chemistry Experiment” edited by The Liquid Crystal Society of Japan, published by Sigma Press 2007, p. it can.
  • the reflected light of the cholesteric liquid crystal phase is circularly polarized light.
  • the cholesteric liquid crystal phase depends on the twisting direction of the helix whether the reflected light is right circularly polarized light or left circularly polarized light.
  • the selective reflection of circularly polarized light by the cholesteric liquid crystal phase reflects right circularly polarized light when the helical twist direction of the cholesteric liquid crystal phase is right, and reflects left circularly polarized light when the helical twist direction is left.
  • the direction of swirling of the cholesteric liquid crystal phase can be adjusted by the type of liquid crystal compound forming the reflective region or the type of chiral agent to be added.
  • the selective reflection wavelength in the cholesteric liquid crystal layer can be set in any range of visible light (about 380 to 780 nm) and near infrared light (about 780 to 2000 nm), and the setting method is as described above. is there.
  • the liquid crystal composition etc. which contain a liquid crystal compound are mentioned.
  • the liquid crystal compound is preferably a polymerizable liquid crystal compound.
  • the liquid crystal composition containing the polymerizable liquid crystal compound may further contain a surfactant, a chiral agent, a polymerization initiator and the like.
  • the surfactant, the chiral agent and the polymerization initiator known liquid crystal compounds used in the cholesteric liquid crystal layer, a surfactant, a chiral agent and a polymerization initiator can be used.
  • the second opening may be physically formed, and the cholesteric liquid crystal phase may be formed in a region to be the second opening.
  • a region having light transmittance may be formed as the second opening by not forming and not having reflectivity.
  • a photoresist method when producing a light reflection layer, you may use the photoresist method.
  • a resist material is applied to the opposite surface of the lens, and light is irradiated and developed through a mask corresponding to the pattern of the reflective layer to be produced. Thereafter, evaporation of aluminum or silver, for example, is performed, and then the resist material is washed and removed to form a reflective layer of a desired pattern. If a photomask is not used, collimated light can be emitted from the lens side instead.
  • the method of irradiating parallel light from the lens side is better than the case of using a photomask in that the alignment accuracy between the lens and the opening can be enhanced.
  • ultraviolet rays such as g-line, h-line, i-line, j-line and the like, and especially exposure with i-line is preferable.
  • Drying (pre-baking) of a film by a photoresist material applied (preferably applied) on a substrate may be performed using a hot plate, an oven, or the like at a temperature range of 50 to 140 ° C. under conditions of 10 to 300 seconds. it can.
  • the uncured part after exposure is dissolved in a developer and only the cured part is left.
  • the development temperature is usually 20 to 30 ° C., and the development time is 20 to 600 seconds.
  • membrane of the photosensitive resin composition in an unhardened part any thing can be used if it does not melt
  • organic solvents examples include those listed above as the solvents which can be used when preparing the photosensitive resin composition.
  • alkaline aqueous solution examples include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium hydrogencarbonate, sodium oxalate, sodium metaborate, aqueous ammonia, ethylamine, diethylamine, dimethylethanolamine, tetramethylammonium hydroxide
  • Alkaline compounds such as tetraethylammonium hydroxide (TMAH), choline, pyrrole, piperidine and 1,8-diazabicyclo- [5,4,0] -7-undecene, preferably at a concentration of 0.001 to 10% by mass, preferably An alkaline aqueous solution dissolved to 0.01 to 1% by mass may be mentioned.
  • washing (rinsing) with water is generally performed after development.
  • the composition of the photoresist material includes (A) a photopolymerization initiator, (B) a solvent, (C) a polymerizable monomer, and (D) an alkali-soluble resin, and (A) one or more kinds of photopolymerization initiators. It comprises an O-acyl oxime ester compound and one or more ⁇ -aminoacetophenone compounds, which can simultaneously form two or more independent patterns. At least one of the alkali-soluble resins (D) has an acid value of 150 to 400 mg KOH / g. Furthermore, it contains (E) a photosensitizer or co-initiator.
  • the total of the addition amounts of (A) photopolymerization initiator and (E) photosensitizer or co-initiator is 0.1 to 15.0% by weight in the total solid content of the photosensitive resin composition.
  • C) The polymerizable monomer has an acid group, and the acid value is 20 to 150 mg KOH / g.
  • the O-acyl oxime ester compound has an aromatic ring.
  • the O-acyl oxime ester compound has a fused ring containing an aromatic ring.
  • the O-acyloxime ester compound has a fused ring containing a benzene ring and a heterocycle.
  • the O-acyl oxime ester compound and the ⁇ -aminoacetophenone compound are contained in a weight ratio of 10:90 to 80:20.
  • D) The alkali-soluble resin is an acrylic resin.
  • the photosensitive resin composition of the present invention comprises (A) a photopolymerization initiator, (B) a solvent, (C) a polymerizable monomer and (D) an alkali-soluble resin, and (A) one type of photopolymerization initiator. It is characterized in that it contains the above O-acyloxime ester compound and one or more ⁇ -aminoacetophenone compounds, and can simultaneously form two or more independent patterns. By using the O-acyl oxime ester compound and the ⁇ -aminoacetophenone compound in combination, two or more independent patterns can be formed.
  • “capable of simultaneously forming two or more types of independent patterns” means that two or more types of patterns having different heights are formed by one exposure.
  • One exposure means exposure to be performed at the same time.
  • the exposure method is not limited as the exposure performed at the same time, for example, a method of using a halftone mask having different transmittances, a method of exposing by irradiating two or more kinds of exposure amounts simultaneously, and the like can be mentioned.
  • a pattern group (1) consisting of a plurality of high-height patterns and a pattern group (2) consisting of a plurality of low-height patterns
  • the difference in height between the pattern group (1) and the pattern group (2) is preferably 0.4 to 1.1 ⁇ m.
  • the height of the pattern group can be determined as the average value of each.
  • the height of each independent pattern group is preferably constant, and for example, it is preferable that the standard deviation 3 ⁇ be ⁇ 0.1 ⁇ m.
  • (A) Photopolymerization Initiator In the present invention, an O-acyloxime ester compound and an ⁇ -aminoacetophenone compound are used as the (A) photopolymerization initiator.
  • the fused ring containing an aromatic ring at least one ring may be an aromatic ring.
  • the O-acyloxime ester compound can be appropriately selected from known photopolymerization initiators such as O-acyloxime ester compounds described in JP-A-2000-80068, JP-A-2001-233842 and the like. Specifically, 1- (4-phenylsulfanyl-phenyl) -butane-1,2-dione 2-oxime-O-benzoate, 1- (4-phenylsulfanyl-phenyl) -octane-1,2-dione 2-oxime-O-benzoate, 1- (4-phenylsulfanyl-phenyl) -octan-1-one oxime-O-acetate, 1- (4-phenylsulfanyl-phenyl) -butan-1-one oxime-O-acetate Etc.
  • the O-acyl oxime ester compounds may be used alone or in combination of two or more.
  • IRGACURE OXE01 or OXE02 manufactured by BASF can also be used as the oxime ester photopolymer.
  • ⁇ -Aminoacetophenone Compound The ⁇ -aminoacetophenone compound may be used alone or in combination of two or more.
  • acid adduct salts of the compounds represented by the above-mentioned general formula (4) can also be used as the ⁇ -aminoacetophenone compound.
  • ⁇ -aminoacetophenone compounds polymerization initiators available from Ciba Specialty Chemicals, Inc. under the trade names of IRGACURE 907 (IRGACURE 907), IRGACURE 369 (IRGACURE 369) and IRGACURE 379 (IRGACURE 379) are available. It can be illustrated.
  • ⁇ -aminoacetophenone compound 2-dimethylamino-2-methyl-1-phenylpropan-1-one, 2-diethylamino-2-methyl-1-phenylpropan-1-one, 2-methyl -2-morpholino-1-phenylpropan-1-one, 2-dimethylamino-2-methyl-1- (4-methylphenyl) propan-1-one, 2-dimethylamino-1- (4-ethylphenyl) -2-Methylpropan-1-one, 2-dimethylamino-1- (4-isopropylphenyl) -2-methylpropan-1-one, 1- (4-butylphenyl) -2-dimethylamino-2-methyl Propan-1-one, 2-dimethylamino-1- (4-methoxyphenyl) -2-methylpropan-1-one, 2-dimethylamino-2-methyone -1- (4-Methylthiophenyl) propan-1-one, 2-
  • the ⁇ -aminoacetophenone compound is preferably contained in a proportion of 0.1 to 10% by mass with respect to the total solid content excluding the solvent contained in the photosensitive resin composition of the present invention, 0.3 to 8 It is more preferably contained in the proportion of mass%, and further preferably contained in the proportion of 0.5 to 5 mass%.
  • Photopolymerization Initiators in the present invention, other commonly known other photopolymerization initiators may be further used in combination as long as the effects of the combination use of the O-acyloxime ester compound and the ⁇ -aminoacetophenone compound are not inhibited. it can.
  • the photopolymerization initiator which can be used in combination is not particularly limited, but it is preferred that the weight of the O-acyloxime ester compound and the ⁇ -aminoacetophenone compound is 80% or more based on the total weight of the photoinitiator from the aspect of halftone suitability and sensitivity Preferably, it is 90% or more. Even when other initiators are used in combination, the optimum addition weight ratio of the O-acyl oxime ester compound and the ⁇ -aminoacetophenone compound is the same.
  • solvent (B) Solvent
  • the solvent (B) that can be used in the present invention is not particularly limited as long as it does not deviate from the spirit of the present invention, but is classified into esters, ethers, ketones, aromatic hydrocarbons and the like Solvents can be mentioned.
  • esters used as a solvent (B) include, for example, ethyl acetate, n-butyl acetate, isobutyl acetate, amyl formate, isoamyl acetate, isobutyl acetate, butyl propionate, isopropyl butyrate, ethyl butyrate, butyl butyrate,
  • alkyl esters methyl lactate, ethyl lactate, methyl oxyacetate, ethyl oxyacetate, butyl oxyacetate, methyl methoxyacetate, ethyl methoxyacetate, butyl methoxyacetate, methyl ethoxyacetate, ethyl ethoxyacetate and the like, 3-oxypropion 3-hydroxypropionic acid alkyl esters such as methyl acid and ethyl 3-oxypropionate; methyl 2-oxypropionate, ethyl 2-hydroxypropionate, propyl 2-
  • ethers include, for example, diethylene glycol dimethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol methyl ether Acetate, propylene glycol ethyl ether acetate, propylene glycol propyl ether acetate and the like can be mentioned.
  • ketones include methyl ethyl ketone, cyclohexanone, 2-heptanone, 3-heptanone and the like.
  • aromatic hydrocarbons toluene, xylene, etc. are mentioned, for example.
  • methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, ethyl cellosolve acetate, ethyl lactate, diethylene glycol dimethyl ether, butyl acetate, methyl 3-methoxypropionate, 2-heptanone, cyclohexanone, ethyl carbitol acetate, Butyl carbitol acetate, propylene glycol methyl ether acetate and the like are preferable.
  • the solvents may be used alone or in combination of two or more.
  • the content of the solvent (B) in the photosensitive resin composition of the present invention can be appropriately determined in consideration of the coatability and the like of the photosensitive resin composition, but in general, the (B) solvent in the photosensitive resin composition B)
  • the content of the solvent is 45 to 85% by mass.
  • the photosensitive resin composition of the present invention contains (C) one or more polymerizable monomers as a curable component.
  • the polymerizable monomer a plurality of polymerizable monomers may be used in combination, or one or more types of polymerizable monomers having an acid group and polymerizable monomers having no acid group may be used in combination.
  • succinic acid modified pentaerythritol triacrylate succinic acid modified trimethylolpropane triacrylate, succinic acid modified pentaerythritol tetraacrylate, succinic acid modified dipentaerythritol pentaacrylate, succinic acid modified dipenta Erythritol hexaacrylate, adipic acid modified pentaerythritol triacrylate, adipic acid modified trimethylolpropane triacrylate, adipic acid modified pentaerythritol tetraacrylate, adipic acid modified dipentaerythritol pentaacrylate, adipic acid modified dipentaerythritol tetraacrylate, etc.
  • ARONIX M-510, ARONIX M-520, ARONIX T -2349, Aronix TO-2359 can be preferably used commercially available compounds such as.
  • p-hydroxystyrene As a polymerizable monomer containing a phenolic hydroxyl group, p-hydroxystyrene, 3,4-dihydroxystyrene, 3,5-dihydroxystyrene, 2,4,6-trihydroxystyrene, (p-hydroxy) benzyl acrylate, salicylic acid Denatured pentaerythritol triacrylate, salicylic acid modified trimethylolpropane triacrylate, salicylic acid modified pentaerythritol tetraacrylate, salicylic acid modified dipentaerythritol pentaacrylate, salicylic acid modified dipentaerythritol hexaacrylate, etc. are mentioned, and the preferred one is salicylic acid modified dipentaerythritol Hexaacrylate, salicylic acid modified dipentaerythritol pentaacrylate.
  • Examples of the polymerizable monomer containing a sulfonic acid group include vinylsulfonic acid, allylsulfonic acid, styrenesulfonic acid, butylsulfonic acid-modified acrylamide, and the like.
  • Examples of the polymerizable monomer containing a phosphoric acid group include vinyl phosphoric acid, styrene phosphoric acid, and butyl phosphoric acid-modified acrylamide.
  • butylsulfonic acid-modified acrylamide is preferable, and a commercially available compound is ATBS (manufactured by Toagosei Co., Ltd.).
  • polymerizable monomers having an acid group from the viewpoint of production suitability and cost, polymerizable monomers having a carboxyl group and polymerizable monomers having a phenolic hydroxyl group are preferable, and polymerizable monomers having a carboxyl group are more preferable. .
  • the polymerizable monomer having no acid group which can be used in combination with the polymerizable monomer having an acid group in the present invention is not particularly limited as long as it can be polymerized, and is a low molecular weight compound having at least one ethylenic double bond, Addition polymerizable compounds such as body, trimer and oligomer can be suitably used.
  • an ester of unsaturated carboxylic acid and monohydroxy compound for example, an ester of aliphatic polyhydroxy compound and unsaturated carboxylic acid, an ester of aromatic polyhydroxy compound and unsaturated carboxylic acid, unsaturated carboxylic acid
  • An ester obtained by the esterification reaction of an acid and a polyvalent carboxylic acid and a polyvalent hydroxy compound such as the above-mentioned fatty acid polyhydroxy compound, aromatic polyhydroxy compound, etc., a reaction of a polyisocyanate compound and a (meth) acryloyl containing hydroxy compound
  • ethylenic compounds having a urethane skeleton which is
  • Specific polymerizable monomers can be mentioned as classified according to the number of polymerizable groups in one molecule as shown below, but it is not limited thereto.
  • Compound having one polymerizable group in one molecule examples include, for example, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, Stearyl (meth) acrylate, cyclohexyl (meth) acrylate, 4-n-butylcyclohexyl (meth) acrylate, bornyl (meth) acrylate, isobornyl (meth) acrylate, benzyl (meth) acrylate, 2-ethyl diglycol (meth) Acrylate, butoxyethyl (meth) acrylate, 2-chloroethyl (meth) acrylate, cyanoethyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, 2- (2-methoxyethoxy) ethyl (meth) acrylate, 2,2, 2-tetrafluoro E
  • (2) Compound having two polymerizable groups in one molecule As an example of a compound having two polymerizable groups in one molecule, two (meth) acryloyl groups in the same molecule as the polymerizable group
  • Examples of the compound having three polymerizable groups in one molecule include, for example, trimethylolpropane tri (meth) acrylate, trimethylolethane tri ( Meta) acrylate, alkylene oxide modified tri (meth) acrylate of trimethylolpropane, pentaerythritol tri (meth) acrylate, dipentaerythritol tri (meth) acrylate, trimethylolpropane tri ((meth) acryloyloxypropyl) ether, isocyanuric acid Alkylene oxide modified tri (meth) acrylate, propionic acid dipentaerythritol tri (meth) acrylate, tri ((meth) acryloyloxyethyl) isocyanurate, hydroxypivalaldehyde modified dimethylolup Examples include lopane tri (meth) acrylate, sorbitol tri (
  • (meth) acrylate monomers having two or more (meth) acryloyl groups in the same molecule are preferable, and three or more, from the viewpoint of suitably maintaining solvent resistance and ITO (Indium Tin Oxide) sputtering suitability. More preferred are (meth) acrylate monomers having a (meth) acryloyl group of In particular, (meth) acrylate monomers having 4 or more (meth) acryloyl groups are advantageous.
  • dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate are preferable in view of solvent resistance and ITO sputtering ability
  • a mixture of (a mixture ratio in terms of mass, dipentaerythritol pentaacrylate: dipentaerythritol hexaacrylate 2 to 4: 8 to 6) is preferably used.
  • the sum of the polymerizable monomer which has an acidic radical and the polymerizable monomer which does not have an acidic radical is preferably 100 parts by mass.
  • the addition ratio is not particularly limited as long as it is within the range of the preferred acid value shown above.
  • the preferable content of the polymerizable monomer in the photosensitive resin composition of the present invention is preferably 5 to 80% by mass, more preferably 10 to 70% by mass with respect to the total solid content of the photosensitive resin composition excluding the solvent. %, More preferably in the range of 20 to 60% by mass.
  • (D) Alkali-Soluble Resin As the (D) alkali-soluble resin applicable to the present invention, any polymer compound soluble in a solvent can be used.
  • the alkali-soluble resin may be used as a single compound or a combination of a plurality of compounds.
  • a resin having an acid group hereinafter appropriately referred to as “alkali-soluble resin” is preferable in consideration of alkali developability by a photolithographic method.
  • the alkali-soluble resin is preferably a linear organic high-molecular polymer, and an alkali-soluble polymer having at least one alkali-soluble group (for example, a carboxyl group, a phosphoric acid group, a sulfonic acid group, etc.) therein is preferable. More preferably, they are soluble in an organic solvent and developable with a weak alkaline aqueous solution.
  • a known radical polymerization method can be applied to the production of the alkali-soluble resin.
  • the polymerization conditions such as temperature, pressure, type of radical initiator and amount thereof, type of solvent, etc. when producing an alkali-soluble resin by radical polymerization method can be easily set by those skilled in the art, and the conditions are determined experimentally. You can also do so.
  • a linear organic high molecular weight polymer applied as an alkali-soluble resin a polymer having a carboxyl group in a side chain is preferable.
  • a polymer having a carboxyl group in a side chain is preferable.
  • JP-A-59-44615, JP-B-54-34327, JP-B-58-12577, JP-B-54-25957, JP-A-59-53836 and JP-A-59-71048 Methacrylic acid copolymer, acrylic acid copolymer, itaconic acid copolymer, crotonic acid copolymer, maleic acid copolymer, partially esterified maleic acid copolymer, etc.
  • acid cellulose derivatives having a carboxylic acid polymers obtained by adding an acid anhydride to a polymer having a hydroxyl group, and the like, and polymer polymers having a (meth) acryloyl group in a side chain are also preferable.
  • a multicomponent copolymer consisting of a benzyl (meth) acrylate / (meth) acrylic acid copolymer or a benzyl (meth) acrylate / (meth) acrylic acid / other monomer is preferable.
  • those obtained by copolymerizing 2-hydroxyethyl methacrylate are also useful.
  • the aforementioned polymers can be used in admixture in any amount.
  • JP-A-7-207211, JP-A-8-259876, JP-A-10-300922, JP-A-11-140144, JP-A-11-174224, JP-A-11-174224 and JP-A-11-174224 JP-A-7-207211, JP-A-8-259876, JP-A-10-300922, JP-A-11-140144, JP-A-11-174224, JP-A-11-174224 and JP-A-11-174224.
  • the well-known polymer compounds described in JP-A-2000-56118, JP-A-2003-233179, JP-A-2009-52020 and the like can be used.
  • Examples of the other monomers copolymerizable with (meth) acrylic acid described above include alkyl (meth) acrylates, aryl (meth) acrylates, vinyl compounds and the like.
  • the hydrogen atom of the alkyl group and the aryl group may be substituted by a substituent.
  • alkyl (meth) acrylate and aryl (meth) acrylate are methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, pentyl Examples include (meth) acrylate, hexyl (meth) acrylate, octyl (meth) acrylate, phenyl (meth) acrylate, benzyl acrylate, tolyl acrylate, naphthyl acrylate, cyclohexyl acrylate and the like.
  • vinyl compounds examples include styrene, ⁇ -methylstyrene, vinyl toluene, glycidyl (meth) acrylate, acrylonitrile, vinyl acetate, N-vinylpyrrolidone, tetrahydrofurfuryl (meth) acrylate, polystyrene macromonomer, polymethyl methacrylate Macromonomer, CH 2 CRCR 31 R 32 [wherein, R 31 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and R 32 represents an aromatic hydrocarbon ring having 6 to 10 carbon atoms.
  • copolymerizable monomers can be used singly or in combination of two or more.
  • Preferred copolymerizable other monomers are selected from CH 2 CRCR 31 R 32 , CH 2 CC (R 31 ) (COOR 33 ), phenyl (meth) acrylate, benzyl (meth) acrylate and styrene It is at least one, particularly preferably CH 2 CRCR 31 R 32 and / or CH 2 CC (R 31 ) (COOR 33 ).
  • R 31 , R 32 and R 33 has the same meaning as described above.
  • the content of the alkali-soluble resin in the photosensitive resin composition is preferably 5 to 60% by mass, more preferably 10 based on the total solid content excluding the solvent contained in the photosensitive resin composition.
  • the content is about 55% by mass, particularly preferably 15 to 50% by mass.
  • the weight average molecular weight (Mw) of the alkali-soluble resin used in the present invention is preferably 1,000 to 100,000, and more preferably 5,000 to 50,000.
  • the acid value of the alkali-soluble resin used in the present invention is preferably 150 to 400 mg KOH / g, more preferably 180 to 380 mg KOH / g, and still more preferably 200 to 350 mg KOH / g. By setting it as such a range, the photosensitive composition excellent in the halftone aptitude etc. is obtained.
  • the photosensitive resin composition of the present invention may further contain (E) a photosensitizer or co-initiator. By adding these, it is possible to shift or expand the spectral sensitivity to accelerate the photopolymerization of the photosensitive resin composition of the present invention.
  • an aromatic compound for example, benzophenone and its derivative, thioxanthone and its derivative, anthraquinone and its derivative, coumarin or phenothiazine and its derivative, 3- ( Aroyl methylene) thiazoline, rhodanine, camphor quinone, eosin, rhodamine, erythrosine, xanthene, thioxanthene, acridine (eg, 9-phenyl acridine), 1,7-bis (9-acridinyl) heptane, 1,5-bis ( 9-acridinyl) pentane, cyanine, merocyanine dyes may be mentioned.
  • an aromatic compound for example, benzophenone and its derivative, thioxanthone and its derivative, anthraquinone and its derivative, coumarin or phenothiazine and its derivative, 3- ( Aroyl methylene) thiazoline, rhodanine
  • thioxanthone examples include thioxanthone, 2-isopropylthioxanthone, 2-chlorothioxanthone, 1-chloro-4-propoxythioxanthone, 2-dodecylthioxanthone, 2,4-diethylthioxanthone, 2,4-dimethylthioxanthone, 1- Methoxycarbonylthioxanthone, 2-ethoxycarbonylthioxanthone, 3- (2-methoxyethoxycarbonyl) thioxanthone, 4-butoxycarbonylthioxanthone, 3-butoxycarbonyl-7-methylthioxanthone, 1-cyano-3-chlorothioxanthone, 1-ethoxycarbonyl -3-chlorothioxanthone, 1-ethoxycarbonyl-3-ethoxythioxanthone, 1-ethoxycarbonyl-3-aminothioxanthone
  • benzophenone examples include benzophenone, 4-phenylbenzophenone, 4-methoxybenzophenone, 4,4'-dimethoxybenzophenone, 4,4'-dimethylbenzophenone, 4,4'-dichlorobenzophenone, 4,4'-bis (Dimethylamino) benzophenone, 4,4'-bis (diethylamino) benzophenone, 4,4'-bis (methylethylamino) benzophenone, 4,4'-bis (p-isopropylphenoxy) benzophenone, 4-methylbenzophenone, 2 , 4,6-trimethylbenzophenone, 4- (4-methylthiophenyl) benzophenone, 3,3'-dimethyl-4-methoxybenzophenone, methyl-2-benzoylbenzoate, 4- (2-hydroxyethylthio) benzophenone, 4 -(4- Rylthio) benzophenone, 1- [4- (4-Benzoylphenyl, 4-
  • Examples of the above-mentioned coumarins include coumarin 1, coumarin 2, coumarin 6, coumarin 7, coumarin 30, coumarin 102, coumarin 106, coumarin 138, coumarin 152, coumarin 153, coumarin 307, coumarin 314, coumarin 314 T, coumarin 334, Coumarin 337, Coumarin 500, 3-Benzoylcoumarin, 3-Benzoyl-7-methoxycoumarin, 3-Benzoyl-5,7-dimethoxycoumarin, 3-Benzoyl-5,7-dipropoxycoumarin, 3-Benzoyl-6,8 -Dichlorocoumarin, 3-benzoyl-6-chlorocoumarin, 3,3'-carbonyl-bis [5,7-di (propoxy) coumarin], 3,3'-carbonyl-bis (7-diethylaminocoumarin), 3- Isobutyroyl coumarin, 3-benzoyl 5,7-Dimethoxycoumarin, 3-benzoy
  • 3- (aroylmethylene) thiazoline 3-methyl-2-benzoylmethylene- ⁇ -naphthothiazoline, 3-methyl-2-benzoylmethylene-benzothiazoline, 3-ethyl-2-propionylmethylene- ⁇ - A naphtho thiazoline is mentioned.
  • rhodanine 4-dimethylaminobenzal rhodanine, 4-diethylaminobenzal rhodanine, 3-ethyl-5- (3-octyl-2-benzothiazolinylidene) rhodanine, JP-A-8-305
  • the rhodanine derivatives represented by the formulas [1], [2] and [7] disclosed in the publication 019 can be mentioned.
  • the photosensitizer or co-initiator (E) to be added to the photosensitive resin composition of the present invention is selected from benzophenone and its derivatives, thioxanthone and its derivatives, anthraquinone and its derivatives, coumarin derivatives, among those mentioned above. At least one photosensitizer compound is preferably mentioned.
  • the content of (E) photosensitizer or co-initiator in the photosensitive resin composition is 0.5 to 15 with respect to the total solid content excluding the solvent contained in the photosensitive resin composition. % By mass is preferable, more preferably 1 to 12% by mass, and particularly preferably 2 to 10% by mass.
  • the total of the addition amounts of (A) photopolymerization initiator and (E) photosensitizer or co-initiator is 0.1 to 15.0% by weight in the total solid of the photosensitive resin composition. It is preferably 0.1 to 12.0% by weight.
  • a radical scavenger In the photosensitive resin composition of the present invention, if necessary, a radical scavenger, a light stabilizer, a curing aid, a thermal polymerization initiator, a surfactant, an adhesion promoter, a development accelerator, a thermal polymerization inhibitor, It can contain various additives such as dispersants and other additives (fillers, UV absorbers, anticoagulation agents, etc.).
  • light stabilizer In the present invention, various light stabilizers may be added to improve light resistance.
  • the type of light stabilizer is not particularly limited, but from the viewpoint of versatility, hindered amine light stabilizers; for example, bis (2,2,6,6-tetramethyl-4-piperidyl) adipate, bis (1,2,2,7 2,6,6-pentamethyl-4-piperidyl) adipate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) ) Sebacate, tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1,2,3,4-tetraacrylate, tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) -1,2,3,4-tetraacrylate, hindered phenol light stabilizer; for example, pentaerythritol-tetrakis (3- (3-
  • the content of the light stabilizer in the present invention is preferably about 0.1 to 5.0% by mass, and more preferably 0.2 to 4.0% by mass, with respect to the total solid content of the photosensitive resin composition. More preferably, the content is 0.5 to 2.0% by mass. If it is 0.1 mass% or less, desired light resistance can not be obtained, and if it is 5.0 mass% or more, the sensitivity is unfavorably reduced.
  • a compound having an epoxy ring may be used as a curing aid in order to increase the strength of the formed coating film.
  • thermal polymerization proceeds to improve solvent resistance and improve ITO sputterability, which is preferable.
  • the compound having an epoxy ring is a compound having two or more epoxy rings in the molecule, such as bisphenol A type, cresol novolac type, biphenyl type, alicyclic epoxy compound and the like.
  • bisphenol A type Epototh YD-115, YD-118T, YD-127, YD-128, YD-134, YD-8125, YD-7011R, ZX-1059, YDF-8170, YDF-170, etc.
  • Tohto Chemical Co., Ltd. Denacol EX-1101, EX-1102, EX-1103, etc.
  • cresol novolac types include Epototh YDPN-638, YDPN-701, YDPN-702, YDPN-703, YDPN-704, etc. (above, Tohto Kasei Co., Ltd.), Denacol EM-125, etc.
  • Rukoto can. Also, 1,1,2,2-tetrakis (p-glycidyloxyphenyl) ethane, tris (p-glycidyloxyphenyl) methane, triglycidyl tris (hydroxyethyl) isocyanurate, o-phthalic acid diglycidyl ester, terephthalic acid.
  • diglycidyl esters, epototh YH-434 and YH-434L (all manufactured by Nagase Chemical Industries, Ltd.) which are amine type epoxy resins, and glycidyl esters in which dimer acid is modified in the skeleton of bisphenol A type epoxy resin can be used.
  • “molecular weight / number of epoxy rings” is preferably 100 or more, and more preferably 130 to 500.
  • the curability is high, the shrinkage upon curing is large, and when it is too large, the curability is insufficient, the reliability is lost, and the flatness is deteriorated.
  • Preferred compounds are Epototh YD-115, 118T, 127, YDF-170, YDPN-638, YDPN-701 (all manufactured by Nagase Chemical Industries, Ltd.), Plaxel GL-61, GL-62, 3, 5, 3 ', 5 Examples thereof include '-tetramethyl-4,4' diglycidyl biphenyl, celloxide 2021, 2081, epolide GT-302, GT-403, EHPE-3150 (all manufactured by Daicel Chemical Industries, Ltd.), and the like.
  • the content of the curing assistant in the present invention is preferably about 0.1 to 5.0% by mass, and more preferably 0.2 to 4.0% by mass, with respect to the total solid content of the photosensitive resin composition. More preferably, the content is 0.5 to 2.0% by mass. If the content is 0.1% by mass or less, the curing promoting effect can not be obtained, and if the content is 5.0% by mass or more, the light resistance is deteriorated, which is a problem.
  • thermal polymerization initiator It is also effective to contain a thermal polymerization initiator in the photosensitive resin composition of the present invention.
  • thermal polymerization initiator include various azo compounds and peroxide compounds.
  • examples of the azo compounds described above include azobis compounds, and examples of the peroxide compounds described above include And ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, diacyl peroxides, peroxy esters, peroxy dicarbonates and the like.
  • the photosensitive resin composition of the present invention is preferably configured using various surfactants from the viewpoint of improving the coating properties.
  • the surfactant can improve the liquid properties (in particular, the flowability) of the coating liquid, and can improve the uniformity of the coating thickness and the liquid saving property. That is, the interfacial tension between the substrate and the coating liquid is reduced to improve the wettability to the substrate and the coating property to the substrate is improved, so that a thin film of about several ⁇ m is formed with a small amount of liquid. Is also effective in that it is possible to form a film of uniform thickness with small thickness unevenness. In addition, it is also effective in slit coating which tends to cause liquid breakage.
  • nonionic, cationic and anionic surfactants can be used.
  • fluorine-based surfactants having a perfluoroalkyl group as nonionic surfactants are preferable.
  • the fluorine content of the fluorine-based surfactant is preferably 3 to 40% by mass, more preferably 5 to 30% by mass, and particularly preferably 7 to 25% by mass.
  • the fluorine content is within the above-mentioned range, it is effective in terms of coating thickness uniformity and liquid saving property, and the solubility in the composition is also good.
  • fluorine-based surfactants include Megafac F171, F172, F173, F177, F141, F142, F143, F144, R30, and F437 (all manufactured by DIC Corporation), Florard FC430, FC431, FC171 (above, Sumitomo 3M Co., Ltd.), Surfron S-382, SC-101, SC-103, SC-104, SC-105, SC1068, SC- 381, SC-383, S393, KH-40 (all manufactured by Asahi Glass Co., Ltd.) and the like.
  • surfactants other than fluorine-based surfactants include phthalocyanine derivatives (commercially available EFKA-745 (manufactured by Morishita Sangyo Co., Ltd.)), organosiloxane polymer KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.), (meth) acrylic acid-based (co) heavy Merged poly flow No. 75, no. 90, no.
  • Cationic surfactants such as 95 (manufactured by Kyoeisha Yuka Chemical Co., Ltd.), W001 (manufactured by Yusho Co., Ltd.), etc .; polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene octyl phenyl ether, poly Oxyethylene nonyl phenyl ether, polyethylene glycol dilaurate, polyethylene glycol distearate, sorbitan fatty acid ester (manufactured by BASF Pluronic L10, L31, L61, L62, 10R5, 17R2, 25R2, tetronics 304, 701, 704, 901, 904, Nonionic surfactants such as 150R1; and anionic surfactants such as W004, W005, W017 (manufactured by Yusho Co., Ltd.).
  • the amount of surfactant added is preferably 0.001 to 2.0% by mass, more preferably 0.005 to 1.0% by mass, based on the total mass of the photosensitive resin composition.
  • the development accelerator is used as a photosensitive resin composition. It can be used for As such a development accelerator, an organic carboxylic acid, preferably a low molecular weight organic carboxylic acid having a molecular weight of 1000 or less is preferable.
  • aliphatic monocarboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid, valeric acid, pivalic acid, caproic acid, diethylacetic acid, enanthate and caprylic acid; oxalic acid, malonic acid, succinic acid, Aliphatic dicarboxylic acids such as glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, brassic acid, methylmalonic acid, ethylmalonic acid, dimethylmalonic acid, methylsuccinic acid, tetramethylsuccinic acid, citraconic acid and the like; Aliphatic tricarboxylic acids such as tricarballylic acid, aconitic acid, and camphoric acid; aromatic monocarboxylic acids such as benzoic acid, toluic acid, cuminic acid, hemellitic acid, mesitylene acid; phthalic acid,
  • thermal polymerization inhibitor it is preferable to further add a thermal polymerization inhibitor to the photosensitive resin composition of the present invention, for example, hydroquinone, p-methoxyphenol, di-tert-butyl-p-cresol, pyrogallol, tert-butyl catechol, Useful are benzoquinone, 4,4'-thiobis (3-methyl-6-tert-butylphenol), 2,2'-methylenebis (4-methyl-6-tert-butylphenol), 2-mercaptobenzimidazole and the like.
  • fillers such as glass and alumina; UV absorbers such as 2- (3-tert-butyl-5-methyl-2-hydroxyphenyl) -5-chlorobenzotriazole and alkoxybenzophenone; and sodium polyacrylate And the like.
  • the photosensitive resin composition of the present invention comprises each component described above, that is, (A) photopolymerization initiator, (B) solvent, (C) polymerizable monomer, (D) alkali-soluble resin, if necessary (E) It can be prepared by adding and mixing other additives such as photosensitizers or co-initiators.
  • the light absorbing layer absorbs light reflected by the lens or the light reflecting layer 13 or the like, or light which is incident from the outside and repeatedly reflected in the first support 12 to suppress stray light. Thereby, side band generation can be suppressed, and light utilization efficiency can be further improved.
  • the light absorbing layer has a first opening for each lens, for example, each having a first opening on the optical axis of each of the plurality of lenses.
  • the light absorbing layer and the light reflecting layer have the same pattern of openings, and the openings are aligned as described above, and the first opening of the light absorbing layer and the second opening of the light reflecting layer are aligned.
  • the light reflecting layer and the light absorbing layer are disposed in a state in which the light reflecting layer and the light absorbing layer are aligned. If the aperture ratio of the first opening is too small, the light utilization efficiency is reduced. Also, if it is too large, the directivity will be worse.
  • the light absorption layer preferably has an aperture ratio of 30% to 70% for the first opening. More preferably, it is 30% to 60%, and still more preferably, 35% to 55%.
  • the aperture ratio of the first opening is preferably 10% to 75%. More preferably, it is 10% to 70%, and still more preferably, 15% to 65%.
  • the optimum point of the aperture ratio of the opening provided in the light absorbing layer and the light reflecting layer is 25%. is there.
  • the aperture ratio is lowered, the effect of light recycling by the light reflecting layer is enhanced, and the front luminance, that is, the maximum luminance value is improved. If the aperture ratio is too low, for example, at 10% or less, the effect of light loss during light recycling increases, and the front luminance decreases.
  • the aperture ratio of the first opening 18 b of the light absorption layer 18 is defined by the opening width of the first opening 18 b with respect to the pitch at which the first opening 18 b is disposed.
  • the aperture ratio is 25% at 25/100.
  • the aperture ratio of the second opening 13b of the light reflection layer 13 corresponds to the second opening 13b with respect to the pitch at which the second opening 13b is disposed. It is defined by the opening width of. If the pitch is 100 ⁇ m and the aperture width is 25 ⁇ m, the aperture ratio is 25% at 25/100.
  • an image including the light absorbing layer 18 including the first aperture 18 b and an image including the light reflecting layer 13 including the second aperture 13 b are acquired, and the first aperture 18 b is obtained using each image, And the length of a position corresponding to the opening width of the second opening 13b.
  • the light absorption layer is not particularly limited, but for example, carbon black, titanium nitride, silver ink and the like can be used, and a material used for black matrix such as LCD and organic EL (Electro Luminescence) can be appropriately used. can do.
  • Silver ink becomes a black absorber in the heating process after ink application, and then it becomes a silver mirror. Therefore, after the silver ink is applied to the film, the ink surface is heated at a high temperature and the back surface is heated at a lower temperature.
  • a specular mirror which plays a role as a reflection layer, and a back surface can be made into a black absorber, and a reflection layer and a black absorption layer can be simply manufactured on a process.
  • the reflectance of the light absorbing layer is preferably 20% or less, and in order to enhance the light shielding property in the oblique direction, that is, to reduce the visibility in the oblique direction, 10% or less is better and 7% or less is the best.
  • the reflectance of the light absorbing layer is obtained as follows. Using a spectrophotometer (V-550 manufactured by JASCO Corporation), the material used for the light absorption layer is formed on a polyethylene terephthalate (PET) substrate, light is incident from the formation surface, and the reflectance at a wavelength of 380 nm to 780 nm Measure and calculate the average value. This average value is the reflectance of the light absorption layer.
  • the light absorbing layer 18 and the light reflecting layer 13 may be integrated or separated.
  • the surface 13a of the light reflection layer 13 functions as the light absorption layer 18, which is less than 90% different from the reflectance of the surface 13a and absorbs light.
  • the reflectance is preferably 20% or less, more preferably 10% or less, and most preferably 7% or less.
  • the number of parts can be reduced in the integrated configuration as compared with the separate configuration, and the configuration can be simplified.
  • the manufacturing method of a light absorption layer is not specifically limited,
  • the plate-shaped member used as a light absorption layer can be formed by an etching process or laser processing etc.
  • a light absorption layer can also be formed by forming a film to be a light absorption layer on a substrate using a vapor phase method such as evaporation or a liquid phase method such as application.
  • the thickness is preferably 30 ⁇ m or less from the viewpoint of not deteriorating the brittleness. More preferably, it is 10 ⁇ m or less, more preferably around 1 ⁇ m.
  • the refractive index of the second support is preferably 1.30 or more, more preferably 1.4 or more, and still more preferably 1.6 or more, from the viewpoint of not generating side bands.
  • the number is preferably 1.80 or more, and particularly preferably 1.9 or more.
  • the refractive index is preferably 2.50 or less, more preferably 2.20 or less, and still more preferably less than 2.10. And 2.05 or less is more preferable.
  • the refractive index of the second support can be adjusted according to the type of component used to form a layer as in the first support.
  • a component used to form a layer it can form using the polymeric composition containing a polymeric compound and a polymerization initiator like a 1st support body.
  • the first support it may be a resin layer containing a resin as a main component.
  • particles may be included to adjust the refractive index of the second support.
  • the particles are not particularly limited, and may be inorganic particles or organic particles.
  • the above-mentioned particles may be used alone or in combination of two or more. The smaller the particles, the better in terms of suppressing the scattering. Therefore, the particle size is preferably 100 nm or less, more preferably 30 nm or less, and still more preferably 25 nm or less as the primary particle diameter.
  • the particle size is preferably 1 nm or more as the primary particle diameter.
  • grains measures a particle size about 50 particle
  • SEM scanning electron microscope
  • the refractive index of the above-mentioned particles is preferably 2.00 or more and 3.00 or less, and preferably 2.05 or more and 2.50 or less from the viewpoint of refractive index adjustment. More preferable.
  • the refractive index of the particles is a value measured by the following method.
  • the particles are doped in a resin material of known refractive index to make a resin material in which the particles are dispersed.
  • the produced resin material is applied onto a silicon substrate or a quartz substrate to form a resin film.
  • the refractive index of the formed resin film is measured by an ellipsometer, and the refractive index of the particles is determined from the volume fraction of the resin material and the particles constituting the resin film.
  • the refractive index of the titanium oxide particles used in the examples described later is a value determined by the method described above.
  • a surface light source device at least includes the louver film described above and a light source.
  • the surface light source device includes at least an edge light type including at least a light source and a light guide plate, optionally including a reflector, a diffuser and the like, a reflector, and a plurality of light sources and diffusers disposed on the reflector. There is a direct type including.
  • the surface light source device described above may have any configuration. The details are described in the publications such as Patent No. 3416302, Patent No. 3363565, Patent No. 4091978, and Patent No. 3448626, and the contents of these publications are incorporated in the present invention.
  • the light source may be a white light source, or a monochromatic light source using a blue LED or an ultraviolet LED.
  • a white light source it is preferable in that it has a simple configuration without the need for color conversion.
  • the monochromatic light source is preferable in that the directivity of the light can be controlled without chromatic aberration.
  • a wavelength conversion film using quantum dot particles or phosphor may be provided between the louver film and the light source.
  • a liquid crystal panel may be provided with a color filter containing quantum dot particles or a phosphor. The light which has passed through the liquid crystal layer of the liquid crystal panel with high directivity is color-converted into quantum dot particles, and further, the converted light is diffused, which makes it possible to widen the viewing angle.
  • the surface light source device may have an optical film such as a reflective polarizer, a prism sheet, a diffusion sheet, or a wavelength conversion film.
  • the reflective polarizer 20 is provided between the louver film 2 and the diffusion plate 14, that is, between the louver film 2 and the light source 16. With the configuration having the reflective polarizer 20, the light utilization efficiency can be improved by light recycling.
  • various louver films 2 shown in FIGS. 5 to 7 described above can be used.
  • the reflective polarizer 20 a general reflective polarizer can be used. For example, trade name: DBEF manufactured by 3M can be used.
  • a liquid crystal display device at least includes the surface light source device described above and a liquid crystal panel.
  • the liquid crystal panel usually includes at least a viewing side polarizer, a liquid crystal cell and a backlight side polarizer.
  • a liquid crystal cell having a liquid crystal layer sandwiched between substrates provided with electrodes on at least one side facing each other is provided, and this liquid crystal cell is configured to be disposed between two polarizers.
  • the liquid crystal display device includes a liquid crystal cell in which liquid crystal is sealed between upper and lower substrates, and displays an image by changing the alignment state of the liquid crystal by voltage application. Furthermore, it has an accompanying functional layer such as a polarizing plate protective film, an optical compensation member for performing optical compensation, and an adhesive layer as required.
  • a surface layer such as an undercoat layer may be disposed.
  • the above-mentioned quantum dot particles or a phosphor-containing color filter or a lens film on the viewing side of the viewing side polarizer You may provide the functional layer which relieves the directivity of lights, such as a diffusion sheet and a diffractive film.
  • the surface light source device of the liquid crystal display device is as described above.
  • liquid crystal cell the polarizing plate, the polarizing plate protective film and the like constituting the liquid crystal display device according to one aspect of the present invention
  • products manufactured by known methods and commercially available products may be used without any limitation. it can.
  • intermediate layer such as an adhesive layer between each layer.
  • a louver film 2 may be disposed between the liquid crystal cell 32 and the backlight side polarizer 34 as in the liquid crystal display device 30 shown in FIG.
  • the louver film 2 may be disposed between the backlight side polarizer 34 and the diffusion plate 14.
  • a configuration may be adopted in which the viewer-side polarizer 36 is provided on the side opposite to the light source 16 side of the liquid crystal cell 32 without the backlight-side polarizer.
  • various louver films 2 shown in FIGS. 5 to 7 can be used.
  • the arrangement position of the louver film 2 is not limited to being on the light source side with respect to the liquid crystal cell 32.
  • the louver film 2 is disposed between the liquid crystal cell 32 and the backlight side polarizer 34, but the louver film 2 is disposed on the surface 32 a of the liquid crystal cell 32. You may arrange
  • the louver film 2 is disposed between the backlight side polarizer 34 and the diffusion plate 14.
  • the louver film 2 is disposed on the surface 32 a of the liquid crystal cell 32, that is, the display surface It may be placed on top.
  • the louver film 2 is disposed between the liquid crystal cell 32 and the diffusion plate 14, but the louver film 2 is used as the viewing side polarizer 36 provided on the liquid crystal cell 32. It may be disposed on the surface 36a. Thus, the louver film 2 can also be disposed on the outermost surface side of the liquid crystal display device 30. Even at such an arrangement position of the louver film 2, the directivity with regard to the visibility can be further improved while maintaining the light utilization efficiency, and it is possible to suppress the reflection and the like to the area which is not desired to be displayed.
  • the shape seen from the optical axis direction is a square shape, and the some lens is arranged in the tetragonal lattice shape, and between the arranged lenses
  • a moiré preventing point is formed at the intersection, and the lens arrangement direction is inclined at 25 ° to 65 ° with respect to the pixel arrangement direction of the liquid crystal panel. This point will be described with reference to FIGS. 12 to 15.
  • FIG. 12 is a schematic view showing a part of the louver film 2 and a part of the liquid crystal cell 32 viewed from the optical axis direction of the lens, with the relative positions shifted in the surface direction.
  • FIG. 13 is a cross-sectional view taken along the line BB in FIG.
  • FIG. 14 is a cross-sectional view taken along the line CC of FIG.
  • FIG. 15 is a cross-sectional view taken along the line DD of FIG.
  • the lens 11 is a two-dimensional lens array whose shape seen in the optical axis direction of the lens 11 is square.
  • the plurality of lenses 11 are arranged in a square lattice.
  • the alignment direction of the lenses 11 is inclined by about 45 ° with respect to the alignment direction of the pixels 33 of the liquid crystal cell 32.
  • a concave portion is formed as a moiré preventing point 22 at vertex portions (four corners in the surface direction) of the plurality of lenses 11 arranged in a square lattice shape.
  • the arrangement of the lenses 11 may be two-dimensionally arranged, and the two-dimensional arrangement is not particularly limited, and may be hexagonally arranged in addition to the square arrangement. By arranging the lenses 11 in a hexagonal shape, the utilization efficiency of light is improved and the luminance is improved.
  • moire may occur due to the relationship with other members having a regular arrangement.
  • a liquid crystal cell having a plurality of regularly arranged pixels and a louver film are overlapped and disposed, there is a possibility that moiré may occur.
  • the arrangement direction of the lenses 11 is inclined by 25 ° to 65 ° with respect to the arrangement direction of the pixels of the liquid crystal panel, and moiré prevention points 22 are formed at the apexes of the lenses 11 to reduce moiré.
  • moiré occurs at the difference frequency between a plurality of regularly arranged pixel patterns of the liquid crystal cell and a pattern of shadows (boundary lines) between the plurality of lenses 11.
  • the alignment direction of the lenses 11 is inclined by about 45 ° with respect to the alignment direction of the pixels 33 of the liquid crystal cell 32, the pattern of shadows (boundary lines) between the plurality of lenses 11 is the pixel 33 of the liquid crystal cell 32.
  • the pattern which appears when the pattern of the shadow (boundary line) between the plurality of lenses 11 is integrated in the arrangement direction of the pixels 33 of the liquid crystal cell 32 is the pattern on the lattice points of the plurality of lenses 11 arranged in a square lattice.
  • the intensity is weak, and appears on the other than the grid points because the pattern intensity becomes strong.
  • By darkening or thickening the shadows on the grid points of the plurality of lenses 11 arranged in a square grid shape it is possible to equalize the pattern strength on the grid points and the portions other than the grid points, and a louver film You can erase the side pattern. For this reason, it is considered that the plurality of pixel patterns regularly arranged in the liquid crystal cell and the pattern capable of obtaining the difference frequency have disappeared, and moire is less likely to occur.
  • the size (area) of the moiré prevention point 22 is preferably 0.01% to 10% with respect to the size (area) of the lens 11 arranged in a two-dimensional manner. Further, the depth of the moiré prevention point 22 is preferably 0.1% to 40% with respect to the lens pitch.
  • the planar shape of the moiré preventing point 22 is square, but is not limited to this, and various shapes such as rectangular, triangular, polygonal, circular, and irregular may be used. it can.
  • the planar shape of the moiré prevention point 22 may be symmetrical or asymmetrical.
  • the moire prevention point 22 was made into the recessed part, it is not limited to this, as long as the transmission amount of light can be changed.
  • the moiré prevention point 22 may be a convex portion.
  • dots may be printed with ink.
  • the moire prevention point 22 which consists of recessed parts.
  • a mold in which the moiré prevention point 22 is formed simultaneously with the formation of the lens 11 may be used.
  • the lens pitch is preferably 50 ⁇ m to 300 ⁇ m or less from the viewpoint of moire. 50 ⁇ m to 200 ⁇ m is more preferable. More preferably, 50 ⁇ m to 150 ⁇ m.
  • the arrangement direction of the lenses is preferably inclined by 0.1 ° to 20 ° with respect to the arrangement direction of the pixels of the liquid crystal panel. As a result, the interference between the pixel pitch of the panel and the lens pitch is suppressed, and it becomes difficult to see moiré.
  • Example 1 In Example 1, a polyethylene terephthalate film (manufactured by Toyobo Co., Ltd., trade name: Cosmo Shine (registered trademark) A4300, thickness 125 ⁇ m, refractive index 1.57) was prepared as a first support. On the surface of the first support, the following 1.
  • the titanium oxide particle-containing polymerizable composition composition type 2 prepared to have a refractive index of 1.55 by coating with a bar coater is applied, and a convex arc (lens) having a curvature radius of 57 ⁇ m is applied at a pitch of 100 ⁇ m.
  • a louver film A was produced by forming a light absorbing layer having an opening width of 50 ⁇ m, an aperture ratio of 50%, and a film thickness of 2 ⁇ m so that the center in the opening width direction matches the position of the apex of the lens convex portion.
  • a light absorption layer contains carbon black, and "CB" of the column of the material of the light absorption layer of Table 1 is carbon black.
  • K pigment dispersion 1 Carbon black, a dispersant, a polymer and a solvent were mixed so as to have the following composition of K pigment dispersion 1, and K pigment dispersion 1 was obtained.
  • composition type 1 18.2 parts by mass of trimethylolpropane triacrylate, 80.8 parts by mass of lauryl methacrylate, and a photopolymerization initiator (Irgacure (registered trademark) 819 manufactured by BASF Corp.) 1 part by mass was mixed.
  • a slurry solvent: methyl ethyl ketone, titanium oxide particle concentration: 30% by mass
  • TiO 2 titanium oxide particles (primary particle diameter: 100 nm or less) are dispersed is doped in the above mixture (also described as a binder hereinafter)
  • the mixture was sufficiently stirred to prepare a titanium oxide particle-containing polymerizable composition.
  • titanium oxide particles are titanium oxide particles surface-treated with aluminum oxide in order to suppress the photoactivity of titanium oxide, and the refractive index is 2.40.
  • Example 2 In Example 2, a polyethylene terephthalate film (manufactured by Toyobo Co., Ltd., trade name: Cosmo Shine (registered trademark) A4300, thickness 125 ⁇ m, refractive index 1.57) was prepared as a first support. On the first support surface, the above 1.
  • the titanium oxide particle-containing polymerizable composition composition type 2 prepared to have a refractive index of 1.55 by coating with a bar coater is applied, and a convex arc (lens) having a curvature radius of 57 ⁇ m is applied at a pitch of 100 ⁇ m.
  • a light absorbing layer having an aperture width of 50 ⁇ m, an aperture ratio of 50%, and a film thickness of 2 ⁇ m was formed such that the center in the aperture width direction matches the position of the apex of the lens convex portion.
  • Ag is vapor-deposited on the light absorption layer through a mask of the same pattern as the light absorption layer, a light reflection layer with a pitch of 100 ⁇ m, an opening width of 50 ⁇ m, and an aperture ratio of 50%.
  • a louver film B was produced so as to match the position of the top of the.
  • Example 3 a polyethylene terephthalate film (manufactured by Toyobo Co., Ltd., trade name: Cosmo Shine (registered trademark) A4300, thickness 75 ⁇ m, refractive index 1.57) was prepared as a first support. On the first support surface, the above 1.
  • the titanium oxide particle-containing polymerizable composition (composition type 2) prepared to have a refractive index of 1.69 in the above was applied by a bar coater, and a convex arc (lens) having a curvature radius of 50 ⁇ m in section was applied at 100 ⁇ m pitch
  • a convex arc (lens) having a curvature radius of 50 ⁇ m in section was applied at 100 ⁇ m pitch
  • exposure is performed at 5 J / cm 2 in a nitrogen atmosphere using a UV exposure machine (EXECURE 3000W manufactured by HOYA CANDEO OPTRONICS) while pressing a concavo-convex roller having a surface shape in which the shape to be formed is inverted. After curing, it was peeled off from the concavo-convex roller to produce a concavo-convex shape on the surface.
  • a louver film C was produced by forming a light absorbing layer having an opening width of 35 ⁇ m, an aperture ratio of 35%, and a film thickness of 2 ⁇ m so that the center in the opening width direction coincides with the position of the apex of the lens convex portion.
  • Example 4 In Example 4, a polyethylene terephthalate film (manufactured by Toyobo Co., Ltd., trade name: Cosmo Shine (registered trademark) A4300, thickness 75 ⁇ m, refractive index 1.57) was prepared as a first support. On the first support surface, the above 1.
  • the titanium oxide particle-containing polymerizable composition (composition type 2) prepared to have a refractive index of 1.69 in the above was applied by a bar coater, and a convex arc (lens) having a curvature radius of 50 ⁇ m in section was applied at 100 ⁇ m pitch
  • a convex arc (lens) having a curvature radius of 50 ⁇ m in section was applied at 100 ⁇ m pitch
  • exposure is performed at 5 J / cm 2 in a nitrogen atmosphere using a UV exposure machine (EXECURE 3000W manufactured by HOYA CANDEO OPTRONICS) while pressing a concavo-convex roller having a surface shape in which the shape to be formed is inverted. After curing, it was peeled off from the concavo-convex roller to produce a concavo-convex shape on the surface.
  • the above-mentioned K pigment dispersion 1 is applied to a surface of the first support opposite to the surface on which the concavo-convex shape is formed through a stripe mask with a pitch of 100 ⁇ m and a width of 35 ⁇ m, and dried.
  • a light absorbing layer having an aperture width of 35 ⁇ m, an aperture ratio of 35%, and a film thickness of 2 ⁇ m was formed such that the center in the aperture width direction matches the position of the apex of the lens convex portion.
  • the louver film D was manufactured so as to match the position of the top of the.
  • Example 5 a polyethylene terephthalate film (manufactured by Toyobo Co., Ltd., trade name: Cosmo Shine (registered trademark) A4300, thickness 75 ⁇ m, refractive index 1.57) was prepared as a second support.
  • a louver film E was produced by laminating one surface of the second support and the surface of the first support of Example 3 on which the light absorbing layer was formed.
  • Example 6 a polyethylene terephthalate film (manufactured by Toyobo Co., Ltd., trade name: Cosmo Shine (registered trademark) A4300, thickness 75 ⁇ m, refractive index 1.57) was prepared as a second support.
  • a louver film F was produced by laminating one surface of the second support and the surface on which the light absorbing layer and the light reflecting layer of the first support of Example 4 were formed.
  • Example 7 In Example 7, on the glass substrate, the above-mentioned 1.
  • the titanium oxide particle-containing polymerizable composition (composition type 2) prepared to have a refractive index of 1.90 by the above method is applied by a bar coater, and nitrogen is applied using a UV exposure machine (EXEURE 3000W manufactured by HOYA CANDEO OPTRONICS)
  • a louver film G was produced in the same manner as in Example 5 except that exposure was carried out with an ultraviolet ray irradiation amount of 5 J / cm 2 in an atmosphere for curing to form a second support having a thickness of 25 ⁇ m.
  • Example 8 In Example 8, the above-mentioned 1 ..
  • the titanium oxide particle-containing polymerizable composition (composition type 2) prepared to have a refractive index of 1.90 by the above method is applied by a bar coater, and nitrogen is applied using a UV exposure machine (EXEURE 3000W manufactured by HOYA CANDEO OPTRONICS)
  • a louver film H was produced in the same manner as in Example 6 except that a UV irradiation amount of 5 J / cm 2 was used for exposure and curing under an atmosphere to form a second support having a thickness of 25 ⁇ m.
  • Example 9 a louver film I was produced in the same manner as in Example 4 except that the method of forming the light reflecting layer formed on the light absorbing layer formed on the first support was changed as follows. .
  • the following coating solutions were prepared as a composition for forming a cholesteric liquid crystal layer.
  • LC1 Liquid crystal compound below 100 parts by mass
  • Chiral agent (C1) below 2.5 parts by mass
  • Photopolymerization initiator (IRGACURE 819; manufactured by BASF) 0.75 parts by mass
  • Surfactant below (W1) 0.05 parts by mass, the following surfactant (W2) 0.01 parts by mass, methyl ethyl ketone 250 parts by mass, cyclohexanone 50 parts by mass------------------ ⁇
  • the rubbing process was performed using the rubbing apparatus on the surface on the opposite side to the surface in which the uneven
  • the longitudinal direction of the long film and the transport direction were parallel, and the rotation axis of the rubbing roller was 45 ° clockwise with respect to the film longitudinal direction.
  • the composition for forming a coating liquid cholesteric liquid crystal layer described above was coated on the rubbing-treated surface using a wire bar so as to have a film thickness of 3 ⁇ m to form a film made of a polymerizable liquid crystal composition.
  • the film was then heated at 70 ° C. for 1 minute to perform cholesteric alignment treatment.
  • the coated film cooled to 25 ° C. is irradiated with UV light for 10 seconds at 10 mW / cm 2 in the atmosphere, and black ink is used in a predetermined pattern.
  • irradiation was performed from the coated surface side to perform primary curing.
  • the above-mentioned illuminance is illuminance measured in the range of 300 nm to 390 nm using UVR-T1 (UD-T36; manufactured by TOPCON).
  • the coating liquid for cholesteric liquid crystal is irradiated with ultraviolet light at 50 mW / cm 2 for 40 seconds in a nitrogen atmosphere using an ultraviolet irradiation device from the coated surface side,
  • the louver film I which has a cholesteric-liquid-crystal layer which has and a cholesteric-liquid-crystal phase part in one layer as a light reflection layer was obtained.
  • the cholesteric liquid crystal is described as "CLC”.
  • Example 10 a louver film K was produced in the same manner as in Example 4 except that the aperture ratio of the light reflecting layer and the light absorbing layer was changed to 25%.
  • Example 11 is the same as Example 10 except that the first support is a polyethylene terephthalate film (manufactured by Toyobo Co., Ltd., trade name: Cosmo Shine (registered trademark) A4300, thickness 50 ⁇ m, refractive index 1.57).
  • the louver film L was produced.
  • Example 12 In Example 12, a polyethylene terephthalate film (manufactured by Toyobo Co., Ltd., trade name: Cosmo Shine (registered trademark) A4300, thickness 75 ⁇ m, refractive index 1.57) was prepared as a second support. A louver film M was produced by laminating one surface of the second support and the surface on which the light absorbing layer and the light reflecting layer of the first support of Example 11 were formed. [Example 13] In Example 13, a louver film N was produced in the same manner as in Example 11 except that the aperture ratio of the light reflecting layer and the light absorbing layer was changed to 16%.
  • Example 14 In Example 14, in order to form on the surface a shape in which hemispherical arcs (lenses) with a radius of curvature of 50 ⁇ m are arranged in a square at a pitch of 100 ⁇ m, the form is changed to an irregular roller having an inverted surface shape.
  • a louver film O was produced in the same manner as in Example 11.
  • Example 15 In Example 15, in order to form on the surface a shape in which hemispherical arcs (lenses) with a radius of curvature of 50 ⁇ m are arranged in a square at a pitch of 100 ⁇ m, the form is changed to an uneven roller having an inverted surface shape.
  • a louver film P was produced in the same manner as in Example 13.
  • Example 16 is the same as Example 14 except that the polyethylene terephthalate film (made by Toyobo Co., Ltd., trade name: Cosmo Shine (registered trademark) A4300, thickness 38 ⁇ m, refractive index 1.57) is used as the first support. Then, louver film Q was produced.
  • Example 17 In Example 17, in order to form on the surface a shape in which hemispherical arcs (lenses) with a radius of curvature of 50 ⁇ m are arranged in a hexagonal manner at a pitch of 100 ⁇ m, the form is changed to an uneven roller having an inverted surface shape. A louver film R was produced in the same manner as in Example 11.
  • Comparative Example 1 A polyethylene terephthalate film (made by Toyobo Co., Ltd., trade name: Cosmo Shine (registered trademark) A4300, thickness 75 ⁇ m, refractive index 1.57) is prepared as a second support, and it has a pitch of 333 ⁇ m and a width of 166.5 ⁇ m on one side. Ag was deposited through a stripe mask to form a light reflection layer. Next, in order to form a convex arc (lens) having a curvature radius of 167 ⁇ m on the surface at a pitch of 333 ⁇ m, a convex-concave roller having a surface shape in which the shape to be formed is reversed was produced.
  • a polyethylene terephthalate film (manufactured by Toyobo Co., Ltd., trade name: Cosmo Shine (registered trademark) A4300, thickness 125 ⁇ m, refractive index 1.57) was prepared as a first support. On the first support surface, the above 1.
  • the titanium oxide particle-containing polymerizable composition (composition type 1) prepared to have a refractive index of 1.55 by a die coating method using the slot die described in Example 1 of JP-A-2006-122889. The coating speed was 24 m / min, and the coating was dried at 60 ° C. for 60 seconds.
  • Comparative Example 2 is a privacy film (PF 12.1 WS (product number)) manufactured by 3M company.
  • Comparative Example 3 In Comparative Example 3, a louver film S was produced in the same manner as in Example 14 except that the aperture ratio of the light reflecting layer and the light absorbing layer to the lens pitch was changed to 8%.
  • the lenses In Examples 14 to 16 and Comparative Example 3 described above, the lenses are arranged in a square, and in Example 17, the lenses are arranged in a hexagonal.
  • the numerical value of the aperture ratio is indicated as, for example, “25/5”, but the previous numerical value is (aperture width) / (numerical value represented by pitch).
  • the subsequent numerical value is a numerical value represented by (aperture area) / (a square area with one side of the pitch).
  • Example 1 and Example 2 are examples of the first aspect.
  • Examples 3 to 13 are examples of the second aspect. From the results shown in Table 1, it can be confirmed that the directivity is improved while maintaining the light utilization efficiency, as compared with the louver films of the comparative examples.
  • Comparison of Example 3 with Example 5 and Example 4 with Example 6 shows that it is preferable to have a second support. Further, it is understood from the comparison of Example 5 with Example 7 and Example 6 with Example 8 that the refractive index of the second support is preferably 1.6 or more. From the comparison of Example 4 and Examples 10 to 13, the smaller the aperture ratio, the higher the maximum luminance ratio, and the better the directivity. In Examples 10 to 13, the maximum luminance ratio is higher than in Comparative Example 3, and the SN ratio is also excellent. From the comparison of Example 10 to Example 13, the maximum luminance ratio is higher in the hexagonal arrangement of the lenses than in the square arrangement.

Abstract

光利用効率を保ったまま更なる視認性に関する指向性の向上を可能にし、視野角コントラストとハローを改善することができるルーバーフィルム、面光源装置および液晶表示装置を提供する。光源の出射側に一定のピッチで複数配列されたレンズと、レンズよりも光源側に配置される、厚みがレンズのピッチと同じかそれ以上であり、屈折率1.5以上の第一の支持体、第一の支持体よりも光源側に配置される反射率90%以上で、複数のレンズの光軸上に開口部を有し、開口部の開口率は30%~70%である光反射層からなる。

Description

ルーバーフィルム、面光源装置および液晶表示装置
 本発明は、ルーバーフィルムならびにルーバーフィルムを備えた面光源装置および液晶表示装置に関する。
 液晶表示装置(以下、LCD(Liquid Crystal Display)とも言う。)は、消費電力が小さく、省スペースの画像表示装置として年々その用途が広がっている。液晶表示装置は、通常、面光源装置と液晶パネルとから構成される。また、有機EL(Electro Luminescence)表示装置も、液晶表示装置と同様に、消費電力が小さく、省スペースの画像表示装置として年々その用途が広がっている。上述の各種の画像表示装置は、一般的には視野角特性として、広い視野角が要求されている。
 しかしながら、画像表示装置は設置場所によっては、画像表示装置の表示画像が、本来、映したくない場所に映されてしまうことがある。この場合には、画像表示装置の視野角を制限する必要がある。例えば、機密性が高い文書および画像、ならびに個人情報、およびパスワード等の秘匿性の高い情報を含む表示画像を画像表示装置に表示する場合、他者に見られないようにするために視野角を制限する必要がある。このように画像表示装置の用途によっては視野角を制限する必要がある。
 上述の視野角を制限する方法としては、ルーバーフィルムを配置することが提案されている(特許文献1)。また、特許文献2には、レンチキュラーレンズの背面に光反射部を設けた光学シートが開示されている。
特許第4856805号明細書 特許第4389938号明細書
 上述のように視野角を制限した場合でも、画像表示装置の基本的な性能として、表示画像が明るいことが望まれている。しかしながら、特許文献1のルーバーフィルムは、光の利用効率が低く、表示画像の輝度が低くなり、画像が暗くなる。
 特許文献2に開示されている光学シートには、サイドバンドを低減するために開口部の開口率、開口部からレンズ部までの距離が式を用いて規定されている。しかしながら、特許文献2には指向性を高めすぎるのは良くないことも記載されている。
 ルーバーフィルムの用途が車載モニターの場合、サイドバンドを低減したまま、特許文献2よりも更に視認性に関する指向性を高めることが必要である。また、用途が車載モニターの場合、指向性の方向も正面だけでなく、指向性の向きを制御する必要がある。
 そこで本発明の目的は、光利用効率を保ったまま更なる視認性に関する指向性を向上したルーバーフィルム、面光源装置および液晶表示装置を提供することにある。
 本発明者らは、上述の目的を達成するために鋭意検討を重ねた結果、以下のルーバーフィルム:
 面光源装置に用いられ、光源の出射側に一定のピッチで複数配列されたレンズと、レンズよりも光源側に配置される、厚みがレンズのピッチと同じかそれ以上であり、屈折率1.5以上の第一の支持体と、第一の支持体よりも光源側に配置される光吸収層とを有し、光吸収層は、第1の開口部を有し、第1の開口部の開口率は30%~70%であるルーバーフィルム、
を新たに見出し、本発明を完成させた。
 また、本発明者らは、上述の目的を達成するために鋭意検討を重ねた結果、以下のルーバーフィルム:
 面光源装置に用いられ、光源の出射側に一定のピッチで複数配列された、屈折率1.65~1.9のレンズと、レンズよりも光源側に配置される、厚みがレンズのピッチより小さく、屈折率1.4~1.65の第一の支持体と、第一の支持体よりも光源側に配置される光吸収層とを有し、光吸収層は、第1の開口部を有し、第1の開口部の開口率は10%~70%であるルーバーフィルム、
を新たに見出し、本発明を完成させた。
 ここでルーバーフィルムとは、指向性を向上したフィルムであり、このフィルムを含む面光源装置を備えた液晶表示装置において、このフィルムがない場合と比べて視認性に関する指向性を改善し、例えば、斜め方向からの視認を抑制できるフィルムである。また、視野角を制限し、表示させたくない領域への映り込みを改善したフィルムである。
 視野角の制限は、ルーバーフィルム表面に対して、ある角度範囲で視認できることである。例えば、ルーバーフィルムの表面に垂直な方向の輝度を基準とした場合、ルーバーフィルムの表面に垂直な線を基準にして、45°傾いた方向の輝度が、基準の輝度よりも低い。この場合、視野角は、ルーバーフィルムの正面付近に制限されている。逆に、45°傾いた方向の輝度が基準の輝度より高い場合、視野角は、ルーバーフィルムの斜め方向に制限されている。
 また、上述の光利用効率とは、以下の方法により測定される値をいう。
 面光源装置の光の出射面において、測定機”EZ-Contrast XL88”(ELDIM社製)を用いて、極角度0°(正面方向)から極角度88°までの1°刻みの輝度(Y0)を測定し、輝度値の最大値を最大輝度とする。この最大輝度を面光源装置にルーバーフィルムを配置していない状態(T0)と、配置した状態(T)とで測定し、その比(T/T0)を算出し、最大輝度比が求められる。最大輝度比が大きい程、光利用効率が高い。
 また、上述の指向性とは、以下の方法により評価される値をいう。
 面光源装置について、測定機”EZ-Contrast XL88”(ELDIM社製)を用いて、極角度0°(正面方向)から極角度88°までの1°刻みの輝度(Y0)を測定し、正面方向の輝度値に対して半分の輝度値になる最小の極角度を半値半幅とし、半値半幅が小さいほど指向性が高い。
 また、面光源装置について、測定機”EZ-Contrast XL88”(ELDIM社製)を用いて、極角度0°(正面方向)から極角度88°までの1°刻みの輝度(Y0)を測定し、正面方向の輝度値と極角60°の輝度最小値の比をとり、SN比(=正面方向の輝度/極角60°の輝度最小値)とする。SN比を裾切れとして評価する。SN比が大きい程、裾切れが良く指向性が高い。
 一態様では、第一の支持体の屈折率は1.6以上である。
 一態様では、光吸収層よりも光源側に配置され、第2の開口部を備える光反射層を有し、光反射層は反射率90%以上であり、かつ第2の開口部の開口率は光吸収層と同じであり、第1の開口部と第2の開口部とが位置合せされた状態で光吸収層と光反射層とが配置されている。
 一態様では、各第1の開口部は各レンズに対して設けられており、第1の開口部はレンズの光軸から外れている。
 一態様では、各第1の開口部および各第2の開口部は各レンズに対して設けられており、位置合せされた第1の開口部および第2の開口部はレンズの光軸から外れている。
 一態様では、光吸収層よりも光源側に第二の支持体が配置されている。
 一態様では、光反射層よりも光源側に第二の支持体が配置されている。
 一態様では、光反射層がコレステリック液晶層を含む。
 一態様では、第二の支持体の屈折率が1.6以上である。
 本発明の更なる態様は、上述のルーバーフィルムと、光源とを含む面光源装置に関する。
 一態様では、ルーバーフィルムと光源との間に配置される反射型偏光子を有する。
 本発明の更なる態様は、上述のルーバーフィルムと、面光源装置と、液晶パネルと、を含む液晶表示装置に関する。
 本発明によれば、光利用効率を保ったまま更なる視認性に関する指向性の向上を可能にするルーバーフィルム、および、このルーバーフィルムを備えた面光源装置、液晶表示装置を提供することができる。
本発明の第一の態様の一実施形態の面光源装置の概略構成を示す断面模式図である。 本発明の第二の態様の一実施形態の面光源装置の概略構成を示す断面模式図である。 ルーバーフィルムの第1の例を模式的に示す断面図である。 ルーバーフィルムの第1の例を模式的に示す斜視図である。 ルーバーフィルムの第2の例を模式的に示す断面図である。 ルーバーフィルムの第3の例を模式的に示す断面図である。 ルーバーフィルムの第4の例を模式的に示す断面図である。 面光源装置の他の一例を模式的に示す断面図である。 液晶表示装置の一例を模式的に示す断面図である。 液晶表示装置の他の一例を模式的に示す断面図である。 液晶表示装置の他の一例を模式的に示す断面図である。 集光レンズおよび液晶セルを光軸方向から見た模式図である。 図12のB-B線断面図である。 図12のC-C線断面図である。 図12のD-D線断面図である。
 以下の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、以下において数値範囲を示す「~」とは両側に記載された数値を含む。例えば、εが数値α~数値βとは、εの範囲は数値αと数値βを含む範囲であり、数学記号で示せばα≦ε≦βである。
 「具体的な数値で表された角度」、および「平行」の角度は、特に記載がなければ、該当する技術分野で一般的に許容される誤差範囲を含む。また、「同一」とは、該当する技術分野で一般的に許容される誤差範囲を含む。
[ルーバーフィルム]
 図1は本発明の第一の態様の一実施形態のルーバーフィルム2Aを有する面光源装置1の概略構成を示す断面模式図である。
 本発明のルーバーフィルムは、面光源装置に用いられ、光源16の出射側に一定のピッチで複数配列されたレンズ11Aと、レンズ11Aよりも光源16側に配置される、厚みが前述のレンズ11Aのピッチと同じかそれ以上であり、屈折率1.5以上の第一の支持体12A、前述の第一の支持体12Bよりも光源16側に配置され、第1の開口部18bを有し、第1の開口部18bの開口率が30%~70%である光吸収層18からなるルーバーフィルム2Aに関する。例えば、光吸収層18の第1の開口部18bは前述の複数のレンズ11Aの光軸CL上にある。
 図1に示す面光源装置1Aは、上述のルーバーフィルム2Aと、ルーバーフィルム2Aの光吸収層18側に配置される拡散板14と、光源16と、反射板15とをこの順に有する。例えば、第1の開口部18bが各レンズ11Aに対して設けられており、1つのレンズ11Aに第1の開口部18bが設けられる構成である。
 以下は、本発明を何ら限定するものではないが、上述の第一の態様のルーバーフィルム2Aにより、光利用効率を保ったまま更なる視認性に関する指向性の向上を可能にする理由を、本発明者らは次のように考えている。
 光の利用効率の低下を防ぐには、指向性を向上するには光吸収層18の第1の開口部18bの開口率は30%以上が良く、開口率が30%未満では光の利用率が急速に低下する。また、開口率が70%を超えると光が集光しない。開口率が40%前後では、極角35°以上で光強度のピーク(サイドバンド)が高くなり、集光効果が不十分になる。この場合、レンズより屈折率の高い支持体を用いることにより、具体的には、第一の支持体12Aの屈折率を1.5以上とすることにより、光吸収層18の第1の開口部18bを通過する光の指向性が高まり、サイドバンドの発生を抑制できる。
 また、光吸収層18により、レンズもしくは光反射層13等で反射した光、または外部から入射する光が第一の支持体12内で反射を繰り返す光が吸収され、迷光の発生を抑制できる。これにより、サイドバンドの発生を抑制できる。
 また、第一の支持体12Aの厚みを前述のレンズ11Aのピッチと同じかそれ以上とし、合わせて第一の支持体12Aの屈折率を1.5以上とすると、光吸収層18の第1の開口部18bを通過する光の指向性が高まり、レンズ11Aの光軸CL上にある第1の開口部以外の隣接する開口部からの光が導波されなくなる。上述のことから結果として、ルーバーフィルム2Aは、サイドバンドを低減でき、光利用効率を保ったまま更なる視認性に関する指向性向上を実現できる。
 ただし、以上は本発明者らによる推察を含むものであり、本発明を何ら限定するものではない。
 図2は本発明の第二の態様の一実施形態のルーバーフィルム2Bを有する面光源装置1Bの概略構成を示す断面模式図である。
 本発明のルーバーフィルムは、面光源装置に用いられ、光源16の出射側に一定のピッチで複数配列された、屈折率1.65~1.9のレンズ11Bと、レンズ11Bよりも光源16側に配置される、厚みが前述のレンズ11Bのピッチより小さく、屈折率1.4~1.65の第一の支持体12B、前述の第一の支持体12Bよりも光源16側に配置され、第1の開口部18bを有し、第1の開口部18bの開口率が10%~70%である光吸収層18からなるルーバーフィルム2Bに関する。
 図2に示す面光源装置1Bは、上述のルーバーフィルム2Bと、ルーバーフィルム2Bの光反射層13側に配置される拡散板14と、光源16と、反射板15とをこの順に有する。例えば、第1の開口部18bが各レンズ11Bに対して設けられており、1つのレンズ11Bに第1の開口部18bが設けられる構成である。
 以下は、本発明を何ら限定するものではないが、上述の第二の態様のルーバーフィルム2Bにより、光利用効率を保ったまま更なる視認性に関する指向性の向上を可能にする理由を、本発明者らは次のように考えている。
 第一の支持体12Bの厚みがレンズ11Bのピッチよりも小さい場合には、レンズ11Bの光軸CL上にある開口部以外の隣接する開口部からの光が導波されにくくなり、サイドバンドを低減できるが、レンズ11Bの焦点位置が光吸収層18の第1の開口部18bより外側(レンズ11Bと反対側)へ大きくずれてしまい指向性が低下してしまう。一方で、第一の支持体12Bの屈折率を1.4~1.65とし、レンズ11Bの屈折率を1.65~1.9として第一の支持体12Bの屈折率よりもレンズ11Bの屈折率を高くすると、レンズの11Bの焦点位置を光吸収層18の第1の開口部18bへ近づけることができ、サイドバンドを低減でき、光利用効率を保ったまま更なる指向性向上を実現できる。また、第一の支持体12Bの屈折率を1.4~1.65とし、レンズ11Bの屈折率を1.65~1.9として第一の支持体12Bの屈折率よりもレンズ11Bの屈折率を高くすると、レンズ11Bの光軸CL上にある第1の開口部18b以外の隣接する開口部からの光が導波された場合でも、正面近傍へされやすくなり、サイドバンド低減につながる。
 また、光吸収層18により、レンズもしくは光反射層13(図5参照)等で反射した光、または外部から入射する光が第一の支持体12内で反射を繰り返す光が吸収され、迷光の発生を抑制できる。これにより、サイドバンドの発生を抑制できる。上述のことから結果として、ルーバーフィルム2Bは、サイドバンドを低減でき、光利用効率を保ったまま更なる視認性に関する指向性向上を実現できる。
 ただし、以上は本発明者らによる推察を含むものであり、本発明を何ら限定するものではない。
 以下、上述のルーバーフィルムについて、更に詳細に説明する。
 なお、以下の説明において、第一の態様のルーバーフィルム2Aと第二の態様のルーバーフィルム2Bを区別する必要が無い場合にはまとめてルーバーフィルム2と表す。同様に、面光源装置1Aと面光源装置1Bとを区別する必要が無い場合にはまとめて面光源装置1と表す。同様に、レンズ11Aとレンズ11Bとを区別する必要が無い場合にはまとめてレンズ11と表す。同様に、第一の支持体12Aと第一の支持体12Bとを区別する必要が無い場合にはまとめて第一の支持体12と表す。
 <ルーバーフィルムの構成>
 ルーバーフィルムの構成としては、面光源装置に用いられた場合、光源の出射側に複数配列されたレンズと、レンズよりも光源側に配置される第一の支持体、前述の第一の支持体よりも光源側に配置される前述の複数のレンズの光軸上に第1の開口部を有する光吸収層からなる。図3に示すように、光吸収層18よりも光源側に第二の支持体17を配置してもよい。
 ルーバーフィルムは、例えば、図4に示すように、レンズ11が半円柱状の凸シリンドリカルレンズであり、光吸収層18の第1の開口部18bがレンズを半円柱状の凸シリンドリカルレンズの延在する方向に延びる帯状の開口部である。1つの半円柱状の凸シリンドリカルレンズに対して、1つ帯状の開口部が設けられている。
 ルーバーフィルムの構成としては、上述のルーバーフィルム2Aおよびルーバーフィルム2Bにおいて、図5に示すように、第一の支持体12よりも光源(図示せず)側に配置され、第2の開口部13bを備える光反射層13を有する構成でもよい。
 光反射層13は、光吸収層18の第一の支持体12の反対側の裏面18cに設けられている。
 光反射層13は、反射率90%以上であり、かつ第2の開口部13bの開口率は光吸収層18と同じである。また、光吸収層18と光反射層13とは開口部のパターンが同じである。光吸収層18の第1の開口部18bと光反射層13の第2の開口部13bとが位置合せされた状態で光反射層13と光吸収層18とが配置されている。図5に示す構成でも、上述のように光反射層13よりも光源側に第二の支持体17を配置する構成としてもよい。
 図3に示すルーバーフィルム2では、図6に示すルーバーフィルム2のように、光吸収層18の第1の開口部18bがレンズ11の光軸CL上から外れている構成としてもよい。
 また、図5に示すルーバーフィルム2では、図7に示すルーバーフィルム2のように、光吸収層18の第1の開口部18bの中心および光反射層の13の第2の開口部13bの中心がレンズ11の光軸CLから外れている構成としてもよい。開口部の中心位置をレンズの光軸CLからずれた位置にすることにより、指向性の方向を調整できる。
 なお、レンズ11の光軸CL上から外れているとは、光吸収層18の第1の開口部18bの中心を光軸CLが通らないことをいう。光軸CLと第1の開口部18bの中心および第2の開口部13bとのずれ量が、レンズピッチに対して5%以上であれば、レンズ11の光軸CL上から外れているとする。
 上述の図6および図7に示すルーバーフィルム2は、いずれも全ての開口部の中心がレンズ11の光軸CL上から外れている構成であるが、これに限定されるものではない。例えば、開口部とレンズの光軸との関係に基づき、指向性の方向等に応じて、どの開口部をレンズの光軸から外す等を予め決定しておいてもよい。
 (レンズ)
 上述のルーバーフィルムにおいて、レンズは、半円柱状の凸シリンドリカルレンズでもよいし、半球状の凸レンズでもよい。あるいは、レンズは、非球面レンズであってもよい。
 複数配列されたレンズのピッチおよび曲率半径の大きさはランダムであっても良い。その場合、一定のピッチとは、複数配列されたレンズのピッチの平均値である。
 第一の態様においては、レンズのピッチは、第一の支持体の厚みと同じかそれ以下のサイズを持つ。第一の支持体として高屈折率素材を用いた場合は、脆性を悪化させない観点から、厚みが30μm以下と薄くなるため、レンズのピッチは第一の支持体厚みと合わせて30μm以下とするのが好ましい。
 レンズの屈折率は、指向性の観点から第一の支持体より低屈折率が良く、1.9以下が良い。より好ましくは1.7以下が良い。
 第二の態様においては、レンズのピッチは、第一の支持体の厚みよりも大きいサイズを持つ。第一の支持体として高屈折率素材を用いた場合は、脆性を悪化させない観点から、厚みが30μm以下と薄くなるため、レンズのピッチは第一の支持体厚みと合わせて30μm以下とするのが好ましい。
 レンズの屈折率は、指向性の観点から1.65~1.9である。好ましくは1.65~1.75である。
 (第一の支持体)
 第一の態様においては、第一の支持体の厚みは指向性の観点からレンズのピッチと同じかそれ以上の大きさである。
 一方、第二の態様においては、第一の支持体の厚みはレンズのピッチよりも小さい。
 第一の支持体として高屈折率素材を用いた場合は、脆性を悪化させない観点から、厚みは30μm以下が好ましい。より好ましくは10μm以下が良く、より好ましくは1μm前後が良い。
 第一の態様においては、第一の支持体の屈折率は、1.5以上であり、好ましくは1.60以上であり、1.65以上であることがより好ましく、1.80以上であることが更に好ましい。また、第一の支持体層の脆性を悪化させない観点からは、高屈折率層の平均屈折率は2.50以下であることが好ましく、2.20以下であることがより好ましく、2.10未満であることが更に好ましく、2.05以下であることがいっそう好ましい。
 第二の態様においては、第一の支持体の屈折率は、指向性の観点から1.4~1.65である。好ましくは1.45~1.65である。
 屈折率は、公知の屈折率測定装置によって測定することができる。屈折率測定装置の一例としては、アタゴ社製多波長アッベ屈折計DR-M2を挙げることができる。また、本発明における屈折率とは、波長550nmの光に対する屈折率をいうものとする。
 第一の支持体の屈折率は、層を形成するために用いる成分の種類により調整することができる。層を形成するために用いる成分としては、重合性化合物および重合開始剤を含む重合性組成物を用いて形成することができる。または、樹脂を主成分とする樹脂層であってもよい。ここで主成分とするとは、層を構成する成分の中で最も多くを樹脂が占めることをいう。含まれる樹脂は一種でもよく二種以上であってもよい。樹脂層における樹脂量は、樹脂層の総質量に対して、例えば、50質量%以上であり、好ましくは70質量%以上である、また、樹脂層における樹脂量は、樹脂層の総質量に対して、例えば、99質量%以下、または95質量%以下であるが、100質量%であってもよい。樹脂層の具体例としては、熱可塑性樹脂層を挙げることができる。熱可塑性樹脂としては、例えば、ポリメチルメタクリレート樹脂(PMMA)、ポリカーボネート樹脂、ポリスチレン樹脂、ポリメタクリルスチレン(MS)樹脂、アクリロニトリルスチレン(AS)樹脂、ポリプロピレン樹脂、ポリエチレン樹脂、ポリエチレンテレフタレート樹脂、ポリ塩化ビニル樹脂(PVC)、セルロースアシレート、セルローストリアセテート、セルロースアセテートプロピオネート、セルロースダイアセテート、熱可塑性エラストマー、またはこれらの共重合体、シクロオレフィンポリマー等を挙げることができる。このような樹脂層は、層の形成の容易性の観点からは、重合性組成物を用いて、この組成物に重合処理(硬化処理)を施し形成された硬化層であることが好ましい。重合性組成物としては、光照射により硬化する光重合性組成物であっても、加熱により硬化する熱重合性組成物であってもよい。生産性向上の観点からは、短時間で硬化処理を終了可能である点から、光重合性組成物が好ましい。
 第一の支持体の屈折率調整のために粒子が含まれていてもよい。粒子としては、特に限定されるものではなく、無機粒子であっても有機粒子であってもよい。
 上述の粒子の具体例としては、ZrO2、TiO2、Al23、In23、ZnO、SnO2、Sb23等の無機粒子、ポリメチルメタクリレート粒子、架橋ポリメチルメタクリレート粒子、アクリル-スチレン共重合体粒子、メラミン粒子、ポリカーボネート粒子、ポリスチレン粒子、架橋ポリスチレン粒子、ポリ塩化ビニル粒子、ベンゾグアナミン-メラミンホルムアルデヒド粒子等の有機粒子等が挙げられる。また、上述の粒子としては、粒子表面の活性抑制および層内での分散性向上等のために表面処理され、表面に被覆層が形成された粒子、いわゆるコア-シェル粒子を用いてもよい。そのような粒子については、例えば、特開2013-251067号公報段落0022~0025を参照できる。また、上述の粒子は、無機粒子の表面に有機被膜を有する粒子のような有機無機複合粒子であってもよい。
 上述の粒子は、一種用いてもよく、二種以上を混合して用いてもよい。粒子が小さいほど、散乱性を抑えられる観点で好ましい。よって、粒子サイズは、一次粒子径として、100nm以下であることが好ましく、30nm以下であることがより好ましく、25nm以下であることが更に好ましい。また、粒子サイズは、一次粒子径として、1nm以上であることが好ましい。上述の粒子の一次粒子径とは、走査型電子顕微鏡(SEM)で50個の粒子について粒径を測定し、数平均値として算出したものである。上述の粒子を含む層における粒子含有量は、好ましくは上述の範囲の平均屈折率が得られるように、適宜設定すればよい。
 一般に粒子サイズが小さくなるほど樹脂への分散性が悪くなるが、例えば、富士フイルム 研究報告No.58 2013年研究報告書「熱可塑性ナノコンポジット光学材料の開発」に記載の片末端吸着性樹脂による微粒子グラフト化等により、透明性を保ったまま分散することができる。
 上述の粒子の屈折率(波長550nmの光に対する屈折率)は、屈折率調整の観点から、2.00以上3.00以下であることが好ましく、2.05以上2.50以下であることがより好ましい。ここで、粒子の屈折率とは、以下の方法により測定される値とする。屈折率既知の樹脂材料に粒子をドープし、この粒子が分散された樹脂材料を作製する。作製した樹脂材料を、シリコン基板、または石英基板上に塗布し樹脂膜を形成する。形成した樹脂膜の屈折率をエリプソメーターで測定し、樹脂膜を構成する樹脂材料と粒子の体積分率から、粒子の屈折率を求める。後述の実施例で用いた酸化チタン粒子の屈折率は、上述の方法により求めた値である。
 (光反射層)
 光反射層は、例えば、白インキ、金属箔、金属蒸着または銀ミラーインクからなる。光反射層は、光吸収層と同様に、各レンズに対して第2の開口部を有し、例えば、複数の各レンズの光軸上に、それぞれ第2の開口部を有する。光反射層と光吸収層とは開口部のパターンが同じである。上述のように光吸収層の第1の開口部と光反射層の第2の開口部とが位置合せされた状態で光反射層と光吸収層とが配置されている。
 第2の開口部の開口率は、小さすぎると光利用効率が低下してしまう。また、大きすぎると指向性が悪くなる。
 この観点から、第一の態様においては、第2の開口部の開口率は30%~70%が好ましい。より好ましくは30%~60%が好ましい。更に好ましくは、35%~55%が好ましい。
 また、第二の態様においては、第2の開口部の開口率は10%~70%が好ましく、15%~65%がより好ましい。
 反射率は、光利用率の観点から90%以上が好ましく、91%以上がより好ましい。更に好ましくは、92%以上がよい。なお、光利用率は、ルーバーフィルムを配置していない状態の最大輝度T0とルーバーフィルムを配置した場合の最大輝度Tの比T/T0で規定されるものである。
 光反射層の反射率は、以下のように得られるものである。分光光度計(日本分光社製V-550)にて、光反射層に使用する素材をポリエチレンテレフタレート(PET)基材上に形成し、形成面から光を入射し波長380nm~780nmの反射率を測定し、その平均値を求める。この平均値が光反射層の反射率である。
 光反射層の第2の開口部は、直下型バックライトに用いられるLED光源の配置に合わせたパターンにしても良い。すなわち、LED光源の直上には第2の開口部を設けず、LED光源から距離が離れるにつれて、第2の開口部の開口率が大きくなるようにしても良い。この場合、レンズの径と第2の開口部のレンズの径に対する開口率が前述の好ましい範囲に入るよう、レンズの径を面内で変化させる。これにより、LED光源からの光線に合わせて開口を設けることができ、光をより効率よく利用しながら、平行光化することができる。また、この際、LED光源の背面に鏡面の反射層を設けたほうが、拡散性の反射層を設けるより、光線を制御しやすく、光利用率の観点でよい。
 また、光反射層は、コレステリック液晶層を有するものであってもよい。
 コレステリック液晶層は、コレステリック液晶相を含み、特定の波長域の一方の旋回方向(右円偏光または左円偏光)の円偏光に対して波長選択反射性を有するものである。
 従って、光反射層は、後述する液晶表示装置のカラーフィルターの構成に応じて、例えば、赤色の波長域(620nm~750nm)の右円偏光を反射するコレステリック液晶層と、赤色の波長域の左円偏光を反射するコレステリック液晶層と、緑色の波長域(495nm~570nm)の右円偏光を反射するコレステリック液晶層と、緑色の波長域の左円偏光を反射するコレステリック液晶層と、青色(420nm~490nm)の波長域の右円偏光を反射するコレステリック液晶層と、青色の波長域の左円偏光を反射するコレステリック液晶層と、を有する構成とすることで、第2の開口部以外の部分において、赤色光、緑色光および青色光を反射することができる。
 コレステリック液晶相の選択反射波長λは、コレステリック液晶相における螺旋構造のピッチP(=螺旋の周期)に依存し、コレステリック液晶相の平均屈折率nとλ=n×Pの関係に従う。そのため、この螺旋構造のピッチを調節することによって、選択反射波長を調節することができる。コレステリック液晶相のピッチは、重合性液晶化合物と共に用いるキラル剤の種類、またはその添加濃度に依存するため、これらを調節することによって所望のピッチを得ることができる。
 また、選択反射を示す選択反射帯域(円偏光反射帯域)の半値幅Δλ(nm)は、コレステリック液晶相の屈折率異方性Δnと螺旋のピッチPとに依存し、Δλ=Δn×Pの関係に従う。そのため、選択反射帯域の幅の制御は、Δnを調節して行うことができる。Δnは、コレステリック液晶層を形成する液晶化合物の種類およびその混合比率、ならびに、配向時の温度により調節できる。なお、コレステリック液晶相における反射率はΔnに依存することも知られており、同程度の反射率を得る場合に、Δnが大きいほど、螺旋ピッチの数を少なく、すなわち膜厚を薄くすることができる。
 螺旋のセンスおよびピッチの測定法については「液晶化学実験入門」日本液晶学会編 シグマ出版2007年出版、46頁、および「液晶便覧」液晶便覧編集委員会 丸善 196頁に記載の方法を用いることができる。
 コレステリック液晶相の反射光は円偏光である。反射光が右円偏光であるか左円偏光であるかは、コレステリック液晶相は螺旋の捩れ方向による。コレステリック液晶相による円偏光の選択反射は、コレステリック液晶相の螺旋の捩れ方向が右の場合は右円偏光を反射し、螺旋の捩れ方向が左の場合は左円偏光を反射する。
 なお、コレステリック液晶相の旋回の方向は、反射領域を形成する液晶化合物の種類または添加されるキラル剤の種類によって調節できる。
 コレステリック液晶層における選択反射波長は、可視光(380~780nm程度)および近赤外光(780~2000nm程度)のいずれの範囲にも設定することが可能であり、その設定方法は上述した通りである。
 コレステリック液晶層の形成に用いる材料としては、液晶化合物を含む液晶組成物等が挙げられる。液晶化合物は重合性液晶化合物であることが好ましい。
 重合性液晶化合物を含む液晶組成物はさらに界面活性剤、キラル剤、重合開始剤等を含んでいてもよい。
 液晶化合物、界面活性剤、キラル剤および重合開始剤としては、コレステリック液晶層に用いられる公知の液晶化合物、界面活性剤、キラル剤および重合開始剤を用いることができる。
 ここで、光反射層がコレステリック液晶層を有するものである場合には、第2の開口部は物理的に形成されていてもよいし、第2の開口部となる領域にはコレステリック液晶相を形成せずに反射性を有さないものとすることで、第2の開口部として光透過性を有する領域を形成してもよい。
 また、光反射層を作製する際、フォトレジスト法を使用しても良い。レンズ反対面にレジスト材料を塗布し、作製したい反射層のパターンに応じたマスクを介して、光を照射し、現像する。その後、例えば、アルミニウムまたは銀の蒸着を行い、続いて、レジスト材料を洗浄、除去することで、所望のパターンの反射層が作製できる。フォトマスクを使わない場合は、代わりにレンズ側から平行光を照射することもできる。レンズ側から平行光を照射する方法のほうが、レンズと開口部の位置合わせ精度を高められる点で、フォトマスクを使用する場合より良い。
 この際、露光に用いる光としては、g線、h線、i線、j線等の紫外線があるが、特にi線での露光が好ましい。
 基板上に付与(好ましくは塗布)されたフォトレジスト材料による膜の乾燥(プリベーク)は、ホットプレート、オーブン等を用いて50~140℃の温度範囲で10~300秒の条件にて行なうことができる。
 現像では、露光後の未硬化部を現像液に溶出させ、硬化部のみを残存させる。現像温度としては、通常20~30℃であり、現像時間としては20~600秒である。現像液としては、未硬化部における感光性樹脂組成物の膜を溶解する一方、硬化部を溶解しないものであれば、いずれのものも用いることができる。具体的には、種々の有機溶剤の組合せまたはアルカリ性の水溶液を用いることができる。
 前述の有機溶剤としては、感光性樹脂組成物を調製する際に使用できる既述の溶剤として列挙したものが挙げられる。
 前述のアルカリ性の水溶液としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム、硅酸ナトリウム、メタ硅酸ナトリウム、アンモニア水、エチルアミン、ジエチルアミン、ジメチルエタノールアミン、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド(TMAH)、コリン、ピロール、ピペリジン、1,8-ジアザビシクロ-[5,4,0]-7-ウンデセン等のアルカリ性化合物を、濃度が0.001~10質量%、好ましくは0.01~1質量%となるように溶解したアルカリ性水溶液が挙げられる。
 なお、アルカリ性水溶液を現像液として使用した場合には、一般に現像後に水で洗浄(リンス)が行なわれる。
 フォトレジスト材料の構成としては、(A)光重合開始剤、(B)溶剤、(C)重合性モノマーおよび(D)アルカリ可溶性樹脂を含み、(A)光重合開始剤として、1種以上のO-アシルオキシムエステル化合物と、1種以上のα-アミノアセトフェノン化合物を含み、同時に2種以上の独立したパターンの形成が可能である。(D)アルカリ可溶性樹脂のうち少なくとも1種が、酸価150~400mgKOH/gである。さらに、(E)光増感剤または助開始剤を含む。
 (A)光重合開始剤と(E)光増感剤または助開始剤との添加量の総和が、感光性樹脂組成物の全固形分中の0.1~15.0重量%である。(C)重合性モノマーが酸基を有し、かつ、酸価が20~150mgKOH/gである。O-アシルオキシムエステル化合物が、芳香環を有している。O-アシルオキシムエステル化合物が、芳香環を含む縮合環を有する。O-アシルオキシムエステル化合物が、ベンゼン環とヘテロ環を含む縮合環を有している。O-アシルオキシムエステル化合物と、α-アミノアセトフェノン化合物とを、10:90~80:20(重量比)で含んでいる。(D)アルカリ可溶性樹脂が、アクリル系樹脂である。
 本発明の感光性樹脂組成物は、(A)光重合開始剤、(B)溶剤、(C)重合性モノマーおよび(D)アルカリ可溶性樹脂を含み、(A)光重合開始剤として、1種以上のO-アシルオキシムエステル化合物と、1種以上のα-アミノアセトフェノン化合物を含み、同時に2種以上の独立したパターンの形成が可能であることを特徴とする。O-アシルオキシムエステル化合物とα-アミノアセトフェノン化合物を併用することにより、2種類以上の独立したパターンが形成可能になる。
 ここで、「同時に2種以上の独立したパターンの形成が可能な」とは、一度の露光によって、2種類以上の高さの異なるパターンを形成することをいう。一度の露光とは、同時期に行う露光を意味する。同時期に行う露光として、その露光方法は限定されないが、たとえば、透過率の異なるハーフトーンマスクを用いる方法、同時に2種類以上の露光量を照射して露光する方法等が挙げられる。
 2種類以上の高さの異なるパターンは、例えば、2種類のパターンがある場合、高さの高い複数のパターンからなるパターン群(1)と、高さの低い複数のパターンからなるパターン群(2)が存在していることをいう。そして、パターン群(1)とパターン群(2)の間の高さの差は、0.4~1.1μmであることが好ましい。パターン群の高さは、それぞれの平均値として定めることができる。また、それぞれの独立したパターン群の高さは一定であることが好ましく、例えば、標準偏差3σで±0.1μmとすることが好ましい。
 以下、本発明の各成分について詳細に説明する。
 (A)光重合開始剤
 本発明では、(A)光重合開始剤として、O-アシルオキシムエステル化合物とα-アミノアセトフェノン化合物を用いる。
 O-アシルオキシムエステル化合物
 本発明で用いるO-アシルオキシムエステル化合物は、-C=N-O-C(=O)構造を有するものであれば、特に定めるものではないが、芳香環を有するものが好ましく、芳香環を含む縮合環を有するものがより好ましく、ベンゼン環とヘテロ環を含む縮合環を有することがさらに好ましい。また、本発明で用いるO-アシルオキシムエステル化合物は、オキシムエステル基が、前述の縮合環に直接に結合した構造であることが好ましい。ここで、芳香環を含む縮合環とは、少なくとも1つの環が芳香環であればよい。
 O-アシルオキシムエステル化合物は、特開2000-80068号公報、特開2001-233842号公報等に記載のO-アシルオキシムエステル化合物等の公知である光重合開始剤の中から適宜選択できる。具体的には、1-(4-フェニルスルファニル-フェニル)-ブタン-1,2-ジオン2-オキシム-O-ベンゾアート、1-(4-フェニルスルファニル-フェニル)-オクタン-1,2-ジオン2-オキシム-O-ベンゾアート、1-(4-フェニルスルファニル-フェニル)-オクタン-1-オンオキシム-O-アセタート、1-(4-フェニルスルファニル-フェニル)-ブタン-1-オンオキシム-O-アセタート等が挙げられる。O-アシルオキシムエステル化合物は、一種のみ用いてもよいし、二種以上の化合物を併用してもよい。
 また、オキシムエステル系光重合材として、BASF社製のIRGACURE OXE01またはOXE02を使用することもできる。
 α-アミノアセトフェノン化合物
 α-アミノアセトフェノン化合物は、1種を単独で使用してもよいし、2種以上を併用することもできる。
 さらに、α-アミノアセトフェノン化合物として、前述の一般式(4)で表される化合物の酸付加物塩を使用することもできる。
 また、市販のα-アミノアセトフェノン化合物として、チバ・スペシャルティ・ケミカルズ社製からイルガキュア907(IRGACURE 907)、イルガキュア369(IRGACURE 369)、イルガキュア379(IRGACURE 379)の商品名で入手可能な重合開始剤が例示できる。
 α-アミノアセトフェノン化合物として、具体的には、2-ジメチルアミノ-2-メチル-1-フェニルプロパン-1-オン、2-ジエチルアミノ-2-メチル-1-フェニルプロパン-1-オン、2-メチル-2-モルホリノ-1-フェニルプロパン-1-オン、2-ジメチルアミノ-2-メチル-1-(4-メチルフェニル)プロパン-1-オン、2-ジメチルアミノ-1-(4-エチルフェニル)-2-メチルプロパン-1-オン、2-ジメチルアミノ-1-(4-イソプロピルフェニル)-2-メチルプロパン-1-オン、1-(4-ブチルフェニル)-2-ジメチルアミノ-2-メチルプロパン-1-オン、2-ジメチルアミノ-1-(4-メトキシフェニル)-2-メチルプロパン-1-オン、2-ジメチルアミノ-2-メチル-1-(4-メチルチオフェニル)プロパン-1-オン、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン(IRGACURE 907)、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン(IRGACURE 369)、2-ベンジル-2-ジメチルアミノ-1-(4-ジメチルアミノフェニル)-ブタン-1-オン、2-ジメチルアミノ-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルフォルニル)フェニル]-1-ブタノン(IRGACURE 379)等が挙げられる。
 α-アミノアセトフェノン化合物は、本発明の感光性樹脂組成物に含有される溶剤を除いた総固形分に対し、0.1~10質量%の割合で含まれることが好ましく、0.3~8質量%の割合で含まれることがより好ましく、0.5~5質量%の割合で含まれることがさらに好ましい。
 その他の光重合開始剤
 本発明においては、O-アシルオキシムエステル化合物およびα-アミノアセトフェノン化合物の併用における効果を阻害しない範囲で、一般的に公知な他の光重合開始剤をさらに併用することもできる。併用できる光重合開始剤は特に限定されないが、全光開始剤重量に対する、O-アシルオキシムエステル化合物およびα-アミノアセトフェノン化合物の重量が、80%以上であることがハーフトーン適性および感度の面から好ましく、90%以上であることがより好ましい。他の開始剤を併用する場合においても、O-アシルオキシムエステル化合物およびα-アミノアセトフェノン化合物の最適な添加重量比は同一である。
 (B)溶剤
 本発明に使用できる(B)溶剤としては、本発明の趣旨を逸脱しない限り特に定めるものではないが、エステル類、エーテル類、ケトン類、芳香族炭化水素類等に分類される溶剤が挙げられる。
 (B)溶剤として用いられるエステル類の例としては、例えば、酢酸エチル、酢酸-n-ブチル、酢酸イソブチル、ギ酸アミル、酢酸イソアミル、酢酸イソブチル、プロピオン酸ブチル、酪酸イソプロピル、酪酸エチル、酪酸ブチル、アルキルエステル類、乳酸メチル、乳酸エチル、オキシ酢酸メチル、オキシ酢酸エチル、オキシ酢酸ブチル、メトキシ酢酸メチル、メトキシ酢酸エチル、メトキシ酢酸ブチル、エトキシ酢酸メチル、エトキシ酢酸エチル等の他に、3-オキシプロピオン酸メチルおよび3-オキシプロピオン酸エチル等の3-オキシプロピオン酸アルキルエステル類;2-オキシプロピオン酸メチル、2-オキシプロピオン酸エチル、2-オキシプロピオン酸プロピル、2-オキシ-2-メチルプロピオン酸メチル、2-オキシ-2-メチルプロピオン酸エチル等の2-オキシプロピオン酸アルキルエステル類;3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、2-メトキシプロピオン酸メチル、2-メトキシプロピオン酸エチル、2-メトキシプロピオン酸プロピル、2-エトキシプロピオン酸メチル、2-エトキシプロピオン酸エチル、2-メトキシ-2-メチルプロピオン酸メチル、2-エトキシ-2-メチルプロピオン酸エチル等のアルコキシプロピオン酸アルキルエステル;ピルビン酸メチル、ピルビン酸エチル、ピルビン酸プロピル、アセト酢酸メチル、アセト酢酸エチル、2-オキソブタン酸メチル、2-オキソブタン酸エチル等が挙げられる。
 エーテル類の例としては、例えば、ジエチレングリコールジメチルエーテル、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート等が挙げられる。
 ケトン類の例としては、例えば、メチルエチルケトン、シクロヘキサノン、2-ヘプタノン、3-ヘプタノン等が挙げられる。
 芳香族炭化水素類の例としては、例えば、トルエン、キシレン、等が挙げられる。
 これらの溶剤うち、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、エチルセロソルブアセテート、乳酸エチル、ジエチレングリコールジメチルエーテル、酢酸ブチル、3-メトキシプロピオン酸メチル、2-ヘプタノン、シクロヘキサノン、エチルカルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールメチルエーテルアセテート等が好適である。
 溶剤は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 本発明の感光性樹脂組成物中の(B)溶剤の含有量は、感光性樹脂組成物の塗布性等を考慮して適宜決められるが、一般的には、感光性樹脂組成物中の(B)溶剤の含有量は45~85質量%である。
 (C)重合性モノマー
 本発明の感光性樹脂組成物においては、硬化性成分として、(C)重合性モノマーを1種以上含有する。重合性モノマーとしては、複数の重合性モノマーを併用してもよく、酸基を含有する重合性モノマーと酸基を有しない重合性モノマーをそれぞれ1種以上を併用してもよい。
 カルボキシル基を含有する重合性モノマーとしては、アクリル酸、メタクリル酸、フタル酸、フマル酸、マレイン酸、イタコン酸、クロトン酸、シナモン酸等の不飽和脂肪酸の他に、カルボキシル基変性した多官能アクリレート化合物が挙げられる。カルボキシル基変性した多官能アクリレート化合物としては、コハク酸変性ペンタエリスリトールトリアクリレート、コハク酸変性トリメチロールプロパントリアクリレート、コハク酸変性ペンタエリスリトールテトラアクリレート、コハク酸変性ジペンタエリスリトールペンタアクリレート、コハク酸変性ジペンタエリスリトールヘキサアクリレート、アジピン酸変性ペンタエリスリトールトリアクリレート、アジピン酸変性トリメチロールプロパントリアクリレート、アジピン酸変性ペンタエリスリトールテトラアクリレート、アジピン酸変性ジペンタエリスリトールペンタアクリレート、アジピン酸変性ジペンタエリスリトールテトラアクリレート、等が挙げられ、アロニックスM-510、アロニックスM-520、アロニックスTO-2349、アロニックスTO-2359(以上、東亞合成(株)製)等の市販の化合物を好適に用いることができる。
 フェノール性水酸基を含有する重合性モノマーとしては、p-ヒドロキシスチレン、3,4-ジヒドロキシスチレン、3,5-ジヒドロキシスチレン、2,4,6-トリヒドロキシスチレン、(p-ヒドロキシ)ベンジルアクリレート、サリチル酸変性ペンタエリスリトールトリアクリレート、サリチル酸変性トリメチロールプロパントリアクリレート、サリチル酸変性ペンタエリスリトールテトラアクリレート、サリチル酸変性ジペンタエリスリトールペンタアクリレート、サリチル酸変性ジペンタエリスリトールヘキサアクリレート、等が挙げられ、好ましいものはサリチル酸変性ジペンタエリスリトールヘキサアクリレート、サリチル酸変性ジペンタエリスリトールペンタアクリレートである。
 スルホン酸基を含有する重合性モノマーとしては、ビニルスルホン酸、アリルスルホン酸、スチレンスルホン酸、ブチルスルホン酸変性アクリルアミド、等がある。リン酸基を含有する重合性モノマーとしては、ビニルリン酸、スチレンリン酸、ブチルリン酸変性アクリルアミド、等が挙げられる。これらのうちで好ましいものはブチルスルホン酸変性アクリルアミドであり、市販の化合物としてはATBS(東亞合成(株)製)がある。
 これらの酸基を有する重合性モノマーの中で、製造適性およびコストの観点から、カルボキシル基を有する重合性モノマー、フェノール性水酸基を有する重合性モノマーが好ましく、カルボキシル基を有する重合性モノマーがより好ましい。
 (酸基を有しない重合性モノマー)
 本発明において酸基を有する重合性モノマーと併用されうる酸基を有しない重合性モノマーは、重合可能であれば特に制限はなく、エチレン性二重結合を少なくとも1つ有する低分子化合物、二量体、三量体、オリゴマー等の付加重合可能な化合物を好適に使用することができる。
 エチレン性化合物としては、例えば、不飽和カルボン酸とモノヒドロキシ化合物とのエステル、脂肪族ポリヒドロキシ化合物と不飽和カルボン酸のエステル、芳香族ポリヒドロキシ化合物と不飽和カルボン酸とのエステル、不飽和カルボン酸と多価カルボン酸および前述の脂肪酸ポリヒドロキシ化合物、芳香族ポリヒドロキシ化合物等の多価ヒドロキシ化合物とのエステル化反応により得られるエステル、ポリイソシアナート化合物と(メタ)アクリロイル含有ヒドロキシ化合物とを反応させたウレタン骨格を有するエチレン性化合物等が挙げられる。
 具体的な重合性モノマーは、以下に示すように、1分子中の重合性基の数で分類して挙げることができるが、これに限定されるものではない。
 (1)1分子中に1個の重合性基を有する化合物
 1分子中に1個の重合性基を有する化合物の例としては、例えば、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、4-n-ブチルシクロヘキシル(メタ)アクリレート、ボルニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-エチヘキシルジグリコール(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、2-クロロエチル(メタ)アクリレート、シアノエチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、2-(2-メトキシエトキシ)エチル(メタ)アクリレート、2,2,2-テトラフルオロエチル(メタ)アクリレート、1H,1H,2H,2Hパーフルオロデシル(メタ)アクリレート、フェニル(メタ)アクリレート、2,4,5-テトラメチルフェニル(メタ)アクリレート、4-クロロフェニル(メタ)アクリレート、フェノキシメチル(メタ)アクリレート、グリシジル(メタ)アクリレート、グリシジロキシブチル(メタ)アクリレート、グリシジロキシエチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、ポリエチレンオキシドモノメチルエーテル(メタ)アクリレート、オリゴエチレンオキシドモノメチルエーテル(メタ)アクリレート、ポリエチレンオキシド(メタ)アクリレート、オリゴエチレンオキシド(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、EO変性フェノール(メタ)アクリレート、EO変性クレゾール(メタ)アクリレート、EO変性ノニルフェノール(メタ)アクリレート、PO変性ノニルフェノール(メタ)アクリレート、EO変性-2-エチルヘキシル(メタ)アクリレート等が挙げられる。
 (2)1分子中に2個の重合性基を有する化合物
 1分子中に2個の重合性基を有する化合物の例としては、重合性基として同一分子内に2個の(メタ)アクリロイル基を有する化合物が挙げられ、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、2-ヒドロキシ-1,3-ジアクリロキシプロパン、2,2-ビス[4-(アクリロキシエトキシ)フェニル]プロパン、2,2-ビス[4-(アクリロキシジエトキシ)フェニル]プロパン、ビスフェノールAのビス(アクリロイロキシエチル)エーテル、ビスフェノールA型エポキシ樹脂の(メタ)アクリル酸変性物、3-メチルペンタンジオールジ(メタ)アクリレート、2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート、ジメチロール-トリシクロデカンジ(メタ)アクリレート等が挙げられ、好ましくはジメチロール-トリシクロデカンジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート、ビスフェノールA型エポキシ樹脂の(メタ)アクリル酸変性物等が挙げられる。
 (3)1分子中に3個の重合性基を有する化合物
 一分子中に三個の重合性基を有する化合物の例としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、トリメチロールプロパンのアルキレンオキサイド変性トリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ((メタ)アクリロイルオキシプロピル)エーテル、イソシアヌル酸アルキレンオキサイド変性トリ(メタ)アクリレート、プロピオン酸ジペンタエリスリトールトリ(メタ)アクリレート、トリ((メタ)アクリロイルオキシエチル)イソシアヌレート、ヒドロキシピバルアルデヒド変性ジメチロールプロパントリ(メタ)アクリレート、ソルビトールトリ(メタ)アクリレート、プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、エトキシ化グリセリントリアクリレート等が挙げられる。
 (4)1分子中に4個以上の重合性基を有する化合物
 1分子中に4個以上の重合性基を有する化合物としては、例えば、ペンタエリスリトールテトラ(メタ)アクリレート、ソルビトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、プロピオン酸ジペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ソルビトールペンタ(メタ)アクリレート、ソルビトールヘキサ(メタ)アクリレート、フォスファゼンのアルキレンオキサイド変性ヘキサ(メタ)アクリレート、カプトラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、共栄社化学(株)製のUA-306H、UA-306T、UA-306I等のウレタンアクリレートが挙げられる。
 これらの中でも、溶剤耐性およびITO(Indium Tin Oxide)スパッタ適性を好適に保つという観点からは、同一分子内に2個以上の(メタ)アクリロイル基を有する(メタ)アクリレートモノマーが好ましく、3個以上の(メタ)アクリロイル基を有する(メタ)アクリレートモノマーがより好ましい。
 特に、4個以上の(メタ)アクリロイル基を有する(メタ)アクリレートモノマーは有利であり、例えば、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレートが、溶剤耐性およびITOスパッタ適性の観点で好ましく、これらの混合物(質量換算の混合比率は、ジペンタエリスリトールペンタアクリレート:ジペンタエリスリトールヘキサアクリレート=2~4:8~6)の混合物が好適に使用される。
 酸基を有する重合性モノマーと酸基を有しない重合性モノマーとを併用する場合、酸基を有する重合性モノマーと酸基を有しない重合性モノマーとの合計を100質量部としたときの好ましい添加比は、先に示した好ましい酸価の範囲内であれば特に限定されない。
 本発明の感光性樹脂組成物中、重合性モノマーの好ましい含有量は、感光性樹脂組成物の溶剤を除いた総固形分に対し、5~80質量%が好ましく、より好ましくは10~70質量%、さらに好ましくは20~60質量%の範囲である。
 (D)アルカリ可溶性樹脂
 本発明に適用しうる(D)アルカリ可溶性樹脂としては、溶剤に可溶な高分子化合物であれば、いずれでも使用できる。アルカリ可溶性樹脂は、それぞれ、単一化合物で用いても複数の化合物を併用してもよい。好ましいアルカリ可溶性樹脂としては、フォトリソ法によるアルカリ現像性を考えると酸基を有する樹脂(以下、適宜「アルカリ可溶性樹脂」と称する。)が好ましい。
 アルカリ可溶性樹脂としては、線状有機高分子重合体であって、その中に、少なくとも1つのアルカリ可溶性基(例えば、カルボキシル基、リン酸基、スルホン酸基等)を有するアルカリ可溶性高分子が好ましく、さらに好ましくは、有機溶剤に可溶で弱アルカリ水溶液により現像可能なものである。
 アルカリ可溶性樹脂の製造には、例えば、公知のラジカル重合法による方法を適用することができる。
 ラジカル重合法でアルカリ可溶性樹脂を製造する際の温度、圧力、ラジカル開始剤の種類およびその量、溶媒の種類等々の重合条件は、当業者において容易に設定可能であり、実験的に条件を定めるようにすることもできる。
 アルカリ可溶性樹脂として適用される線状有機高分子重合体としては、側鎖にカルボキシル基を有するポリマーが好ましい。
 例えば、特開昭59-44615号、特公昭54-34327号、特公昭58-12577号、特公昭54-25957号、特開昭59-53836号、特開昭59-71048号の各公報に記載されているような、メタクリル酸共重合体、アクリル酸共重合体、イタコン酸共重合体、クロトン酸共重合体、マレイン酸共重合体、部分エステル化マレイン酸共重合体等、並びに側鎖にカルボン酸を有する酸性セルロース誘導体、水酸基を有するポリマーに酸無水物を付加させたもの等が挙げられ、さらに側鎖に(メタ)アクリロイル基を有する高分子重合体も好ましいものとして挙げられる。
 これらの中では、特に、ベンジル(メタ)アクリレート/(メタ)アクリル酸共重合体またはベンジル(メタ)アクリレート/(メタ)アクリル酸/他のモノマーからなる多元共重合体が好適である。 このほか、メタクリル酸2-ヒドロキシエチルを共重合したもの等も有用なものとして挙げられる。
 前述のポリマーは任意の量で混合して用いることができる。
 上述の以外に、特開平7-140654号公報に記載の、2-ヒドロキシプロピル(メタ)アクリレート/ポリスチレンマクロモノマー/ベンジルメタクリレート/メタクリル酸共重合体、2-ヒドロキシ-3-フェノキシプロピルアクリレート/ポリメチルメタクリレートマクロモノマー/ベンジルメタクリレート/メタクリル酸共重合体、2-ヒドロキシエチルメタクリレート/ポリスチレンマクロモノマー/メチルメタクリレート/メタクリル酸共重合体、2-ヒドロキシエチルメタクリレート/ポリスチレンマクロモノマー/ベンジルメタクリレート/メタクリル酸共重合体等が挙げられる。
 その他のアルカリ可溶性樹脂としては、特開平7-207211号公報、特開平8-259876号公報、特開平10-300922号公報、特開平11-140144号公報、特開平11-174224号公報、特開2000-56118号公報、特開2003-233179号公報、特開2009-52020号公報等に記載の公知の高分子化合物を使用することができる。
 アルカリ可溶性樹脂の具体的な構成単位については、特に、(メタ)アクリル酸およびこれと共重合可能な他の単量体の共重合体が、簡便に入手でき、アルカリ溶解性等の調整が容易なことから、好適に使用されている。
 前述の(メタ)アクリル酸と共重合可能な他の単量体としては、アルキル(メタ)アクリレート、アリール(メタ)アクリレート、ビニル化合物等が挙げられる。ここで、アルキル基およびアリール基の水素原子は、置換基で置換されていてもよい。
 前述のアルキル(メタ)アクリレートおよびアリール(メタ)アクリレートの具体例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジルアクリレート、トリルアクリレート、ナフチルアクリレート、シクロヘキシルアクリレート等を挙げることができる。
 前述のビニル化合物としては、例えば、スチレン、α-メチルスチレン、ビニルトルエン、グリシジル(メタ)アクリレート、アクリロニトリル、ビニルアセテート、N-ビニルピロリドン、テトラヒドロフルフリル(メタ)アクリレート、ポリスチレンマクロモノマー、ポリメチルメタクリレートマクロモノマー、CH2=CR3132〔ここで、R31は水素原子または炭素数1~5のアルキル基を表し、R32は炭素数6~10の芳香族炭化水素環を表す。〕、CH2=C(R31)(COOR33)〔ここで、R31は水素原子または炭素数1~5のアルキル基を表し、R33は炭素数1~8のアルキル基または炭素数6~12のアラルキル基を表す。〕、等を挙げることができる。
 これら共重合可能な他の単量体は、1種単独であるいは2種以上を組み合わせて用いることができる。
 好ましい共重合可能な他の単量体は、CH2=CR3132、CH2=C(R31)(COOR33)、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレートおよびスチレンから選択される少なくとも1種であり、特に好ましくは、CH2=CR3132および/またはCH2=C(R31)(COOR33)である。これらの、R31、R32およびR33はそれぞれ前述のしたのと同義である。
 また、感光性樹脂組成物中におけるアルカリ可溶性樹脂の含有量としては、感光性樹脂組成物に含有される溶剤を除いた総固形分に対して、5~60質量%が好ましく、より好ましくは10~55質量%であり、特に好ましくは15~50質量%である。
 本発明で用いるアルカリ可溶性樹脂の重量平均分子量(Mw)は1000~100000が好ましく、5000~50000がより好ましい。
 本発明で用いるアルカリ可溶性樹脂の酸価は150~400mgKOH/gが好ましく、180~380mgKOH/gがより好ましく、200~350mgKOH/gがさらに好ましい。このような範囲とすることにより、ハーフトーン適性等に優れた感光性組成物が得られる。
 (E)光増感剤または助開始剤
 本発明の感光性樹脂組成物には、(E)光増感剤または助開始剤をさらに加えることもできる。これらを添加することにより、スペクトル感度を移動または拡大して、本発明の感光性樹脂組成物の光重合を促進することができる。
 前述の光増感剤または助開始剤としては、芳香族化合物を用いるのが特に好ましく、例えば、ベンゾフェノンおよびその誘導体、チオキサントンおよびその誘導体、アントラキノンおよびその誘導体、クマリンまたはフェノチアジンおよびその誘導体、3-(アロイルメチレン)チアゾリン、ローダニン、カンファーキノン、エオシン、ローダミン、エリスロシン、キサンテン、チオキサンテン、アクリジン(例えば、9-フェニルアクリジン)、1,7-ビス(9-アクリジニル)ヘプタン、1,5-ビス(9-アクリジニル)ペンタン、シアニン、メロシアニン染料が挙げられる。
 前述のチオキサントンとしては、例えば、チオキサントン、2-イソプロピルチオキサントン、2-クロロチオキサントン、1-クロロ-4-プロポキシチオキサントン、2-ドデシルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジメチルチオキサントン、1-メトキシカルボニルチオキサントン、2-エトキシカルボニルチオキサントン、3-(2-メトキシエトキシカルボニル)チオキサントン、4-ブトキシカルボニルチオキサントン、3-ブトキシカルボニル-7-メチルチオキサントン、1-シアノ-3-クロロチオキサントン、1-エトキシカルボニル-3-クロロチオキサントン、1-エトキシカルボニル-3-エトキシチオキサントン、1-エトキシカルボニル-3-アミノチオキサントン、1-エトキシカルボニル-3-フェニルスルフリルチオキサントン、3,4-ジ-〔2-(2-メトキシエトキシ)エトキシカルボニル〕チオキサントン、1,3-ジメチル-2-ヒドロキシ-9H-チオキサンテン-9-オン、
 2-エチルヘキシルエーテル、1-エトキシカルボニル-3-(1-メチル-1-モルホリノエチル)チオキサントン、2-メチル-6-ジメトキシメチルチオキサントン、2-メチル-6-(1,1-ジメトキシベンジル)チオキサントン、2-モルホリノメチルチオキサントン、2-メチル-6-モルホリノメチルチオキサントン、N-アリルチオキサントン-3,4-ジカルボキシイミド、N-オクチルチオキサントン-3,4-ジカルボキシイミド、N-(1,1,3,3-テトラメチルブチル)チオキサントン-3,4-ジカルボキシイミド、1-フェノキシチオキサントン、6-エトキシカルボニル-2-メトキシチオキサントン、6-エトキシカルボニル-2-メチルチオキサントン、チオキサントン-2-カルボン酸ポリエチレングリコールエステル、2-ヒドロキシ-3-(3,4-ジメチル-9-オキソ-9H-チオキサントン-2-イルオキシ)-N,N,N-トリメチル-1-プロパンアミニウムクロリドが挙げられる。
 前述のベンゾフェノンとしては、例えば、ベンゾフェノン、4-フェニルベンゾフェノン、4-メトキシベンゾフェノン、4,4'-ジメトキシベンゾフェノン、4,4'-ジメチルベンゾフェノン、4,4'-ジクロロベンゾフェノン、4,4'-ビス(ジメチルアミノ)ベンゾフェノン、4,4'-ビス(ジエチルアミノ)ベンゾフェノン、4,4'-ビス(メチルエチルアミノ)ベンゾフェノン、4,4'-ビス(p-イソプロピルフェノキシ)ベンゾフェノン、4-メチルベンゾフェノン、2,4,6-トリメチルベンゾフェノン、4-(4-メチルチオフェニル)ベンゾフェノン、3,3'-ジメチル-4-メトキシベンゾフェノン、メチル-2-ベンゾイルベンゾアート、4-(2-ヒドロキシエチルチオ)ベンゾフェノン、4-(4-トリルチオ)ベンゾフェノン、1-〔4-(4-ベンゾイルフェニルスルファニル)フェニル〕-2-メチル-2-(トルエン-4-スルホニル)プロパン-1-オン、4-ベンゾイル-N,N,N-トリメチルベンゼンメタナミニウムクロリド、2-ヒドロキシ-3-(4-ベンゾイルフェノキシ)-N,N,N-トリメチル-1-プロパナミニウムクロリド一水和物、4-(13-アクリロイル-1,4,7,10,13-ペンタオキサトリデシル)ベンゾフェノン、4-ベンゾイル-N,N-ジメチル-N-〔2-(1-オキソ-2-プロペニル)オキシ〕エチルベンゼンメタナミニウムクロリドが挙げられる。
 前述のクマリンとしては、例えば、クマリン1、クマリン2、クマリン6、クマリン7、クマリン30、クマリン102、クマリン106、クマリン138、クマリン152、クマリン153、クマリン307、クマリン314、クマリン314T、クマリン334、クマリン337、クマリン500、3-ベンゾイルクマリン、3-ベンゾイル-7-メトキシクマリン、3-ベンゾイル-5,7-ジメトキシクマリン、3-ベンゾイル-5,7-ジプロポキシクマリン、3-ベンゾイル-6,8-ジクロロクマリン、3-ベンゾイル-6-クロロクマリン、3,3'-カルボニル-ビス〔5,7-ジ(プロポキシ)クマリン〕、3,3'-カルボニル-ビス(7-ジエチルアミノクマリン)、3-イソブチロイルクマリン、3-ベンゾイル-5,7-ジメトキシクマリン、3-ベンゾイル-5,7-ジエトキシクマリン、3-ベンゾイル-5,7-ジブトキシクマリン、3-ベンゾイル-5,7-ジ(メトキシエトキシ)クマリン、3-ベンゾイル-5,7-ジ(アリルオキシ)クマリン、3-ベンゾイル-7-ジメチルアミノクマリン、3-ベンゾイル-7-ジエチルアミノクマリン、3-イソブチロイル-7-ジメチルアミノクマリン、5,7-ジメトキシ-3-(1-ナフトイル)クマリン、5,7-ジエトキシ-3-(1-ナフトイル)クマリン、3-ベンゾイルベンゾ〔f〕クマリン、7-ジエチルアミノ-3-チエノイルクマリン、3-(4-シアノベンゾイル)-5,7-ジメトキシクマリン、3-(4-シアノベンゾイル)-5,7-ジプロポキシクマリン、7-ジメチルアミノ-3-フェニルクマリン、7-ジエチルアミノ-3-フェニルクマリン、特開平9-179,299号公報および第9-325,209号公報に開示されたクマリン誘導体、例えば、7-〔{4-クロロ-6-(ジエチルアミノ)-S-トリアジン-2-イル}アミノ〕-3-フェニルクマリンが挙げられる。
 前述の3-(アロイルメチレン)チアゾリンとしては、3-メチル-2-ベンゾイルメチレン-β-ナフトチアゾリン、3-メチル-2-ベンゾイルメチレン-ベンゾチアゾリン、3-エチル-2-プロピオニルメチレン-β-ナフトチアゾリンが挙げられる。
 前述のローダニンとしては、4-ジメチルアミノベンザルローダニン、4-ジエチルアミノベンザルローダニン、3-エチル-5-(3-オクチル-2-ベンゾチアゾリニリデン)ローダニン、特開平8-305,019号公報に開示された、式〔1〕、〔2〕、〔7〕で表されるローダニン誘導体が挙げられる。
 前述の化合物の他にも、アセトフェノン、3-メトキシアセトフェノン、4-フェニルアセトフェノン、ベンジル、4,4'-ビス(ジメチルアミノ)ベンジル、2-アセチルナフタレン、2-ナフトアルデヒド、ダンシル酸誘導体、9,10-アントラキノン、アントラセン、ピレン、アミノピレン、ペリレン、フェナトレン、フェントレンキノン、9-フルオレノン、ジベンゾスベロン、クルクミン、キサントン、チオミヒラーケトン、α-(4-ジメチルアミノベンジリデン)ケトン、2,5-ビス(4-ジエチルアミノベンジリデンシクロペンタノン、2-(4-ジメチルアミノベンジリデン)インダン-1-オン、3-(4-ジメチルアミノフェニル)-1-インダン-5-イルプロペノン、3-フェニルチオフタルイミド、N-メチル-3,5-ジ(エチルチオ)フタルイミド、N-メチル-3,5-ジ(エチルチオ)フタルイミド、フェノチアジン、メチルフェノチアジン、アミン、N-フェニルグリシン、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸ブトキシエチル、4-ジメチルアミノアセトフェノン、トリエタノールアミン、メチルジエタノールアミン、ジメチルアミノエタノール、2-(ジメチルアミノ)エチルベンゾアート、ポリ(プロピレングリコール)-4-(ジメチルアミノ)ベンゾアート等を用いることができる。
 本発明の感光性樹脂組成物に添加する光増感剤または助開始剤(E)としては、前述の中でも、ベンゾフェノンおよびその誘導体、チオキサントンおよびその誘導体、アントラキノンおよびその誘導体、クマリン誘導体から選択される少なくとも1種の光増感剤化合物が好ましく挙げられる。
 また、感光性樹脂組成物中における(E)光増感剤または助開始剤含有量としては、感光性樹脂組成物に含有される溶剤を除いた総固形分に対して、0.5~15質量%が好ましく、より好ましくは1~12質量%であり、特に好ましくは2~10質量%である。
 また、(A)光重合開始剤と(E)光増感剤または助開始剤との添加量の総和が、感光性樹脂組成物の全固形分中の0.1~15.0重量%であることが好ましく、0.1~12.0重量%であることがより好ましい。
 (その他の成分)
本発明の感光性樹脂組成物には、必要に応じて、ラジカル捕捉剤、光安定剤、硬化助剤、熱重合開始剤、界面活性剤、密着助剤、現像促進剤、熱重合防止剤、分散剤、その他の添加剤(充填剤、紫外線吸収剤、凝集防止剤等)の各種添加剤を含有することができる。
