WO2019107043A1 - 酸化物半導体薄膜、薄膜トランジスタ及びスパッタリングターゲット - Google Patents

酸化物半導体薄膜、薄膜トランジスタ及びスパッタリングターゲット Download PDF

Info

Publication number
WO2019107043A1
WO2019107043A1 PCT/JP2018/040204 JP2018040204W WO2019107043A1 WO 2019107043 A1 WO2019107043 A1 WO 2019107043A1 JP 2018040204 W JP2018040204 W JP 2018040204W WO 2019107043 A1 WO2019107043 A1 WO 2019107043A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
atm
oxide semiconductor
atoms
film transistor
Prior art date
Application number
PCT/JP2018/040204
Other languages
English (en)
French (fr)
Inventor
裕美 寺前
後藤 裕史
元隆 越智
綾 日野
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018157571A external-priority patent/JP6550514B2/ja
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN201880067635.XA priority Critical patent/CN111226307B/zh
Priority to KR1020207016225A priority patent/KR102151557B1/ko
Priority to US16/759,544 priority patent/US20200295143A1/en
Publication of WO2019107043A1 publication Critical patent/WO2019107043A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Definitions

  • the present invention relates to an oxide semiconductor thin film, a thin film transistor, and a sputtering target.
  • An amorphous oxide semiconductor has higher carrier mobility when a thin film transistor (TFT) is formed, for example, as compared to an amorphous silicon semiconductor.
  • TFT thin film transistor
  • an amorphous oxide semiconductor has a large optical band gap and high transparency to visible light.
  • a thin film of an amorphous oxide semiconductor can be deposited at a lower temperature than an amorphous silicon semiconductor. Taking advantage of these features, amorphous oxide semiconductor thin films are expected to be applied to next-generation large displays that can be driven at high resolution and at high speed, and flexible displays that use resin substrates that require film formation at low temperatures. It is done.
  • an In-Ga-Zn-O (IGZO) amorphous oxide semiconductor thin film containing indium, gallium, zinc and oxygen is known (see, for example, JP-A-2010-219538).
  • the carrier mobility of the thin film transistor using the amorphous silicon semiconductor is about 0.5 cm 2 / Vs
  • the TFT using the IGZO amorphous oxide semiconductor thin film described in the above publication has a mobility of 1 cm 2 / Vs or more Have.
  • an oxide semiconductor thin film with improved mobility an oxide semiconductor thin film containing indium, gallium, zinc and tin is known (see, for example, JP-A-2010-118407).
  • the carrier mobility exceeds 20 cm 2 / Vs with a channel length of 1000 ⁇ m.
  • the carrier mobility tends to decrease, and the carrier mobility in the low channel region may be insufficient for use in, for example, a next-generation large display that requires high speed. .
  • amorphous oxide semiconductors contain gallium (Ga) which is a rare element, the manufacturing cost is relatively high. Therefore, an oxide semiconductor which does not contain Ga is required.
  • the so-called light stress resistance be high, with little shift in threshold voltage with time even when the thin film transistor is irradiated with light. It is rare.
  • the present invention has been made based on the above circumstances, has a relatively low manufacturing cost, and an oxide semiconductor thin film having high carrier mobility and light stress resistance when forming a thin film transistor, and the oxide semiconductor thin film And providing a sputtering target for forming the oxide semiconductor thin film.
  • the present inventors have found that by including iron (Fe) in a predetermined amount in an oxide semiconductor thin film, an oxide semiconductor thin film having high carrier mobility and resistance to light stress can be obtained without containing Ga.
  • the present invention has been completed.
  • the invention made to solve the above problems contains In, Zn and Fe, and the number of In atoms is 20 atm% to 89 atm%, the number of Zn atoms with respect to the total number of atoms of In, Zn and Fe. Is 10 atm% or more and 79 atm% or less, and the number of Fe atoms is 0.2 atm% or more and 2 atm% or less.
  • the oxide semiconductor thin film has high light stress resistance because the number of atoms of In and Zn is in the above range and the number of atoms of Fe is in the above lower limit or more.
  • the number of Fe atoms in the oxide semiconductor thin film is equal to or less than the above upper limit, carrier mobility in forming a thin film transistor using the oxide semiconductor thin film can be increased.
  • the oxide semiconductor thin film does not need to contain Ga, the manufacturing cost can be reduced.
  • the number of In atoms is 34 atm% to 80 atm%, the number of Zn atoms is 18 atm% to 65 atm%, and the number of Fe atoms is 0. It is preferable that they are 2 atm% or more and 1.8 atm% or less.
  • the oxide semiconductor thin film has high light stress resistance because the number of atoms of In and Zn is in the above range and the number of atoms of Fe is in the above lower limit or more.
  • the number of Fe atoms in the oxide semiconductor thin film is less than or equal to the above upper limit, the carrier mobility in forming a thin film transistor using the oxide semiconductor thin film can be further enhanced.
  • the number of In atoms is 34 atm% to 60 atm%, the number of Zn atoms is 39 atm% to 65 atm%, and the number of Fe atoms is 0. More preferably, it is 2 atm% or more and 0.9 atm% or less. Since the said oxide semiconductor thin film makes the number of atoms of In and Zn into the said range, and makes the number of atoms of Fe more than the said minimum, it has a further high photo-stress tolerance. In addition, since the number of Fe atoms in the oxide semiconductor thin film is less than or equal to the above upper limit, the carrier mobility in forming a thin film transistor using the oxide semiconductor thin film can be further enhanced.
  • the present invention includes a thin film transistor having the oxide semiconductor thin film. Since the thin film transistor includes the oxide semiconductor thin film, the manufacturing cost is relatively low, and the carrier mobility and the light stress resistance are high.
  • the threshold voltage shift by light irradiation of the thin film transistor is preferably 2 V or less.
  • the performance stability of the thin film transistor can be enhanced by setting the threshold voltage shift to the above lower limit or less.
  • the carrier mobility of the thin film transistor is preferably 20 cm 2 / Vs or more. By setting the carrier mobility to the above lower limit or more, it can be suitably used for, for example, a next-generation large display that requires high speed.
  • Another invention made to solve the above problems is a sputtering target used for forming an oxide semiconductor thin film, which contains In, Zn and Fe, and the total number of atoms of In, Zn and Fe is In.
  • the number of atoms of is 20 atm% or more and 89 atm% or less
  • the number of Zn atoms is 10 atm% or more and 79 atm% or less
  • the number of Fe atoms is 0.2 atm% or more and 2 atm% or less.
  • the oxide semiconductor thin film is deposited using the sputtering target, so that the manufacturing cost is relatively low, and the carrier mobility and the light stress are low.
  • a highly resistant thin film transistor can be manufactured.
  • carrier mobility refers to the field effect mobility in the saturation region of the thin film transistor
  • field effect mobility refers to the gate voltage Vg [V], threshold voltage Vth [V], drain current Id Assuming that [A], channel length L [m], channel width W [m], and capacitance C ox [F] of the gate insulating film, in the saturation region (Vg> Vd-Vth) of the current-voltage characteristic of the thin film transistor It refers to the value determined by ⁇ FE [m 2 / Vs] shown in the following equation (1).
  • the “threshold voltage” of a thin film transistor refers to a gate voltage at which the drain current of the transistor is 10 ⁇ 9 A.
  • threshold voltage shift due to light irradiation refers to the case where a thin film transistor is irradiated with a white LED for 2 hours at a substrate temperature of 60 ° C. under a voltage condition of 10 V between the source and drain of the thin film transistor and ⁇ 10 V between the gate and source.
  • the thin film transistor using the oxide semiconductor thin film has a relatively low manufacturing cost, and has high carrier mobility and high light stress resistance.
  • an oxide semiconductor thin film with relatively low manufacturing cost and high carrier mobility and light stress tolerance can be formed.
  • the thin film transistor shown in FIG. 1 can be used, for example, in the manufacture of a display device such as a next-generation large display or flexible display.
  • the thin film transistor is a bottom gate type transistor formed on the surface of the substrate X.
  • the thin film transistor includes a gate electrode 1, a gate insulating film 2, an oxide semiconductor thin film 3, an ESL (Etch Stop Layer) protective film 4, source and drain electrodes 5, a passivation insulating film 6, and a conductive film 7.
  • the substrate X is not particularly limited, and for example, a substrate used for a display device can be mentioned.
  • a transparent substrate such as a glass substrate or a silicone resin substrate can be mentioned. It does not specifically limit as glass used for the said glass substrate, For example, alkali free glass, high distortion point glass, soda lime glass etc. can be mentioned.
  • a metal substrate such as a stainless steel thin film or a resin substrate such as a polyethylene terephthalate (PET) film can also be used.
  • the average thickness of the substrate X is preferably 0.3 mm or more and 1.0 mm or less from the viewpoint of processability. Further, the size and the shape of the substrate X are appropriately determined according to the size and the shape of the display device or the like to be used.
  • the gate electrode 1 is formed on the surface of the substrate X and has conductivity.
  • the thin film constituting the gate electrode 1 is not particularly limited, but it is possible to use an Al alloy or a surface of an Al alloy in which a thin film of Mo, Cu, Ti or the like or an alloy film is laminated.
  • the shape of the gate electrode 1 is not particularly limited, but from the viewpoint of controllability of the channel length and the channel width, it is preferable to have a square shape in plan view in which the channel length direction and the channel width direction of the thin film transistor are vertical and horizontal.
  • the size of the gate electrode 1 may be a size that can ensure the channel length and the channel width of the thin film transistor.
  • the channel length direction of the thin film transistor is the opposing direction of the source electrode 5a and the drain electrode 5b of the thin film transistor.
  • the channel width direction of the thin film transistor is a direction orthogonal to the channel length direction of the thin film transistor and parallel to the surface of the substrate X.
  • the lower limit of the average thickness of the gate electrode 1 is preferably 50 nm, more preferably 170 nm.
  • the upper limit of the average thickness of the gate electrode 1 is preferably 500 nm, and more preferably 400 nm. If the average thickness of the gate electrode 1 is less than the above lower limit, the resistance of the gate electrode 1 is large, so there is a possibility that power consumption at the gate electrode 1 may increase or disconnection may easily occur. On the other hand, when the average thickness of the gate electrode 1 exceeds the upper limit, it is difficult to flatten the gate insulating film 2 and the like stacked on the surface side of the gate electrode 1, and the characteristics of the thin film transistor may be deteriorated.
  • the cross section in the thickness direction of the gate electrode 1 may be tapered so as to extend toward the substrate X.
  • the taper angle in the case where the gate electrode 1 is tapered is preferably 30 ° or more and 40 ° or less.
  • the gate insulating film 2 is stacked on the surface side of the substrate X so as to cover the gate electrode 1.
  • the thin film forming the gate insulating film 2 is not particularly limited, and examples thereof include a silicon oxide film, a silicon nitride film, a silicon oxynitride film, and a metal oxide film such as Al 2 O 3 or Y 2 O 3 .
  • the gate insulating film 2 may have a single layer structure of these thin films, or may have a multilayer structure in which two or more types of thin films are stacked.
  • the shape of the gate insulating film 2 is not limited as long as the gate electrode 1 is covered, and the gate insulating film 2 may cover the entire surface of the substrate X, for example.
  • the lower limit of the average thickness of the gate insulating film 2 is preferably 50 nm, and more preferably 100 nm.
  • the upper limit of the average thickness of the gate insulating film 2 is preferably 300 nm, more preferably 250 nm. If the average thickness of the gate insulating film 2 is less than the above lower limit, the withstand voltage of the gate insulating film 2 may be insufficient, and the gate insulating film 2 may break down due to the application of the gate voltage. Conversely, when the average thickness of the gate insulating film 2 exceeds the above upper limit, the capacity of the capacitor formed between the gate electrode 1 and the oxide semiconductor thin film 3 may be insufficient, and the drain current may be insufficient. There is. When the gate insulating film 2 has a multilayer structure, the “average thickness of the gate insulating film” refers to the average thickness of the total.
  • the oxide semiconductor thin film 3 itself is another embodiment of the present invention.
  • the oxide semiconductor thin film 3 contains In, Zn, and Fe.
  • the said oxide semiconductor thin film 3 contains an unavoidable impurity other than In, Zn, and Fe as a metal element. That is, the oxide semiconductor thin film 3 does not substantially contain metal elements other than In, Zn, and Fe.
  • the lower limit of the number of In atoms with respect to the total number of atoms of In, Zn and Fe is 20 atm%, more preferably 29 atm%, and still more preferably 34 atm%.
  • the upper limit of the number of In atoms is 89 atm%, more preferably 81 atm%, still more preferably 80 atm%, and particularly preferably 60 atm%. If the number of In atoms is less than the above lower limit, the carrier mobility of the thin film transistor may be lowered. Conversely, if the number of In atoms exceeds the upper limit, the leak current of the oxide semiconductor thin film 3 increases or the threshold voltage shifts to the negative side, so the oxide semiconductor thin film 3 becomes conductive. There is a risk of
  • the lower limit of the number of atoms of Zn relative to the total number of atoms of In, Zn, and Fe is 10 atm%, more preferably 18 atm%, and still more preferably 39 atm%.
  • the upper limit of the number of Zn atoms is 79 atm%, more preferably 70 atm%, and still more preferably 65 atm%. If the number of Zn atoms is less than the lower limit, the number of other metal atoms is relatively large, which may lead to conductorization. Conversely, when the number of Zn atoms exceeds the upper limit, the carrier concentration is suppressed, and the carrier mobility of the thin film transistor may be reduced.
  • the lower limit of the number of atoms of Fe relative to the total number of atoms of In, Zn, and Fe is 0.2 atm%, more preferably 0.4 atm%, and still more preferably 0.5 atm%.
  • the upper limit of the number of Fe atoms is 2 atm%, more preferably 1.8 atm%, still more preferably 1 atm%, and particularly preferably 0.9 atm%. If the number of atoms of Fe is less than the above lower limit, the threshold voltage shift due to light irradiation may be increased. Conversely, when the number of Fe atoms exceeds the upper limit, the carrier concentration is suppressed, and the carrier mobility of the thin film transistor may be reduced.
  • the number of In atoms is 34 atm% to 81 atm%, the number of Zn atoms is 18 atm% to 65 atm%, and the number of Fe atoms is 0 with respect to the total number of atoms of In, Zn, and Fe. It is preferable that it is .2 atm% or more and 1.8 atm% or less.
  • the oxide semiconductor thin film 3 has high light stress resistance because the number of atoms of In and Zn is within the above range and the number of atoms of Fe is above the above lower limit.
  • the number of Fe atoms is set to the upper limit or less, the carrier mobility of the thin film transistor formed using the oxide semiconductor thin film 3 can be further enhanced.
  • the number of In atoms is 34 atm% or more and 80 atm% or less
  • the number of Zn atoms is 18 atm% or more and 65 atm% or less
  • the number of Fe atoms is 0 with respect to the total number of atoms of In, Zn, and Fe. It is preferable that it is .4 atm% or more and 1.8 atm% or less.
  • the oxide semiconductor thin film 3 has high light stress resistance because the number of atoms of In and Zn is within the above range and the number of atoms of Fe is above the above lower limit.
  • the number of Fe atoms is set to the upper limit or less, the carrier mobility of the thin film transistor formed using the oxide semiconductor thin film 3 can be further enhanced.
  • the number of In atoms is 34 atm% to 60 atm%, the number of Zn atoms is 39 atm% to 65 atm%, and the number of Fe atoms is 0 with respect to the total number of atoms of In, Zn, and Fe. More preferably, it is at least 2 atm% and at most 1 atm%. Since the oxide semiconductor thin film 3 has the number of atoms of In and Zn in the above range and the number of atoms of Fe as the above lower limit or more, it has higher light stress resistance. In addition, since the number of Fe atoms is set to the upper limit or less, the carrier mobility of the thin film transistor formed using the oxide semiconductor thin film 3 can be further enhanced.
  • the number of In atoms is 34 atm% to 60 atm%, the number of Zn atoms is 39 atm% to 65 atm%, and the number of Fe atoms is 0 with respect to the total number of atoms of In, Zn, and Fe. More preferably, it is at least 0.5 atm% and at most 0.9 atm%. Since the oxide semiconductor thin film 3 has the number of atoms of In and Zn in the above range and the number of atoms of Fe as the above lower limit or more, it has higher light stress resistance. In addition, since the number of Fe atoms is set to the upper limit or less, the carrier mobility of the thin film transistor formed using the oxide semiconductor thin film 3 can be further enhanced.
