WO2019110048A1 - Verfahren zum steuern eines verbrennungsmotors - Google Patents

Verfahren zum steuern eines verbrennungsmotors Download PDF

Info

Publication number
WO2019110048A1
WO2019110048A1 PCT/DE2018/100975 DE2018100975W WO2019110048A1 WO 2019110048 A1 WO2019110048 A1 WO 2019110048A1 DE 2018100975 W DE2018100975 W DE 2018100975W WO 2019110048 A1 WO2019110048 A1 WO 2019110048A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
fresh air
working space
piston
Prior art date
Application number
PCT/DE2018/100975
Other languages
English (en)
French (fr)
Inventor
Daniel Wolf
Piergiacomo Traversa
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Priority to CN201880078017.5A priority Critical patent/CN111433098B/zh
Priority to US16/767,788 priority patent/US11207964B2/en
Publication of WO2019110048A1 publication Critical patent/WO2019110048A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/181Preparing for stopping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/24Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18018Start-stop drive, e.g. in a traffic jam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/10Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic
    • F01L9/11Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic in which the action of a cam is being transmitted to a valve by a liquid column
    • F01L9/12Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic in which the action of a cam is being transmitted to a valve by a liquid column with a liquid chamber between a piston actuated by a cam and a piston acting on a valve stem
    • F01L9/14Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic in which the action of a cam is being transmitted to a valve by a liquid column with a liquid chamber between a piston actuated by a cam and a piston acting on a valve stem the volume of the chamber being variable, e.g. for varying the lift or the timing of a valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0207Variable control of intake and exhaust valves changing valve lift or valve lift and timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0223Variable control of the intake valves only
    • F02D13/0226Variable control of the intake valves only changing valve lift or valve lift and timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/04Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation using engine as brake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/08Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing for rendering engine inoperative or idling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/04Starting of engines by means of electric motors the motors being associated with current generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/004Aiding engine start by using decompression means or variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/005Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • B60K2006/268Electric drive motor starts the engine, i.e. used as starter motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • B60W2030/18081With torque flow from driveshaft to engine, i.e. engine being driven by vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0685Engine crank angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D2013/0292Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation in the start-up phase, e.g. for warming-up cold engine or catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/005Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation
    • F02N2019/008Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation the engine being stopped in a particular position
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the invention relates to a method for controlling an internal combustion engine comprising a pinion starter for starting the internal combustion engine, a cylinder and an in-cylinder piston, which together define a working space, wherein the working space is supplied via inlet valves with an intake tract with fresh air and exhaust valves with an exhaust manifold in
  • connection and a system for variably actuating the intake valves wherein the system for variable actuation of the intake valves of the internal combustion engine is controlled such that the opening time and / or the closing time and / or the lift of the intake valves are changed.
  • Combustion engine used in a hybrid powertrain with belt starter generator. Pumping losses are reduced while the internal combustion engine is in the shut down state - ie dragged state. It is an object of the invention to propose a method which optimizes the operation of the internal combustion engine during a stop-start phase.
  • the object is achieved by a method having the features of claim 1.
  • the invention relates to a method for controlling an internal combustion engine, wherein the internal combustion engine comprises: a pinion starter for starting up the internal combustion engine, a cylinder and a piston running in the cylinder, which together define a working space , where the work space over
  • Intake valves with an intake tract is supplied with fresh air and over
  • Exhaust valves communicating with an exhaust manifold and in system for variably actuating the intake valves, wherein the system for variably actuating the intake valves of the internal combustion engine is driven so that the Opening time and / or the closing time and / or the lift of the intake valves to be changed.
  • Fresh air to be avoided Excessive supply of fresh air causes fuel to be injected to set the required air ratio through a mixture regulator to achieve the optimum air ratio.
  • Avoidance or reduction of fresh air transfer can result in reduced fuel consumption during the stop-start process.
  • Another advantage is that drag torques are reduced.
  • the drag torque of the internal combustion engine is understood as a resistance by the
  • Procedure can be achieved by shutting down the
  • the intake valves of individual or all work spaces are controlled so that the position of the piston can be controlled when shut down internal combustion engine.
  • the end position of individual pistons can be controlled in such a way that a position advantageous for starting the internal combustion engine is actuated.
  • a further advantageous development relates to a method, wherein the position of the piston is controlled during shutdown of the internal combustion engine such that the piston is in the shutdown state of the internal combustion engine in the bottom dead center between the clocks charge and compression, said
  • Workspace is filled with fresh air.
  • the time for the subsequent startup of the internal combustion engine can be shortened.
  • Another advantageous development in this respect relates to a method, wherein the opening time and / or the closing time and / or the lift of the intake valves of first working space is controlled during the shutdown of the internal combustion engine such that a piston which is associated with a second working space, in the subsequent adjusting shut down state of
  • Another embodiment which is advantageous in this respect relates to a method in which the fresh air in the second working space is compressed immediately after startup of the combustion engine when starting up the internal combustion engine, transferred into a fuel-fresh air mixture and ignited.
  • a further advantageous embodiment relates to a method, wherein the
  • Fig. 1 shows a schematic representation of the structure of an electro-hydraulic valve train for the variable actuation of the intake valves of an internal combustion engine
  • Fig. 2 shows a first characteristic opening course of an intake valve
  • Fig. 3 shows a second characteristic opening course of an intake valve
  • FIG. 4a shows a first method for shutting down and starting up a
  • FIG. 4b shows a second method of shutting down and starting up an internal combustion engine in situations where shutdown is aborted.
  • Fig. 1 shows a schematic representation of the structure 1 of an electro-hydraulic valve train for the variable actuation of the intake valves of an internal combustion engine.
  • Inlet valves 2 can be controlled in such a way that the opening time, the closing time and the stroke can be changed.
  • a camshaft 3 drives one
  • Master piston 4 which is connected via a hydraulic medium line 5 of a high-pressure chamber 6 with a slave piston 7 in connection.
  • An electromagnetic switching valve 9 designed as a 2-2-way valve establishes a controllable hydraulic connection between the high-pressure chamber 6 and a medium-pressure chamber 10. When the switching valve 9 is open, hydraulic fluid can flow out of the high-pressure chamber 6 into the medium-pressure space 10.
  • the medium-pressure chamber 10 is connected via a secured by a check valve 16 hydraulic medium line to the general hydraulic fluid circuit of the internal combustion engine.
  • the medium-pressure space 10 is in communication with a piston pressure accumulator 13.
  • Gas exchange valve 2 is thus achieved by a mechanical decoupling between the cam 8 of the camshaft 3 and the gas exchange valve 2. In place of the mechanical coupling occurs filled with hydraulic fluid
  • High-pressure chamber 6 thus acts as a so-called hydraulic linkage.
  • Movement of the gas exchange valve 2 can be controlled by a partial volume of the hydraulic fluid is transferred from the high-pressure chamber 6 in the medium-pressure space 10 by selectively opening the switching valve 9.
  • the movement of the gas exchange valve 2 in the sequence is no longer proportional to the contour of the cam 8, but may take any shape.
  • a first characteristic opening profile of an inlet valve is shown in FIG. 2. On the abscissa axis is the angle of rotation of the crankshaft, wherein two complete revolutions of the crankshaft are detected.
  • the piston moves in the sequence between bottom dead center and top dead center, the internal combustion engine the clock compression (ignition), expansion,
  • the line 14 illustrates the stroke profile of the intake valve 2.
  • the intake valve 2 already opens during the cycle outlet, about 50 ° crankshaft angle after the bottom dead center TDC.
  • the valve lift is about 1, 5mm to about 30 ° crankshaft angle before reaching the top dead center and is thus relatively low in comparison with the maximum stroke. Subsequently, the valve lift is increased to example meadow 4mm.
  • the intake valve closes intake at approximately 460 ° crankshaft angle during the stroke before the bottom dead center BDC is reached.
  • the line 15 illustrates the stroke of the exhaust valve. Since exhaust valve already opens during the cycle expansion at 140 ° crankshaft angle, so shortly before reaching the bottom dead center BDC. The exhaust valve closes with completion of the cycle outlet in the region of top dead center TDC. Together with the lift characteristic of the inlet valve, a volume flow between the
  • Cylinder is illustrated by the line 16, the volume flow between the working space of the cylinder and the intake tract through the line 17.
  • the line 18 illustrates the volume flow between the intake and the
  • FIG. 2 A second characteristic opening profile of an inlet valve 2 is shown in FIG.
  • the stroke profile of the intake and exhaust valve corresponds largely the courses shown in Fig. 2.
  • the intake valve closes only at -60 ° crank angle shortly before top dead center TDC during the cycle
  • the maximum lift of the intake valve differs from the Flub shown in Fig. 2 and is about 9mm.
  • the second characteristic curve is advantageous over the first characteristic curve with a view to reducing drag torque.
  • the transfer of fresh air from the intake manifold to the exhaust manifold is thus reduced or avoided, and the drag caused by the resistance of the piston movement is reduced by opening the intake valves of any or all of the work spaces at a time when the piston associated with the work space is in the exhaust stroke and by the
  • FIG. 4 a illustrates a method for shutting down and starting up an internal combustion engine, the following strategy being used:
  • the intake valves 2 are driven so that sets either the first characteristic or the second characteristic curve.
  • the transfer of fresh air from the intake tract to the exhaust manifold is reduced or avoided, and the drag torque caused by the resistance of the piston movement is reduced.
  • the opening time and / or the closing time and / or the lift of the inlet valves of a first working space are controlled such that a piston associated with a second working space is in bottom dead center between the cycles in the subsequently setting down state of the internal combustion engine Charge and compression, where the second working space is filled with fresh air (see 19).
  • the first In the case of a subsequent startup of the internal combustion engine, the fresh air in the second working space can be controlled immediately after the start of the cycle Start of the startup
  • Point 23 activation of the inlet valve after the first characteristic opening course (FIG. 2) or after the second characteristic opening course (FIG. 3);
  • Item 20 No opening of intake valve to position after engine stop
  • Item 21 injection in phase compression and activation of the pinion starter
  • Point 24 Type of inlet valve control is set during engine stop.
  • a criterion is defined, the occurrence of which leads to termination of the shutdown.
  • One possible criterion is, for example, the actuation of the clutch by the driver.
  • Item 25 The charge contains too much of the exhaust gas and is therefore not flammable
  • Item 26 Type of activation of the inlet valve is determined as a result of the cancellation signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Steuern eines Verbrennungsmotors umfassend - einen Ritzelstarter zum Hochfahren des Verbrennungsmotors; - einen Zylinder und einen im Zylinder laufenden Kolben, die gemeinsam einen Arbeitsraum begrenzen, wobei der Arbeitsraum über Einlassventile (2) mit einem Ansaugtrakt mit Frischluft versorgt wird und über Auslassventile mit einem Abgaskrümmer in Verbindung steht; - ein System (1) zum variablen Betätigen der Einlassventile (2), wobei das System (1) zur variablen Betätigung der Einlassventile (2) des Verbrennungsmotors derart angesteuert wird, dass die Öffnungszeit und/oder die Schließzeit und/oder der Hub der Einlassventile 2 verändert werden. Beim Herunterfahren des Verbrennungsmotors findet folgende Strategie Anwendung: die Einlassventile (2) einzelner oder aller Arbeitsräume werden derart angesteuert, dass der Transfer von Frischluft vom Ansaugtrakt zum Abgaskrümmer reduziert oder vermieden wird und dass das Schleppmoment des Verbrennungsmotors reduziert wird.

Description

Verfahren zum Steuern eines Verbrennungsmotors
Beschreibung
Die Erfindung betrifft ein Verfahren zum Steuern eines Verbrennungsmotors umfassend einen Ritzelstarter zum Hochfahren des Verbrennungsmotors, einen Zylinder und einen im Zylinder laufenden Kolben, die gemeinsam einen Arbeitsraum begrenzen, wobei der Arbeitsraum über Einlassventile mit einem Ansaugtrakt mit Frischluft versorgt wird und über Auslassventile mit einem Abgaskrümmer in
Verbindung steht und ein System zum variablen Betätigen der Einlassventile, wobei das System zur variablen Betätigung der Einlassventile des Verbrennungsmotors derart angesteuert wird, dass die Öffnungszeit und/oder die Schließzeit und/oder der Hub der Einlassventile verändert werden.
Ein derartiges Verfahren ist beispielsweise in der EP 2 578 462 A1 offenbart.
Beschrieben ist ein Verfahren zum Reduzieren von Pumpverlusten eines
Verbrennungsmotors, der in einem Hybrid-Antriebsstrang mit Riemen-Starter- Generator zum Einsatz kommt. Pumpverluste werden reduziert, während der Verbrennungsmotor sich im heruntergefahrenen Zustand - also geschleppten Zustand - befindet. Es ist Aufgabe der Erfindung, ein Verfahren vorzuschlagen, das den Betrieb des Verbrennungsmotors während einer Stopp-Start-Phase optimiert.
Die Aufgabe wird gelöst durch ein Verfahren mit den Merkmalen des Anspruchs 1. Die Erfindung betrifft eine Verfahren zum Steuern eines Verbrennungsmotors, wobei Verbrennungsmotor folgende umfasst: einen Ritzelstarter zum Hochfahren des Verbrennungsmotor, einen Zylinder und einen im Zylinder laufenden Kolben, die gemeinsam einen Arbeitsraum begrenzen, wobei der Arbeitsraum über
Einlassventile mit einem Ansaugtrakt mit Frischluft versorgt wird und über
Auslassventile mit einem Abgaskrümmer in Verbindung steht und in System zum variablen Betätigen der Einlassventile, wobei das System zur variablen Betätigung der Einlassventile des Verbrennungsmotors derart angesteuert wird, dass die Öffnungszeit und/oder die Schließzeit und/oder der Hub der Einlassventile verändert werden.
Beim Herunterfahren des Verbrennungsmotors findet folgende Strategie Anwendung: Die Einlassventile einzelner oder aller Arbeitsräume werden derart angesteuert, dass der Transfer von Frischluft vom Ansaugtrakt zum Abgaskrümmer reduziert oder vermieden wird und dass das Schleppmoment des Verbrennungsmotors reduziert wird. Auf vorteilhafte Weise kann eine Überversorgung des Katalysators mit
Frischluft vermieden werden. Eine übermäßige Frischluftzufuhr führt dazu, dass - zum Einstellen des erforderlichen Luftverhältnisses durch einen Gemischregler - Kraftstoff eingespritzt wird, um das optimale Luftverhältnis zu erreichen. Die
Vermeidung oder Verminderung des Frischlufttransfers kann dazu führen, dass der Kraftstoffverbrauch während des Stopp-Start-Vorgangs reduziert wird. Ein weiterer Vorteil besteht darin, dass Schleppmomente reduziert werden. Das Schleppmoment des Verbrennungsmotors wird verstanden als Widerstand, der durch die
reibungsbehafteten bewegten Teile des Verbrennungsmotors hervorgerufen wird. Dadurch kann insbesondere der Komfort des Stopp-Start-Vorgangs verbessert werden.
Eine mit Blick auf die Zeit für das Hochfahren vorteilhafte Weiterbildung des
Verfahrens kann erreicht werden, indem beim Herunterfahren des
Verbrennungsmotors folgende Strategie Anwendung findet: die Einlassventile einzelner oder aller Arbeitsräume werden derart angesteuert, dass die Position des Kolbens bei heruntergefahrenem Verbrennungsmotor kontrolliert werden kann. Die Endposition einzelner Kolben kann derart kontrolliert werden, dass eine für das Starten des Verbrennungsmotors vorteilhafte Position angesteuert wird. Eine weitere vorteilhafte Weiterbildung betrifft eine Verfahren, wobei die Position des Kolbens beim Herunterfahren des Verbrennungsmotors derart kontrolliert wird, dass der Kolben sich im heruntergefahrenen Zustand des Verbrennungsmotors im unteren Totpunkt befindet zwischen den Takten Ladung und Kompression, wobei der
Arbeitsraum mit Frischluft gefüllt ist. Auf vorteilhafte Weise kann somit die Zeit für das anschließende Hochfahren des Verbrennungsmotors verkürzt werden.
Eine weitere in dieser Hinsicht vorteilhafte Weiterbildung betrifft ein Verfahren, wobei die Öffnungszeit und/oder die Schließzeit und/oder der Hub der Einlassventile eines ersten Arbeitsraumes während des Herunterfahrens des Verbrennungsmotors derart kontrolliert wird, dass ein Kolben, der einem zweiten Arbeitsraum zugeordnet ist, sich im anschließend einstellenden heruntergefahrenen Zustand des
Verbrennungsmotors im unteren Totpunkt befindet zwischen den Takten Ladung und Kompression, wobei der zweite Arbeitsraum mit Frischluft gefüllt ist.
Eine weitere in dieser Hinsicht vorteilhafte Weiterbildung betrifft ein Verfahren, wobei die Frischluft in dem zweiten Arbeitsraum beim Hochfahren des Verbrennungsmotors unmittelbar nach dem Beginn des Hochfahrens komprimiert, in ein Kraftstoff - Frischluft-Gemisch überführt und gezündet wird. Eine weitere vorteilhafte Weiterbildung betrifft ein Verfahren, wobei beim
Herunterfahren des Verbrennungsmotors folgende Strategie Anwendung findet: In einem ersten Schritt wird ein Kriterium erkannt, das zum Abbruch des
Herunterfahrens führt. In einem zweiten Schritt werde die Einlassventile der
Arbeitsräume, die sich im Takt Auslass befinden, im darauffolgenden Takt Ladung derart angesteuert, dass der Arbeitsraum mit Frischluft gefüllt wird, wobei
anschließend Kraftstoff eingespritzt und das Kraftstoff-Frischluft-Gemisch im Takt Kompression gezündet wird.
