WO2019107158A1 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
WO2019107158A1
WO2019107158A1 PCT/JP2018/042202 JP2018042202W WO2019107158A1 WO 2019107158 A1 WO2019107158 A1 WO 2019107158A1 JP 2018042202 W JP2018042202 W JP 2018042202W WO 2019107158 A1 WO2019107158 A1 WO 2019107158A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
aqueous electrolyte
secondary battery
electrolyte secondary
lithium
Prior art date
Application number
PCT/JP2018/042202
Other languages
English (en)
French (fr)
Inventor
裕貴 渡邉
良和 宮地
幸俊 上原
晋也 宮崎
Original Assignee
パナソニック株式会社
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社, 三洋電機株式会社 filed Critical パナソニック株式会社
Priority to CN201880051194.4A priority Critical patent/CN111033869A/zh
Priority to EP18883942.7A priority patent/EP3719913A4/en
Priority to US16/638,376 priority patent/US20200365886A1/en
Priority to JP2019557139A priority patent/JP7093367B2/ja
Publication of WO2019107158A1 publication Critical patent/WO2019107158A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers

Definitions

  • the present disclosure relates to a non-aqueous electrolyte secondary battery.
  • Patent Document 1 discloses a non-aqueous electrolyte secondary battery in which fluoroethylene carbonate (FEC) is added to an electrolytic solution in order to suppress the deposition of metal lithium on the surface of the negative electrode.
  • FEC fluoroethylene carbonate
  • Patent Document 2 discloses a coin-type non-aqueous electrolyte secondary battery including a specific carboxylic acid ester and a fluorinated cyclic carbonate as an electrolytic solution component in order to realize high capacity and excellent cycle characteristics. ing.
  • Patent Document 3 coin type and cylindrical type containing fluorinated cyclic carbonate and carboxylic acid ester, non-halogenated carbonate as an electrolyte solution component in order to realize high capacity and excellent cycle characteristics and high temperature storage characteristics.
  • a non-aqueous electrolyte secondary battery is disclosed.
  • An object of the present disclosure is to suppress precipitation of lithium in a non-aqueous electrolyte secondary battery including a stacked electrode assembly, while suppressing the flammability to a low level.
  • a non-aqueous electrolyte secondary battery includes an electrode body in which a plurality of positive electrodes and a plurality of negative electrodes are alternately stacked via a separator, and a non-aqueous electrolyte containing a non-aqueous solvent.
  • a non-aqueous electrolyte secondary battery wherein the electrode body has eight or more sets of the positive electrode and the negative electrode, and the non-aqueous electrolyte has a temperature of 25 ° C. with respect to the total volume of the non-aqueous solvent.
  • precipitation of lithium in a non-aqueous electrolyte secondary battery including a stacked electrode assembly, precipitation of lithium can be suppressed while suppressing the flammability to a low level.
  • FIG. 1 It is a perspective view of the nonaqueous electrolyte secondary battery which is an example of an embodiment. It is AA line sectional drawing in FIG. It is the figure which showed the relationship between the flash point of electrolyte solution, and lithium precipitation presence or absence in a negative electrode by the content rate of FEC in a non-aqueous solvent, and ethyl propionate (EP).
  • EP ethyl propionate
  • Deposition of lithium is more likely to occur when a negative electrode active material (eg, an Si-containing oxide described later) having a large volume change associated with charge and discharge is used, but according to the non-aqueous electrolyte secondary battery according to the present disclosure Even in such a case, the effect can be sufficiently exhibited. Moreover, the effect is exhibited also for a negative electrode plate in which the negative electrode active material is filled at a high density such that the packing density of the negative electrode active material is 1.4 g / cm 3 or more and 1.7 g / cm 3 or less.
  • a negative electrode active material eg, an Si-containing oxide described later
  • FIG. 1 is a perspective view showing the appearance of a non-aqueous electrolyte secondary battery 10 which is an example of the embodiment
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • the vertical direction in the drawing of FIG. 1 is “vertical direction”
  • the direction in which the positive electrode 33 and the negative electrode 36 are stacked in the electrode assembly 30 to be described later is orthogonal to “stacking direction”, vertical direction and stacking direction.
  • Direction is referred to as "longitudinal direction”.
  • the term "end” shall mean the end of an object and its vicinity.
  • FIG. 2 illustrates the terminal connection structure on the negative electrode side
  • the terminal connection structure on the positive electrode side has the same configuration as that on the negative electrode side.
  • the non-aqueous electrolyte secondary battery 10 includes a battery case 12 as an outer package. Inside the battery case 12, an electrode assembly 30 as a power generation element and a non-aqueous electrolyte (not shown) are accommodated.
  • the electrode body 30 has a structure in which a plurality of positive electrodes 33 and a plurality of negative electrodes 36 are alternately stacked via the separators 50.
  • the battery case 12 includes a case main body 13 which is a bottomed cylindrical container having an opening, and a cover plate 14 closing an upper end opening of the case main body 13 and has a substantially rectangular parallelepiped shape.
  • the case body 13 and the cover plate 14 are formed of a metal whose main component is aluminum, and the case body 13 and the cover plate 14 are joined by welding or the like.
  • the non-aqueous electrolyte secondary battery 10 provided with such a battery case 12 is generally called a prismatic battery.
  • a negative electrode terminal 16 is provided on one end of the longitudinal direction, and a positive electrode terminal 17 is provided on the other end of the longitudinal direction.
  • the negative electrode terminal 16 has a function of electrically connecting an external element and the negative electrode 36
  • the positive electrode terminal 17 has a function of electrically connecting an external element and the positive electrode 33.
  • the cover plate 14 has a liquid injection hole for injecting the electrolytic solution, a sealing plug for sealing the liquid injection hole, and a gas discharge valve for discharging the gas inside the battery to the outside of the battery Etc. are provided.
  • the electrode body 30 is accommodated in the battery case 12 in a state in which the side surface and the bottom surface are covered by the insulating holder 15.
  • the battery case 12 is insulated from the positive electrode 33 and the negative electrode 36.
  • the holder 15 is formed of, for example, a resin, and is preferably along the inner wall of the battery case 12 and has a box shape with an open upper end of a rectangular solid or a bag shape with an open upper end.
  • a through hole 14 a into which the negative electrode terminal 16 is inserted is formed at one end of the lid plate 14 provided on the top of the battery case 12.
  • the negative electrode terminal 16 is fixed to the cover plate 14 by the upper connecting member 19 in a state of being inserted into the through hole 14 a of the cover plate 14.
  • the intermediate members 18a and 18b are, for example, gaskets made of resin. Further, the lower end portion of the negative electrode terminal 16 is electrically connected to the upper end plate portion 42 of the negative electrode connection portion 41, and the insulating member 20 is disposed between the upper end plate portion 42 and the lid plate 14.
  • the insulating intermediate members 18 a and 18 b disposed between the upper joint member 19 and the cover plate 14, and between the negative electrode connection portion 41 and the cover plate 14. It is insulated by the insulation member 20 arrange
  • the negative electrode connection portion 41 is formed of a metal plate material and includes an upper end plate portion 42 substantially parallel to the cover plate 14 of the battery case 12 and a lower side plate portion 43 which is bent at a substantially right angle from the upper end plate portion 42. , Has a U-shaped cross section.
  • a negative electrode tab laminated body 38 formed by collecting negative electrode tabs 37 described later is joined to the lower side plate portion 43 of the negative electrode connection portion 41 by welding or the like. Thereby, the negative electrode 36 and the negative electrode terminal 16 are electrically connected.
  • the electrode body 30 includes a plurality of flat positive electrodes 33, a plurality of flat negative electrodes 36, and a plurality of separators 50.
  • the separator 50 may be configured by bending a long porous resin sheet into a bellows shape, but in the present embodiment, the separator 50 is inserted between each of the positive electrode 33 and the negative electrode 36. .
  • the electrode assembly 30 is a stacked electrode assembly in which the positive electrode 33 and the negative electrode 36 are stacked via the separator 50.
  • Each of the positive electrode 33, the negative electrode 36, and the separator 50 has, for example, a substantially rectangular shape, and the electrode body 30 which is a laminate of them has a substantially rectangular parallelepiped shape.
  • the negative electrode 36 is formed one size larger than the positive electrode 33 from the viewpoint of lithium acceptability at the time of charge.
  • the positive electrode 33 has a positive electrode current collector and a positive electrode mixture layer formed on the current collector.
  • a foil of a metal stable in the potential range of the positive electrode 33 such as aluminum, a film in which the metal is disposed on the surface, or the like can be used.
  • the positive electrode mixture layer includes a positive electrode active material, a conductive material such as carbon black (CB) and acetylene black (AB), and a binder such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF). Preferably, it is formed on both sides of the positive electrode current collector.
  • the positive electrode 33 is formed with a positive electrode tab formed by extending a part of the positive electrode current collector from the end in the longitudinal direction of the upper end side of the positive electrode current collector.
  • a protective layer having a higher electrical resistance than the insulating layer or the positive electrode current collector at a portion where the positive electrode tab and the square region where the positive electrode mixture layer is formed are in contact.
  • the positive electrode tab may be a separate member made of the same or different material as the positive electrode current collector, and may be joined to the positive electrode current collector by welding or the like.
  • lithium metal complex oxide As the positive electrode active material.
  • the metal elements constituting the lithium metal composite oxide are, for example, Mg, Al, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Y, Zr, Sn, Sb At least one selected from W, Pb, and Bi. Among them, it is preferable to include at least one selected from Co, Ni, Mn, and Al.
  • suitable lithium metal composite oxides include lithium metal composite oxides containing Co, Ni and Mn, and lithium metal composite oxides containing Co, Ni and Al.
  • the negative electrode 36 has a negative electrode current collector and a negative electrode mixture layer formed on the current collector.
  • a foil of a metal stable in the potential range of the negative electrode 36 such as copper, a film in which the metal is disposed on the surface, or the like can be used.
  • the negative electrode mixture layer is preferably composed of a negative electrode active material and a binder and is preferably formed on both sides of the negative electrode current collector. When the conductivity of the negative electrode active material is low, the negative electrode mixture layer may contain a conductive material. As in the case of the positive electrode 33, PTFE, PVdF, etc.
  • SBR styrene-butadiene rubber
  • CMC carboxymethylcellulose
  • PAA polyacrylic acid
  • PVA Polyvinyl alcohol
  • a part of the negative electrode current collector is extended from the longitudinal direction end of the upper end side of the negative electrode current collector which is different from the end where the positive electrode tab is provided.
  • a negative electrode tab 37 is formed.
  • the negative electrode tab 37 may be a separate member made of the same or different material as the negative electrode current collector, or may be joined to the negative electrode current collector by welding or the like.
  • the negative electrode active material is not particularly limited as long as it can occlude and release lithium ions reversibly, and examples thereof include carbon materials such as natural graphite and artificial graphite.
  • the negative electrode 36 may contain, as a negative electrode active material, at least one selected from a metal alloyed with lithium such as Si and Sn, an alloy containing the metal, and an oxide containing the metal. Among them, Si-containing oxides are preferable.
  • a preferred negative electrode mixture layer contains graphite and a Si-containing oxide as a negative electrode active material. The content of the Si-containing oxide or the like in the negative electrode mixture layer is, for example, 3 to 15% by mass with respect to the total mass of the negative electrode active material.
  • the Si-containing oxide is not particularly limited as long as it is an oxide containing Si, but is preferably an oxide represented by SiO x (0.5 ⁇ x ⁇ 1.5).
  • the particle surface of the SiO x it is preferable that the conductive coating consists of a material having high conductivity than SiO x is formed.
  • the average particle size (Dv 50) of SiO x is, for example, 1 ⁇ m to 15 ⁇ m, which is smaller than the Dv 50 of graphite particles.
  • SiO x has, for example, a structure in which Si is dispersed in an amorphous SiO 2 matrix.
  • TEM transmission electron microscope
  • SiO x may contain lithium silicate (for example, lithium silicate represented by Li 2 z SiO 2 (2 + z) (0 ⁇ z ⁇ 2)) in the particles, and Si was dispersed in the lithium silicate phase. It may have a structure.
  • the conductive film is preferably a carbon film.
  • the carbon film may be formed at 0.5 to 10% by mass with respect to the mass of the SiO x particles.
  • a method of forming a carbon film a method of mixing coal tar and the like with SiO x particles and performing heat treatment, a chemical vapor deposition method (CVD method) using hydrocarbon gas and the like, and the like can be exemplified.
  • the carbon film may be formed by fixing carbon black, ketjen black or the like to the surface of the SiO x particles using a binder.
  • a porous sheet having ion permeability and insulation is used.
  • the porous sheet include a microporous thin film, a woven fabric, a non-woven fabric and the like.
  • olefin resin such as polyethylene and polypropylene, and cellulose are preferable.
  • the separator 50 may have either a single layer structure or a laminated structure.
  • a porous layer containing a filler of an inorganic compound, a porous layer formed of a heat-resistant resin such as an aramid resin, or the like may be formed on the surface of the separator 50.
  • the upper end portion of the negative electrode tab 37 extending upward from the upper end side of the negative electrode current collector is stacked in the stacking direction to form the negative electrode tab stacked body 38.
  • the negative electrode tab laminated body 38 is joined to the surface of the lower side plate portion 43 of the negative electrode connection portion 41 facing the laminating direction by welding or the like.
  • the positive electrode tab laminate is joined by welding or the like to the surface of the lower side plate portion of the positive electrode connection portion facing the stacking direction.
  • the negative electrode connection portion 41 to which the negative electrode tab 37 is connected is provided at the center in the stacking direction of the battery case 12, at least a part of the negative electrode tab 37 is largely curved and distorted It is connected to the negative electrode connection portion 41 (the same applies to the positive electrode tab). Therefore, especially at the upper end portion of the electrode body 30, lifting of the electrode end portion is easily generated, and precipitation of lithium is easily caused. In the non-aqueous electrolyte secondary battery 10, deposition of lithium can be sufficiently suppressed even in the case of having such a structure.
  • the electrode body 30 has eight or more layers, preferably 10 or more layers, and more preferably 20 or more layers of a combination of the positive electrode 33 and the negative electrode 36.
  • the battery capacity can be increased by increasing the number of stacked electrodes.
  • the upper limit of the number of stacked electrodes is not particularly limited, but is, for example, 50 layers in consideration of the ease of managing the tabs in the non-aqueous electrolyte secondary battery 10.
  • the precipitation suppression effect of lithium of the non-aqueous electrolyte secondary battery 10 is particularly remarkable when the number of stacked layers is 10 or more.
  • the negative electrode 36 is disposed as the outermost electrode of the electrode body 30.
  • the positive electrode mixture layer formed on both sides of the positive electrode 33 always faces the negative electrode 36.
  • the electrode body 30 is preferably fixed in a state in which the positive electrode 33, the negative electrode 36, and the separator 50 are stacked.
  • a fixing member such as an insulating tape may be wound and fixed around the electrode body 30, and an adhesive layer is provided on the separator 50, and the separator 50 and the positive electrode 33, and the separator 50 and the negative electrode 36 are adhered to each other. It may be fixed.
  • the non-aqueous electrolyte will be described in detail below.
  • the non-aqueous electrolyte contains a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • the non-aqueous electrolyte comprises 10 to 40% by volume of fluoroethylene carbonate (FEC) and 15 to 40% by volume of a chain carboxylic acid ester having 5 or less carbon atoms, based on the total volume of the non-aqueous solvent at 25 ° C. including.
  • FEC fluoroethylene carbonate
  • a chain carboxylic acid ester having 5 or less carbon atoms based on the total volume of the non-aqueous solvent at 25 ° C. including.
  • the FEC 4-fluoroethylene carbonate (monofluoroethylene carbonate), 4,5-difluoroethylene carbonate, 4,4-difluoroethylene carbonate, 4,4,5-trifluoroethylene carbonate, 4,4,5,5 -Tetrafluoroethylene carbonate etc. are mentioned. Of these, 4-fluoroethylene carbonate is particularly preferred.
  • the content of FEC is preferably 10 to 40% by volume based on the total volume of the non-aqueous solvent. When the content of FEC is less than 10% by volume, the precipitation suppression effect of lithium can not be obtained. On the other hand, when the content of FEC exceeds 40% by volume, the viscosity of the non-aqueous electrolytic solution becomes too high, and the charge and discharge characteristics are greatly reduced.
  • Examples of the chain carboxylic acid ester having 5 or less carbon atoms include methyl acetate, ethyl acetate, propyl acetate, methyl propionate (MP) and ethyl propionate (EP).
  • MP methyl propionate
  • EP ethyl propionate
  • the chain carboxylic acid ester having 5 or less carbon atoms two or more kinds may be used in combination, but it is preferable to use at least EP, and it is more preferable to use EP substantially alone.
  • the content of the linear carboxylic acid ester having 5 or less carbon atoms is preferably 15 to 40% by volume based on the total volume of the non-aqueous solvent.
  • the content of the linear carboxylic acid ester is less than 15% by volume, the precipitation suppression effect of lithium can not be obtained.
  • the content exceeds 40% by volume, it becomes difficult to suppress the flammability to a low level.
  • the effective performance range of the above 4-fluoroethylene carbonate and ethyl propionate that is, the range of the mixing ratio capable of suppressing the deposition of lithium on the surface of the negative electrode while keeping the flammability low is shown in FIG.
  • cyclic carbonates linear carbonates
  • cyclic ethers linear ethers
  • nitriles such as acetonitrile
  • amides such as dimethylformamide
  • halogen-substituted compounds in which Y is substituted with a halogen atom such as fluorine.
  • One of these may be used or two or more may be used in combination.
  • cyclic carbonates include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate and the like. Of these, PC is particularly preferred.
  • linear carbonates include dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, methyl isopropyl carbonate and the like. Of these, DMC and EMC are particularly preferred.
  • cyclic ethers are 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, propylene oxide, 1,2-butylene oxide, 1,3-dioxane, 1,4 -Dioxane, 1,3,5-trioxane, furan, 2-methyl furan, 1,8-cineole, crown ether and the like.
  • chain ethers examples include 1,2-dimethoxyethane, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, dihexyl ether, ethyl vinyl ether, butyl vinyl ether, methyl phenyl ether, ethyl phenyl ether, butyl phenyl ether, Pentyl phenyl ether, methoxy toluene, benzyl ethyl ether, diphenyl ether, dibenzyl ether, o-dimethoxybenzene, 1,2-diethoxyethane, 1,2-dibutoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, 1 1,1-Dimethoxymethane, 1,1-diethoxyethane, triethylene glycol dimethyl ether, tetra Thilen glycol dimethyl ether etc.
  • the non-aqueous solvent preferably contains at least one selected from PC, EMC, and DMC in addition to FEC and a linear carboxylic acid ester having 5 or less carbon atoms.
  • the flammability can be suppressed low and precipitation of lithium can be suppressed while maintaining good charge and discharge characteristics.
  • suitable non-aqueous solvents include non-aqueous solvents including FEC, EP, PC, EMC, and DMC.
  • the total content of FEC and EP is preferably 25 to 80% by volume, more preferably 35 to 60% by volume, with respect to the total volume of the non-aqueous solvent.
  • the non-aqueous electrolyte preferably contains 20 to 75% by volume of at least one selected from PC, EMC, and DMC based on the total volume of the non-aqueous solvent.
  • the electrolyte salt is preferably a lithium salt.
  • the lithium salt LiBF 4, LiClO 4, LiPF 6, LiAsF 6, LiSbF 6, LiAlCl 4, LiSCN, LiCF 3 SO 3, LiCF 3 CO 2, Li (P (C 2 O 4) F 4), LiPF 6-x (C n F 2 n + 1 ) x (1 ⁇ x ⁇ 6, n is 1 or 2), LiB 10 Cl 10 , LiCl, LiBr, LiI, lithium chloroborane, lithium lower aliphatic carboxylate, Li 2 B 4 O 7, Li ( B (C 2 O 4) F 2) boric acid salts such as, LiN (SO 2 CF 3) 2, LiN (C 1 F 2l + 1 SO 2) (C m F 2m + 1 SO 2 ) Imide salts such as ⁇ l, m is an integer of 0 or more ⁇ , and the like can be mentioned.
  • lithium salts may be used singly or in combination of two or more.
  • LiPF 6 from the viewpoint of ion conductivity, electrochemical stability and the like.
  • concentration of the lithium salt is, for example, 0.8 mol to 1.8 mol per liter of the non-aqueous solvent.
  • Example 1 [Production of positive electrode]
  • a positive electrode active material a lithium metal complex oxide represented by LiNi 0.55 Mn 0.20 Co 0.25 O 2 was used.
  • the positive electrode active material, acetylene black, and PVdF were mixed at a mass ratio of 100: 1: 1, and NMP was added to prepare a positive electrode mixture slurry.
  • the positive electrode mixture slurry was applied to both surfaces of a positive electrode current collector made of aluminum foil and the coating was dried, and then the coating (positive electrode mixture layer) was rolled by a roll press. Then, it cut
  • Comparative Example 1 In the preparation of the non-aqueous electrolytic solution, a mixed solvent was used except that FEC, PC, EP, EMC, and DMC were mixed at a volume ratio of 20: 5: 10: 35: 30. A test cell was prepared in the same manner as 1).
  • Comparative Example 2 In the preparation of the non-aqueous electrolytic solution, a mixed solvent was used except that FEC, PC, EP, EMC, and DMC were mixed at a volume ratio of 5: 20: 10: 35: 30. A test cell was prepared in the same manner as 1).
  • Comparative Example 3 In the preparation of the non-aqueous electrolytic solution, a mixed solvent was used except that FEC, PC, EP, EMC, and DMC were mixed at a volume ratio of 5: 20: 30: 15: 30. A test cell was prepared in the same manner as 1).
  • Comparative Example 4 In the preparation of the non-aqueous electrolyte, a mixed solvent was used except that FEC, PC, EP, EMC, and DMC were mixed at a volume ratio of 20: 5: 0: 45: 30. A test cell was prepared in the same manner as 1).
  • Charge / discharge efficiency (%) (Y / X) x 100 [Evaluation of presence or absence of lithium deposition] The test cell after charge / discharge evaluation was disassembled, and the negative electrode surface was visually observed to confirm the presence or absence of lithium deposition.
  • the test cells of the examples have low inflammability, and the charge / discharge efficiency at the high rate charge is high as compared with the test cells of the comparative example.
  • the charge and discharge efficiency at the time of high rate charging can be an index indicating the likelihood of lithium deposition.
  • deposition of lithium was not confirmed in the test cell of the example.
  • Such an effect can not be obtained by the addition of only FEC (see Comparative Example 4), and specifically, the range shown in FIG. 3 when FEC and a chain carboxylic acid ester having 5 or less carbon atoms are mixed at a specific ratio. Only specifically at

Abstract

非水電解質二次電池は、複数の正極及び複数の負極がセパレータを介して交互に積層されてなる電極体と、非水溶媒を含む非水電解液とを備える。電極体は、正極及び負極の組を8層以上有する。非水電解液は、非水溶媒の総体積に対して、25℃において、10~40体積%のフルオロエチレンカーボネートと、15~40体積%の炭素数5以下の鎖状カルボン酸エステルとを含む。

Description

非水電解質二次電池
 本開示は、非水電解質二次電池に関する。
 特許文献1には、負極表面での金属リチウムの析出を抑制するために、電解液にフルオロエチレンカーボネート(FEC)を添加した非水電解質二次電池が開示されている。リチウムの析出が発生すると、サイクル特性が低下し、異常発生時の発熱が大きくなる傾向があるため、リチウムの析出を防止することは重要な課題である。また、特許文献2には、高容量で且つ優れたサイクル特性を実現すべく、電解液成分として、特定のカルボン酸エステル及びフッ素化環状カーボネートを含むコイン型の非水電解質二次電池が開示されている。また、特許文献3においても、高容量で優れたサイクル特性及び高温保存特性を実現すべく、電解液成分として、フッ素化環状カーボネート及びカルボン酸エステル、非ハロゲン化カーボネートを含むコイン型及び円筒形の非水電解質二次電池が開示されている。
特開2013-218967号公報 特開2008-41366号公報 特表2017‐530500号公報
 上述のように、FECの添加は、リチウムの析出抑制に効果があることが知られている。しかし、複数の正極及び複数の負極がセパレータを介して交互に積層されてなる積層型の電極体を備えた非水電解質二次電池では、電極端部の浮き、若しくは電極端部の電界集中によってリチウムの析出が起こり易く、FECを添加した電解液を用いても十分な効果を得ることができない。また、非水電解質二次電池において、漏液等の異常発生時における引火を抑制することは重要な課題である。
 本開示の目的は、積層型の電極体を備えた非水電解質二次電池において、引火性を低く抑えながら、リチウムの析出を抑制することである。
 本開示の一態様である非水電解質二次電池は、複数の正極及び複数の負極がセパレータを介して交互に積層されてなる電極体と、非水溶媒を含む非水電解液とを備えた非水電解質二次電池であって、前記電極体は、前記正極及び前記負極の組を8層以上有し、前記非水電解液は、前記非水溶媒の総体積に対して、25℃において、10~40体積%のフルオロエチレンカーボネートと、15~40体積%の炭素数5以下の鎖状カルボン酸エステルとを含むことを特徴とする。
 本開示の一態様によれば、積層型の電極体を備えた非水電解質二次電池において、引火性を低く抑えながら、リチウムの析出を抑制することができる。
実施形態の一例である非水電解質二次電池の斜視図である。 図1中のAA線断面図である。 非水溶媒中のFECとプロピオン酸エチル(EP)の含有割合による、電解液の引火点と負極におけるリチウム析出有無の関係を示した図である。
 上述のように、積層型の電極体を備えた非水電解質二次電池では、例えば電極端部の浮きが発生し易く、電極端部で正負極間の距離が変化する場合がある。また、電極端部の電界集中も起こり易い。電極端部の浮きや、電界集中が起こると、負極表面にリチウムが析出し易くなり、電池のサイクル特性が低下して、異常発生時の発熱が大きくなることが懸念される。
 本発明者らは、かかる課題を解決すべく鋭意検討した結果、非水溶媒の総体積に対して、10~40体積%のFECと、15~40体積%の炭素数5以下の鎖状カルボン酸エステルとを添加した電解液を用いることにより、正極及び負極の組を8層以上有する積層型の電極体を備えた非水電解質二次電池において、引火性を低く抑えながら、リチウムの析出を抑制することに成功した。かかる効果は、FECのみの添加では得られず、FECと炭素数5以下の鎖状カルボン酸エステルとを特定の割合で混合した場合にのみ特異的に得られるものである。
 リチウムの析出は、充放電に伴う体積変化が大きな負極活物質(例えば、後述のSi含有酸化物)を用いた場合にいっそう起こり易くなるが、本開示に係る非水電解質二次電池によれば、このような場合でも十分に効果を発揮できる。また、負極活物質の充填密度が1.4g/cm3以上1.7g/cm3以下のように高密度に負極活物質が充填されている負極板に対しても効果を発揮する。
 以下、図面を参照しながら、本開示の実施形態の一例について詳細に説明する。なお、実施形態の説明で参照する図面は、模式的に記載されたものであり、図面に描画された構成要素の寸法比率等は、現物と異なる場合がある。具体的な寸法比率等は、以下の説明を参酌して判断されるべきである。
 図1は実施形態の一例である非水電解質二次電池10の外観を示す斜視図、図2は図1中のAA線断面図である。本明細書では、図1の紙面縦方向を「上下方向」と、後述する電極体30において正極33及び負極36の積層された方向を「積層方向」と、上下方向及び積層方向のそれぞれに直交する方向を「長手方向」とする。また、本明細書において、「端部」の用語は対象物の端及びその近傍を意味するものとする。図2では、負極側の端子接続構造を図示しているが、本実施形態において、正極側の端子接続構造は、負極側と同様の構成を有する。
 図1及び図2に例示するように、非水電解質二次電池10は、外装体として電池ケース12を備える。電池ケース12の内部には、発電要素である電極体30と、非水電解液(図示せず)とが収容されている。電極体30は、複数の正極33及び複数の負極36がセパレータ50を介して交互に積層された構造を有する。電池ケース12は、有底筒状で開口を有する容器であるケース本体13と、ケース本体13の上端開口部を塞ぐ蓋板14とで構成され、略直方体形状を有する。例えば、ケース本体13及び蓋板14は、アルミニウムを主成分とする金属から形成され、ケース本体13と蓋板14とは溶接等によって接合される。このような電池ケース12を備えた非水電解質二次電池10は、一般的に角形電池と呼ばれる。
 電池ケース12の上面(蓋板14)には、負極端子16が長手方向端部の一方に設けられ、正極端子17が長手方向端部の他方に設けられている。負極端子16は、外部の要素と負極36とを電気的に接続させる機能を有し、正極端子17は、外部の要素と正極33とを電気的に接続させる機能を有する。また、図示しないが、蓋板14には、電解液を注液するための注液孔、注液孔を封止する封止栓、電池内部のガスを電池外部に排出するためのガス排出弁等が設けられる。
 図2に例示するように、電極体30は、絶縁性のホルダ15により側面及び底面が覆われた状態で電池ケース12に収容される。これにより、電池ケース12は、正極33及び負極36から絶縁されている。ホルダ15は、例えば樹脂等により形成され、電池ケース12の内壁に沿っており、直方体の上端が開口した箱状のもの、又は上端が開口した袋状のものを用いることが好ましい。
 電池ケース12の上部に設けた蓋板14の一端部には、負極端子16を挿入する貫通孔14aが形成されている。負極端子16は、蓋板14の貫通孔14aに挿入された状態で、上側結合部材19により蓋板14に固定される。中間部材18a,18bは、例えば樹脂製のガスケットである。また、負極端子16の下端部は、負極接続部41の上端板部42に電気的に接続され、上端板部42と蓋板14との間には絶縁部材20が配置されている。よって、負極端子16と蓋板14との間は、上側結合部材19と蓋板14との間に配置される絶縁性の中間部材18a,18b、及び負極接続部41と蓋板14との間に配置される絶縁部材20により絶縁される。
 負極接続部41は、金属製の板材により形成され、電池ケース12の蓋板14と略平行な上端板部42と、上端板部42から略直角に折れ曲がって連続する下側板部43とを含む、断面コの字形状を有する。負極接続部41の下側板部43には、後述の負極タブ37が集まって形成された負極タブ積層体38が溶接等によって接合される。これにより、負極36と負極端子16とが電気的に接続される。
 電極体30は、複数の平板状の正極33、複数の平板状の負極36、及び複数のセパレータ50を含む。セパレータ50は、長尺状の多孔性樹脂シートを蛇腹状に折り曲げて構成されてもよいが、本実施形態では正極33と負極36との間のそれぞれにセパレータ50が挿入されているものとする。電極体30は、正極33及び負極36がセパレータ50を介して積層されてなる積層型の電極体である。正極33、負極36、及びセパレータ50は、例えばいずれも略矩形形状を有し、それらの積層体である電極体30は略直方体形状を有する。なお、負極36は、充電時のリチウムの受け入れ性の観点から、正極33よりも一回り大きく形成される。
 正極33は、正極集電体と、当該集電体上に形成された正極合材層とを有する。正極集電体には、アルミニウムなどの正極33の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。正極合材層は、正極活物質と、カーボンブラック(CB)、アセチレンブラック(AB)等の導電材と、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)等の結着材とを含み、正極集電体の両面に形成されることが好ましい。
 正極33には、正極集電体の上端辺の長手方向端部から正極集電体の一部が延出してなる正極タブが形成されている。ここで、正極タブと正極合材層が形成された方形状領域とが接する部分には、絶縁層又は正極集電体より電気抵抗が高い保護層を設けることが好ましい。なお、正極タブは、正極集電体と同じ又は異なる材料で構成された別部材であってもよく、溶接等により正極集電体に接合されてもよい。
 正極活物質には、リチウム金属複合酸化物を用いることが好ましい。リチウム金属複合酸化物を構成する金属元素は、例えばMg、Al、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Y、Zr、Sn、Sb、W、Pb、及びBiから選択される少なくとも1種である。中でも、Co、Ni、Mn、及びAlから選択される少なくとも1種を含むことが好ましい。好適なリチウム金属複合酸化物の一例としては、Co、Ni、及びMnを含有するリチウム金属複合酸化物、Co、Ni、及びAlを含有するリチウム金属複合酸化物が挙げられる。
 負極36は、負極集電体と、当該集電体上に形成された負極合材層とを有する。負極集電体には、銅などの負極36の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。負極合材層は、負極活物質と、結着材とで構成され、負極集電体の両面に形成されることが好ましい。負極活物質の導電性が低い場合、負極合材層に導電材が含まれていてもよい。結着材には、正極33の場合と同様に、PTFE、PVdF等を適用できるが、スチレン-ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)又はその塩、ポリアクリル酸(PAA)又はその塩、ポリビニルアルコール(PVA)等を用いてもよい。
 負極36には、負極集電体の上端辺の長手方向端部であって、正極タブが設けられている端部とは異なる長手方向端部から負極集電体の一部が延出してなる負極タブ37が形成されている。なお、負極タブ37は、負極集電体と同じ又は異なる材料で構成された別部材であってもよく、溶接等により負極集電体に接合されてもよい。
 負極活物質としては、リチウムイオンを可逆的に吸蔵、放出できるものであれば特に限定されず、例えば天然黒鉛、人造黒鉛等の炭素材料が挙げられる。負極36は、負極活物質として、Si、Sn等のリチウムと合金化する金属、当該金属を含有する合金、及び当該金属を含有する酸化物から選択される少なくとも1種を含んでいてもよい。中でも、Si含有酸化物が好ましい。好適な負極合材層は、負極活物質として、黒鉛及びSi含有酸化物を含む。負極合材層におけるSi含有酸化物等の含有量は、負極活物質の総質量に対して、例えば3~15質量%である。
 Si含有酸化物は、Siを含有する酸化物であれば特に限定されないが、好ましくはSiOx(0.5≦x≦1.5)で表される酸化物である。SiOxの粒子表面には、SiOxよりも導電性の高い材料から構成される導電被膜が形成されていることが好ましい。SiOxの平均粒径(Dv50)は、例えば1μm~15μmであって、黒鉛粒子のDv50よりも小さい。
 SiOxは、例えば、非晶質のSiO2マトリックス中にSiが分散した構造を有する。透過型電子顕微鏡(TEM)を用いてSiOxの粒子断面を観察すると、分散したSiの存在が確認できる。SiOxは、粒子内にリチウムシリケート(例えば、Li2zSiO(2+z)(0<z<2)で表されるリチウムシリケート)を含んでいてもよく、リチウムシリケート相中にSiが分散した構造を有していてもよい。
 上記導電被膜は、炭素被膜が好適である。炭素被膜は、SiOx粒子の質量に対して0.5~10質量%で形成されてもよい。炭素被膜の形成方法としては、コールタール等をSiOx粒子と混合し、熱処理する方法、炭化水素ガス等を用いた化学蒸着法(CVD法)などが例示できる。また、カーボンブラック、ケッチェンブラック等をバインダーを用いてSiOx粒子の表面に固着させることで炭素被膜を形成してもよい。
 セパレータ50には、イオン透過性及び絶縁性を有する多孔性シートが用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータ50の材質としては、ポリエチレン、ポリプロピレン等のオレフィン樹脂、セルロースなどが好ましい。セパレータ50は、単層構造、積層構造のいずれであってもよい。また、セパレータ50の表面には、無機化合物のフィラーを含有する多孔質層、アラミド樹脂等の耐熱性の高い樹脂で構成される多孔質層などが形成されていてもよい。
 本実施形態では、負極集電体の上端辺から上方に延出した負極タブ37の上端部が積層方向に積み重なって負極タブ積層体38が形成されている。負極タブ積層体38は、負極接続部41の下側板部43の積層方向を向いた面に溶接等により接合される。正極タブについても同様に、正極タブ積層体が正極接続部の下側板部の積層方向を向いた面に溶接等により接合される。
 図2に示すように、負極タブ37が接続される負極接続部41は電池ケース12の積層方向中央部に設けられているので、負極タブ37の少なくとも一部は大きく湾曲して歪んだ状態で負極接続部41に接続されている(正極タブについても同様)。このため、特に電極体30の上端部では、電極端部の浮きが発生し易くなり、リチウムの析出が起こり易くなる。非水電解質二次電池10では、このような構造を有する場合にも、リチウムの析出を十分に抑制できる。
 電極体30は、正極33及び負極36の組を8層以上、好ましくは10層以上、より好ましくは20層以上有する。電極積層数を多くすることで、電池の高容量化を図ることができる。電極積層数の上限は、特に限定されないが、非水電解質二次電池10内でのタブの取り回し易さを考慮して、例えば50層である。非水電解質二次電池10のリチウムの析出抑制効果は、当該積層数が10層以上である場合に特に顕著である。本実施形態では、電極体30の最も外側の電極として負極36が配置されている。これにより、正極33の両面に形成される正極合材層は、必ず負極36と対向することになる。
 なお、1つの電極体30の電極積層数を多くすると、上述のように非水電解質二次電池30内でのタブの取り回しが困難になり、非水電解質二次電池10の体積エネルギー密度を大きくすることが困難になる。しかし適度な電極積層数からなる2つ以上の電極体30を非水電解質二次電池10に収納することで、タブの取り回しを容易にし、かつ非水電解質二次電池10の体積エネルギー密度を大きくすることができる。
 電極体30は、正極33、負極36、及びセパレータ50が積層された状態で固定されていることが好ましい。例えば、絶縁テープ等の固定部材を電極体30に巻き付けて固定してもよく、セパレータ50に接着層を設けて、セパレータ50と正極33、セパレータ50と負極36をそれぞれ接着させることで積層状態を固定してもよい。
 以下、非水電解液について詳説する。
 非水電解液は、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。非水電解液は、25℃における非水溶媒の総体積に対して、10~40体積%のフルオロエチレンカーボネート(FEC)と、15~40体積%の炭素数5以下の鎖状カルボン酸エステルとを含む。当該非水電解液を用いることにより、電池漏液時の引火性を低く抑えながら、リチウムの析出を特異的に抑制することができる。なお、かかる効果を損なわない範囲で、FEC及び鎖状カルボン酸エステル以外の非水溶媒を用いてもよい。
 FECとしては、4-フルオロエチレンカーボネート(モノフルオロエチレンカーボネート)、4,5-ジフルオロエチレンカーボネート、4,4-ジフルオロエチレンカーボネート、4,4,5-トリフルオロエチレンカーボネート、4,4,5,5-テトラフルオロエチレンカーボネート等が挙げられる。これらのうち、4-フルオロエチレンカーボネートが特に好ましい。FECの含有量は、非水溶媒の総体積に対して、好ましくは10~40体積%である。なお、FECの含有量が10体積%を下回ると、リチウムの析出抑制効果が得られない。他方、FECの含有量が40体積%を超えると、非水電解液の粘度が高くなり過ぎて、充放電特性が大きく低下する。
 炭素数5以下の鎖状カルボン酸エステルとしては、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル(MP)、プロピオン酸エチル(EP)等が挙げられる。なお、炭素数が5を超える鎖状カルボン酸エステルを添加しても、リチウムの析出抑制効果は得られない。炭素数5以下の鎖状カルボン酸エステルとしては、2種類以上を併用してもよいが、少なくともEPを用いることが好ましく、実質的にEPを単独で用いることがより好ましい。炭素数5以下の鎖状カルボン酸エステルの含有量は、非水溶媒の総体積に対して、好ましくは15~40体積%である。なお、当該鎖状カルボン酸エステルの含有量が15体積%を下回ると、リチウムの析出抑制効果が得られない。他方、含有量が40体積%を超えると、引火性を低く抑えることが難しくなる。上記4-フルオロエチレンカーボネートとプロピオン酸エチルにおける性能有効範囲、即ち引火性を低く抑えながら、負極表面におけるリチウムの析出を抑制することが可能な混合比率の範囲を図3に示す。
 FEC及び鎖状カルボン酸エステル以外の非水溶媒としては、環状カーボネート類、鎖状カーボネート類、環状エーテル類、鎖状エーテル類、アセトニトリル等のニトリル類、ジメチルホルムアミド等のアミド類、及びこれらの水素をフッ素等のハロゲン原子で置換したハロゲン置換体が挙げられる。これらは、1種類を使用してもよく、また2種類以上を組み合わせて使用してもよい。
 環状カーボネート類の例としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート等が挙げられる。これらのうち、PCが特に好ましい。鎖状カーボネート類の例としては、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルイソプロピルカーボネート等が挙げられる。これらのうち、DMC、EMCが特に好ましい。
 環状エーテル類の例としては、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、テトラヒドロフラン、2-メチルテトラヒドロフラン、プロピレンオキシド、1,2-ブチレンオキシド、1,3-ジオキサン、1,4-ジオキサン、1,3,5-トリオキサン、フラン、2-メチルフラン、1,8-シネオール、クラウンエーテル等が挙げられる。鎖状エーテル類の例としては、1,2-ジメトキシエタン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、ブチルフェニルエーテル、ペンチルフェニルエーテル、メトキシトルエン、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、o-ジメトキシベンゼン、1,2-ジエトキシエタン、1,2-ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、1,1-ジメトキシメタン、1,1-ジエトキシエタン、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル等が挙げられる。
 非水溶媒は、FEC、及び炭素数5以下の鎖状カルボン酸エステルに加えて、PC、EMC、及びDMCから選択される少なくとも1種を含むことが好ましい。この場合、良好な充放電特性を維持しながら、引火性を低く抑え、且つリチウムの析出を抑制することができる。好適な非水溶媒の一例としては、FEC、EP、PC、EMC、及びDMCを含む非水溶媒が挙げられる。FEC及びEPのトータルの含有量は、非水溶媒の総体積に対して、好ましくは25~80体積%、より好ましくは35~60体積%である。換言すると、非水電解液は、非水溶媒の総体積に対して、PC、EMC、及びDMCから選択される少なくとも1種を20~75体積%含むことが好ましい。
 電解質塩は、リチウム塩であることが好ましい。リチウム塩の例としては、LiBF4、LiClO4、LiPF6、LiAsF6、LiSbF6、LiAlCl4、LiSCN、LiCF3SO3、LiCF3CO2、Li(P(C24)F4)、LiPF6-x(Cn2n+1x(1<x<6,nは1又は2)、LiB10Cl10、LiCl、LiBr、LiI、クロロボランリチウム、低級脂肪族カルボン酸リチウム、Li247、Li(B(C24)F2)等のホウ酸塩類、LiN(SO2CF32、LiN(C12l+1SO2)(Cm2m+1SO2){l,mは0以上の整数}等のイミド塩類などが挙げられる。リチウム塩は、これらを1種単独で用いてもよいし、複数種を混合して用いてもよい。これらのうち、イオン伝導性、電気化学的安定性等の観点から、LiPF6を用いることが好ましい。リチウム塩の濃度は、例えば非水溶媒1L当り0.8モル~1.8モルである。
 以下、実施例により本開示をさらに説明するが、本開示はこれらの実施例に限定されるものではない。
 <実施例1>
 [正極の作製]
 正極活物質として、LiNi0.55Mn0.20Co0.252で表されるリチウム金属複合酸化物を用いた。当該正極活物質と、アセチレンブラックと、PVdFとを、100:1:1の質量比で混合し、NMPを加えて正極合材スラリーを調製した。次に、アルミニウム箔からなる正極集電体の両面に正極合材スラリーを塗布し、塗膜を乾燥させた後、ロールプレス機により塗膜(正極合材層)を圧延した。その後、所定の電極サイズに裁断して、集電体の両面に合材層が形成された正極を得た。
 [負極の作製]
 負極活物質として、96質量部の黒鉛、及び4質量部の炭素被膜を有するSiOx(x=0.94)を用いた。当該負極活物質と、SBRのディスパージョンと、CMCのナトリウム塩とを、100:1:1の質量比で混合し、水を加えて負極合材スラリーを調製した。次に、銅箔からなる負極集電体の両面に負極合材スラリーを塗布し、塗膜を乾燥させた後、ロールプレス機により塗膜(負極合材層)を圧延した。その後、所定の電極サイズに裁断して、集電体の両面に合材層が形成された負極を得た。
 [非水電解液の調製]
 FECと、PCと、EPと、EMCと、DMCとを、25℃において、20:5:30:15:30の体積比で混合した混合溶媒に、1.0mol/Lの濃度となるようにLiPF6を添加し、さらに2体積%(溶媒比)のビニレンカーボネートを添加して非水電解液を調製した。
 [試験セルの作製]
 セパレータを介して上記正極8枚及び上記負極9枚を、負極-正極-・・・-負極の順に交互に積層し、積層型の電極体を作製した。セパレータには、ポリプロピレン製セパレータを用いた。当該電極体をアルミニウムラミネートシートで構成される外装体に挿入して、上記非水電解液を注入し、外装体の開口部を封止して試験セルを作製した。
 <比較例1>
 非水電解液の調製において、FECと、PCと、EPと、EMCと、DMCとを、20:5:10:35:30の体積比で混合した混合溶媒を用いたこと以外は、実施例1と同様にして試験セルを作製した。
 <比較例2>
 非水電解液の調製において、FECと、PCと、EPと、EMCと、DMCとを、5:20:10:35:30の体積比で混合した混合溶媒を用いたこと以外は、実施例1と同様にして試験セルを作製した。
 <比較例3>
 非水電解液の調製において、FECと、PCと、EPと、EMCと、DMCとを、5:20:30:15:30の体積比で混合した混合溶媒を用いたこと以外は、実施例1と同様にして試験セルを作製した。
 <比較例4>
 非水電解液の調製において、FECと、PCと、EPと、EMCと、DMCとを、20:5:0:45:30の体積比で混合した混合溶媒を用いたこと以外は、実施例1と同様にして試験セルを作製した。
 実施例及び比較例の各試験セルについて、下記の方法で性能評価を行い、評価結果を表1に示した。
 [引火性の評価]
 JIS K 2265-1のタグ密閉法を用いて引火点を測定した。
 [ハイレート充電時の充放電効率の評価]
 25℃の温度環境下、2Cの定電流でセル電圧4.2Vまで充電し、10分休止した後、0.2Cの定電流でセル電圧2.5Vまで放電を行なった。このときの充電容量X及び放電容量Yを求め、下記の式に基づいて充放電効率を算出した。
   充放電効率(%)=(Y/X)×100
 [リチウム析出の有無の評価]
 上記充放電評価後の試験セルを分解して、負極表面を目視観察し、リチウム析出の有無を確認した。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例の試験セルは、引火性が低く、比較例の試験セルと比べてハイレート充電時の充放電効率が高い。ハイレート充電時の充放電効率は、リチウム析出の起こり易さを示す指標となり得る。実際、比較例の試験セルでは負極表面に析出したリチウムの存在が確認されたが、実施例の試験セルではリチウムの析出は確認されなかった。かかる効果は、FECのみの添加では得られず(比較例4参照)、FECと炭素数5以下の鎖状カルボン酸エステルとを特定の割合で混合した場合、具体的には図3に示す範囲においてのみ特異的に得られる。
 10 非水電解質二次電池
 12 電池ケース
 13 ケース本体
 14 蓋板
 14a 貫通孔
 15 ホルダ
 16 負極端子
 17 正極端子
 18a,18b 中間部材
 19 上側結合部材
 20 絶縁部材
 30 電極体
 33 正極
 36 負極
 37 負極タブ
 38 負極タブ積層体
 41 負極接続部
 42 上端板部
 43 下側板部
 50 セパレータ

Claims (4)

  1.  複数の正極及び複数の負極がセパレータを介して交互に積層されてなる電極体と、非水溶媒を含む非水電解液とを備えた非水電解質二次電池であって、
     前記電極体は、前記正極及び前記負極の組を8層以上有し、
     前記非水電解液は、前記非水溶媒の総体積に対して、25℃において、10~40体積%のフルオロエチレンカーボネートと、15~40体積%の炭素数5以下の鎖状カルボン酸エステルとを含む、非水電解質二次電池。
  2.  前記負極は、負極活物質として、リチウムと合金化する金属、当該金属を含有する合金、及び当該金属を含有する酸化物から選択される少なくとも1種を含む、請求項1に記載の非水電解質二次電池。
  3.  前記鎖状カルボン酸エステルは、プロピオン酸エチルである、請求項1又は2に記載の非水電解質二次電池。
  4.  前記非水溶媒は、さらに、エチレンカーボネート、エチルメチルカーボネート、及びジメチルカーボネートから選択される少なくとも1種を含む、請求項1~3のいずれか1項に記載の非水電解質二次電池。
PCT/JP2018/042202 2017-11-30 2018-11-15 非水電解質二次電池 WO2019107158A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880051194.4A CN111033869A (zh) 2017-11-30 2018-11-15 非水电解质二次电池
EP18883942.7A EP3719913A4 (en) 2017-11-30 2018-11-15 NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
US16/638,376 US20200365886A1 (en) 2017-11-30 2018-11-15 Non-aqueous electrolyte secondary battery
JP2019557139A JP7093367B2 (ja) 2017-11-30 2018-11-15 非水電解質二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017230619 2017-11-30
JP2017-230619 2017-11-30

Publications (1)

Publication Number Publication Date
WO2019107158A1 true WO2019107158A1 (ja) 2019-06-06

Family

ID=66665117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042202 WO2019107158A1 (ja) 2017-11-30 2018-11-15 非水電解質二次電池

Country Status (5)

Country Link
US (1) US20200365886A1 (ja)
EP (1) EP3719913A4 (ja)
JP (1) JP7093367B2 (ja)
CN (1) CN111033869A (ja)
WO (1) WO2019107158A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131258A1 (ja) * 2019-12-26 2021-07-01 パナソニック株式会社 リチウムイオン電池

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008041366A (ja) * 2006-08-03 2008-02-21 Sony Corp 電池
WO2008102638A1 (ja) * 2007-02-20 2008-08-28 Sanyo Electric Co., Ltd. 二次電池用非水電解液及び非水電解液二次電池
JP2013218967A (ja) 2012-04-11 2013-10-24 Panasonic Corp 非水電解質および非水電解質二次電池
WO2014050114A1 (ja) * 2012-09-28 2014-04-03 三洋電機株式会社 非水電解質二次電池
JP2014067490A (ja) * 2012-09-24 2014-04-17 Sanyo Electric Co Ltd 非水電解質二次電池
JP2014523101A (ja) * 2011-07-18 2014-09-08 エルジー・ケム・リミテッド 非水電解液及びそれを用いたリチウム二次電池
JP2015050280A (ja) * 2013-08-30 2015-03-16 旭化成株式会社 非水系リチウム型蓄電素子
WO2016084288A1 (ja) * 2014-11-28 2016-06-02 三洋電機株式会社 非水電解質二次電池
WO2017047020A1 (ja) * 2015-09-16 2017-03-23 パナソニックIpマネジメント株式会社 電池
JP2017530500A (ja) 2014-09-30 2017-10-12 エルジー・ケム・リミテッド 非水電解液リチウム二次電池
JP2017531285A (ja) * 2014-08-14 2017-10-19 ソルヴェイ(ソシエテ アノニム) スルトン及びフッ素化溶媒を含む非水電解質組成物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070287071A1 (en) * 2006-06-11 2007-12-13 Sanyo Electric Co., Ltd. Non-aqueous electrolyte solution for secondary battery and non-aqueous electrolyte secondary battery using the electrolyte solution
CN101090165A (zh) * 2006-06-14 2007-12-19 三洋电机株式会社 二次电池用非水电解液及使用了它的非水电解液二次电池
JP5816366B2 (ja) * 2011-07-18 2015-11-18 エルジー・ケム・リミテッド 非水電解液及びそれを用いたリチウム二次電池
JP5994977B2 (ja) * 2012-06-26 2016-09-21 三菱自動車工業株式会社 二次電池
US9799925B2 (en) * 2013-03-27 2017-10-24 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
JPWO2016006315A1 (ja) * 2014-07-08 2017-04-27 関東電化工業株式会社 3,3,3−トリフルオロプロピオネート基を有するエステルを含む非水電解液、及びそれを用いた非水電解液電池

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008041366A (ja) * 2006-08-03 2008-02-21 Sony Corp 電池
WO2008102638A1 (ja) * 2007-02-20 2008-08-28 Sanyo Electric Co., Ltd. 二次電池用非水電解液及び非水電解液二次電池
JP2014523101A (ja) * 2011-07-18 2014-09-08 エルジー・ケム・リミテッド 非水電解液及びそれを用いたリチウム二次電池
JP2013218967A (ja) 2012-04-11 2013-10-24 Panasonic Corp 非水電解質および非水電解質二次電池
JP2014067490A (ja) * 2012-09-24 2014-04-17 Sanyo Electric Co Ltd 非水電解質二次電池
WO2014050114A1 (ja) * 2012-09-28 2014-04-03 三洋電機株式会社 非水電解質二次電池
JP2015050280A (ja) * 2013-08-30 2015-03-16 旭化成株式会社 非水系リチウム型蓄電素子
JP2017531285A (ja) * 2014-08-14 2017-10-19 ソルヴェイ(ソシエテ アノニム) スルトン及びフッ素化溶媒を含む非水電解質組成物
JP2017530500A (ja) 2014-09-30 2017-10-12 エルジー・ケム・リミテッド 非水電解液リチウム二次電池
WO2016084288A1 (ja) * 2014-11-28 2016-06-02 三洋電機株式会社 非水電解質二次電池
WO2017047020A1 (ja) * 2015-09-16 2017-03-23 パナソニックIpマネジメント株式会社 電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3719913A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131258A1 (ja) * 2019-12-26 2021-07-01 パナソニック株式会社 リチウムイオン電池

Also Published As

Publication number Publication date
CN111033869A (zh) 2020-04-17
EP3719913A4 (en) 2020-12-23
EP3719913A1 (en) 2020-10-07
JPWO2019107158A1 (ja) 2020-12-03
JP7093367B2 (ja) 2022-06-29
US20200365886A1 (en) 2020-11-19

Similar Documents

Publication Publication Date Title
CN110313089B (zh) 非水电解质二次电池用负极和非水电解质二次电池
US9543618B2 (en) Secondary battery
CN111033823B (zh) 非水电解质二次电池用负极及非水电解质二次电池
US11316202B2 (en) Secondary battery
US10122011B2 (en) Multi layered electrode and method of manufacturing the same
JP6847665B2 (ja) 非水電解質二次電池
WO2012132060A1 (ja) 二次電池および電解液
CN111640975B (zh) 用于锂离子电化学电池的电解质组合物
JP7161519B2 (ja) 非水電解質二次電池
JP7082938B2 (ja) 二次電池
JP7270155B2 (ja) 非水電解質二次電池
JP2018056066A (ja) 非水電解質二次電池用負極、及び非水電解質二次電池
US20210194002A1 (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2018174074A (ja) 積層型非水電解質二次電池
US20220115703A1 (en) Prismatic non-aqueous electrolyte secondary battery
CN112018342A (zh) 正极活性物质和使用该正极活性物质的二次电池
JP7093367B2 (ja) 非水電解質二次電池
US9837660B2 (en) Negative electrode for rechargeable lithium battery and rechargeable lithium battery including same
CN112018389A (zh) 正极活性物质和使用该正极活性物质的二次电池
CN112018395A (zh) 二次电池
CN111033820A (zh) 非水电解质二次电池用正极及非水电解质二次电池
WO2023145608A1 (ja) 非水電解質二次電池
WO2021124971A1 (ja) 非水電解質二次電池用正極、及び非水電解質二次電池
WO2021153349A1 (ja) 二次電池用非水電解質および非水電解質二次電池
WO2021186949A1 (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18883942

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019557139

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018883942

Country of ref document: EP

Effective date: 20200630