  • the shape of the oxide semiconductor thin film 3 in plan view is not particularly limited, but the same shape as the gate electrode 1 is preferable from the viewpoint of controllability of the channel length and the channel width of the thin film transistor.
  • the size of the oxide semiconductor thin film 3 in plan view may be a size that can ensure the channel length and the channel width of the thin film transistor.
  • the size of the oxide semiconductor thin film 3 in plan view is preferably smaller than the size of the gate electrode 1 in plan view in order to ensure that the oxide semiconductor thin film 3 is disposed immediately above the gate electrode 1.
  • the lower limit of the difference in length between the oxide semiconductor thin film 3 and the gate electrode 1 in the channel direction and the channel width direction is preferably 2 nm, and more preferably 4 nm.
  • 10 nm is preferred and 8 nm is more preferred. If the difference in length of the side is less than the lower limit, a part of the oxide semiconductor thin film 3 deviates from directly above the gate electrode 1 due to a deviation of patterning or the like.
  • the flatness of the oxide semiconductor thin film 3 is It may deteriorate and the characteristics of the thin film transistor may be deteriorated.
  • the thin film transistor may be unnecessarily increased.
  • the average thickness of the oxide semiconductor thin film 3 can be determined based on the conditions under which the drain current can be turned off when used as a switching element. Specifically, it is preferable that the inside of the oxide semiconductor thin film 3 be completely depleted by applying a gate voltage.
  • the dielectric constant of the insulating film is ⁇ OX
  • the dielectric constant of the semiconductor is ⁇ AOS
  • the Fermi level of the semiconductor is ⁇ f [eV]
  • the electron charge is q [C]
  • the oxide semiconductor thin film The average thickness t ch [m] of 3 should satisfy the relationship of the formula (2) shown below with respect to the carrier concentration N C [m ⁇ 3 ].
  • the average thickness of the oxide semiconductor thin film 3 is, for example, 20 nm from the viewpoint of the relationship between the following formula (2) and the carrier concentration described later and the control accuracy of the film thickness distribution when the oxide semiconductor thin film 3 is manufactured. It can be made 60 nm or less.
  • the cross section in the thickness direction of the oxide semiconductor thin film 3 may be tapered so as to extend toward the substrate X in order to improve the coverage of the source and drain electrodes 5.
  • a taper angle in the case of making the said oxide semiconductor thin film 3 into a taper shape 30 degrees or more and 40 degrees or less are preferable.
  • the lower limit of the carrier concentration of the oxide semiconductor thin film 3 is preferably 1 ⁇ 10 12 cm ⁇ 3, more preferably 1 ⁇ 10 13 cm ⁇ 3, and still more preferably 1 ⁇ 10 14 cm ⁇ 3 .
  • the upper limit of the carrier concentration of the oxide semiconductor thin film 3 is preferably 1 ⁇ 10 20 cm ⁇ 3, more preferably 1 ⁇ 10 19 cm ⁇ 3, and still more preferably 1 ⁇ 10 18 cm ⁇ 3 . If the carrier concentration of the oxide semiconductor thin film 3 is less than the lower limit, the drain current of the thin film transistor may be insufficient. Conversely, when the carrier concentration of the oxide semiconductor thin film 3 exceeds the upper limit, it is difficult to completely deplete the inside of the oxide semiconductor thin film 3, and therefore the threshold voltage shifts to the negative side. , May not function as a switching element.
  • the lower limit of the Hall mobility of the oxide semiconductor thin film 3 is preferably 20 cm 2 / Vs, more preferably 23cm 2 / Vs, more preferably 30 cm 2 / Vs. If the hole mobility of the oxide semiconductor thin film 3 is less than the above lower limit, the switching characteristics of the thin film transistor may be degraded.
  • the upper limit of the hole mobility of the oxide semiconductor thin film 3 is not particularly limited, but the hole mobility of the oxide semiconductor thin film 3 is usually 100 cm 2 / Vs or less. "Hole mobility” refers to carrier mobility obtained by Hall effect measurement.
  • the ESL protective film 4 is a protective film that prevents the oxide semiconductor thin film 3 from being damaged when the source and drain electrodes 5 are formed by etching and the characteristics of the thin film transistor are degraded.
  • the thin film forming the ESL protective film 4 is not particularly limited, but a silicon oxide film is suitably used.
  • the lower limit of the average thickness of the ESL protective film 4 is preferably 50 nm, more preferably 80 nm.
  • the upper limit of the average thickness of the ESL protective film 4 is preferably 250 nm, more preferably 200 nm. If the average thickness of the ESL protective film 4 is less than the above lower limit, the protective effect of the ESL protective film 4 on the oxide semiconductor thin film 3 may be insufficient. On the other hand, when the average thickness of the ESL protective film 4 exceeds the above upper limit, there is a possibility that the planarization of the passivation insulating film 6 may be difficult, or the wires from the source and drain electrodes 5 may be easily disconnected.
  • the source and drain electrodes 5 cover part of the gate insulating film 2 and the ESL protective film 4 and are electrically connected to the oxide semiconductor thin film 3 at both ends of the channel of the thin film transistor.
  • a drain current of the thin film transistor flows between the source electrode 5a and the drain electrode 5b according to the voltage between the gate electrode 1 and the source electrode 5a and the voltage between the source electrode 5a and the drain electrode 5b.
  • the thin film constituting the source and drain electrodes 5 is not particularly limited as long as it has conductivity, and for example, the same thin film as the gate electrode 1 can be used.
  • the lower limit of the average thickness of the source and drain electrodes 5 is preferably 100 nm, more preferably 150 nm.
  • the upper limit of the average thickness of the source and drain electrodes 5 is preferably 400 nm, more preferably 300 nm. If the average thickness of the source and drain electrodes 5 is less than the above lower limit, the resistance of the source and drain electrodes 5 is large, so the power consumption at the source and drain electrodes 5 may increase or disconnection may easily occur. is there. On the other hand, when the average thickness of the source and drain electrodes 5 exceeds the upper limit, planarization of the passivation insulating film 6 becomes difficult, and wiring by the conductive film 7 may become difficult.
  • the opposing distance between the source electrode 5a and the drain electrode 5b that is, the lower limit of the channel length of the thin film transistor is preferably 5 ⁇ m, and more preferably 10 ⁇ m.
  • the upper limit of the channel length of the thin film transistor is preferably 50 ⁇ m, more preferably 30 ⁇ m. If the channel length of the thin film transistor is less than the above lower limit, high-precision processing is required, which may lower the manufacturing yield. Conversely, when the channel length of the thin film transistor exceeds the upper limit, the switching time of the thin film transistor may be increased.
  • the length of the source electrode 5a and the drain electrode 5b in the channel width direction is preferably 100 ⁇ m, and more preferably 150 ⁇ m.
  • the upper limit of the channel width of the thin film transistor is preferably 300 ⁇ m, more preferably 250 ⁇ m. If the channel width of the thin film transistor is less than the above lower limit, drain current may be insufficient. On the other hand, when the channel width of the thin film transistor exceeds the upper limit, the drain current becomes excessive, which may unnecessarily increase the power consumption of the thin film transistor.
  • the passivation insulating film 6 covers the gate electrode 1, the gate insulating film 2, the oxide semiconductor thin film 3, the ESL protective film 4, the source electrode 5 a and the drain electrode 5 b to prevent the characteristics of the thin film transistor from being degraded.
  • the thin film forming the passivation insulating film 6 is not particularly limited, but a silicon nitride film which can relatively easily control the sheet resistance by the content of hydrogen is preferably used. Further, in order to further improve the controllability of the sheet resistance, the passivation insulating film 6 may have, for example, a two-layer structure of a silicon oxide film and a silicon nitride film.
  • the lower limit of the average thickness of the passivation insulating film 6 is preferably 100 nm, more preferably 250 nm.
  • the upper limit of the average thickness of the passivation insulating film 6 is preferably 500 nm, and more preferably 300 nm. If the average thickness of the passivation insulating film 6 is less than the above lower limit, the effect of preventing deterioration of the characteristics of the thin film transistor may be insufficient. On the contrary, when the average thickness of the passivation insulating film 6 exceeds the above upper limit, the passivation insulating film 6 becomes unnecessarily thick, which may cause an increase in manufacturing cost of the thin film transistor and a decrease in production efficiency.
  • the "average thickness of the passivation insulating film" refers to the average thickness of the total.
  • a contact hole 8 is opened so as to be electrically connected to the drain electrode 5b.
  • the shape and size in plan view of the contact hole 8 are not particularly limited as long as the electrical connection with the drain electrode 5b is ensured, but for example, it can be a square shape of 10 ⁇ m to 30 ⁇ m per side in plan view.
  • the conductive film 7 is connected to the drain electrode 5 b through the contact hole 8 opened in the passivation insulating film 6.
  • the conductive film 7 constitutes a wiring for obtaining a drain current from the thin film transistor.
  • the conductive film 7 is not particularly limited, and the same thin film as the gate electrode 1 can be used. Above all, a transparent conductive film suitable for display application is preferable. An ITO film, a ZnO film, etc. can be mentioned as such a transparent conductive film.
  • the position where the conductive film 7 is connected to the drain electrode 5 b is preferably a position where the drain electrode 5 b is in contact with the gate insulating film 2 and not immediately above the gate electrode 1.
  • the lower limit of the average wiring width of the conductive film 7 is preferably 5 ⁇ m, more preferably 10 ⁇ m.
  • the upper limit of the average wiring width of the conductive film 7 is preferably 50 ⁇ m, and more preferably 30 ⁇ m. If the average wiring width of the conductive film 7 is less than the above lower limit, the wiring by the conductive film 7 has high resistance, and power consumption and voltage drop in the wiring by the conductive film 7 may increase. Conversely, if the average wiring width of the conductive film 7 exceeds the upper limit, the degree of integration of the thin film transistor may be reduced.
  • the “average wire width of the conductive film” means the average width of the wire portion which is disposed on the surface of the passivation insulating film 6 in the conductive film 7 and acquires the drain current from the thin film transistor.
  • the lower limit of the average thickness of the conductive film 7 is preferably 50 nm, and more preferably 80 nm.
  • the upper limit of the average thickness of the conductive film 7 is preferably 200 nm, and more preferably 150 nm.
  • the average thickness of the conductive film 7 is less than the above lower limit, the wiring by the conductive film 7 has high resistance, and power consumption and voltage drop in the wiring by the conductive film 7 may increase.
  • the average thickness of the conductive film 7 exceeds the above upper limit, the average thickness of the conductive film 7 becomes too large with respect to the average wiring width of the wiring by the conductive film 7, and the wiring tends to be inclined. A break or a short circuit with an adjacent wiring may easily occur.
  • the “average thickness of the conductive film” means the average thickness of a portion of the conductive film 7 which is disposed on the surface of the passivation insulating film 6 and acquires the drain current from the thin film transistor.
  • the lower limit of the carrier mobility of the thin film transistor is preferably 20 cm 2 / Vs, more preferably 23cm 2 / Vs, more preferably 30 cm 2 / Vs. If the carrier mobility of the thin film transistor is less than the above lower limit, the switching characteristics of the thin film transistor may be degraded.
  • the upper limit of the carrier mobility of the thin film transistor is not particularly limited, but the carrier mobility of the thin film transistor is usually 100 cm 2 / Vs or less.
  • the threshold voltage of the thin film transistor As a lower limit of the threshold voltage of the thin film transistor, ⁇ 1 V is preferable, and 0 V is more preferable. On the other hand, 3 V is preferable and 2 V is more preferable as the upper limit of the threshold voltage of the thin film transistor. If the threshold voltage of the thin film transistor is less than the lower limit, the leakage current in the off state as a switching element in which a voltage is not applied to the gate electrode 1 becomes large, and the standby power of the thin film transistor may be too large. Conversely, when the threshold voltage of the thin film transistor exceeds the above upper limit, there is a possibility that the drain current in the on state as a switching element in which a voltage is applied to the gate electrode 1 may be insufficient.
  • the upper limit of the threshold voltage shift of the thin film transistor due to light irradiation is preferably 2 V, more preferably 1.5 V, and still more preferably 1 V.
  • the lower limit of the threshold voltage shift is preferably 0 V, that is, the threshold voltage shift does not occur.
  • the S value of the thin film transistor As an upper limit of S value (Subthreshold Swing value) of the thin film transistor, 0.7 V is preferable, and 0.5 V is more preferable. When the S value of the thin film transistor exceeds the upper limit, switching of the thin film transistor may require time.
  • the lower limit of the S value of the thin film transistor is not particularly limited, but the S value of the thin film transistor is usually 0.2 V or more.
  • the “S value” of the thin film transistor indicates the minimum value of the amount of change in gate voltage necessary to raise the drain current by one digit.
  • the thin film transistor includes, for example, a gate electrode film forming process, a gate insulating film film forming process, an oxide semiconductor thin film film forming process, an ESL protective film film forming process, a source and drain electrode film forming process, a passivation insulating film film forming process, a conductive film It can manufacture by the manufacturing method provided with the film-forming process and a post-annealing process.
  • the gate electrode 1 is formed on the surface of the substrate X.
  • a conductive film is laminated on the surface of the substrate X by a known method, for example, a sputtering method so as to have a desired thickness.
  • the conditions for laminating the conductive film by sputtering are not particularly limited.
  • the substrate temperature is 20 ° C. or more and 50 ° C. or less
  • the deposition power density is 3 W / cm 2 or more and 4 W / cm 2 or less
  • the pressure is 0.1 Pa or more
  • the condition of carrier gas Ar can be set to .4 Pa or less.
  • the conductive film is patterned to form a gate electrode 1.
  • the method of patterning is not particularly limited, but for example, a method of wet etching after photolithography can be used.
  • the cross section of the gate electrode 1 may be etched in a tapered shape extending toward the substrate X so that the coverage of the gate insulating film 2 is improved.
  • the gate insulating film 2 is formed on the surface side of the substrate X so as to cover the gate electrode 1.
  • an insulating film is laminated on the surface side of the substrate X by a known method such as various CVD methods so as to have a desired film thickness.
  • a known method such as various CVD methods
  • the substrate temperature is 300 ° C. to 400 ° C.
  • the deposition power density is 0.7 W / cm 2 to 1.3 W / cm 2
  • the pressure is 100 Pa to 300 Pa.
  • the process can be performed using a mixed gas of N 2 O and SiH 4 as a source gas.
  • the oxide semiconductor thin film 3 is formed on the surface of the gate insulating film 2 and directly on the gate electrode 1. Specifically, after an oxide semiconductor layer is stacked on the surface of the substrate X, the oxide semiconductor thin film 3 is formed by patterning the oxide semiconductor layer.
  • an oxide semiconductor layer is stacked on the surface of the substrate X by a sputtering method using, for example, a known sputtering apparatus.
  • a sputtering method By using a sputtering method, an oxide semiconductor layer excellent in in-plane uniformity of the components and the film thickness can be easily formed.
  • the sputtering target used for the sputtering method is itself another embodiment of the present invention. That is, the said sputtering target is a sputtering target used for formation of the said oxide semiconductor thin film 3, Comprising: In, Zn, and Fe are included.
  • the oxide target (IZFO target) containing In, Zn, and Fe can be mentioned specifically ,.
  • the lower limit of the number of In atoms with respect to the total number of atoms of In, Zn, and Fe in the sputtering target is 20 atm%, more preferably 29 atm%, and still more preferably 34 atm%.
  • the upper limit of the number of In atoms is 89 atm%, more preferably 81 atm%, still more preferably 80 atm%, and particularly preferably 60 atm%.
  • the lower limit of the number of atoms of Zn relative to the total number of atoms of In, Zn, and Fe is 10 atm%, more preferably 18 atm%, and still more preferably 39 atm%.
  • the upper limit of the number of Zn atoms is 79 atm%, more preferably 70 atm%, and still more preferably 65 atm%.
  • the lower limit of the number of atoms of Fe relative to the total number of atoms of In, Zn and Fe is 0.2 atm%, more preferably 0.4 atm%, and still more preferably 0.5 atm%.