 (光安定剤)
 本発明には、耐光性向上のため各種の光安定剤を添加してもよい。光安定剤の種類については特に限定されないが、汎用性の面からヒンダードアミン系光安定剤;例えば、ビス(2,2,6,6-テトラメチル-4-ピペリジル)アジペート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)アジペート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-テトラアクリレート、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-テトラアクリレート、ヒンダードフェノール系光安定剤;例えば、ペンタエリスリトール-テトラキス(3-(3',5'-ジ-tert-ブチル-4'-ヒドロキシフェニル)プロピオナート等が好適に使用される。
 本発明における光安定剤の含有量は、感光性樹脂組成物の全固形分に対して、0.1~5.0質量%程度が好ましく、0.2~4.0質量%であることがさらに好ましく、0.5~2.0質量%であることがより好ましい。0.1質量%以下であると所望の耐光性が得られず、5.0質量%以上であると感度が減少し好ましくない。
 (硬化助剤)
 硬化助剤として、形成された塗布膜の強度を上げるために、エポキシ環を有する化合物を用いてもよい。エポキシ環を有する化合物を使用することによって、熱重合が進行し、溶剤耐性が向上したり、ITOスパッタ適性が向上したりして好ましい。
 エポキシ環を有する化合物としては、ビスフェノールA型、クレゾールノボラック型、ビフェニル型、脂環式エポキシ化合物等のエポキシ環を分子中に2個以上有する化合物である。
 例えば、ビスフェノールA型としては、エポトートYD-115、YD-118T、YD-127、YD-128、YD-134、YD-8125、YD-7011R、ZX-1059、YDF-8170、YDF-170等(以上、東都化成製)、デナコールEX-1101、EX-1102、EX-1103等(以上、ナガセ化成製)、プラクセルGL-61、GL-62、G101、G102(以上、ダイセル化学製)の他に、これらの類似のビスフェノールF型、ビスフェノールS型も挙げることができる。また、Ebecryl 3700、3701、600(以上、ダイセルユーシービー製)等のエポキシアクリレートも使用可能である。
 クレゾールノボラック型としては、エポトートYDPN-638、YDPN-701、YDPN-702、YDPN-703、YDPN-704等(以上、東都化成製)、デナコールEM-125等(以上、ナガセ化成製)、ビフェニル型としては、3,5,3',5'-テトラメチル-4,4'-ジグリシジルビフェニル等、脂環式エポキシ化合物としては、セロキサイド2021、2081、2083、2085、エポリードGT-301、GT-302、GT-401、GT-403、EHPE-3150(以上、ダイセル化学製)、サントートST-3000、ST-4000、ST-5080、ST-5100等(以上、東都化成製)、Epiclon430、同673、同695、同850S、同4032(以上、DIC製)等を挙げることができる。
 また、1,1,2,2-テトラキス(p-グリシジルオキシフェニル)エタン、トリス(p-グリシジルオキシフェニル)メタン、トリグリシジルトリス(ヒドロキシエチル)イソシアヌレート、o-フタル酸ジグリシジルエステル、テレフタル酸ジグリシジルエステル、他にアミン型エポキシ樹脂であるエポトートYH-434、YH-434L(以上、ナガセ化成製)、ビスフェノールA型エポキシ樹脂の骨格中にダイマー酸を変性したグリシジルエステル等も使用できる。
 この中で好ましいのは「分子量/エポキシ環の数」が100以上であり、より好ましいものは130~500である。「分子量/エポキシ環の数」が小さいと硬化性が高く、硬化時の収縮が大きく、また、大きすぎると硬化性が不足し、信頼性に欠けたり、平坦性が悪くなる。 好ましい化合物としては、エポトートYD-115、118T、127、YDF-170、YDPN-638、YDPN-701(以上、ナガセ化成製)、プラクセルGL-61、GL-62、3,5,3',5'-テトラメチル-4,4'ジグリシジルビフェニル、セロキサイド2021、2081、エポリードGT-302、GT-403、EHPE-3150(以上、ダイセル化学製)等が挙げられる。
 本発明における硬化助剤の含有量は、感光性樹脂組成物の全固形分に対して、0.1~5.0質量%程度が好ましく、0.2~4.0質量%であることがさらに好ましく、0.5~2.0質量%であることがより好ましい。0.1質量%以下では硬化促進効果が得られず、5.0質量%以上では耐光性が悪化して問題である。 
 (熱重合開始剤)
 本発明の感光性樹脂組成物には、熱重合開始剤を含有させることも有効である。熱重合開始剤としては、例えば、各種のアゾ系化合物、過酸化物系化合物が挙げられ、前述のアゾ系化合物としては、アゾビス系化合物を挙げることができ、前述の過酸化物系化合物としては、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシエステル、パーオキシジカーボネート等を挙げることができる。
 (界面活性剤)
 本発明の感光性樹脂組成物には、塗布性を改良する観点から、各種の界面活性剤を用いて構成することが好ましい。界面活性剤により、塗布液としたときの液特性(特に流動性)を改善でき、塗布厚の均一性および省液性を改善することができる。すなわち、基板と塗布液との界面張力を低下させて基板への濡れ性が改善され、基板への塗布性が向上するので、少量の液量で数μm程度の薄膜を形成した場合であっても、厚みムラの小さい均一厚の膜形成が可能である点で有効である。また、液切れを起こしやすいスリット塗布においても効果的である。
 界面活性剤としては、ノニオン系、カチオン系、アニオン系の各種界面活性剤を使用できる。中でも、ノニオン系界面活性剤でパーフルオロアルキル基を有するフッ素系界面活性剤が好ましい。
 フッ素系界面活性剤のフッ素含有率は3~40質量%が好適であり、より好ましくは5~30質量%であり、特に好ましくは7~25質量%である。フッ素含有率が前述の範囲内であると、塗布厚均一性および省液性の点で効果的であり、組成物中への溶解性も良好である。
 フッ素系界面活性剤としては、例えば、メガファックF171、同F172、同F173、同F177、同F141、同F142、同F143、同F144、同R30、同F437(以上、DIC(株)製)、フロラードFC430、同FC431、同FC171(以上、住友スリーエム(株)製)、サーフロンS-382、同SC-101、同SC-103、同SC-104、同SC-105、同SC1068、同SC-381、同SC-383、同S393、同KH-40(以上、旭硝子(株)製)等が挙げられる。
 フッ素系以外の界面活性剤の例としては、フタロシアニン誘導体(市販品EFKA-745(森下産業社製))、オルガノシロキサンポリマーKP341(信越化学工業社製)、(メタ)アクリル酸系(共)重合体ポリフローNo.75、No.90、No.95(共栄社油脂化学工業社製)、W001(裕商社製)等のカチオン系界面活性剤;ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート、ソルビタン脂肪酸エステル(BASF社製 プルロニックL10、L31、L61、L62、10R5、17R2、25R2、テトロニック304、701、704、901、904、150R1等のノニオン系界面活性剤;W004、W005、W017(裕商社製)等のアニオン系界面活性剤;が挙げられる。
 界面活性剤の添加量は、感光性樹脂組成物の全質量に対して、0.001~2.0質量%が好ましく、より好ましくは0.005~1.0質量%である。
 現像促進剤
 また、感光性樹脂組成物層の未硬化部のアルカリ溶解性を促進し、感光性樹脂組成物の現像性の更なる向上を図る場合には、現像促進剤を感光性樹脂組成物に使用することができる。
 このような現像促進剤としては、有機カルボン酸、好ましくは分子量1000以下の低分子量有機カルボン酸が好ましい。具体的には、例えば、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、ピバル酸、カプロン酸、ジエチル酢酸、エナント酸、カプリル酸等の脂肪族モノカルボン酸;シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ブラシル酸、メチルマロン酸、エチルマロン酸、ジメチルマロン酸、メチルコハク酸、テトラメチルコハク酸、シトラコン酸等の脂肪族ジカルボン酸;トリカルバリル酸、アコニット酸、カンホロン酸等の脂肪族トリカルボン酸;安息香酸、トルイル酸、クミン酸、ヘメリト酸、メシチレン酸等の芳香族モノカルボン酸;フタル酸、イソフタル酸、テレフタル酸、トリメリト酸、トリメシン酸、メロファン酸、ピロメリト酸等の芳香族ポリカルボン酸;フェニル酢酸、ヒドロアトロパ酸、ヒドロケイ皮酸、マンデル酸、フェニルコハク酸、アトロパ酸、ケイ皮酸、ケイ皮酸メチル、ケイ皮酸ベンジル、シンナミリデン酢酸、クマル酸、ウンベル酸等のその他のカルボン酸が挙げられる。
 (熱重合防止剤)
 本発明の感光性樹脂組成物には、さらに熱重合防止剤を加えておくことが好ましく、例えば、ハイドロキノン、p-メトキシフェノール、ジ-tert-ブチル-p-クレゾール、ピロガロール、tert-ブチルカテコール、ベンゾキノン、4,4'-チオビス(3-メチル-6-tert-ブチルフェノール)、2,2'-メチレンビス(4-メチル-6-tert-ブチルフェノール)、2-メルカプトベンゾイミダゾール等が有用である。
 (その他添加剤)
 上述のほか、ガラス、アルミナ等の充填剤;2-(3-tert-ブチル-5-メチル-2-ヒドロキシフェニル)-5-クロロベンゾトリアゾール、アルコキシベンゾフェノン等の紫外線吸収剤;およびポリアクリル酸ナトリウム等の凝集防止剤を挙げることができる。
 本発明の感光性樹脂組成物は、以上述べた各成分、即ち(A)光重合開始剤、(B)溶剤、(C)重合性モノマー、(D)アルカリ可溶性樹脂、必要に応じ、(E)光増感剤または助開始剤等のその他の添加剤を添加し混合することによって調製することができる。
 (光吸収層)
 光吸収層は、レンズもしくは光反射層13等で反射した光、または外部から入射する光が第一の支持体12内で反射を繰り返す光を吸収し、迷光を抑制するものである。これにより、サイドバンド発生を抑制することができ、光利用効率を更に向上させることができる。
 光吸収層は、各レンズに対して第1の開口部を有し、例えば、複数の各レンズの光軸上に、それぞれ第1の開口部を有する。光吸収層と光反射層とは開口部のパターンが同じであり、上述のように開口部の位置合せをして、光吸収層の第1の開口部と光反射層の第2の開口部とが位置合せされた状態で光反射層と光吸収層とが配置されている。
 第1の開口部の開口率は、小さすぎると光利用効率が低下してしまう。また、大きすぎると指向性が悪くなる。
 この観点から、第一の態様においては、光吸収層は、第1の開口部の開口率は30%~70%が好ましい。より好ましくは30%~60%であり、更に好ましくは、35%~55%である。
 また、第二の態様においては、光吸収層は、第1の開口部の開口率は10%~75%が好ましい。より好ましくは10%~70%であり、更に好ましくは、15%~65%である。
 光吸収層と光反射層を両方持つ構成において、T/T0で表される光利用率を向上させるには、光吸収層と光反射層に設けた開口部の開口率に最適点25%がある。開口率が下がると、光反射層による光のリサイクルの効果が高まり、正面輝度、すなわち、最大輝度値が向上する。開口率を下げ過ぎると、例えば、10%以下では、光のリサイクル中の光ロスの効果が大きくなり、正面輝度がかえって低下する。
 光吸収層18の第1の開口部18bの開口率は、第1の開口部18bが配置されるピッチに対する第1の開口部18bの開口幅で規定される。ピッチが100μmで、開口幅が25μmであれば、25/100で、開口率は25%となる。
 光反射層13においても、光吸収層18と同様に、光反射層13の第2の開口部13bの開口率とは、第2の開口部13bが配置されるピッチに対する第2の開口部13bの開口幅で規定される。ピッチが100μmで、開口幅が25μmであれば、25/100で、開口率は25%となる。
 開口幅は、光吸収層18を第1の開口部18bを含む画像、および光反射層13を第2の開口部13bを含む画像を取得し、各画像を用いて第1の開口部18b、および第2の開口部13bの開口幅に相当する位置の長さを求めることにより得られる。
 光吸収層は、特に限定されるものではないが、例えば、カーボンブラック、窒化チタンおよび銀インク等を利用でき、LCD、有機EL(Electro Luminescence)等のブラックマトリクスに利用されているものを適宜利用することができる。
 銀インクはインク塗布後の加熱過程で、黒吸収体になった後、銀ミラーになるため、フィルムへ銀インク塗布後、インク表面を高い温度で加熱、裏面をより低い温度で加熱すると、表面が反射層の役割を果たす鏡面ミラー、裏面が黒吸収体とすることができ、プロセス上簡便に反射層と黒吸収層を作製することができる。
 光吸収層の反射率は20%以下がよく、斜め方向の遮光性を高めるため、すなわち、斜め方向の視認性を下げるためには、10%以下が更によく、7%以下が最もよい。
 光吸収層の反射率は以下のように得られるものである。分光光度計(日本分光社製V-550)にて、光吸収層に使用する素材をポリエチレンテレフタレート(PET)基材上に形成し、形成面から光を入射し波長380nm~780nmの反射率を測定し、その平均値を求める。この平均値が光吸収層の反射率である。
 なお、光吸収層18と光反射層13とは、一体構成でもよく、別体構成でもよい。一体構成の場合、光反射層13の表面13aが光吸収層18として機能し、表面13aの反射率とは異なり、90%未満であり、光を吸収する。この場合も、上述のように反射率は20%以下がよく、10%以下が更によく、7%以下が最もよい。
 光吸収層18と光反射層13とは、一体構成の方が別体構成に比して部品数を減らすことができ、構成を簡素化できる。また、別体構成の場合、光吸収層18の第1の開口部18bと光反射層13の第2の開口部13bとの位置合せが必要であるが、一体構成の場合、上述の位置合せが不要であるため、製造工程を簡素化できる。
 光吸収層の製造方法は、特に限定されるものではなく、例えば、光吸収層となる板状の部材を、エッチング加工またはレーザ加工等により形成することができる。これ以外に、蒸着等の気相法、または塗布等の液相法を用いて光吸収層となる膜を基材に形成して、光吸収層を形成することもできる。
 (第二の支持体)
 第二の支持体として高屈折率素材を用いた場合は、脆性を悪化させない観点から、厚みは30μm以下が好ましい。より好ましくは10μm以下が良く、より好ましくは1μm前後が良い。
 第二の支持体の屈折率は、サイドバンドを発生させない観点から、好ましくは1.30以上であることが好ましく、1.4以上であることがより好ましく、1.6以上であることが更に好ましく、1.80以上であることが特に好ましく、1.9以上が最も好ましい。また、第二の支持体の脆性を悪化させない観点からは、屈折率は2.50以下であることが好ましく、2.20以下であることがより好ましく、2.10未満であることが更に好ましく、2.05以下であることがいっそう好ましい。
 第二の支持体の屈折率は、第一の支持体と同様に層を形成するために用いる成分の種類により調整することができる。層を形成するために用いる成分としては、第一の支持体と同様に重合性化合物および重合開始剤を含む重合性組成物を用いて形成することができる。または、第一の支持体と同様に樹脂を主成分とする樹脂層であってもよい。
 第二の支持体の屈折率調整のために、第一の支持体と同様に粒子が含まれていてもよい。粒子としては、特に限定されるものではなく、無機粒子であっても有機粒子であってもよい。
 上述の粒子は、一種用いてもよく、二種以上を混合して用いてもよい。粒子が小さいほど、散乱性を抑えられる観点で好ましい。よって、粒子サイズは、一次粒子径として、100nm以下であることが好ましく、30nm以下であることがより好ましく、25nm以下であることが更に好ましい。また、粒子サイズは、一次粒子径として、1nm以上であることが好ましい。上述の粒子の一次粒子径とは、走査型電子顕微鏡(SEM)で50個の粒子について粒径を測定し、数平均値として算出したものである。上述の粒子を含む層における粒子含有量は、好ましくは上述の範囲の平均屈折率が得られるように、適宜設定すればよい。
 上述の粒子の屈折率(波長550nmの光に対する屈折率)は、屈折率調整の観点から、2.00以上3.00以下であることが好ましく、2.05以上2.50以下であることがより好ましい。ここで、粒子の屈折率とは、以下の方法により測定される値とする。屈折率既知の樹脂材料に粒子をドープし、この粒子が分散された樹脂材料を作製する。作製した樹脂材料を、シリコン基板、または石英基板上に塗布し樹脂膜を形成する。形成した樹脂膜の屈折率をエリプソメーターで測定し、樹脂膜を構成する樹脂材料と粒子の体積分率から、粒子の屈折率を求める。後述の実施例で用いた酸化チタン粒子の屈折率は、上述の方法により求めた値である。
[面光源装置]
 本発明の一態様にかかる面光源装置は、上述のルーバーフィルムと光源とを少なくとも含む。
 <面光源装置の構成>
 面光源装置の構成としては、少なくとも光源と導光板とを含み、任意に反射板、拡散板等を含むエッジライト方式と、反射板、反射板上に配置された複数の光源および拡散板を少なくとも含む直下型とがある。上述の面光源装置は、いずれの構成であってもよい。詳細については、特許第3416302号、特許第3363565号、特許第4091978号、特許第3448626号等の公報に記載されており、これらの公報の内容は本発明に組み込まれる。また、光源は白色光源でも良いし、青色LEDまたは紫外LEDを用いた単色光源でも良い。白色光源の場合、色変換する必要が無くシンプルな構成に出来る点で好ましい。単色光源の場合、色収差なく光の指向性を制御できる点で好ましい。また、青色または紫外光源の場合、量子ドット粒子または蛍光体を用いた波長変換フィルムをルーバーフィルムと光源の間に設けても良い。波長変換フィルムの代わりに、液晶パネルに量子ドット粒子または蛍光体を含有させたカラーフィルターを設けても良い。液晶パネルの液晶層を指向性高く通過した光が量子ドット粒子に色変換され、更に、変換光が拡散されるため、視野角の広げることが可能になる。
 また、面光源装置は、反射型偏光子、プリズムシート、拡散シート、波長変換フィルム等の光学フィルムを有していてもよい。
 例えば、図8に示す例では、ルーバーフィルム2と拡散板14との間に、すなわち、ルーバーフィルム2と光源16との間に反射型偏光子20を有する。
 反射型偏光子20を有する構成とすることで、光リサイクルにより光利用効率を向上させることができる。なお、図8に示す例でも、上述の図5~図7に示す各種のルーバーフィルム2を用いることができる。
 反射型偏光子20としては、一般的な反射型偏光子が利用可能である。例えば、3M社製の商品名:DBEF等を用いることができる。
[液晶表示装置]
 本発明の一態様にかかる液晶表示装置は、上述の面光源装置と、液晶パネルと、を少なくとも含む。
<液晶表示装置の構成>
 液晶パネルは、通常、視認側偏光子、液晶セルおよびバックライト側偏光子を少なくとも含む。
 液晶表示装置の一実施形態では、対向する少なくとも一方に電極を設けた基板間に液晶層を挟持した液晶セルを有し、この液晶セルは2枚の偏光子の間に配置して構成される。液晶表示装置は、上下基板間に液晶が封入された液晶セルを備え、電圧印加により液晶の配向状態を変化させて画像の表示を行う。さらに必要に応じて偏光板保護フィルムおよび光学補償を行う光学補償部材、接着層等の付随する機能層を有する。また、カラーフィルター基板、薄層トランジスタ基板、レンズフィルム、拡散シート、ハードコート層、反射防止層、低反射層、アンチグレア層等とともに(またはそれに替えて)、前方散乱層、プライマー層、帯電防止層、下塗り層等の表面層が配置されていてもよい。
 また、液晶パネルの液晶層を指向性高く通過した後の光の視野角の広げるために、前述の量子ドット粒子もしくは蛍光体含有のカラーフィルターまたは、視認側偏光子の視認側にレンズフィルム、光拡散シート、回折フィルム等光の指向性を緩和する機能層を設けても良い。
 液晶表示装置が有する面光源装置については、先に記載した通りである。
 本発明の一態様にかかる液晶表示装置を構成する液晶セル、偏光板、偏光板保護フィルム等については特に限定はなく、公知の方法で作製されるものおよび市販品を、何ら制限なく用いることができる。また、各層の間に、接着層等の公知の中間層を設けることも、もちろん可能である。
 液晶表示装置としては、図9に示す液晶表示装置30のように、液晶セル32とバックライト側偏光子34との間にルーバーフィルム2を配置する構成としてもよい。あるいは、図10に示すように、バックライト側偏光子34と拡散板14との間にルーバーフィルム2を配置する構成としてもよい。あるいは、図11に示すように、バックライト側偏光子を有さず、液晶セル32の光源16側とは反対側に視認側偏光子36を有する構成としてもよい。なお、図9~図11に示す液晶表示装置においても、上述の図5~図7に示す各種のルーバーフィルム2を用いることができる。
 また、ルーバーフィルム2の配置位置は、液晶セル32に対して光源側であることに限定されるものではない。例えば、図9に示す液晶表示装置30では、液晶セル32とバックライト側偏光子34との間にルーバーフィルム2が配置されているが、ルーバーフィルム2を液晶セル32の表面32a上、すなわち、表示面上に配置してもよい。
 図10に示す液晶表示装置30では、バックライト側偏光子34と拡散板14との間にルーバーフィルム2が配置されているが、ルーバーフィルム2を液晶セル32の表面32a上、すなわち、表示面上に配置してもよい。
 図11に示す液晶表示装置30でも、液晶セル32と拡散板14との間にルーバーフィルム2が配置されているが、ルーバーフィルム2を、液晶セル32上に設けられた視認側偏光子36の表面36a上に配置してもよい。このように、ルーバーフィルム2は、液晶表示装置30の最表面側に配置することもできる。このようなルーバーフィルム2の配置位置でも、光利用効率を保ったまま更なる視認性に関する指向性を向上させることができ、表示させたくない領域への映り込み等を抑制することができる。
 また、ルーバーフィルムのレンズを2次元レンズアレイとして形成する場合は、光軸方向から見た形状が正方形状であり、複数のレンズは、正方格子状に配列されており、配列されたレンズ同士の交点にモアレ防止点が形成されており、レンズの配列方向は、液晶パネルの画素の配列方向に対して25°~65°傾いていることが好ましい。
 この点について図12~図15を用いて説明する。
 図12は、レンズの光軸方向から見たルーバーフィルム2の一部と液晶セル32の一部とを、面方向に相対位置をずらして表した模式図である。図13は、図12のB-B線断面図である。図14は、図12のC-C線断面図である。図15は、図12のD-D線断面図である。
 図12に示すように、レンズ11は、レンズ11の光軸方向から見た形状が正方形状である、2次元レンズアレイである。複数のレンズ11は正方格子状に配列されている。また、図12に示すように、レンズ11の配列方向は、液晶セル32の画素33の配列方向に対して約45°傾いている。
 ここで、図12および図13に示すように、正方格子状に配列された複数のレンズ11の頂点部(面方向の四隅)には、モアレ防止点22として凹部が形成されている。
 なお、レンズ11の配列は、2次元状に配列してもよく、2次元状の配列に関しては、特に限定されるものではなく、正方状の配列以外に、六方状に配列してもよい。レンズ11を六方状に配列することにより、光の利用効率が向上し、輝度が向上する。
 ルーバーフィルムの複数のレンズが規則的に配列される場合、他の、規則的な配列を有する部材との関係によってモアレが発生してしまうおそれがある。
 例えば、規則的に配列された複数の画素を有する液晶セルと、ルーバーフィルムとを重ねて配置した場合にモアレが発生してしまうおそれがある。
 これに対して、レンズ11の配列方向を、液晶パネルの画素の配列方向に対して25°~65°傾けて、さらに、レンズ11の頂点部にモアレ防止点22を形成することでモアレを低減できることを見出した。通常、モアレは液晶セルの規則的に配列された複数の画素パターンと複数のレンズ11間の影(境界線)のパターンとの差周波で発生する。一方で、レンズ11の配列方向を、液晶セル32の画素33の配列方向に対して約45°傾けた場合は、複数のレンズ11間の影(境界線)のパターンを液晶セル32の画素33の配列方向に積算した際に現れるパターンとの差周波でモアレが発生する。複数のレンズ11間の影(境界線)のパターンを液晶セル32の画素33の配列方向に積算した際に現れるパターンは、正方格子状に配列された複数のレンズ11の格子点上では、パターン強度が弱く、格子点上以外では、パターン強度が強くなるために現れる。正方格子状に配列された複数のレンズ11の格子点上の影を濃くする、もしくは、太らせることにより、格子点上と格子点上以外の部分のパターン強度を等しくすることができ、ルーバーフィルム側のパターンを消すことができる。このため、液晶セルの規則的に配列された複数の画素パターンと差周波を取れるパターンが消滅したようになり、モアレが発生しにくくなったものと考えられる。
 モアレ防止点22の大きさ(面積)は、1つの2次元に配置されたレンズ11の大きさ(面積)に対して、0.01%~10%であるのが好ましい。
 また、モアレ防止点22の深さは、レンズのピッチに対して0.1%~40%であるのが好ましい。
 図12に示す例では、モアレ防止点22の平面形状は正方形状としたが、これに限定はされず、長方形状、三角形状、多角形状、円形状、不定形等種々の形状とすることができる。
 また、モアレ防止点22の平面形状は対称であってもよいし、非対称であってもよい。
 また、図13に示す例では、モアレ防止点22は凹部としたがこれに限定はされず、光の透過量を変えることができればよい。例えば、モアレ防止点22は、凸部であってもよい。あるいは、インクでドットを印刷したものであってもよい。
 凹部からなるモアレ防止点22の形成方法にも特に限定はない。例えば、レンズ11を型押しで形成する場合には、レンズ11の形成と同時にモアレ防止点22を形成する型を用いればよい。
 また、ルーバーフィルムのレンズをレンチキュラレンズ(1次元アレイレンズ)として形成する場合は、モアレの観点から、レンズのピッチは50μm~300μm以下が好ましい。50μm~200μmがより好ましい。50μm~150μmが更に好ましい。レンズの配列方向は、液晶パネルの画素の配列方向に対して0.1°~20°傾いていることが好ましい。これにより、パネルの画素ピッチとレンズのピッチの干渉が抑えられ、モアレが見えにくくなる。
 以下に実施例に基づき本発明をさらに具体的に説明する。
[実施例1]
 実施例1では、第一の支持体として、ポリエチレンテレフタレートフィルム(東洋紡社製、商品名:コスモシャイン(登録商標)A4300、厚さ125μm 屈折率1.57)を準備した。第一の支持体表面に、下記1.で屈折率が1.55となるよう調製した酸化チタン粒子含有重合性組成物(組成物タイプ2)をバーコーターにより塗布し、断面が曲率半径57μmの凸状の円弧(レンズ)を100μmピッチで表面に形成するため、形成する形状を反転した表面形状を有する凹凸ローラーを押し当てながら、UV露光機(HOYA CANDEO OPTRONICS社製EXECURE 3000W)を用いて、窒素雰囲気下で5J/cm2で露光して硬化させた後、凹凸ローラーから剥離し、表面に凹凸形状を作製した。
 その後、第一の支持体の凹凸形状を形成した面と反対側の面に、ピッチ100μm、幅50μmのストライプ状のマスクを介して下記K顔料分散物1を塗布して乾燥し、ピッチ100μm、開口幅50μm、開口率50%、膜厚2μmの光吸収層を開口幅方向の中心がレンズ凸部の頂点の位置と合うように形成し、ルーバーフィルムAを作製した。光吸収層は、カーボンブラックを含有するものであり、表1の光吸収層の素材の欄の「CB」はカーボンブラックである。
・K顔料分散物1
 以下のK顔料分散物1の組成となるようにカーボンブラック、分散剤、ポリマーおよび溶剤を混合し、K顔料分散物1を得た。
(K顔料分散物1)
・特許5320652号公報段落番号〔0036〕~〔0042〕の記載に従って作製した樹脂被覆カーボンブラック 3.4質量%
・分散剤1〔下記構造〕 0.13質量%
・ポリマー 16.47質量%
(ベンジルメタクリレート/メタクリル酸=72/28モル比のランダム共重合体物、重量平均分子量3.7万)
・プロピレングリコールモノメチルエーテルアセテート 80.0質量%
Figure JPOXMLDOC01-appb-C000001
1.酸化チタン粒子含有重合性組成物(組成物タイプ1)の調製
 トリメチロールプロパントリアクリレート18.2質量部、ラウリルメタクリレート80.8質量部、および光重合開始剤(BASF社製Irgacure(登録商標)819)1質量部を混合した。
 上述の混合物(以下、バインダとも記載する。)に、酸化チタン(TiO2)粒子(一次粒子径100nm以下)が分散されたスラリー(溶媒:メチルエチルケトン、酸化チタン粒子濃度30質量%)をドープし、十分に攪拌し酸化チタン粒子含有重合性組成物を調製した。上述の酸化チタン粒子は、酸化チタンの光活性を抑制するために酸化アルミニウムにより表面処理された酸化チタン粒子であり、屈折率は2.40である。後述の各層の平均屈折率を調整するために、質量基準で、バインダ:酸化チタン粒子スラリー=7:3~6:4の範囲で、バインダへの酸化チタン粒子スラリーの添加量を設定した。
[実施例2]
 実施例2では、第一の支持体として、ポリエチレンテレフタレートフィルム(東洋紡社製、商品名:コスモシャイン(登録商標)A4300、厚さ125μm 屈折率1.57)を準備した。第一の支持体表面に、上述の1.で屈折率が1.55となるよう調製した酸化チタン粒子含有重合性組成物(組成物タイプ2)をバーコーターにより塗布し、断面が曲率半径57μmの凸状の円弧(レンズ)を100μmピッチで表面に形成するため、形成する形状を反転した表面形状を有する凹凸ローラーを押し当てながら、UV露光機(HOYA CANDEO OPTRONICS社製EXECURE 3000W)を用いて、窒素雰囲気下で5J/cm2で露光して硬化させた後、凹凸ローラーから剥離し、表面に凹凸形状を作製した。
 その後、第一の支持体の凹凸形状を形成した面と反対側の面に、ピッチ100μm、幅50μmのストライプ状のマスクを介して前述のK顔料分散物1を塗布して乾燥し、ピッチ100μm、開口幅50μm、開口率50%、膜厚2μmの光吸収層を開口幅方向の中心がレンズ凸部の頂点の位置と合うように形成した。その後、光吸収層と同じパターンのマスクを介して、光吸収層上にAgを蒸着し、ピッチ100μm、開口幅50μm、開口率50%の光反射層を、開口幅方向の中心がレンズ凸部の頂点の位置と合うように形成し、ルーバーフィルムBを作製した。
[実施例3]
 実施例3では、第一の支持体として、ポリエチレンテレフタレートフィルム(東洋紡社製、商品名:コスモシャイン(登録商標)A4300、厚さ75μm 屈折率1.57)を準備した。第一の支持体表面に、上述の1.で屈折率が1.69となるよう調製した酸化チタン粒子含有重合性組成物(組成物タイプ2)をバーコーターにより塗布し、断面が曲率半径50μmの凸状の円弧(レンズ)を100μmピッチで表面に形成するため、形成する形状を反転した表面形状を有する凹凸ローラーを押し当てながら、UV露光機(HOYA CANDEO OPTRONICS社製EXECURE 3000W)を用いて、窒素雰囲気下で5J/cm2で露光して硬化させた後、凹凸ローラーから剥離し、表面に凹凸形状を作製した。
 その後、第一の支持体の凹凸形状を形成した面と反対側の面に、ピッチ100μm、幅35μmのストライプ状のマスクを介して前述のK顔料分散物1を塗布して乾燥し、ピッチ100μm、開口幅35μm、開口率35%、膜厚2μmの光吸収層を開口幅方向の中心がレンズ凸部の頂点の位置と合うように形成し、ルーバーフィルムCを作製した。
[実施例4]
 実施例4では、第一の支持体として、ポリエチレンテレフタレートフィルム(東洋紡社製、商品名:コスモシャイン(登録商標)A4300、厚さ75μm 屈折率1.57)を準備した。第一の支持体表面に、上述の1.で屈折率が1.69となるよう調製した酸化チタン粒子含有重合性組成物(組成物タイプ2)をバーコーターにより塗布し、断面が曲率半径50μmの凸状の円弧(レンズ)を100μmピッチで表面に形成するため、形成する形状を反転した表面形状を有する凹凸ローラーを押し当てながら、UV露光機(HOYA CANDEO OPTRONICS社製EXECURE 3000W)を用いて、窒素雰囲気下で5J/cm2で露光して硬化させた後、凹凸ローラーから剥離し、表面に凹凸形状を作製した。
 その後、第一の支持体の凹凸形状を形成した面と反対側の面に、ピッチ100μm、幅35μmのストライプ状のマスクを介して前述のK顔料分散物1を塗布して乾燥し、ピッチ100μm、開口幅35μm、開口率35%、膜厚2μmの光吸収層を開口幅方向の中心がレンズ凸部の頂点の位置と合うように形成した。その後、光吸収層と同じパターンのマスクを介して、光吸収層上にAgを蒸着し、ピッチ100μm、開口幅35μm、開口率35%の光反射層を、開口幅方向の中心がレンズ凸部の頂点の位置と合うように形成し、ルーバーフィルムDを作製した。
[実施例5]
 実施例5では、第二の支持体として、ポリエチレンテレフタレートフィルム(東洋紡社製、商品名:コスモシャイン(登録商標)A4300、厚さ75μm 屈折率1.57)を用意した。第二の支持体の一方の面と、実施例3の第一の支持体の光吸収層が形成された面とを貼り合わせてルーバーフィルムEを作製した。
[実施例6]
 実施例6では、第二の支持体として、ポリエチレンテレフタレートフィルム(東洋紡社製、商品名:コスモシャイン(登録商標)A4300、厚さ75μm 屈折率1.57)を用意した。第二の支持体の一方の面と、実施例4の第一の支持体の光吸収層と光反射層とが形成された面とを貼り合わせてルーバーフィルムFを作製した。
[実施例7]
 実施例7では、ガラス基板上に上述の1.で屈折率が1.90となるよう調製した酸化チタン粒子含有重合性組成物(組成物タイプ2)をバーコーターにより塗布し、UV露光機(HOYA CANDEO OPTRONICS社製EXECURE 3000W)を用いて、窒素雰囲気下で紫外線照射量5J/cm2で露光して硬化させ、厚みは25μmの第二の支持体を形成した以外は、実施例5と同様にしてルーバーフィルムGを作製した。
[実施例8]
 実施例8では、ガラス基板上に上述の1.で屈折率が1.90となるよう調製した酸化チタン粒子含有重合性組成物(組成物タイプ2)をバーコーターにより塗布し、UV露光機(HOYA CANDEO OPTRONICS社製EXECURE 3000W)を用いて、窒素雰囲気下で紫外線照射量5J/cm2で露光して硬化させ、厚みは25μmの第二の支持体を形成した以外は、実施例6と同様にしてルーバーフィルムHを作製した。
[実施例9]
 実施例9では、第一の支持体に形成された光吸収層上に形成する光反射層の形成方法を以下のように変更した以外は実施例4と同様にして、ルーバーフィルムIを作製した。
 コレステリック液晶層形成用組成物として以下の塗布液を調製した。
――――――――――――――――――――――――――――――――――
 コレステリック液晶層形成用組成物
――――――――――――――――――――――――――――――――――
・下記の液晶化合物(LC1)          100質量部
・下記のカイラル剤(C1)           2.5質量部
・光重合開始剤(イルガキュア819;BASF社製) 0.75質量部
・下記の界面活性剤(W1)           0.05質量部
・下記の界面活性剤(W2)           0.01質量部
・メチルエチルケトン              250質量部
・シクロヘキサノン               50質量部
――――――――――――――――――――――――――――――――――
 液晶化合物(LC1)
Figure JPOXMLDOC01-appb-C000002
 カイラル剤(C1)
Figure JPOXMLDOC01-appb-C000003
 界面活性剤(W1)
Figure JPOXMLDOC01-appb-C000004
 界面活性剤(W2)
Figure JPOXMLDOC01-appb-C000005
 第一の支持体の凹凸形状を形成した面と反対側の面に、ラビング装置を用いてラビング処理を施した。このとき、長尺状のフィルムの長手方向と搬送方向は平行であり、フィルム長手方向に対して、ラビングローラーの回転軸は時計回りに45°の方向とした。
 ラビング処理面に、上述の塗布液コレステリック液晶層形成用組成物を膜厚3μmになるようにワイヤーバーを用いて塗布し、重合性液晶組成物からなる膜を形成した。次いでこの膜を70℃で1分間加熱し、コレステリック配向処理を施した。
 その後、25℃に冷却した塗布膜を、高圧水銀灯を有する紫外線照射装置EXECURE3000-W(HOYA社製)を用いて大気雰囲気下で10mW/cm2で10秒間紫外線を、所定のパターンで黒インクが印刷されたOHPシートをマスクとして、塗布表面側から照射して一次硬化を行った。なお、上述の照度は、UVR-T1(UD-T36;TOPCON社製)を用いて300nm~390nmの範囲で測定した照度である。更に、窒素雰囲気下50mW/cm2で30秒間紫外線を塗布表面側からマスクを介して照射して、膜を二次硬化させた。
 その後、マスクを取り外し、130°に加熱しながら、紫外線照射装置を用いてコレステリック液晶用塗付液に窒素雰囲気下50mW/cm2で40秒間紫外線を塗布表面側から照射して、等方相部分とコレステリック液晶相部分とをひとつの層に有するコレステリック液晶層を、光反射層として有するルーバーフィルムIを得た。なお、表1では、コレステリック液晶を「CLC」と表記する。
[実施例10]
 実施例10では、光反射層、および光吸収層の開口率を25%に変更した以外は実施例4と同様にして、ルーバーフィルムKを作製した。
[実施例11]
 実施例11では、第一の支持体として、ポリエチレンテレフタレートフィルム(東洋紡社製、商品名:コスモシャイン(登録商標)A4300、厚さ50μm 屈折率1.57)に変更した以外は実施例10と同様にして、ルーバーフィルムLを作製した。
[実施例12]
 実施例12では、第二の支持体として、ポリエチレンテレフタレートフィルム(東洋紡社製、商品名:コスモシャイン(登録商標)A4300、厚さ75μm 屈折率1.57)を用意した。第二の支持体の一方の面と、実施例11の第一の支持体の光吸収層と光反射層とが形成された面とを貼り合わせてルーバーフィルムMを作製した。
[実施例13]
 実施例13では、光反射層、および光吸収層の開口率を16%に変更した以外は実施例11と同様にして、ルーバーフィルムNを作製した。
[実施例14]
 実施例14では、曲率半径50μmの半球状の円弧(レンズ)を100μmピッチで正方状に配置した形状を表面に形成するため、形成する形状を反転した表面形状を有する凹凸ローラーへ変更した以外は実施例11と同様にして、ルーバーフィルムOを作製した。
[実施例15]
 実施例15では、曲率半径50μmの半球状の円弧(レンズ)を100μmピッチで正方状に配置した形状を表面に形成するため、形成する形状を反転した表面形状を有する凹凸ローラーへ変更した以外は実施例13と同様にして、ルーバーフィルムPを作製した。
[実施例16]
 実施例16では、第一の支持体として、ポリエチレンテレフタレートフィルム(東洋紡社製、商品名:コスモシャイン(登録商標)A4300、厚さ38μm 屈折率1.57)に変更した以外は実施例14と同様にして、ルーバーフィルムQを作製した。
[実施例17]
 実施例17では、曲率半径50μmの半球状の円弧(レンズ)を100μmピッチで六方状に配置した形状を表面に形成するため、形成する形状を反転した表面形状を有する凹凸ローラーへ変更した以外は実施例11と同様にして、ルーバーフィルムRを作製した。
[比較例1]
 第二の支持体として、ポリエチレンテレフタレートフィルム(東洋紡社製、商品名:コスモシャイン(登録商標)A4300、厚さ75μm 屈折率1.57)を準備し、片面側にピッチ333μm、幅166.5μmのストライプ状のマスクを介してAgを蒸着し、光反射層を形成した。
 次いで、断面が曲率半径167μmの凸状の円弧(レンズ)を333μmピッチで表面に形成するため、形成する形状を反転した表面形状を有する凹凸ローラーを作製した。
 第一の支持体として、ポリエチレンテレフタレートフィルム(東洋紡社製、商品名:コスモシャイン(登録商標)A4300、厚さ125μm 屈折率1.57)を準備した。第一の支持体表面に、上述の1.で屈折率が1.55となるよう調製した酸化チタン粒子含有重合性組成物(組成物タイプ1)を、特開2006-122889号公報の実施例1に記載のスロットダイを用いたダイコート法で、搬送速度24m/分の条件で塗布し、60℃で60秒乾燥させた。その後、上述の凹凸ローラーを押し当てながら、UV露光機(HOYA CANDEO OPTRONICS社製EXECURE 3000W)を用いて、窒素雰囲気下で5J/cm2で露光して硬化させた後、凹凸ローラーから剥離し、表面に凹凸形状(レンズ)を作製した。
 その後、第二の支持体の光反射層形成面と第一の支持体の凹凸形状を形成していない面とを貼り合わせルーバーフィルムJを作製した。
[比較例2]
 比較例2は、3M社製 プライバシーフィルム(PF12.1WS(品番))である。
[比較例3]
 比較例3は、光反射層、および光吸収層のレンズピッチに対する開口率を8%に変更した以外は実施例14と同様にして、ルーバーフィルムSを作製した。
 なお、上述の実施例14~実施例16および比較例3は、レンズを正方配置したものであり、実施例17は、レンズを六方配置したものである。開口率の数値は、例えば、「25/5」と示されているが、先の数値は、(開口幅)/(ピッチで表される数値)である。後の数値は、(開口面積)/(ピッチを1辺とする正方形の面積)で表される数値である。
[評価]
 (最大輝度の評価)
 上述で作製した面光源装置の光の出射面において、測定機”EZ-Contrast XL88”(ELDIM社製)を用いて、極角度0°(正面方向)から極角度88°までの1°刻みの輝度(Y0)を測定し、輝度値の最大値を最大輝度とする。この最大輝度を面光源装置にルーバーフィルムを配置していない状態(T0)と、配置した状態(T)とで測定し、その比(T/T0)を算出し、最大輝度比を求めた。最大輝度比を下記4段階に分け、光利用効率として評価した。こうして求められる最大輝度比の値が大きい程、面光源装置の光利用効率が高いことを意味する。測定結果を表1に示す。
<評価基準>
AA:1.3以上
A:1.25以上
B:0.8以上1.25未満
C:0.65以上0.8未満
D:0.65未満
 (指向性の評価)
 上述で作製した面光源装置の光の出射面において、測定機”EZ-Contrast XL88”(ELDIM社製)を用いて、極角度0°(正面方向)から極角度88°までの1°刻みの輝度(Y0)を測定し、正面方向の輝度値に対して半分の輝度値になる最小の極角度を半値半幅とし、下記4段階に分け、指向性として評価を行った。指向性の評価結果を表1に示す。
<評価基準>
A:15°未満
B:15°以上20°未満
C:20°以上25°未満
D:25°以上
 (裾切れの評価)
 上述で作製した面光源装置の光の出射面において、測定機”EZ-Contrast XL88”(ELDIM社製)を用いて、極角度0°(正面方向)から極角度88°までの1°刻みの輝度(Y0)を測定し、正面方向の輝度値と極角60°の輝度最小値の比をとり、SN比(=正面方向の輝度/極角60°の輝度最小値)とし、下記3段階に分け、裾切れとして評価を行った。裾切れの評価結果を表1のSN比の欄に示す。
<評価基準>
A:50以上
B:10以上50未満
C:10未満
Figure JPOXMLDOC01-appb-T000006
 実施例1および実施例2は、第一の態様の実施例である。実施例3~実施例13は、第二の態様の実施例である。
 表1に示す結果から、実施例のルーバーフィルムは、比較例のルーバーフィルムと比べて、光利用効率を維持したまま、指向性が向上していることを確認できる。
 実施例3と実施例5、および実施例4と実施例6の対比から第二の支持体を有することが好ましいことがわかる。
 また、実施例5と実施例7、および実施例6と実施例8の対比から第二の支持体の屈折率は1.6以上であることが好ましいことがわかる。
 実施例4、および実施例10~実施例13の対比から、開口率が小さい方が、最大輝度比が高くなり、かつ指向性も優れる。
 実施例10~実施例13は、比較例3に比して、最大輝度比が高くなり、かつSN比も優れる。
 実施例10~実施例13の対比から、レンズの配置は正方配置よりも六方配置の方が、最大輝度比が高くなる。
 1、1A、1B 面光源装置
 2、2A、2B ルーバーフィルム
 11、11A、11B レンズ
 12、12A、12B 第一の支持体
 13 光反射層
 13a、32a、36a 表面
 13b 第2の開口部
 14 拡散板
 15 反射板
 16 光源
 17 第二の支持体
 18 光吸収層
 18b 第1の開口部
 18c 裏面
 20 反射型偏光子
 22 モアレ防止点
 30 液晶表示装置
 32 液晶セル
 33 画素
 34 バックライト側偏光子
 36 視認側偏光子
 CL 光軸

Claims (13)

  1.  面光源装置に用いられ、
     光源の出射側に一定のピッチで複数配列されたレンズと、
     前記レンズよりも光源側に配置される、厚みが前記レンズのピッチと同じかそれ以上であり、屈折率1.5以上の第一の支持体と、
     前記第一の支持体よりも前記光源側に配置される光吸収層とを有し、
     前記光吸収層は、第1の開口部を有し、前記第1の開口部の開口率は30%~70%であるルーバーフィルム。
  2.  前記第一の支持体の屈折率が1.6以上である請求項1に記載のルーバーフィルム。
  3.  面光源装置に用いられ、
     光源の出射側に一定のピッチで複数配列された、屈折率1.65~1.9のレンズと、
     前記レンズよりも光源側に配置される、厚みが前記レンズのピッチより小さく、屈折率1.4~1.65の第一の支持体と、
     前記第一の支持体よりも前記光源側に配置される光吸収層とを有し、
     前記光吸収層は、第1の開口部を有し、前記第1の開口部の開口率は10%~70%であるルーバーフィルム。
  4.  前記光吸収層よりも前記光源側に配置され、第2の開口部を備える光反射層を有し、前記光反射層は反射率90%以上であり、かつ前記第2の開口部の開口率は前記光吸収層と同じであり、
     前記第1の開口部と前記第2の開口部とが位置合せされた状態で前記光吸収層と前記光反射層とが配置されている請求項1~3のいずれか1項に記載のルーバーフィルム。
  5.  前記各第1の開口部は前記各レンズに対して設けられており、前記第1の開口部は前記レンズの光軸から外れている請求項1~3のいずれか1項に記載のルーバーフィルム。
  6.  前記各第1の開口部および前記各第2の開口部は前記各レンズに対して設けられており、位置合せされた前記第1の開口部および前記第2の開口部は前記レンズの光軸から外れている請求項4に記載のルーバーフィルム。
  7.  前記光吸収層よりも前記光源側に第二の支持体が配置されている請求項1~6のいずれか1項に記載のルーバーフィルム。
  8.  前記光反射層よりも前記光源側に第二の支持体が配置されている請求項4または6に記載のルーバーフィルム。
  9.  前記光反射層がコレステリック液晶層を含む請求項4、6および8のいずれか1項に記載のルーバーフィルム。
  10.  前記第二の支持体の屈折率が1.6以上である請求項7または8に記載のルーバーフィルム。
  11.  請求項1~10のいずれか1項に記載のルーバーフィルムと、前記光源とを含む面光源装置。
  12.  前記ルーバーフィルムと前記光源との間に配置される反射型偏光子を有する請求項11に記載の面光源装置。
  13.  請求項11または12に記載の面光源装置と、液晶パネルと、を含む液晶表示装置。
PCT/JP2018/043575 2017-12-04 2018-11-27 ルーバーフィルム、面光源装置および液晶表示装置 WO2019111763A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880078183.5A CN111448486A (zh) 2017-12-04 2018-11-27 百叶窗膜、面光源装置及液晶显示装置
JP2019558153A JPWO2019111763A1 (ja) 2017-12-04 2018-11-27 ルーバーフィルム、面光源装置および液晶表示装置
US16/885,749 US20200292878A1 (en) 2017-12-04 2020-05-28 Louver film, planar light source device, and liquid crystal display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-232869 2017-12-04
JP2017232869 2017-12-04
JP2018-100798 2018-05-25
JP2018100798 2018-05-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/885,749 Continuation US20200292878A1 (en) 2017-12-04 2020-05-28 Louver film, planar light source device, and liquid crystal display device

Publications (1)

Publication Number Publication Date
WO2019111763A1 true WO2019111763A1 (ja) 2019-06-13

Family

ID=66750470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043575 WO2019111763A1 (ja) 2017-12-04 2018-11-27 ルーバーフィルム、面光源装置および液晶表示装置

Country Status (4)

Country Link
US (1) US20200292878A1 (ja)
JP (1) JPWO2019111763A1 (ja)
CN (1) CN111448486A (ja)
WO (1) WO2019111763A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021008574A1 (zh) * 2019-07-18 2021-01-21 京东方科技集团股份有限公司 显示面板、显示装置及其驱动方法
US11906828B2 (en) 2020-09-30 2024-02-20 Sioptica Gmbh Switchable light filter and use thereof
WO2024070381A1 (ja) * 2022-09-29 2024-04-04 富士フイルム株式会社 積層体付きディスプレイ

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108493209B (zh) * 2018-05-24 2020-06-23 京东方科技集团股份有限公司 一种显示基板、显示装置以及显示基板的制作方法
CN113214753B (zh) * 2021-04-30 2023-02-28 浙江紫光科技有限公司 一种能反射近红外线的低透光窗膜及其制备方法
TWI763547B (zh) * 2021-06-21 2022-05-01 友達光電股份有限公司 顯示裝置
CN114280846B (zh) * 2021-12-29 2023-06-06 Tcl华瑞照明科技(惠州)有限公司 背光模组、照明装置和显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003091004A (ja) * 2001-09-18 2003-03-28 Seiko Epson Corp 液晶表示装置および電子機器
JP2005148440A (ja) * 2003-11-17 2005-06-09 Toppan Printing Co Ltd 照明光制御シートとそれを用いた表示装置
JP2006318886A (ja) * 2004-11-30 2006-11-24 Kuraray Co Ltd 照明装置およびこれに使用する光制御部材並びにこれらを用いた表示装置
JP2009500663A (ja) * 2005-06-29 2009-01-08 リフレキサイト・コーポレーション コリメーティングマイクロレンズアレイ
JP2009053607A (ja) * 2007-08-29 2009-03-12 Dainippon Printing Co Ltd 光制御シート、面光源装置、透過型表示装置
JP2010044921A (ja) * 2008-08-11 2010-02-25 Kuraray Co Ltd 面光源素子並びにこれに用いる光制御部材及びこれを用いた画像表示装置
JP2017072720A (ja) * 2015-10-07 2017-04-13 凸版印刷株式会社 表示体、および、表示体の真贋判定方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4856805B2 (ja) * 2000-03-31 2012-01-18 スリーエム イノベイティブ プロパティズ カンパニー 光学積層体
US9213929B2 (en) * 2006-05-30 2015-12-15 Dai Nippon Printing Co., Ltd. Pattern printed sheet
JP4389938B2 (ja) * 2007-01-05 2009-12-24 凸版印刷株式会社 光学シートとそれを用いたバックライト・ユニットおよびディスプレイ
US9563004B2 (en) * 2009-10-27 2017-02-07 Dai Nippon Printing Co., Ltd. Image source unit and image display unit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003091004A (ja) * 2001-09-18 2003-03-28 Seiko Epson Corp 液晶表示装置および電子機器
JP2005148440A (ja) * 2003-11-17 2005-06-09 Toppan Printing Co Ltd 照明光制御シートとそれを用いた表示装置
JP2006318886A (ja) * 2004-11-30 2006-11-24 Kuraray Co Ltd 照明装置およびこれに使用する光制御部材並びにこれらを用いた表示装置
JP2009500663A (ja) * 2005-06-29 2009-01-08 リフレキサイト・コーポレーション コリメーティングマイクロレンズアレイ
JP2009053607A (ja) * 2007-08-29 2009-03-12 Dainippon Printing Co Ltd 光制御シート、面光源装置、透過型表示装置
JP2010044921A (ja) * 2008-08-11 2010-02-25 Kuraray Co Ltd 面光源素子並びにこれに用いる光制御部材及びこれを用いた画像表示装置
JP2017072720A (ja) * 2015-10-07 2017-04-13 凸版印刷株式会社 表示体、および、表示体の真贋判定方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021008574A1 (zh) * 2019-07-18 2021-01-21 京东方科技集团股份有限公司 显示面板、显示装置及其驱动方法
US11906828B2 (en) 2020-09-30 2024-02-20 Sioptica Gmbh Switchable light filter and use thereof
WO2024070381A1 (ja) * 2022-09-29 2024-04-04 富士フイルム株式会社 積層体付きディスプレイ

Also Published As

Publication number Publication date
CN111448486A (zh) 2020-07-24
JPWO2019111763A1 (ja) 2021-02-04
US20200292878A1 (en) 2020-09-17

Similar Documents

Publication Publication Date Title
WO2019111763A1 (ja) ルーバーフィルム、面光源装置および液晶表示装置
KR102463387B1 (ko) 착색 감광성 조성물, 경화막, 패턴 형성 방법, 차광막 부착 적외광 차단 필터, 고체 촬상 소자, 화상 표시 장치 및 적외선 센서
US20120262793A1 (en) Black curable composition for wafer - level lens, and wafer - level lens
TWI577750B (zh) 著色組成物、彩色濾光片的製造方法、固體攝像元件的製造方法及圖像顯示裝置的製造方法
JP5631280B2 (ja) フォトスペーサ用感光性樹脂組成物およびこれを用いたフォトスペーサ
JP6249530B2 (ja) 硬化性樹脂組成物、これを用いた反射防止膜、固体撮像素子およびカメラモジュール
TWI483067B (zh) 晶圓級鏡頭用之黑色硬化性組成物及晶圓級透鏡
JP2013041153A (ja) フォトスペーサ用感光性樹脂組成物およびこれを用いたフォトスペーサ
JP6251067B2 (ja) 着色組成物、硬化膜、カラーフィルタの製造方法、カラーフィルタ、固体撮像素子および画像表示装置
JP2015007766A (ja) カラーフィルタの製造方法、下地層形成用組成物、有機el表示装置
JP2015151530A (ja) 複合体およびその製造方法、着色組成物、硬化膜、カラーフィルタ、カラーフィルタの製造方法、固体撮像素子および画像表示装置、ならびに、積層体よび積層体
JP2013148712A (ja) 光拡散フィルム用組成物および光拡散フィルム
JP2019095796A (ja) 近赤外線吸収組成物、硬化膜、近赤外線カットフィルタ、固体撮像素子、赤外線センサ、および化合物
JP2008040477A (ja) 着色樹脂組成物及びこれを用いた液晶表示素子用カラーフィルタ
WO2019045098A1 (ja) 機能性フィルム、面光源装置および液晶表示装置
KR20190110682A (ko) 착색 감광성 수지 조성물, 이를 포함하는 컬러필터 및 화상표시장치
JP6793799B2 (ja) ネガ型硬化性着色組成物、硬化膜、カラーフィルタ、パターン形成方法及び装置
WO2019225470A1 (ja) ルーバーフィルム、面光源装置および液晶表示装置
JPWO2017150069A1 (ja) 樹脂組成物、樹脂膜、カラーフィルタ、遮光膜、固体撮像装置、及び、画像表示装置
TW201533535A (zh) 感放射線性組成物及其製造方法、硬化膜、彩色濾光片及其製造方法、圖案形成方法、固體攝像元件及圖像顯示裝置
JP6225254B2 (ja) 着色組成物、着色組成物の製造方法、カラーフィルタ、有機エレクトロルミネッセンス表示素子
WO2022209566A1 (ja) 異方性光拡散フィルム及び表示装置
JP6102219B2 (ja) 横電界を印加する表示方式の液晶表示装置用カラーフィルタ
JP2020154329A (ja) 感放射線性組成物、膜、カラーフィルタ、遮光膜および固体撮像素子
KR20190110230A (ko) 착색 감광성 수지 조성물, 이를 포함하는 컬러필터 및 화상표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18886510

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019558153

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18886510

Country of ref document: EP

Kind code of ref document: A1