Insbesondere bei Verbrennungsmotoren mit Direkteinspritzung kann somit ein schnelles Wiederhochfahren des Verbrennungsmotors gewährleistet werden. Der spätmögliche Punkt zum Abbruch des Herunterfahrens ist u.a. abhängig von der Resonanz des Gesamtsystems.
Im Folgenden wird die Erfindung anhand eines Ausführungsbeispiels erläutert.
Fig. 1 zeigt eine schematische Darstellung des Aufbaus eines elektrohydraulischen Ventiltriebs zur variablen Betätigung der Einlassventile eines Verbrennungsmotors; Fig. 2 zeigt einen ersten charakteristischen Öffnungsverlauf eines Einlassventils;
Fig. 3 zeigt einen zweiten charakteristischen Öffnungsverlauf eines Einlassventils;
Fig. 4a zeigt ein erstes Verfahren zum Herunterfahren und Hochfahren eines
Verbrennungsmotors;
Fig. 4b zeigt ein zweites Verfahren zum Herunterfahren und Hochfahren eines Verbrennungsmotors in Situationen, in denen das Herunterfahren abgebrochen wird. Fig. 1 zeigt eine schematische Darstellung des Aufbaus 1 eines elektrohydraulischen Ventiltriebs zur variablen Betätigung der Einlassventile eines Verbrennungsmotors. Einlassventile 2 können derart angesteuert werden, dass die Öffnungszeit, die Schließzeit und der Hub veränderbar ist. Eine Nockenwelle 3 treibt einen
Geberkolben 4 an, der über eine Hydraulikmittelleitung 5 eines Hochdruckraumes 6 mit einem Nehmerkolben 7 in Verbindung steht. Über den Geberkolben 4, die hydraulische Abstützung im Hochdruckraum 6 und den Nehmerkolben 7 kann die durch einen Nocken 8 der Nockenwelle 3 hervorgerufene Bewegung auf ein
Einlassventil 2 übertragen werden. Ein elektromagnetisches, als 2-2-Wege-Ventil gestaltetes Schaltventil 9 stellt eine steuerbare hydraulische Verbindung zwischen dem Hochdruckraum 6 und einem Mitteldruckraum 10 her. Bei geöffnetem Schaltventil 9 kann Hydraulikmittel aus dem Hochdruckraum 6 in den Mitteldruckraum 10 strömen. Der Mitteldruckraum 10 ist über eine durch ein Rückschlagventil 16 gesicherte Hydraulikmittelleitung an den allgemeinen Hydraulikmittelkreislauf des Verbrennungsmotors angeschlossen. Der Mitteldruckraum 10 steht mit einem Kolbendruckspeicher 13 in Verbindung.
Die Variabilität der Öffnungszeit, der Schließzeit und des Hubs des
Gaswechselventils 2 wird demnach durch eine mechanische Entkopplung zwischen dem Nocken 8 der Nockenwelle 3 und dem Gaswechselventil 2 erreicht. An die Stelle der mechanischen Kopplung tritt der mit Hydraulikmittel gefüllte
Hochdruckraum 6 zwischen Geberkolben 4 und Nehmerkolben 7 - der
Hochdruckraum 6 wirkt somit als sogenanntes hydraulisches Gestänge. Die durch die Nockenkontur hervorgerufene und mittels Geberkolben 4 umgesetzte
Verdrängung von Hydraulikmittel wirkt - bei geschlossenem Schaltventil 9 und vernachlässigter Leckage - proportional auf die durch Bewegung des
Nehmerkolbens 7 hervorgerufene Bewegung des Gaswechselventils 2. Die
Bewegung des Gaswechselventils 2 kann gesteuert werden, indem durch gezieltes Öffnen des Schaltventils 9 ein Teilvolumen des Hydraulikmittels vom Hochdruckraum 6 in den Mitteldruckraum 10 überführt wird. Die Bewegung des Gaswechselventils 2 verläuft in der Folge nicht mehr proportional zum Konturverlauf des Nockens 8, sondern kann eine beliebige Form annehmen. Ein erster charakteristischer Öffnungsverlauf eines Einlassventils ist in Fig. 2 dargestellt. Auf der Abszissenachse ist der Umdrehungswinkel der Kurbelwelle darstellt, wobei zwei vollständige Umdrehungen der Kurbelwelle erfasst sind. Der Kolben bewegt sich in der Folge zwischen unterem Totpunkt und oberen Totpunkt, wobei der Verbrennungsmotor die Takte Kompression (Zünden), Expansion,
Auslass, Ladung durchläuft. Auf der Ordinatenachse sind der Ventilhub abgetragen und der Gasmassenstrom.
Die Linie 14 veranschaulicht den Hubverlauf des Einlassventils 2. Das Einlassventil 2 öffnet bereits während des Taktes Auslass, ca. 50° Kurbelwellenwinkel nach dem unteren Totpunkt TDC. Der Ventilhub beträgt bis ca. 30° Kurbelwellenwinkel vor dem Erreichen des oberen Totpunktes ca. 1 , 5mm und ist somit relativ gering im Vergleich mit dem Maximalhub. Anschließend wird der Ventilhub auf beispielswiese 4mm erhöht. Das Einlassventil schließt während des Taktes Einlass bei ungefähr 460° Kurbelwellenwinkel, bevor der untere Totpunkt BDC erreicht ist. Die Linie 15 veranschaulicht den Hubverlauf des Auslassventils. Da Auslassventil öffnet bereits während des Taktes Expansion bei 140° Kurbelwellenwinkel, also kurz vor Erreichen des unteren Totpunktes BDC. Das Auslassventil schließt mit Abschluss des Taktes Auslass im Bereich des oberen Totpunktes TDC. Gemeinsam mit der Hubcharakteristik des Einlassventils wird ein Volumenstrom zwischen dem
Abgaskrümmer, dem Arbeitsraum des Zylinders und dem Ansaugtrakt hervorgerufen. Der Volumenstrom zwischen dem Abgaskrümmer und dem Arbeitsraum des
Zylinders wird durch die Linie 16 veranschaulicht, der Volumenstrom zwischen dem Arbeitsraum des Zylinders und dem Ansaugtrakt durch die Linie 17. Die Linie 18 veranschaulicht den Volumenstrom zwischen dem Ansaugtrakt und dem
Arbeitsraum. Aus diesem Verlauf geht hervor, dass Abgas aus dem Abgaskrümmer in den Ansaugtrakt überführt wird, wodurch eine Abgas-Rezirkulation verwirklicht und ein Transfer von Frischluft vom Ansaugtrakt zum Abgaskrümmer vermieden oder zumindest vermindert wird. Darüber hinaus werden Pumpverluste vermindert, wodurch die durch den Verbrennungsmotor hervorgerufenen Schleppmomente reduziert werden.
Ein zweiter charakteristischer Öffnungsverlauf eines Einlassventils 2 ist in Fig. 3 dargestellt. Der Hubverlauf des Ein- und Auslassventils entspricht weitestgehend dem in Fig. 2 gezeigten Verläufen. Das Einlassventil schließt allerdings erst bei -60° Kurbelwellenwinkel kurz vor dem oberen Totpunkt TDC während des Taktes
Kompression. Auch der Maximalhub des Einlassventils unterscheidet sich von dem in Fig. 2 gezeigten Flub und liegt bei ca. 9mm. Der erste charakteristische
Öffnungsverlauf ist vorteilhaft gegenüber dem zweiten charakteristischen
Öffnungsverlauf mit Blick auf die Verminderung des Transfers von Frischluft vom Ansaugtrakt zum Abgaskrümmer, der zweite charakteristische Verlauf ist vorteilhaft gegenüber dem ersten charakteristischen Verlauf mit Blick auf die Reduzierung von Schleppmomenten. Der Transfer von Frischluft vom Ansaugtrakt zum Abgaskrümmer wird demnach reduziert oder vermieden und das durch den Widerstand der Kolbenbewegung hervorgerufene Schleppmoment wird reduziert, indem die Einlassventile einzelner oder aller Arbeitsräume zu einem Zeitpunkt geöffnet werden, wo sich der dem Arbeitsraum zugeordnete Kolben im Takt Auslass befindet und indem die
Einlassventile einzelner oder aller Arbeitsräum zu einem Zeitpunkt geschlossen werden, wo sich der Kolben im Takt Einlass befindet, wobei der Takt Einlass nicht abgeschlossen ist oder indem die Einlassventile einzelner oder aller Arbeitsräume zu einem Zeitpunkt geschlossen werden, wo sich der Kolben im Takt Kompression befindet, wobei der Takt Kompression nicht abgeschlossen ist. Die Fig. 4a veranschaulicht ein Verfahren zum Herunterfahren und Hochfahren eines Verbrennungsmotors, wobei folgende Strategie Anwendung findet: Nach dem
Veranlassen des Herunterfahrens, beispielsweise im Stopp-Start-Betrieb, werden die Einlassventile 2 derart angesteuert, dass sich entweder der erste charakteristische oder der zweite charakteristische Verlauf einstellt. In der Folge wird der Transfer von Frischluft vom Ansaugtrakt zum Abgaskrümmer reduziert oder vermieden und das durch den Widerstand der Kolbenbewegung hervorgerufene Schleppmoment wird reduziert. Während des Herunterfahrens werden die Öffnungszeit und/oder die Schließzeit und/oder der Hub der Einlassventile eines ersten Arbeitsraumes derart kontrolliert, dass ein Kolben, der einem zweiten Arbeitsraum zugeordnet ist, sich im anschließend einstellenden heruntergefahrenen Zustand des Verbrennungsmotors im unteren Totpunkt befindet zwischen den Takten Ladung und Kompression, wobei der zweite Arbeitsraum mit Frischluft gefüllt ist (siehe 19). Das dem ersten Arbeitsraum zugeordnete Einlassventil kann beispielsweise während des Taktes Ladung derart angesteuert werden, dass es nicht öffnet- somit kann die Position des dem zweiten Arbeitsraum zugeordneten Kolbens kontrolliert werden (siehe 20) Bei einem anschließenden Hochfahren des Verbrennungsmotors kann die Frischluft in dem zweiten Arbeitsraum unmittelbar nach dem Beginn des Hochfahrens
komprimiert, in ein Kraftstoff-Frischluft-Gemisch überführt und gezündet werden kann (siehe 21 ). Die für einen Motorstart benötigte Zeit kann auf diese Weise verkürzt werden.
Zu den weiteren markanten Punkten der Strategie Punkt 22: Kalkulation der verbleibenden kinetischen Energie des Motors und
Berechnung der Ansteuerung zum gezielten stoppen des Motors in einer
kontrollierten Position;
Punkt 23: Ansteuerung des Einlassventils nach dem ersten charakteristischen Öffnungsverlauf (Fig. 2) oder nach dem zweiten charakteristischen Öffnungsverlauf (Fig. 3);
Punkt 20: Keine Öffnung des Einlassventils, um Position nach Motorstopp
kontrollieren zu können;
Punkt 21 : Einspritzung in Phase Kompression und Aktivierung des Ritzelstarters;
Punkt 24: Art der Ansteuerung des Einlassventils wird während Motorstopp festgelegt.
In bestimmten Fahrsituationen kann es Vorkommen, dass der Verbrennungsmotor herunterfährt, während des Herunterfahrens aber ein Ereignis auftritt, das zum Abbruch des Herunterfahrens führen soll, siehe Fig. 4b. Bei diesem sogenannten „Change of Mind“-Situationen soll der Verbrennungsmotor möglichst nach kurzer Zeit wieder die Zieldrehzahl, also die Leerlaufdrehzahl erreichen. Zu diesem Zweck wird ein Kriterium definiert, dessen Eintreten zum Abbruch des Herunterfahrens führt. Ein mögliches Kriterium ist beispielsweise das Betätigen der Kupplung durch den Fahrer. Nach Eintritt und Erkenne des Kriteriums werden die Einlassventile der
Arbeitsräume, die sich im Takt Auslass befinden, im darauffolgenden Takt Ladung derart angesteuert, dass der Arbeitsraum mit Kraftstoff-Frischluft-Gemisch gefüllt wird, wobei das Kraftstoff-Frischluft-Gemisch anschließend im Takt Kompression gezündet wird.
Zu den weiteren markanten Punkten der Strategie
Punkt 25: Die Ladung enthält einen zu großen Anteil an Abgas und ist somit nicht zündfähig;
Punkt 26: Art der Ansteuerung des Einlassventils wird infolge des Abbruchsignals festgelegt.
Bezuqszeichenliste elektrohydraulischer Ventiltriebs zur variablen Betätigung der Einlassventile
Einlassventil
Nockenwelle
Geberkolben
Hydraulikmittelleitung
Hochdruckraum
Nehmerkolben
Nocken
Schaltventil
Mitteldruckraum
Rückschlagventil
Hydraulikmittelkreislauf
Kolbendruckspeicher
Linie
Linie
Linie
Linie
Linie
zweiter Arbeitsraum mit Frischluft gefüllt
Kontrolle der Endposition bei Motorstopp
Starten des Motors
Kalkulation der kinetischen Energie 23 Ansteuerung des Einlassventils
24 Festlegung der Ansteuerung nach Motorstart
25 Ladung mit übermäßig großem Anteil Abgas
26 Festlegung der Ansteuerung nach Motorstart BDC unterer Totpunkt
TDC oberer Totpunkt

Claims

Ansprüche
1. Verfahren zum Steuern eines Verbrennungsmotors umfassend
- einen Ritzelstarter zum Hochfahren des Verbrennungsmotors; - einen Zylinder und einen im Zylinder laufenden Kolben, die gemeinsam einen
Arbeitsraum begrenzen, wobei der Arbeitsraum über Einlassventile (2) mit einem Ansaugtrakt mit Frischluft versorgt wird und über Auslassventile mit einem
Abgaskrümmer in Verbindung steht;
- ein System (1 ) zum variablen Betätigen der Einlassventile (2), wobei das System (1 ) zur variablen Betätigung der Einlassventile (2) des Verbrennungsmotors derart angesteuert wird, dass die Öffnungszeit und/oder die Schließzeit und/oder der Hub der Einlassventile 2 verändert werden; wobei das Verfahren dadurch gekennzeichnet ist, dass beim Herunterfahren des Verbrennungsmotors folgende Strategie Anwendung findet: die Einlassventile (2) einzelner oder aller Arbeitsräume werden derart angesteuert, dass der Transfer von Frischluft vom Ansaugtrakt zum Abgaskrümmer reduziert oder vermieden wird und dass das Schleppmoment des Verbrennungsmotors reduziert wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass beim Herunterfahren des Verbrennungsmotors folgende Strategie Anwendung findet: die Einlassventile (2) einzelner oder aller Arbeitsräume werden derart angesteuert, dass die Position des Kolbens bei heruntergefahrenem Verbrennungsmotor kontrolliert werden kann.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Position des Kolbens beim Herunterfahren des Verbrennungsmotors derart kontrolliert wird, dass der Kolben sich im heruntergefahrenen Zustand des Verbrennungsmotors im unteren Totpunkt (BDC) befindet zwischen den Takten Ladung und Kompression, wobei der Arbeitsraum mit Frischluft gefüllt ist.
4. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Öffnungszeit und/oder die Schließzeit und/oder der Hub der Einlassventile
(2) eines ersten Arbeitsraumes während des Herunterfahrens des
Verbrennungsmotors derart kontrolliert wird, dass ein Kolben, der einem zweiten Arbeitsraum zugeordnet ist, sich im anschließend einstellenden heruntergefahrenen Zustand des Verbrennungsmotors im unteren Totpunkt (BDC) befindet zwischen den Takten Ladung und Kompression, wobei der zweite Arbeitsraum mit Frischluft gefüllt ist.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Frischluft in dem zweiten Arbeitsraum bei dem Hochfahren des Verbrennungsmotors unmittelbar nach dem Beginn des Hochfahrens komprimiert, in ein Kraftstoff-Frischluft-Gemisch überführt und gezündet wird.
6. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass beim Herunterfahren des Verbrennungsmotors folgende Strategie Anwendung findet:
- Erkennen eines Kriteriums, das zum Abbruch des Herunterfahrens führt;
- die Einlassventile (2) der Arbeitsräume, die sich im Takt Auslass befinden, werden im darauffolgenden Takt Ladung derart angesteuert, dass der Arbeitsraum mit Frischluft gefüllt wird, wobei anschließend Kraftstoff eingespritzt und das Kraftstoff- Frischluft-Gemisch im Takt Kompression gezündet wird.
PCT/DE2018/100975 2017-12-04 2018-11-30 Verfahren zum steuern eines verbrennungsmotors WO2019110048A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880078017.5A CN111433098B (zh) 2017-12-04 2018-11-30 用于控制内燃机的方法
US16/767,788 US11207964B2 (en) 2017-12-04 2018-11-30 Method for controlling an internal combustion engine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102017011166.9 2017-12-04
DE102017011166 2017-12-04
DE102018117359.8A DE102018117359A1 (de) 2017-12-04 2018-07-18 Verfahren zum Steuern eines Verbrennungsmotors
DE102018117359.8 2018-07-18

Publications (1)

Publication Number Publication Date
WO2019110048A1 true WO2019110048A1 (de) 2019-06-13

Family

ID=66547839

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/DE2018/100975 WO2019110048A1 (de) 2017-12-04 2018-11-30 Verfahren zum steuern eines verbrennungsmotors
PCT/DE2018/100976 WO2019110049A1 (de) 2017-12-04 2018-11-30 Verfahren zum steuern eines verbrennungsmotors eines hybridantriebsstrangs

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/DE2018/100976 WO2019110049A1 (de) 2017-12-04 2018-11-30 Verfahren zum steuern eines verbrennungsmotors eines hybridantriebsstrangs

Country Status (4)

Country Link
US (2) US11207964B2 (de)
CN (2) CN111433091A (de)
DE (2) DE102018117359A1 (de)
WO (2) WO2019110048A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11458828B2 (en) 2017-12-04 2022-10-04 Schaeffler Technologies AG & Co. KG Method for controlling an internal combustion engine of a hybrid powertrain

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113771832B (zh) * 2020-06-10 2024-05-24 广州汽车集团股份有限公司 混合动力车辆起动发动机控制方法
CN116025463A (zh) * 2022-12-24 2023-04-28 江苏钧骋车业有限公司 一种汽车排气制动装置以及排气制动系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050279323A1 (en) * 2004-03-19 2005-12-22 Lewis Donald J Internal combustion engine shut-down for engine having adjustable valves
DE102010041519B3 (de) * 2010-09-28 2011-12-22 Robert Bosch Gmbh Verfahren zum Abstellen einer Dieselbrennkraftmaschine mit wenigstens zwei Zylindern und Recheneinheit
US20130080036A1 (en) * 2011-09-26 2013-03-28 Mazda Motor Corporation Device and method for controlling start of compression self-ignition engine
EP2578462A1 (de) 2011-10-03 2013-04-10 C.R.F. Società Consortile per Azioni Verfahren zum Steuern eines Kraftfahrzeuges umfassend eines Antriebssystems der Mildhybridbauart

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0640272A (ja) * 1992-07-22 1994-02-15 Jatco Corp エンジン・自動変速機の制御装置
JPH102239A (ja) * 1996-06-14 1998-01-06 Toyota Motor Corp ハイブリッド型車両のエンジン制御装置
JP2000257410A (ja) * 1999-03-10 2000-09-19 Toyota Motor Corp 内燃機関の可変バルブ特性装置および3次元カム
DE19960984A1 (de) * 1999-12-17 2001-06-21 Bosch Gmbh Robert Verfahren zur Auslaufsteuerung einer Brennkraftmaschine
US6761147B2 (en) * 2000-10-18 2004-07-13 Denso Corporation Control apparatus and method for internal combustion engine
DE10063750A1 (de) * 2000-12-21 2002-06-27 Bosch Gmbh Robert Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
JP3892236B2 (ja) * 2001-02-20 2007-03-14 本田技研工業株式会社 ハイブリッド車両の制御装置
US6772742B2 (en) * 2002-03-01 2004-08-10 International Engine Intellectual Property Company, Llc Method and apparatus for flexibly regulating internal combustion engine valve flow
US6810866B2 (en) * 2002-10-22 2004-11-02 General Motors Corporation Engine with modified cam profiles for internal EGR control
DE10310301A1 (de) * 2003-03-10 2004-09-23 Robert Bosch Gmbh Verfahren und Steuerung eines Verbrennungsmotors in einem Start-Stopp-Betrieb
DE102004013168A1 (de) 2004-03-18 2005-10-06 Ina-Schaeffler Kg Hybridantrieb
US7021289B2 (en) 2004-03-19 2006-04-04 Ford Global Technology, Llc Reducing engine emissions on an engine with electromechanical valves
DE102005000621A1 (de) * 2005-01-03 2006-07-13 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
US7469667B2 (en) 2005-07-07 2008-12-30 Ford Global Technologies, Llc Method for controlling a variable event valvetrain
EP1953055B1 (de) * 2005-11-24 2013-02-27 Toyota Jidosha Kabushiki Kaisha Hybridfahrzeug
CN1991135A (zh) * 2005-12-28 2007-07-04 株式会社日立制作所 内燃机的可变气门致动系统
DE102006008642A1 (de) * 2006-02-24 2007-08-30 Robert Bosch Gmbh Verfahren zum Betreiben eines Hybridfahrzeugs
US7899608B1 (en) * 2006-06-08 2011-03-01 Pederson Neal R Method and apparatus for detecting misfires and idenfifying causes
DE102007016515A1 (de) * 2007-04-05 2008-10-09 Daimler Ag Verfahren zur Steuerung eines Antriebssystems für ein Kraftfahrzeug
ATE520866T1 (de) * 2008-11-07 2011-09-15 Fiat Ricerche Dieselmotor mit nocken zum betätigen von einlassventilen, welche einen hauptnocken und einen hilfsnocken, die miteinander verbunden sind,aufweisen
EP2397674B1 (de) * 2010-06-18 2012-10-24 C.R.F. Società Consortile per Azioni Verbrennungsmotor mit Zylindern, die aktiviert werden können, mit Abgasrückführung durch die variable Steuerung der Aufnahmeventile, und Verfahren zur Steuerung eines Verbrennungsmotors
WO2012031826A1 (de) * 2010-09-10 2012-03-15 Robert Bosch Gmbh Verfahren und vorrichtung zur steuerung einer brennkraftmaschine
JP5230709B2 (ja) * 2010-09-21 2013-07-10 日立オートモティブシステムズ株式会社 制御装置
DE102011006288A1 (de) * 2011-03-29 2012-10-04 Robert Bosch Gmbh Verfahren und Vorrichtung zum anlasserlosen Starten eines Verbrennungsmotors, insbesondere in einem Hybridfahrzeug
US9073544B2 (en) * 2012-06-01 2015-07-07 GM Global Technology Operations LLC Control architecture for a multi-mode powertrain system
JP5951513B2 (ja) * 2013-01-21 2016-07-13 日立オートモティブシステムズ株式会社 多気筒内燃機関の可変動弁装置及び該可変動弁装置の制御装置
DE112013006727B4 (de) * 2013-02-25 2019-02-07 Toyota Jidosha Kabushiki Kaisha Steuerungsvorrichtung für eine Verbrennungskraftmaschine
JP2015058827A (ja) * 2013-09-19 2015-03-30 トヨタ自動車株式会社 ハイブリッド車両およびハイブリッド車両の制御方法
JP5939221B2 (ja) * 2013-09-20 2016-06-22 トヨタ自動車株式会社 ハイブリッド車両の制御装置およびハイブリッド車両の制御方法
JP2015067265A (ja) * 2013-10-01 2015-04-13 トヨタ自動車株式会社 ハイブリッド車両
JP2015077867A (ja) * 2013-10-16 2015-04-23 トヨタ自動車株式会社 ハイブリッド車両
JP2015107674A (ja) * 2013-12-03 2015-06-11 トヨタ自動車株式会社 ハイブリッド車両
JP2015110383A (ja) * 2013-12-06 2015-06-18 トヨタ自動車株式会社 ハイブリッド車両
US9416736B2 (en) 2013-12-18 2016-08-16 GM Global Technology Operations LLC Method and apparatus for controlling an internal combustion engine during a combustion transition
DE102015225446A1 (de) * 2015-12-16 2017-06-22 Robert Bosch Gmbh Verfahren zum anlasserlosen Starten eines Verbrennungsmotors
DE102018117359A1 (de) 2017-12-04 2019-06-06 Schaeffler Technologies AG & Co. KG Verfahren zum Steuern eines Verbrennungsmotors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050279323A1 (en) * 2004-03-19 2005-12-22 Lewis Donald J Internal combustion engine shut-down for engine having adjustable valves
DE102010041519B3 (de) * 2010-09-28 2011-12-22 Robert Bosch Gmbh Verfahren zum Abstellen einer Dieselbrennkraftmaschine mit wenigstens zwei Zylindern und Recheneinheit
US20130080036A1 (en) * 2011-09-26 2013-03-28 Mazda Motor Corporation Device and method for controlling start of compression self-ignition engine
EP2578462A1 (de) 2011-10-03 2013-04-10 C.R.F. Società Consortile per Azioni Verfahren zum Steuern eines Kraftfahrzeuges umfassend eines Antriebssystems der Mildhybridbauart

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11458828B2 (en) 2017-12-04 2022-10-04 Schaeffler Technologies AG & Co. KG Method for controlling an internal combustion engine of a hybrid powertrain

Also Published As

Publication number Publication date
CN111433098A (zh) 2020-07-17
US20200362783A1 (en) 2020-11-19
US11207964B2 (en) 2021-12-28
CN111433098B (zh) 2023-12-29
WO2019110049A1 (de) 2019-06-13
US11458828B2 (en) 2022-10-04
DE102018117360A1 (de) 2019-06-06
US20200307368A1 (en) 2020-10-01
CN111433091A (zh) 2020-07-17
DE102018117359A1 (de) 2019-06-06

Similar Documents

Publication Publication Date Title
EP2462328B1 (de) Turboaufgeladene hubkolbenkraftmaschine mit angeschlossenem drucktank zur turbolochüberbrückung und verfahren zum betrieb derselben
EP2614251B1 (de) Verfahren und vorrichtung zur steuerung einer brennkraftmaschine
WO2019110048A1 (de) Verfahren zum steuern eines verbrennungsmotors
DE602005002267T2 (de) Verfahren zum betreiben einer brennkraftmaschine
DE102005023178B4 (de) Kompressionsimpulsverfahren zum Anlassen eines Freikolben-Verbrennungsmotors
DE102010040562A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE102010008310A1 (de) Reduzierung des Sauerstoffdurchflusses während des Maschinen-Start/Stopp-Betriebs
CH701760A1 (de) Turboaufgeladene Hubkolbenkraftmaschine mit angeschlossenem Drucktank zur Turbolochüberbrückung und Verfahren zum Betrieb derselben.
EP1439295B1 (de) Verfahren zum kontrollierten Abstellen einer Brennkraftmaschine
WO2006017870A2 (de) Verfahren zum betrieb einer brennkraftmaschine
DE102009024903A1 (de) Verfahren zum Betreiben einer Hubkolben-Brennkraftmaschine
DE102015105735A1 (de) Verfahren zum Betreiben einer Kraftstoffpumpe für einen Verbrennungsmotor, Kraftstoffpumpe und Verbrennungsmotor
DE102005020636B4 (de) Kompressionsimpulsverfahren zum Anlassen eines Freikolben-Verbrennungsmotors mit mehreren Zylindern
DE102010041519B3 (de) Verfahren zum Abstellen einer Dieselbrennkraftmaschine mit wenigstens zwei Zylindern und Recheneinheit
DE69114864T2 (de) Betätigungs- und ventilanordnung für eine hydraulisch betätigte elektronisch gesteuerte einspritzeinheit.
DE102013215857A1 (de) Verfahren zum Starten eines Verbrennungsmotors mit angeschlossenem Drucklufttank
DE102013225074A1 (de) Verfahren zum Stoppen einer Verbrennungskraftmaschine
DE112006000194B4 (de) Verfahren und Steuerungseinrichtung zum Betreiben einer Brennkraftmaschine
WO2016112936A1 (de) Dieselmotor und verfahren zum starten eines dieselmotors
WO2000026534A1 (de) Verbrennungsmotor, insbesondere für ein kraftfahrzeug, sowie verfahren zum starten desselben
DE102018104081B4 (de) Verfahren und system zur steuerung eines fahrzeugantriebssystems
WO2003019003A1 (de) Verfahren zum starten einer mehrzylinderbrennkraftmaschine
DE10217695A1 (de) Verfahren zum erleichterten Starten einer Brennkraftmaschine
DE102013206951A1 (de) Verfahren zur Steuerung einer Verbrennungskraftmaschine mit Saugrohreinspritzung
DE102020125693A1 (de) Direkteinspritzbaugruppe für ein duales einspritzsystem eines kraftfahrzeugs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18833381

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18833381

Country of ref document: EP

Kind code of ref document: A1