WO2019109628A1 - 投影装置 - Google Patents

投影装置 Download PDF

Info

Publication number
WO2019109628A1
WO2019109628A1 PCT/CN2018/092501 CN2018092501W WO2019109628A1 WO 2019109628 A1 WO2019109628 A1 WO 2019109628A1 CN 2018092501 W CN2018092501 W CN 2018092501W WO 2019109628 A1 WO2019109628 A1 WO 2019109628A1
Authority
WO
WIPO (PCT)
Prior art keywords
digital micromirror
micromirror device
heat dissipating
hole
housing
Prior art date
Application number
PCT/CN2018/092501
Other languages
English (en)
French (fr)
Inventor
唐甜甜
侯乃文
Original Assignee
青岛海信激光显示股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201711286515.2A external-priority patent/CN108107567A/zh
Priority claimed from CN201711286061.9A external-priority patent/CN109901286A/zh
Application filed by 青岛海信激光显示股份有限公司 filed Critical 青岛海信激光显示股份有限公司
Publication of WO2019109628A1 publication Critical patent/WO2019109628A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • G03B21/008Projectors using an electronic spatial light modulator but not peculiar thereto using micromirror devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/145Housing details, e.g. position adjustments thereof

Definitions

  • the present disclosure relates to imaging device technology, and more particularly to a projection device.
  • a Digital Micromirror Device (DMD) chip is a core component in a projection device for modulating an illumination beam that is illuminated thereon according to an image signal.
  • the modulated illumination beam is sent to the lens assembly for imaging.
  • the illumination beam passes through a series of optical lenses and finally reaches the digital micromirror device chip, which modulates the illumination beam to form an image.
  • the surface of the digital micro-mirror device chip includes thousands of tiny mirrors, which are flipped according to the modulation driving signal to realize modulation of the illumination beam, so that the modulated illumination beam is reflected into the lens for imaging.
  • the surface of the chip is small, usually a few inches at zero, but the power of the illumination beam is very high, up to more than 100 watts, and according to the image frame frequency, the micro mirror of the chip also needs to be flipped at the corresponding frequency to consume power. Will accumulate heat.
  • the drive control circuit corresponding to the digital micro-mirror device chip it will also generate heat under long-term operation, which causes the temperature rise of the working environment of the digital micro-mirror device chip to change.
  • both the digital micro-mirror device chip itself and the components around it will bring heat accumulation to form a high-temperature working environment
  • the digital micro-mirror device chip itself is an electronic component, and high temperature will affect the performance of the component, so
  • the digital micro-mirror device chip needs timely and effective heat dissipation during the working process to ensure the normal operation of the component and prolong the service life.
  • the present disclosure provides a projection apparatus to improve the reliability of use of a optomechanical assembly.
  • the present disclosure provides a projection apparatus comprising:
  • a housing provided with a first opening
  • a digital micromirror device circuit board wherein a digital micromirror device chip is disposed on a side of the digital micromirror device circuit board facing the housing, and the digital micromirror device chip is provided with a working area and a non-working area. a non-working area located at a periphery of the work area, the work area being configured to modulate a light beam illuminating thereon in a light beam passing through the first opening;
  • first heat dissipating member disposed between the digital micromirror device chip and the housing, wherein the first heat dissipating member and the digital micromirror device chip have a gap therebetween, and the first heat dissipating member is disposed on the first heat dissipating member a second opening, the second opening configured to pass a light beam illuminating the working area in the light beam passing through the first opening while occluding the rest of the light beam passing through the first opening beam.
  • FIG. 1 is an exploded view of a projection apparatus according to some embodiments of the present disclosure
  • FIG. 2 is a partially assembled structural diagram of a projection apparatus according to some embodiments of the present disclosure.
  • FIG. 3 is a schematic structural diagram of an assembly apparatus of a projection apparatus according to some embodiments of the present disclosure
  • FIG. 4 is a schematic diagram of another assembly structure of a projection apparatus according to some embodiments of the present disclosure.
  • FIG. 5 is a partial schematic structural diagram of a projection apparatus according to some embodiments of the present disclosure.
  • FIG. 6 is another partial structural diagram of a projection apparatus according to some embodiments of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a digital micromirror device chip according to some embodiments of the present disclosure.
  • a projection device in the related art generally includes a housing, a digital micromirror device chip, and a digital micromirror device circuit board.
  • the surface of the digital micro-mirror device chip includes a working area and a non-working area
  • the digital micro-mirror device chip is disposed on the circuit board of the digital micro-mirror device
  • the circuit board of the digital micro-mirror device is connected to the housing through the bolt, and the housing is connected
  • An opening is provided through which the illumination beam illuminates the working area of the digital micromirror device chip.
  • the illumination beam is directly emitted to the imaging element after being emitted from the housing.
  • the determination of the spot size of the illumination beam on the digital micromirror device chip needs to be integrated.
  • the spot size is generally designed to be about 16% based on the requirements of the system of the digital micromirror device chip, but this spot value will cause the system to darken.
  • the belt is not easy to adjust, and the two cannot be considered at the same time. Therefore, the spot size design is generally greater than 16% in the related art to avoid the problem that the dark band is not adjustable.
  • the illumination beam is irradiated on the digital micromirror device chip, the illumination beam is illuminating the digital micromirror device chip.
  • the working area is also easy to illuminate the non-working area of the digital micro-mirror device chip. Since the energy of the illumination beam is large, the illumination beam is irradiated to the non-working area of the digital micro-mirror device chip, which may cause the digital micro-mirror device chip to be non-working.
  • the temperature in the work area is too high, and the long-term high temperature will stratify the epoxy of the digital micro-mirror device chip, causing water molecules to enter the digital micro-mirror device chip, and the tiny mirror attached to the working area of the digital micro-mirror device chip Therefore, the local overheating of the tiny mirror causes the working area of the digital micromirror device chip to fail, and the normal operation is not performed, thereby reducing the reliability of the use of the optical component.
  • some embodiments of the present disclosure provide a projection apparatus including: a housing 105 provided with a first opening 106, the first opening 106 For passing the illumination beam and illuminating the digital micromirror device chip 102; the digital micromirror device circuit board 101 on the side of the digital micromirror device circuit board 101 facing the housing 105 with the digital micromirror device chip 102
  • the digital micromirror device chip 102 is provided with a working area 103, a non-working area 104 and a substrate area 127 (please refer to FIG. 7).
  • the non-working area 104 is located at the periphery of the working area 103, and the substrate area 127 Located at the periphery of the non-working area 104, the working area 103 is configured to modulate light illuminating thereon through a light beam passing through the first opening 106; a first heat dissipating member 107 disposed on the digital micromirror device Between the chip 102 and the housing 105, there is a gap between the first heat dissipating member 107 and the digital micromirror device chip 102 (please refer to FIG. 4), and the first heat dissipating member 107 is provided with a second portion.
  • the second opening 109 is configured to cause the A light beam that illuminates the working area 103 in the light beam passing through the first opening 106 passes while occluding the remaining light beam in the light beam passing through the first opening 106, wherein the first light passing through the first opening 106
  • the light beam includes a first light beam and a second light beam other than the first light beam, the first light beam passing through the second opening 109 and illuminating the working area 103 to block the rest of the light beam passing through the first opening 106
  • the light beam may be: occluding all of the remaining light beams passing through the first opening 106 (blocking all of the second light beam), or occluding the remaining light beams in the light beam passing through the first opening 106 Part of (blocking a portion of the second beam), that is, all or part of the second beam is occluded, reducing the amount of light that is directed outside the working area, reducing the damage of portions of the digital micromirror device chip outside the working area due to high
  • the illumination beam is emitted from the first opening 106 of the housing 105 through a series of optical lenses, and is irradiated on the first heat dissipation member 107 and the digital micromirror device chip 102, since the first heat dissipation member 107 can pass through the first opening A portion of the beams of 106 pass and illuminate the working area 103 while obscuring all of the remaining beams of light passing through the first opening 106 or occluding the light passing through the first opening 106 a portion of the remaining beams, such that a portion of the light beam passing through the first opening 106 can pass through the first heat dissipating member 107 and illuminate the working area 103 of the digital micromirror device chip 102 while the first heat dissipating member 107 can Limiting the illumination range of the non-working area 104 at the periphery of the working area 103 by the light beam passing through the first opening 106, thereby avoiding or reducing the illumination of the light passing through the first opening 106 on
  • the first heat dissipation member 107 includes a body portion 108 that is disposed on the body portion 108.
  • the body portion 108 is made of a metal material to have better thermal conductivity.
  • the size of the second opening 109 of the first heat dissipating member 107 can be adjusted according to actual needs. For example, when the spot is required to be interference, the size of the second opening 109 can be appropriately increased.
  • the size of the two openings 109 is slightly larger than the size of the region 103 of the digital micromirror device chip 102.
  • the position of the second opening 109 may correspond to the working area 103 of the digital micromirror device chip 102, and the shape and size of the second opening 109 may be compatible with the working area of the digital micromirror device chip 102.
  • the shape and size of the 103 are the same, so that the irregular spot on the working area 103 irradiated to the digital micromirror device chip 102, such as a trapezoidal spot, or a spot of the irregular quadrilateral can be defined in shape so that only the shape of the corresponding working area 103 is made.
  • the light beam of the spot can pass through the second opening 109 and illuminate the working area 103 of the digital micromirror device chip 102, thereby preventing the generation of dark bands.
  • the position of the second opening 109 may correspond to the working area 103 of the digital micromirror device chip 102, and second The shape of the opening 109 may be the same as the shape of the working area 103 of the digital micromirror device chip 102, and the difference between the size of the second opening 109 and the size of the working area 103 of the digital micromirror device chip 102 may be within a preset value to Reduce the amount of light that is shining on the non-working area.
  • the shape of the second opening 109 is the same as the shape of the first opening 106 in some embodiments.
  • the size of the second opening 109 is smaller than the size of the first opening 106. In some embodiments, a side length of the second opening 109 is less than a side length corresponding to the position in the first opening 106.
  • the second opening 109 may block the entire non-working area 104 of the digital micromirror device chip 102, thereby being able to block the light beam passing through the first opening 106 from illuminating the periphery of the working area 103.
  • the entire beam of light is such that the light beam passing through the first opening 106 cannot be illuminated on the non-working area 104 of the digital micromirror device chip 102.
  • the second opening 109 may block a portion of the non-working area 104 of the digital micromirror device chip 102, such as only blocking temperature sensitive regions of the non-working area 104 of the digital micro mirror device chip 102.
  • the epoxy adhesive encapsulation area 126 can block a part of the light beam that is irradiated on the periphery of the working area 103 among the light beams passing through the first opening 106, so that part of the light beams passing through the first opening 106 cannot be irradiated.
  • the digital micromirror device chip 102 has high temperature requirements as a key component, and the temperature requirements of different regions of the digital micromirror device chip 102 are different.
  • the non-working area 104 of the digital micromirror device chip 102 includes a ferrous metal region 124 and a window region 125, the working region 103 being located in the middle of the digital micromirror device chip 102, black
  • the metal region 124 is located at the periphery of the work area 104
  • the window region 125 is located at the periphery of the ferrous metal region 124
  • the epoxy adhesive package region 126 of the digital micromirror device chip 102 is located at the periphery of the window region 125.
  • the working area 104 and the ferrous metal area 124 have a good heat dissipation and heat dissipation path. Therefore, the two parts can receive the illumination beam on the basis of the heat dissipation design, and the heat conduction path of the window area 125 is not good, and the heat dissipation cannot be performed well. It is sensitive to long-term direct illumination of the illumination beam. If the illumination beam is exposed to a high temperature for a long period of time, the epoxy adhesive package area 126 may fall off and cause the digital micro-mirror device chip 102 to be ineffective. Since the ferrous metal region 124 is small, the general illumination design cannot ensure that no light is irradiated to the window region 125.
  • the projection device in some embodiments of the present disclosure can effectively prevent the illumination beam from being irradiated on the window region 125 by providing the first heat dissipation member. on.
  • the housing 105 is further provided with a first support post 129
  • the first heat dissipating component 107 is further provided with a first through hole 128 .
  • a support post 129 passes through the first through hole 128 and abuts against the substrate region 127 of the digital micromirror device chip 102 to form the void.
  • the diameter of the first support post 129 is smaller than the diameter of the first perforation 128.
  • the first heat dissipating member 107 is disposed between the digital micromirror device chip 102 and the casing 105, the light beam is irradiated onto the main body portion 108 while illuminating the working area 103 of the digital micromirror device chip 102. Therefore, the temperature of the first heat dissipating member 107 is increased. Since the diameter of the first support post 129 is smaller than the diameter of the first through hole 128, the heat of the first heat dissipating member 107 is not transmitted to the digital micromirror.
  • the device chip 102 avoids the rise of the temperature of the digital micromirror device chip 102, prevents the digital micromirror device chip 102 from malfunctioning due to excessive temperature, and further improves the reliability of the use of the projection device.
  • the first support columns 129 are three, and the lines connecting the three first support columns 129 may form a triangle.
  • the housing 105 is further provided with a positioning post 130
  • the first heat dissipating component 107 is further provided with a second through hole 131, the substrate of the digital micromirror device chip 102.
  • a positioning post receiving slot 132 is further disposed on the area 127, and the positioning post 130 passes through the second through hole 131 and is received by the positioning post receiving slot 132 to position the digital micromirror device chip 102 and the housing 105.
  • the diameter of the positioning post 130 is smaller than the diameter of the second through hole 131.
  • the first heat dissipating member 107 is disposed between the digital micromirror device chip 102 and the casing 105, the light beam is irradiated onto the main body portion 108 while illuminating the working area 103 of the digital micromirror device chip 102. Upper, that is, on the first heat dissipating member 107, thus causing an increase in the temperature of the first heat dissipating member 107.
  • the heat of the first heat dissipating member 107 is not It is transmitted to the digital micromirror device chip 102, thereby avoiding an increase in the temperature of the digital micromirror device chip 102, preventing the digital micromirror device chip 102 from malfunctioning due to excessive temperature, and further improving the reliability of the use of the projection device.
  • the area around the second opening 109 on the body portion 108 is the occlusion portion 110, and the second light beam illuminates the side of the occlusion portion 110 that faces the first opening 106.
  • the diameter of the positioning post 130 may correspond to the diameter of the positioning post receiving slot 132 to better position the digital micromirror device chip 102 and the housing 105.
  • the positioning post receiving slots are two and disposed on a diagonal of the substrate region of the digital micromirror device chip, thereby stably positioning the digital micromirror device chip 102 and the housing 105.
  • the digital micromirror device assembly further includes a thermal insulation member 111 interposed between the first heat dissipation component 107 and the housing 105.
  • the first heat dissipating member 107 is disposed between the digital micromirror device chip 102 and the casing 105, the light beam is irradiated onto the main body portion 108 while illuminating the working area 103 of the digital micromirror device chip 102. Therefore, the temperature of the first heat dissipating member 107 is raised, and since the heat insulating member 111 is interposed between the first heat dissipating member 107 and the casing 105, the first heat dissipating member 107 and the casing 105 can be blocked. The heat conduction, the heat of the first heat radiating member 107 is not transmitted to the casing 105, thereby avoiding the adverse effect caused by the temperature rise of the casing 105.
  • the housing 105 is usually made of a metal material and has good thermal conductivity. The heat is easily transferred to other parts. If the heat insulating member 111 is not interposed between the first heat dissipating member 107 and the housing 105, heat is changed on the one hand. It is dispersible and cannot be concentrated and quickly dissipated. On the other hand, the heat transmitted to other parts of the casing may affect other structural parts. For example, the lens may be affected by the temperature drift caused by the temperature rise of the casing.
  • the first heat dissipation member 107 further includes a heat dissipation portion 112 that is coupled to the body portion 108.
  • the main body portion 108 and the heat dissipating portion 112 may be integrally formed, or may be connected by riveting, screwing, or the like.
  • the first heat dissipating member 107 is disposed between the digital micromirror device chip 102 and the casing 105, the light beam is irradiated onto the main body portion 108 while illuminating the working area 103 of the digital micromirror device chip 102. Therefore, the temperature of the first heat dissipating member 107 is increased. Since the heat dissipating portion 112 is connected to the main body portion 108, the heat on the main body portion 108 can be transmitted to the heat dissipating portion 112 for divergence, thereby improving the first heat dissipating. The heat dissipation performance of the component 107.
  • the heat sink 112 is a heat sink fin.
  • the first heat dissipating member 107 is disposed between the digital micromirror device chip 102 and the casing 105, the light beam is irradiated onto the main body portion 108 while illuminating the working area 103 of the digital micromirror device chip 102. Therefore, the temperature of the first heat dissipating member 107 is increased. Since the heat dissipating fins are connected to the main body portion 108, the heat on the main body portion 108 can be transmitted to the heat dissipating fins for divergence, because the heat dissipating fins have better heat dissipation performance. Preferably, the speed of heat dissipation is improved, and the heat dissipation performance of the first heat dissipation member 107 is further improved.
  • the heat sink fins may be made of an all aluminum material. In other embodiments of the present disclosure, the heat sink fins may use a material containing 50% aluminum and 50% copper.
  • the first heat dissipation member 107 includes a plurality of heat dissipation portions 112 that are located between the plurality of heat dissipation portions 112.
  • the number of the heat dissipating portions 112 can be determined according to the heat dissipation requirement or the volume of the space around the components.
  • there are two heat dissipating portions 112 and the main body portion 108 is sandwiched between the two heat dissipating portions 112 .
  • the heat dissipation portion 112 is more than two and disposed around the body portion 108.
  • the first heat dissipating member 107 is disposed between the digital micromirror device chip 102 and the casing 105, the light beam is irradiated onto the main body portion 108 while illuminating the working area 103 of the digital micromirror device chip 102. Therefore, the temperature of the first heat dissipating member 107 is increased.
  • the main body portion 108 Since the heat dissipating portion 112 is connected to the main body portion 108, and the main body portion 108 is located between the plurality of heat dissipating portions 112, the main body portion 108 is The heat can be transmitted from the main body portion 108 to the plurality of heat dissipating portions 112 to be diverged, thereby facilitating the speed of heat dissipation, and further improving the heat dissipation performance of the first heat dissipating member 107.
  • a accommodating portion 113 is formed between the plurality of heat dissipating portions 112, and the accommodating portion 113 refers to a side of the heat dissipating portion 112 away from the housing and a side of the main body portion 108 away from the housing.
  • the recessed space formed by the side of the heat radiating portion 112 away from the housing and the plane of the first opening is larger than the distance of the side of the main body portion 108 away from the housing and the plane of the first opening.
  • the digital micromirror device circuit board 101 is housed in the housing portion 113. Thereby, it is advantageous to reduce the thickness of the projection device and make the projection device more compact.
  • the first heat dissipating member 107 is positioned in alignment with the housing 105 by a fastening bolt 123.
  • the housing 105 is provided with a second support post 114, the second support post is provided with a first bolt hole 116, and the main body portion 108 is further provided with a third through hole 115.
  • the digital micromirror device circuit board 101 is provided with a fourth through hole 117, and the second support column 114 passes through the third through hole 115 and abuts on the digital micromirror device circuit board 101.
  • the digital micromirror device circuit board 101 and the first heat dissipating member 107 have a set spacing therebetween, and the first connecting bolt 116 passes through the fourth through hole 117 through the first bolt hole 116 and the second
  • the support posts 114 are connected to connect the digital micromirror device circuit board 101, the first heat dissipating member 107, and the housing 105.
  • the first heat dissipating member 107 is disposed between the digital micromirror device chip 102 and the casing 105, the light beam is irradiated onto the main body portion 108 while illuminating the working area 103 of the digital micromirror device chip 102.
  • the device circuit board 101 has a set spacing between the first heat dissipating member 107, so that the heat of the first heat dissipating member 107 is not transmitted to the digital micromirror device board 101 and the digital micromirror device chip 102, thereby avoiding the digital micromirror.
  • the rise in temperature of the device board 101 and the digital micro-mirror device chip 102 prevents the digital micro-mirror device board 101 and the digital micro-mirror device chip 102 from malfunctioning due to excessive temperature, further improving the reliability of use of the optomechanical assembly.
  • the digital micromirror device circuit board 101 is connected to the digital micromirror device chip 102 by a pin or touch method, and the digital micromirror device circuit board 101 is susceptible to the mounting and fixing process.
  • the force deformation may cause deformation of the contact surface with the digital micromirror device chip 102, resulting in poor contact with the digital micromirror device chip 102. Therefore, the projection device may further include a connection plate 119, and the connection plate 119 is disposed at the number The micro-mirror device circuit board 101 is away from the side of the housing 105.
  • the connecting plate 119 is provided with a fifth through hole 120.
  • the first connecting bolt 118 sequentially passes through the fifth through hole 120 and the fourth through hole 117. And connecting the second support post 114 through the first bolt hole 116 to connect the connecting plate 119, the digital micromirror device circuit board 101, the first heat dissipating component 107 and the housing 105.
  • the connecting plate 119 Since the connecting plate 119 has a certain rigidity and is not easily deformed by force, the pressing force applied by the first connecting bolt 118 in the tightened state directly acts on the connecting plate 119 without directly acting on the digital micromirror.
  • the digital micromirror device circuit board 101 On the device circuit board 101, the digital micromirror device circuit board 101 is protected from deformation, and the connection between the digital micromirror device circuit board 101, the first heat dissipating component 107 and the housing 105 is improved. Sex.
  • the digital micromirror device assembly further includes a second heat dissipation member 121 disposed on a side of the connection board 119 away from the digital micromirror device circuit board 101, And a sixth through hole 134 is provided.
  • the head of the first connecting bolt 118 is provided with a second bolt hole 136.
  • the second connecting bolt 136 passes through the sixth through hole 136 and passes through the second bolt hole 136.
  • the first connecting bolts 118 are connected to connect the second heat radiating member 121, the connecting plate 119, the digital micromirror device circuit board 101, the first heat radiating member 107, and the casing 105.
  • the second heat dissipating member 121 is provided with a heat conducting block 137
  • the connecting plate 119 is provided with a seventh through hole 122
  • the digital micromirror device circuit board 101 is provided with an eighth The through hole 133, the heat conducting block 137 sequentially passes through the seventh through hole 122 and the eighth through hole 133, and then abuts on the digital micromirror device chip 102.
  • the heat generated by the digital micromirror device chip 102 during the working process can be quickly transmitted to the second heat dissipating member 121 through the heat conducting block 137, thereby facilitating heat dissipation of the digital micromirror device chip 102.
  • the heat conducting block 137 can be abutted on the digital micromirror device chip 102 through the thermal conductive paste.
  • the second heat dissipation member 121 includes a heat sink, and the heat sink is a heat dissipation fin.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Projection Apparatus (AREA)

Abstract

提供一种投影装置,该投影装置包括:设置有第一开口的壳体;数字微镜器件电路板,所述数字微镜器件电路板上朝向所述壳体的一侧设置有数字微镜器件芯片,所述数字微镜器件芯片上设有工作区、非工作区,所述非工作区位于所述工作区外围,所述工作区被配置为调制穿过所述第一开口的光束中照射在其上的光束;第一散热部件,设置在所述数字微镜器件芯片和所述壳体之间,所述第一散热部件和所述数字微镜器件芯片之间具有空隙,所述第一散热部件上设置有第二开口,所述第二开口被配置为使所述穿过所述第一开口的光束中照射所述工作区的光束通过,同时遮挡所述穿过所述第一开口的光束中的其余光束。

Description

投影装置
本申请要求于2017年12月7日提交中国专利局、申请号为201711286061.9、发明名称为“数字微镜器件组件及光机组件”和于2017年12月7日提交中国专利局、申请号为201711286515.2、发明名称为“数字微镜器件组件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及成像设备技术,尤其涉及一种投影装置。
背景技术
在数字光处理(Digital Light Processing,DLP)投影设备中,数字微镜器件(Digital Micromirror Device,DMD)芯片是投影装置中的核心部件,用于根据图像信号对照射其上的照明光束进行调制,并将调制后的照明光束送入镜头组件进行成像。在投影装置中,照明光束通过一系列光学镜片最终到达数字微镜器件芯片,数字微镜器件芯片对照明光束进行调制,最终形成图像。
数字微镜器件芯片表面包括成千上万个微小的反射镜,根据调制驱动信号进行翻转,实现照明光束的调制,使调制后的照明光束反射进入镜头中进行成像。芯片表面尺寸较小,通常在零点几个英寸,但是接受照明光束的功率非常高,可达百瓦以上,并且根据图像帧频率,芯片微小反射镜也要进行相应频率的翻转,消耗电能,也会聚积热量。同时,作为数字微镜器件芯片对应的驱动控制电路部分,长期工作下也会发热,使得数字微镜器件芯片所在工作环境的温升变化。可见,无论是数字微镜器件芯片本身,还是其周围的组件,都会带来热量的积累,形成一个高温的工作环境,而数字微镜器件芯片本身为电子元件,高温会影响元件的性能,因此,数字微镜器件芯片在工作过程中需要进行及时有效的散热,来保障元件的正常工作,延长使用寿命。
发明内容
本公开提供一种投影装置,以提高光机组件使用的可靠性。
本公开提供了一种投影装置,包括:
设置有第一开口的壳体;
数字微镜器件电路板,所述数字微镜器件电路板上朝向所述壳体的一侧设置有数字微镜器件芯片,所述数字微镜器件芯片上设有工作区、非工作区,所述非工作区位于所述工作区外围,所述工作区被配置为调制穿过所述第一开口的光束中照射在其上的光束;
第一散热部件,设置在所述数字微镜器件芯片和所述壳体之间,所述第一散热部件和所述数字微镜器件芯片之间具有空隙,所述第一散热部件上设置有第二开口,所述第二开口被配置为使所述穿过所述第一开口的光束中照射所述工作区的光束通过, 同时遮挡所述穿过所述第一开口的光束中的其余光束。
附图说明
图1为本公开的一些实施例提供的一种投影装置的结构分解图;
图2为本公开的一些实施例提供的一种投影装置的部分组装结构示意图;
图3为本公开的一些实施例提供的一种投影装置的一个组装结构示意图;
图4为本公开的一些实施例提供的一种投影装置的另一个组装结构示意图;
图5为本公开的一些实施例提供的一种投影装置的一个局部结构示意图;
图6为本公开的一些实施例提供的一种投影装置的另一个局部结构示意图;
图7为本公开的一些实施例提供的一种数字微镜器件芯片的结构示意图。
附图标记:
101:数字微镜器件电路板;
102:数字微镜器件芯片;
103:工作区;
104:非工作区;
105:壳体;
106:第一开口;
107:第一散热部件;
108:主体部;
109:第二开口;
110:遮挡部;
111:隔热件;
112:散热部;
113:容纳部;
114:第二支撑柱;
115:第三穿孔;
116:第一螺栓孔;
117:第四穿孔;
118:第一连接螺栓;
119:连接板;
120:第五穿孔;
121:第二散热部件;
122:第七穿孔;
123:紧固螺栓;
124:黑色金属区;
125:窗口区;
126:环氧胶封装区;
127:基板区;
128:第一穿孔;
129:第一支撑柱;
130:定位柱;
131:第二穿孔;
132:定位柱接收槽;
133:第八穿孔;
134:第六穿孔;
135:第二连接螺栓;
136:第二螺栓孔;
137:导热块。
具体实施方式
相关技术中的投影装置通常包括壳体、数字微镜器件芯片、数字微镜器件电路板。在工作过程中,数字微镜器件芯片表面包括工作区和非工作区,数字微镜器件芯片设置在数字微镜器件电路板上,数字微镜器件电路板通过螺栓与壳体连接,壳体上设有开口,照明光束通过开口照射在数字微镜器件芯片的工作区上。
在相关技术中的投影装置中,照明光束从壳体出射后直接照射向成像元件,在相关技术中的一种实现方式中,照明光束照射在数字微镜器件芯片上的光斑大小的确定需综合考虑数字微镜器件芯片非工作区温度及暗带不易调节问题而进行设计,基于数字微镜器件芯片的系统的要求,光斑大小一般需设计在16%左右,但此光斑值会导致系统产生暗带而不易调节,两者不能同时兼顾。因此相关技术中一般会将光斑大小设计大于16%,以避免出现暗带不可调的问题,然而由于照明光束照射在数字微镜器件芯片上的光斑较大,照明光束在照射数字微镜器件芯片的工作区的同时也容易照射在数字微镜器件芯片的非工作区上,由于照明光束的能量较大,因此照明光束照射到数字微镜器件芯片的非工作区会导致数字微镜器件芯片非工作区的温度过高,长期的高温会使数字微镜器件芯片环氧胶分层,导致水分子进入到数字微镜器件芯片内部,附着在数字微镜器件芯片工作区中的微小的反射镜上,从而使该微小的反射镜局部过热引起数字微镜器件芯片工作区失效,无法正常工作,降低了光机组件使用的可靠性。
为了提高光机组件使用的可靠性,如图1-7所示,本公开的一些实施例提供了一种投影装置,包括:设置有第一开口106的壳体105,所述第一开口106用于使照明光束通过并照射在数字微镜器件芯片102上;数字微镜器件电路板101,所述数字微镜器件电路板101上朝向壳体105的一侧设置有数字微镜器件芯片102,所述数字微镜器件芯片102上设有工作区103、非工作区104和基板区127(请参考图7),所述非工作区104位于所述工作区103外围,所述基板区127位于所述非工作区104外围,所述工作区103被配置为调制穿过所述第一开口106的光束中照射在其上的光;第一散热部件107,设置在所述数字微镜器件芯片102和所述壳体105之间,所述第一散热部件107和所述数字微镜器件芯片102之间具有空隙(请参见图4),所述第一散热部件107上设置有第二开口109,所述第二开口109被配置为使所述穿过所述第一开口106的光束中照射所述工作区103的光束通过,同时遮挡所述穿过所述第一开口106的光束中的其余光束,其中,穿过所述第一开口106的光束包括第一光束和除第一光 束之外的第二光束,第一光束穿过第二开口109并照射所述工作区103,遮挡所述穿过所述第一开口106的光束中的其余光束可以是:遮挡所述穿过所述第一开口106的光束中的全部其余光束(遮挡全部的第二光束),或者遮挡所述穿过所述第一开口106的光束中的其余光束中的一部分(遮挡第二光束的一部分),即,第二光束中的全部或部分被遮挡,减少了照射向工作区域以外的光束,降低了数字微镜器件芯片工作区域以外的部分因高温损坏的概率,增加了数字微镜器件芯片的稳定性。
在本公开的一些实施例中,第一散热部件107与DMD芯片102之间不具有直接的连接。
照明光束通过一系列光学镜片后由壳体105的第一开口106射出,照射在第一散热部件107和数字微镜器件芯片102上,由于第一散热部件107能够使穿过所述第一开口106的光束中的部分光束通过并照射在工作区103上,同时遮挡穿过所述第一开口106的光束中的全部其余光束,或者遮挡所述穿过所述第一开口106的光束中的其余光束中的一部分,因此穿过所述第一开口106的光束中的一部分能够通过第一散热部件107并照射在数字微镜器件芯片102的工作区103上,同时第一散热部件107还能限制穿过所述第一开口106的光束在工作区103外围的非工作区104的照射范围,因此能够避免或减少穿过所述第一开口106的光束照射在数字微镜器件芯片102的非工作区104上,从而减少了数字微镜器件芯片102的非工作区104的温度过高的情形,减少了数字微镜器件芯片102的非工作区104的环氧胶出现分层、脱落现象,降低了水分子进入到数字微镜器件芯片102内部的概率,降低了数字微镜器件芯片102的故障几率,提高了芯片使用的可靠性。在本公开的一些实施例中,第一散热部件107包括主体部108,所述第二开口109设置在所述主体部108上。在本公开的一些实施例中,主体部108为金属材质,从而具有较好的导热性能。
在本公开的一些实施例中,第一散热部件107的第二开口109的尺寸可以根据实际需求调整,比如当需要光斑为过盈时,则可以适当增大第二开口109的尺寸,这样第二开口109的尺寸稍大于数字微镜器件芯片102的作区103的尺寸。在本公开的另一些实施例中,第二开口109的位置可与数字微镜器件芯片102的工作区103相对应,第二开口109的形状和尺寸可与数字微镜器件芯片102的工作区103的形状和尺寸相同,从而对于照射至数字微镜器件芯片102的工作区103上的非规则光斑,比如梯形光斑,或者不规则四边形的光斑可以进行形状的限定,仅使得对应工作区103形状的光斑的光束能够通过第二开口109并照射在数字微镜器件芯片102的工作区103上,从而防止暗带的产生。
在一些实施例中,因为第一散热部件107和数字微镜器件芯片102之间存在一定空隙,因此,第二开口109的位置可与数字微镜器件芯片102的工作区103相对应,第二开口109的形状可与数字微镜器件芯片102的工作区103的形状相同,第二开口109的尺寸可与数字微镜器件芯片102的工作区103的尺寸的差值在预设值内,以减少照射在非工作区域上的光束。
在一些实施例中第二开口109的形状与第一开口106的形状相同。
在一些实施例中第二开口109的尺寸小于与第一开口106的尺寸,在一些实施例中,第二开口109的某一边长小于第一开口106中位置对应的边长。
另外,在本公开的一些实施例中,第二开口109可遮挡数字微镜器件芯片102的整个非工作区104,从而能够遮挡穿过所述第一开口106的光束中照射在工作区103外围的全部光束,使穿过所述第一开口106的光束不能照射在数字微镜器件芯片102的非工作区104上。
在本公开的另一些实施例中,第二开口109可遮挡数字微镜器件芯片102的一部分非工作区104,比如仅遮挡数字微镜器件芯片102的非工作区104中对温度较为敏感的区域,比如环氧胶封装区126,从而能够遮挡穿过所述第一开口106的光束中照射在工作区103外围的部分光束,使穿过所述第一开口106的光束中的部分光束不能照射在数字微镜器件芯片102的非工作区104上。
数字微镜器件芯片102作为主要关键部件对温度有较高的要求,同时数字微镜器件芯片102窗口不同区域对温度的要求各不相同。在本公开的一些实施例中,如图7所示,数字微镜器件芯片102的非工作区104包括黑色金属区124和窗口区125,工作区103位于数字微镜器件芯片102的中部,黑色金属区124位于工作区104的外围,窗口区125位于黑色金属区124的外围,数字微镜器件芯片102的环氧胶封装区126位于窗口区125的外围。其中工作区104与黑色金属区124具有良好的导热散热通路,因此在基于散热设计的基础上此两部分区域可以接受照明光束的照射,窗口区125导热散热通路不好,不能良好的散热,因此对照明光束长期直接照射较为敏感,若照明光束长期照射温度过高,会出现环氧胶封装区126脱落引起数字微镜器件芯片102工作区失效。因黑色金属区124较小,一般照明设计无法良好的保证没有光线照射到窗口区125,本公开的一些实施例中的投影装置,通过设置第一散热部件能够有效防止照明光束照射在窗口区125上。
本公开的一些实施例,如图2和图6所示,所述壳体105上还设有第一支撑柱129,所述第一散热部件107上还设有第一穿孔128,所述第一支撑柱129穿过所述第一穿孔128并抵接在所述数字微镜器件芯片102的所述基板区127上,以形成所述空隙。
在本公开的一些实施例中,所述第一支撑柱129的直径小于所述第一穿孔128的直径。
由此,由于第一散热部件107设置在所述数字微镜器件芯片102和所述壳体105之间,光束照射在照射数字微镜器件芯片102工作区103的同时也会照射在主体部108上,因此会引起第一散热部件107温度的升高,由于所述第一支撑柱129的直径小于所述第一穿孔128的直径,因此第一散热部件107的热量不会传递给数字微镜器件芯片102,从而避免了数字微镜器件芯片102温度的升高,防止数字微镜器件芯片102由于温度过高而出现故障,进一步提高了投影装置使用的可靠性。
在本公开的一些实施例中,所述第一支撑柱129为三个,且三个所述第一支撑柱129的连线可构成三角形。
在本公开的一些实施例中,所述壳体105上还设有定位柱130,所述第一散热部件107上还设有第二穿孔131,所述数字微镜器件芯片102的所述基板区127上还设有定位柱接收槽132,所述定位柱130穿过所述第二穿孔131并被所述定位柱接收槽132接收,以定位所述数字微镜器件芯片102和壳体105。
在本公开的一些实施例中,所述定位柱130的直径小于所述第二穿孔131的直径。
由此,由于第一散热部件107设置在所述数字微镜器件芯片102和所述壳体105之间,光束照射在照射数字微镜器件芯片102工作区103的同时也会照射在主体部108上,即第一散热部件107上,因此会引起第一散热部件107温度的升高,由于所述定位柱130的直径小于所述第二穿孔131的直径,因此第一散热部件107的热量不会传递给数字微镜器件芯片102,从而避免了数字微镜器件芯片102温度的升高,防止数字微镜器件芯片102由于温度过高而出现故障,进一步提高了投影装置使用的可靠性。
在一些实施例中,主体部108上第二开口109周围的区域是遮挡部110,第二光束照射在遮挡部110的朝向第一开口106的一侧。
在本公开的一些实施例中,所述定位柱130的直径可以与所述定位柱接收槽132的直径相对应,从而更好地定位所述数字微镜器件芯片102和壳体105。
所述定位柱接收槽为两个,且设置在所述数字微镜器件芯片的所述基板区的对角线上,从而稳固地定位所述数字微镜器件芯片102和壳体105。
本公开的一些实施例中,数字微镜器件组件还包括隔热件111,所述隔热件夹设在所述第一散热部件107和壳体105之间。
由此,由于第一散热部件107设置在所述数字微镜器件芯片102和所述壳体105之间,光束照射在照射数字微镜器件芯片102工作区103的同时也会照射在主体部108上,因此会引起第一散热部件107温度的升高,由于第一散热部件107和壳体105之间夹设有隔热件111,因此能够阻断第一散热部件107和壳体105之间的热传导,第一散热部件107的热量不会传递给壳体105,从而避免了壳体105温度的升高而造成的不良影响。这是因为壳体105通常为金属材质,具有较好的导热性能,热量很容易传导至其他部位,若第一散热部件107和壳体105之间未夹设隔热件111,一方面热量变得分散而无法集中快速散出,另一方面传导至其他壳体部位的热量可能影响到其他结构部分,比如镜头可能受到壳体温度升高带来的温漂影响。
在本公开的一些实施例中,第一散热部件107还包括散热部112,所述散热部112与所述主体部108相连接。其中,主体部108和散热部112可以一体成型,也可以通过铆接,螺钉连接等方式连接。
由此,由于第一散热部件107设置在所述数字微镜器件芯片102和所述壳体105之间,光束照射在照射数字微镜器件芯片102工作区103的同时也会照射在主体部108上,因此会引起第一散热部件107温度的升高,由于散热部112与主体部108相连接,因此,主体部108上的热量能够传递到散热部112上进行发散,从而提高了第一散热部件107的散热性能。
在本公开的一些实施例中,散热部112为散热鳍片。
由此,由于第一散热部件107设置在所述数字微镜器件芯片102和所述壳体105之间,光束照射在照射数字微镜器件芯片102工作区103的同时也会照射在主体部108上,因此会引起第一散热部件107温度的升高,由于散热鳍片与主体部108相连接,因此,主体部108上的热量能够传递到散热鳍片上进行发散,由于散热鳍片散热性能较好,从而利于提高热量发散的速度,进一步提高了第一散热部件107的散热性能。
在本公开的一些实施例中,散热鳍片可以使全铝材料,在本公开的另一些实施例中,散热鳍片可以使用含50%的铝和50%的铜的材料。
在本公开的一些实施例中,所述第一散热部件107包括多个散热部112,所述主体部108位于所述多个散热部112之间。散热部112数目的设置可以根据散热需求或者组件周围空间体积进行确定。在本公开的一些实施例中,散热部112为两个,所述主体部108夹设在两个所述散热部112之间。在本公开的另一些实施例中,散热部112多于两个,且围绕主体部108设置。
由此,由于第一散热部件107设置在所述数字微镜器件芯片102和所述壳体105之间,光束照射在照射数字微镜器件芯片102工作区103的同时也会照射在主体部108上,因此会引起第一散热部件107温度的升高,由于散热部112与主体部108相连接,且所述主体部108位于所述多个散热部112之间,因此,主体部108上的热量能够由主体部108分别传递到多个散热部112上进行发散,从而利于提高热量发散的速度,进一步提高了第一散热部件107的散热性能。
在本公开的一些实施例中,所述多个散热部112之间形成有容纳部113,容纳部113是指散热部112的远离壳体的一侧和主体部108的远离壳体的一侧因散热部112的远离壳体的一侧与第一开口所在平面的距离大于主体部108的远离壳体的一侧与第一开口所在平面的距离而形成的凹陷空间。数字微镜器件电路板101容纳于所述容纳部113内。由此,利于降低投影装置的厚度,使投影装置更为紧凑。
在本公开的一些实施例中,第一散热部件107与所述壳体105通过紧固螺栓123连接定位。
由此,利于提高第一散热部件107与壳体105连接的可靠性。
在本公开的一些实施例中,壳体105上设有第二支撑柱114,所述第二支撑柱上设有第一螺栓孔116,所述主体部108上还设有第三穿孔115,所述数字微镜器件电路板101上设有第四穿孔117,所述第二支撑柱114穿过所述第三穿孔115并抵接在所述数字微镜器件电路板101上,以使所述数字微镜器件电路板101与所述第一散热部件107之间具有设定间距,第一连接螺栓116穿过所述第四穿孔117,通过所述第一螺栓孔116与所述第二支撑柱114连接,以使所述数字微镜器件电路板101、第一散热部件107和壳体105连接。
由此,由于第一散热部件107设置在所述数字微镜器件芯片102和所述壳体105之间,光束照射在照射数字微镜器件芯片102工作区103的同时也会照射在主体部108上,因此会引起第一散热部件107温度的升高,由于所述第二支撑柱114穿过所述第三穿孔115并抵接在所述数字微镜器件电路板101上并使数字微镜器件电路板101与第一散热部件107之间具有设定间距,因此第一散热部件107的热量不会传递给数字微镜器件电路板101和数字微镜器件芯片102,从而避免了数字微镜器件电路板101和数字微镜器件芯片102温度的升高,防止数字微镜器件电路板101和数字微镜器件芯片102由于温度过高而出现故障,进一步提高了光机组件使用的可靠性。
在本公开的一些实施例中,数字微镜器件电路板101通过插针式或者点触式方式与数字微镜器件芯片102进行连接,而数字微镜器件电路板101在安装固定过程中容易受力变形,可能造成与数字微镜器件芯片102的接触表面变形,导致与数字微镜器件芯片102的不良接触,因此,投影设备还可以包括连接板119,所述连接板119设置在所述数字微镜器件电路板101远离所述壳体105的一侧,所述连接板119上设有 第五穿孔120,所述第一连接螺栓118依次穿过所述第五穿孔120、第四穿孔117,通过所述第一螺栓孔116与所述第二支撑柱114连接,以使所述连接板119、数字微镜器件电路板101、第一散热部件107和壳体105连接。
由于连接板119具有一定的刚性,不容易受力变形,第一连接螺栓118在旋紧的状态下所施加的压持力会直接作用在连接板119上,而不会直接作用在数字微镜器件电路板101上,从而对数字微镜器件电路板101起到一定的保护作用,防止其发生形变,同时利于提高数字微镜器件电路板101、第一散热部件107和壳体105连接的可靠性。
在本公开的一些实施例中,数字微镜器件组件还包括第二散热部件121,所述第二散热部件121设置在所述连接板119远离所述数字微镜器件电路板101的一侧,并设有第六穿孔134,所述第一连接螺栓118的头部设有第二螺栓孔136,第二连接螺栓136穿过所述第六穿孔136并通过所述第二螺栓孔136与所述第一连接螺栓118连接,以使所述第二散热部件121、连接板119、数字微镜器件电路板101、第一散热部件107和壳体105连接。
在本公开的一些实施例中,所述第二散热部件121上设有导热块137,所述连接板119上设有第七穿孔122,所述数字微镜器件电路板101上设有第八穿孔133,所述导热块137依次穿过所述第七穿孔122和第八穿孔133,然后抵接在所述数字微镜器件芯片102上。
由此,数字微镜器件芯片102在工作过程当中所产生的热量能够通过导热块137快速地传递至第二散热部件121上,从而利于数字微镜器件芯片102的散热。其中导热块137可通过导热膏抵接在数字微镜器件芯片102上。
在本公开的一些实施例中,所述第二散热部件121包括散热器,所述散热器为散热鳍片。
最后应说明的是:以上各实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述各实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围。

Claims (20)

  1. 一种投影装置,包括:
    设置有第一开口的壳体;
    数字微镜器件电路板,所述数字微镜器件电路板上朝向所述壳体的一侧设置有数字微镜器件芯片,所述数字微镜器件芯片上设有工作区、非工作区,所述非工作区位于所述工作区外围,所述工作区被配置为调制穿过所述第一开口的光束中照射在其上的光束;
    第一散热部件,设置在所述数字微镜器件芯片和所述壳体之间,所述第一散热部件和所述数字微镜器件芯片之间具有空隙,所述第一散热部件上设置有第二开口,所述第二开口被配置为使所述穿过所述第一开口的光束中照射所述工作区的光束通过,同时遮挡所述穿过所述第一开口的光束中的其余光束。
  2. 根据权利要求1所述的投影装置,其特征在于,所述壳体上还设有第一支撑柱,所述第一散热部件上还设有第一穿孔,所述数字微镜芯片还包括设置在所述非工作区域四周的基板区,所述第一支撑柱穿过所述第一穿孔并抵接在所述数字微镜器件芯片的所述基板区上,以形成所述空隙。
  3. 根据权利要求2所述的投影装置,其特征在于,所述第一支撑柱的直径小于所述第一穿孔的直径。
  4. 根据权利要求2所述的投影装置,其特征在于,所述第一支撑柱为三个,且三个所述第一支撑柱的连线构成三角形。
  5. 根据权利要求1所述的投影装置,其特征在于,所述壳体上还设有定位柱,所述第一散热部件上还设有第二穿孔,所述数字微镜芯片还包括设置在所述非工作区域四周的基板区,所述数字微镜器件芯片的所述基板区上还设有定位柱接收槽,所述定位柱穿过所述第二穿孔并被所述定位柱接收槽接收,以定位所述数字微镜器件芯片和壳体。
  6. 根据权利要求5所述的投影装置,其特征在于,所述定位柱的直径小于所述第二穿孔的直径,并与所述定位柱接收槽的直径相对应。
  7. 根据权利要求5所述的投影装置,其特征在于,所述定位柱接收槽为两个,且设置在所述数字微镜器件芯片的所述基板区的对角线上。
  8. 根据权利要求1所述的投影装置,其特征在于,所述第一散热部件包括主体部,所述第二开口设置在所述主体部上。
  9. 根据权利要求1所述的投影装置,其特征在于,所述第二开口的形状与所述工作区的形状相对应。
  10. 根据权利要求1所述的投影装置,其特征在于,所述投影装置还包括隔热件,所述隔热件夹设在所述第一散热部件和壳体之间。
  11. 根据权利要求2所述的投影装置,其特征在于,所述第一散热部件还包括散热部,所述散热部与所述主体部相连接。
  12. 根据权利要求11所述的投影装置,其特征在于,所述主体部和所述散热部一体成型。
  13. 根据权利要求11所述的投影装置,其特征在于,所述第一散热部件包括多个 散热部,所述主体部位于所述多个散热部之间。
  14. 根据权利要求13所述的投影装置,其特征在于,
    所述散热部为两个,且位于所述主体部相对的两端;
    或者,所述散热部多于两个,且围绕所述主体部设置。
  15. 根据权利要求13所述的投影装置,其特征在于,所述多个散热部之间形成有容纳部,所述数字微镜器件电路板容纳于所述容纳部内。
  16. 根据权利要求1所述的投影装置,其特征在于,所述壳体上设有第二支撑柱,所述第二支撑柱上设有第一螺栓孔,所述主体部上还设有第三穿孔,所述数字微镜器件电路板上设有第四穿孔,所述第二支撑柱穿过所述第三穿孔并抵接在所述数字微镜器件电路板上,第一连接螺栓穿过所述第四穿孔,通过所述第一螺栓孔与所述第二支撑柱连接,以使所述数字微镜器件电路板、第一散热部件和壳体连接。
  17. 根据权利要求16所述的投影装置,其特征在于,还包括连接板,所述连接板设置在所述数字微镜器件电路板远离所述壳体的一侧,所述连接板上设有第五穿孔,所述第一连接螺栓依次穿过所述第五穿孔和第四穿孔,通过所述第一螺栓孔与所述第二支撑柱连接,以使所述连接板、数字微镜器件电路板、第一散热部件和壳体连接。
  18. 根据权利要求17所述的投影装置,其特征在于,所述投影装置还包括:第二散热部件,所述第二散热部件设置在所述连接板远离所述数字微镜器件电路板的一侧,并设有第六穿孔,所述第一连接螺栓的头部设有第二螺栓孔,第二连接螺栓穿过所述第六穿孔并通过所述第二螺栓孔与所述第一连接螺栓连接,以使所述第二散热部件、连接板、数字微镜器件电路板、第一散热部件和壳体连接。
  19. 根据权利要求18所述的投影装置,其特征在于,所述第二散热部件上设有导热块,所述连接板上设有第七穿孔,所述数字微镜器件电路板上设有第八穿孔,所述导热块依次穿过所述第七穿孔和第八穿孔,然后抵接在所述数字微镜器件芯片上。
  20. 根据权利要求18所述的投影装置,其特征在于,所述第二散热部件包括散热器,所述散热器为散热鳍片。
PCT/CN2018/092501 2017-12-07 2018-06-22 投影装置 WO2019109628A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201711286061.9 2017-12-07
CN201711286515.2 2017-12-07
CN201711286515.2A CN108107567A (zh) 2017-12-07 2017-12-07 数字微镜器件组件
CN201711286061.9A CN109901286A (zh) 2017-12-07 2017-12-07 数字微镜器件组件及光机组件

Publications (1)

Publication Number Publication Date
WO2019109628A1 true WO2019109628A1 (zh) 2019-06-13

Family

ID=66696690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092501 WO2019109628A1 (zh) 2017-12-07 2018-06-22 投影装置

Country Status (2)

Country Link
US (1) US10599023B2 (zh)
WO (1) WO2019109628A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111108438B (zh) * 2017-07-28 2022-02-08 巴科股份有限公司 具有冷却部的空间光调制装置
CN111175967A (zh) * 2018-11-13 2020-05-19 台达电子工业股份有限公司 光学模块
CN111198473A (zh) * 2018-11-16 2020-05-26 中强光电股份有限公司 光机模块
CN112987463B (zh) * 2019-12-02 2023-03-14 青岛海信激光显示股份有限公司 一种光机及激光投影设备
JP7417892B2 (ja) * 2019-12-26 2024-01-19 パナソニックIpマネジメント株式会社 表示装置および投写装置
JP2022026131A (ja) * 2020-07-30 2022-02-10 パナソニックIpマネジメント株式会社 投写型映像表示装置
US20230221521A1 (en) * 2020-09-17 2023-07-13 Applied Materials, Inc. Light wave phase interference improvement of digital micromirror device by means of mechanically stressing the device package
CN115712221A (zh) * 2021-08-23 2023-02-24 中强光电股份有限公司 光机模块

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11202405A (ja) * 1998-01-14 1999-07-30 Sony Corp 投射型crtプロジェクター
CN1402081A (zh) * 2001-08-08 2003-03-12 精工爱普生株式会社 光学装置和投影仪
KR20060017292A (ko) * 2004-08-20 2006-02-23 엘지전자 주식회사 광학투사장치의 디엠디 냉각장치
KR20060018352A (ko) * 2004-08-24 2006-03-02 엘지전자 주식회사 프로젝터 엔진용 실드
JP2007199279A (ja) * 2006-01-25 2007-08-09 Seiko Epson Corp プロジェクタ
CN108107567A (zh) * 2017-12-07 2018-06-01 青岛海信激光显示股份有限公司 数字微镜器件组件

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2606906Y (zh) 2003-03-21 2004-03-17 光宝科技股份有限公司 应用于光学投影装置的挠性组装系统及其机构
JP2005128369A (ja) 2003-10-27 2005-05-19 Pentax Corp 光変調ユニット
TWI343507B (en) * 2007-05-18 2011-06-11 Coretronic Corp Digital micro-mirror device
TWI345127B (en) * 2007-11-27 2011-07-11 Coretronic Corp Dmd module
CN203858412U (zh) 2014-06-06 2014-10-01 台达电子工业股份有限公司 数字微镜装置及其遮光散热组件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11202405A (ja) * 1998-01-14 1999-07-30 Sony Corp 投射型crtプロジェクター
CN1402081A (zh) * 2001-08-08 2003-03-12 精工爱普生株式会社 光学装置和投影仪
KR20060017292A (ko) * 2004-08-20 2006-02-23 엘지전자 주식회사 광학투사장치의 디엠디 냉각장치
KR20060018352A (ko) * 2004-08-24 2006-03-02 엘지전자 주식회사 프로젝터 엔진용 실드
JP2007199279A (ja) * 2006-01-25 2007-08-09 Seiko Epson Corp プロジェクタ
CN108107567A (zh) * 2017-12-07 2018-06-01 青岛海信激光显示股份有限公司 数字微镜器件组件

Also Published As

Publication number Publication date
US20190179217A1 (en) 2019-06-13
US10599023B2 (en) 2020-03-24

Similar Documents

Publication Publication Date Title
WO2019109628A1 (zh) 投影装置
WO2014103019A1 (ja) 半導体素子冷却構造、および該構造を備えた電子機器
US8061849B2 (en) Lens module having thermal dissipation structure with vaulted contacting block and projector using same
US7077526B2 (en) Mechanically adjustable thermal path for projection display device cooling
JP2003121937A5 (zh)
US9323139B2 (en) Light source device and projector
US20180239225A1 (en) Projection apparatus
CN108107567A (zh) 数字微镜器件组件
JP2010175583A (ja) 投写型表示装置
US11125968B2 (en) Optical module
US6906840B1 (en) Optical modulator, optical device having the optical modulator and projector having the same
EP3644696B1 (en) Floating-type heat sink and elastic bracket therefor
CN214751287U (zh) 散热组件、散热装置及投影设备
JP6187023B2 (ja) 光源装置及びプロジェクター
JP2006253197A (ja) 光照射モジュール
WO2009119657A1 (ja) プロジェクタ
JP2007036007A (ja) 発光光源
JP2015031769A (ja) 電気光学装置および投写型映像表示装置
WO2023231103A1 (zh) 一种投影光机
CN218158693U (zh) 一种小型投影光机
JP6137265B2 (ja) 光源装置及びプロジェクター
JP2010032945A (ja) Dmd素子の放熱装置
JP4736418B2 (ja) 光照射装置
CN213991442U (zh) 一种电子器件的散热装置
CN218273069U (zh) 一种dmd封装散热结构及投影光机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18886380

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18886380

Country of ref document: EP

Kind code of ref document: A1