  • the upper limit of the number of Fe atoms is 2 atm%, more preferably 1.8 atm%, still more preferably 1 atm%, and particularly preferably 0.9 atm%.
  • the sputtering target preferably has the same composition as a desired oxide semiconductor layer.
  • composition deviation of the oxide semiconductor layer to be formed can be suppressed, so that an oxide semiconductor layer having a desired composition can be easily obtained.
  • the sputtering target can be manufactured, for example, by a powder sintering method.
  • a sputtering target for stacking an oxide semiconductor layer is not limited to the above targets including In, Zn, and Fe, and a plurality of targets with different compositions may be used.
  • the plurality of targets are configured to include In, Zn, and Fe as a whole.
  • Each target may also contain a plurality of elements of In, Zn and Fe.
  • the plurality of targets may be an oxide target including one or more elements of In, Zn, and Fe.
  • the plurality of targets can also be manufactured, for example, by a powder sintering method. When the plurality of targets are used, a co-sputtering method in which the plurality of targets are simultaneously discharged can be used as a sputtering method.
  • the conditions for stacking the oxide semiconductor layer by sputtering are not particularly limited, and the substrate temperature is, for example, 20 ° C. to 50 ° C., film forming power density 2 W / cm 2 to 3 W / cm 2 , pressure 0.1 Pa
  • the above conditions can be 0.3 Pa or less and carrier gas Ar.
  • oxygen may be contained in the atmosphere as an oxygen source.
  • the content of oxygen in the atmosphere can be 3% by volume or more and 5% by volume or less.
  • the method for stacking the oxide semiconductor layer is not limited to the sputtering method, and a chemical film formation method such as a coating method may be used.
  • the oxide semiconductor thin film 3 is formed by patterning the oxide semiconductor layer.
  • it does not specifically limit as a method of patterning of an oxide semiconductor thin layer, For example, after performing photolithography, the method of performing wet etching can be used.
  • pre-annealing may be performed after patterning to reduce the density of trap levels of the oxide semiconductor thin film 3.
  • the threshold voltage shift due to light irradiation of the thin film transistor manufactured can be reduced.
  • pre annealing treatment As a minimum of temperature of pre annealing treatment, 300 ° C is preferred and 350 ° C is more preferred. On the other hand, as a maximum of temperature of pre annealing treatment, 450 ° C is preferred and 400 ° C is more preferred. If the temperature of the pre-annealing process is less than the above lower limit, the electrical characteristics improvement effect of the thin film transistor may be insufficient. Conversely, when the temperature of the pre-annealing process exceeds the upper limit, the oxide semiconductor thin film 3 may be damaged by heat.
  • the conditions of pressure and time of the pre-annealing process are not particularly limited, but for example, using conditions of time of 10 minutes or more and 60 minutes or less in an N 2 atmosphere at atmospheric pressure (0.9 to 1.1 atmospheres) it can.
  • the ESL protective film 4 is formed on the surface of the oxide semiconductor thin film 3 where the source and drain electrodes 5 are not formed.
  • an insulating film is laminated on the surface side of the substrate X by a known method such as various CVD methods so as to have a desired film thickness.
  • a known method such as various CVD methods
  • the substrate temperature is 100 ° C. or more and 300 ° C. or less
  • the deposition power density is 0.2 W / cm 2 or more and 0.5 W / cm 2 or less
  • the pressure is 100 Pa or more and 300 Pa or less
  • the process can be performed using a mixed gas of N 2 O and SiH 4 as a source gas.
  • Source and drain electrode film forming process In the source and drain electrode film forming step, the source electrode 5 a and the drain electrode 5 b electrically connected to the oxide semiconductor thin film 3 are formed at both ends of the channel of the thin film transistor.
  • a conductive film is laminated on the surface of the substrate X by a known method, for example, a sputtering method so as to have a desired thickness.
  • the conditions for laminating the conductive film by sputtering are not particularly limited.
  • the substrate temperature is 20 ° C. or more and 50 ° C. or less
  • the deposition power density is 3 W / cm 2 or more and 4 W / cm 2 or less
  • the pressure is 0.1 Pa or more
  • the condition of carrier gas Ar can be set to .4 Pa or less.
  • the conductive film is patterned to form the source electrode 5a and the drain electrode 5b.
  • the method of patterning is not particularly limited, but for example, a method of wet etching after photolithography can be used.
  • an insulating film is laminated on the surface side of the substrate X by a known method such as various CVD methods so as to have a desired film thickness.
  • substrate temperature is 100 ° C. or more and 200 ° C. or less
  • deposition power density is 0.2 W / cm 2 or more and 0.5 W / cm 2 or less
  • pressure 100 Pa or more and 300 Pa or less
  • the process can be performed using a mixed gas of NH 3 and SiH 4 as a source gas.
  • the contact hole 8 is formed by a known method, for example, a method of patterning a contact portion with the drain electrode 5b by photolithography and then performing dry etching.
  • a conductive film 7 electrically connected to the drain electrode 5b through the contact hole 8 is formed by a known method, for example, a sputtering method.
  • the conditions for laminating the conductive film 7 by sputtering are not particularly limited.
  • the substrate temperature is 20 ° C. or more and 50 ° C. or less
  • the deposition power density is 3 W / cm 2 or more and 4 W / cm 2 or less
  • the pressure is 0.1 Pa or more It can be set as the conditions of 0.4 Pa or less and carrier gas Ar.
  • the post-annealing process is a process of performing the final heat treatment.
  • This heat treatment can reduce the density of trap states formed at the interface between the oxide semiconductor thin film 3 and the gate insulating film 2 and at the interface between the oxide semiconductor thin film 3 and the ESL protective film 4.
  • threshold voltage shift due to light irradiation of the thin film transistor can be reduced.
  • temperature of post annealing treatment 200 ° C is preferred and 250 ° C is more preferred.
  • 400 ° C is preferred and 350 ° C is more preferred. If the temperature of the post-annealing process is less than the above lower limit, the electrical characteristics improvement effect of the thin film transistor may be insufficient. Conversely, if the temperature of the post-annealing process exceeds the upper limit, the thin film transistor may be damaged by heat.
  • the conditions of the pressure and time of a post-annealing process are not specifically limited, For example, the conditions of time of 10 minutes or more and 60 minutes or less can be used by atmospheric pressure (0.9 to 1.1 atmospheres).
  • atmosphere atmosphere although you may carry out in air
  • inert gas such as nitrogen.
  • the number of In atoms is 20 atm% or more and 89 atm% or less, and the number of Zn atoms is 10 atm% or more and 79 atm% or less with respect to the total number of atoms of In, Zn, and Fe. Since it is 0.2 atm% or more, it has high light stress tolerance. Further, since the number of atoms of Fe is set to 2 atm% or less, the carrier mobility of the thin film transistor formed using the oxide semiconductor thin film 3 is high. Furthermore, since the oxide semiconductor thin film 3 does not need to contain Ga, the manufacturing cost can be reduced.
  • the thin film transistor using the oxide semiconductor thin film 3 has a relatively low manufacturing cost and high carrier mobility and light stress resistance.
  • oxide semiconductor thin film, the thin film transistor, and the sputtering target of the present invention are not limited to the above embodiments.
  • the bottom gate type transistor as the thin film transistor may be a top gate type transistor.
  • the ESL protective film is not an essential component.
  • the oxide semiconductor thin film is not easily damaged, so the ESL protective film can be omitted.
  • the oxide semiconductor thin film did not contain metal elements other than In, Zn, and Fe substantially, you may contain the other metal element.
  • the oxide semiconductor thin film did not contain metal elements other than In, Zn, and Fe substantially, you may contain the other metal element.
  • Sn etc. can be mentioned as such a metallic element.
  • Example 1 A glass substrate ("EagleXG” manufactured by Corning, 6 inches in diameter, 0.7 mm thick) was prepared, and a Mo thin film was first formed on the surface of this glass substrate to have an average thickness of 100 nm.
  • the film forming conditions were a substrate temperature of 25 ° C. (room temperature), a film forming power density of 3.8 W / cm 2 , a pressure of 0.266 Pa, and a carrier gas Ar. After forming the Mo thin film, a gate electrode was formed by patterning.
  • a silicon oxide film having an average thickness of 250 nm was formed as a gate insulating film so as to cover the gate electrode by a CVD method.
  • a source gas a mixed gas of N 2 O and SiH 4 was used.
  • the deposition conditions were a substrate temperature of 320 ° C., a deposition power density of 0.96 W / cm 2 , and a pressure of 133 Pa.
  • an oxide semiconductor layer substantially including only In, Zn, and Fe and having an average thickness of 40 nm was formed by a sputtering method on the surface side of the glass substrate.
  • the sputtering method As the sputtering method, a method which has conventionally been established as a method of examining an optimum composition ratio was used. Specifically, three targets of In 2 O 3 mounted with In 2 O 3 , ZnO and Fe chips are disposed at different positions around the above glass substrate, and sputtering is performed on the above stationary glass substrate. By performing this, an oxide semiconductor layer was formed. According to such a method, since three targets different in constituent elements are arranged at different positions around the glass substrate, the distance from each target differs depending on the position on the glass substrate.
  • Zn is more than In at a position closer to the ZnO target and farther from the In 2 O 3 target, and conversely, the ZnO target is closer to the In 2 O 3 target There is more In than Zn at a position far from. That is, oxide semiconductor layers with different composition ratios can be obtained depending on the position on the glass substrate.
  • film forming conditions were a substrate temperature of 25 ° C. (room temperature), a film forming power density of 2.55 W / cm 2 , a pressure of 0.133 Pa, and a carrier gas Ar.
  • the oxygen content of the atmosphere was 4% by volume.
  • the obtained oxide semiconductor layer was patterned by photolithography and wet etching to form an oxide semiconductor thin film having a composition different depending on the position on the glass substrate.
  • As the wet etchant "ITO-07N” manufactured by Kanto Chemical Co., Ltd. was used.
  • a pre-annealing process was performed to improve the film quality of the oxide semiconductor thin film.
  • the conditions for the pre-annealing treatment were 60 minutes in an environment of 350 ° C. in an air atmosphere (atmospheric pressure).
  • a silicon oxide film was formed on the surface side of the glass substrate by a CVD method so as to have an average thickness of 100 nm.
  • a source gas a mixed gas of N 2 O and SiH 4 was used.
  • the deposition conditions were a substrate temperature of 230 ° C., a deposition power density of 0.32 W / cm 2 , and a pressure of 133 Pa.
  • an ESL protective film was formed by patterning.
  • an Mo thin film was formed on the surface side of the glass substrate so as to have an average thickness of 200 nm.
  • the film forming conditions were a substrate temperature of 25 ° C. (room temperature), a film forming power density of 3.8 W / cm 2 , a pressure of 0.266 Pa, and a carrier gas Ar.
  • a source electrode and a drain electrode were formed by patterning.
  • a passivation insulating film having a two-layer structure of a silicon oxide film (average thickness 100 nm) and a silicon nitride film (average thickness 150 nm) was formed on the surface side of the glass substrate by the CVD method.
  • a source gas a mixed gas of N 2 O and SiH 4 was used to form a silicon oxide film, and a mixed gas of NH 3 and SiH 4 was used to form a silicon nitride film.
  • the deposition conditions were a substrate temperature of 150 ° C., a deposition power density of 0.32 W / cm 2 , and a pressure of 133 Pa.
  • a contact hole was formed by photolithography and dry etching, and a pad for electrical connection to the drain electrode was provided. By applying a probe to this pad, electrical measurement of the thin film transistor can be performed.
  • post annealing was performed.
  • the conditions for the post-annealing treatment were 30 minutes in an environment of 250 ° C. in an N 2 atmosphere at atmospheric pressure.
  • the thin film transistor of Example 1 was obtained.
  • the channel length of this thin film transistor was 20 ⁇ m, and the channel width was 200 ⁇ m.
  • the composition of the oxide semiconductor thin film in the thin film transistor of Example 1 was as shown in Table 1.
  • Examples 2 to 15, Comparative Examples 1 to 7 The number of atoms of In, Zn and Fe with respect to the total number of atoms of In, Zn and Fe of the sputtering target used, ie, the number of atoms of In, Zn and Fe with respect to the total number of atoms of In, Zn and Fe of the oxide semiconductor thin film formed
  • the thin film transistors of Examples 2 to 15 and Comparative Examples 1 to 7 were obtained in the same manner as Example 1 except that the temperatures of pre-annealing and post-annealing were changed as shown in Table 1.
  • measurements of carrier mobility, threshold voltage and S value were all calculated from the static characteristics (Id-Vg characteristics) of the thin film transistor of the transistor.
  • the measurement of the static characteristics was performed using a semiconductor parameter analyzer ("HP4156C" manufactured by Agilent Technologies). As the measurement conditions, the source voltage was fixed at 0 V, the drain voltage was fixed at 10 V, and the gate voltage was changed from ⁇ 30 V to 30 V in 0.25 V steps. In addition, the measurement was performed at room temperature (25 degreeC). The measurement method is described below.
  • the carrier mobility was set to the field effect mobility ⁇ FE [m 2 / Vs] in the saturation region of the static characteristics.
  • the field effect mobility ⁇ FE [m 2 / Vs] is a gate voltage Vg [V], a threshold voltage Vth [V], a drain current Id [A], a channel length L [m], a channel width W [m],
  • ⁇ FE [m 2 / Vs] shown in the following equation (3). The results are shown in Table 1.
  • the threshold voltage was a value obtained by calculating the gate voltage at which the drain current of the transistor is 10 ⁇ 9 A from the static characteristics of the thin film transistor. The results are shown in Table 1.
  • S value was calculated as the minimum value of the amount of change in the gate voltage required to raise the drain current by one digit from the static characteristics. The results are shown in Table 1.
  • the threshold voltage shift is fixed at a substrate temperature of 60 ° C, with the source voltage of the thin film transistor fixed at 0 V, the drain voltage at 10 V, and the gate voltage at -10 V, and a thin film transistor white LED ("LXHL-PW01" manufactured by PHILIPS) for 2 hours It irradiated and it computed as an absolute value of the difference of the threshold voltage before and behind irradiation. The smaller this number is, the higher the light stress resistance is. The results are shown in Table 1.
  • the thin film transistors of Examples 1 to 15 have high carrier mobility and small threshold voltage shift.
  • the thin film transistors of Comparative Examples 1 to 4 are considered to have a large threshold voltage shift due to the fact that the oxide semiconductor thin film does not contain Fe, and thus the light stress resistance is inferior.
  • the carrier mobility is low because the number of atoms of Fe with respect to the total number of atoms of In, Zn and Fe in the oxide semiconductor thin film exceeds 2 atm%. Inferior to switching operation.
  • the thin film transistor of Comparative Example 7 is considered to be conductive because the oxide semiconductor thin film does not contain Fe and the number of In atoms is large relative to the total number of atoms of In, Zn, and Fe.
  • the number of In atoms is 20 atm% to 89 atm%, and the number of Zn atoms is 10 atm% to 79 atm%.
  • the number is 0.2 atm% or more and 2 atm% or less, it is understood that the carrier mobility and the light stress resistance can be enhanced.
  • the number of In atoms is 34 atm% to 80 atm%, the number of Zn atoms is 18 atm% to 65 atm%, and the number of Fe atoms is 0.2 atm% to 1.8 atm% with respect to the total number of In, Zn, and Fe atoms.
  • the carrier mobility is 23 cm 2 / Vs or more in any of the examples.
  • the carrier mobility is less than 23 cm 2 / Vs.
  • the carrier transfer is achieved by setting the number of In atoms to 34 atm% to 80 atm%, the number of Zn atoms to 18 atm% to 65 atm%, and the number of Fe atoms to 0.2 atm% to 1.8 atm%. It can be seen that the degree can be improved.
  • the embodiment includes an oxide semiconductor thin film in which the number of In atoms is 34 atm to 60 atm%, the number of Zn atoms is 39 to 65 atm%, and the number of Fe atoms is 0.2 to 0.9 atm%.
  • the threshold voltage shift is 1 V or less in any of the examples.
  • the threshold voltage shift is 1.25 V (Examples 11 and 15).
  • the light stress is achieved by setting the number of In atoms to 34 atm to 60 atm%, the number of Zn atoms to 39 to 65 atm%, and the number of Fe atoms to 0.2 to 0.9 atm%. It can be seen that the resistance can be improved and the performance stability of the thin film transistor can be enhanced.
  • the thin film transistor using the oxide semiconductor thin film has a relatively low manufacturing cost, and has high carrier mobility and high light stress resistance. Therefore, the thin film transistor can be suitably used for, for example, a next-generation large display which requires high speed.
  • an oxide semiconductor thin film with relatively low manufacturing cost and high carrier mobility and light stress tolerance can be formed.

Abstract

本発明は製造コストが比較的低く、薄膜トランジスタを形成した際のキャリア移動度及び光ストレス耐性が高い酸化物半導体薄膜、この酸化物半導体薄膜を用いた薄膜トランジスタの提供を目的とする。本発明の酸化物半導体薄膜は、In、Zn及びFeを含み、In、Zn及びFeの合計原子数に対し、Inの原子数が20atm%以上89atm%以下、Znの原子数が10atm%以上79atm%以下、Feの原子数が0.2atm%以上2atm%以下である。本発明は、当該酸化物半導体薄膜を有する薄膜トランジスタを含む。

Description

酸化物半導体薄膜、薄膜トランジスタ及びスパッタリングターゲット
 本発明は、酸化物半導体薄膜、薄膜トランジスタ及びスパッタリングターゲットに関する。
 アモルファス酸化物半導体は、例えばアモルファスシリコン半導体に比べて薄膜トランジスタ(Thin Film Transistor:TFT)を形成した際のキャリア移動度が高い。また、アモルファス酸化物半導体は光学バンドギャップが大きく、可視光の透過性が高い。さらに、アモルファス酸化物半導体の薄膜は、アモルファスシリコン半導体よりも低温で成膜することができる。これらの特徴を活かして、アモルファス酸化物半導体薄膜は、高解像度で高速駆動できる次世代の大型ディスプレイや、低温での成膜が要求される樹脂基板を用いた可撓性ディスプレイへの応用が期待されている。
 このようなアモルファス酸化物半導体薄膜としては、インジウム、ガリウム、亜鉛及び酸素を含むIn-Ga-Zn-O(IGZO)アモルファス酸化物半導体薄膜が公知である(例えば特開2010-219538号公報参照)。アモルファスシリコン半導体を用いた薄膜トランジスタのキャリア移動度が0.5cm/Vs程度であるのに対し、上記公報に記載のIGZOアモルファス酸化物半導体薄膜を用いたTFTは、1cm/Vs以上の移動度を有する。
 さらに移動度の向上したアモルファス酸化物半導体薄膜として、インジウム、ガリウム、亜鉛及びスズを含む酸化物半導体薄膜が公知である(例えば特開2010-118407号公報参照)。上記公報に記載のIn-Ga-Zn-Snアモルファス酸化物半導体薄膜を用いたTFTでは、チャネル長1000μmでそのキャリア移動度が20cm/Vsを超える。しかしながら、チャネル長が短いTFTではキャリア移動度が低下する傾向にあり、高速性が要求される例えば次世代の大型ディスプレイに用いるためには、低チャネル領域でのキャリア移動度が不足するおそれがある。
 また、これらのアモルファス酸化物半導体は、希少元素であるガリウム(Ga)を含むため、比較的製造コストが高い。このため、Gaを含まない酸化物半導体が求められている。
 さらに、薄膜トランジスタに用いられるアモルファス酸化物半導体薄膜をディスプレイに用いるためには、薄膜トランジスタに対して光の照射を行っても継時的な閾値電圧のシフトが少ない、いわゆる光ストレス耐性が高いことが望まれている。
特開2010-219538号公報 特開2010-118407号公報
 本発明は、上述のような事情に基づいてなされたものであり、製造コストが比較的低く、薄膜トランジスタを形成した際のキャリア移動度及び光ストレス耐性が高い酸化物半導体薄膜、この酸化物半導体薄膜を用いた薄膜トランジスタ、及びこの酸化物半導体薄膜を形成するためのスパッタリングターゲットの提供を目的とする。
 本発明者らは、酸化物半導体薄膜に鉄(Fe)を所定量含めることで、Gaを含まなくとも高いキャリア移動度と、光ストレス耐性とを有する酸化物半導体薄膜が得られることを見出し、本発明を完成させた。
 すなわち、上記課題を解決するためになされた発明は、In、Zn及びFeを含み、In、Zn及びFeの合計原子数に対し、Inの原子数が20atm%以上89atm%以下、Znの原子数が10atm%以上79atm%以下、Feの原子数が0.2atm%以上2atm%以下である酸化物半導体薄膜である。
 当該酸化物半導体薄膜は、In及びZnの原子数を上記範囲内とし、Feの原子数を上記下限以上とするので、高い光ストレス耐性を有する。また、当該酸化物半導体薄膜は、Feの原子数を上記上限以下とするので、当該酸化物半導体薄膜を用いて薄膜トランジスタを形成した際のキャリア移動度を高められる。さらに、当該酸化物半導体薄膜は、Gaを含む必要がないので、製造コストを低減できる。
 当該酸化物半導体薄膜は、In、Zn及びFeの合計原子数に対し、Inの原子数が34atm%以上80atm%以下、Znの原子数が18atm%以上65atm%以下、Feの原子数が0.2atm%以上1.8atm%以下であることが好ましい。当該酸化物半導体薄膜は、In及びZnの原子数を上記範囲内とし、Feの原子数を上記下限以上とするので、高い光ストレス耐性を有する。また、当該酸化物半導体薄膜は、Feの原子数を上記上限以下とするので、当該酸化物半導体薄膜を用いて薄膜トランジスタを形成した際のキャリア移動度をさらに高められる。
 当該酸化物半導体薄膜は、In、Zn及びFeの合計原子数に対し、Inの原子数が34atm%以上60atm%以下、Znの原子数が39atm%以上65atm%以下、Feの原子数が0.2atm%以上0.9atm%以下であることがさらに好ましい。当該酸化物半導体薄膜は、In及びZnの原子数を上記範囲内とし、Feの原子数を上記下限以上とするので、さらに高い光ストレス耐性を有する。また、当該酸化物半導体薄膜は、Feの原子数を上記上限以下とするので、当該酸化物半導体薄膜を用いて薄膜トランジスタを形成した際のキャリア移動度をさらに高められる。
 本発明は、当該酸化物半導体薄膜を有する薄膜トランジスタを含む。当該薄膜トランジスタは、当該酸化物半導体薄膜を有するので、製造コストが比較的低く、キャリア移動度及び光ストレス耐性が高い。
 当該薄膜トランジスタの光照射による閾値電圧シフトとしては、2V以下が好ましい。上記閾値電圧シフトを上記下限以下とすることで、薄膜トランジスタの性能安定性を高めることができる。
 当該薄膜トランジスタのキャリア移動度としては、20cm/Vs以上が好ましい。上記キャリア移動度を上記下限以上とすることで、高速性が要求される例えば次世代の大型ディスプレイに好適に用いることができる。
 上記課題を解決するためになされた別の発明は、酸化物半導体薄膜の形成に用いられるスパッタリングターゲットであって、In、Zn及びFeを含み、In、Zn及びFeの合計原子数に対し、Inの原子数が20atm%以上89atm%以下、Znの原子数が10atm%以上79atm%以下、Feの原子数が0.2atm%以上2atm%以下である。
 当該スパッタリングターゲットは原子数が上記範囲内のIn、Zn及びFeを含むので、当該スパッタリングターゲットを用いて酸化物半導体薄膜を成膜することで、製造コストが比較的低く、キャリア移動度及び光ストレス耐性が高い薄膜トランジスタを製造することができる。
 ここで、「キャリア移動度」とは、薄膜トランジスタの飽和領域での電界効果移動度を表し、「電界効果移動度」とは、ゲート電圧Vg[V]、閾値電圧Vth[V]、ドレイン電流Id[A]、チャネル長L[m]、チャネル幅W[m]、ゲート絶縁膜の容量Cox[F]とするとき、薄膜トランジスタの電流-電圧特性の飽和領域(Vg>Vd-Vth)において、以下の式(1)に示すμFE[m/Vs]により求められる値を指す。
Figure JPOXMLDOC01-appb-M000001
 なお、薄膜トランジスタの「閾値電圧」とは、トランジスタのドレイン電流が10-9Aとなるゲート電圧を指す。
 また、「光照射による閾値電圧シフト」とは、基板温度60℃で、薄膜トランジスタのソース-ドレイン間に10V、ゲート-ソース間に-10Vの電圧条件で、薄膜トランジスタに白色LEDを2時間照射した際の照射前後の閾値電圧の差の絶対値を指す。
 以上説明したように、当該酸化物半導体薄膜を用いた薄膜トランジスタは、製造コストが比較的低く、キャリア移動度及び光ストレス耐性が高い。また、当該スパッタリングターゲットを用いることで、製造コストが比較的低く、キャリア移動度及び光ストレス耐性が高い酸化物半導体薄膜を形成できる。
基板表面に形成された本発明の一実施形態の薄膜トランジスタを示す模式的断面図である。
 以下、本発明の実施の形態を適宜図面を参照しつつ詳説する。
[薄膜トランジスタ]
 図1に示す当該薄膜トランジスタは、例えば次世代の大型ディスプレイや可撓性ディスプレイ等の表示装置の製造に用いることができる。当該薄膜トランジスタは、基板Xの表面に形成されたボトムゲート型のトランジスタである。当該薄膜トランジスタは、ゲート電極1、ゲート絶縁膜2、酸化物半導体薄膜3、ESL(Etch Stop Layer)保護膜4、ソース及びドレイン電極5、パッシベーション絶縁膜6、並びに導電膜7を有する。
(基板)
 基板Xとしては、特に限定されないが、例えば表示装置に用いられる基板を挙げることができる。このような基板Xとしては、ガラス基板やシリコーン樹脂基板等の透明基板を挙げることができる。上記ガラス基板に用いられるガラスとしては、特に限定されず、例えば無アルカリガラス、高歪点ガラス、ソーダライムガラス等を挙げることができる。また、基板Xとしてステンレス薄膜等の金属基板、ポリエチレンテレフタレート(PET)フィルム等の樹脂基板を用いることもできる。
 基板Xの平均厚さは、加工性の観点から0.3mm以上1.0mm以下が好ましい。また、基板Xの大きさ及び形状は、使用される表示装置等の大きさや形状に応じて適宜決定される。
(ゲート電極)
 ゲート電極1は、基板Xの表面に形成され、導電性を有する。ゲート電極1を構成する薄膜としては、特に限定されないが、Al合金やAl合金の表面にMo、Cu、Tiなどの薄膜や合金膜を積層したものを用いることができる。
 ゲート電極1の形状としては、特に限定されないが、チャネル長及びチャネル幅の制御性の観点から、当該薄膜トランジスタのチャネル長方向及びチャネル幅方向を縦横とする平面視方形状が好ましい。ゲート電極1の大きさとしては、当該薄膜トランジスタのチャネル長及びチャネル幅を確保できる大きさであればよい。ここで、薄膜トランジスタのチャネル長方向とは、当該薄膜トランジスタのソース電極5a及びドレイン電極5bの対向方向である。また、当該薄膜トランジスタのチャネル幅方向とは、当該薄膜トランジスタのチャネル長方向に直交し、かつ基板Xの表面に平行な方向である。
 ゲート電極1の平均厚さの下限としては、50nmが好ましく、170nmがより好ましい。一方、ゲート電極1の平均厚さの上限としては、500nmが好ましく、400nmがより好ましい。ゲート電極1の平均厚さが上記下限未満であると、ゲート電極1の抵抗が大きいため、ゲート電極1での電力消費が増大するおそれや断線が発生し易くなるおそれがある。逆に、ゲート電極1の平均厚さが上記上限を超えると、ゲート電極1の表面側に積層されるゲート絶縁膜2等の平坦化が困難となり、当該薄膜トランジスタの特性が悪化するおそれがある。
 なお、ゲート絶縁膜2のカバレッジをよくするため、ゲート電極1の厚さ方向の断面は、基板Xに向かって拡張するテーパー状とするとよい。ゲート電極1をテーパー状とする場合のテーパー角度としては、30°以上40°以下が好ましい。
(ゲート絶縁膜)
 ゲート絶縁膜2は、ゲート電極1を覆うように基板Xの表面側に積層される。ゲート絶縁膜2を構成する薄膜としては、特に限定されないが、シリコン酸化膜、シリコン窒化膜、シリコン酸窒化膜、AlやY等の金属酸化物膜などが挙げられる。また、ゲート絶縁膜2は、これら薄膜の単層構造であってもよく、2種以上の薄膜を積層した多層構造であってもよい。
 ゲート絶縁膜2の形状はゲート電極1が被覆される限り限定されず、例えばゲート絶縁膜2が基板X全面を覆ってもよい。
 ゲート絶縁膜2の平均厚さの下限としては、50nmが好ましく、100nmがより好ましい。また、ゲート絶縁膜2の平均厚さの上限としては、300nmが好ましく、250nmがより好ましい。ゲート絶縁膜2の平均厚さが上記下限未満であると、ゲート絶縁膜2の耐圧が不足し、ゲート電圧の印加によりゲート絶縁膜2がブレークダウンするおそれがある。逆に、ゲート絶縁膜2の平均厚さが上記上限を超えると、ゲート電極1と当該酸化物半導体薄膜3との間に形成されるキャパシタの容量が不足し、ドレイン電流が不十分となるおそれがある。なお、ゲート絶縁膜2が多層構造である場合、「ゲート絶縁膜の平均厚さ」とは、その合計の平均厚さを指す。
(酸化物半導体薄膜)
 当該酸化物半導体薄膜3は、それ自体が本発明の別の実施形態である。当該酸化物半導体薄膜3は、In、Zn及びFeを含む。当該酸化物半導体薄膜3は、金属元素としてIn、Zn及びFe以外に不可避的不純物を含む。すなわち、当該酸化物半導体薄膜3は、実質的にIn、Zn及びFe以外の金属元素を含まない。
 In、Zn及びFeの合計原子数に対するInの原子数の下限としては、20atm%であり、29atm%がより好ましく、34atm%がさらに好ましい。一方、上記Inの原子数の上限としては、89atm%であり、81atm%がより好ましく、80atm%がさらに好ましく、60atm%が特に好ましい。上記Inの原子数が上記下限未満であると、当該薄膜トランジスタのキャリア移動度が低下するおそれがある。逆に、上記Inの原子数が上記上限を超えると、当該酸化物半導体薄膜3のリーク電流が増大したり、閾値電圧が負側へシフトしたりするため、当該酸化物半導体薄膜3が導体化するおそれがある。
 In、Zn及びFeの合計原子数に対するZnの原子数の下限としては、10atm%であり、18atm%がより好ましく、39atm%がさらに好ましい。一方、上記Znの原子数の上限としては、79atm%であり、70atm%がより好ましく、65atm%がさらに好ましい。上記Znの原子数が上記下限未満であると、他の金属原子数が相対的に多くなるため、導体化するおそれがある。逆に、上記Znの原子数が上記上限を超えると、キャリア濃度が抑制され、当該薄膜トランジスタのキャリア移動度が低下するおそれがある。
 In、Zn及びFeの合計原子数に対するFeの原子数の下限としては、0.2atm%であり、0.4atm%がより好ましく、0.5atm%がさらに好ましい。一方、上記Feの原子数の上限としては、2atm%であり、1.8atm%がより好ましく、1atm%がさらに好ましく、0.9atm%が特に好ましい。上記Feの原子数が上記下限未満であると、光照射による閾値電圧シフトが大きくなるおそれがある。逆に、上記Feの原子数が上記上限を超えると、キャリア濃度が抑制され、当該薄膜トランジスタのキャリア移動度が低下するおそれがある。
 当該酸化物半導体薄膜3は、In、Zn及びFeの合計原子数に対し、Inの原子数が34atm%以上81atm%以下、Znの原子数が18atm%以上65atm%以下、Feの原子数が0.2atm%以上1.8atm%以下であることが好ましい。当該酸化物半導体薄膜3は、In及びZnの原子数を上記範囲内とし、Feの原子数を上記下限以上とするので、高い光ストレス耐性を有する。また、当該酸化物半導体薄膜3は、Feの原子数を上記上限以下とするので、当該酸化物半導体薄膜3を用いて薄膜トランジスタを形成した際のキャリア移動度をさらに高められる。
 当該酸化物半導体薄膜3は、In、Zn及びFeの合計原子数に対し、Inの原子数が34atm%以上80atm%以下、Znの原子数が18atm%以上65atm%以下、Feの原子数が0.4atm%以上1.8atm%以下であることが好ましい。当該酸化物半導体薄膜3は、In及びZnの原子数を上記範囲内とし、Feの原子数を上記下限以上とするので、高い光ストレス耐性を有する。また、当該酸化物半導体薄膜3は、Feの原子数を上記上限以下とするので、当該酸化物半導体薄膜3を用いて薄膜トランジスタを形成した際のキャリア移動度をさらに高められる。
 当該酸化物半導体薄膜3は、In、Zn及びFeの合計原子数に対し、Inの原子数が34atm%以上60atm%以下、Znの原子数が39atm%以上65atm%以下、Feの原子数が0.2atm%以上1atm%以下であることがさらに好ましい。当該酸化物半導体薄膜3は、In及びZnの原子数を上記範囲内とし、Feの原子数を上記下限以上とするので、さらに高い光ストレス耐性を有する。また、当該酸化物半導体薄膜3は、Feの原子数を上記上限以下とするので、当該酸化物半導体薄膜3を用いて薄膜トランジスタを形成した際のキャリア移動度をさらに高められる。
 当該酸化物半導体薄膜3は、In、Zn及びFeの合計原子数に対し、Inの原子数が34atm%以上60atm%以下、Znの原子数が39atm%以上65atm%以下、Feの原子数が0.5atm%以上0.9atm%以下であることがさらに好ましい。当該酸化物半導体薄膜3は、In及びZnの原子数を上記範囲内とし、Feの原子数を上記下限以上とするので、さらに高い光ストレス耐性を有する。また、当該酸化物半導体薄膜3は、Feの原子数を上記上限以下とするので、当該酸化物半導体薄膜3を用いて薄膜トランジスタを形成した際のキャリア移動度をさらに高められる。
 当該酸化物半導体薄膜3の平面視形状としては、特に限定されないが、当該薄膜トランジスタのチャネル長及びチャネル幅の制御性の観点から、ゲート電極1と同様の形状が好ましい。当該酸化物半導体薄膜3の平面視の大きさとしては、当該薄膜トランジスタのチャネル長及びチャネル幅を確保できる大きさであればよい。
 また、当該酸化物半導体薄膜3の平面視の大きさは、当該酸化物半導体薄膜3をゲート電極1の直上に確実に配設させるため、ゲート電極1の平面視の大きさより小さいことが好ましい。当該酸化物半導体薄膜3とゲート電極1とのチャネル方向及びチャネル幅方向の辺の長さの差の下限としては、2nmが好ましく、4nmがより好ましい。一方、上記辺の長さの差の上限としては、10nmが好ましく、8nmがより好ましい。上記辺の長さの差が上記下限未満であると、パターニングのずれ等により当該酸化物半導体薄膜3の一部がゲート電極1の直上から外れ、その結果当該酸化物半導体薄膜3の平坦性が悪化し、当該薄膜トランジスタの特性が悪化するおそれがある。逆に、上記辺の長さの差が上記上限を超えると、当該薄膜トランジスタが不要に大きくなるおそれがある。
 当該酸化物半導体薄膜3の平均厚さは、スイッチング素子として用いる場合にドレイン電流をオフ状態とできる条件から決めることができる。具体的には、ゲート電圧を印加することで当該酸化物半導体薄膜3の内部が完全に空乏化されるとよい。このためには、絶縁膜の誘電率をεOX、半導体の誘電率をεAOS、半導体のフェルミ準位をφ[eV]、電子電荷をq[C]とするとき、当該酸化物半導体薄膜3の平均厚さtch[m]は、キャリア濃度N[m-3]に対して、以下に示す式(2)の関係を満たすとよい。下記式(2)と後述するキャリア濃度との関係、及び当該酸化物半導体薄膜3を製造する際の膜厚分布の制御精度の観点から、当該酸化物半導体薄膜3の平均厚さは、例えば20nm以上60nm以下とできる。
Figure JPOXMLDOC01-appb-M000002
 なお、ソース及びドレイン電極5のカバレッジをよくするため、当該酸化物半導体薄膜3の厚さ方向の断面は、基板Xに向かって拡張するテーパー状とするとよい。当該酸化物半導体薄膜3をテーパー状とする場合のテーパー角度としては、30°以上40°以下が好ましい。
 当該酸化物半導体薄膜3のキャリア濃度の下限としては、1×1012cm-3が好ましく、1×1013cm-3がより好ましく、1×1014cm-3がさらに好ましい。一方、当該酸化物半導体薄膜3のキャリア濃度の上限としては、1×1020cm-3が好ましく、1×1019cm-3がより好ましく、1×1018cm-3がさらに好ましい。当該酸化物半導体薄膜3のキャリア濃度が上記下限未満であると、当該薄膜トランジスタのドレイン電流が不足するおそれがある。逆に、当該酸化物半導体薄膜3のキャリア濃度が上記上限を超えると、当該酸化物半導体薄膜3の内部を完全に空乏化することが困難となるため、閾値電圧がマイナス側にシフトしてしまい、スイッチング素子として機能しないおそれがある。
 当該酸化物半導体薄膜3のホール移動度の下限としては、20cm/Vsが好ましく、23cm/Vsがより好ましく、30cm/Vsがより好ましい。当該酸化物半導体薄膜3のホール移動度が上記下限未満であると、当該薄膜トランジスタのスイッチング特性が低下するおそれがある。一方、当該酸化物半導体薄膜3のホール移動度の上限は、特に限定されないが、通常当該酸化物半導体薄膜3のホール移動度は100cm/Vs以下である。「ホール移動度」とは、ホール効果測定により得られるキャリア移動度を指す。
(ESL保護膜)
 ESL保護膜4は、ソース及びドレイン電極5をエッチングにより形成する際に当該酸化物半導体薄膜3が損傷を受けて当該薄膜トランジスタの特性が低下することを抑止する保護膜である。ESL保護膜4を構成する薄膜としては、特に限定されないが、シリコン酸化膜が好適に用いられる。
 ESL保護膜4の平均厚さの下限としては、50nmが好ましく、80nmがより好ましい。一方、ESL保護膜4の平均厚さの上限としては、250nmが好ましく、200nmがより好ましい。ESL保護膜4の平均厚さが上記下限未満である場合、ESL保護膜4の当該酸化物半導体薄膜3の保護効果が不足するおそれがある。逆に、ESL保護膜4の平均厚さが上記上限を超える場合、パッシベーション絶縁膜6の平坦化が困難となるおそれや、ソース及びドレイン電極5からの配線が断線し易くなるおそれがある。
(ソース及びドレイン電極)
 ソース及びドレイン電極5は、ゲート絶縁膜2及びESL保護膜4の一部を覆うと共に、当該薄膜トランジスタのチャネルの両端で当該酸化物半導体薄膜3と電気的に接続する。このソース電極5a及びドレイン電極5bの間には、ゲート電極1及びソース電極5a間の電圧並びにソース電極5a及びドレイン電極5b間の電圧に応じて、当該薄膜トランジスタのドレイン電流が流れる。
 ソース及びドレイン電極5を構成する薄膜としては、導電性を有する限り特に限定されず、例えばゲート電極1と同様の薄膜を用いることができる。
 ソース及びドレイン電極5の平均厚さの下限としては、100nmが好ましく、150nmがより好ましい。一方、ソース及びドレイン電極5の平均厚さの上限としては、400nmが好ましく、300nmがより好ましい。ソース及びドレイン電極5の平均厚さが上記下限未満であると、ソース及びドレイン電極5の抵抗が大きいため、ソース及びドレイン電極5での電力消費が増大するおそれや断線が発生し易くなるおそれがある。逆に、ソース及びドレイン電極5の平均厚さが上記上限を超えると、パッシベーション絶縁膜6の平坦化が困難となり、導電膜7による配線が困難となるおそれがある。
 ソース電極5a及びドレイン電極5bの対向距離、すなわち当該薄膜トランジスタのチャネル長の下限としては、5μmが好ましく、10μmがより好ましい。一方、当該薄膜トランジスタのチャネル長の上限としては、50μmが好ましく、30μmがより好ましい。当該薄膜トランジスタのチャネル長が上記下限未満であると、精度の高い加工が必要となり、製造歩留まりが低下するおそれがある。逆に、当該薄膜トランジスタのチャネル長が上記上限を超えると、当該薄膜トランジスタのスイッチング時間が長くなるおそれがある。
 ソース電極5a及びドレイン電極5bのチャネル幅方向の長さ、すなわち当該薄膜トランジスタのチャネル幅の下限としては、100μmが好ましく、150μmがより好ましい。一方、当該薄膜トランジスタのチャネル幅の上限としては、300μmが好ましく、250μmがより好ましい。当該薄膜トランジスタのチャネル幅が上記下限未満であると、ドレイン電流が不足するおそれがある。逆に、当該薄膜トランジスタのチャネル幅が上記上限を超えると、ドレイン電流が過剰となり、当該薄膜トランジスタの消費電力が不要に増大するおそれがある。
(パッシベーション絶縁膜)
 パッシベーション絶縁膜6は、ゲート電極1、ゲート絶縁膜2、当該酸化物半導体薄膜3、ESL保護膜4、ソース電極5a及びドレイン電極5bを覆い、当該薄膜トランジスタの特性が劣化することを防ぐ。パッシベーション絶縁膜6を構成する薄膜としては、特に限定されないが、水素の含有量により比較的シート抵抗の制御が容易であるシリコン窒化膜が好適に用いられる。また、シート抵抗の制御性をさらに高めるためにパッシベーション絶縁膜6は、例えばシリコン酸化膜とシリコン窒化膜との2層構造としてもよい。
 パッシベーション絶縁膜6の平均厚さの下限としては、100nmが好ましく、250nmがより好ましい。一方、パッシベーション絶縁膜6の平均厚さの上限としては、500nmが好ましく、300nmがより好ましい。パッシベーション絶縁膜6の平均厚さが上記下限未満であると、当該薄膜トランジスタの特性の劣化防止効果が不足するおそれがある。逆に、パッシベーション絶縁膜6の平均厚さが上記上限を超えると、パッシベーション絶縁膜6が不要に厚くなり、当該薄膜トランジスタの製造コストの上昇や生産効率の低下が発生するおそれがある。なお、パッシベーション絶縁膜6が多層構造である場合、「パッシベーション絶縁膜の平均厚さ」とは、その合計の平均厚さを指す。
 また、パッシベーション絶縁膜6には、ドレイン電極5bと電気的に接続できるようにコンタクトホール8が開けられている。コンタクトホール8の平面視形状及び大きさはドレイン電極5bとの電気的な接続が確保される限り特に限定されないが、例えば平面視で1辺10μm以上30μm以下の方形状とすることができる。
(導電膜)
 導電膜7は、パッシベーション絶縁膜6に開けられたコンタクトホール8を介してドレイン電極5bに接続される。この導電膜7により当該薄膜トランジスタからドレイン電流を取得する配線が構成される。
 導電膜7としては、特に限定されず、ゲート電極1と同様の薄膜を用いることができる。中でもディスプレイへの応用に好適な透明導電膜が好ましい。このような透明導電膜としてはITO膜、ZnO膜等を挙げることができる。
 導電膜7がドレイン電極5bと接続する位置としては、ドレイン電極5bがゲート絶縁膜2と接する位置であって、ゲート電極1の直上ではない位置が好ましい。導電膜7をこのような位置でドレイン電極5bと接続することで、導電膜7とドレイン電極5bとの接続部分の平坦性が高まるため、接触抵抗の増大を抑止できる。
 導電膜7の平均配線幅の下限としては、5μmが好ましく、10μmがより好ましい。一方、導電膜7の平均配線幅の上限としては、50μmが好ましく、30μmがより好ましい。導電膜7の平均配線幅が上記下限未満であると、導電膜7による配線が高抵抗となり、導電膜7による配線での消費電力や電圧降下が増大するおそれがある。逆に、導電膜7の平均配線幅が上記上限を超えると、当該薄膜トランジスタの集積度が低下するおそれがある。ここで、「導電膜の平均配線幅」とは、導電膜7のうちパッシベーション絶縁膜6の表面に配設され、当該薄膜トランジスタからドレイン電流を取得する配線部分の平均幅を意味する。
 導電膜7の平均厚さの下限としては、50nmが好ましく、80nmがより好ましい。一方、導電膜7の平均厚さの上限としては、200nmが好ましく、150nmがより好ましい。導電膜7の平均厚さが上記下限未満であると、導電膜7による配線が高抵抗となり、導電膜7による配線での消費電力や電圧降下が増大するおそれがある。逆に、導電膜7の平均厚さが上記上限を超えると、導電膜7による配線の平均配線幅に対して導電膜7の平均厚さが大きくなり過ぎるため、配線が傾き易く、配線自身の断線や隣接する配線との短絡が発生し易くなるおそれがある。ここで、「導電膜の平均厚さ」とは、導電膜7のうちパッシベーション絶縁膜6の表面に配設され、当該薄膜トランジスタからドレイン電流を取得する配線部分の平均厚さを意味する。
(薄膜トランジスタの特性)
 当該薄膜トランジスタのキャリア移動度(電子移動度)の下限としては、20cm/Vsが好ましく、23cm/Vsがより好ましく、30cm/Vsがさらに好ましい。当該薄膜トランジスタのキャリア移動度が上記下限未満であると、当該薄膜トランジスタのスイッチング特性が低下するおそれがある。一方、当該薄膜トランジスタのキャリア移動度の上限としては、特に限定されないが、通常当該薄膜トランジスタのキャリア移動度は100cm/Vs以下である。
 当該薄膜トランジスタの閾値電圧の下限としては、-1Vが好ましく、0Vがより好ましい。一方、当該薄膜トランジスタの閾値電圧の上限としては、3Vが好ましく、2Vがより好ましい。当該薄膜トランジスタの閾値電圧が上記下限未満であると、ゲート電極1に電圧を印加しないスイッチング素子としてのオフ状態におけるリーク電流が大きくなり、当該薄膜トランジスタの待機電力が大きくなり過ぎるおそれがある。逆に、当該薄膜トランジスタの閾値電圧が上記上限を超えると、ゲート電極1に電圧を印加したスイッチング素子としてのオン状態におけるドレイン電流が不足するおそれがある。
 当該薄膜トランジスタの光照射による閾値電圧シフトの上限としては、2Vが好ましく、1.5Vがより好ましく、1Vがさらに好ましい。上記閾値電圧シフトが上記上限を超えると、当該薄膜トランジスタを表示装置に用いた場合、当該薄膜トランジスタの性能が安定せず、必要なスイッチング特性が得られないおそれがある。上記閾値電圧シフトの下限としては、0V、すなわち上記閾値電圧シフトが発生しないことが好ましい。
 当該薄膜トランジスタのS値(Subthreshold Swing値)の上限としては、0.7Vが好ましく、0.5Vがより好ましい。当該薄膜トランジスタのS値が上記上限を超える場合、当該薄膜トランジスタのスイッチングに時間を要するおそれがある。一方、当該薄膜トランジスタのS値の下限としては、特に限定されないが、通常当該薄膜トランジスタのS値は0.2V以上である。ここで、薄膜トランジスタの「S値」とは、ドレイン電流を1桁上昇させるのに必要なゲート電圧の変化量の最小値を指す。
[薄膜トランジスタの製造方法]
 当該薄膜トランジスタは、例えばゲート電極成膜工程、ゲート絶縁膜成膜工程、酸化物半導体薄膜成膜工程、ESL保護膜成膜工程、ソース及びドレイン電極成膜工程、パッシベーション絶縁膜成膜工程、導電膜成膜工程及びポストアニール処理工程を備える製造方法により製造することができる。
<ゲート電極成膜工程>
 ゲート電極成膜工程では、基板Xの表面にゲート電極1を成膜する。
 具体的には、まず基板Xの表面に公知の方法、例えばスパッタリング法により導電膜を所望の膜厚となるように積層する。スパッタリング法により導電膜を積層する際の条件としては、特に限定されないが、例えば基板温度20℃以上50℃以下、成膜パワー密度3W/cm以上4W/cm以下、圧力0.1Pa以上0.4Pa以下、キャリアガスArの条件とすることができる。
 次に、この導電膜をパターニングすることにより、ゲート電極1を形成する。パターニングの方法としては、特に限定されないが、例えばフォトリソグラフィを行った後に、ウエットエッチングを行う方法を用いることができる。このとき、ゲート絶縁膜2のカバレッジがよくなるように、ゲート電極1の断面を基板Xに向かって拡張するテーパー状にエッチングするとよい。
<ゲート絶縁膜成膜工程>
 ゲート絶縁膜成膜工程では、ゲート電極1を覆うように基板Xの表面側にゲート絶縁膜2を成膜する。
 具体的には、まず基板Xの表面側に公知の方法、例えば各種CVD法により絶縁膜を所望の膜厚となるように積層する。例えばプラズマCVD法によりシリコン酸化膜を積層する場合であれば、基板温度300℃以上400℃以下、成膜パワー密度0.7W/cm以上1.3W/cm以下、圧力100Pa以上300Pa以下の条件とし、原料ガスとしてNOとSiHとの混合ガスを用いて行うことができる。
<酸化物半導体薄膜成膜工程>
 酸化物半導体薄膜成膜工程では、ゲート絶縁膜2の表面で、かつゲート電極1の直上に当該酸化物半導体薄膜3を成膜する。具体的には、基板Xの表面に酸化物半導体層を積層した後、この酸化物半導体層をパターニングすることにより、当該酸化物半導体薄膜3を形成する。
(酸化物半導体層の積層)
 具体的には、まず例えば公知のスパッタリング装置を用いて、スパッタリング法により基板Xの表面に酸化物半導体層を積層する。スパッタリング法を用いることで、その成分や膜厚の面内均一性に優れた酸化物半導体層を容易に形成することができる。
 スパッタリング法に用いるスパッタリングターゲットは、それ自体が本発明の別の実施形態である。すなわち、上記スパッタリングターゲットは、当該酸化物半導体薄膜3の形成に用いられるスパッタリングターゲットであって、In、Zn及びFeを含む。当該スパッタリングターゲットとしては、具体的には、In、Zn及びFeを含む酸化物ターゲット(IZFOターゲット)を挙げることができる。
 当該スパッタリングターゲットのIn、Zn及びFeの合計原子数に対するInの原子数の下限としては、20atm%であり、29atm%がより好ましく、34atm%がさらに好ましい。一方、上記Inの原子数の上限としては、89atm%であり、81atm%がより好ましく、80atm%がさらに好ましく、60atm%が特に好ましい。また、In、Zn及びFeの合計原子数に対するZnの原子数の下限としては、10atm%であり、18atm%がより好ましく、39atm%がさらに好ましい。一方、上記Znの原子数の上限としては、79atm%であり、70atm%がより好ましく、65atm%がさらに好ましい。また、In、Zn及びFeの合計原子数に対するFeの原子数の下限としては、0.2atm%であり、0.4atm%がより好ましく、0.5atm%がさらに好ましい。一方、上記Feの原子数の上限としては、2atm%であり、1.8atm%がより好ましく、1atm%がさらに好ましく、0.9atm%が特に好ましい。当該スパッタリングターゲットを用いて当該酸化物半導体薄膜3を成膜することで、製造コストが比較的低く、キャリア移動度及び光ストレス耐性が高い当該薄膜トランジスタを製造することができる。
 当該スパッタリングターゲットは、所望の酸化物半導体層と同一組成とすることが好ましい。このように当該スパッタリングターゲットの組成を所望の酸化物半導体層と同一とすることで、形成される酸化物半導体層の組成ずれを抑止できるので、所望の組成を有する酸化物半導体層を得易い。
 当該スパッタリングターゲットは、例えば粉末焼結法により製造することができる。
 なお、酸化物半導体層を積層するためのスパッタリングターゲットは、上述のIn、Zn及びFeを含むターゲットに限定されるものではなく、組成の異なる複数のターゲットを用いてもよい。この場合、上記複数のターゲットは全体でIn、Zn及びFeを含むように構成される。また、各ターゲットはIn、Zn及びFeのうち複数の元素を含んでもよい。上記複数のターゲットは、In、Zn及びFeのうち1又は複数の元素を含む酸化物ターゲットとすることもできる。上記複数のターゲットについても、例えば粉末焼結法により製造することができる。上記複数のターゲットを用いる場合、スパッタリング法としては、上記複数のターゲットを同時放電するコスパッタ法(Co-sputter法)を用いることができる。
 スパッタリング法により酸化物半導体層を積層する際の条件としては、特に限定されないが、例えば基板温度20℃以上50℃以下、成膜パワー密度2W/cm以上3W/cm以下、圧力0.1Pa以上0.3Pa以下、キャリアガスArの条件とすることができる。また、酸素源として、雰囲気中に酸素を含有させるとよい。雰囲気中の酸素の含有量としては、3体積%以上5体積%以下とできる。
 なお、酸化物半導体層の積層する方法は、スパッタリング法に限定されるものではなく、塗布法などの化学的成膜法を用いてもよい。
(パターニング)
 次に、この酸化物半導体層をパターニングすることにより、当該酸化物半導体薄膜3を形成する。酸化物半導体薄層のパターニングの方法としては、特に限定されないが、例えばフォトリソグラフィを行った後に、ウエットエッチングを行う方法を用いることができる。
 なお、パターニング後にプレアニール処理を行い当該酸化物半導体薄膜3のトラップ準位の密度を低減してもよい。これにより製造される薄膜トランジスタの光照射による閾値電圧シフトを低減できる。
 プレアニール処理の温度の下限としては、300℃が好ましく、350℃がより好ましい。一方、プレアニール処理の温度の上限としては、450℃が好ましく、400℃がより好ましい。プレアニール処理の温度が上記下限未満である場合、当該薄膜トランジスタの電気的な特性向上効果が不十分となるおそれがある。逆に、プレアニール処理の温度が上記上限を超える場合、当該酸化物半導体薄膜3が熱によるダメージを受けるおそれがある。
 プレアニール処理の圧力及び時間の条件は特に限定されないが、例えば大気圧(0.9気圧以上1.1気圧以下)のN雰囲気中で、10分以上60分以下の時間の条件を用いることができる。
<ESL保護膜成膜工程>
 ESL保護膜成膜工程では、当該酸化物半導体薄膜3の表面でソース及びドレイン電極5が形成されない部分にESL保護膜4を成膜する。
 具体的には、まず基板Xの表面側に公知の方法、例えば各種CVD法により絶縁膜を所望の膜厚となるように積層する。例えばプラズマCVD法によりシリコン酸化膜を積層する場合であれば、基板温度100℃以上300℃以下、成膜パワー密度0.2W/cm以上0.5W/cm以下、圧力100Pa以上300Pa以下の条件とし、原料ガスとしてNOとSiHとの混合ガスを用いて行うことができる。
<ソース及びドレイン電極成膜工程>
 ソース及びドレイン電極成膜工程では、当該薄膜トランジスタのチャネル両端で当該酸化物半導体薄膜3と電気的に接続するソース電極5a及びドレイン電極5bを成膜する。
 具体的には、まず基板Xの表面に公知の方法、例えばスパッタリング法により導電膜を所望の膜厚となるように積層する。スパッタリング法により導電膜を積層する際の条件としては、特に限定されないが、例えば基板温度20℃以上50℃以下、成膜パワー密度3W/cm以上4W/cm以下、圧力0.1Pa以上0.4Pa以下、キャリアガスArの条件とすることができる。
 次に、この導電膜をパターニングすることにより、ソース電極5a及びドレイン電極5bを形成する。パターニングの方法としては、特に限定されないが、例えばフォトリソグラフィを行った後に、ウエットエッチングを行う方法を用いることができる。
<パッシベーション絶縁膜成膜工程>
 パッシベーション絶縁膜成膜工程では、当該薄膜トランジスタを覆うパッシベーション絶縁膜6を成膜する。
 具体的には、基板Xの表面側に公知の方法、例えば各種CVD法により絶縁膜を所望の膜厚となるように積層する。例えばプラズマCVD法によりシリコン窒化膜を積層する場合の条件としては、基板温度100℃以上200℃以下、成膜パワー密度0.2W/cm以上0.5W/cm以下、圧力100Pa以上300Pa以下の条件とし、原料ガスとしてNHとSiHとの混合ガスを用いて行うことができる。
<導電膜成膜工程>
 導電膜成膜工程では、コンタクトホール8を介してドレイン電極5bに電気的に接続する導電膜7を成膜する。
 具体的には、まず公知の方法、例えばフォトリソグラフィによってドレイン電極5bとのコンタクト部分のパターニングを行った後にドライエッチングを行う方法によってコンタクトホール8を形成する。次に公知の方法、例えばスパッタリング法によりコンタクトホール8を介してドレイン電極5bに電気的に接続する導電膜7を成膜する。スパッタリング法により導電膜7を積層する際の条件としては、特に限定されないが、例えば基板温度20℃以上50℃以下、成膜パワー密度3W/cm以上4W/cm以下、圧力0.1Pa以上0.4Pa以下、キャリアガスArの条件とすることができる。
<ポストアニール処理工程>
 ポストアニール処理工程は、最終の熱処理を行う工程である。この熱処理により当該酸化物半導体薄膜3とゲート絶縁膜2との界面や、当該酸化物半導体薄膜3とESL保護膜4との界面に形成されたトラップ準位の密度を低減できる。これにより当該薄膜トランジスタの光照射による閾値電圧シフトを低減できる。
 ポストアニール処理の温度の下限としては、200℃が好ましく、250℃がより好ましい。一方、ポストアニール処理の温度の上限としては、400℃が好ましく、350℃がより好ましい。ポストアニール処理の温度が上記下限未満であると、当該薄膜トランジスタの電気的な特性向上効果が不十分となるおそれがある。逆に、ポストアニール処理の温度が上記上限を超えると、当該薄膜トランジスタが熱によるダメージを受けるおそれがある。
 ポストアニール処理の圧力及び時間の条件は特に限定されないが、例えば大気圧(0.9気圧以上1.1気圧以下)で、10分以上60分以下の時間の条件を用いることができる。また、ポストアニール処理の雰囲気としては、大気雰囲気下で行ってもよいが、窒素等の不活性ガスの雰囲気下で行うことが好ましい。このように不活性ガスの雰囲気下で行うことで、ポストアニール処理中に雰囲気中に含まれる分子等の当該薄膜トランジスタへの結合による当該薄膜トランジスタの品質のばらつきを抑止できる。
[利点]
 当該酸化物半導体薄膜3は、In、Zn及びFeの合計原子数に対し、Inの原子数を20atm%以上89atm%以下、Znの原子数を10atm%以上79atm%以下とし、Feの原子数を0.2atm%以上とするので、高い光ストレス耐性を有する。また、当該酸化物半導体薄膜3は、Feの原子数を2atm%以下とするので、当該酸化物半導体薄膜3を用いて薄膜トランジスタを形成した際のキャリア移動度が高い。さらに、当該酸化物半導体薄膜3は、Gaを含む必要がないので、製造コストを低減できる。
 従って、当該酸化物半導体薄膜3を用いた当該薄膜トランジスタは、製造コストが比較的低く、キャリア移動度及び光ストレス耐性が高い。
[その他の実施形態]
 本発明の酸化物半導体薄膜、薄膜トランジスタ及びスパッタリングターゲットは、上記実施形態に限定されるものではない。
 上記実施形態では、薄膜トランジスタとしてボトムゲート型のトランジスタの場合を説明したが、トップゲート型のトランジスタであってもよい。
 上記実施形態では、薄膜トランジスタがESL保護膜を有する場合を説明したが、ESL保護膜は必須の構成要件ではない。例えばマスク蒸着やリフトオフによりソース及びドレイン電極を成膜する場合は、酸化物半導体薄膜がダメージを受け難いため、ESL保護膜を省略することができる。
 また、上記実施形態では、酸化物半導体薄膜が実質的にIn、Zn及びFe以外の金属元素を含まない場合を説明したが、他の金属元素を含んでいてもよい。例えばこのような金属元素としては、Snなどを挙げることができる。
 以下、実施例に基づき本発明を詳述するが、この実施例の記載に基づいて本発明が限定的に解釈されるものではない。
[実施例1]
 ガラス基板(コーニング社製の「EagleXG」、直径6インチ、厚さ0.7mm)を用意し、まずこのガラス基板の表面にMo薄膜を平均厚さが100nmとなるように成膜した。成膜条件は基板温度25℃(室温)、成膜パワー密度3.8W/cm、圧力0.266Pa、及びキャリアガスArとした。Mo薄膜を成膜後、パターニングによりゲート電極を形成した。
 次に、ゲート絶縁膜として、平均厚さ250nmのシリコン酸化膜をCVD法により上記ゲート電極を覆うように成膜した。原料ガスとしては、NOとSiHとの混合ガスを用いた。成膜条件は基板温度320℃、成膜パワー密度0.96W/cm、及び圧力133Paとした。
 次に、ガラス基板の表面側に酸化物半導体層として、平均厚さ40nmの実質的にIn、Zn及びFeのみを含む酸化物半導体層をスパッタリング法により形成した。
 スパッタリング法には、従来から最適な組成比を調べる手法として確立されている手法を用いた。具体的には、In、ZnO及びFeチップを装着したInの3つのターゲットを上記ガラス基板の周囲の異なる位置に配置し、静止している上記ガラス基板に対してスパッタリングを行うことで、酸化物半導体層を成膜した。このような方法によれば、構成元素の異なる3つのターゲットをガラス基板の周囲の異なる位置に配置しているので、ガラス基板上の位置により各ターゲットからの距離が異なる。スパッタリングターゲットから遠ざかるに従ってそのターゲットから供給される元素が減少するから、例えばZnOターゲットに近くInターゲットから遠い位置ではInに対しZnが多くなり、逆にInターゲットに近くZnOターゲットから遠い位置ではZnに対しInが多くなる。つまり、ガラス基板上の位置によって組成比の異なる酸化物半導体層を得ることができる。
 スパッタリング装置(株式会社アルバック製の「CS200」)を用い、成膜条件は基板温度25℃(室温)、成膜パワー密度2.55W/cm、圧力0.133Pa、及びキャリアガスArとした。また、雰囲気の酸素含有量は4体積%とした。
 得られた酸化物半導体層をフォトリソグラフィ及びウェットエッチングによりパターニングを行い、ガラス基板上の位置により組成の異なる酸化物半導体薄膜を形成した。なお、ウェットエッチャントには、関東化学株式会社製の「ITO-07N」を用いた。
 ここで、この酸化物半導体薄膜の膜質改善のためプレアニール処理を行った。なお、プレアニール処理の条件は、大気雰囲気(大気圧)で350℃の環境下60分間とした。
 次に、ガラス基板の表面側にシリコン酸化膜をCVD法により平均厚さが100nmとなるように成膜した。原料ガスとしては、NOとSiHとの混合ガスを用いた。成膜条件は基板温度230℃、成膜パワー密度0.32W/cm、及び圧力133Paとした。シリコン酸化膜を成膜後、パターニングによりESL保護膜を形成した。
 次に、ガラス基板の表面側にMo薄膜を平均厚さが200nmとなるように成膜した。成膜条件は基板温度25℃(室温)、成膜パワー密度3.8W/cm、圧力0.266Pa、及びキャリアガスArとした。Mo薄膜を成膜後、パターニングにより、ソース電極及びドレイン電極を形成した。
 次に、ガラス基板の表面側にシリコン酸化膜(平均厚さ100nm)とシリコン窒化膜(平均厚さ150nm)との2層構造のパッシベーション絶縁膜をCVD法により形成した。原料ガスとしては、シリコン酸化膜の形成にはNOとSiHとの混合ガスを用い、シリコン窒化膜の形成には、NHとSiHとの混合ガスを用いた。成膜条件は基板温度150℃、成膜パワー密度0.32W/cm、及び圧力133Paとした。
 次に、フォトリソグラフィ及びドライエッチングによりコンタクトホールを形成し、ドレイン電極に電気的に接続するためのパッドを設けた。このパッドにプローブを当てることで薄膜トランジスタの電気的な測定が行える。
 最後に、ポストアニール処理を行った。なお、ポストアニール処理の条件は、大気圧のN雰囲気で250℃の環境下30分間とした。
 このようにして実施例1の薄膜トランジスタを得た。なお、この薄膜トランジスタのチャネル長は20μm、チャネル幅は200μmとした。また、実施例1の薄膜トランジスタでの酸化物半導体薄膜の組成は表1に示すとおりであった。
[実施例2~15、比較例1~7]
 用いるスパッタリングターゲットのIn、Zn及びFeの合計原子数に対するIn、Zn及びFeの原子数、すなわち形成される酸化物半導体薄膜のIn、Zn及びFeの合計原子数に対するIn、Zn及びFeの原子数、並びにプレアニール及びポストアニールの温度を表1のように変化させた以外は、実施例1と同様にして、実施例2~15及び比較例1~7の薄膜トランジスタを得た。
[測定方法]
 実施例1~15及び比較例1~7の薄膜トランジスタに対して、キャリア移動度、閾値電圧、閾値電圧シフト及びS値の測定を行った。
 これらの測定のうち、キャリア移動度、閾値電圧及びS値の測定は、いずれもトランジスタの薄膜トランジスタの静特性(Id-Vg特性)から算出した。上記静特性の測定は、半導体パラメータアナライザ(Agilent Technologies社製の「HP4156C」)を用いて行った。測定条件としては、ソース電圧を0V、ドレイン電圧を10Vに固定し、ゲート電圧を-30Vから30Vまで0.25V刻みで変化させる条件とした。なお、測定は室温(25℃)で行った。以下に測定方法を記す。
<キャリア移動度>
 キャリア移動度は、上記静特性の飽和領域での電界効果移動度μFE[m/Vs]とした。この電界効果移動度μFE[m/Vs]は、ゲート電圧Vg[V]、閾値電圧Vth[V]、ドレイン電流Id[A]、チャネル長L[m]、チャネル幅W[m]、ゲート絶縁膜の容量Cox[F]とするとき、上記静特性の飽和領域(Vg>Vd-Vth)において、以下の式(3)に示すμFE[m/Vs]により算出した。結果を表1に示す。
Figure JPOXMLDOC01-appb-M000003
<閾値電圧>
 閾値電圧は、トランジスタのドレイン電流が10-9Aとなるゲート電圧を上記薄膜トランジスタの静特性から算出した値とした。結果を表1に示す。
<S値>
 S値は、上記静特性からドレイン電流を1桁上昇させるのに必要なゲート電圧の変化量を算出し、その最小値とした。結果を表1に示す。
<閾値電圧シフト>
 閾値電圧シフトは、基板温度60℃で、薄膜トランジスタのソース電圧を0V、ドレイン電圧を10V、ゲート電圧を-10Vに固定し、薄膜トランジスタに白色LED(PHILIPS社製の「LXHL-PW01」)を2時間照射し、照射前後の閾値電圧の差の絶対値として算出した。この数値が小さいほど光ストレス耐性が高いと言える。結果を表1に示す。
[判定]
 上述の測定結果をもとに、以下の判定基準で総合判定を行った。結果を表1に示す。
 A:キャリア移動度が20m/Vs以上、かつ閾値電圧シフトが2V以下であり、次世代大型ディスプレイや可撓性ディスプレイに好適である。
 B:キャリア移動度が20m/Vs以上、かつ閾値電圧シフトが2V超4V以下であり、次世代大型ディスプレイや可撓性ディスプレイに用いることができる。
 C:キャリア移動度が20m/Vs未満、又は閾値電圧シフトが4V超であり、次世代大型ディスプレイや可撓性ディスプレイに用いることができない。
Figure JPOXMLDOC01-appb-T000004
 表1で、キャリア移動度の「導体化」は、薄膜トランジスタが導体化し、MOS特性を示さなかったことを意味する。また、閾値電圧、閾値電圧シフト及びS値の「-」は、薄膜トランジスタの導体化により測定できなかったことを意味する。
 表1より、実施例1~15の薄膜トランジスタは、キャリア移動度が高く、閾値電圧シフトが小さい。これに対し、比較例1~4の薄膜トランジスタは、酸化物半導体薄膜がFeを含まないことが原因で、閾値電圧シフトが大きくなっていると考えられ、光ストレス耐性に劣る。また、比較例5~6の薄膜トランジスタは、酸化物半導体薄膜のIn、Zn及びFeの合計原子数に対するFeの原子数が2atm%を超えることが原因で、キャリア移動度が低くなっていると考えられ、スイッチング動作に劣る。また、比較例7の薄膜トランジスタは、酸化物半導体薄膜がFeを含まず、かつIn、Zn及びFeの合計原子数に対するInの原子数が多いことが原因で、導体化したと考えられる。
 以上から、酸化物半導体薄膜のIn、Zn及びFeの合計原子数に対し、Inの原子数が20atm%以上89atm%以下、Znの原子数が10atm%以上79atm%以下の範囲で、Feの原子数を0.2atm%以上2atm%以下とすることで、キャリア移動度及び光ストレス耐性を高められることが分かる。
 In、Zn及びFeの合計原子数に対し、Inの原子数が34atm%以上80atm%以下、Znの原子数が18atm%以上65atm%以下、Feの原子数が0.2atm%以上1.8atm%以下である酸化物半導体薄膜を有する実施例1~6及び実施例8~15をみると、いずれの実施例においてもキャリア移動度が23cm/Vs以上である。一方、酸化物半導体薄膜の原子数が上述の原子数の範囲に属さない実施例7では、キャリア移動度が23cm/Vs未満である。このことから、Inの原子数が34atm%以上80atm%以下、Znの原子数が18atm%以上65atm%以下、Feの原子数が0.2atm%以上1.8atm%以下とすることで、キャリア移動度を向上できることが分かる。
 また、Inの原子数が34atm%以上60atm%以下、Znの原子数が39atm%以上65atm%以下、Feの原子数が0.2atm%以上0.9atm%以下である酸化物半導体薄膜を有する実施例1、2、5、6、9、12、13、14をみると、いずれの実施例においても閾値電圧シフトが1V以下である。一方、酸化物半導体薄膜の原子数が上述の原子数の範囲に属さない実施例では、閾値電圧シフトが1.25Vとなるもの(実施例11、15)が存在する。このことから、Inの原子数が34atm%以上60atm%以下、Znの原子数が39atm%以上65atm%以下、Feの原子数が0.2atm%以上0.9atm%以下とすることで、光ストレス耐性が向上し、薄膜トランジスタの性能安定性を高めることができることが分かる。
 以上説明したように、当該酸化物半導体薄膜を用いた薄膜トランジスタは、製造コストが比較的低く、キャリア移動度及び光ストレス耐性が高い。従って、当該薄膜トランジスタは、高速性が要求される例えば次世代の大型ディスプレイに好適に用いることができる。また、当該スパッタリングターゲットを用いることで、製造コストが比較的低く、キャリア移動度及び光ストレス耐性が高い酸化物半導体薄膜を形成できる。
1 ゲート電極
2 ゲート絶縁膜
3 酸化物半導体薄膜
4 ESL保護膜
5 ソース及びドレイン電極
5a ソース電極
5b ドレイン電極
6 パッシベーション絶縁膜
7 導電膜
8 コンタクトホール
X 基板

Claims (8)

  1.  In、Zn及びFeを含み、
     In、Zn及びFeの合計原子数に対し、
     Inの原子数が20atm%以上89atm%以下、
     Znの原子数が10atm%以上79atm%以下、
     Feの原子数が0.2atm%以上2atm%以下
    である酸化物半導体薄膜。
  2.  In、Zn及びFeの合計原子数に対し、
     Inの原子数が34atm%以上80atm%以下、
     Znの原子数が18atm%以上65atm%以下、
     Feの原子数が0.2atm%以上1.8atm%以下
    である請求項1に記載の酸化物半導体薄膜。
  3.  In、Zn及びFeの合計原子数に対し、
     Inの原子数が34atm%以上60atm%以下、
     Znの原子数が39atm%以上65atm%以下、
     Feの原子数が0.2atm%以上0.9atm%以下
    である請求項1に記載の酸化物半導体薄膜。
  4.  請求項1、請求項2又は請求項3に記載の酸化物半導体薄膜を有する薄膜トランジスタ。
  5.  光照射による閾値電圧シフトが2V以下である請求項4に記載の薄膜トランジスタ。
  6.  キャリア移動度が20cm/Vs以上である請求項4に記載の薄膜トランジスタ。
  7.  キャリア移動度が20cm/Vs以上である請求項5に記載の薄膜トランジスタ。
  8.  酸化物半導体薄膜の形成に用いられるスパッタリングターゲットであって、
     In、Zn及びFeを含み、
     In、Zn及びFeの合計原子数に対し、
     Inの原子数が20atm%以上89atm%以下、
     Znの原子数が10atm%以上79atm%以下、
     Feの原子数が0.2atm%以上2atm%以下
    であるスパッタリングターゲット。
PCT/JP2018/040204 2017-11-29 2018-10-29 酸化物半導体薄膜、薄膜トランジスタ及びスパッタリングターゲット WO2019107043A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880067635.XA CN111226307B (zh) 2017-11-29 2018-10-29 氧化物半导体薄膜、薄膜晶体管和溅射靶
KR1020207016225A KR102151557B1 (ko) 2017-11-29 2018-10-29 산화물 반도체 박막, 박막 트랜지스터 및 스퍼터링 타깃
US16/759,544 US20200295143A1 (en) 2017-11-29 2018-10-29 Oxide semiconductor thin film, thin film transistor, and sputtering target

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-229663 2017-11-29
JP2017229663 2017-11-29
JP2018-157571 2018-08-24
JP2018157571A JP6550514B2 (ja) 2017-11-29 2018-08-24 ディスプレイ用酸化物半導体薄膜、ディスプレイ用薄膜トランジスタ及びディスプレイ用スパッタリングターゲット

Publications (1)

Publication Number Publication Date
WO2019107043A1 true WO2019107043A1 (ja) 2019-06-06

Family

ID=66663937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040204 WO2019107043A1 (ja) 2017-11-29 2018-10-29 酸化物半導体薄膜、薄膜トランジスタ及びスパッタリングターゲット

Country Status (1)

Country Link
WO (1) WO2019107043A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004103957A (ja) * 2002-09-11 2004-04-02 Japan Science & Technology Corp ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ
WO2009081885A1 (ja) * 2007-12-25 2009-07-02 Idemitsu Kosan Co., Ltd. 酸化物半導体電界効果型トランジスタ及びその製造方法
JP2010135773A (ja) * 2008-11-07 2010-06-17 Semiconductor Energy Lab Co Ltd 半導体装置及び半導体装置の作製方法
JP2016189463A (ja) * 2015-03-27 2016-11-04 株式会社半導体エネルギー研究所 トランジスタ、および電子機器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004103957A (ja) * 2002-09-11 2004-04-02 Japan Science & Technology Corp ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ
WO2009081885A1 (ja) * 2007-12-25 2009-07-02 Idemitsu Kosan Co., Ltd. 酸化物半導体電界効果型トランジスタ及びその製造方法
JP2010135773A (ja) * 2008-11-07 2010-06-17 Semiconductor Energy Lab Co Ltd 半導体装置及び半導体装置の作製方法
JP2016189463A (ja) * 2015-03-27 2016-11-04 株式会社半導体エネルギー研究所 トランジスタ、および電子機器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUZUKI, YOSUKE ET AL.: "Magnetic properties of diluted magnetic semiconductor IZO thin films doped with Fe", LECTURE PROCEEDINGS OF THE CHEMICAL SOCIETY OF JAPAN, vol. 87, no. 1, 27 March 2007 (2007-03-27), pages 254 *

Similar Documents

Publication Publication Date Title
US9324882B2 (en) Thin film transistor
CN102097487B (zh) 氧化物半导体薄膜晶体管及其制造方法
KR102308442B1 (ko) 반도체 장치 및 그 제작방법
US10566457B2 (en) Thin film transistor and display device
US9647126B2 (en) Oxide for semiconductor layer in thin film transistor, thin film transistor, display device, and sputtering target
KR20080052107A (ko) 산화물 반도체층을 구비한 박막 트랜지스터
JP2014013892A (ja) 薄膜トランジスタ
WO2014034874A1 (ja) 薄膜トランジスタおよび表示装置
KR20120021454A (ko) 트랜지스터와 그 제조방법 및 트랜지스터를 포함하는 전자소자
JP2016111324A (ja) 薄膜トランジスタ
JP6550514B2 (ja) ディスプレイ用酸化物半導体薄膜、ディスプレイ用薄膜トランジスタ及びディスプレイ用スパッタリングターゲット
TWI508171B (zh) 半導體元件結構及其製造方法
KR20110080118A (ko) 다층의 식각 정지층을 구비한 박막 트랜지스터 및 그 제조방법
JP6756875B1 (ja) ディスプレイ用酸化物半導体薄膜、ディスプレイ用薄膜トランジスタ及びスパッタリングターゲット
US20200357924A1 (en) Oxide semiconductor thin film
JP7060367B2 (ja) 薄膜デバイス
JP2013207100A (ja) 薄膜トランジスタ
WO2019107043A1 (ja) 酸化物半導体薄膜、薄膜トランジスタ及びスパッタリングターゲット
TWI767186B (zh) 氧化物半導體薄膜、薄膜電晶體及濺鍍靶
JP2018137423A (ja) 薄膜トランジスタ、薄膜デバイスおよび薄膜トランジスタの製造方法
WO2016035503A1 (ja) 薄膜トランジスタ
TWI834014B (zh) 氧化物半導體薄膜、薄膜電晶體及濺鍍靶
JP2017201651A (ja) 酸化物半導体の製造方法
KR20140071491A (ko) 박막 트랜지스터, 박막 트랜지스터의 제조방법 및 반도체 장치
TW202124741A (zh) 氧化物半導體薄膜、薄膜電晶體及濺鍍靶

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18883855

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207016225

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18883855

Country of ref document: EP

Kind code of ref document: A1