WO2019107510A1 - 次亜塩素酸を含む抗微生物剤 - Google Patents
次亜塩素酸を含む抗微生物剤 Download PDFInfo
- Publication number
- WO2019107510A1 WO2019107510A1 PCT/JP2018/044071 JP2018044071W WO2019107510A1 WO 2019107510 A1 WO2019107510 A1 WO 2019107510A1 JP 2018044071 W JP2018044071 W JP 2018044071W WO 2019107510 A1 WO2019107510 A1 WO 2019107510A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bacteria
- antimicrobial agent
- aqueous solution
- virus
- agent according
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2/00—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
- A61L2/16—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
- A61L2/18—Liquid substances or solutions comprising solids or dissolved gases
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23B—PRESERVATION OF FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES; CHEMICAL RIPENING OF FRUIT OR VEGETABLES
- A23B2/00—Preservation of foods or foodstuffs, in general
- A23B2/70—Preservation of foods or foodstuffs, in general by treatment with chemicals
- A23B2/725—Preservation of foods or foodstuffs, in general by treatment with chemicals in the form of liquids or solids
- A23B2/788—Inorganic compounds
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N59/00—Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K33/00—Medicinal preparations containing inorganic active ingredients
- A61K33/20—Elemental chlorine; Inorganic compounds releasing chlorine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/02—Local antiseptics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/10—Antimycotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2101/00—Chemical composition of materials used in disinfecting, sterilising or deodorising
- A61L2101/02—Inorganic materials
- A61L2101/06—Inorganic materials containing halogen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2202/00—Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
- A61L2202/20—Targets to be treated
- A61L2202/24—Medical instruments, e.g. endoscopes, catheters, sharps
Definitions
- the present invention relates to an anti-microbial agent comprising an aqueous solution of hypochlorous acid having excellent bactericidal effect and safety as an active ingredient.
- Hypochlorous acid has conventionally been used in the form of hypochlorite for disinfecting hands, disinfecting tap water, disinfecting food, etc.
- sodium hypochlorite NaClO
- NaClO sodium hypochlorite
- the effective chlorine concentration contained in such commercial products is generally around 5%, 6%, 10% and 12%.
- Sodium hypochlorite is a sodium salt of hypochlorous acid, and when it is made into an aqueous solution, it has an oxidizing action, a bleaching action and a bactericidal action.
- a simple aqueous solution of sodium hypochlorite (containing neither water nor sodium hypochlorite) is relatively stable in the alkaline region, but undergoes a very rapid decomposition reaction in the acidic region, resulting in chlorine gas It is dangerous because it occurs. Specifically, decomposition reaction occurs at pH 7 or less, and chlorine gas is rapidly generated at pH 5 or less. For this reason, it is strongly alkaline at pH 12 or higher at the time of production. In order to prevent such danger, an apparatus for preventing the generation of chlorine gas has been developed (see Patent Document 1 and Patent Document 2).
- Glutaral and phthalal are difficult to degrade, but the time required for sterilization is long: 6 hours for glutaral and 96 hours for phthalal.
- glutaral has a problem that the pungent smell is strong.
- phthalal binds strongly to proteins, it is known that it is difficult to rinse when dirt remains.
- an antimicrobial agent exerts an effect not only on bacteria but also on viruses or fungi (molds), and a plurality of antibacterial, antiviral and antifungal effects are required. There has been a strong social need for effective antimicrobial agents.
- the present invention is an antimicrobial agent which comprises hypochlorous acid aqueous solution which is stable even in the neutral region and which has been completed under the above conditions and which has excellent bactericidal effect and safety.
- infectious agent agents having a plurality of effects such as bactericidal, antiviral and antifungal effects may be collectively referred to as “antimicrobial agents”, and the antimicrobial agents may be referred to as “disinfectants”. .
- One embodiment of the present invention is a hypochlorous acid aqueous solution having a residual chlorine concentration of 50 to 260 ppm in an antimicrobial agent, a pH of 3.0 to 6.7, and a killing time of the microorganism of 1 minute or less. It is an antimicrobial agent.
- the residual chlorine concentration in the antimicrobial agent is preferably 100 ppm to 210 ppm, or more preferably 150 to 260 ppm, and the pH value is preferably 3.0 to 6.5, depending on the type of microorganism to be killed.
- the aqueous solution of hypochlorous acid is preferably one containing sodium hypochlorite for food additives, purified water according to the Japanese Pharmacopoeia, and dilute hydrochloric acid according to the Japanese Pharmacopoeia. It is preferable to suppress the growth of any microorganism selected from the group consisting of yeast, fungi and viruses.
- the bacteria is preferably any bacteria selected from the group consisting of Staphylococcus aureus, Serratia liquefaciensei, Bacillus subtilis and Listeria monocytogenes, and the yeast belongs to the genus Rhodorrhula. It is preferable that it is any bacteria which are
- the fungus is selected from the group consisting of cladosporium cladosporoides, penicillium roqueforti, penicillium grubram, Aspergillus niger, eurotium amosterodami, neosultriya fischerii, emery Serratia nidulans, fusarium, and alternatearia. It is preferable to be some fungi.
- the antimicrobial agent of the present invention also has an antiviral effect, and the virus is preferably norovirus.
- Another embodiment of the present invention is characterized by immersing any microorganism selected from the group consisting of the bacteria, the yeast, the fungus, and the virus for 10 seconds to 10 minutes in the above-mentioned antimicrobial agent. Method of killing microorganisms.
- Yet another embodiment of the present invention is an aqueous solution of hypochlorous acid having a residual chlorine concentration of 150 to 260 ppm in an aqueous solution and a hydrogen ion index of pH 3.0 to 6.5, wherein the killing time of the microorganism is 10 seconds
- the antimicrobial agent which is the following.
- the anti-microbial agent is for suppressing the growth of any microorganism selected from the group consisting of bacteria and viruses.
- the bacterium is preferably any bacterium selected from the group consisting of Clostridium butyricum and Clostridium sporogenesis, and the virus is any one selected from the group consisting of canine parvo virus, feline parvo virus, and measles virus Is preferred.
- Yet another aspect of the present invention is characterized by immersing any microorganism selected from the group consisting of the bacteria, the yeast, the fungus, and the virus for 10 seconds to 60 seconds in an antimicrobial agent. Method of killing microorganisms.
- the aqueous solution of hypochlorous acid of the present invention According to the aqueous solution of hypochlorous acid of the present invention, the aqueous solution of hypochlorous acid having excellent bactericidal effect and safety, which is also useful as a medical drug, can be obtained.
- FIG. 1 is a graph summarizing the difference in generation of chlorine in each pH range of the sodium hypochlorite aqueous solution and the hypochlorous acid aqueous solution of the present invention.
- FIG. 2 is a graph showing the bactericidal effect against Clostridium butyricum NBRC 13949.
- FIG. 3 is a graph showing the bactericidal effect on Clostridium sprogenes IFO 13950.
- FIG. 4 is a graph showing an antiviral effect against feline parvovirus (Feline panleukemia virus) ATCC VR-648.
- FIG. 5 is a graph showing the antiviral effect on Measles virus ATCC VR-24.
- FIG. 6 is a graph showing the antiviral effect on feline calicivirus, mouse norovirus and coxsackie virus shown in Table 17.
- FIG. 7 is a graph showing the antiviral effect on influenza virus shown in Table 17.
- FIG. 8 is a graph showing the antiviral effect on herpes simplex virus shown in Table 17.
- FIG. 9 is a graph showing the antiviral effect on adenoviruses shown in Table 17.
- hypochlorous acid aqueous solution according to an embodiment of the present invention will be described.
- hypochlorous acid aqueous solution is an aqueous solution produced by dissolving sodium hypochlorite in purified water to form an aqueous solution, and adjusting the pH with dilute hydrochloric acid.
- sodium hypochlorite and dilute hydrochloric acid are approved as food additives, and purified water is also described in the Japanese Pharmacopoeia, the antimicrobial agent of the present invention is extremely safe.
- the antimicrobial agent of the present invention dissolves sodium hypochlorite in purified water so as to be 0.018 to 0.026 W / V%, preferably 0.026 W / V%.
- Dilute hydrochloric acid (about 9.5 to 10.5 W / V%) is added to the obtained aqueous solution of sodium hypochlorite and stirred well, and the resulting solution is adjusted to pH 6.0 to 6.5.
- hypochlorous acid aqueous solution is referred to as "hypochlorous acid aqueous solution”.
- the effective concentration of chlorine in the aqueous solution of hypochlorous acid is about 50 ppm to about 260 ppm, preferably about 200 ppm to about 210 ppm, depending on the type of microorganism to be killed.
- the effective chlorine concentration is prepared by mixing an aqueous solution of sodium hypochlorite (effective chlorine 12%) and an aqueous solution of dilute hydrochloric acid (concentration: about 10%) in approximately equal volumes to prepare a mixture, for example, 99.9% purified water, It can be adjusted by mixing the remaining 0.1% as the above mixture.
- aqueous solution of hypochlorous acid having an effective chlorine concentration adjusted to about 200 to about 780 ppm tap water equivalent to the aqueous solution of hypochlorous acid is added, or three times the aqueous solution of hypochlorous acid Add a quantity of tap water. In this way, it can be diluted to be 1/2 or 1/4 of the available chlorine concentration of the stock solution, and these can be used as an antimicrobial agent.
- the available chlorine concentration can be adjusted to about 150 ppm to about 260 ppm, and the pH of this aqueous solution of hypochlorous acid can be adjusted to be in the range of 3.0 to 6.5 and used as an antimicrobial agent.
- hypochlorous acid aqueous solution is manually produced by mixing the respective materials serving as the raw materials, but using a commercially available apparatus for producing the hypochlorous acid aqueous solution, An aqueous solution of hypochlorous acid can also be obtained (see Patent Document 1 and Patent Document 2).
- the aqueous solution of hypochlorous acid of the present invention is a common aqueous solution of sodium hypochlorite, and the chlorine gas generated when the pH becomes 7 or less. The occurrence can be suppressed (see FIG. 1).
- hypochlorous acid aqueous solution and its production example Sodium hypochlorite was weighed to 0.026% (W / V), mixed with purified water and diluted.
- the aqueous solution of sodium hypochlorite prepared by this dilution was adjusted to pH 6.0 to 6.5 by adding dilute hydrochloric acid (about 9.5 to 10.5% (W / V)).
- the residual chlorine concentration in this solution was 220 ppm.
- purified water having the following properties was used.
- Conductivity test Stir an appropriate amount of purified water into a beaker. The liquid temperature is adjusted to 25 ⁇ 1 ° C., and conductivity is measured at regular intervals while stirring vigorously. The conductivity when the change in conductivity per 5 minutes was 0.1 ⁇ S / cm or less was defined as the conductivity (25 ° C.) of purified water.
- test sample The residual chlorine concentration of the aqueous solution of hypochlorous acid was adjusted to 200 ppm to obtain a test sample.
- the following samples were prepared using the above-mentioned test sample and used for measurement of antiviral effect.
- Negative control 500 ⁇ L of norovirus suspension
- Positive control (5-fold dilution: 100 ⁇ L of norovirus suspension + 400 ⁇ L of purified water)
- Sample 100 ⁇ L of norovirus suspension + 400 ⁇ L of test sample
- RNA nucleic acid
- RNAse was obtained by treating impurities with DNase.
- the obtained RNA was amplified at room temperature using a PCR kit (Revertra-Plus, manufactured by Toyobo Co., Ltd.) to obtain a final product. 20 ⁇ g of the obtained final product was subjected to 2.5% agarose gel electrophoresis (100 V, 50 minutes) to confirm whether norovirus DNA was amplified or not.
- Table 3 The results are shown in Table 3 below.
- Test sample The hypochlorous acid aqueous solution prepared in Example 1 was used. The residual chlorine concentration of the stock solution was 200 ppm. This stock solution was used in 2-fold serial dilution diluted to 100 ppm, 50 ppm, 25 ppm, 12.5 ppm, and 6.3 ppm.
- Test method 1 Test bacteria Seven kinds of bacteria shown in the following Table 4 were used. A stock solution with a residual chlorine concentration of 200 ppm is serially diluted 2-fold with sterile distilled water to prepare dilutions of 100 ppm, 50 ppm, 25 ppm, 12.5 ppm, 6.3 ppm, and 20 mL test tubes was used in aliquots of 5 mL. The residual chlorine concentration in the sample was measured with a Handy water quality meter AQ-101 (manufactured by Shibata Scientific Co., Ltd.).
- test bacteria were subjected to static culture at 35 ° C. for 20 to 24 hours, using Tryptic Soy Broth (hereinafter sometimes abbreviated as “TSB”) as a culture medium. (Pre-culture), subjected to the test.
- TTB Tryptic Soy Broth
- the number of test bacteria cultured was 1 ⁇ 10 7 to 1 ⁇ 10 8 .
- Test method 0.1 mL each of a solution containing each of the bacteria shown in Table 4 (hereinafter sometimes referred to as "bacteria solution”) was inoculated into a sample of each concentration and mixed to obtain a sample. After inoculation, when a predetermined time (0.5 minutes, 1 minute, 2 minutes, 5 minutes, and 10 minutes) has passed, 0.1 mL of each sample is withdrawn, and each is inoculated and diluted in 2 mL of TSB and diluted. The solution was prepared. Furthermore, 0.1 mL was taken out from TSB inoculated with each of the above-mentioned bacteria, and smeared on a plate agar medium containing SA medium. The agar medium to which each of the bacteria was smeared was cultured at 35 ° C. for 24 hours, and colonies appearing on the plate were counted.
- a predetermined time 0.5 minutes, 1 minute, 2 minutes, 5 minutes, and 10 minutes
- Bacillus subtilis forms only one spore among seven test bacteria. It was considered that spore formation was the reason why B. subtilis did not die unless the concentration of residual chlorine was as high as 100 ppm. Spores are generally said to be resistant to heat, disinfectants, ultraviolet light or dryness, but have also been shown to be resistant to aqueous hypochlorous acid solutions.
- Test sample A stock solution with a residual chlorine concentration of 200 to 210 ppm is diluted 2 and 4 times with sterile distilled water to obtain a diluted solution with a residual chlorine concentration of 100 to 103 ppm (hereinafter referred to as “X2 dilution liquid”) ) And residual chlorine concentration of 50 to 52 ppm (hereinafter referred to as “X4 dilution”) were prepared, and each 10 mL aliquots were dispensed into 15 mL test tubes for testing. .
- the residual chlorine concentration in the sample was measured with a Handy water quality meter AQ-101 (manufactured by Shibata Scientific Co., Ltd.). Further, the measurement time was set to 30 seconds, 60 seconds, 5 minutes, and 10 minutes, and the measurement time was extended to 30 minutes only with the X4 dilution solution.
- Test bacteria Using four types of bacteria, two types of yeasts, and eight types of fungi (filamentous fungi) shown in Table 7 below, plate agar or liquid medium described later is used. The test was done.
- the above-mentioned bacteria, yeast and fungi may be collectively referred to as "test bacteria”.
- test bacteria shown in the following Table 7 were precultured under the following conditions and used for the test.
- Bacteria pre-culture was performed at 37 ° C. for 24 hours using SA medium.
- Yeast preculture was performed at 25 ° C. for 48 hours using potato dextrose (PDA) medium.
- PDA potato dextrose
- the preculture of the fungus (filamentous fungus) was carried out at 25 ° C. for 7 to 10 days using PDA medium.
- bacteria or yeast should be adjusted to 1 ⁇ 10 5 to 1 ⁇ 10 6 CFU / mL using sterile saline. Prepared. In addition, filamentous fungi (fungi) were prepared to be 1 ⁇ 10 5 to 1 ⁇ 10 6 CFU / mL using physiological saline containing 0.05% Tween 80.
- test method The effect of hypochlorous acid aqueous solution on test bacteria shown in the following Table 7 was examined by a method using a plate agar or a liquid medium.
- (2-4-1) Test using plate agar medium Inoculate 0.1 mL each of the bacterial solution prepared as described above to each sample (10 mL) placed in a test tube volume of 15 mL, and then at room temperature It stood still and was made to contact. When a predetermined time (30 seconds, 60 seconds, 5 minutes, 10 minutes, X4 dilution only 30 minutes) has elapsed, 0.1 mL each is aseptically drawn from the test sample, and the dilution step series is performed with sterile saline. It was prepared and used as a growth confirmation sample.
- the growth confirmation sample was smeared on SA medium in the case of bacteria and on PDA medium in the case of yeast and fungi.
- the plate agar medium to which each sample was smeared was cultured at 35 ° C. for 2 days for bacteria, 2 days at 25 ° C. for yeast, and 7 days at 25 ° C. for fungi.
- test piece was inoculated with the number of initial bacteria shown in Tables 7 to 12 below.
- the test sample 1 mL each was aseptically withdrawn, further diluted, and inoculated into each of the above-mentioned media.
- the ACD medium inoculated with bacteria was cultured at 35 ° C. for 2 days
- the GP medium inoculated with yeast was cultured at 25 ° C. for 2 days
- the GP medium inoculated with fungi was cultured at 25 ° C. for 7 days.
- Test Results Tables 7 to 9 show the number of bacteria at each treatment time in the case of the test using plate agar. Further, the number of bacteria at each treatment time when the liquid medium is used is shown in Tables 10-12. In the table, + indicates that the growth of the fungus was observed (a colony was formed), and-indicates that the fungus was killed (a colony formation was not observed).
- the strain described as Escherichia coli or E. coli is Escherichia coli KEC-B-001
- the strain described as Staphylococcus aureus or S. aureus is Staphylococcus aureus KEC-B-002.
- the strain described as Serratia sp. Represents Serratia sp. THMC 56
- the strain described as Bacillus subtilus or B. subtilus represents Bacillus subtilus KEC-B-007, respectively.
- the strain described as Candida albicans or C. albicans represents Candida albicans HRC 032, and the strain described as Rhodotorula sp. Represents Rhodotorula sp. HRC 042, respectively.
- the strain described as Cladosporium cladosporioides or C. cladosporioides is described as Cladosporium cladosporioides HRC 219, and the strain described as Altrnaria alternate or A. alternate is described as Altrnaria alternate HRC 237 as Penicillium glabrum or P. glabrum Strains described as Penicillium glabrum HRC 659, strains described as Aspergillus niger or A.
- niger as Aspergillus niger HRC 258, strains described as Chaetomium sp. As Chaetomium sp. HRC 280, as Fusarium sp. The strain described is Fusarium sp. HRC 289, the strain described as Emericella nidulans or E. nidulans represents Emericella nidulans HRC 210, and the strain described as Neosartorya sp. Represents Neosartorya sp. HRC 259, respectively.
- the killing time of 4 bacteria and 2 yeasts was 0.5 minutes or less.
- the killing time of the fungus was less than 0.5 minutes except for Chaetomium.
- the following shows the effects of sterilization and the like on each microorganism when a liquid culture medium is used. Even when a liquid medium was used, 0.1 mL was withdrawn from each sample at each treatment time, and smeared on the same agar medium as described above, and the number of viable cells was determined from the colony formation number.
- hypochlorous acid aqueous solution of the present invention is extremely safe because it is approved as a pharmaceutical product because only purified water is added to the weakly acidic hypochlorous acid aqueous solution as described above. It is also cheaper than pharmaceutical formulations and can be used to improve hygiene in different areas.
- Test method 1 Test bacteria The following test bacteria were used to confirm the bactericidal effect of hypochlorous acid aqueous solution. Escherichia coli (E. coli) Salmonella Enteritidis (Salmonella) Candida sp. (Candida) Pseudomonas aeruginosa (Pseudomonas aeruginosa)
- hypochlorous acid aqueous solution was diluted to have an effective chlorine concentration of 200, 20, 5, 2, 1 and 0.5 ppm, respectively, and used as a test sample. These samples were each dispensed in 5 mL aliquots into 20 mL test tubes. In addition, sterile pure water containing no aqueous solution of hypochlorous acid was used as a control.
- test bacteria were subjected to static culture at 35 ° C. for 20 to 24 hours in TSB (Tryptic Soy Broth), and were subjected to the test.
- concentration of the test solution was prepared by diluting the culture solution with sterile pure water.
- the number of bacteria was 1.2 ⁇ 10 6 / mL for E. coli and 1.7 ⁇ 10 6 / mL for salmonella.
- test bacteria were cultured at 25 ° C. for 44 to 48 hours in PDA (Potato Dextrose Agar) medium. The cultured cells were suspended in sterile pure water to prepare a cell solution. The number of bacteria was 2.7 ⁇ 10 6 / mL.
- PDA Potato Dextrose Agar
- stationary culture was carried out at 25 ° C. for 44 to 48 hours in TSB, and the culture solution was diluted with sterile pure water to prepare. The number of bacteria was 2.3 ⁇ 10 6 / mL.
- Test method 0.2 mL of bacterial solution was inoculated to each concentration sample and mixed. At 0.5 minutes, 5 minutes, and 10 minutes, 0.2 mL was removed from each sample and suspended in 1.8 mL of sterile pure water containing 1 mg / mL sodium thiosulfate. This suspension and a solution diluted 10-fold with sterile pure water containing 1 mg / mL sodium thiosulfate are further added to SA agar medium in the case of bacteria and PDA agar medium in the case of yeast. I smeared each mL. As a control, sterile pure water was used in place of sodium thiosulfate-containing sterile pure water. After culturing the medium, colonies appearing on the plate were counted to determine the number of viable cells.
- Viral strains include feline calicivirus (FCV / F9), mouse norovirus (MNV CW1), coxsackie virus A7 (CA7) and B5 (CB5), influenza virus (A / PR8 and A / USSR / 92/97), herpes simplex virus Types 1 (HSV-HF) and 2 (HSV-UW), adenovirus types 3 (Ad. 3) and 5 (Ad. 5) and 8 (Ad. 8) were used.
- CRFK cells for feline calicivirus As susceptible cells, CRFK cells for feline calicivirus, RAW 264.7 cells for mouse norovirus, Vero cells for coxsackie virus and herpes simplex virus, MDCK cells for influenza virus, A549 cells for adenovirus , Each used.
- the antiviral effect test method was as follows. First, 100 ⁇ L of each stock virus solution was added to and mixed with 900 ⁇ L of the sample solution.
- a 10-fold dilution series was prepared using a medium containing 0.1 N sodium thiosulfate. 10 ⁇ L was drawn from each dilution series, contacted with sensitive cells, and then 100 ⁇ L of a maintenance medium was added, and cultured at 37 ° C. in a 5% CO 2 incubator for 3 to 10 days.
- hypochlorous acid aqueous solution of the present invention exhibited a high antiviral effect against any of the viruses.
- the residual chlorine concentration in the sample was measured with a Handy water quality meter AQ-101 (manufactured by Shibata Scientific Co., Ltd.). Moreover, measurement time was made into 10 seconds, 1 minute, 5 minutes, and 10 minutes.
- test bacteria shown in the following Tables 18 and 19 were precultured under the following conditions and used for the test.
- the preculture of the above bacteria is carried out in 10 mL of CS liquid medium containing 2.0% corn starch, 2.0% amino acid solution and 0.75% calcium carbonate, Clostridium butyricum NBRC13949 (Clostridium butyricum NBRC13949), or Clostridium sporogenes (Clostridium sporogenes IFO 13950)
- the strain was inoculated and anaerobically cultured at 37 ° C. for 24 hours by carbon dioxide gas-exchanged steel wool method to prepare a preculture liquid.
- test bacteria precultured as described above were prepared to be 1 ⁇ 10 7 to 1 ⁇ 10 6 CFU / mL using sterile physiological saline.
- test method The effect of hypochlorous acid aqueous solution on test bacteria shown in the following Tables 17 and 18 was examined by a method using Brain heart infusion plate agar or culture medium. 100 ⁇ L of the test bacterium is added to 900 ⁇ L of the test sample solution prepared as described above and mixed, and after 10 seconds, 1 minute, 5 minutes and 10 minutes, a BHI medium to which 0.1 N sodium thiosulfate is added is added. A 10-fold dilution series was prepared at each time point, and 10 ⁇ L was applied to BHI agar medium, anaerobically cultured at 37 ° C. for 24 hours by carbon dioxide-substituted steel wool method, and the number of bacteria was measured.
- the killing time of the above two types of clostridial is 10 seconds or less, and regardless of the chlorine concentration and pH of the aqueous solution of hypochlorous acid, the clostridial is killed in a very short time. It was shown to have an effect.
- Test sample The following samples were prepared using the hypochlorous acid aqueous solution prepared in the above-mentioned Example 7 (1) as a test material, and were used for determination of the bactericidal effect against the following bacteria.
- Test method 1 Test bacteria Clostridium (Clostridium butyricum NBRC 13949) and Clostridium sporogenes (Clostridium sporogenes IFO 13950) shown in the following Tables 20 and 21 were used.
- test bacteria Culture before test The test bacteria is used as a culture medium in sheep blood agar medium for CDC anaerobic bacteria (Japan BD Co., Ltd., sometimes abbreviated as "blood agar medium” hereinafter) as a culture medium in an anaerobic chamber. Stationary culture was carried out at 37 ° C. for 24 to 48 hours (pre-culture) and subjected to the test. The number of test bacteria was adjusted to 1 ⁇ 10 7 to 1 ⁇ 10 8 CFU / mL.
- Test Results The results of the bactericidal effect test at each treatment time are shown in Tables 20 and 21 divided by bacteria.
- Test strain Parvovirus Feline panleukopenia virus (ATCC (registered trademark) VR-648) belonging to parvoviridae, Canine parvovirus (ATCC VR-2017) and measles virus Measles virus (paramyxoviridae) ATCC VR-24) was used.
- CRFK cells (JCRB9035) as sensitive cells for proliferation of Feline panleukopenia virus
- A-72 cells (ATCC CRL-1542) as sensitive cells for proliferation of Canine parvovirus
- Vero as sensitive cells for proliferation of Measles virus Virus suspensions were prepared using cells (DS Pharma Ltd., Inc. CA Inc.).
- the control solution and sample solution used for measuring the effect of each virus are as shown in Table 22 below.
- hypochlorous acid of the present invention From the aqueous solution of hypochlorous acid of the present invention, no generation of gas was observed, and it was confirmed that chlorine gas was not generated even in a pH range as low as pH 3.0 to 5.5.
- the volume of test material was 1,000 ⁇ L for both control and sample.
- the negative control was phosphate buffer only
- the positive control was 100 ⁇ L of virus suspension + 900 ⁇ L of phosphate buffer
- the sample was 100 ⁇ L of virus suspension + 900 ⁇ L of test sample (hypochlorous acid aqueous solution).
- each virus was diluted 10-fold as described above, and each sensitive cell was inoculated with the same amount to determine the virus infectivity titer.
- the viral infectivity titer is observed under the microscope with morphological changes and cytopathic effects caused by the infection of each sensitive cell with each of the above-mentioned viruses, and the cytopathic effect is observed up to how high the degree of dilution It was decided whether it was done.
- the measurement of the virus infectivity titer was performed in the following procedures. 100 ⁇ L of the virus suspension was added to 900 ⁇ L of the sample and stirred with a vortex mixer for 10 seconds or 60 seconds to prepare a sample (a mixture of the virus suspension and an aqueous solution of hypochlorous acid). This mixture was diluted with the above-described cell maintenance medium to prepare a 10-fold dilution series.
- each plate was cultured for 7-10 days in a 37 ° C. CO 2 incubator.
- the cytopathic effect was observed using a microscope and the TCID 50 was determined by the Behrens-Karber method. The results are shown in Tables 23-25 below.
- hypochlorous acid aqueous solution of the present invention was shown to have virucidal activity against feline parvovirus, canine parvovirus and measles virus in a low pH region.
- the present invention is particularly useful in the fields of medicine and pharmacy, as it is an antimicrobial agent in a wide range of fields such as cleaning of cooking utensils, etc. in addition to sterilization of fingers.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Oncology (AREA)
- Communicable Diseases (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Pest Control & Pesticides (AREA)
- Plant Pathology (AREA)
- Agronomy & Crop Science (AREA)
- Dentistry (AREA)
- Environmental Sciences (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Virology (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
本発明の抗微生物剤は、次亜塩素酸水溶液は、次亜塩素酸ナトリウムを精製水に溶解して水溶液とし、希塩酸でpHを調整することによって生成される水溶液である。ここで、次亜塩素酸ナトリウム及び希塩酸は、いずれも食品添加物として認可されており、精製水も日本薬局方に記載されているから、本発明の抗微生物剤は、極めて安全性が高い。
次亜塩素酸ナトリウムを、0.026 %(W/V)となるように秤量し、精製水と混合して希釈した。この希釈によって調製した次亜塩素酸ナトリウム水溶液を、希塩酸(約9.5~10.5 % (W/V))を加えてpH 6.0~6.5となるように調整した。この溶液中の残留塩素濃度は、220 ppmであった。
以下に次亜塩素酸水溶液の成分分析表を示す。
(1)供試株
糞便由来のノロウイルス(NV遺伝子2群に属するNorovirus)を使用した。このウイルスについては、厚生労働省の推奨するノロウイルスの検出法(PCR法)に従って、定性的に確認した。
次亜塩素酸水溶液の残留塩素濃度が、200 ppmとなるように調整し、被検試料とした。上記被検試料を用いて以下の試料を調整し、抗ウイルス効果の測定に使用した。
(a) 陰性対照(500μLのノロウイルス懸濁液)
(b) 陽性対照(5倍希釈:ノロウイルス懸濁液100μL+精製水400μL)
(c) 試料(100μLのノロウイルス懸濁液+400μLの被検試料)
ノロウイルスの増殖は、PCR法にて確認した。まず、上記3つの測定用試料をボルテックスミキサーにて撹拌し、15分間室温にて静置し、RT-PCR法に従って核酸(RNA)を抽出し、DNaseで不純物を処理してRNAを得た。得られたRNAを、PCRキット(Revertra-Plus、東洋紡(株)製)を用い、室温で増幅させて最終産物を得た。
得られた最終産物20μgを、2.5%アガロースゲル電気泳動(100 V、50分)に供し、ノロウイルスのDNAが増幅されたか否かを確認した。結果を下記表3に示す。
(1)供試試料
実施例1で調製した次亜塩素酸水溶液を使用した。原液の残留塩素濃度は200 ppmであった。この原液を、2倍の段階希釈を行なって、100 ppm、50 ppm、25 ppm、12.5 ppm、及び6.3 ppmに希釈して使用した。
1)供試菌
下記表4に示す7種類の細菌を使用した。残留塩素濃度が200 ppmの原液を、滅菌蒸留水を用いて2倍系列希釈して、100 ppm、50 ppm、25 ppm、12.5 ppm、6.3 ppm の各希釈液を調製し、20 mL容試験管に5 mLずつ分注して使用した。試料中の残留塩素濃度測定は、ハンデイ水質計AQ-101(柴田科学(株)製)で測定した。
供試菌を、トリプチックソイブロス(Tryptic Soy Broth、以下、「TSB」と略すことがある。)を培地として用いて、35℃にて、20~24時間静置培養し(前培養)、試験に供した。培養した供試菌の菌数は、1×107~1×108であった。
各濃度の試料に、上記表4に示す各菌を含む溶液(以下、「菌液」ということがある。)を0.1 mLずつ接種して混合し、試料とした。接種後、所定時間(0.5分、1分、2分、5分、及び10分)を経過したときに、各試料から0.1 mLずつを抜き取り、2 mLのTSBにそれぞれ接種して希釈し、希釈液を調製した。さらに、上記の各菌を接種したTSBから0.1 mLを取り出し、SA培地を含む平板寒天培地に塗抹した。各菌を塗抹した寒天培地を、35℃にて24時間培養し、平板上に出現したコロニーを計測した。
試料の濃度別に、出現コロニー数を処理時間毎に生残菌数を計測し、殺菌効果を判定した。
(3)試験結果
各処理時間における最小殺菌濃度を上記表4に示す。表4に示す各細菌が、上述した残留塩素濃度のうちどの濃度で死滅したかを、下記表5~6に示す。表中、+は菌の生育が見られたもの(コロニーが形成されたもの)、-は菌が死滅したもの(コロニー形成が見られなかったもの)を示す。
特に、次亜塩素酸水溶液は、緑膿菌に対する効果が強く、残留塩素濃度が12.5 ppm以上であれば、0.1分以内の処理でコロニー形成が見られなくなり、菌が死滅したと判定された。また、残留塩素濃度が6.3 ppmの場合でも、10分間の処理でコロニー形成が見られなくなり、菌が死滅したものと判定された。
(1)供試試料
残留塩素濃度が200~210 ppmの原液を、滅菌蒸留水で2倍及び4倍に希釈し、残留塩素濃度が100~103 ppmの希釈液(以下、「X2希釈液」という。)及び残留塩素濃度が50~52 ppmの希釈液(以下、「X4希釈液」という。)を調製し、15 mL容量の試験管に、それぞれ10 mLずつ分注して試験に供した。試料中の残留塩素濃度測定は、ハンデイ水質計AQ-101(柴田科学(株)製)で測定した。また、測定時間を、30秒、60秒、5分、及び10分とし、X4倍希釈液のみ、測定時間を30分まで延長した。
(2-1)供試菌
下記表7に示す4種類の細菌、2種類の酵母、及び8種類の真菌(糸状菌)を使用し、後述する平板寒天又は液体培地を用いた試験を行なった。以下、上記細菌、酵母、及び真菌(糸状菌)を集合的に「供試菌」ということがある。
下記表7に示す供試菌を以下の条件で前培養して試験に供した。細菌の前培養は、SA培地を用いて、37℃にて24時間行った。酵母の前培養は、ポテトデキストロース(PDA)培地を用いて、25℃にて48時間行った。真菌(糸状菌)の前培養は、PDA培地を用いて、25℃にて7~10日間行った。
上記のように前培養した供試菌のうち、細菌又は酵母は滅菌生理食塩水を用いて、1×105~1×106CFU/mLになるように調製した。また、糸状菌(真菌)は、0.05 %のTween 80を含む生理食塩水を用いて1×105~1×106CFU/mLになるように調製した。
次亜塩素酸水溶液の下記表7に示す供試菌に対する効果を平板寒天又培地は液体培地を用いた方法で検討した。
(2-4-1)平板寒天培地を使用した試験
上記のように調製した菌液を、15 mL容量の試験管に入れた各試料(10 mL)に対して0.1 mLずつ接種し、室温にて静置して接触させた。所定時間(30秒、60秒、5分、10分、X4倍希釈のみ30分)が経過したときに、供試試料から0.1 mLずつ、無菌的に抜き取り、滅菌生理食塩水で希釈段階系列を作成して、増殖確認用試料とした。この増殖確認用試料を、細菌の場合には、SA培地に、酵母及び真菌の場合にはPDA培地に、それぞれ塗抹した。各試料を塗抹した平板寒天培地を、細菌の場合には35℃にて2日間、酵母の場合には25℃にて2日間、そして、真菌の場合には25℃にて7日間培養した。
平板寒天を用いた場合と同様に調製した上記の供試菌液を、上述した10 mLの供試試料に0.1 mLずつ接種し、室温にて静置した。その後、所定時間(30秒、60秒)を経過したときに、各供試試料から0.1 mLずつ抜き取った。試験用の細菌は、10 mLの液体培地(ソイビーン・カゼイン・ダイジェスト培地、以下、「SCD液体培地」ということがある。)に、酵母及び真菌はブドウ糖・ペプトン培地(以下、「GP培地」ということがある。)に、下記表7~12に示す初発菌数で接種し、被験試料とした。
平板寒天を用いた試験では、各試料の濃度別に、出現コロニー数を処理時間毎に計数して生残菌数を求め、殺菌効果を判定した。液体培地を用いた試験では、コロニー形成に加えて、目視でも菌の発育を観察して判定した。
平板寒天を用いた試験の場合の各処理時間における細菌数を表7~9に示す。また、液体培地を用いた場合の各処理時間における細菌数を表10~12に示す。表中、+は菌の生育が見られたもの(コロニーが形成されたもの)、-は菌が死滅したもの(コロニー形成が見られなかったもの)を示す。
Cladosporium cladosporioides又はC. cladosporioidesと記載されている株は、Cladosporium cladosporioides HRC 219を、Altrnaria alternate又はA. alternateと記載されている株はAltrnaria alternate HRC 237を、Penicillium glabrum又はP. glabrumと記載されている株はPenicillium glabrum HRC 659を、Aspergillus niger又はA. nigerと記載されている株はAspergillus niger HRC 258を、Chaetomium sp.と記載されている株はChaetomium sp. HRC 280を、Fusarium sp.と記載されている株はFusarium sp. HRC 289を、Emericella nidulans又はE. nidulansと記載されている株はEmericella nidulans HRC 210を、Neosartorya sp.と記載されている株はNeosartorya sp. HRC 259をそれぞれ表す。
以下に、液体培地を用いた場合の各微生物に対する殺菌等の効果を示す。液体培地を用いた場合でも、各処理時間において、各試料から0.1 mLを抜き取り、上記と同じ寒天培地に塗抹してコロニー形成数から生菌数を求めた。
(1)試験方法
1)供試菌
次亜塩素酸水溶液の殺菌効果の確認を以下の供試菌を用いて行った。
Escherichia coli(大腸菌)
Salmonella Enteritidis(サルモネラ)
Candida sp.(カンジダ)
Pseudomonas aeruginosa(緑膿菌)
次亜塩素酸水溶液を、それぞれ有効塩素濃度が、200、20、5、2、1、0.5 ppmとなるように希釈し、試験の試料とした。これらの試料を、それぞれ20 mL容試験管に5 mLずつ分注した。また、次亜塩素酸水溶液を含まない滅菌純水を対照とした。
大腸菌及びサルモネラについては、供試菌をTSB(Tryptic Soy Broth)で35℃、20~24時間静置培養し、試験に供した。供試した菌液濃度は、培養液を滅菌純水で希釈して調製した。菌数は、大腸菌が1.2×106/mL、サルモネラが1.7×106/mLであった。
緑膿菌については、TSBで25℃、44~48時間静置培養し、培養液を滅菌純水で希釈して調製した。菌数は2.3×106/mLであった。
各濃度の試料に菌液を0.2 mL接種し、混合した。0.5分、5分、及び10分経過後のそれぞれにおいて、各試料から0.2 mLを取り出し、1.8 mLの1 mg/mLチオ硫酸ナトリウム含有滅菌純水に懸濁した。この懸濁液と、さらに1 mg/mLのチオ硫酸ナトリウム含有滅菌純水を用いて10倍希釈した液とを、細菌の場合はSA寒天培地に、酵母の場合はPDA寒天培地に、それぞれ0.1 mLずつ塗抹した。対照として、チオ硫酸ナトリウム含有滅菌純水の替わりに滅菌純水を用いた。培地を培養した後、平板上に出現したコロニーを計測し、生菌数を求めた。
試料の濃度別に、各処理時間で出現したコロニー数を計測し、生菌数を求めて殺菌効果を判定した。
以下の表13~表16に示すように、本試験に使用したすべての微生物は、次亜塩素酸水溶液の有効塩素濃度5 ppmにおいて、0.5分間作用させることにより死滅した。
ウイルス株として、ネコカリシウイルス(FCV/F9)、マウスノロウイルス(MNV CW1)、コクサッキーウイルスA7(CA7)及びB5(CB5)、インフルエンザウイルス(A/PR8及びA/USSR/92/97)、単純ヘルペスウイルス1型(HSV-HF)及び2型(HSV-UW)、アデノウイルス3型(Ad.3)及び5型(Ad.5)並びに8型(Ad.8)を使用した。
抗ウイルス効果試験方法は下記の通りとした。まず、サンプル溶液900μLに、各保存ウイルス液100μLを添加して混合した。
(1)供試試料
残留塩素濃度が150~260 ppmの原液を、希塩酸でpH 3.0~6.5となるように調整し、供試試料とした。試料中の残留塩素濃度測定は、ハンデイ水質計AQ-101(柴田科学(株)製)で測定した。また、測定時間を、10秒、1分、5分、及び10分とした。
(2-1)供試菌
下記表18及び19に示す2種類の細菌を使用し、後述する平板寒天又は液体培地を用いた試験を行なった。
下記表18及び19に示す供試菌を以下の条件で前培養して試験に供した。上記細菌の前培養は、コーンスターチ2.0%、アミノ酸液2.0%及び炭酸カルシウム0.75%を含む、10mLのCS液体培地に、クロストリジウム・ブチリカム・NBRC13949(Clostridium butyricum NBRC13949)、又はクロストリジウム・スポロゲネシス(Clostridium sporogenes IFO13950) 株を接種し、37℃で24時間、炭酸ガス置換スチールウール法により嫌気培養し、前培養液を調製した。
上記のように前培養した供試菌を、滅菌生理食塩水を用いて、1×107~1×106CFU/mLになるように調製した。
次亜塩素酸水溶液の下記表17及び18に示す供試菌に対する効果を、ブレインハートインフュージョン平板寒天又培地を用いた方法で検討した。
上記のように調製した供試試料溶液900μLに供試菌100μLを加えてj混合し、10秒後、1分後、5分後、10分後に、0.1 N チオ硫酸ナトリウムを添加したBHI培地を用いて、各時点の10倍希釈系列を作成し、10μLをBHI寒天培地に塗布して、37℃で24時間、炭酸ガス置換スチールウール法により嫌気培養し、菌数を測定した。
各試料の濃度別に、出現コロニー数を処理時間毎に計数して生残菌数を求め、殺菌効果を判定した。結果を表18及び19に示す。
(1)供試試料
上記実施例7(1)で調製した次亜塩素酸水溶液を被検資料として使用して以下の試料を調製し、下記の細菌に対する殺菌効果の判定に使用した。
1)供試菌
下記表20及び21に示すクロストリジウム(クロストリジウム・ブチリカム (Clostridium butyricum NBRC13949)及びクロストリジウム・スポロゲネス(Clostridium sporogenes IFO 13950))を使用した。
供試菌を、CDC嫌気性菌用羊血液寒天培地(日本BD(株)、以下「血液寒天培地」と略すことがある。)を培地として用いて、嫌気チャンバー内にて37℃にて、24~48時間静置培養し(前培養)、試験に供した。供試菌数は、1×107~1×108CFU/mLに調整した。
各濃度の試料0.9 mLに、上記の各細菌を含む溶液(以下、「菌液」ということがある。)を0.1 mLずつ接種して混合し、試料溶液とした。上記細菌の接種後、所定時間(10秒、1分、5分、及び10分)を経過したときに、各試料から20μLを抜き取り、細菌の維持培地180μLに接種して10倍希釈系列を作成した。
各細菌の10倍希釈系列より、それぞれ10μLを抜き取って血液寒天培地にコンラージ棒にて塗抹した。各試料を塗抹した血液寒天培地を、37℃にて24時間嫌気チャンバー内にて培養し、平板上に出現したコロニーを計数した。
各処理時間における殺菌効果試験の結果を、細菌ごとに分けて表20及び表21に示す。
(1)供試株
パルボウイルス科に属するパルボウイルスであるFeline panleukopenia virus (ATCC(登録商標) VR-648)、Canine parvovirus (ATCC VR-2017)と、パラミクソウイルス科に属する麻疹ウイルスMeasles virus(ATCC VR-24)を使用した。
Feline panleukopenia virusの増殖には、感受性細胞としてCRFK細胞(JCRB9035)を、Canine parvovirusの増殖には、感受性細胞としてA-72細胞(ATCC CRL-1542)を、Measles virusの増殖には感受性細胞としてVero細胞(DSファーマ(株)、現(株)ケー・エー・シー)を用い、ウイルス懸濁液をそれぞれ作成した。各ウイルスの効果測定に使用した対照溶液及び試料溶液は下記表22に示す通りである。
上記表22に示す次亜塩素酸水溶液の有効塩素濃度を、150 ppm、200 ppm、及び260 ppm、pHを3.0、4.5、5.5、6.5になるようにそれぞれ調製し、被検試料とした(下記表4~6参照)。有効塩素濃度は、高濃度有効塩素計RC-2Z(笠原理化工業株式会社製)を用いて測定した。pHは、パーソナルpHメータMODEL PH82(横河電機株式会社製)を用いて測定した。上記被検試料を用いて以下の試料を調製し、抗ウイルス効果を測定した。なお、本発明の次亜塩素酸水溶液からは、ガスの発生は見られず、pH 3.0~5.5という低いpH領域でも塩素ガスを発生させることはないことが確認された。
被験資料の液量は、対照及び試料共に1,000μLとした。陰性対照はリン酸緩衝液のみ、陽性対照はウイルス懸濁液100μL+リン酸緩衝液900μL、試料は100μLのウイルス懸濁液+900μLの被検試料(次亜塩素酸水溶液)とした。
上記各ウイルスの定量は、上述したように試料を10倍希釈し、上記の各感受性細胞にそれぞれ同量を接種してウイルス感染価を求めた。ウイルス感染価は、上記の各ウイルスが各感受性細胞に感染することで生じる形態変化及び細胞変性効果(cytopathic effect)を顕微鏡下で肉眼にて観察し、どのくらい高い希釈度まで、細胞変性効果が観察されるかで決定した。
ウイルス懸濁液100μLを試料900μLに添加しボルテックスミキサーにて10秒又は60秒撹拌し、試料(ウイルス懸濁液と次亜塩素酸水溶液との混合液)を調製した。この混合液を、上記細胞の維持用培地で希釈して10倍希釈系列を作成した。
Claims (14)
- 水溶液中の残留塩素濃度が50~260ppmであり、pH3.0~6.7の次亜塩素酸水溶液であって、微生物の死滅時間が1分以下である、抗微生物剤。
- 前記次亜塩素酸水溶液は、食品添加物用次亜塩素酸ナトリウムと、日本薬局方精製水と、日本薬局方希塩酸とを含むことを特徴とする、請求項1に記載の抗微生物剤。
- 前記水溶液中の残留塩素濃度が50~210ppmであり、pH6.3~6.7であることを特徴とする、請求項1又は2に記載の抗微生物剤。
- 前記抗微生物剤は、細菌、酵母、真菌及びウイルスからなる群から選ばれるいずれかの微生物の増殖を抑制するものであることを特徴とする、請求項3に記載の抗微生物剤。
- 前記細菌は、スタフィロコッカス・オウレウス、セラチア・リケファシエンセイ、バチルス・ズブチリス及びリステリア・モノサイトゲネシスからなる群から選ばれるいずれかの細菌であることを特徴とする、請求項4に記載の抗微生物剤。
- 前記酵母は、ロドトルラ属に属するものであるいずれかの菌であることを特徴とする、請求項4に記載の抗微生物剤。
- 前記真菌は、クラドスポリウム・クラドスオイリオイデス、ペニシリウム・ロケフォルティ、ペニシリウム・グラブラム、アスペルギルス・ニガー、エウロティウム・アモステロダミ、ネオサルトリヤ・フィシェリ、エメリセラチア・ニデュランス、フザリウム、及びアルテナリヤからなる群から選ばれるいずれかの真菌であることを特徴とする、請求項4に記載の抗微生物剤。
- 前記ウイルスは、ノロ・ウイルスであることを特徴とする、請求項4に記載の抗微生物剤。
- 前記水溶液中の残留塩素濃度が150~260ppmであり、H3.0~6.5であり、微生物の死滅時間が10秒以下であることを特徴とする請求項1又は2に記載の抗微生物剤。
- 前記抗微生物剤は、細菌及びウイルスからなる群から選ばれるいずれかの微生物の増殖を抑制するものであることを特徴とする、請求項9に記載の抗微生物剤。
- 前記細菌は、クロストリジウム・ブチリカム及びクロストリジウム・スポロゲネシスからなる群から選ばれるいずれかの細菌であることを特徴とする、請求項10に記載の抗微生物剤。
- 前記ウイルスは、イヌパルボ・ウイルス、ネコパルボ・ウイルス、及び麻疹ウイルスからなる群から選ばれるいずれかのウイルスであることを特徴とする、請求項10に記載の抗微生物剤。
- 請求項4~8のいずれかに記載の抗微生物剤中に、前記細菌、前記酵母、前記真菌、及び前記ウイルスからなる群から選ばれるいずれかの微生物を0.5~10分間浸漬することを特徴とする、微生物の死滅方法。
- 請求項10~12のいずれかに記載の抗微生物剤中に、前記細菌及び前記ウイルスからなる群から選ばれるいずれかの微生物を10秒~60秒間浸漬することを特徴とする、微生物の死滅方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18884625.7A EP3732968A4 (en) | 2017-11-29 | 2018-11-29 | Antimicrobial agent containing hypochlorous acid |
CN201880087401.1A CN111629593A (zh) | 2017-11-29 | 2018-11-29 | 包含次氯酸的抗微生物剂 |
US16/768,229 US12133929B2 (en) | 2017-11-29 | 2018-11-29 | Antimicrobial agent containing hypochlorous acid |
CN202210697696.2A CN115176809A (zh) | 2017-11-29 | 2018-11-29 | 包含次氯酸的抗微生物剂 |
JP2019557332A JP7397668B2 (ja) | 2017-11-29 | 2018-11-29 | 次亜塩素酸を含む抗微生物剤 |
KR1020207018711A KR102790548B1 (ko) | 2017-11-29 | 2018-11-29 | 차아염소산을 포함하는 항미생물제 |
SG11202006277SA SG11202006277SA (en) | 2017-11-29 | 2018-11-29 | Antimicrobial agent comprising hypochlorous acid |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-228845 | 2017-11-29 | ||
JP2017228845 | 2017-11-29 | ||
JP2018207983 | 2018-11-05 | ||
JP2018-207983 | 2018-11-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019107510A1 true WO2019107510A1 (ja) | 2019-06-06 |
Family
ID=66664530
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/044071 WO2019107510A1 (ja) | 2017-11-29 | 2018-11-29 | 次亜塩素酸を含む抗微生物剤 |
Country Status (7)
Country | Link |
---|---|
US (1) | US12133929B2 (ja) |
EP (1) | EP3732968A4 (ja) |
JP (1) | JP7397668B2 (ja) |
KR (1) | KR102790548B1 (ja) |
CN (2) | CN111629593A (ja) |
SG (1) | SG11202006277SA (ja) |
WO (1) | WO2019107510A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220079981A1 (en) * | 2020-09-15 | 2022-03-17 | Facerestoration Ltd | Lavage techniques and virucidal compositions comprising hypochlorous solutions |
KR102283415B1 (ko) * | 2020-12-24 | 2021-07-29 | 김우준 | 항미생물제 조성물과 제조방법 및 그 제품 |
WO2022146941A1 (en) * | 2020-12-28 | 2022-07-07 | Briotech, Inc. | Hypohalous acids for treating inflammatory diseases and inhibiting growth of malignancies |
CN114557363A (zh) * | 2021-09-16 | 2022-05-31 | 安徽劲诺材料科技有限公司 | 一种杀菌消毒喷雾剂及制造方法 |
CN116158443A (zh) * | 2023-01-17 | 2023-05-26 | 湖北艾邦生物科技有限公司 | 一种稳定次氯酸消毒液的制备方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS537351B2 (ja) | 1973-08-10 | 1978-03-16 | ||
JP2001311095A (ja) * | 2000-04-28 | 2001-11-09 | Kao Corp | 殺菌洗浄剤組成物 |
JP2002502372A (ja) * | 1997-05-22 | 2002-01-22 | ズコット リミティッド | 殺菌製剤 |
JP2003034605A (ja) * | 2001-07-19 | 2003-02-07 | Seibutsu Kankyo System Kogaku Kenkyusho:Kk | 殺菌・消毒剤組成物 |
JP4740892B2 (ja) | 2007-04-24 | 2011-08-03 | 株式会社タクミナ | 弱酸性塩素水循環装置 |
WO2014115860A1 (ja) * | 2013-01-25 | 2014-07-31 | 公立大学法人大阪府立大学 | 殺ウイルス剤 |
JP2015104719A (ja) * | 2013-12-02 | 2015-06-08 | Ebisuya 株式会社 | 弱酸性次亜塩素酸水溶液の製造方法 |
WO2017047169A1 (ja) * | 2015-09-16 | 2017-03-23 | 株式会社Nibm | 次亜塩素酸水溶液 |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11228319A (ja) * | 1998-02-19 | 1999-08-24 | Ion Denkyoku Kenkyusho:Kk | 次亜塩素酸ナトリウム溶液を基本とする酸性殺菌水の製造方法及び装置の構成 |
KR100737934B1 (ko) * | 1999-12-10 | 2007-07-13 | 가오가부시끼가이샤 | 살균방법 |
US20030138498A1 (en) | 1999-12-10 | 2003-07-24 | Kiyoaki Yoshikawa | Methods of sterilization |
CN1433270A (zh) | 1999-12-10 | 2003-07-30 | 花王株式会社 | 杀菌剂组合物 |
JP2003040716A (ja) * | 2001-07-26 | 2003-02-13 | Tadashi Inoue | 展着剤と次亜塩素酸を含有した殺菌液 |
ITMI20011702A1 (it) * | 2001-08-03 | 2003-02-03 | Acraf | Soluzione disinfettante a base di ipoclorito di sodio e procedimento per prepararla |
KR20070011394A (ko) * | 2004-03-23 | 2007-01-24 | 더 클로록스 캄파니 | 차아염소산염의 희석법 |
US20080003171A1 (en) * | 2004-04-20 | 2008-01-03 | Smith William L | Microbial Control Using Hypochlorous Acid Vapor |
US20080008621A1 (en) * | 2004-11-24 | 2008-01-10 | Maruishi Pharmaceutical Co., Ltd. (80%) | Hypochlorous Acid Based Sterilizing Composition |
JP4980016B2 (ja) * | 2006-09-20 | 2012-07-18 | ペルメレック電極株式会社 | 電解水噴出装置及び殺菌方法 |
US8877257B2 (en) * | 2007-01-16 | 2014-11-04 | Puricore, Inc. | Methods and compositions for treating conditions associated with infection and/or inflammation |
US9999635B2 (en) * | 2007-01-16 | 2018-06-19 | Realm Therapeutics, Inc. | Methods and compositions for treating inflammatory disorders |
JP5307351B2 (ja) | 2007-04-24 | 2013-10-02 | 株式会社タクミナ | 弱酸性塩素水製造装置 |
US8945630B2 (en) * | 2008-04-11 | 2015-02-03 | Aquilabs S.A. | Method of producing and applications of composition of hypochlorous acid |
US10342825B2 (en) | 2009-06-15 | 2019-07-09 | Sonoma Pharmaceuticals, Inc. | Solution containing hypochlorous acid and methods of using same |
JP2013180956A (ja) * | 2012-02-29 | 2013-09-12 | Sunstar Engineering Inc | 殺菌剤組成物 |
US20140328945A1 (en) * | 2013-05-03 | 2014-11-06 | Aquaxo, Inc. | METHOD FOR STABILIZING AN ELECTROCHEMICALLY GENERATED SANITIZING SOLUTION HAVING A PREDETERMINED LEVEL OF FREE AVAILABLE CHLORINE AND pH |
JP2015071581A (ja) * | 2013-05-20 | 2015-04-16 | 本部三慶株式会社 | 亜塩素酸水含有ウイルス殺傷剤 |
CN104322554A (zh) * | 2013-07-22 | 2015-02-04 | 桂蜀华 | 一种新型电位水消毒剂及其制备方法 |
EA201790594A1 (ru) * | 2014-09-12 | 2017-09-29 | СиЭмЭс ТЕКНОЛОДЖИ, ИНК. | Противомикробные композиции и способы их применения |
WO2016170818A1 (ja) * | 2015-04-22 | 2016-10-27 | 株式会社 東芝 | 洗浄殺菌システム及び洗浄殺菌方法 |
EP3302659A4 (en) * | 2015-05-24 | 2019-01-16 | Livonyx Inc. | SYSTEMS AND METHODS FOR DISINFECTING SURFACES |
JP2017014162A (ja) * | 2015-07-02 | 2017-01-19 | 株式会社コガネイ | 除菌シートパックおよび除菌シートの製造方法 |
US10897905B2 (en) * | 2016-01-26 | 2021-01-26 | Metrex Research, LLC | Hypochlorite based hard surface disinfectants |
CN107439589A (zh) * | 2017-07-21 | 2017-12-08 | 天津瑞艾化工贸易有限公司 | 无隔膜式电解槽制备的环保抗菌液 |
-
2018
- 2018-11-29 CN CN201880087401.1A patent/CN111629593A/zh active Pending
- 2018-11-29 US US16/768,229 patent/US12133929B2/en active Active
- 2018-11-29 KR KR1020207018711A patent/KR102790548B1/ko active Active
- 2018-11-29 SG SG11202006277SA patent/SG11202006277SA/en unknown
- 2018-11-29 CN CN202210697696.2A patent/CN115176809A/zh active Pending
- 2018-11-29 WO PCT/JP2018/044071 patent/WO2019107510A1/ja active Application Filing
- 2018-11-29 EP EP18884625.7A patent/EP3732968A4/en active Pending
- 2018-11-29 JP JP2019557332A patent/JP7397668B2/ja active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS537351B2 (ja) | 1973-08-10 | 1978-03-16 | ||
JP2002502372A (ja) * | 1997-05-22 | 2002-01-22 | ズコット リミティッド | 殺菌製剤 |
JP2001311095A (ja) * | 2000-04-28 | 2001-11-09 | Kao Corp | 殺菌洗浄剤組成物 |
JP2003034605A (ja) * | 2001-07-19 | 2003-02-07 | Seibutsu Kankyo System Kogaku Kenkyusho:Kk | 殺菌・消毒剤組成物 |
JP4740892B2 (ja) | 2007-04-24 | 2011-08-03 | 株式会社タクミナ | 弱酸性塩素水循環装置 |
WO2014115860A1 (ja) * | 2013-01-25 | 2014-07-31 | 公立大学法人大阪府立大学 | 殺ウイルス剤 |
JP2015104719A (ja) * | 2013-12-02 | 2015-06-08 | Ebisuya 株式会社 | 弱酸性次亜塩素酸水溶液の製造方法 |
WO2017047169A1 (ja) * | 2015-09-16 | 2017-03-23 | 株式会社Nibm | 次亜塩素酸水溶液 |
Non-Patent Citations (2)
Title |
---|
See also references of EP3732968A4 |
YOSHINORI OTA: "Jiaensosan o Shuseibun to shita Sakkinsui ni yoru Biseibutsu no Satsumetsu", CLINICAL MICROBIOLOGY, vol. 33, no. 3, 2006, pages 275 - 279, XP008171132 * |
Also Published As
Publication number | Publication date |
---|---|
CN111629593A (zh) | 2020-09-04 |
KR102790548B1 (ko) | 2025-04-04 |
JPWO2019107510A1 (ja) | 2021-02-25 |
US12133929B2 (en) | 2024-11-05 |
EP3732968A4 (en) | 2022-01-26 |
JP7397668B2 (ja) | 2023-12-13 |
SG11202006277SA (en) | 2020-07-29 |
CN115176809A (zh) | 2022-10-14 |
KR20200116910A (ko) | 2020-10-13 |
US20200390919A1 (en) | 2020-12-17 |
EP3732968A1 (en) | 2020-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7397668B2 (ja) | 次亜塩素酸を含む抗微生物剤 | |
JP6442015B2 (ja) | 次亜塩素酸を含む抗微生物剤 | |
JP6672153B2 (ja) | 抗菌性組成物 | |
JP2020526577A (ja) | 洗浄、消毒および/または滅菌のための組成物、方法および使用 | |
Gunaydin et al. | In vitro antimicrobial activity of Medilox® super-oxidized water | |
JP2021080268A (ja) | 亜塩素酸水含有薬剤耐性菌および改良型細菌殺傷剤 | |
CN107920532A (zh) | 具有抗内生孢子功效的抗微生物组合物 | |
KR102127417B1 (ko) | 과산화수소를 이용한 살균소독제 조성물 | |
HK40081249A (en) | Antimicrobial agent containing hypochlorous acid | |
CN111328811B (zh) | 一种低浓度酒精杀菌消毒液及其应用 | |
Chojecka et al. | Neutralization efficiency of alcohol based products used for rapid hand disinfection | |
WO2018057861A1 (en) | Disinfecting compositions having improved antimicrobial efficacy | |
KR960004500B1 (ko) | 살균조성물 및 이를 함유하는 비누 | |
JP2008214297A (ja) | 抗ウイルス剤 | |
CN107509740A (zh) | 一种阳离子表面活性剂复合消毒剂 | |
Kozhyn et al. | Evaluation of the disinfectant “Enzidez” according to indicators of acute toxicity and irritant effect | |
Fette | Pre-exposure of Escherichia coli and Staphylococcus aureus to sub-bactericidal concentrations of benzalkonium chloride and its effect on low-level antimicrobial resistance | |
CN115245174A (zh) | 一种水溶性复方过硫酸氢钾消毒剂及其制备方法 | |
OA18640A (en) | Aqueous hypochlorous acid solution. | |
Martisiene | P6. 17 Evaluation of the Effectiveness of the Sterilisation Process Using Biological Indicators | |
Tyski et al. | P6. 16 Efficacy of Glucoprotamin Containing Disinfectant Against Different Bacterial and Fungal Clinical Isolates | |
Buss et al. | P6. 15 How Effective Is Endoscope Disinfection? | |
Inoue et al. | P6. 14 Bactericidal Activity of Novel Monobiguanide Antiseptic, OPB-2045G, Against Gram-Positive and Gram-Negative Bacteria | |
JP2006117587A (ja) | 殺菌消毒剤組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18884625 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2019557332 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018884625 Country of ref document: EP Effective date: 20200629 |
|
WWC | Wipo information: continuation of processing after refusal or withdrawal |
Ref document number: 1020207018711 Country of ref document: KR |