WO2014103019A1 - 半導体素子冷却構造、および該構造を備えた電子機器 - Google Patents

半導体素子冷却構造、および該構造を備えた電子機器 Download PDF

Info

Publication number
WO2014103019A1
WO2014103019A1 PCT/JP2012/084097 JP2012084097W WO2014103019A1 WO 2014103019 A1 WO2014103019 A1 WO 2014103019A1 JP 2012084097 W JP2012084097 W JP 2012084097W WO 2014103019 A1 WO2014103019 A1 WO 2014103019A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor element
cooling structure
heat
element cooling
contact
Prior art date
Application number
PCT/JP2012/084097
Other languages
English (en)
French (fr)
Inventor
直樹 増田
Original Assignee
Necディスプレイソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necディスプレイソリューションズ株式会社 filed Critical Necディスプレイソリューションズ株式会社
Priority to US14/758,173 priority Critical patent/US9829775B2/en
Priority to CN201290001387.7U priority patent/CN204885821U/zh
Priority to PCT/JP2012/084097 priority patent/WO2014103019A1/ja
Publication of WO2014103019A1 publication Critical patent/WO2014103019A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02469Passive cooling, e.g. where heat is removed by the housing as a whole or by a heat pipe without any active cooling element like a TEC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02476Heat spreaders, i.e. improving heat flow between laser chip and heat dissipating elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20409Outer radiating structures on heat dissipating housings, e.g. fins integrated with the housing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar

Definitions

  • the present invention relates to a structure for cooling a semiconductor element and an electronic apparatus including the structure, and more particularly to a projection display device.
  • a projection display device that projects an image includes a semiconductor element such as a light emitting element or an image forming element. Such a semiconductor element generates heat when it operates.
  • semiconductor element cooling structure a structure for cooling a semiconductor element (hereinafter referred to as “semiconductor element cooling structure”) has been proposed.
  • Patent Document 1 An example of a semiconductor element cooling structure is disclosed in Japanese Patent Application Laid-Open No. 2012-9760 (hereinafter referred to as “Patent Document 1”). Here, the semiconductor element cooling structure disclosed in Patent Document 1 will be described.
  • the semiconductor element cooling structure includes a light emitting element as a semiconductor element and a heat sink formed of a metal material such as aluminum or copper.
  • the light emitting element includes a lead terminal extending from the bottom surface of the element body, and the lead terminal is electrically connected to the substrate.
  • the substrate is accommodated in a U-shaped groove formed on the front surface of the heat sink, and the bottom surface of the element body is in contact with the front surface of the heat sink.
  • the heat sink absorbs the heat of the element body and releases the heat, whereby the light emitting element is cooled.
  • the substrate is arranged along the direction in which the lead terminals extend. Therefore, the opening of the groove can be made relatively small, and the area of the bottom surface of the element body that contacts the front surface of the heat sink (hereinafter referred to as “contact portion”) can be made relatively large. By increasing the area of the contact portion, the heat of the element body is easily transferred to the heat sink, and the light emitting element is easily cooled.
  • An example of the object of the present invention is to provide a semiconductor element cooling structure capable of cooling a semiconductor element more efficiently.
  • the semiconductor element cooling structure has a heat receiving portion and a heat radiating portion.
  • the heat receiving unit receives heat generated by the semiconductor element.
  • the heat radiating part radiates heat from the heat receiving part.
  • the heat receiving part includes an element contact part having a contact surface to which the semiconductor element is attached on one surface thereof, and a heat diffusion part in contact with the element contact part and the heat dissipation part.
  • the element contact portion has a space portion.
  • the contact surface is provided with a through hole that communicates with the space and into which the terminal of the semiconductor element is inserted.
  • the space portion houses a substrate to which a terminal of the semiconductor element is connected.
  • the semiconductor element can be cooled more efficiently.
  • FIG. 5 is a cross-sectional view of the semiconductor element cooling structure according to the first embodiment taken along a plane XX shown in FIG.
  • FIG. 5 is a cross-sectional view of the semiconductor element cooling structure according to the first embodiment taken along a plane YY shown in FIG. It is an enlarged view which shows the detail of the Z section shown by FIG.
  • FIG. 1 is a schematic plan view showing the inside of the projection display device. Note that FIG. 1 does not show the semiconductor element cooling structure.
  • the projection display device 1 includes a light emitting element 2 such as a laser diode.
  • the laser light emitted from the light emitting element 2 passes through the condenser lenses 3, 4, 5, the dichroic mirror 6, and the condenser lenses 7, 8 and is applied to the wheel plate 9 coated with the phosphor.
  • the phosphor of the wheel plate 9 emits visible light when irradiated with laser light.
  • the light emitted from the phosphor passes through the condenser lenses 8 and 7, is reflected by the dichroic mirror 6, travels to the condenser lens 10, and is collected at one point using the condenser lens 10.
  • the light collected at one point is irradiated on the color wheel 11 and is temporally separated into light of a plurality of colors using the color wheel 11.
  • the light irradiated on the reflective image forming element 17 is modulated and reflected by the reflective image forming element 17 and projected by the projection lens 18. For example, an image is displayed on the screen by projecting light onto the screen.
  • the light emitting element 2 includes an element body 19 and a plurality of lead terminals (also simply referred to as “terminals”) 20 extending in a direction intersecting the one surface 19a from the one surface 19a of the element body 19.
  • the lead terminal 20 is electrically connected to a substrate 21 (see FIGS. 2 to 6), and the light emitting element 2 receives power from the substrate 21 and emits light.
  • the semiconductor element to which the present invention can be applied is not limited to the light emitting element 2.
  • the present invention can be applied to a cooling structure of a semiconductor element that generates heat. Therefore, the projection display apparatus to which the present invention is applicable is not limited to the one having a laser diode as a light source.
  • FIG. 2 is a perspective view of the semiconductor element cooling structure according to this embodiment
  • FIG. 3 is an exploded perspective view of the semiconductor element cooling structure.
  • 4 is a front view of the semiconductor element cooling structure
  • FIG. 7 is an enlarged view showing details of the Z portion shown in FIG.
  • the semiconductor element cooling structure 22 includes a heat sink 23 that absorbs heat from the light emitting element 2.
  • the heat sink 23 includes a heat receiving portion 41 and a heat radiating portion 42 that releases the heat of the heat receiving portion 41 adjacent to the heat receiving portion 41.
  • the heat sink 23 includes the heat radiating portion 42, the heat of the heat sink 23 is easily released, and the heat of the light emitting element 2 is easily transferred to the heat sink 23. As a result, the light emitting element 2 is cooled more efficiently.
  • the heat receiving part 41 has the element contact part 41a to which the light emitting element 2 is attached, and the thermal diffusion part 41b which touches a thermal radiation part.
  • the element contact portion 41a includes a contact surface 23a with which one surface 19a of the element body 19 contacts, and a plurality of through holes 24 formed in the contact surface 23a.
  • an insulating member 25 may be disposed on a portion of the lead terminal 20 facing the inner side surface of the through hole 24.
  • the cross-sectional shape of the through hole 24 is not limited to a circle, and may be an ellipse or a rectangle.
  • the element contact portion 41 a includes a space portion 26 for accommodating the substrate 21.
  • the space portion 26 communicates with the plurality of through holes 24.
  • the substrate 21 is held between the first holding member 27 and the second holding member 28 and held in the space portion 26.
  • the plurality of lead terminals 20 are electrically connected to the substrate 21 held in the space portion 26 by passing through the plurality of through holes 24.
  • the positioning member 29 for determining the position of the light emitting element 2 may be provided on the contact surface 23a (element contact portion 41a).
  • the positioning member 29 has a through hole 30 through which the light emitting element 2 passes. By inserting the light emitting element 2 into the through hole 30, the position of the light emitting element 2 with respect to the positioning member 29 is determined. By positioning and fixing the positioning member 29 on the contact surface 23a, the light emitting element 2 is easily arranged at a predetermined position on the contact surface 23a.
  • the positioning member 29 is positioned on the contact surface 23a as follows.
  • the positioning member 29 has positioning holes 32a and 32b corresponding to the positioning holes 31a and 31b arranged on the contact surface 23a of the heat sink 23 (heat receiving portion 41). By accurately matching the positions of the positioning holes 31a and 31b with the positions of the positioning holes 32a and 32b using, for example, a jig such as a pin, the positioning member 29 has a predetermined surface on the contact surface 23a of the heat sink 23. Accurately positioned. It is desirable that one of the positioning holes 31a and 31b arranged on the contact surface 23a of the heat sink 23 is a long hole.
  • a through hole 34 for passing a screw 33 is formed in the positioning member 29, and a screw hole 35 is formed in the contact surface 23 a of the heat sink 23.
  • the positioning member 29 is fixed to the contact surface 23a of the heat sink 23 with screws.
  • the positioning member 29 is positioned on the contact surface 23a, and the light emitting element 2 is accurately arranged at a predetermined position on the contact surface 23a.
  • the through hole 24 for passing the lead terminal 20 is formed in the contact surface 23a of the heat sink 23, the one surface 19a of the element body 19 can be brought into contact with the contact surface 23a. . Therefore, the heat of the element body 19 is absorbed from the contact surface 23a to the heat sink 23, and the light emitting element 2 is cooled.
  • the through holes 24 may be provided individually for each lead terminal 20, or two or more lead terminals may pass through one through hole.
  • a thermal conductive grease as a thermal conductive material may be applied to the contact surface between the element body 19 and the heat sink 23.
  • the thermal grease reduces the thermal resistance between the element body 19 and the heat sink 23, and the heat of the element body 19 is more easily transferred to the heat sink 23.
  • the light-emitting element 2 has two lead terminals 20, but the present invention can also be applied to a structure for cooling a light-emitting element including three or more lead terminals 20.
  • the space portion 26 is defined using a hole that penetrates the heat sink 23 (heat receiving portion 41) along the contact surface 23a.
  • the hole that defines the space portion 26 penetrates the heat sink. It does not have to be.
  • the semiconductor element cooling structure 22 may further include a socket 36 that electrically connects the lead terminal 20 and the substrate 21 by inserting the lead terminal 20.
  • the socket 36 is a member formed so that, for example, the lead terminal 20 is fitted therein.
  • the lead terminal 20 is electrically connected to the substrate 21 only by inserting the lead terminal 20 into the socket 36. Therefore, even after the substrate 21 is accommodated in the space portion 26 and the lead terminal 20 is passed through the through hole 24, the lead terminal 20 is easily electrically connected to the substrate 21. This eliminates the need for soldering and wiring, thus dramatically improving assembly time.
  • the semiconductor element cooling structure 22 may further include a pressing member 37 that presses the light emitting element 2 against the heat sink 23.
  • the pressing member 37 has a through hole 39 through which the protrusion 38 of the light emitting element 2 does not pass.
  • the light emitting element 2 is pressed against the heat sink 23 by pressing the pressing member 37 toward the heat sink 23 using the male screw 40 in a state where the opening edge of the through hole 39 is in contact with the protrusion 38.
  • the thermal resistance between the element body 19 and the heat sink 23 is reduced, and the light emitting element 2 is cooled more efficiently.
  • the thermal diffusion part 41 b is provided between the space part 26 and the heat dissipation part 42.
  • the portion between the end of the space 26 on the side of the heat radiating portion 42 and the heat radiating portion 42 is the heat diffusing portion 41b.
  • the heat generated in the light emitting element 2 passes through the contact surface 23a and moves to the element contact portion 41a.
  • the thermal conductivity of the space portion 26 is lower than the other portions of the element contact portion 41a. Therefore, the heat generated in the light emitting element 2 is transmitted to the heat diffusion portion 41b so as to avoid the space portion 26 and spreads over the entire heat diffusion portion 41b.
  • the thermal resistance between the element contact portion 41a and the heat diffusion portion 41b is extremely small, and the heat generated in the light emitting element 2 is heat diffusion. It transmits efficiently to the part 41b. And the heat which moved to the thermal diffusion part 41b (heat receiving part 41) is transmitted to the thermal radiation part 42, and is discharged
  • the thickness of the thermal diffusion part 41b (T in FIG. 6) is 5 mm, but it may be 3 mm to 8 mm.
  • the thickness (T in FIG. 6) is smaller than 3 mm, the heat conduction efficiency from the element contact portion 41a to the heat diffusion portion 41b is lowered.
  • the thickness (T in FIG. 6) is larger than 8 mm, the heat conduction efficiency from the heat diffusing portion 41b to the heat radiating portion 42 is lowered.
  • the heat receiving portion 41 heat diffusing portion 41b
  • the heat radiating portion 42 are integrally formed. This is because the heat is easily transferred from the heat receiving portion 41 to the heat radiating portion 42 by being formed integrally, and the temperature of the heat receiving portion 41 is hardly increased.
  • the slit direction of the heat radiation part 42 is the same as the direction in which the space part 26 of the heat sink 23 extends.
  • the heat sink 23 made of a metal material such as aluminum can be formed by extrusion molding, and the heat sink 23 can be formed integrally more easily.
  • the semiconductor element cooling structure 22 may further include a cooling fan 43 that cools the heat sink 23.
  • a cooling fan 43 that cools the heat sink 23.
  • the semiconductor element cooling structure 22 As described above, according to the present embodiment, since the size of the through hole 24 can be further reduced, the contact surface between the element main body 19 and the heat sink 23 becomes larger, and the light emitting element 2 is more It becomes possible to cool efficiently.
  • the semiconductor element cooling structure 22 By using the semiconductor element cooling structure 22 according to the present embodiment, the temperature of the light emitting element 2 is unlikely to rise, so that it is possible to provide a projection display device having high illuminance and high illuminance maintenance ratio over time. Is possible.
  • FIGS. 2 to 7 a semiconductor element cooling structure according to a second embodiment of the present invention will be described with reference to FIGS.
  • the same elements as those shown in FIGS. 2 to 7 are denoted by the same reference numerals, and the description thereof is omitted.
  • FIG. 8 is a perspective view of the semiconductor element cooling structure according to this embodiment.
  • the semiconductor element cooling structure 44 according to the present embodiment includes a base block 45 including a contact surface 23 a and a radiating fin block 46 that releases heat of the base block 45 adjacent to the base block 45. Including a heat sink 47. And the base block 45 and the radiation fin block 46 are formed separately.
  • the base block 45 corresponds to the heat receiving portion 41 of the first embodiment
  • the radiating fin block 46 corresponds to the heat radiating portion 42 of the first embodiment.
  • FIG. 9 is a perspective view of the semiconductor element cooling structure 44 in a state where the base block 45 and the radiating fin block 46 are separated from each other.
  • the base block 45 and the radiating fin block 46 can be separately formed by extrusion using a metal such as aluminum. Therefore, the slit direction of the radiating fin block 46 may be different from the direction in which the space 26 for accommodating the substrate 21 extends.
  • a thermal conductive grease as a thermal conductive material may be applied to the contact surface 50 between the base block 45 and the heat radiating fin block 46.
  • the thermal grease reduces the thermal resistance between the base block 45 and the radiating fin block 46, and the heat of the base block 45 is more easily transferred to the radiating fin block 46.
  • the contact surface 50 may be a curved surface.
  • the base block 45 and the radiating fin block 46 may be fixed using screws 51.
  • the base block 45 and the radiating fin block 46 may be joined to each other using solder or solder.
  • the light emitting element 2 can be cooled more efficiently.
  • the semiconductor element cooling structure 22 according to this embodiment it is possible to provide a projection display device having high illuminance and high illuminance maintenance rate over time.
  • FIG. 10 is a perspective view of the semiconductor element cooling structure according to this embodiment.
  • the semiconductor element cooling structure 52 includes a heat sink 47 including a base block 45 and a radiating fin block 46 separated from the base block 45.
  • the heat radiating fin block 46 is connected to the base block 45 using heat transfer means such as a heat pipe 53.
  • the base block 45 corresponds to the heat receiving part 41 of the first embodiment
  • the radiating fin block 46 and the heat pipe 53 correspond to the heat radiating part 42 of the first embodiment.
  • one end of the heat pipe 53 is joined to the base block 45 using solder or solder.
  • the other end of the heat pipe 53 is joined to the heat radiating fin block 46 using solder, solder, or the like. Since the heat of the base block 45 moves to the radiation fin block 46 through the heat pipe 53, the base block 45 is cooled and the light emitting element 2 is cooled.
  • the cooling fin block 46 may be cooled using the cooling fan 43.
  • This embodiment is advantageous when a space for disposing the heat dissipating fin block 46 and the cooling fan 43 cannot be secured in the vicinity of the light emitting element 2. Since the heat of the light emitting element 2 moves to the radiating fin block 46 via the base block 45 and the heat pipe 53, the light emitting element 2 is cooled more efficiently.
  • the light emitting element 2 can be cooled more efficiently.
  • the semiconductor element cooling structure 22 according to this embodiment it is possible to provide a projection display device having high illuminance and high illuminance maintenance rate over time.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Multimedia (AREA)
  • Projection Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Led Device Packages (AREA)

Abstract

 半導体素子をより効率的に冷却することができる半導体素子冷却構造を提供する。 本発明は、素子本体(19)と、素子本体の一の面(19a)から該一の面と交わる方向に延びるリード端子(20)と、を含む半導体素子(9)を冷却するための構造(22)に係る。半導体素子冷却構造はヒートシンク(23)を備える。ヒートシンク(23)は、素子本体の一の面(19a)が接触する接触面(23a)と、接触面(23a)に形成された、リード端子(20)が貫通する通し穴(24)と、通し穴(24)と連通しリード端子(20)に接続される基板(21)を収容するための空間部(26)と、を含む。

Description

半導体素子冷却構造、および該構造を備えた電子機器
 本発明は、半導体素子を冷却するための構造および該構造を備えた電子機器、特に、投写型表示装置に関する。
 一般に、電子機器には半導体素子が使用されている。また、画像を投写する投写型表示装置では、発光素子や画像形成素子などの半導体素子を備えている。このような半導体素子は、動作することによって熱を発する。
 半導体素子の温度が上昇すると、半導体素子は正常に作動しなくなることがある。特に、投写型表示装置の光源となる発光素子の温度が上昇すると発光素子の発光効率が低下し、十分な量の光を発光素子から得られなくなる。その結果、投写される画像の明るさが低下してしまう。このような理由から、半導体素子を冷却するための構造(以下、「半導体素子冷却構造」と称す)が提案されている。
 半導体素子冷却構造の一例が特開2012-9760号公報(以下、「特許文献1」と称す)に開示されている。ここで、特許文献1に開示の半導体素子冷却構造について説明する。
 半導体素子冷却構造は、半導体素子としての発光素子と、アルミニウムや銅などの金属材料で形成されたヒートシンクと、を備える。発光素子は素子本体の底面延びるリード端子を含み、リード端子は基板と電気的に接続されている。基板はヒートシンクの正面に形成されたU字形状を有する溝に収容されており、素子本体の底面がヒートシンクの正面に接している。ヒートシンクが素子本体の熱を吸収して該熱を放出することによって、発光素子が冷却される。
 また、基板は、リード端子が延びる方向に沿って配置されている。したがって、溝の開口を比較的小さくすることができ、素子本体の底面の、ヒートシンクの正面と接する部分(以下、「接触部分」と称する)の面積を比較的大きくすることができる。接触部分の面積を大きくすることによって、素子本体の熱がヒートシンクへ移動しやすくなり、発光素子が冷却されやすくなる。
特開2012-9760号公報
 しかしながら、特許文献1に開示の半導体素子冷却構造では、基板を収容するための空間がU字形状を有する溝によって画定されている。そのため、溝の開口の縮小化に限界があった。その結果、接触部分を十分に大きくすることができず、半導体素子としての発光素子が十分に冷却されないことがあった。
 本発明の目的の一例は、半導体素子をより効率的に冷却することができる半導体素子冷却構造を提供することにある。
 本発明の一つの態様は、半導体素子を冷却する半導体素子冷却構造に係る。半導体素子冷却構造は受熱部と放熱部とを有する。受熱部は、半導体素子が発する熱を受ける。放熱部は受熱部の熱を放熱する。そして、受熱部は、半導体素子がその一の面で取り付けられる接触面を有する素子接触部と、素子接触部および放熱部と接する熱拡散部と、を具備している。素子接触部は空間部を有する。接触面には、空間部と連通し半導体素子の端子が挿入される通し穴が設けられている。空間部は、半導体素子の端子が接続される基板を収容していることを特徴とする。
 本発明によれば、半導体素子をより効率的に冷却することができる。
投写型表示装置の内部を示す概略平面図である。 本発明の第1の実施形態例に係る半導体素子冷却構造の斜視図である。 第1の実施形態例に係る半導体素子冷却構造の分解斜視図である。 第1の実施形態例に係る半導体素子冷却構造の正面図である。 第1の実施形態例に係る半導体素子冷却構造を図4に示される面X-Xで切断したときの断面図である。 第1の実施形態例に係る半導体素子冷却構造を図4に示される面Y-Yで切断したときの断面図である。 図5に示されるZ部の詳細を示す拡大図である。 本発明の第2の実施形態例に係る半導体素子冷却構造の斜視図である。 ベースブロックと放熱フィンブロックとが離された状態の半導体素子冷却構造44の斜視図である。 本発明の第3の実施形態例に係る半導体素子冷却構造の斜視図である。
 次に、本発明の実施形態例について、図面を参照して詳細に説明する。
 まず、半導体素子冷却構造を備えた投写型表示装置の一例を、図1を用いて説明する。図1は、投写型表示装置の内部を示す概略平面図である。なお、図1には半導体素子冷却構造は示されていない。
 図1に示されるように、投写型表示装置1はレーザダイオードといった発光素子2を備える。発光素子2から発せられたレーザ光は、集光レンズ3,4,5、ダイクロイックミラー6および集光レンズ7,8を通り、蛍光体が塗布されたホイール板9に照射される。ホイール板9の蛍光体は、レーザ光が照射されることによって可視光を発する。
 蛍光体から発せられた光は、集光レンズ8,7を通り、ダイクロイックミラー6で反射されて集光レンズ10へ向かい、集光レンズ10を用いて一点に集められる。一点に集められた光はカラーホイール11に照射され、カラーホイール11を用いて複数の色の光に時間的に分離される。
 その後、各色の光はロッドレンズ12に入射し、ロッドレンズ12内で反射を繰り返した後ロッドレンズ12から出射する。ロッドレンズ12から出射した光は、集光レンズ13,14を通り、反射ミラー15を用いて反射され、さらに集光レンズ16を通って反射型画像形成素子17に照射される。
 反射型画像形成素子17に照射された光は、反射型画像形成素子17を用いて変調されるとともに反射され、投写レンズ18を用いて投写される。例えばスクリーン上へ光が投写されることによって、スクリーンに画像が表示される。
 発光素子2は、素子本体19と、素子本体19の一の面19aから一の面19aと交わる方向に延びる複数のリード端子(単に「端子」とも称す)20と、を含む。リード端子20は基板21(図2ないし図6参照)と電気的に接続されており、発光素子2は基板21から電力を受けて光を発する。
 以下、発光素子2を冷却するための構造を説明する。なお、ここでは、半導体素子としての発光素子2を冷却する例について説明するが、本発明を適用可能な半導体素子は発光素子2に限られない。本発明は、熱を発する半導体素子の冷却構造に適用可能である。したがって、本発明が適用可能な投写型表示装置は、光源としてレーザダイオードを備えるものに限られない。
 (第1の実施形態例)
 本発明の第1の実施形態例に係る半導体素子冷却構造を図2ないし7を用いて説明する。
 図2は本実施形態例に係る半導体素子冷却構造の斜視図であり、図3は当該半導体素子冷却構造の分解斜視図である。図4は半導体素子冷却構造の正面図であり、図5は半導体素子冷却構造を図4に示される面X-Xで切断したときの断面図である。図6は半導体素子冷却構造を図4に示される面Y-Yで切断したときの断面図である。図7は、図5に示したZ部の詳細を示す拡大図である。
 図2ないし7に示されるように、本実施形態例に係る半導体素子冷却構造22は、発光素子2の熱を吸収するヒートシンク23を備える。
 ヒートシンク23は、受熱部41と、受熱部41に隣接して受熱部41の熱を放出する放熱部42とを具備している。ヒートシンク23が放熱部42を含むことによって、ヒートシンク23の熱が放出されやすくなり、発光素子2の熱がヒートシンク23へ移動しやすくなる。その結果、発光素子2がより効率的に冷却される。また、受熱部41は、発光素子2が取り付けられる素子接触部41aと、放熱部に接する熱拡散部41bと、を有している。
 素子接触部41aは、素子本体19の一の面19aが接する接触面23aと、接触面23aに形成された複数の通し穴24と、を備える。リード端子20が通し穴24の内側面と接することを防止するため、リード端子20の、通し穴24の内側面と対向する部分に絶縁部材25が配されていてもよい。通し穴24の断面形状は円に限らず楕円や長方形でも構わない。
 また、素子接触部41aは、基板21を収容するための空間部26を含む。空間部26は複数の通し穴24と連通している。基板21は、第一の保持部材27と第二の保持部材28で挟まれて空間部26内に保持される。複数のリード端子20は、複数の通し穴24に通されることによって、空間部26内に保持された基板21と電気的に接続される。
 発光素子2の位置を定める位置決め用部材29が接触面23a(素子接触部41a)上に設けられていてもよい。位置決め用部材29は、発光素子2を通すための貫通孔30を有する。貫通孔30に発光素子2を挿入することによって、位置決め用部材29に対する発光素子2の位置が決定される。位置決め用部材29を接触面23aに位置決めして固定することによって、発光素子2は接触面23aの所定の位置に容易に配置される。
 位置決め用部材29の接触面23aへの位置決めは以下のように行われる。
 位置決め用部材29は、ヒートシンク23(受熱部41)の接触面23aに配された位置決め穴31a,31bに対応する位置決め穴32a,32bを有する。位置決め穴31a,31bの位置と位置決め穴32a,32bの位置とを、例えば、ピンなどの治具を用いて正確に一致させることによって、位置決め用部材29はヒートシンク23の接触面23a上の所定の位置に正確に配置される。ヒートシンク23の接触面23aに配された位置決め穴31a,31bのいずれか一方の穴は長穴であることが望ましい。
 位置決め用部材29にはネジ33を通すための貫通孔34が、ヒートシンク23の接触面23aにはネジ孔35がそれぞれ形成されている。そして、位置決め用部材29はヒートシンク23の接触面23aにネジで固定される。
 このようにして、位置決め用部材29の接触面23aへの位置決めされ、発光素子2が接触面23aの所定の位置に正確に配置される。
 本実施形態例によれば、リード端子20を通すための通し穴24がヒートシンク23の接触面23aに形成されているため、素子本体19の一の面19aを接触面23aに接触させることができる。したがって、素子本体19の熱は接触面23aからヒートシンク23へ吸収され、発光素子2が冷却される。通し穴24はリード端子20毎に個別に設けてもよいし、1つの通し穴に2本以上のリード端子が通るようにしてもよい。
 素子本体19とヒートシンク23との間の接触面に、熱伝導物質としての熱伝導グリースが塗布されていてもよい。熱伝導グリースによって素子本体19とヒートシンク23との間の熱抵抗が小さくなり、素子本体19の熱がヒートシンク23へより移動しやすくなる。
 本実施形態例では発光素子2は2つのリード端子20を有しているが、本発明は、3つ以上のリード端子20を含む発光素子を冷却するための構造にも適用することができる。
 また、本実施形態では、空間部26は接触面23aに沿ってヒートシンク23(受熱部41)を貫通する穴を用いて画定されているが、空間部26を画定する穴はヒートシンクを貫通していなくてもよい。
 半導体素子冷却構造22は、リード端子20が挿入されることによってリード端子20と基板21とを電気的に接続するソケット36をさらに備えていてもよい。ソケット36は、例えば、リード端子20が嵌まるように形成された部材である。
 ソケット36を用いることによって、リード端子20がソケット36に挿入されるだけでリード端子20は基板21と電気的に接続される。したがって、基板21が空間部26に収容されかつリード端子20が通し穴24に通された後であっても、リード端子20は、容易に基板21と電気的に接続される。これにより半田付けや配線の引き回しが不要になるので、組み立て工数が劇的に改善された。
 半導体素子冷却構造22は、発光素子2をヒートシンク23に押し付ける押し付け部材37をさらに備えていてもよい。押し付け部材37は発光素子2の突部38が通り抜けることのない貫通孔39を有する。貫通孔39の開口縁を突部38に接触させた状態で雄ねじ40を用いて押し付け部材37をヒートシンク23へ向けて押し付けることによって、発光素子2がヒートシンク23に押し付けられる。
 発光素子2がヒートシンク23に押し付けられることによって、素子本体19とヒートシンク23との間の熱抵抗が小さくなり、発光素子2がより効率的に冷却される。
 ところで、図6に示すように、熱拡散部41bを空間部26と放熱部42の間に設けている。換言すると、図6中の記号Tで示したように、空間部26の放熱部42側の端部と、放熱部42との間の部分が熱拡散部41bである。発光素子2で発生した熱は、接触面23aを通り素子接触部41aへと移る。空間部26の熱伝導率は、素子接触部41aの他の部分よりも低い。よって、発光素子2で発生した熱は、空間部26を避けるようにして熱拡散部41bへと伝わり、熱拡散部41bの全体に広がる。
 このとき、素子接触部41aと熱拡散部41bは一体的に作られているので、素子接触部41aと熱拡散部41bの間の熱抵抗は極めて小さく、発光素子2で発生した熱は熱拡散部41bへと効率よく伝達する。そして、熱拡散部41b(受熱部41)に移動した熱は放熱部42への伝わり、放熱部42から空気中へ放出される。
 本実施形態例では、熱拡散部41bの厚さ(図6中のT)は5mmであるが、3mmから8mmであればよい。この厚さ(図6中のT)が3mmよりも小さくなると、素子接触部41aから熱拡散部41bへの熱の伝導効率が低下する。他方、この厚さ(図6中のT)が8mmよりも大きくなると、熱拡散部41bから放熱部42への熱の伝導効率が低下する。
 また、受熱部41(熱拡散部41b)と放熱部42が一体的に形成されていることがより好ましい。一体的に形成されていることによって、受熱部41から放熱部42へ熱が移動しやすくなり、受熱部41の温度が上がりにくくなるためである。
 放熱部42のスリット方向が、ヒートシンク23の空間部26が延びる方向と同じであることがさらに好ましい。この場合には、例えばアルミニウムなどの金属材料からなるヒートシンク23を押出成形により成形することができ、より簡単にヒートシンク23を一体的に成形することができる。
 半導体素子冷却構造22は、ヒートシンク23を冷却する冷却ファン43をさらに備えていてもよい。ヒートシンク23を冷却することで発光素子2の熱がヒートシンク23へより移りやすくなり、発光素子2がより効率的に冷却される。
 以上のように、本実施形態例によれば、通し穴24の大きさをより小さくすることができるため、素子本体19とヒートシンク23との間の接触面がより大きくなり、発光素子2をより効率的に冷却することが可能になる。本実施形態に係る半導体素子冷却構造22を用いることによって、発光素子2の温度が上昇しにくくなるため、照度が高く、かつ経時的な照度維持率の高い、投写型表示装置を提供することが可能である。
 (第2の実施形態例)
 続いて、本発明の第2の実施形態例に係る半導体素子冷却構造を、図8および9を用いて説明する。なお、図2ないし7に示される要素と同一の要素には同一の符号を付し、その説明を省略する。
 図8は本実施形態例に係る半導体素子冷却構造の斜視図である。図8に示されるように、本実施形態例に係る半導体素子冷却構造44は、接触面23aを含むベースブロック45と、ベースブロック45に隣接してベースブロック45の熱を放出する放熱フィンブロック46と、を含むヒートシンク47を備える。そして、ベースブロック45および放熱フィンブロック46は個別に形成されている。ここで、ベースブロック45は、第1の実施形態例の受熱部41に相当し、放熱フィンブロック46は第1の実施形態例の放熱部42に相当する。
 図9は、ベースブロック45と放熱フィンブロック46とが離された状態の半導体素子冷却構造44の斜視図である。
 本実施形態例によれば、ベースブロック45と放熱フィンブロック46とを、アルミニウムなどの金属を用いて別々に押出成形で成形することができる。したがって、放熱フィンブロック46のスリット方向が、基板21を収容するための空間部26が延びる方向と異なっていてもよい。
 また、ベースブロック45と放熱フィンブロック46との間の接触面50に、熱伝導物質としての熱伝導グリースが塗布されていてもよい。熱伝導グリースによってベースブロック45と放熱フィンブロック46との間の熱抵抗が低減し、ベースブロック45の熱が放熱フィンブロック46へより移動しやすくなる。さらに、接触面50は曲面であってもよい。
 ベースブロック45および放熱フィンブロック46は、ねじ51を用いて固定されていてもよい。その他に、半田やロウを用いてベースブロック45および放熱フィンブロック46が互いに接合されていてもよい。ベースブロック45および放熱フィンブロック46をより強固に接合することによって、ベースブロック45から放熱フィンブロック46へ熱が移動しやすくなり、発光素子2をより効率的に冷却することができる。
 以上のように、本実施形態例によれば、発光素子2をより効率的に冷却することが可能になる。本実施形態に係る半導体素子冷却構造22を用いることによって、照度が高く、かつ経時的な照度維持率の高い、投写型表示装置を提供することが可能である。
 (第3の実施形態例)
 続いて、本発明の第3の実施形態例に係る半導体素子冷却構造を、図10を用いて説明する。なお、図2ないし9に示される要素と同一の要素には同一の符号を付し、その説明を省略する。
 図10は、本実施形態例に係る半導体素子冷却構造の斜視図である。図10に示されるように、半導体素子冷却構造52は、ベースブロック45と、ベースブロック45から分離されている放熱フィンブロック46と、を含むヒートシンク47を備える。そして、放熱フィンブロック46は、ヒートパイプ53などの熱移動手段を用いてベースブロック45と連結されている。ここで、ベースブロック45は、第1の実施形態例の受熱部41に相当し、放熱フィンブロック46とヒートパイプ53が第1の実施形態例の放熱部42に相当する。
 より具体的には、ヒートパイプ53の一端が半田やロウなどを用いてベースブロック45に接合されている。また、ヒートパイプ53の他端が半田やロウなどを用いて放熱フィンブロック46に接合されている。ベースブロック45の熱はヒートパイプ53を通って放熱フィンブロック46へ移動するため、ベースブロック45が冷却され、発光素子2が冷却される。
 冷却ファン43を用いて放熱フィンブロック46を冷却してもよい。
 本実施形態例は、発光素子2の近傍に放熱フィンブロック46や冷却ファン43を配置するための空間を確保できない場合に有利である。発光素子2の熱は、ベースブロック45およびヒートパイプ53を介して放熱フィンブロック46へ移動するため、発光素子2がより効率的に冷却される。
 以上のように、本実施形態例によれば、発光素子2をより効率的に冷却することが可能になる。本実施形態に係る半導体素子冷却構造22を用いることによって、照度が高く、かつ経時的な照度維持率の高い、投写型表示装置を提供することが可能である。
 以上、実施例を参照して本願発明を説明したが、本願発明は上記実施例に限定されるものではない。本願発明の形や細部には、本願発明の技術思想の範囲内で当業者が理解し得る様々な変更をすることができる。
 2   半導体素子
20   端子
21   基板
22   半導体素子冷却構造
23a  接触面
24   通し穴
26   空間部
41   受熱部
41a  素子接触部
41b  熱拡散部
42   放熱部
 
 

 

Claims (10)

  1.  半導体素子を冷却する半導体素子冷却構造であって、
     前記半導体素子冷却構造は、前記半導体素子が発する熱を受ける受熱部と、
     前記受熱部の熱を放熱する放熱部と、を有し、
     前記受熱部は、前記半導体素子がその一の面で取り付けられる接触面を有する素子接触部と、前記素子接触部および前記放熱部と接する熱拡散部と、を具備しており、
     前記素子接触部は空間部を有し、
     前記接触面には、前記空間部と連通し前記半導体素子の端子が挿入される通し穴が設けられており、
     前記空間部は、前記半導体素子の前記端子が接続される基板を収容していることを特徴とする半導体素子冷却構造。
  2.  請求項1記載の半導体素子冷却構造において、
     前記素子接触部と前記熱拡散部とが一体的に形成されている、半導体素子冷却構造。
  3.  請求項1又は請求項2記載の半導体素子冷却構造において、
     前記空間部から前記放熱部へ向かう方向に関する前記熱拡散部の厚さが3mmから8mmである、半導体素子冷却構造。
  4.  請求項2記載の半導体素子冷却構造において、
     前記受熱部と前記放熱部とが一体的に形成されている、半導体素子冷却構造。
  5.  請求項2記載の半導体素子冷却構造において、
     前記受熱部と前記放熱部は、熱伝導物質を介して接している、半導体素子冷却構造。
  6.  請求項1ないし5のいずれか1項に記載の半導体素子冷却構造において、
     前記基板は、前記端子が挿入されるソケットを備える、半導体素子冷却構造。
  7.  請求項1ないし6のいずれか1項に記載の半導体素子冷却構造において、
     前記放熱部は複数のフィンを有している、半導体素子冷却構造。
  8.  請求項1ないし7のいずれか1項に記載の半導体素子冷却構造において、
     前記半導体素子が発光素子である、半導体素子冷却構造。
  9.  請求項1ないし8のいずれか1項に記載の半導体素子冷却構造を備えた電子機器。
  10.  前記電子機器は投写型表示装置である請求項9記載の電子機器。
     

     
PCT/JP2012/084097 2012-12-28 2012-12-28 半導体素子冷却構造、および該構造を備えた電子機器 WO2014103019A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/758,173 US9829775B2 (en) 2012-12-28 2012-12-28 Semiconductor element cooling structure and electronic apparatus provided with same
CN201290001387.7U CN204885821U (zh) 2012-12-28 2012-12-28 半导体元件冷却结构以及具有其的电子设备
PCT/JP2012/084097 WO2014103019A1 (ja) 2012-12-28 2012-12-28 半導体素子冷却構造、および該構造を備えた電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/084097 WO2014103019A1 (ja) 2012-12-28 2012-12-28 半導体素子冷却構造、および該構造を備えた電子機器

Publications (1)

Publication Number Publication Date
WO2014103019A1 true WO2014103019A1 (ja) 2014-07-03

Family

ID=51020169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/084097 WO2014103019A1 (ja) 2012-12-28 2012-12-28 半導体素子冷却構造、および該構造を備えた電子機器

Country Status (3)

Country Link
US (1) US9829775B2 (ja)
CN (1) CN204885821U (ja)
WO (1) WO2014103019A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105388689A (zh) * 2014-08-29 2016-03-09 日亚化学工业株式会社 光源装置和具有该光源装置的投影仪
JP2017103370A (ja) * 2015-12-02 2017-06-08 三菱電機株式会社 ベース部材および光源装置
JP2018180077A (ja) * 2017-04-05 2018-11-15 キヤノン株式会社 光源装置およびこれを用いた表示装置
CN114026494A (zh) * 2019-07-26 2022-02-08 松下知识产权经营株式会社 荧光体轮

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016167110A1 (ja) * 2015-04-14 2016-10-20 ソニー株式会社 照明装置および投影型表示装置
US9961806B2 (en) * 2016-05-19 2018-05-01 Power Distribution Systems Development LLC Systems and methods for transformer cooling by vertical airflow
JP6484588B2 (ja) * 2016-05-19 2019-03-13 日亜化学工業株式会社 発光装置及び発光装置用パッケージ
JP2019075460A (ja) * 2017-10-16 2019-05-16 シャープ株式会社 半導体発光素子および半導体発光装置
JP2019128465A (ja) * 2018-01-25 2019-08-01 セイコーエプソン株式会社 光源装置およびプロジェクター
US11252307B2 (en) * 2018-09-05 2022-02-15 Canon Kabushiki Kaisha Imaging device and imaging system
CN208752384U (zh) * 2018-09-25 2019-04-16 中强光电股份有限公司 投影机及其激光模块
US11570411B2 (en) * 2019-01-10 2023-01-31 Hisense Laser Display Co., Ltd. Laser light source and laser projection device
US11592145B2 (en) 2019-01-10 2023-02-28 Hisense Laser Display Co., Ltd. Laser light source and laser projection device
US10649170B1 (en) * 2019-02-26 2020-05-12 Coretronic Corporation Light source assembly and projection apparatus
CN109884852A (zh) * 2019-03-29 2019-06-14 苏州佳世达光电有限公司 光源模块以及投影装置
CN112213906B (zh) * 2020-09-30 2022-02-01 青岛海信激光显示股份有限公司 一种投影设备及投影系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6161493A (ja) * 1984-09-03 1986-03-29 松下電器産業株式会社 レ−ザダイオ−ドモジユ−ルの保持装置
JPH05167143A (ja) * 1991-12-19 1993-07-02 Nippon Steel Corp 半導体レーザ装置
JP2008177448A (ja) * 2007-01-22 2008-07-31 Matsushita Electric Ind Co Ltd 半導体レーザの冷却装置及び冷却方法
JP2010249521A (ja) * 2009-04-10 2010-11-04 Mitsubishi Electric Corp 発光デバイスの検査治具
JP2011096790A (ja) * 2009-10-28 2011-05-12 Mitsubishi Electric Corp 光源装置
JP2012009760A (ja) * 2010-06-28 2012-01-12 Casio Comput Co Ltd 光源装置及びプロジェクタ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1503989A (zh) * 2001-04-23 2004-06-09 �Ѻ͵繤��ʽ���� 散热器
JP5316911B2 (ja) * 2011-06-24 2013-10-16 カシオ計算機株式会社 光源装置及びプロジェクタ
JP2013012605A (ja) * 2011-06-29 2013-01-17 Sharp Corp 集光型太陽光発電装置、および集光型太陽光発電装置の製造方法
JP5910850B2 (ja) * 2011-09-07 2016-04-27 カシオ計算機株式会社 光源装置、プロジェクタ、及び、光源装置の製造方法
JP5950147B2 (ja) * 2011-09-20 2016-07-13 カシオ計算機株式会社 光源装置、プロジェクタ、及び光源装置の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6161493A (ja) * 1984-09-03 1986-03-29 松下電器産業株式会社 レ−ザダイオ−ドモジユ−ルの保持装置
JPH05167143A (ja) * 1991-12-19 1993-07-02 Nippon Steel Corp 半導体レーザ装置
JP2008177448A (ja) * 2007-01-22 2008-07-31 Matsushita Electric Ind Co Ltd 半導体レーザの冷却装置及び冷却方法
JP2010249521A (ja) * 2009-04-10 2010-11-04 Mitsubishi Electric Corp 発光デバイスの検査治具
JP2011096790A (ja) * 2009-10-28 2011-05-12 Mitsubishi Electric Corp 光源装置
JP2012009760A (ja) * 2010-06-28 2012-01-12 Casio Comput Co Ltd 光源装置及びプロジェクタ

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105388689A (zh) * 2014-08-29 2016-03-09 日亚化学工业株式会社 光源装置和具有该光源装置的投影仪
JP2016051072A (ja) * 2014-08-29 2016-04-11 日亜化学工業株式会社 光源装置及び該光源装置を備えたプロジェクタ
JP2017103370A (ja) * 2015-12-02 2017-06-08 三菱電機株式会社 ベース部材および光源装置
JP2018180077A (ja) * 2017-04-05 2018-11-15 キヤノン株式会社 光源装置およびこれを用いた表示装置
CN114026494A (zh) * 2019-07-26 2022-02-08 松下知识产权经营株式会社 荧光体轮
CN114026494B (zh) * 2019-07-26 2023-08-11 松下知识产权经营株式会社 荧光体轮

Also Published As

Publication number Publication date
US9829775B2 (en) 2017-11-28
US20150355533A1 (en) 2015-12-10
CN204885821U (zh) 2015-12-16

Similar Documents

Publication Publication Date Title
WO2014103019A1 (ja) 半導体素子冷却構造、および該構造を備えた電子機器
US7815316B2 (en) Projector having digital micromirror device with thermoelectric cooling chip attached thereto
JP5511420B2 (ja) レーザ光源装置及びプロジェクタ装置
US8950917B2 (en) Vehicular lamp
US9076952B2 (en) Semiconductor light-emitting device
US20100053567A1 (en) Projector having led light sources and heat dissipation device assembly therein
JP5794225B2 (ja) 発光装置の冷却システム、およびそれを用いた発光装置
US20060250270A1 (en) System and method for mounting a light emitting diode to a printed circuit board
JP2007201285A (ja) 光源装置
CN109556074B (zh) 灯具单元以及车辆用灯具
WO2014020870A1 (ja) 液晶表示装置
TWI325939B (ja)
JP2015220034A (ja) Ledモジュール及びこれを備えた車両用灯具
TW201425811A (zh) 具有空氣通道之固態照明燈
JP4329735B2 (ja) Ledランプユニット
US10400982B2 (en) Light source module and lamp using the same
JP6074742B2 (ja) 光源ユニット及びこれを用いた車両用前照灯
JP2006331858A (ja) 照明装置
JP5235105B2 (ja) 発光装置
JP6187023B2 (ja) 光源装置及びプロジェクター
JP2015087508A (ja) 投写型表示装置
JP2012074148A (ja) 発光装置及びそれを備えた照明器具
KR101785654B1 (ko) Led 조명기구 및 그 제조방법
KR20100004486U (ko) 엘이디 조명 모듈
KR20140122474A (ko) 엘이디조명 조립체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12890688

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14758173

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12890688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP