WO2019111532A1 - ディスクトレイ及びディスク装置 - Google Patents

ディスクトレイ及びディスク装置 Download PDF

Info

Publication number
WO2019111532A1
WO2019111532A1 PCT/JP2018/038107 JP2018038107W WO2019111532A1 WO 2019111532 A1 WO2019111532 A1 WO 2019111532A1 JP 2018038107 W JP2018038107 W JP 2018038107W WO 2019111532 A1 WO2019111532 A1 WO 2019111532A1
Authority
WO
WIPO (PCT)
Prior art keywords
disk
tray
disc
support claw
spindle
Prior art date
Application number
PCT/JP2018/038107
Other languages
English (en)
French (fr)
Inventor
高橋 宏
幸生 森岡
卓人 山崎
山本 陽一
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2019111532A1 publication Critical patent/WO2019111532A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B17/00Guiding record carriers not specifically of filamentary or web form, or of supports therefor
    • G11B17/02Details
    • G11B17/038Centering or locking of a plurality of discs in a single cartridge
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B17/00Guiding record carriers not specifically of filamentary or web form, or of supports therefor
    • G11B17/22Guiding record carriers not specifically of filamentary or web form, or of supports therefor from random access magazine of disc records
    • G11B17/26Guiding record carriers not specifically of filamentary or web form, or of supports therefor from random access magazine of disc records the magazine having a cylindrical shape with vertical axis
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B23/00Record carriers not specific to the method of recording or reproducing; Accessories, e.g. containers, specially adapted for co-operation with the recording or reproducing apparatus ; Intermediate mediums; Apparatus or processes specially adapted for their manufacture
    • G11B23/02Containers; Storing means both adapted to cooperate with the recording or reproducing means
    • G11B23/023Containers for magazines or cassettes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B23/00Record carriers not specific to the method of recording or reproducing; Accessories, e.g. containers, specially adapted for co-operation with the recording or reproducing apparatus ; Intermediate mediums; Apparatus or processes specially adapted for their manufacture
    • G11B23/02Containers; Storing means both adapted to cooperate with the recording or reproducing means
    • G11B23/03Containers for flat record carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B33/00Constructional parts, details or accessories not provided for in the other groups of this subclass
    • G11B33/02Cabinets; Cases; Stands; Disposition of apparatus therein or thereon

Definitions

  • the present disclosure relates to a disc tray that accommodates a plurality of discs (disc-like information storage media such as CDs and DVDs) in a stacked state, and a disc apparatus provided with the disc tray.
  • discs disc-like information storage media such as CDs and DVDs
  • FIG. 36 is a perspective view schematically showing a schematic configuration of a conventional disk device.
  • the conventional disk drive comprises two magazine stockers 101, 101.
  • the two magazine stockers 101 and 101 are provided on the bottom chassis 111 so as to face each other.
  • illustration of one (front side) magazine stocker 101 is omitted.
  • each magazine stocker 101 a plurality of magazines 102 are stored.
  • Each magazine 102 has a disk tray 121 for storing a plurality of disks, and a box-like tray holder (not shown) for storing the disk tray 121.
  • the disc tray 121 is provided with a cylindrical core rod (not shown) passing through the center holes of the plurality of discs, and is configured to restrict the movement of each disc in the surface direction by the core rod. . Further, the disc tray 121 is provided with three through holes at positions close to the recording area of the disc in plan view and separated from each other.
  • a picker 103 is provided between the two magazine stockers 101 and 101 for drawing out the disc tray 121 from the tray holder and holding the disc tray 121.
  • the picker 103 is configured to transport the held disk tray 121 to the vicinity of a plurality of drive units 104 disposed at the rear of the apparatus.
  • the picker 103 is integrally provided with a lifter 105 for pushing out a plurality of discs from the disc tray 121.
  • the lifter 105 pushes a plurality of discs from the disc tray 121 along the core rod by inserting three pins into the inside of the disc tray 121 through the three through holes of the disc tray 121.
  • the drive unit 104 is an apparatus for recording or reproducing information on a disc.
  • the drive unit 104 is a tray-type drive unit that loads a disc using a tray.
  • the plurality of drive units 104 are stacked in the device height direction, and are disposed adjacent to the respective magazine stockers 101 and 101 at the rear of the device.
  • Carriers 106 are provided between a plurality of drive units 104 stacked and arranged adjacent to one magazine stocker 101 and a plurality of drive units 104 stacked and arranged adjacent to the other magazine stocker 101.
  • the carrier 106 holds the plurality of disks pushed out by the lifter 105 in a stacked state, and separates the lowermost disk from the held plurality of disks above the tray discharged from any drive unit 104, The separated disc is configured to be placed on the tray.
  • An electric circuit and a power supply 107 are provided further behind the carrier 106 and the drive units 104 than the apparatus.
  • the electric circuit and the power supply 107 are provided with a control unit (not shown) that controls the operation (such as a motor) of each device such as the picker 103, the drive unit 104, and the carrier 106.
  • the control unit is connected to, for example, a host computer that manages data.
  • the host computer sends an instruction to the control unit to perform an operation such as writing or reading data to the designated magazine 102 based on the instruction of the operator.
  • the control unit controls the operation of each device such as the picker 103, the drive unit 104, and the carrier 106 in accordance with the instruction.
  • an object of the present disclosure is to solve the above problem, and it is possible to extract a plurality of discs more reliably, and to reduce the occurrence of powder blowing from the disc tray due to the extraction of the discs. It is to provide.
  • the disk tray in the present disclosure is a disk tray that accommodates a plurality of disks in a stacked state,
  • the disc tray is provided with a disc tray spindle which penetrates a central hole provided in each of the plurality of discs and restricts the movement of each disc in the surface direction.
  • the disk tray spindle is configured to contact the inner circumferential portion of each disk at three points.
  • the disk tray of the present disclosure it is possible to more reliably extract a plurality of disks and to reduce the occurrence of powder blowing from the disk tray due to the removal of the disks.
  • FIG. 1 is a perspective view of a disk device according to an embodiment.
  • FIG. 3 is a perspective view showing the drawer of FIG. 2 being pulled out of the case, and an exploded view of one disk device stored in the drawer;
  • FIG. 6 is a perspective view showing the configuration of a changer unit included in the disk apparatus of FIG. 5 and a disk conveyance operation. It is a perspective view which shows the disc conveyance operation following FIG.
  • FIG. 7A It is a perspective view which shows the disc conveyance operation following FIG. 7B. It is a perspective view which shows the disc conveyance operation following FIG. 7C. It is a perspective view which shows the disc conveyance operation following FIG. 7D. It is a perspective view which shows the disc conveyance operation following FIG. 7E. It is a perspective view which shows the disc conveyance operation following FIG. 7F. It is a perspective view which shows the disc conveyance operation following FIG. 7G.
  • FIG. 7 is a perspective view showing a state in which a plurality of discs are stored in a stacked state in the disc tray. It is the perspective view which looked at the disc tray from diagonally downward. It is a top view of a disc tray.
  • FIG. 12A It is a perspective view which shows a mode that a disc tray spindle is attached to the circular hole of a disc tray. It is a perspective view which shows a mode that a disc tray spindle is attached to the circular hole of a disc tray. It is a perspective view which shows a mode that a disc tray spindle is attached to the circular hole of a disc tray. It is a perspective view which shows a mode that a disc tray spindle is attached to the circular hole of a disc tray.
  • FIG. 5 is a perspective view of a disk selector spindle. It is a perspective view of the selection hook and drop hook with which a disk selector spindle is provided. FIG. 5 is a top view of a disk selector spindle.
  • FIG. 5 is a bottom view of a disk selector spindle. It is the perspective view which looked at the disk selector from diagonally upward. It is the perspective view which looked at the disc selector from diagonally downward. It is an exploded perspective view showing the composition of the drive mechanism which drives a disk selector spindle. It is the assembly perspective view which looked at the drive mechanism of FIG. 21 from the back direction. It is a perspective view which shows the positional relationship of the 1st support nail of the select hook which can be taken by the drive of a selection motor and a separation motor, the 2nd support nail of a drop hook, and a 3rd support nail.
  • FIG. 10 is a plan view showing the positional relationship between the separation cam gear and the engagement pin of the drop hook when the separation motor is further driven.
  • FIG. 10 is a side view showing the positional relationship between the pressing cam and the contact pin of the drop hook when the selection motor and the separation motor are driven. It is a side view which shows the positional relationship of the contact pin of a press cam and a drop hook when a selection motor is further driven.
  • FIG. 18 is a cross-sectional view schematically showing a disk holding operation in which the disk selector spindle holds a plurality of disks from the disk tray.
  • FIG. 31B is a cross-sectional view showing the disk holding operation continued from FIG. 31A.
  • FIG. 31C is a cross-sectional view showing the disk holding operation continued from FIG. 31B.
  • FIG. 31C is a cross-sectional view showing the disk holding operation continued from FIG. 31C.
  • FIG. 31D is a cross-sectional view showing the disk holding operation continued from FIG. 31D.
  • FIG. 31E is a cross-sectional view showing the disk holding operation continued from FIG. 31E.
  • FIG. 18 is a perspective view showing, in a partial cross section, a disk holding operation in which the disk selector spindle holds a plurality of disks from the disk tray.
  • FIG. 18 is a perspective view showing, in a partial cross section, a disk holding operation in which the disk selector spindle holds a plurality of disks from the disk tray.
  • FIG. 13 is a cross-sectional view schematically showing a disk supply operation in which the disk selector spindle supplies a plurality of held disks to the tray of the drive unit.
  • FIG. 33C is a cross-sectional view showing the disk supply operation continued from FIG. 33A.
  • FIG. 34 is a cross-sectional view showing the disk supply operation continued from FIG. 33B.
  • FIG. 33 is a cross-sectional view showing the disk supply operation continued from FIG. 33C.
  • FIG. 33 is a cross-sectional view showing the disk supply operation continued from FIG. 33D.
  • FIG. 33 is a cross-sectional view showing the disk supply operation continued from FIG. 33E.
  • FIG. 33C is a cross-sectional view showing the disk supply operation continued from FIG. 33A.
  • FIG. 34 is a cross-sectional view showing the disk supply operation continued from FIG. 33B.
  • FIG. 33 is a cross-sectional view showing the disk supply operation continued from FIG. 33C.
  • FIG. 33 is
  • FIG. 18 is a cross-sectional view schematically showing a disk return operation in which the disk selector spindle recovers the disk on the tray of the drive unit and returns it to the disk tray.
  • FIG. 34C is a cross-sectional view showing the disc return operation continued from FIG. 34A.
  • FIG. 34C is a cross-sectional view showing the disc return operation continued from FIG. 34B.
  • FIG. 34C is a cross-sectional view showing the disc return operation continued from FIG. 34C.
  • FIG. 34D is a cross-sectional view showing the disc return operation continued from FIG. 34D.
  • FIG. 34E is a cross-sectional view showing the disc return operation, following FIG. 34E.
  • FIG. 34C is a cross-sectional view showing the disc return operation, following FIG. 34F.
  • FIG. 34C is a cross-sectional view showing the disc return operation continued from FIG. 34A.
  • FIG. 34C is a cross-sectional view showing the disc return operation continued from FIG. 34B
  • 21 is a perspective view showing, in partial cross section, a modified example of the disk return operation in which the disk selector spindle recovers the disk on the tray of the drive unit and returns it to the disk tray. It is a perspective view which shows the disc return operation
  • the inventors have found that when the plurality of discs are pushed out of the disc tray along the core bar, uneven sliding resistance is generated between the inner periphery of each disc and the core bar, and the discs are slightly inclined. It has been found that it is possible to do The inventors also found that the slight inclination is the cause of the inability to fully eject the plurality of discs. In addition, the inventors of the present invention have found that a slight inclination causes powder blowing from the core bar of the disc tray due to the sliding resistance between the inner periphery of the disc and the core bar of the disc tray when the disc is removed from the disc tray. We found that it was the cause.
  • the present inventors have configured the core rod (hereinafter referred to as a disk tray spindle) to contact the inner peripheral portion of each disk at three points, thereby the inner periphery of each disk It has been found that the sliding resistance can be reduced while stably supporting the part, and furthermore, the occurrence of powder blowing from the disc tray due to the removal of the disc can be reduced, and the following inventions have been made.
  • a disk tray spindle the core rod
  • a disk tray for storing a plurality of disks in a stacked state, comprising:
  • the disc tray is provided with a disc tray spindle which penetrates a central hole provided in each of the plurality of discs and restricts the movement of each disc in the surface direction.
  • the disk tray spindle is configured to contact the inner periphery of each disk at three points, Provide a disc tray.
  • the disc tray spindle is: A central axis extending in the thickness direction of the disc tray; Three side plates connected to the central axis and in contact with the inner periphery of each disk; Equipped with The disk tray according to the first aspect is provided, wherein the three side plate portions are disposed at substantially equal angular intervals or equal intervals with respect to the central axis when viewed in the thickness direction of the disk tray.
  • the disc tray spindle comprises a bottom plate connected to the lower end of each of the three side plates;
  • the bottom plate portion according to the first or second aspect, wherein the bottom plate portion has through holes respectively in three regions sandwiched by any two side plate portions of the three side plate portions when viewed from the thickness direction of the disc tray.
  • each of the through holes is provided in a region located in the vicinity of the inner diameter of the disc when viewed from the thickness direction of the disc tray. provide.
  • each through hole is provided in the whole or substantially the entire area overlapping the center hole of the disc when viewed from the thickness direction of the disc tray, and near the inner diameter of the disc.
  • the disc tray according to the fourth aspect which is formed to partially infiltrate the area located in
  • the disc tray spindle is attached to the wall forming the circular hole provided in the bottom wall of the disc tray by bayonet connection of the outer peripheral portion of the bottom plate.
  • the disc tray according to any one of the third to fifth aspects.
  • a disc apparatus comprising the disc tray according to any one of the first to sixth aspects.
  • FIG. 1 is a perspective view of a storage for storing a plurality of disk devices according to the embodiment.
  • the storage 1 is, for example, a 19-inch rack.
  • the storage case 1 is a rectangular box-shaped member, and has an opening 1A on the front side.
  • the length in the depth direction X is, for example, 1,000 mm
  • the length in the lateral direction Y is, for example, 600 mm
  • the length in the vertical direction Z is, for example, 2,000 mm.
  • the storage 1 is provided with a plurality of drawers 2 as shown in FIG. In the embodiment, four drawers 2 are arranged in the vertical direction Z. Each drawer 2 is configured to be able to be put in and out through the opening 1A of the storage 1.
  • Each drawer 2 is configured to be operable independently of the other drawers 2, and the drawer 2 can be pulled out without interrupting the operation of the other drawers 2 even when the power of the storage case 1 is turned on. Can. However, electrical control is performed so that only one drawer 2 can be pulled out in the same rack. Thereby, the center of gravity moves forward by pulling out the plurality of drawers 2, and it is possible to prevent the storage 1 from falling.
  • FIG. 2 is a perspective view showing a state where one drawer 2 is pulled out of the storage 1 of FIG.
  • the drawer 2 houses a plurality of disk devices (also referred to as changer modules) 3 according to the embodiment.
  • disk devices 3 are accommodated in one depth direction X in one drawer 2.
  • the front wall of the drawer 2 is provided with a handle portion 2A. By pushing or pulling the handle portion 2A in the depth direction X, the drawer 2 can be easily moved in and out of the storage 1.
  • FIG. 3 is a perspective view showing the drawer 2 housed in the case 4.
  • FIG. 4 is a perspective view showing the drawer 2 pulled out of the case 4.
  • the case 4 is a rectangular box-shaped member, and has an opening 4A (see FIG. 4) on the front surface.
  • the case 4 is detachably fixed in the housing 1.
  • four cases 4 are stacked in the vertical direction Z.
  • the case 4 is provided with a pair of rails 5 so as to guide the movement of the drawer 2 in the depth direction X.
  • a fan unit 6 for blowing a cooling air for cooling each disk device 3 is detachably mounted on the front wall of the drawer 2.
  • FIG. 5 is a perspective view of the disk drive 3.
  • FIG. 6 is a perspective view showing the drawer 2 drawn out from the case 4 and is an exploded view of one disk device 3 stored in the drawer 2. As shown in FIG.
  • the disk apparatus 3 includes two tray stacks 31A and 31B so as to face each other in the lateral direction Y.
  • a plurality of disc trays 32 are stored in the tray stacks 31A and 31B.
  • the tray stacks 31A and 31B are configured to hold the plurality of disk trays 32 in the vertical direction Z.
  • the tray stack 31A disposed on the right side as viewed from the front of the drawer 2 is configured to hold the 16 disk trays 32 in the vertical direction Z.
  • the tray stack 31B disposed on the left side as viewed from the front of the drawer 2 is configured to hold eighteen disk trays 32 in the vertical direction Z.
  • the disc tray 32 is configured to be able to store a plurality of discs.
  • the disk tray 32 is configured to be able to store twelve disks in a stacked state.
  • the disk is, for example, an optical disk having a recording layer on both sides of 12 cm in diameter.
  • the thickness of the disc is, for example, 1.38 mm.
  • a disc tray 32 and a changer unit 33 for transporting the disc are provided.
  • the drive unit 34 is a device for recording or reproducing information on the disc.
  • the drive unit 34 is a tray type disk drive which loads a disk using a tray.
  • the drive unit 34 is attached to the housing 35.
  • the tray stacks 31A and 31B and the changer unit 33 are stored in a housing 35.
  • the tray stacks 31A and 31B are detachably configured by pushing or pulling in the lateral direction Y in a state where the drawer 2 is pulled out from the case 4 as shown in FIG.
  • the tray stacks 31A and 31B may be divided into a plurality of (for example, two upper and lower stages) so as to be easily attached to and detached from the housing 35.
  • the changer unit 33 is configured to be removable from the housing 35 by pushing or pulling in the vertical direction Z while the drawer 2 is pulled out from the case 4 as shown in FIG. 4.
  • a control unit 7 for controlling various operations including the disk conveyance operation of each disk device 3 and the air blowing operation of the fan unit 6 is detachably attached.
  • the control unit 7 is connected, for example, by wire or wirelessly to a host computer that manages data.
  • the host computer sends an instruction to the control unit 7 to perform an operation such as writing or reading data to a designated disk based on the instruction of the operator.
  • the control unit 7 controls the operation of each device such as the fan unit 6, the changer unit 33, and the drive unit 34 in accordance with the instruction.
  • the connecting unit 8 is attached to the changer unit 33 above the tray stack 31B.
  • the connecting unit 8 electrically connects the tray carrier 36 and the disk selector 37 included in the changer unit 33 described later and the control unit 7.
  • FIGS. 7A to 7H are perspective views showing the configuration of the changer unit 33 and the disk conveyance operation.
  • the changer unit 33 includes a tray carrier 36 and a disk selector 37.
  • the tray carrier 36 and the disk selector 37 are attached to a chassis 38 shown in FIG. 7A to 7H show a state in which the front wall 38A of the chassis 38 shown in FIG. 6 is removed in order to make the internal configuration of the changer unit 33 more visible.
  • the tray carrier 36 is configured to transport one disk tray 32 selected from the plurality of disk trays 32 to the vicinity of the drive unit 34, as shown in FIGS. 7B to 7D. Further, the tray carrier 36 is configured to store the disk tray 32 transported to the vicinity of the drive unit 34 at the original position (tray stack 31A or tray stack 31B). That is, the tray carrier 36 has the same function as the "picker" of a conventional disk drive.
  • the tray carrier 36 is configured to move in the vertical direction Z. Further, the tray carrier 36 moves to a desired position of the disc tray 32, and is configured to be able to put the disc tray 32 into and out of the tray stacks 31A and 31B.
  • the disk selector 37 is disposed in the vicinity of the drive unit 34, and is configured to supply one disk D1 out of the plurality of disks D1 stored in the disk tray 32 to the drive unit 34.
  • the disk selector 37 is configured to hold a plurality of disks D1 stored in the disk tray 32 in the vicinity of the drive unit 34, as shown in FIG. 7E.
  • the tray carrier 36 is lowered and separated from the disk selector 37. Thereafter, as shown in FIG. 7F, the tray 34A is discharged from the drive unit 34 so as to be located below the disk selector 37.
  • the disk selector 37 separates one disk D1 from the plurality of held disks D1 and supplies it to the tray 34A of the drive unit 34. Thereafter, as shown in FIG. 7H, the tray 34A is transported into the drive unit 34, so that data recording or reproduction with respect to the disk D1 becomes possible.
  • the disk selector 37 holds the disk D1 on the tray 34A discharged from the drive unit 34, and releases the disk D2 from holding the disk D1 on the disk tray 32. It is configured to return. That is, the disk selector 37 has the same function as the "carrier" of the conventional disk apparatus.
  • FIG. 8 is a perspective view showing a state in which a plurality of disks D1 are stored in the disk tray 32 in a stacked state.
  • FIG. 9 is a perspective view of the disc tray 32 as viewed obliquely from below.
  • FIG. 10 is a plan view of the disc tray 32. As shown in FIG.
  • the disc tray 32 penetrates the central holes D1A provided in each of the plurality of discs D1, and restricts the movement of each disc D1 in the surface direction (X1 direction and Y1 direction).
  • a tray spindle (also referred to as a core rod) 321 is provided.
  • the disk tray spindle 321 is made of a material such as polyacetal (POM) having high wear resistance and high slidability. Further, the disk tray spindle 321 is configured to contact the inner peripheral portion D1B of each disk D1 at three points. As a result, the disc tray spindle 321 and the respective discs D1 come into contact with each other, and at least one of them can be scraped to suppress generation of foreign matter (shaving powder). Further, the sliding resistance can be suppressed low while stably supporting the inner circumferential portion D1B of each disk D1. As a result, the plurality of disks D1 can be extracted from the disk tray 32 more reliably.
  • POM polyacetal
  • the disk tray spindle 321 is connected to the central shaft 322 extending in the thickness direction Z1 of the disk tray 32 and the central shaft 322, and three side plate portions respectively contacting the inner peripheral portion D1B of each disk D1. And H.323.
  • the central axis 322 is formed in a cylindrical shape.
  • Each side plate part 323 is formed in flat form, and is connected along the side of central axis 322.
  • the three side plate portions 323 are disposed at substantially equal angular intervals or equiangular intervals with respect to the central axis 322 as viewed from the thickness direction Z1 of the disc tray 32. Specifically, the three side plate portions 323 are arranged at intervals of 120 degrees around the central axis 322.
  • the disk tray spindle 321 contacts the inner peripheral portion D1B of the disk D1 at three points by the front end portions of the three side plate portions 323.
  • FIG. 11A is a perspective view of the disc tray spindle 321 as viewed obliquely from above.
  • 11B and 11C are perspective views of the disc tray spindle 321 as viewed obliquely from below.
  • the disc tray spindle 321 includes a bottom plate 324 connected to the lower end of each of the three side plates 323.
  • the bottom plate portion 324 has through holes 325 in three regions sandwiched by any two side plate portions 323 of the three side plate portions 323 as viewed in the thickness direction Z1 of the disc tray 32.
  • Each through hole 325 is provided in a region located in the vicinity of the inner diameter of the disc D1 when viewed in the thickness direction Z1 of the disc tray 32.
  • the recording area of the disc D1 is, for example, an area in which data in the range of 40 mm to 118.5 mm from the center of the disc D1 is recorded.
  • the recording area of the disk D1 is an area located outside the area surrounded by the one-dot chain line.
  • no through hole is provided in the vicinity of the recording area of the disc D1 as viewed in the thickness direction Z1 of the disc tray 32. As a result, it is possible to prevent the foreign matter from entering the disc tray 32 and damaging the recording area of the disc D1.
  • Each through hole 325 is provided in the whole or substantially the entire area overlapping the central hole D1A of the disc D1 (the area surrounded by the dotted line in FIG. 10) when viewed in the thickness direction Z1 of the disc tray 32.
  • Each through hole 325 is located in the vicinity of the inner diameter of the disk D1 (in FIG. 10, the region surrounded by the dotted line and the region surrounded by the two-dot chain line (for example, 17.75 mm from the center of the disk D1) Region) is formed so as to partially intrude into the region).
  • each through hole 325 has two concave portions 325A which intrude into a region located near the inner diameter of the disk D1.
  • Each recess 325A has a shape that conforms to at least one of a first support claw 374B, a second support claw 375B, and a third support claw 375C, which will be described later, and is formed in a size that allows passage It is done.
  • the first support claw 374B, the second support claw 375B, and the third support claw 375C are formed in the same or substantially the same shape and size. Thereby, the opening area is made as small as possible, and the strength of the disk tray spindle 321 is improved.
  • disc tray spindle 321 is attached to the wall forming the circular hole provided in the bottom wall of the disc tray 32 by bayonet connection of the outer peripheral portion of the bottom plate portion 324.
  • FIG. 12A is a perspective view of the disc tray 32 from the bottom before the disc tray spindle 321 is attached
  • FIG. 12B is a partially enlarged perspective view thereof.
  • a circular hole 327 is formed in the central portion of the bottom wall 326 of the disc tray 32.
  • a bayonet protrusion 327A is formed on the wall forming the circular hole 327.
  • the bottom plate portion 324 of the disk tray spindle 321 is formed with a bayonet groove 324A corresponding to the bayonet protrusion 327A.
  • FIG. 13A to 13C are perspective views showing how the disc tray spindle 321 is attached to the circular hole 327 of the disc tray 32.
  • the bottom plate portion 324 of the disk tray spindle 321 is inserted into the circular hole 327.
  • the bayonet protrusion 327A and the bayonet groove 324A are coupled by rotating the disc tray spindle 321 about the central axis 322.
  • FIGS. 14A to 14D are perspective views showing how the disk selector 37 holds the plurality of disks D1 in the disk tray 32 transported by the tray carrier.
  • the disk selector 37 includes a disk selector spindle 371 which is inserted into central holes D1A provided in each of the plurality of disks D1.
  • the disk selector spindle 371 is configured to hold the plurality of disks D1 in a stacked state, and to separate the lowermost disk from the other disks and to supply it to the drive unit 34.
  • the disk selector spindle 371 is configured to be capable of holding an arbitrary number of disks of the plurality of disks D1.
  • FIG. 14B shows the tray carrier 36 raised to a position where the disk selector spindle 371 holds the uppermost disk.
  • FIG. 14C shows the tray carrier 36 raised to a position where the disk selector spindle 371 holds six disks.
  • FIG. 14D shows a state in which the tray carrier 36 is lifted to a position where the disk selector spindle 371 holds all (12 sheets) of disks.
  • a disc-shaped disc press 372 is mounted around the disc selector spindle 371 so as to be relatively movable in the vertical direction Z.
  • the disc press 372 is biased downward by a conical coil spring (not shown).
  • the disc press 372 contacts the non-recording area on the inner peripheral portion of the disc D1 and the disc D1 is moved to the disc tray by the biasing force of the conical coil spring. Press to 32. Thereby, rattling of each disk D1 is suppressed, and the disk selector spindle 371 is more reliably inserted into the center hole D1A of each disk D1.
  • the disk selector 37 further includes a drive mechanism 9 for driving the disk selector spindle 371 and a chassis 373 for holding the drive mechanism 9.
  • FIG. 15 is a perspective view of the disk selector spindle 371.
  • FIG. 16 is a perspective view of the select hook 374 and the drop hook 375 provided in the disk selector spindle 371.
  • FIG. 17 is a top view of the disk selector spindle 371.
  • FIG. 18 is a bottom view of the disk selector spindle 371.
  • the disk selector spindle 371 includes a plurality of select hooks 374 and a plurality of drop hooks 375. In the embodiment, the disk selector spindle 371 comprises three select hooks 374 and three drop hooks 375.
  • the select hook 374 and the drop hook 375 are attached to penetrate the fixing plate 376.
  • the fixing plate 376 as shown in FIGS. 17 and 18, is a fan-shaped plate-like member having a central angle of about 120 degrees, and is fixed to the chassis 373 by a fastening member such as a screw.
  • Three fixing plates 376 are attached to the chassis 373 in a disk shape.
  • One select hook 374 and one drop hook 375 are attached to one fixing plate 376. That is, the three select hooks 374 and the three drop hooks 375 are alternately arranged at intervals in the circumferential direction of the center hole D1A of the disk D1 in plan view.
  • the select hooks 374 and the drop hooks 375 attached to the fixing plates 376 are configured to be able to pass through the through holes 325 of the disc tray 32.
  • the select hook 374 and the drop hook 375 are configured to move relative to each other in the vertical direction Z, which is the stacking direction of the disks D1.
  • the select hook 374 has a first shaft portion 374A extending in the vertical direction Z, which is the stacking direction of the disks D1, a first support claw 374B attached to the lower end portion of the first shaft portion 374A, and a first shaft portion 374A. And a selection lever 374C attached to the upper end of the.
  • the first shaft portion 374A is a cylindrical member, and is attached to the fixing plate 376 so as to be rotatable about its axis.
  • the first support claw 374B has a storage position (for example, see FIG. 31A) stored inside the central hole D1A of the disk D1 in a plan view, and a protruding position (for example, FIG. 31C) projecting in a region near the inner diameter of the disk D1. Is configured to move) and In the embodiment, the first support claw 374B is configured to move to the storage position and the projection position in conjunction with the operation of rotating the first shaft portion 374A about the axis. In addition, the first support claw 374B is configured to be able to pass through the recess 325A of the through hole 325 of the disc tray 32 in the state of being located at the projecting position.
  • the selection lever 374C includes a fixing pin 374D and an engaging pin 374E extending in the vertical direction Z, and a connecting bar 374F connecting the fixing pin 374D and the engaging pin 374E.
  • the fixing pin 374D and the engagement pin 374E are cylindrical members having a diameter larger than that of the first shaft portion 374A.
  • the fixing pin 374D is coaxially disposed with respect to the first shaft portion 374A, and is formed to project upward from the connecting bar 374F.
  • the engagement pin 374E is disposed laterally offset with respect to the first shaft portion 374A, and is formed to project upward from the connection bar 374F.
  • a coil spring 374G is provided around the first shaft portion 374A as shown in FIG.
  • the coil spring 374G is disposed between the chassis 373 and the selection lever 374C so as to bias the selection lever 374C to the upper side of the chassis 373.
  • the drop hook 375 includes a second shaft 375A extending in the vertical direction Z, which is the stacking direction of the disks D1, and a second support claw 375B and a third support claw 375C attached to the lower end of the second shaft 375A. , And a separation lever 375D attached to the upper end portion of the second shaft portion 375A.
  • the second shaft portion 375A is a cylindrical member, and is attached to the fixing plate 376 so as to be rotatable about its axis.
  • the second support claw 375B has a storage position (for example, see FIG. 31A) stored inside the central hole D1A of the disk D1 in a plan view, and a protruding position (for example, FIG. 31C) projecting in a region near the inner diameter of the disk D1. Is configured to move) and
  • the third support claw 375C is, in a plan view, a storage position (for example, see FIG. 31A) to be stored inside the center hole D1A of the disk D1 and a projection position (for example, FIG. 33B) that protrudes in an area near the inner diameter of the disk D1.
  • the second support claw 375B and the third support claw 375C are configured to move one each to the storage position and the projection position in conjunction with the operation of rotating the second shaft portion 375A about the axis.
  • the first support claw 374B, the second support claw 375B, and the third support claw 375C are configured to move to the storage position and the projection position independently of each other.
  • the second support claws 375B are offset from the third support claws 375C in the vertical direction Z, which is the stacking direction of the disks D1, by the thickness of one disc D1.
  • the second support claw 375B is offset upward by a thickness of the disk D1 than the third support claw 375C.
  • the second support claw 375B is configured to be different from the third support claw 375C in the timing of moving from the storage position to the projection position.
  • the second support claw 375B is provided at a position shifted by a predetermined angle (for example, 90 degrees) with respect to the third support claw 375C when viewed in the vertical direction Z.
  • the second support claw 375B and the third support claw 375C are configured to be able to pass through the recess 325A of the through hole 325 of the disc tray 32 in the state of being located at the projecting position.
  • the separation lever 375D includes a cylindrical contact pin 375E and an engagement pin 375F extending in the vertical direction Z, and a connection bar 375G for connecting the contact pin 375E and the engagement pin 375F.
  • the contact pin 375E is coaxially disposed with respect to the second shaft portion 375A, and is formed to project upward and downward from the connecting bar 35G.
  • the engagement pin 375F is disposed laterally offset with respect to the second shaft portion 375A, and is formed to project upward from the connection bar 375G.
  • a coil spring 375H is provided around the second shaft portion 375A.
  • the coil spring 375H is disposed between the chassis 373 and the separation lever 375D so as to bias the separation lever 375D above the chassis 373.
  • FIG. 19 is a perspective view of the disk selector 37 as viewed obliquely from above.
  • FIG. 20 is a perspective view of the disk selector 37 as viewed obliquely from below.
  • FIG. 21 is an exploded perspective view showing the configuration of the drive mechanism 9 for driving the disk selector spindle 371.
  • FIG. 22 is an assembled perspective view of the drive mechanism 9 of FIG. 21 as viewed from the rear side.
  • the drive mechanism 9 is attached to the top surface of the chassis 373.
  • the drive mechanism 9 includes a select hook drive unit 91, a drop hook drive unit 92, a selection cam gear 93, a link lever 94, a pressing cam 95, a separation cam gear 96, and a drive.
  • a lever 97 and a fixing screw 98 are provided.
  • the select hook drive unit 91 includes a selection motor 91A, a motor gear 91B, a reduction gear 91C, and a relay gear 91D.
  • the selection motor 91A is a motor that generates a rotational driving force for rotating the selection cam gear 93.
  • the motor gear 91B is fixed to the output shaft of the selection motor 91A and meshes with the reduction gear 91C.
  • the reduction gear 91C meshes with the relay gear 91D.
  • the relay gear 91D meshes with the selection cam gear 93.
  • the rotational driving force generated from the selection motor 91A is transmitted to the selection cam gear 93 through the motor gear 91B, the reduction gear 91C, and the relay gear 91D, whereby the selection cam gear 93 is rotated.
  • the drive of the selection motor 91A is controlled by the control unit 7.
  • the drop hook drive unit 92 includes a separation motor 92A, a motor gear 92B, a reduction gear 92C, and a relay gear 92D.
  • the separation motor 92A is a motor that generates a rotational driving force that causes the separation cam gear 96 to rotate.
  • the motor gear 92B is fixed to the output shaft of the separation motor 92A and meshes with the reduction gear 92C.
  • the reduction gear 92C meshes with the relay gear 92D.
  • the relay gear 92D meshes with the separation cam gear 96.
  • the rotational drive force generated from the separation motor 92A is transmitted to the separation cam gear 96 via the motor gear 92B, the reduction gear 92C, and the relay gear 92D, whereby the separation cam gear 96 is rotated.
  • the drive of the separation motor 92A is controlled by the control unit 7.
  • a center hole 93A penetrating in the vertical direction Z is provided at the center of the selection cam gear 93.
  • three cam grooves 93B engageable with the engagement pins 374E of the select hook 374 are provided around the center hole 93A of the selection cam gear 93.
  • Each cam groove 93B is formed along the generally circumferential direction of the selection cam gear 93. The rotation of the selection cam gear 93 by the drive of the selection motor 91A causes the engagement pins 374E to move relative to each other along the corresponding cam groove 93B.
  • the selection cam gear 93 is provided with a cam groove 93C in which an engagement pin 94A provided on the link lever 94 can be engaged.
  • the link lever 94 is provided with a cylindrical bearing portion 94B inserted into a cylindrical shaft portion 373A which protrudes upward from the upper surface of the chassis 373 on the side of the selection cam gear 93, as shown in FIG.
  • the link lever 94 is attached to the chassis 373 rotatably around the shaft portion 373A by inserting the bearing portion 94B into the shaft portion 373A.
  • the engagement pin 94A relatively moves along the cam groove 93C.
  • the selection cam gear 93 further rotates in a state where the engagement pin 94A reaches the end of the cam groove 93C, the link lever 94 rotates around the shaft portion 373A.
  • the link lever 94 includes a lower connection plate 94C and an upper connection plate 94D so as to extend laterally from the side surface of the bearing portion 94B.
  • the lower connecting plate 94C and the upper connecting plate 94D are formed to face each other in the vertical direction Z with the separation cam gear 96 interposed therebetween.
  • the engagement pin 94A is provided to project downward from the tip of the lower connection plate 94C.
  • a hook portion 94E protruding upward is provided at the tip of the upper connecting plate 94D.
  • the pressing cam 95 is provided in the center hole 93A of the selection cam gear 93. At a central portion of the pressing cam 95, a central hole 95A penetrating in the vertical direction Z is provided.
  • the lower surface of the pressing cam 95 is formed with an inclined portion 95B capable of moving the drop hook 375 up and down in contact with the contact pin 375E of the drop hook 375 when rotating about the center hole 95A.
  • the inclined portion 95 ⁇ / b> B is formed to be inclined downward as going from the upstream side to the downstream side in the rotation direction.
  • a pair of bosses 95C are formed on the upper surface of the pressing cam 95 so as to protrude upward and to be opposed to each other through the central hole 95A.
  • Each cam groove 96B is formed to be generally along the radial direction of the separation cam gear 96.
  • the rotation of the separation cam gear 96 by the driving of the separation motor 92A causes the engagement pins 375F to move relative to each other along the corresponding cam groove 96B.
  • the drive lever 97 is attached to the pressing cam 95 through the center hole 96A of the separation cam gear 96 so as to rotate integrally with the pressing cam 95.
  • a central hole 97A penetrating in the vertical direction is provided.
  • a fixing screw 98 is screwed into the central hole 97A and the central hole 95A.
  • the drive lever 97 is provided with a fitting hole 97B in which the pair of bosses 95C of the pressing cam 95 is fitted. Thereby, the drive lever 97 and the pressing cam 95 rotate integrally.
  • the drive lever 97 is provided with a projecting plate portion 97C that protrudes to the side.
  • the projecting plate portion 97C is formed with a cam groove 97D engaged with the hook portion 94E of the link lever 94.
  • 23A to 23F are perspective views showing the positional relationship between the first support claw 374B of the select hook 374 that can be obtained by driving the selection motor 91A and the separation motor 92A, the second support claw 375B of the drop hook 375, and the third support claw 375C.
  • FIG. 23A to 23F are perspective views showing the positional relationship between the first support claw 374B of the select hook 374 that can be obtained by driving the selection motor 91A and the separation motor 92A, the second support claw 375B of the drop hook 375, and the third support claw 375C.
  • the first support claw 374B, the second support claw 375B, and the third support claw 375C can take at least six different positional relationships by driving the selection motor 91A and the separation motor 92A. . This will be described in more detail below.
  • 24A to 24C are plan views showing the positional relationship between the selection cam gear 93, the engagement pin 374E of the selection hook 374 and the link lever 94 when the selection motor 91A is driven.
  • 25A to 25C are plan views showing the positional relationship between the first support claw 374B of the select hook 374 and the second support claw 375B and the third support claw 375C of the drop hook 375 when the selection motor 91A is driven. .
  • each engagement pin 374E of the selection hook 374 is located at one end of the corresponding cam groove 93B of the selection cam gear 93.
  • the engagement pin 94A of the link lever 94 is located at one end of the cam groove 93C.
  • the first support claw 374B of the select hook 374 and the second support claw 375B and the third support claw 375C of the drop hook 375 are central holes D1A of the disc D1.
  • each engagement pin 374E of the select hook 374 moves to the other end of the corresponding cam groove 93B of the selection cam gear 93.
  • the selection lever 374C of the selection hook 374 does not rotate, and as shown in FIGS. 25C and 23B, the first support claw 374B of the selection hook 374 is maintained in the projecting position.
  • 26A to 26C are plan views showing the positional relationship between the separation cam gear 96 and the engagement pin 375F of the drop hook 375 when the separation motor 92A is driven.
  • 27A to 27C are plan views showing the positional relationship between the first support claw 374B of the select hook 374 and the second support claw 375B and the third support claw 375C of the select hook 374 when the separation motor 92A is driven. .
  • each engagement pin 375F of the drop hook 375 is located in the middle of the corresponding cam groove 96B of the separation cam gear 96.
  • the first support claw 374B of the select hook 374 and the second support claw 375B and the third support claw 375C of the drop hook 375 are central holes D1A of the disc D1. Located in the storage position inside.
  • each engagement pin 375F of the drop hook 375 moves to the inner end of the corresponding cam groove 96B of the separation cam gear 96.
  • the separation lever 375D of the drop hook 375 further rotates in the reverse direction about the contact pin 375E, and the second shaft portion 375A (see FIG. 16) to which the contact pin 375E is connected further rotates around the axis.
  • the second support claw 375B of the drop hook 375 moves to the storage position and the third support claw 375C of the drop hook 375 protrudes in conjunction with the rotation of the second shaft portion 375A. Move to position.
  • FIGS. 28A to 28C are perspective views showing the positional relationship between the pressing cam 95 and the contact pin 375E of the drop hook 375 when the selection motor 91A and the separation motor 92A are driven.
  • FIGS. 29A and 29B are side views showing the positional relationship between the pressing cam 95 and the contact pin 375E of the drop hook 375 when the selection motor 91A and the separation motor 92A are driven.
  • 30A and 30B show the positional relationship between the first support claw 374B of the select hook 374 and the second support claw 375B and the third support claw 375C of the drop hook 375 when the selection motor 91A and the separation motor 92A are driven. It is a top view. 28A to 28C show a state in which the separation cam gear 96 is removed in order to make it easy to see the positional relationship between the pressing cam 95 and the contact pin 375E of the drop hook 375.
  • each engagement pin 374E of the selection hook 374 is located at one end of the corresponding cam groove 93B of the selection cam gear 93.
  • the engagement pin 94A of the link lever 94 is located at one end of the cam groove 93C.
  • the first support claw 374B of the select hook 374 and the second support claw 375B and the third support claw 375C of the drop hook 375 are, as shown in FIGS. 23A and 24A, the central holes of the disc D1. It is located in the storage position stored inside D1A.
  • the selection cam gear 93 and the separation cam gear 96 rotate in the forward direction.
  • the contact pin 375E of the drop hook 375 contacts the inclined portion 95B of the pressing cam 95.
  • the first support claw 374B of the select hook 374 and the second support claw 375B of the drop hook 375 move to the protruding position.
  • FIG. 31A to 31F are cross-sectional views schematically showing the disk holding operation in which the disk selector spindle 371 holds a plurality of disks D1 from the disk tray 32.
  • FIG. 32A and 32B are perspective views showing a disk holding operation in which the disk selector spindle 371 holds a plurality of disks D1 from the disk tray 32 in a partial cross section.
  • the first support claw 374B, the second support claw 375B, and the third support claw 375C are respectively positioned at the storage positions (see FIG. 23A).
  • the disc tray 32 is raised, and the disc selector spindle 371 is inserted into the center holes D1A of the plurality of discs D1.
  • the disc tray 32 is lowered with the first support claw 374B and the second support claw 375B positioned at the protruding position. That is, the first support claw 374B and the second support claw 375B are moved relative to the seventh top disc. As a result, the first support claw 374B and the second support claw 375B hold the sixth disc and the disc above the sixth disc. At this time, it may happen that the seventh disc adheres closely to the sixth disc and does not separate from the sixth disc.
  • the second support claw 375B is moved downward relative to the sixth disk. .
  • the seventh disc in close contact with the sixth disc is separated from the sixth disc.
  • the second support claw 375B is moved relative to the seventh disc, and as shown in FIG. 32B, the first support claw 374B and the second support claw 375B are six sheets. Hold the disk again.
  • the disk selector spindle 371 can stably transport the held six disks to the drive unit 34.
  • 33A to 33F are cross-sectional views schematically showing the disk supply operation in which the disk selector spindle 371 supplies the plurality of disks D1 held thereby to the tray 34A of the drive unit 34.
  • the tray 34A of the drive unit 34 is positioned below the disk selector spindle 371 holding six disks.
  • the first support claw 374B and the second support claw 375B are respectively positioned at the protruding position (see FIG. 23C), and hold six discs.
  • the second support claw 375B is moved from the projection position to the storage position, and the third support claw 375C is moved from the storage position to the projection position (see FIG. 23E).
  • the first support claw 374B is moved from the protruding position to the storage position (see FIG. 23F).
  • the six disks fall onto the third support claw 375C by their own weight, and are held by the third support claw 375C.
  • the first support claw 374B and the second support claw 375B are moved from the storage position to the projection position, and the third support claw 375C is moved from the projection position to the storage position (see FIG. 23C). .
  • the lowermost disc is in close contact with the fifth disc and does not separate from the fifth disc.
  • the second support claw 375B is moved downward relative to the lowermost disc (see FIG. 33E). See Figure 23D). Thus, the lowermost disk is separated from the fifth disk. The separated lowermost disc drops onto the tray 34A of the drive unit 34 by its own weight and is supplied (placed) on the tray 34A.
  • the second support claw 375B is moved relative to the lowermost disc, and the first support claw 374B and the second support claw 375B hold five discs.
  • the disk selector spindle 371 can supply the lowermost disk among the six disks to be held to the tray 34A of the drive unit 34.
  • 34A to 34G are cross-sectional views schematically showing a disc returning operation in which the disc selector spindle 371 recovers the disc on the tray 34A of the drive unit 34 and returns it to the disc tray 32.
  • the tray 34A on which one disk is placed is positioned below the disk selector spindle 371 that holds five disks.
  • the first support claw 374B and the second support claw 375B are respectively positioned at the protruding position (see FIG. 23C), and hold five discs.
  • the first support claw 374B and the second support claw 375B are moved from the projecting position to the storage position (see FIG. 23A). As a result, five disks fall onto the tray 34A by their own weight, and six disks are placed on the tray 34A.
  • the disk selector spindle 371 is relatively moved so that the third support claw 375C is positioned below the tray 34A through the center hole of the tray 34A.
  • the third support claw 375C is moved from the storage position to the projection position (see FIG. 23F).
  • the disk selector spindle 371 is relatively moved above the tray 34A.
  • the third support claw 375C collects the disks on the tray 34A and holds six disks.
  • the disk tray 32 containing six disks is positioned below the disk selector spindle 371 holding six disks. Thereafter, the disk selector spindle 371 and the disk tray 32 are moved relative to each other so as to approach each other.
  • the third support claw 375C is moved from the projecting position to the storage position above the disk tray 32, and the six disks held by the disk selector spindle 371 are stored in the disk tray 32. Stack on top of a set of discs.
  • the disk tray 32 is lowered, and the disk selector spindle 371 comes out of the center hole D1A of the twelve disks D1.
  • the disk selector spindle 371 can return the disk on the tray 34A to the disk tray 32.
  • the disk selector spindle 371 includes the select hook 374 having the first support claw 374B and the drop hook 375 having the second support claw 375B and the third support claw 375C.
  • the plurality of disks D1 are held in a stacked state by moving the first support claw 374B, the second support claw 375B, and the third support claw 375C between the storage position and the projection position. be able to.
  • the lowermost disk can be separated from the other disks and supplied to the drive unit.
  • a drive source for driving the select hook 374 and a drive source for driving the drop hook 375 are separately required. However, since the drive source which drives a lifter becomes unnecessary, it can suppress that the number of drive sources increases.
  • the disk selector spindle 371 is provided with a plurality of select hooks 374 and a plurality of drop hooks 375. According to this configuration, the plurality of select hooks 374 and the plurality of drop hooks 375 can be brought into contact with the plurality of locations on the inner peripheral portion of the lowermost disk to hold the plurality of disks more stably. .
  • the plurality of select hooks 374 and the plurality of drop hooks 375 are alternately arranged at intervals in the circumferential direction of the center hole D1A of the disk D1 in plan view. There is. According to this configuration, the plurality of select hooks 374 and the plurality of drop hooks 375 are uniformly brought into contact with the plurality of locations on the inner peripheral portion of the lowermost disk, and the plurality of disks are held more stably. be able to.
  • first support claw 374B is configured to move to the storage position and the projection position in conjunction with the operation of rotating the first shaft portion 374A about the axis, but the present disclosure It is not limited to this.
  • the first support claw 374B may be configured to move to the storage position and the projection position.
  • the second support claw 375B and the third support claw 375C may be configured to move to the storage position and the projection position.
  • the first support claws 374B are configured to be separated from each other by relatively moving the first support claws 374B downward. It is not limited to.
  • the disks may be separated from each other by relatively moving the second support claw 375B downward.
  • select hook 374 and the drop hook 375 are configured to move relative to each other in the vertical direction Z in the above description, the present disclosure is not limited thereto. In the case where the possibility that the adjacent disks do not closely contact each other is low, the select hook 374 and the drop hook 375 do not necessarily have to be configured to move relative to each other in the vertical direction Z. In addition, it is not necessary to perform the operation described using FIGS. 31E and 33E.
  • the disk tray 32 is lowered.
  • the present disclosure is not limited to this.
  • the disc tray 32 may be raised so that the lower end portion of the disc selector spindle 371 moves downward through the through hole 325 of the disc tray 32 to the outside of the disc tray 32. .
  • the deviation in the surface direction of each disk D1 can be corrected, and the central holes D1A of each disk D1 can be made to coincide in plan view.
  • the disk selector spindle 371 is inserted into and removed from the center holes D1A of the plurality of disks D1 by moving the disk tray 32 in the vertical direction Z.
  • the present disclosure is not limited to this.
  • the disk selector spindle 371 may be inserted into and removed from the center holes D1A of the plurality of disks D1. That is, by relatively moving the disk selector spindle 371 and the disk tray 32 in the vertical direction Z, the disk selector spindle 371 may be inserted into and removed from the center holes D1A of the plurality of disks D1.
  • the disk selector spindle 371 may be inserted into and removed from the center hole D1A of the disk D1 on the tray 34A by relatively moving the disk selector spindle 371 and the tray 34A of the drive unit 34 in the vertical direction Z.
  • the first support claw 374B and the second support claw 375B are made to enter the gap between the adjacent disks, but for this purpose, the vertical direction of the first support claw 374B and the second support claw 375B It is necessary to control the position of Z with high precision. Therefore, it is preferable to provide a position detection sensor capable of detecting the position of the first support claw 374B and the second support claw 375B in the vertical direction Z with high accuracy. As a result, the first support claw 374B or the second support claw 375B can more reliably intrude into the gap between the adjacent disks.
  • the gaps between adjacent disks are usually very narrow. For this reason, when the disc is slightly inclined with respect to the direction orthogonal to the stacking direction, the first support claw 374B or the second support claw 375B can not intrude into the gap between the adjacent discs. It may happen that the inner circumferential portion is touched. Therefore, at least one of the first support claw 374B of one select hook 374 among the plurality of select hooks 374 and the second support claw 375B of one drop hook 375 among the plurality of drop hooks 375 protrudes from the storage position.
  • the first support claw 374B of one select hook 374 and the second support claw 375B of one drop hook 375 be formed in a tapered shape (see, for example, FIG. 31A).
  • the first support claw 374B or the second support claw 375B can more reliably intrude into the gap between the adjacent disks.
  • the first support claw 374B or the second support claw 375B for correcting the inclination of the disc D1 be provided in the vicinity of the above-described position detection sensor in plan view.
  • the first support claw 374B is formed in the gap between the adjacent disks.
  • the second support claw 375B can be more reliably intruded.
  • the disk tray according to the present disclosure can more reliably extract a plurality of disks and can reduce the occurrence of powder blowing from the disk tray due to the removal of the disks, so a facility that handles a large amount of data, such as a data center, in particular. It is useful for the disk device used for

Abstract

複数枚のディスクをより確実に抜き出すとともに、ディスクの抜き出しによる粉吹きの発生を低減すことができるディスクトレイを提供する。本発明に係るディスクトレイは、複数枚のディスクを積層状態で収納するディスクトレイであって、ディスクトレイには、複数枚のディスクのそれぞれに設けられた中心穴を貫通し、各ディスクの面方向の移動を規制するディスクトレイスピンドルが設けられ、ディスクトレイスピンドルは、各ディスクの内周部に対して3点で接触するように構成されている。

Description

ディスクトレイ及びディスク装置
 本開示は、複数枚のディスク(CDやDVDなどのディスク状の情報記憶媒体)を積層状態で収納するディスクトレイ及び当該ディスクトレイを備えるディスク装置に関する。
 従来、この種のディスクトレイを備えるディスク装置として、例えば、特許文献1(特開2014-13639号公報)に記載された装置が知られている。図36は、従来のディスク装置の概略構成を模式的に示す斜視図である。
 従来のディスク装置は、2つのマガジンストッカー101,101を備えている。2つのマガジンストッカー101,101は、底シャーシ111上において互いに対向するように設けられている。なお、図36では、一方(手前側)のマガジンストッカー101の図示を省略している。
 各マガジンストッカー101には、複数のマガジン102が収納されている。各マガジン102は、複数枚のディスクを収納するディスクトレイ121と、ディスクトレイ121を収納する箱状のトレイホルダ(図示せず)とを有している。ディスクトレイ121は、複数枚のディスクのそれぞれの中心穴を貫通する円柱形の芯棒(図示せず)を備え、当該芯棒によって各ディスクの面方向の移動を規制するように構成されている。また、ディスクトレイ121には、平面視においてディスクの記録領域に近傍するとともに互いに離れた位置に3つの貫通穴が設けられている。2つのマガジンストッカー101,101の間には、トレイホルダからディスクトレイ121を引き出し、当該ディスクトレイ121を保持するピッカー103が設けられている。
 ピッカー103は、当該保持したディスクトレイ121を、装置後方に配置された複数のドライブユニット104の近傍まで搬送するように構成されている。ピッカー103には、ディスクトレイ121から複数枚のディスクを押し出すリフター105が一体的に設けられている。リフター105は、ディスクトレイ121の3つの貫通穴を通じて、3つのピンがディスクトレイ121の内側に挿入することにより、複数枚のディスクを芯棒に沿ってディスクトレイ121から押し出す。
 ドライブユニット104は、ディスクに対して情報の記録又は再生を行う装置である。また、ドライブユニット104は、トレイを用いてディスクをローディングするトレイ方式のドライブユニットである。複数のドライブユニット104は、装置高さ方向に積層され、装置後方において各マガジンストッカー101,101に隣接して配置されている。一方のマガジンストッカー101に隣接して積層配置された複数のドライブユニット104と、他方のマガジンストッカー101に隣接して積層配置された複数のドライブユニット104との間には、キャリア106が設けられている。
 キャリア106は、リフター105により押し出された複数枚のディスクを積層状態で保持し、任意のドライブユニット104から排出されたトレイの上方で、前記保持した複数枚のディスクから最下位のディスクを分離し、当該分離したディスクを前記トレイに載置するように構成されている。
 キャリア106及び複数のドライブユニット104より更に装置後方には、電気回路及び電源107が設けられている。電気回路及び電源107には、ピッカー103、ドライブユニット104、キャリア106などの各装置の動作(モータ等)を制御する制御部(図示せず)が設けられている。当該制御部は、例えば、データを管理するホストコンピュータに接続されている。ホストコンピュータは、オペレータの指示に基づき、指定のマガジン102へのデータの書き込み又は読み出し等の動作を行うように制御部に指令を送る。制御部は、当該指令に従い、ピッカー103、ドライブユニット104、キャリア106などの各装置の動作を制御する。
特開2014-13639号公報
 従来のディスク装置においては、ディスクトレイから複数枚のディスクを十分に抜き出すことができないことが起こり得る。また、ディスクトレイからディスクを抜き出すときに、ディスクの内周部とディスクトレイの芯棒との摺動抵抗により、ディスクトレイの芯棒から粉吹きが発生する。
 従って、本開示の目的は、前記課題を解決することにあって、複数枚のディスクをより確実に抜き出すとともに、ディスクの抜き出しによるディスクトレイからの粉吹きの発生を低減することができるディスクトレイを提供することにある。
 本開示におけるディスクトレイは、複数枚のディスクを積層状態で収納するディスクトレイであって、
 前記ディスクトレイには、複数枚のディスクのそれぞれに設けられた中心穴を貫通し、各ディスクの面方向の移動を規制するディスクトレイスピンドルが設けられ、
 前記ディスクトレイスピンドルは、各ディスクの内周部に対して3点で接触するように構成されている。
 本開示のディスクトレイによれば、複数枚のディスクをより確実に抜き出すとともに、ディスクの抜き出しによるディスクトレイからの粉吹きの発生を低減することができる。
実施形態に係るディスク装置を複数格納する格納庫の斜視図である。 図1の格納庫から1つのドロワーを引き出した状態を示す斜視図である。 図2のドロワーがケースに収納された状態を示す斜視図である。 図2のドロワーがケースから引き出された状態を示す斜視図である。 実施形態に係るディスク装置の斜視図である。 図2のドロワーがケースから引き出された状態を示す斜視図であって、ドロワーに収納された1つのディスク装置を分解して示す図である。 図5のディスク装置が備えるチェンジャーユニットの構成及びディスク搬送動作を示す斜視図である。 図7Aに続くディスク搬送動作を示す斜視図である。 図7Bに続くディスク搬送動作を示す斜視図である。 図7Cに続くディスク搬送動作を示す斜視図である。 図7Dに続くディスク搬送動作を示す斜視図である。 図7Eに続くディスク搬送動作を示す斜視図である。 図7Fに続くディスク搬送動作を示す斜視図である。 図7Gに続くディスク搬送動作を示す斜視図である。 ディスクトレイに複数枚のディスクが積層状態で収納された状態を示す斜視図である。 ディスクトレイを斜め下方から見た斜視図である。 ディスクトレイの平面図である。 ディスクトレイスピンドルを斜め上方から見た斜視図である。 ディスクトレイスピンドルを斜め下方から見た斜視図である。 ディスクトレイスピンドルを斜め下方から見た斜視図である。 ディスクトレイスピンドルの取り付け前のディスクトレイを下方から見た斜視図である。 図12Aの一部拡大斜視図である。 ディスクトレイスピンドルをディスクトレイの円形穴に取り付ける様子を示す斜視図である。 ディスクトレイスピンドルをディスクトレイの円形穴に取り付ける様子を示す斜視図である。 ディスクトレイスピンドルをディスクトレイの円形穴に取り付ける様子を示す斜視図である。 ディスクセレクタによって搬送されるディスクトレイ内の複数枚のディスクをトレイキャリアが保持する様子を示す斜視図である。 ディスクセレクタスピンドルが最上位のディスクを保持する位置に、トレイキャリアが上昇した状態を示している。 ディスクセレクタスピンドルが6枚のディスクを保持する位置に、トレイキャリアが上昇した状態を示している。 ディスクセレクタスピンドルが全てのディスクを保持する位置に、トレイキャリアが上昇した状態を示している。 ディスクセレクタスピンドルの斜視図である。 ディスクセレクタスピンドルが備えるセレクトフック及びドロップフックの斜視図である。 ディスクセレクタスピンドルの上面図である。 ディスクセレクタスピンドルの底面図である。 ディスクセレクタを斜め上方から見た斜視図である。 ディスクセレクタを斜め下方から見た斜視図である。 ディスクセレクタスピンドルを駆動する駆動機構の構成を示す分解斜視図である。 図21の駆動機構を背面方向から見た組立斜視図である。 選択モータ及び分離モータの駆動により取り得るセレクトフックの第1支持爪、ドロップフックの第2支持爪及び第3支持爪の位置関係を示す斜視図である。 選択モータ及び分離モータの駆動により取り得るセレクトフックの第1支持爪、ドロップフックの第2支持爪及び第3支持爪の位置関係を示す斜視図である。 選択モータ及び分離モータの駆動により取り得るセレクトフックの第1支持爪、ドロップフックの第2支持爪及び第3支持爪の位置関係を示す斜視図である。 選択モータ及び分離モータの駆動により取り得るセレクトフックの第1支持爪、ドロップフックの第2支持爪及び第3支持爪の位置関係を示す斜視図である。 選択モータ及び分離モータの駆動により取り得るセレクトフックの第1支持爪、ドロップフックの第2支持爪及び第3支持爪の位置関係を示す斜視図である。 選択モータ及び分離モータの駆動により取り得るセレクトフックの第1支持爪、ドロップフックの第2支持爪及び第3支持爪の位置関係を示す斜視図である。 初期位置における選択カムギアとセレクトフックの係合ピンとリンクレバーの位置関係を示す平面図である。 選択モータを駆動させたときの選択カムギアとセレクトフックの係合ピンとリンクレバーの位置関係を示す平面図である。 選択モータを更に駆動させたときの選択カムギアとセレクトフックの係合ピンとリンクレバーの位置関係を示す平面図である。 初期位置におけるセレクトフックの第1支持爪とドロップフックの第2支持爪及び第3支持爪の位置関係を示す平面図である。 選択モータを駆動させたときのセレクトフックの第1支持爪とドロップフックの第2支持爪及び第3支持爪の位置関係を示す平面図である。 選択モータを更に駆動させたときのセレクトフックの第1支持爪とドロップフックの第2支持爪及び第3支持爪の位置関係を示す平面図である。 初期位置における分離カムギアとドロップフックの係合ピンの位置関係を示す平面図である。 分離モータを駆動させたときの分離カムギアとドロップフックの係合ピンの位置関係を示す平面図である。 分離モータを更に駆動させたときの分離カムギアとドロップフックの係合ピンの位置関係を示す平面図である。 初期位置におけるセレクトフックの第1支持爪とドロップフックの第2支持爪及び第3支持爪の位置関係を示す平面図である。 分離モータを駆動させたときのセレクトフックの第1支持爪とドロップフックの第2支持爪及び第3支持爪の位置関係を示す平面図である。 分離モータを更に駆動させたときのセレクトフックの第1支持爪とドロップフックの第2支持爪及び第3支持爪の位置関係を示す平面図である。 初期位置における押下カムとドロップフックの接触ピンの位置関係を示す斜視図である。 選択モータ及び分離モータを駆動させたときの押下カムとドロップフックの接触ピンの位置関係を示す斜視図である。 選択モータを更に駆動させたときの押下カムとドロップフックの接触ピンの位置関係を示す斜視図である。 選択モータ及び分離モータを駆動させたときの押下カムとドロップフックの接触ピンの位置関係を示す側面図である。 選択モータを更に駆動させたときの押下カムとドロップフックの接触ピンの位置関係を示す側面図である。 選択モータ及び分離モータを駆動させたときのセレクトフックの第1支持爪とドロップフックの第2支持爪及び第3支持爪の位置関係を示す平面図である。 選択モータを更に駆動させたときのセレクトフックの第1支持爪とドロップフックの第2支持爪及び第3支持爪の位置関係を示す平面図である。 ディスクセレクタスピンドルがディスクトレイから複数枚のディスクを保持するディスク保持動作を模式的に示す断面図である。 図31Aに続くディスク保持動作を示す断面図である。 図31Bに続くディスク保持動作を示す断面図である。 図31Cに続くディスク保持動作を示す断面図である。 図31Dに続くディスク保持動作を示す断面図である。 図31Eに続くディスク保持動作を示す断面図である。 ディスクセレクタスピンドルがディスクトレイから複数枚のディスクを保持するディスク保持動作を一部断面で示す斜視図である。 ディスクセレクタスピンドルがディスクトレイから複数枚のディスクを保持するディスク保持動作を一部断面で示す斜視図である。 ディスクセレクタスピンドルが、保持する複数枚のディスクをドライブユニットのトレイに供給するディスク供給動作を模式的に示す断面図である。 図33Aに続くディスク供給動作を示す断面図である。 図33Bに続くディスク供給動作を示す断面図である。 図33Cに続くディスク供給動作を示す断面図である。 図33Dに続くディスク供給動作を示す断面図である。 図33Eに続くディスク供給動作を示す断面図である。 ディスクセレクタスピンドルがドライブユニットのトレイ上のディスクを回収してディスクトレイに返却するディスク返却動作を模式的に示す断面図である。 図34Aに続くディスク返却動作を示す断面図である。 図34Bに続くディスク返却動作を示す断面図である。 図34Cに続くディスク返却動作を示す断面図である。 図34Dに続くディスク返却動作を示す断面図である。 図34Eに続くディスク返却動作を示す断面図である。 図34Fに続くディスク返却動作を示す断面図である。 ディスクセレクタスピンドルがドライブユニットのトレイ上のディスクを回収してディスクトレイに返却するディスク返却動作の変形例を一部断面で示す斜視図である。 図35Aに続くディスク返却動作を一部断面で示す斜視図である。 図35Bに続くディスク返却動作を一部断面で示す斜視図である。 従来のディスク装置の概略構成を模式的に示す斜視図である。
 (本開示の基礎となった知見)
 発明者らは、複数枚のディスクをより確実に抜き出すために鋭意検討した結果、以下の知見を得た。
 発明者らは、複数枚のディスクが芯棒に沿ってディスクトレイから押し出されるときに、各ディスクの内周部と芯棒との間に不均一な摺動抵抗が生じてディスクが僅かに傾斜することが起こり得ることを知見した。また、発明者らは、当該僅かな傾斜が、複数枚のディスクを十分に抜き出すことができない原因であることを知見した。また、発明者らは、僅かな傾斜が、ディスクトレイからディスクを抜き出すときに、ディスクの内周部とディスクトレイの芯棒との摺動抵抗により、ディスクトレイの芯棒から粉吹きが発生する原因であることを知見した。これらの新規な知見に基づき、発明者らは、芯棒(以下、ディスクトレイスピンドルという)が各ディスクの内周部に対して3点で接触するように構成することで、各ディスクの内周部を安定して支持しつつ摺動抵抗を低減でき、さらにディスクの抜き出しによるディスクトレイからの粉吹きの発生を低減できることを見出し、以下の発明に至った。
 本開示の第1態様によれば、複数枚のディスクを積層状態で収納するディスクトレイであって、
 前記ディスクトレイには、複数枚のディスクのそれぞれに設けられた中心穴を貫通し、各ディスクの面方向の移動を規制するディスクトレイスピンドルが設けられ、
 前記ディスクトレイスピンドルは、各ディスクの内周部に対して3点で接触するように構成されている、
 ディスクトレイを提供する。
 本開示の第2態様によれば、前記ディスクトレイスピンドルは、
 前記ディスクトレイの厚さ方向に延在する中心軸と、
 前記中心軸に接続され、各ディスクの内周部にそれぞれ接触する3つの側板部と、
 を備え、
 前記3つの側板部は、前記ディスクトレイの厚さ方向から見て、前記中心軸を中心として略等角度間隔又は等角度間隔で配置されている、第1態様に記載のディスクトレイを提供する。
 本開示の第3態様によれば、前記ディスクトレイスピンドルは、前記3つの側板部のそれぞれの下端部に接続された底板部を備え、
 前記底板部は、前記ディスクトレイの厚さ方向から見て、前記3つの側板部のうちいずれか2つの側板部に挟まれた3つの領域にそれぞれ貫通穴を有する、第1又は2態様に記載のディスクトレイを提供する。
 本開示の第4態様によれば、各貫通穴は、前記ディスクトレイの厚さ方向から見て、前記ディスクの内径近傍に位置する領域に設けられている、第3態様に記載のディスクトレイを提供する。
 本開示の第5態様によれば、各貫通穴は、前記ディスクトレイの厚さ方向から見て、前記ディスクの中心穴と重複する領域の全体又は略全体に設けられるとともに、前記ディスクの内径近傍に位置する領域に部分的に侵入するように形成されている、第4態様に記載のディスクトレイを提供する。
 本開示の第6態様によれば、前記ディスクトレイスピンドルは、前記ディスクトレイの底壁に設けられた円形穴を形成する壁に前記底板部の外周部がバヨネット結合されることにより取り付けられている、第3~5態様のいずれか1つに記載のディスクトレイを提供する。
 本開示の第7態様によれば、第1~6態様のいずれか1つに記載のディスクトレイを備えるディスク装置を提供する。
 以下、適宜図面を参照しながら、実施形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。
 なお、発明者らは、当業者が本開示を十分に理解するために添付図面及び以下の説明を提供するものであって、これらによって特許請求の範囲に記載の主題を限定することを意図するものではない。
 また、以下では、説明の便宜上、通常使用時の状態を想定して「上」、「下」、「右」、「左」、「前」、「斜め」等の方向を示す用語を用いている。しかしながら、これらの用語は、本開示のディスク装置の使用状態等を限定することを意味するものではない。
 《実施形態》
 図1は、実施形態に係るディスク装置を複数格納する格納庫の斜視図である。
 格納庫1は、例えば、19インチラックである。格納庫1は、直方体の箱状の部材であり、前面に開口部1Aを有している。格納庫1において、奥行き方向Xの長さは例えば1,000mmであり、横方向Yの長さは例えば600mmであり、上下方向Zの長さは例えば2,000mmである。格納庫1は、図1に示すように、複数のドロワー2を備えている。実施形態においては、4つのドロワー2が上下方向Zに配列されている。各ドロワー2は、格納庫1の開口部1Aを通じて出し入れ可能に構成されている。各ドロワー2は、他のドロワー2とは独立に動作可能に構成され、格納庫1の電源が投入されている場合であっても、ドロワー2は他のドロワー2の動作を妨げることなく、引き出すことができる。ただし、同一ラック内では必ず1つのドロワー2しか引き出せないように電気的に制御するようにしている。これにより、複数のドロワー2を引き出すことにより重心が前方に移動して、格納庫1が転倒することを回避することができる。
 図2は、図1の格納庫1から1つのドロワー2を引き出した状態を示す斜視図である。
 図2に示すように、ドロワー2には、実施形態に係る複数のディスク装置(チェンジャーモジュールともいう)3が収納されている。実施形態においては、1つのドロワー2に4つのディスク装置3が奥行き方向Xに収納されている。ドロワー2の前壁には、把手部2Aが設けられている。把手部2Aを奥行き方向Xに押す又は引くことにより、格納庫1に対してドロワー2を容易に出し入れすることができる。
 図3は、ドロワー2がケース4に収納された状態を示す斜視図である。図4は、ドロワー2がケース4から引き出された状態を示す斜視図である。
 ドロワー2は、格納庫1内に位置するとき、図3に示すようにケース4内に収納される。これにより、ドロワー2内に収納される各ディスク装置3内に埃等が侵入することが抑えられている。ケース4は、直方体の箱状の部材であり、前面に開口部4A(図4参照)を有している。ケース4は、格納庫1内に着脱自在に固定されている。実施形態においては、4つのケース4が上下方向Zに積み重ねられている。
 また、ドロワー2は、格納庫1内から引き出されたとき、図4に示すようにケース4の開口部4Aを通じてケース4から引き出される。ケース4には、ドロワー2の奥行き方向Xの移動をガイドするように一対のレール5が設けられている。
 また、ドロワー2の前壁には、各ディスク装置3を冷却する冷却風を送風するファンユニット6が着脱自在に取り付けられている。
 図5は、ディスク装置3の斜視図である。図6は、ドロワー2がケース4から引き出された状態を示す斜視図であって、ドロワー2に収納された1つのディスク装置3を分解して示す図である。
 ディスク装置3は、横方向Yに互いに対向するように2つのトレイスタック31A,31Bを備えている。
 トレイスタック31A,31Bには、複数のディスクトレイ32が収納されている。トレイスタック31A,31Bは、複数のディスクトレイ32を上下方向Zに保持するように構成されている。実施形態において、ドロワー2の前方から見て右側に配置されるトレイスタック31Aは、16個のディスクトレイ32を上下方向Zに保持するように構成されている。ドロワー2の前方から見て左側に配置されるトレイスタック31Bは、18個のディスクトレイ32を上下方向Zに保持するように構成されている。
 ディスクトレイ32は、複数枚のディスクを収納可能に構成されている。実施形態において、ディスクトレイ32は、12枚のディスクを積層状態で収納可能に構成されている。ディスクは、例えば、直径12cmの両面に記録層を有する光ディスクである。ディスクの厚みは、例えば、1.38mmである。
 トレイスタック31A,31Bの間には、ディスクトレイ32及びディスクを搬送するチェンジャーユニット33が設けられている。
 ドライブユニット34は、ディスクに対して情報の記録又は再生を行う装置である。実施形態において、ドライブユニット34は、トレイを用いてディスクをローディングするトレイ方式のディスクドライブである。ドライブユニット34は、筐体35に取り付けられている。
 トレイスタック31A,31B及びチェンジャーユニット33は、筐体35内に格納されている。トレイスタック31A,31Bは、図4に示すようにドロワー2がケース4から引き出された状態で、横方向Yに押す又は引くことにより、着脱自在に構成されている。なお、トレイスタック31A,31Bは、筐体35に対して着脱しやすいように、複数(例えば上下2段)に分割されてもよい。チェンジャーユニット33は、図4に示すようにドロワー2がケース4から引き出された状態で、上下方向Zに押す又は引くことにより、筐体35に対して着脱自在に構成されている。
 また、ドロワー2の前壁には、各ディスク装置3のディスク搬送動作を含む各種動作及びファンユニット6の送風動作を制御する制御ユニット7が着脱自在に取り付けられている。制御ユニット7は、例えば、データを管理するホストコンピュータに有線又は無線により接続されている。ホストコンピュータは、オペレータの指示に基づき、指定のディスクへのデータの書き込み又は読み出し等の動作を行うように制御ユニット7に指令を送る。制御ユニット7は、当該指令に従い、ファンユニット6、チェンジャーユニット33、ドライブユニット34などの各装置の動作を制御する。
 また、チェンジャーユニット33には、トレイスタック31Bの上方において、コネクティングユニット8が取り付けられている。コネクティングユニット8は、後述するチェンジャーユニット33が備えるトレイキャリア36及びディスクセレクタ37と制御ユニット7とを電気的に接続するものである。
 図7A~図7Hは、チェンジャーユニット33の構成及びディスク搬送動作を示す斜視図である。
 チェンジャーユニット33は、図7Aに示すように、トレイキャリア36と、ディスクセレクタ37とを備えている。トレイキャリア36とディスクセレクタ37とは、図6に示すシャーシ38に取り付けられている。図7A~図7Hにおいては、チェンジャーユニット33の内部構成を見やすくするため、図6に示すシャーシ38の前壁38Aを取り外した状態を示している。
 トレイキャリア36は、図7B~図7Dに示すように、複数のディスクトレイ32の中から選択された1つのディスクトレイ32をドライブユニット34の近傍に搬送するように構成されている。また、トレイキャリア36は、ドライブユニット34の近傍に搬送したディスクトレイ32を元の位置(トレイスタック31A又はトレイスタック31B)に収納するように構成されている。すなわち、トレイキャリア36は、従来のディスク装置の「ピッカー」と同様の機能を有する。
 実施形態において、トレイキャリア36は、上下方向Zに移動するように構成されている。また、トレイキャリア36は、所望のディスクトレイ32の位置に移動し、トレイスタック31A,31Bに対してディスクトレイ32を出し入れ可能に構成されている。
 ディスクセレクタ37は、ドライブユニット34の近傍に配置され、ディスクトレイ32に収納された複数枚のディスクD1の中から1枚のディスクD1をドライブユニット34に供給するように構成されている。実施形態において、ディスクセレクタ37は、図7Eに示すように、ドライブユニット34の近傍において、ディスクトレイ32に収納された複数枚のディスクD1を保持するように構成されている。ディスクセレクタ37が複数枚のディスクD1を保持すると、トレイキャリア36が下降してディスクセレクタ37から離れる。その後、図7Fに示すように、ディスクセレクタ37の下方に位置するように、ドライブユニット34からトレイ34Aが排出される。
 また、ディスクセレクタ37は、図7Gに示すように、前記保持した複数枚のディスクD1から1枚のディスクD1を分離してドライブユニット34のトレイ34Aに供給する。その後、図7Hに示すように、ドライブユニット34内にトレイ34Aが搬送されることで、ディスクD1に対してデータの記録又は再生が可能になる。
 また、ディスクセレクタ37は、図7Fに示すように、ドライブユニット34から排出されたトレイ34A上のディスクD1を保持し、ディスクトレイ32上で保持を解除することで当該ディスクD1をディスクトレイ32内に戻すように構成されている。すなわち、ディスクセレクタ37は、従来のディスク装置の「キャリア」と同様の機能を有する。
 次に、ディスクトレイ32の構成についてより詳しく説明する。
 図8は、ディスクトレイ32に複数枚のディスクD1が積層状態で収納された状態を示す斜視図である。図9は、ディスクトレイ32を斜め下方から見た斜視図である。図10は、ディスクトレイ32の平面図である。
 図8に示すように、ディスクトレイ32には、複数枚のディスクD1のそれぞれに設けられた中心穴D1Aを貫通し、各ディスクD1の面方向(X1方向及びY1方向)の移動を規制するディスクトレイスピンドル(芯棒ともいう)321が設けられている。
 ディスクトレイスピンドル321は、ポリアセタール(POM)などの耐摩耗性や摺動性が高い材料で構成されている。また、ディスクトレイスピンドル321は、各ディスクD1の内周部D1Bに対して3点で接触するように構成されている。これにより、ディスクトレイスピンドル321と各ディスクD1とが接触して、それらの少なくとも一方が削れて、異物(削り粉)が発生することを抑えることができる。また、各ディスクD1の内周部D1Bを安定して支持しつつ摺動抵抗を低く抑えることができる。その結果、ディスクトレイ32から複数枚のディスクD1をより確実に抜き出すことができる。
 実施形態において、ディスクトレイスピンドル321は、ディスクトレイ32の厚さ方向Z1に延在する中心軸322と、中心軸322に接続され、各ディスクD1の内周部D1Bにそれぞれ接触する3つの側板部323とを備えている。実施形態において、中心軸322は、円柱状に形成されている。各側板部323は、平板状に形成され、中心軸322の側面に沿って接続されている。
 図9及び図10に示すように、3つの側板部323は、ディスクトレイ32の厚さ方向Z1から見て、中心軸322を中心として略等角度間隔又は等角度間隔で配置されている。具体的には、3つの側板部323は、中心軸322を中心として120度間隔で配置されている。ディスクトレイスピンドル321は、3つの側板部323の先端部によってディスクのD1の内周部D1Bに3点で接触する。
 図11Aは、ディスクトレイスピンドル321を斜め上方から見た斜視図である。図11B及び図11Cは、ディスクトレイスピンドル321を斜め下方から見た斜視図である。
 図11A~図11Cに示すように、ディスクトレイスピンドル321は、3つの側板部323のそれぞれの下端部に接続された底板部324を備えている。底板部324は、ディスクトレイ32の厚さ方向Z1から見て、3つの側板部323のうちいずれか2つの側板部323に挟まれた3つの領域にそれぞれ貫通穴325を有している。
 各貫通穴325は、ディスクトレイ32の厚さ方向Z1から見て、ディスクD1の内径近傍に位置する領域に設けられている。ディスクD1の記録領域は、例えば、ディスクD1の中心から40mm~118.5mmの範囲のデータが記録される領域である。図10において、ディスクD1の記録領域は、一点鎖線で囲まれた領域よりも外側に位置する領域である。実施形態において、ディスクトレイ32の厚さ方向Z1から見て、ディスクD1の記録領域近傍には貫通穴が設けられていない。これにより、ディスクトレイ32内に異物が侵入してディスクD1の記録領域に傷が付くことを抑えることができる。
 各貫通穴325は、ディスクトレイ32の厚さ方向Z1から見て、ディスクD1の中心穴D1Aと重複する領域(図10では点線で囲まれた領域)の全体又は略全体に設けられている。また、各貫通穴325は、ディスクD1の内径近傍に位置する領域(図10では、点線で囲まれた領域と、二点鎖線で囲まれた領域(例えばディスクD1の中心から17.75mmにある領域)との間の領域)に部分的に侵入するように形成されている。実施形態において、各貫通穴325は、ディスクD1の内径近傍に位置する領域に侵入する2つの凹部325Aをそれぞれ有している。各凹部325Aは、後述する第1支持爪374B、第2支持爪375B、及び第3支持爪375Cの少なくとも1つに倣った形状で且つそれらが突出位置に位置する状態で通過可能なサイズに形成されている。実施形態において、第1支持爪374B、第2支持爪375B、第3支持爪375Cは、形状及びサイズが同一又は略同一に形成されている。これにより、開口面積をできる限り小さくして、ディスクトレイスピンドル321の強度が向上されている。
 また、ディスクトレイスピンドル321は、ディスクトレイ32の底壁に設けられた円形穴を形成する壁に底板部324の外周部がバヨネット結合されることにより取り付けられている。
 図12Aは、ディスクトレイスピンドル321の取り付け前のディスクトレイ32を下方から見た斜視図であり、図12Bは、その一部拡大斜視図である。
 図12Aに示すように、ディスクトレイ32の底壁326の中心部分には、円形穴327が形成されている。図12Bに示すように、円形穴327を形成する壁には、バヨネット突起327Aが形成されている。また、図11Bに示すように、ディスクトレイスピンドル321の底板部324には、バヨネット突起327Aに対応するバヨネット溝324Aが形成されている。
 図13A~図13Cは、ディスクトレイスピンドル321をディスクトレイ32の円形穴327に取り付ける様子を示す斜視図である。
 まず、図13A及び図13Bに示すように、ディスクトレイスピンドル321の底板部324を円形穴327に挿入する。
 次いで、図13Cに示すように、中心軸322を中心としてディスクトレイスピンドル321を回転させることで、バヨネット突起327Aとバヨネット溝324Aとを結合させる。
 このようにして、ディスクトレイスピンドル321をディスクトレイ32の円形穴327にバヨネット結合させることで、ビスなどの締結部材を別途設ける必要性を無くすことができる。その結果、部品点数の増加を抑えるとともに、ディスクトレイ32の厚みの増加を抑えることができる。
 次に、ディスクセレクタ37の構成についてより詳しく説明する。
 図14A~図14Dは、トレイキャリア36によって搬送されるディスクトレイ32内の複数枚のディスクD1をディスクセレクタ37が保持する様子を示す斜視図である。
 図14A~図14Dに示すように、ディスクセレクタ37は、複数枚のディスクD1のそれぞれに設けられた中心穴D1Aに挿入されるディスクセレクタスピンドル371を備えている。ディスクセレクタスピンドル371は、複数枚のディスクD1を積層状態で保持するとともに、最下位に位置するディスクを他のディスクから分離してドライブユニット34に供給するように構成されている。
 実施形態において、ディスクセレクタスピンドル371は、複数枚のディスクD1の中の任意の枚数のディスクを保持可能に構成されている。図14Bは、ディスクセレクタスピンドル371が最上位のディスクを保持する位置に、トレイキャリア36が上昇した状態を示している。図14Cは、ディスクセレクタスピンドル371が6枚のディスクを保持する位置に、トレイキャリア36が上昇した状態を示している。図14Dは、ディスクセレクタスピンドル371が全て(12枚)のディスクを保持する位置に、トレイキャリア36が上昇した状態を示している。
 ディスクセレクタスピンドル371の周囲には、円盤状のディスクプレス372が上下方向Zに相対移動可能に取り付けられている。ディスクプレス372は、円錐コイルバネ(図示せず)によって下方に付勢されている。ディスクプレス372は、ディスクセレクタスピンドル371が各ディスクD1の中心穴D1Aに挿入される際に、ディスクD1の内周部の非記録領域に接触して、円錐コイルバネの付勢力によってディスクD1をディスクトレイ32に押圧する。これにより、各ディスクD1のガタつきが抑えられ、ディスクセレクタスピンドル371がより確実に各ディスクD1の中心穴D1Aに挿入される。
 また、ディスクセレクタ37は、ディスクセレクタスピンドル371を駆動する駆動機構9と、駆動機構9を保持するシャーシ373とを備えている。
 図15は、ディスクセレクタスピンドル371の斜視図である。図16は、ディスクセレクタスピンドル371が備えるセレクトフック374及びドロップフック375の斜視図である。図17は、ディスクセレクタスピンドル371の上面図である。図18は、ディスクセレクタスピンドル371の底面図である。
 ディスクセレクタスピンドル371は、複数のセレクトフック374と、複数のドロップフック375とを備えている。実施形態において、ディスクセレクタスピンドル371は、3つのセレクトフック374と、3つのドロップフック375とを備えている。
 セレクトフック374とドロップフック375とは、固定板376を貫通するように取り付けられている。固定板376は、図17及び図18に示すように、中心角が約120度の扇形の板状部材であり、ビスなどの締結部材によりシャーシ373に固定される。シャーシ373には、3つの固定板376が円板状に取り付けられる。1つの固定板376には、1つのセレクトフック374と1つのドロップフック375が取り付けられる。すなわち、3つのセレクトフック374と3つのドロップフック375とは、平面視において、ディスクD1の中心穴D1Aの周方向に互いに間隔を空けて交互に配置されている。
 各固定板376に取り付けられるセレクトフック374とドロップフック375とは、ディスクトレイ32の貫通穴325を通過可能に構成されている。また、実施形態において、セレクトフック374とドロップフック375とは、ディスクD1の積層方向である上下方向Zに相対移動するように構成されている。
 セレクトフック374は、ディスクD1の積層方向である上下方向Zに延在する第1軸部374Aと、第1軸部374Aの下端部に取り付けられた第1支持爪374Bと、第1軸部374Aの上端部に取り付けられた選択レバー374Cとを備えている。
 第1軸部374Aは、円柱状の部材であり、固定板376に対して軸回りに回転可能に取り付けられている。
 第1支持爪374Bは、平面視において、ディスクD1の中心穴D1Aの内側に収納する収納位置(例えば図31A参照)と、ディスクD1の内径近傍に位置する領域に突出する突出位置(例えば図31C参照)とに移動するように構成されている。実施形態において、第1支持爪374Bは、第1軸部374Aが軸回りに回転する動作に連動して収納位置と突出位置とに移動するように構成されている。また、第1支持爪374Bは、突出位置に位置する状態でディスクトレイ32の貫通穴325の凹部325Aを通過可能に構成されている。
 選択レバー374Cは、上下方向Zに延在する固定ピン374D及び係合ピン374Eと、固定ピン374Dと係合ピン374Eとを連結する連結バー374Fとを備えている。固定ピン374D及び係合ピン374Eは、第1軸部374Aよりも直径が大きい円柱状の部材である。固定ピン374Dは、第1軸部374Aに対して同軸に配置され、連結バー374Fから上方に突出するように形成されている。係合ピン374Eは、第1軸部374Aに対して側方にずれた位置に配置され、連結バー374Fから上方に突出するように形成されている。
 第1軸部374Aの周囲には、図16に示すように、コイルバネ374Gが設けられている。コイルバネ374Gは、選択レバー374Cをシャーシ373の上方へ付勢するように、シャーシ373と選択レバー374Cとの間に配置されている。
 ドロップフック375は、ディスクD1の積層方向である上下方向Zに延在する第2軸部375Aと、第2軸部375Aの下端部に取り付けられた第2支持爪375B及び第3支持爪375Cと、第2軸部375Aの上端部に取り付けられた分離レバー375Dとを備えている。
 第2軸部375Aは、円柱状の部材であり、固定板376に対して軸回りに回転可能に取り付けられている。
 第2支持爪375Bは、平面視において、ディスクD1の中心穴D1Aの内側に収納する収納位置(例えば図31A参照)と、ディスクD1の内径近傍に位置する領域に突出する突出位置(例えば図31C参照)とに移動するように構成されている。第3支持爪375Cは、平面視において、ディスクD1の中心穴D1Aの内側に収納する収納位置(例えば図31A参照)と、ディスクD1の内径近傍に位置する領域に突出する突出位置(例えば図33B参照)とに移動するように構成されている。実施形態において、第2支持爪375B及び第3支持爪375Cは、第2軸部375Aが軸回りに回転する動作に連動してそれぞれ1つ収納位置と突出位置とに移動するように構成されている。また、第1支持爪374Bと、第2支持爪375B及び第3支持爪375Cとは、互いに独立して収納位置と突出位置とに移動するように構成されている。
 第2支持爪375Bは、第3支持爪375CよりもディスクD1の一枚の厚み分、ディスクD1の積層方向である上下方向Zにずれて配置されている。実施形態において、第2支持爪375Bは、第3支持爪375CよりもディスクD1の一枚の厚み分、上方にずれて配置されている。
 また、第2支持爪375Bは、収納位置から突出位置へ移動するタイミングが第3支持爪375Cとは異なるように構成されている。実施形態において、第2支持爪375Bは、上下方向Zから見て、第3支持爪375Cに対して所定の角度(例えば90度)ずれた位置に設けられている。第2支持爪375B及び第3支持爪375Cは、突出位置に位置する状態でディスクトレイ32の貫通穴325の凹部325Aを通過可能に構成されている。
 分離レバー375Dは、上下方向Zに延在する円柱状の接触ピン375E及び係合ピン375Fと、接触ピン375Eと係合ピン375Fとを連結する連結バー375Gとを備えている。接触ピン375Eは、第2軸部375Aに対して同軸に配置され、連結バー35Gから上方及び下方に突出するように形成されている。係合ピン375Fは、第2軸部375Aに対して側方にずれた位置に配置され、連結バー375Gから上方に突出するように形成されている。
 第2軸部375Aの周囲には、図16に示すように、コイルバネ375Hが設けられている。コイルバネ375Hは、分離レバー375Dをシャーシ373の上方へ付勢するように、シャーシ373と分離レバー375Dとの間に配置されている。
 図19は、ディスクセレクタ37を斜め上方から見た斜視図である。図20は、ディスクセレクタ37を斜め下方から見た斜視図である。図21は、ディスクセレクタスピンドル371を駆動する駆動機構9の構成を示す分解斜視図である。図22は、図21の駆動機構9を背面方向から見た組立斜視図である。
 図19に示すように、駆動機構9は、シャーシ373の上面に取り付けられている。図21及び図22に示すように、駆動機構9は、セレクトフック駆動部91と、ドロップフック駆動部92と、選択カムギア93と、リンクレバー94と、押下カム95と、分離カムギア96と、ドライブレバー97と、固定ネジ98とを備えている。
 セレクトフック駆動部91は、選択モータ91Aと、モータギア91Bと、減速ギア91Cと、中継ギア91Dとを備えている。
 選択モータ91Aは、選択カムギア93を回転させる回転駆動力を発生させるモータである。モータギア91Bは、選択モータ91Aの出力軸に固定され、減速ギア91Cと噛み合っている。減速ギア91Cは、中継ギア91Dと噛み合っている。中継ギア91Dは、選択カムギア93と噛み合っている。選択モータ91Aから発生された回転駆動力がモータギア91B、減速ギア91C、中継ギア91Dを介して選択カムギア93に伝達されることにより、選択カムギア93が回転する。選択モータ91Aの駆動は、制御ユニット7により制御される。
 ドロップフック駆動部92は、分離モータ92Aと、モータギア92Bと、減速ギア92Cと、中継ギア92Dとを備えている。
 分離モータ92Aは、分離カムギア96を回転させる回転駆動力を発生させるモータである。モータギア92Bは、分離モータ92Aの出力軸に固定され、減速ギア92Cと噛み合っている。減速ギア92Cは、中継ギア92Dと噛み合っている。中継ギア92Dは、分離カムギア96と噛み合っている。分離モータ92Aから発生された回転駆動力がモータギア92B、減速ギア92C、中継ギア92Dを介して分離カムギア96に伝達されることにより、分離カムギア96が回転する。分離モータ92Aの駆動は、制御ユニット7により制御される。
 選択カムギア93の中心部には、上下方向Zに貫通する中心穴93Aが設けられている。選択カムギア93の中心穴93Aの周囲には、セレクトフック374の係合ピン374Eが係合可能な3つのカム溝93Bが設けられている。各カム溝93Bは、選択カムギア93の概ね円周方向に沿うように形成されている。選択モータ91Aの駆動により選択カムギア93が回転することで、各係合ピン374Eが、対応するカム溝93Bに沿って相対移動する。
 また、選択カムギア93には、リンクレバー94に設けられた係合ピン94Aが係合可能なカム溝93Cが設けられている。リンクレバー94は、図19に示すように、選択カムギア93の側方においてシャーシ373の上面から上方に突出する円柱形の軸部373Aに挿入される円筒形の軸受部94Bを備えている。リンクレバー94は、軸部373Aに軸受部94Bが挿入されることで、軸部373Aを中心として回転可能にシャーシ373に取り付けられている。選択モータ91Aの駆動により選択カムギア93が回転することで、係合ピン94Aがカム溝93Cに沿って相対移動する。また、係合ピン94Aがカム溝93Cの端部に到達した状態で選択カムギア93が更に回転することで、リンクレバー94が軸部373Aを中心として回転する。
 また、リンクレバー94は、軸受部94Bの側面から側方に延在するように下連結板94Cと上連結板94Dとを備えている。下連結板94Cと上連結板94Dとは、分離カムギア96を挟んで上下方向Zに互いに対向するように形成されている。係合ピン94Aは、下連結板94Cの先端部から下方に突出するように設けられている。また、上連結板94Dの先端部には、上方に突出するフック部94Eが設けられている。
 押下カム95は、選択カムギア93の中心穴93A内に設けられている。押下カム95の中心部には、上下方向Zに貫通する中心穴95Aが設けられている。押下カム95の下面には、中心穴95Aを中心として回転する際、ドロップフック375の接触ピン375Eに接触して、ドロップフック375を上下動させることが可能な傾斜部95Bが形成されている。傾斜部95Bは、回転方向の上流側から下流側に向かうに従い下方に傾斜するように形成されている。押下カム95の上面には、上方に突出するとともに、中心穴95Aを介して互いに対向する位置に一対のボス95Cが形成されている。
 分離カムギア96の中心穴96Aの周囲には、ドロップフック375の係合ピン375Fが係合可能な3つのカム溝96Bが設けられている。各カム溝96Bは、分離カムギア96の概ね半径方向に沿うように形成されている。分離モータ92Aの駆動により分離カムギア96が回転することで、各係合ピン375Fが、対応するカム溝96Bに沿って相対移動する。
 ドライブレバー97は、押下カム95と一体的に回転するように、分離カムギア96の中心穴96Aを通じて押下カム95に取り付けられている。ドライブレバー97の中心部には、上下方向に貫通する中心穴97Aが設けられている。中心穴97A及び中心穴95Aには、固定ネジ98がネジ込まれる。また、ドライブレバー97には、押下カム95の一対のボス95Cが嵌合する嵌合穴97Bが設けられている。これにより、ドライブレバー97と押下カム95とが一体的に回転する。
 ドライブレバー97は、側方に突出する突出板部97Cを備えている。突出板部97Cには、リンクレバー94のフック部94Eが係合するカム溝97Dが形成されている。リンクレバー94が軸部373Aを中心として回転するとき、フック部94Eがカム溝97D内を摺動し、ドライブレバー97が中心穴97Aを中心としてリンクレバー94とは逆方向に回転するように構成されている。
 図23A~図23Fは、選択モータ91A及び分離モータ92Aの駆動により取り得るセレクトフック374の第1支持爪374B、ドロップフック375の第2支持爪375B及び第3支持爪375Cの位置関係を示す斜視図である。
 図23A~図23Fに示すように、第1支持爪374B、第2支持爪375B、及び第3支持爪375Cは、選択モータ91A及び分離モータ92Aの駆動により、少なくとも6つの異なる位置関係を取り得る。このことにつき、以下により詳しく説明する。
 図24A~図24Cは、選択モータ91Aを駆動させたときの選択カムギア93とセレクトフック374の係合ピン374Eとリンクレバー94の位置関係を示す平面図である。図25A~図25Cは、選択モータ91Aを駆動させたときのセレクトフック374の第1支持爪374Bとドロップフック375の第2支持爪375B及び第3支持爪375Cの位置関係を示す平面図である。
 図24Aに示すように、初期位置において、セレクトフック374の各係合ピン374Eは、選択カムギア93の対応するカム溝93Bの一端部に位置している。また、リンクレバー94の係合ピン94Aは、カム溝93Cの一端部に位置している。また、図25A及び図23Aに示すように、初期位置において、セレクトフック374の第1支持爪374Bとドロップフック375の第2支持爪375B及び第3支持爪375Cとは、ディスクD1の中心穴D1Aの内側に収納する収納位置に位置している。
 図24Aに示す状態から選択モータ91Aが駆動されると、図24Bに示すように選択カムギア93が正方向(図24Bでは時計回り)に回転する。これにより、セレクトフック374の各係合ピン374Eは、選択カムギア93の対応するカム溝93Bの一端部から他端部へ移動する。このとき、セレクトフック374の選択レバー374Cが固定ピン374Dを中心として逆方向(図24Bでは反時計回り)に回転し、固定ピン374Dが接続される第1軸部374A(図16参照)が軸回りに回転する。この第1軸部374Aが回転する動作に連動して、図25B及び図23Bに示すように、セレクトフック374の第1支持爪374BがディスクD1の中心穴D1Aの外側の突出位置に移動する。
 また、図24Bに示すように選択カムギア93が正方向に回転すると、リンクレバー94の係合ピン94Aが、カム溝93Cの一端部から他端部へ移動する。なお、このとき、リンクレバー94が回転しないように、カム溝93Cが形成されている。
 図24Bに示す状態から選択モータ91Aが更に駆動されると、図24Cに示すように選択カムギア93が更に正方向に回転する。これにより、セレクトフック374の各係合ピン374Eは、選択カムギア93の対応するカム溝93Bの他端部に移動する。このとき、セレクトフック374の選択レバー374Cは回転せず、図25C及び図23Bに示すように、セレクトフック374の第1支持爪374Bが突出位置に位置する状態を維持する。
 また、図24Cに示すように選択カムギア93が更に正方向に回転すると、リンクレバー94が、カム溝93Cの他端部に移動し、軸部373Aを中心として正方向に回転する。このリンクレバー94の回転に伴い、後述するように、ドライブレバー97及び押下カム95が逆方向に回転し、ドロップフック375がコイルバネ375Hの付勢力に抗して押し下げられる。
 図26A~図26Cは、分離モータ92Aを駆動させたときの分離カムギア96とドロップフック375の係合ピン375Fの位置関係を示す平面図である。図27A~図27Cは、分離モータ92Aを駆動させたときのセレクトフック374の第1支持爪374Bとドロップフック375の第2支持爪375B及び第3支持爪375Cの位置関係を示す平面図である。
 図26Aに示すように、初期位置において、ドロップフック375の各係合ピン375Fは、分離カムギア96の対応するカム溝96Bの中間部に位置している。また、図27A及び図23Aに示すように、初期位置において、セレクトフック374の第1支持爪374Bとドロップフック375の第2支持爪375B及び第3支持爪375Cとは、ディスクD1の中心穴D1Aの内側の収納位置に位置している。
 図26Aに示す状態から分離モータ92Aが駆動されると、図26Bに示すように分離カムギア96が正方向(図26Bでは時計回り)に回転する。これにより、ドロップフック375の各係合ピン375Fは、分離カムギア96の対応するカム溝96Bの外側端部に移動する。このとき、ドロップフック375の分離レバー375Dが接触ピン375Eを中心として逆方向(図26Bでは反時計回り)に回転し、接触ピン375Eが接続される第2軸部375A(図16参照)が軸回りに回転する。この第2軸部375Aが回転する動作に連動して、図27B及び図23Fに示すように、ドロップフック375の第2支持爪375BがディスクD1の中心穴D1Aの外側の突出位置に移動する。
 図26Bに示す状態から分離モータ92Aが更に駆動されると、図26Cに示すように分離カムギア96が更に正方向に回転する。これにより、ドロップフック375の各係合ピン375Fは、分離カムギア96の対応するカム溝96Bの内側端部に移動する。このとき、ドロップフック375の分離レバー375Dが接触ピン375Eを中心として更に逆方向に回転し、接触ピン375Eが接続される第2軸部375A(図16参照)が更に軸回りに回転する。この第2軸部375Aが回転する動作に連動して、図27Cに示すように、ドロップフック375の第2支持爪375Bが収納位置に移動するとともに、ドロップフック375の第3支持爪375Cが突出位置に移動する。
 図28A~図28Cは、選択モータ91A及び分離モータ92Aを駆動させたときの押下カム95とドロップフック375の接触ピン375Eの位置関係を示す斜視図である。図29A及び図29Bは、選択モータ91A及び分離モータ92Aを駆動させたときの押下カム95とドロップフック375の接触ピン375Eの位置関係を示す側面図である。図30A及び図30Bは、選択モータ91A及び分離モータ92Aを駆動させたときのセレクトフック374の第1支持爪374Bとドロップフック375の第2支持爪375B及び第3支持爪375Cの位置関係を示す平面図である。なお、図28A~図28Cにおいては、押下カム95とドロップフック375の接触ピン375Eの位置関係を見やすくするために、分離カムギア96を取り外した状態を示している。
 図28Aに示すように、初期位置において、セレクトフック374の各係合ピン374Eは、選択カムギア93の対応するカム溝93Bの一端部に位置している。また、リンクレバー94の係合ピン94Aは、カム溝93Cの一端部に位置している。また、この初期位置において、セレクトフック374の第1支持爪374Bとドロップフック375の第2支持爪375B及び第3支持爪375Cとは、図23A及び図24Aに示すように、ディスクD1の中心穴D1Aの内側に収納する収納位置に位置している。
 図28Aに示す状態から選択モータ91A及び分離モータ92Aが駆動されると、選択カムギア93及び分離カムギア96が正方向に回転する。これにより、図28B及び図29Aに示すように、押下カム95の傾斜部95Bにドロップフック375の接触ピン375Eが接触する。また、このとき、図30A及び図23Cに示すように、セレクトフック374の第1支持爪374B及びドロップフック375の第2支持爪375Bが突出位置に移動する。
 図28Bに示す状態から選択モータ91Aのみが更に駆動されると、選択カムギア93が更に正方向に回転する。これにより、図28C及び図29Bに示すように、リンクレバー94が軸部373Aを中心として正方向に回転し、リンクレバー94のフック部94Eがカム溝97Dに沿って外側端部から内側端部へ移動する。この移動に伴い、ドライブレバー97及び押下カム95が逆方向に回転し、ドロップフック375がコイルバネ375Hの付勢力に抗して押下カム95の傾斜部95Bに(例えば2mm程度)押し下げられる。その結果、図30B及び図23Dに示すように、ドロップフック375の第2支持爪375Bが突出位置に位置する状態で下方に移動する。
 次に、ディスクセレクタスピンドル371がディスクトレイ32から複数枚のディスクD1を保持するディスク保持動作について説明する。第1支持爪374B、第2支持爪375B、及び第3支持爪375Cの移動及びディスクトレイ32の移動は、制御ユニット7の制御の下で行われる。また、ここでは、任意のディスクが上から6枚目のディスクであるものとし、ディスクセレクタスピンドル371がディスクトレイ32から12枚のディスクD1のうち6枚のディスクを保持するものとして説明する。
 図31A~図31Fは、ディスクセレクタスピンドル371がディスクトレイ32から複数枚のディスクD1を保持するディスク保持動作を模式的に示す断面図である。図32A及び図32Bは、ディスクセレクタスピンドル371がディスクトレイ32から複数枚のディスクD1を保持するディスク保持動作を一部断面で示す斜視図である。
 まず、図31Aに示すように、第1支持爪374B、第2支持爪375B、及び第3支持爪375Cをそれぞれ収納位置に位置させる(図23A参照)。
 次いで、図31B及び図32Aに示すように、ディスクトレイ32が上昇し、ディスクセレクタスピンドル371が複数枚のディスクD1のそれぞれの中心穴D1Aに挿入される。
 次いで、図31Cに示すように、第1支持爪374B及び第2支持爪375Bが上から6枚目のディスクの下方まで移動されたとき、第1支持爪374B及び第2支持爪375Bを収納位置から突出位置に移動させる(図23B及び図23C参照)。
 次いで、図31Dに示すように、第1支持爪374B及び第2支持爪375Bが突出位置に位置する状態で、ディスクトレイ32を下降させる。すなわち、第1支持爪374B及び第2支持爪375Bを上から7枚目のディスクに対して上方に相対移動させる。これにより、第1支持爪374B及び第2支持爪375Bに6枚目のディスク及び当該6枚目のディスクより上方のディスクを保持させる。このとき、7枚目のディスクが6枚目のディスクに密着して6枚目のディスクから離れないことが起こり得る。
 次いで、図31Eに示すように、第1支持爪374B及び第2支持爪375Bが6枚のディスクを保持した状態で、第2支持爪375Bを6枚目のディスクに対して下方に相対移動させる。これにより、6枚目のディスクに密着する7枚目のディスクを、6枚目のディスクから分離させる。
 次いで、図31Fに示すように、第2支持爪375Bを7枚目のディスクに対して上方に相対移動させ、図32Bに示すように、第1支持爪374B及び第2支持爪375Bに6枚のディスクを再び保持させる。これにより、ディスクセレクタスピンドル371は、保持した6枚のディスクを安定してドライブユニット34まで搬送することができる。
 次に、ディスクセレクタスピンドル371が、保持する複数枚のディスクD1のうち最下位のディスクをドライブユニット34のトレイ34Aに供給(載置)するディスク供給動作について説明する。第1支持爪374B、第2支持爪375B、及び第3支持爪375Cの移動は、制御ユニット7の制御の下で行われる。また、ここでは、ディスクセレクタスピンドル371が、保持する6枚のディスクのうち最下位のディスクを任意のディスクとしてトレイ34Aに供給するものとして説明する。
 図33A~図33Fは、ディスクセレクタスピンドル371が、保持する複数枚のディスクD1をドライブユニット34のトレイ34Aに供給するディスク供給動作を模式的に示す断面図である。
 まず、図33Aに示すように、6枚のディスクを保持するディスクセレクタスピンドル371の下方にドライブユニット34のトレイ34Aを位置させる。このとき、第1支持爪374B及び第2支持爪375Bは、それぞれ突出位置に位置(図23C参照)し、6枚のディスクを保持する。
 次いで、図33Bに示すように、第2支持爪375Bを突出位置から収納位置に移動させるとともに、第3支持爪375Cを収納位置から突出位置に移動させる(図23E参照)。
 次いで、図33Cに示すように、第1支持爪374Bを突出位置から収納位置に移動させる(図23F参照)。これにより、6枚のディスクが、自重により第3支持爪375C上に落下し、第3支持爪375Cに保持される。
 次いで、図33Dに示すように、第1支持爪374B及び第2支持爪375Bを収納位置から突出位置に移動させるとともに、第3支持爪375Cを突出位置から収納位置に移動させる(図23C参照)。このとき、最下位のディスクが5枚目のディスクに密着して5枚目のディスクから離れないことが起こり得る。
 次いで、図33Eに示すように、第1支持爪374B及び第2支持爪375Bが5枚のディスクを保持した状態で、第2支持爪375Bを最下位のディスクに対して下方に相対移動させる(図23D参照)。これにより、最下位のディスクを5枚目のディスクから分離させる。当該分離された最下位のディスクは、自重によりドライブユニット34のトレイ34A上に落下し、トレイ34Aに供給(載置)される。
 次いで、図33Fに示すように、第2支持爪375Bを最下位のディスクに対して上方に相対移動させ、第1支持爪374B及び第2支持爪375Bに5枚のディスクを保持させる。これにより、ディスクセレクタスピンドル371は、保持する6枚のディスクのうち最下位のディスクをドライブユニット34のトレイ34Aに供給することができる。
 次に、ディスクセレクタスピンドル371が、ドライブユニット34のトレイ34A上のディスクを回収して、ディスクトレイ32に返却するディスク返却動作について説明する。第1支持爪374B、第2支持爪375B、及び第3支持爪375Cの移動及びディスクトレイ32の移動は、制御ユニット7の制御の下で行われる。また、ここでは、ディスクセレクタスピンドル371が、5枚のディスクを保持した状態でドライブユニット34のトレイ34A上のディスクを回収して、ディスクトレイ32に返却するものとして説明する。
 図34A~図34Gは、ディスクセレクタスピンドル371が、ドライブユニット34のトレイ34A上のディスクを回収して、ディスクトレイ32に返却するディスク返却動作を模式的に示す断面図である。
 まず、図34Aに示すように、5枚のディスクを保持するディスクセレクタスピンドル371の下方に、1枚のディスクが載置されたトレイ34Aを位置させる。このとき、第1支持爪374B及び第2支持爪375Bは、それぞれ突出位置に位置(図23C参照)し、5枚のディスクを保持する。
 次いで、図34Bに示すように、第1支持爪374B及び第2支持爪375Bを突出位置から収納位置に移動させる(図23A参照)。これにより、5枚のディスクが自重によりトレイ34A上に落下し、6枚のディスクがトレイ34A上に載置されることになる。
 次いで、図34Cに示すように、第3支持爪375Cがトレイ34Aの中心穴を通過してトレイ34Aの下方に位置するようにディスクセレクタスピンドル371を相対移動させる。また、このとき、第3支持爪375Cを収納位置から突出位置に移動させる(図23F参照)。
 次いで、図34Dに示すように、ディスクセレクタスピンドル371をトレイ34Aの上方に相対移動させる。これにより、第3支持爪375Cがトレイ34A上のディスクを回収して、6枚のディスクを保持する。
 次いで、図34Eに示すように、6枚のディスクを保持するディスクセレクタスピンドル371の下方に、6枚のディスクが収納されたディスクトレイ32を位置させる。その後、ディスクセレクタスピンドル371とディスクトレイ32とを、互いに近づくように相対移動させる。
 次いで、図34Fに示すように、ディスクトレイ32の上方で第3支持爪375Cを突出位置から収納位置に移動させ、ディスクセレクタスピンドル371が保持する6枚のディスクをディスクトレイ32に収納された6枚のディスクの上に積層する。
 次いで、図34Gに示すように、ディスクトレイ32を下降させ、ディスクセレクタスピンドル371が12枚のディスクD1の中心穴D1Aから抜け出る。これにより、ディスクセレクタスピンドル371は、トレイ34A上のディスクをディスクトレイ32に返却することができる。
 実施形態に係るディスク装置によれば、ディスクセレクタスピンドル371が、第1支持爪374Bを有するセレクトフック374と、第2支持爪375B及び第3支持爪375Cを有するドロップフック375とを備えている。この構成によれば、第1支持爪374B、第2支持爪375B、及び第3支持爪375Cを収納位置と突出位置との間で移動させることにより、複数枚のディスクD1を積層状態で保持することができる。また、最下位に位置するディスクを他のディスクから分離してドライブユニット34に供給することができる。その結果、リフターを設ける必要性を無くして、チェンジャーユニットの構成の簡素化を図ることができる。なお、実施形態に係るディスク装置では、セレクトフック374を駆動する駆動源とドロップフック375を駆動する駆動源とが別々に必要である。しかしながら、リフターを駆動する駆動源が不要になるため、駆動源の数が増加することを抑えることができる。
 また、実施形態に係るディスク装置によれば、ディスクセレクタスピンドル371が、セレクトフック374及びドロップフック375をそれぞれ複数備えている。この構成によれば、複数のセレクトフック374と複数のドロップフック375とを、最下位のディスクの内周部の複数箇所に接触させて、複数枚のディスクをより安定して保持することができる。
 また、実施形態に係るディスク装置によれば、複数のセレクトフック374と複数のドロップフック375とは、平面視において、ディスクD1の中心穴D1Aの周方向に互いに間隔を空けて交互に配置されている。この構成によれば、複数のセレクトフック374と複数のドロップフック375とを、最下位のディスクの内周部の複数箇所により均等に接触させて、複数枚のディスクをより一層安定して保持することができる。
 なお、本開示は前記実施形態に限定されるものではなく、その他種々の態様で実施できる。例えば、前記では、第1支持爪374Bは、第1軸部374Aが軸回りに回転する動作に連動して収納位置と突出位置とに移動するように構成されるものとしたが、本開示はこれに限定されない。第1支持爪374Bは、収納位置と突出位置とに移動するように構成されていればよい。同様に、第2支持爪375B及び第3支持爪375Cも、収納位置と突出位置とに移動するように構成されていればよい。
 また、前記では、図31E及び図33Eを用いて説明したように、第1支持爪374Bを下方に相対移動させることにより、互いに隣接するディスク同士を分離するように構成したが、本開示はこれに限定されない。例えば、第2支持爪375Bを下方に相対移動させることにより、互いに隣接するディスク同士を分離するように構成してもよい。
 また、前記では、セレクトフック374とドロップフック375とが上下方向Zに相対移動するように構成されるものとしたが、本開示はこれに限定されない。互いに隣接するディスク同士が密着して離れない可能性が低い場合は、必ずしもセレクトフック374とドロップフック375とが上下方向Zに相対移動するように構成される必要はない。また、図31E及び図33Eを用いて説明した動作を行う必要もない。
 また、前記では、図34Gに示すように、ディスク返却動作の際、ディスクセレクタスピンドル371が保持する6枚のディスクがディスクトレイ32に返却された後、ディスクトレイ32を下降させるようにしたが、本開示はこれに限定されない。例えば、図35A及び図35Bに示すように、1枚のディスクをディスクトレイ32に返却するとき、静電気等によって当該1枚のディスクが他のディスクに対して面方向にずれることが起こり得る。このため、図35Cに示すように、ディスクセレクタスピンドル371の下端部がディスクトレイ32の貫通穴325を通じてディスクトレイ32の外側下方に突出するまで移動するように、ディスクトレイ32を上昇させてもよい。これにより、各ディスクD1の面方向のずれを補正して、平面視において各ディスクD1の中心穴D1Aを一致させることができる。
 また、前記では、ディスクトレイ32を上下方向Zに移動させることにより、複数枚のディスクD1の中心穴D1Aにディスクセレクタスピンドル371が挿抜されるものとしたが、本開示はこれに限定されない。ディスクセレクタスピンドル371を上下方向Zに移動させることにより、複数枚のディスクD1の中心穴D1Aにディスクセレクタスピンドル371が挿抜されるものとしてもよい。すなわち、ディスクセレクタスピンドル371とディスクトレイ32とを上下方向Zに相対移動させることにより、複数枚のディスクD1の中心穴D1Aにディスクセレクタスピンドル371が挿抜されるようにすればよい。同様に、ディスクセレクタスピンドル371とドライブユニット34のトレイ34Aとを上下方向Zに相対移動させることにより、トレイ34A上のディスクD1の中心穴D1Aにディスクセレクタスピンドル371が挿抜されるようにすればよい。
 また、前記では、互いに隣接するディスクの隙間に第1支持爪374B及び第2支持爪375Bを侵入させるものとしたが、このためには、第1支持爪374B及び第2支持爪375Bの上下方向Zの位置を高精度で制御する必要がある。このため、第1支持爪374B及び第2支持爪375Bの上下方向Zの位置を高精度で検知可能な位置検知センサを設けることが好ましい。これにより、互いに隣接するディスクの隙間に第1支持爪374B又は第2支持爪375Bをより確実に侵入させることができる。
 また、互いに隣接するディスクの隙間は、通常、非常に狭い。このため、ディスクが積層方向と直交する方向に対して僅かに傾斜していた場合には、第1支持爪374B又は第2支持爪375Bが互いに隣接するディスクの隙間に侵入できずに、ディスクの内周部に接触してしまうことが起こり得る。このため、複数のセレクトフック374のうち1つのセレクトフック374の第1支持爪374B及び複数のドロップフック375のうち1つのドロップフック375の第2支持爪375Bの少なくとも一方は、収納位置から突出位置に移動するとき、他の支持爪よりも先にディスクD1の内周部に接触し、積層方向と直交する方向に対するディスクD1の傾きを補正するように構成されることが好ましい。例えば、1つのセレクトフック374の第1支持爪374B及び1つのドロップフック375の第2支持爪375Bの少なくとも一方は、先端部がテーパ状(例えば、図31A参照)に形成されることが好ましい。これにより、互いに隣接するディスクの隙間に第1支持爪374B又は第2支持爪375Bをより確実に侵入させることができる。
 また、ディスクD1の傾きを補正する第1支持爪374B又は第2支持爪375Bは、平面視において、前述した位置検知センサの近傍に設けられることが好ましい。この場合、ディスクD1の傾きを補正する第1支持爪374B又は第2支持爪375Bの上下方向Zの位置を高精度に制御することができるので、互いに隣接するディスクの隙間に第1支持爪374B又は第2支持爪375Bをより確実に侵入させることができる。
 以上のように、本開示における技術の例示として、実施形態を説明した。そのために、添付図面及び詳細な説明を提供した。したがって、添付図面及び詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、前記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。
 また、前述の実施形態は、本開示における技術を例示するためのものであるから、特許請求の範囲又はその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
 本開示にかかるディスクトレイは、複数枚のディスクをより確実に抜き出すとともにディスクの抜き出しによるディスクトレイからの粉吹きの発生を低減することができるので、特に、データセンターなどの大量のデータを扱う施設に用いるディスク装置に有用である。
  1   格納庫
  1A  開口部
  2   ドロワー
  2A  把手部
  3   ディスク装置
  4   ケース
  4A  開口部
  5   レール
  6   ファンユニット
  7   制御ユニット
  8   コネクティングユニット
  9   駆動機構
 31A  トレイスタック
 31B  トレイスタック
 32   ディスクトレイ
 33   チェンジャーユニット
 34   ドライブユニット
 34A  トレイ
 35   筐体
 36   トレイキャリア
 37   ディスクセレクタ
 38   シャーシ
 38A  前壁
 91   セレクトフック駆動部
 91A  選択モータ
 91B  モータギア
 91C  減速ギア
 91D  中継ギア
 92   ドロップフック駆動部
 92A  分離モータ
 92B  モータギア
 92C  減速ギア
 92D  中継ギア
 93   選択カムギア
 93A  中心穴
 93B  カム溝
 93C  カム溝
 94   リンクレバー
 94A  係合ピン
 94B  軸受部
 94C  下連結板
 94D  上連結板
 94E  フック部
 95   押下カム
 95A  中心穴
 95B  傾斜部
 95C  ボス
 96   分離カムギア
 96A  中心穴
 96B  カム溝
 97   ドライブレバー
 97A  中心穴
 97B  嵌合穴
 97C  突出板部
 97D  カム溝
 98   固定ネジ
321   ディスクトレイスピンドル
322   中心軸
323   側板部
324   底板部
324A  バヨネット溝
325   貫通穴
325A  凹部
326   底壁
327   円形穴
327A  バヨネット突起
371   ディスクセレクタスピンドル
372   ディスクプレス
373   シャーシ
373A  軸部
374   セレクトフック
374A  第1軸部
374B  第1支持爪
374C  選択レバー
374D  固定ピン
374E  係合ピン
374F  連結バー
374G  コイルバネ
375   ドロップフック
375A  第2軸部
375B  第2支持爪
375C  第3支持爪
375D  分離レバー
375E  接触ピン
375F  係合ピン
375G  連結バー
375H  コイルバネ
376   固定板
 D1   ディスク
 D1A  中心穴
 D1B  内周部

Claims (7)

  1.  複数枚のディスクを積層状態で収納するディスクトレイであって、
     前記ディスクトレイには、複数枚のディスクのそれぞれに設けられた中心穴を貫通し、各ディスクの面方向の移動を規制するディスクトレイスピンドルが設けられ、
     前記ディスクトレイスピンドルは、各ディスクの内周部に対して3点で接触するように構成されている、
     ディスクトレイ。
  2.  前記ディスクトレイスピンドルは、
     前記ディスクトレイの厚さ方向に延在する中心軸と、
     前記中心軸に接続され、各ディスクの内周部にそれぞれ接触する3つの側板部と、
     を備え、
     前記3つの側板部は、前記ディスクトレイの厚さ方向から見て、前記中心軸を中心として略等角度間隔又は等角度間隔で配置されている、請求項1に記載のディスクトレイ。
  3.  前記ディスクトレイスピンドルは、前記3つの側板部のそれぞれの下端部に接続された底板部を備え、
     前記底板部は、前記ディスクトレイの厚さ方向から見て、前記3つの側板部のうちいずれか2つの側板部に挟まれた3つの領域にそれぞれ貫通穴を有する、請求項1又は2に記載のディスクトレイ。
  4.  各貫通穴は、前記ディスクトレイの厚さ方向から見て、前記ディスクの内径近傍に位置する領域に設けられている、請求項3に記載のディスクトレイ。
  5.  各貫通穴は、前記ディスクトレイの厚さ方向から見て、前記ディスクの中心穴と重複する領域の全体又は略全体に設けられるとともに、前記ディスクの内径近傍に位置する領域に部分的に侵入するように形成されている、請求項4に記載のディスクトレイ。
  6.  前記ディスクトレイスピンドルは、前記ディスクトレイの底壁に設けられた円形穴を形成する壁に前記底板部の外周部がバヨネット結合されることにより取り付けられている、請求項3~5のいずれか1つに記載のディスクトレイ。
  7.  請求項1~6のいずれか1つに記載のディスクトレイを備えるディスク装置。
PCT/JP2018/038107 2017-12-07 2018-10-12 ディスクトレイ及びディスク装置 WO2019111532A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-235497 2017-12-07
JP2017235497A JP2021028856A (ja) 2017-12-07 2017-12-07 ディスクトレイ及びディスク装置

Publications (1)

Publication Number Publication Date
WO2019111532A1 true WO2019111532A1 (ja) 2019-06-13

Family

ID=66749940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038107 WO2019111532A1 (ja) 2017-12-07 2018-10-12 ディスクトレイ及びディスク装置

Country Status (2)

Country Link
JP (1) JP2021028856A (ja)
WO (1) WO2019111532A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63204572A (ja) * 1987-02-20 1988-08-24 Toshiba Corp デイスク装置
JPH03119584A (ja) * 1989-10-02 1991-05-21 Sony Corp ディスク
JPH09326148A (ja) * 1996-06-06 1997-12-16 Alpine Electron Inc ディスククランプ装置
JP2005174399A (ja) * 2003-12-08 2005-06-30 Hitachi Maxell Ltd 単リール型テープカートリッジ
JP2007305241A (ja) * 2006-05-12 2007-11-22 Victor Co Of Japan Ltd ディスクチェンジャ装置
JP2014017044A (ja) * 2012-06-15 2014-01-30 Panasonic Corp ディスク装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63204572A (ja) * 1987-02-20 1988-08-24 Toshiba Corp デイスク装置
JPH03119584A (ja) * 1989-10-02 1991-05-21 Sony Corp ディスク
JPH09326148A (ja) * 1996-06-06 1997-12-16 Alpine Electron Inc ディスククランプ装置
JP2005174399A (ja) * 2003-12-08 2005-06-30 Hitachi Maxell Ltd 単リール型テープカートリッジ
JP2007305241A (ja) * 2006-05-12 2007-11-22 Victor Co Of Japan Ltd ディスクチェンジャ装置
JP2014017044A (ja) * 2012-06-15 2014-01-30 Panasonic Corp ディスク装置

Also Published As

Publication number Publication date
JP2021028856A (ja) 2021-02-25

Similar Documents

Publication Publication Date Title
US5555143A (en) Data cartridge library system architecture
JP2011204311A (ja) 薄型光ディスクカートリッジ、薄型光ディスク搬送装置、及び薄型光ディスク記録再生装置
JP5927537B2 (ja) ディスク装置
JP2013229087A (ja) ディスク装置
JP5866626B1 (ja) ディスク装置及びディスク分離方法
WO2000017870A1 (fr) Dispositif d'enregistrement et/ou de reproduction pour support d'enregistrement du type disque
EP1455354B1 (en) Disk apparatus and disk holder for use in the same
WO2019111531A1 (ja) ディスク装置
WO2019111532A1 (ja) ディスクトレイ及びディスク装置
JP2002237123A (ja) ディスク作製システム
US7676817B1 (en) Media drive system having a plurality of queuing positions
JPWO2018100882A1 (ja) ディスク収納装置及びディスクアーカイブ装置
CN111052235B (zh) 碟盘装置
JP2015111490A (ja) ディスク装置及びスピンドルユニット
JP5019062B2 (ja) ディスクトレイ、ディスク記録再生装置及びディスク媒体分離方法
WO2019069480A1 (ja) ディスク装置
CN109313914B (zh) 碟盘搬运装置及碟盘搬运方法
JP2899497B2 (ja) ディスクオートチェンジャー装置
JP2013257928A (ja) アーカイブ装置
JP2014026713A (ja) ディスク装置
JP2008181632A (ja) 薄型情報記録媒体用カートリッジ、及び薄型情報記録媒体用トレイ
JP3497076B2 (ja) ディスクチェンジャー
JP2018125050A (ja) ディスクトレイ用フランジ
JP3208582B2 (ja) ディスクオートチェンジャー
JP2018125049A (ja) ディスクトレイ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18886570

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18886570

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP