WO2019106799A1 - マトリックス膜形成装置 - Google Patents

マトリックス膜形成装置 Download PDF

Info

Publication number
WO2019106799A1
WO2019106799A1 PCT/JP2017/043145 JP2017043145W WO2019106799A1 WO 2019106799 A1 WO2019106799 A1 WO 2019106799A1 JP 2017043145 W JP2017043145 W JP 2017043145W WO 2019106799 A1 WO2019106799 A1 WO 2019106799A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
gas
pipe
matrix
flow path
Prior art date
Application number
PCT/JP2017/043145
Other languages
English (en)
French (fr)
Inventor
健太 寺島
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to US16/755,955 priority Critical patent/US20200243318A1/en
Priority to CN201780096482.7A priority patent/CN111295584A/zh
Priority to JP2019556490A priority patent/JP6844717B2/ja
Priority to PCT/JP2017/043145 priority patent/WO2019106799A1/ja
Publication of WO2019106799A1 publication Critical patent/WO2019106799A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/16Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
    • H01J49/161Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission using photoionisation, e.g. by laser
    • H01J49/164Laser desorption/ionisation, e.g. matrix-assisted laser desorption/ionisation [MALDI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0409Sample holders or containers
    • H01J49/0418Sample holders or containers for laser desorption, e.g. matrix-assisted laser desorption/ionisation [MALDI] plates or surface enhanced laser desorption/ionisation [SELDI] plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/64Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using wave or particle radiation to ionise a gas, e.g. in an ionisation chamber

Definitions

  • MALDI Matrix Assisted Laser Desorption / Ionization
  • a matrix material that easily absorbs laser light and is easily ionized is mixed beforehand with the sample to be measured. It is a method of ionizing a sample by irradiating it with a laser beam. Generally, the matrix material is added to the sample as a solution, and the matrix solution takes in the substance to be measured contained in the sample. Then, the solvent in the solution is vaporized by drying to form crystal grains containing the substance to be measured. When the laser light is irradiated to this, the measurement target substance can be ionized by the interaction of the measurement target substance, the matrix substance, and the laser light.
  • the MALDI method it is possible to analyze high molecular weight compounds without significant dissociation, and since they are highly sensitive and suitable for trace analysis, they are widely used in the fields of life sciences etc. There is.
  • mass spectrometry imaging a mass spectrometry imaging (MS imaging) method of directly visualizing a two-dimensional distribution state of biomolecules, metabolites and the like on a biological tissue section using a MALDI mass spectrometer has attracted attention.
  • mass spectrometry imaging a two-dimensional image representing the intensity distribution of ions having a specific mass-to-charge ratio can be obtained on a sample such as a biological tissue section. Therefore, for example, the medical field, drug discovery field, life science field such as grasping the spread situation of the disease and confirming the therapeutic effect such as medication by examining the distribution situation of a specific substance to pathological tissue such as cancer.
  • life science field such as grasping the spread situation of the disease and confirming the therapeutic effect such as medication by examining the distribution situation of a specific substance to pathological tissue such as cancer.
  • Various applications such as are expected.
  • the matrix film forming apparatus includes a chamber 80 containing a sample stage 81 to which a sample plate P is attached, and a spray nozzle 70 for spraying a matrix material onto the sample plate P.
  • the spray nozzle 70 includes a gas pipe 72 through which a spray gas flows, and a solution pipe 71 through which a matrix solution flows.
  • a solution pipe 71 is inserted into the inside of a gas pipe 72, and the tip of the solution pipe 71 is surrounded by the tip of the gas pipe 72. Furthermore, a needle 73 is inserted in the center of the solution tube 71, and the tip of the needle 73 slightly protrudes from the tip of the solution tube 71.
  • the inside of the solution tube 71 is filled with a matrix solution, and the proximal end thereof is inserted into a solution container 75 containing the matrix solution. Further, the base end side of the gas pipe 72 is connected to a gas source 74 such as a gas cylinder.
  • the tip of the solution pipe 71 is surrounded by the tip of the gas pipe 72, when the high-pressure spray gas supplied from the gas source 74 is ejected from the tip of the gas pipe 72, the vicinity of the tip of the solution pipe 71 Is depressurized (venturi effect) and the matrix solution is withdrawn from the tip.
  • the matrix solution drawn out from the tip of the solution tube 71 is sheared by the spray gas to form microdroplets, and the microdroplets are ejected from the nozzle 70 on the flow of the spray gas.
  • the matrix solution flows along the needle 73, the shearing efficiency of the matrix solution by the spray gas is improved, and the microdroplet can be further miniaturized.
  • the matrix solution sprayed from the spray nozzle 70 as described above adheres to the sample plate P on the sample stage 81 disposed opposite to the spray nozzle 70.
  • the inner diameter of the tip of the solution tube 71 in the spray nozzle 70 of the matrix film forming apparatus as described above is very small, about 0.3 mm, and the flow of the spray gas promotes drying of the matrix solution.
  • a crystal mass of matrix is likely to be formed. If a crystal block is formed, the nozzle 70 is clogged, so it is necessary to manually remove the crystal block or attach the tip of the nozzle 70 to a cup containing a solvent to dissolve the crystal block.
  • the present invention has been made in view of the above points, and its object is to provide an apparatus for forming a film of a matrix material on a sample plate used for mass spectrometry imaging, including a spray nozzle. To prevent clogs.
  • a spray nozzle comprising: a solution pipe which is a tubular flow path; and a gas pipe which is parallel to the solution pipe and whose tip is located near the tip of the solution pipe.
  • a gas delivery means for delivering high pressure gas to the proximal end side of the gas pipe;
  • pressurized solution delivery means for pressurizing and delivering the solution containing the matrix material used in the matrix-assisted laser desorption ionization method to the proximal side of the solution tube; It is characterized by having.
  • the tip of the gas pipe is“ located in the vicinity of the tip of the solution pipe ”means that the solution flowing out from the tip of the solution pipe is sheared by the gas ejected from the tip of the gas pipe It means that the tip of the gas pipe is located at a distance that can be a drop.
  • the above-mentioned "high pressure gas” means a gas at a pressure higher than atmospheric pressure in absolute pressure.
  • the gas delivery is performed so as to execute a nozzle cleaning mode in which the solution is delivered by the pressurized solution delivery means while the gas delivery to the gas pipe by the gas delivery means is stopped
  • Control means for controlling the means and the pressurized solution delivery means
  • the matrix formed in the inside or the tip of the solution pipe is executed by executing the “nozzle cleaning mode” in which the matrix solution is supplied to the spray nozzle while the gas supply to the spray nozzle is stopped.
  • the crystals of the substance can be dissolved away in the matrix solution. Thereby, the narrowing of the flow path due to the adhesion of crystals can be prevented, and a stable spray can be realized.
  • the pressurized solution delivery means for example, a syringe pump or the like can be used, but in order to prevent the fluctuation of the introduction amount caused by the pulsation of the pump, the pressurized solution delivery means is a matrix solution. It is desirable to carry out pressurized liquid delivery by pressurizing the liquid level.
  • the matrix film forming apparatus is The pressurized solution delivery means A closed container in which the solution is stored; A solution pipe, one end of which is connected to the proximal end side of the solution pipe, and the other end of which is disposed at a lower portion in the closed vessel; A pressurizing gas introducing means for introducing a gas into the upper space in the sealed container; It is desirable to have
  • upper space means a space above the liquid level of the matrix solution in the inside of the closed container.
  • the gas for pressurizing the liquid surface and the gas supplied to the spray nozzle are supplied from the same gas source. It is desirable to have a configuration that
  • the gas delivery means includes a gas source for supplying an inert gas, and a gas flow path connecting the proximal end side of the gas pipe and the gas source, It is preferable that the pressurizing gas introducing means introduce an inert gas supplied from the gas source provided in the gas feeding means into an upper space in the sealed container.
  • the pressurized solution delivery means A solution container containing the solution; A resistance tube having a flow path resistance greater than the flow path resistance in the solution pipe, interposed on a solution flow path extending from the solution container to the proximal end side of the solution pipe; It is desirable to have
  • the schematic diagram which shows the principal part structure of the matrix film formation apparatus which concerns on one Embodiment of this invention.
  • the flowchart which shows the operation at the time of nozzle washing in the embodiment.
  • the schematic diagram which shows schematic structure of the conventional spray-type matrix film forming apparatus.
  • FIG. 1 is a schematic view showing the main configuration of a matrix film forming apparatus according to the present embodiment.
  • the matrix film forming apparatus according to the present embodiment includes a chamber 10 in which a sample plate P is accommodated, and a spray nozzle 20 for spraying a matrix solution (a solution containing a matrix material) on the sample plate P.
  • a matrix solution a solution containing a matrix material
  • a sample stage 11 to which a sample plate P is attached and an XY stage 12 for moving the sample stage 11 are accommodated in the chamber 10.
  • a door (not shown) for taking in and out the sample plate P is provided on one of the wall surfaces of the chamber 10, and a spray nozzle 20 is attached to the wall surface of the chamber 10 facing the sample stage 11. ing.
  • the exhaust port 13 is formed in the wall surface in any one of the chamber 10, and the exhaust port 13 is connected to the draft chamber which is not shown in figure.
  • the spray nozzle 20 has a double pipe structure including a solution pipe 21 and a gas pipe 22 coaxial with the solution pipe 21 and disposed as an outer cylinder so as to surround the solution pipe 21.
  • the inner diameter of the tip of the solution tube 21 is about 0.3 mm, and a needle 23 for introducing the solution at the time of spraying is inserted in the center of the solution tube 21.
  • the tips of the solution pipe 21 and the gas pipe 22 are substantially at the same position in the length direction of the tubes 21 and 22, and the tip of the needle 23 slightly protrudes from the tip of the solution pipe 21.
  • the base end of the solution pipe 21 is connected to one end of a solution supply pipe 31 (corresponding to "solution pipe” or “solution flow path” in the present invention), and the other end of the solution supply pipe 31 contains a matrix solution. It is disposed at the lower part (below the center of the solution container 30 in the height direction, preferably near the bottom) of the solution container 30 which is a closed container. Further, a resistance pipe 32 is interposed in an intermediate portion of the solution supply pipe 31.
  • the resistance tube 32 one having a sufficiently large resistance value as compared with the resistance value at the tip of the solution tube 21 of the spray nozzle 20, for example, a capillary tube with an inner diameter of 0.075 mm and a length of 20 mm is used.
  • a capillary made of silica or a capillary made of PEEK (polyether ether ketone) resin can be used as the resistance tube 32, it is desirable to use a PEEK capillary in consideration of durability.
  • the base end of the gas pipe 22 is connected to one end of a gas pipe 46 for spraying, and the other end of the gas pipe 46 for spraying is connected to the gas source 40 through a manifold (multi branch pipe) 42 and a common pipe 41. It is connected.
  • the gas source 40 includes, for example, a gas cylinder or a gas generator, and delivers an inert gas (eg, nitrogen gas) having a pressure higher than atmospheric pressure to the common pipe 41.
  • an inert gas eg, nitrogen gas
  • the common pipe 41, the manifold 42, and the gas pipe 46 for atomization correspond to the "gas flow path" in the present invention.
  • the manifold 42 has one inlet end and three outlet ends, the common pipe 41 described above is connected to the inlet end, and the spray gas pipe 46 described above is connected to one of the three outlet ends. It is done.
  • One end of a replacement gas pipe 47 is connected to one of the remaining two outlet ends of the manifold 42, and one end of a pressurization gas pipe 48 is connected to the other one.
  • the other end of the replacement gas pipe 47 is located on the wall of the chamber 10, and the other end of the pressurizing gas pipe 48 is near the ceiling inside the solution container 30 (at least above the center of the solution container 30 in the height direction) It is located in At the three outlet ends of the manifold 42, solenoid valves are mounted, respectively.
  • a gas replacement valve 43 one provided at the outlet end to which the replacement gas pipe 47 is connected is referred to as a gas replacement valve 43, and provided at the outlet end to which the atomizing gas pipe 46 is connected.
  • the valve is called a spray valve 44, and the valve provided at the outlet end to which the pressurizing gas pipe 48 is connected is called a pressurizing valve 45.
  • the gas source 40, the common pipe 41, the manifold 42, the valve 44 for spraying, and the gas pipe 46 for spraying correspond to the "gas delivery means" in the present invention.
  • the gas source 40, the common pipe 41, the manifold 42, the valve 45 for pressurization, and the gas pipe 48 for pressurization correspond to the "gas introduction means for pressurization" in the present invention, and the gas introduction means for pressurization and the solution container 30, the solution supply pipe 31 and the resistance pipe 32 cooperate to function as a "pressure solution supply means" in the present invention.
  • Manual pressure control valves 51, 52, 53 are provided on the common pipe 41, the gas pipe 46 for spraying, and the gas pipe 48 for pressurization, respectively. Further, a pressure gauge 54, a flow meter 55, and a manual flow control valve 56 are provided in the replacement gas pipe 47.
  • the matrix film forming apparatus has a control unit 60 for controlling the operation of the XY stage 12 and the solenoid valves 43, 44, 45, and the control unit 60 is set or instructed by the user.
  • An input unit 61 for inputting is connected.
  • the function of the control unit 60 is realized by causing a computer having a CPU and a memory to execute a predetermined control program.
  • a worker in charge (hereinafter referred to as a user) opens the door of the chamber 10 and attaches a thin film sample such as a tissue section.
  • the sample plate P is attached to the sample stage 11.
  • the user closes the door of the chamber 10 and manually adjusts the opening degree of the pressure control valves 51, 52, 53 as necessary, and then operates the input unit 61 to instruct the start of film formation. input.
  • the pressure control valves 51, 52, 53 are manually operated, it is assumed that these are driven by a motor and the user operates the pressure control valves 51, 52, 53 via the control unit 60. It is good also as composition which can adjust an opening of.
  • the control unit 60 When an instruction to start film formation is input from the input unit 61, the control unit 60 first sends a control signal to the gas replacement valve 43 to open the valve 43. As a result, the inert gas supplied from the gas source 40 flows into the chamber 10 through the manifold 42 and the replacement gas pipe 47, and the air in the chamber 10 is replaced by the inert gas.
  • the control unit 60 sends a control signal to the pressurizing valve 45 to open the valve 45.
  • the inert gas supplied from the gas source 40 to the manifold 42 also flows into the pressurizing gas pipe 48.
  • an inert gas is introduced into the upper space of the solution container 30 from the end of the pressurizing gas pipe 48, and the liquid pressure of the matrix solution in the solution container 30 is pressurized by the gas.
  • the matrix solution is introduced into the solution supply pipe 31 and is discharged from the solution pipe 21 of the spray nozzle 20 through the resistance pipe 32.
  • control unit 60 sends a control signal to the spray valve 44 to open the valve 44.
  • the inert gas supplied from the gas source 40 to the manifold 42 also flows into the atomizing gas pipe 46.
  • valve 45 for pressurization and the valve 44 for spray are opened in this order, these valves 44 and 45 may be opened in the reverse order or may be opened at the same time.
  • the inert gas is jetted from the tip of the gas pipe 22 of the spray nozzle 20, and the matrix solution flowing out from the tip of the solution pipe 21 is sheared by the gas to form microdroplets, and the gas together with the gas It is injected.
  • the control unit 60 When spraying of the matrix material is started, the control unit 60 subsequently sends a control signal to the XY stage 12.
  • the XY stage 12 moves the sample stage 11 so that the matrix solution is uniformly sprayed on the entire surface of the sample plate P.
  • the control unit 60 stops the XY stage 12 and further closes the gas replacement valve 43, the spray valve 44, and the pressure valve 45.
  • the gas displacement in the chamber 10 and the spraying of the matrix material are stopped.
  • the user opens the door of the chamber 10 and takes out the sample plate P.
  • a new sample plate P is set on the sample stage 11 and the above operation is repeated.
  • the matrix film forming apparatus As described above, in the matrix film forming apparatus according to the present embodiment, retention of the matrix solution in the vicinity of the tip of the solution tube 21 is prevented by pressure-feeding the matrix solution, and clogging of the spray nozzle 20 due to formation of crystal lumps. Can be prevented. Further, by inserting a resistance pipe 32 having a flow path resistance larger than the flow path resistance in the solution pipe 21 on the solution flow path extending from the solution container 30 to the proximal end side of the solution pipe 21, the solution flow path The ratio of the flow channel resistance of the solution pipe 21 to the total flow channel resistance can be reduced.
  • FIG. 2 is a flow chart showing the operation at the time of nozzle cleaning of the matrix film forming apparatus according to the present embodiment. As described below, the operation mode in which only the matrix solution is supplied without supplying the gas to the spray nozzle 20 corresponds to the "cleaning mode" in the present invention.
  • step S11 When the user operates the input unit 61 to instruct the cleaning of the spray nozzle 20, the effect is input to the control unit 60 (Yes in step S11).
  • the controller 60 that has received the nozzle cleaning instruction first determines whether the spraying of the matrix material by the spraying nozzle 20 is currently being performed (step S12).
  • step S12 If the spray is being performed (Yes in step S12), the spray valve 44 is closed to stop the supply of gas to the spray nozzle 20 (step S13). As a result, since only the matrix solution is supplied to the spray nozzle 20, the matrix solution flows out from the tip of the solution tube 21 without being subjected to shear by gas. At this time, crystals of matrix material present at the tip of the spray nozzle 20 are dissolved and removed by the matrix solution.
  • the control unit 60 opens the spray valve 44 to restart the supply of the spray gas (step S15).
  • the nozzle cleaning is performed in the middle of the execution of the spray as described above, it is preferable to drive the XY stage 12 in advance to retract the sample plate P in the chamber 10 from the front of the spray nozzle 20.
  • step S12 when the matrix material is not sprayed at the time of receiving the nozzle cleaning instruction (No in step S12), the control unit 60 opens the pressurization valve 45 and sends the matrix solution to the spray nozzle 20. Is started (step S16). At this time, since the gas is not supplied to the spray nozzle 20, the matrix solution introduced into the solution pipe 21 is not subjected to shearing by the gas and melts the crystals of the matrix material from the tip of the solution pipe 21 as described above. leak. Thereafter, when a predetermined time t has elapsed (Yes in step S17), the control unit 60 closes the pressurizing valve 45 to stop the liquid supply of the matrix solution to the spray nozzle 20 (step S18).
  • the nozzle cleaning is ended when a predetermined time t has elapsed, but instead, the time when the user instructs the end of the nozzle cleaning (ie, from the input unit 61 to the control unit 60)
  • the nozzle cleaning may be ended when the cleaning end instruction is input.
  • the nozzle cleaning may be terminated when a predetermined amount of matrix solution is fed after the start of the cleaning. In this case, for example, based on information such as the pressure of the inert gas supplied to the solution container 30, and the length and diameter of the resistance tube 32, the control unit 60 sends the amount of Calculate the amount of matrix solution).
  • the nozzle cleaning is started in response to the instruction from the user as described above, it is determined in advance when a predetermined time has elapsed from the start of spraying of the matrix material or after performing the previous cleaning.
  • the nozzle cleaning may be started when a small amount of matrix solution is fed.
  • a flow meter is provided in the solution supply pipe 31 in the same manner as described above so that the control unit 60 can calculate the amount of liquid transfer.
  • the matrix film forming apparatus sprays the matrix material by the spray method
  • the present invention is not limited thereto, and the matrix by the electrospray deposition (ESD) method
  • the present invention is also applicable to an apparatus that sprays a substance (see Patent Document 1).
  • ESD electrospray deposition
  • a direct current voltage is applied to the solution tube, and the matrix solution in the solution tube is charged by the electric field formed thereby to perform injection with gas, but the solution is the same as the spray method.
  • the present invention can be applied in the same manner as described above, since the spray nozzle is provided with a gas pipe parallel to the pipe and the solution pipe and the tip thereof is located near the tip of the solution pipe.
  • the spray nozzle 20 may be moved in a plane parallel to the sample plate P instead.
  • liquid transfer is performed by pressurizing the liquid surface of the matrix solution in the solution container 30 with the gas supplied from the gas source 40 in the above embodiment
  • the other methods for example, the matrix solution It can also be configured to carry out pressure liquid transfer.
  • the matrix film forming apparatus is configured to always supply the matrix solution to the solution tube by pressurized liquid feeding, and additionally, the solution feed by pressurized liquid feeding and the Venturi effect (that is, pressurizing). It may be configured to be switchable from the solution supply (not performed).
  • a mechanism is provided to switch the solution container 30 between the closed state and the open state by opening and closing the lid of the solution container 30, and when spraying the matrix solution, the solution container is opened to the air and the pressure valve 45 is closed.
  • the amount of matrix solution which can be continuously sprayed without pressure feeding was examined.
  • the spray nozzle 20 one provided with a solution tube 21 having an inner diameter of 0.3 mm and a tip opening area of 0.012 mm 2 is used, and 30 mg / mL of 2, 5-dihydroxybenzoic acid (2 , 5-dihydroxybenzoic acid (DHB) solution was used.
  • a pressure control valve (not shown) provided on a pipe having a nitrogen generator as the gas source 40 so that the gas pressure in the spray in the pipe connecting the gas source 40 and the gas pipe 22 is 0.1 MPa. It was adjusted. Under the above conditions, continuous spraying of the matrix solution was performed, and the spraying amount of the matrix material at the time when the spray nozzle 20 was completely clogged was confirmed.
  • the spray nozzle may be completely clogged when 300 ⁇ L of the matrix solution is sprayed.
  • the matrix solution was pressurized and fed, and the spray performance in the case where the nozzle cleaning was performed every five minutes was evaluated.
  • the spray nozzle 20 one having a solution tube 21 with an inner diameter of 0.3 mm and a tip opening area of 0.014 mm 2 is used, and as a matrix solution, 30 mg / mL of 2, 5-dihydroxybenzoic acid (2, 5 A solution of -dihydroxybenzoic acid (DHB) was used.
  • the pressure control valve 52 is adjusted to have a nitrogen generator as the gas source 40 so that the gas pressure in the atomizing gas pipe 46 becomes 0.1 MPa when the atomizing valve 44 is opened, and the pressure valve 45 is opened.
  • the pressure control valve 53 was adjusted so that the gas pressure in the pressurizing gas pipe 48 in the above becomes 0.16 MPa.
  • the gas in the chamber 10 is replaced by introducing dry nitrogen generated by the gas source 40 in advance into the chamber 10 at a flow rate of 25 L / min for 1 minute, and the chamber 10 of dry nitrogen is also carried out during spraying.
  • the matrix material was sprayed, and the spray amount was confirmed every 5 minutes (the decrease of the amount of the matrix solution in the solution container 30 was confirmed) and the spray nozzle 20 was cleaned.
  • the nozzle cleaning while the gas pressure in the pressurizing gas pipe 48 is 0.16 MPa, the atomizing valve 44 is closed to set the gas pressure in the atomizing gas pipe 46 to 0.1 MPa, and the state is maintained for 10 seconds It did by doing.
  • the spraying for 5 minutes as described above, the confirmation of the spraying amount, and the nozzle cleaning were repeated six times.
  • the matrix film forming apparatus of the present invention As described above, according to the matrix film forming apparatus of the present invention, clogging of the nozzle does not occur even if the total spray amount exceeds 1000 uL, and furthermore, the spray can be performed within ⁇ 5% of the spray amount fluctuation every 5 minutes. It turned out to be possible.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Nozzles (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

質量分析イメージングに使用されるサンプルプレートにマトリックス物質の膜を形成するためのマトリックス膜形成装置において、溶液管21及びガス管22を備えた噴霧ノズル20と、ガス管22の基端側に高圧のガスを送給するガス送給手段40、41、42、46と、マトリックス物質を含む溶液を加圧して溶液管21の基端側に送給する加圧溶液送給手段40、41、42、48、30、31とを設ける。これにより、溶液管21の先端付近におけるマトリックス溶液の滞留を防止し、溶液管21内に結晶塊が形成されることによる噴霧ノズル20の詰まりを防止することができる。

Description

マトリックス膜形成装置
 本発明は、マトリックス支援レーザ脱離イオン化(MALDI=Matrix Assisted Laser Desorption/Ionization)法を用いた質量分析イメージングを行う際に使用されるサンプルプレートに、マトリックス物質の膜を形成するためのマトリックス膜形成装置に関する。
 MALDI法は、レーザ光を吸収しにくい試料やタンパク質などレーザ光で損傷を受けやすい試料を分析するために、レーザ光を吸収し易く且つイオン化し易いマトリックス物質を測定対象である試料に予め混合しておき、これにレーザ光を照射することで試料をイオン化する手法である。一般的には、マトリックス物質は溶液としてサンプルに添加され、このマトリックス溶液がサンプルに含まれる測定対象物質を取り込む。そして、乾燥によって溶液中の溶媒が気化し、測定対象物質を含んだ結晶粒が形成される。これにレーザ光を照射すると、測定対象物質、マトリックス物質、及びレーザ光の相互作用によって、測定対象物質をイオン化することができる。MALDI法を用いることで分子量の大きな高分子化合物をあまり解離させることなく分析することが可能であり、しかも感度が高く微量分析にも好適であることから、生命科学などの分野で広く利用されている。
 更に、近年、MALDI質量分析装置を用いて、生体組織切片上の生体分子や代謝物などの2次元分布状況を直接的に可視化する質量分析イメージング(MSイメージング)法が注目されている。質量分析イメージング法では、生体組織切片などの試料上で、特定の質量電荷比を持つイオンの強度分布を表す2次元画像を得ることができる。そこで例えば、癌等の病理組織に特異的な物質の分布状況を調べることで、疾病の拡がり状況を把握する、投薬等の治療効果を確認する、といった、医療分野、創薬分野、生命科学分野などでの様々な応用が期待されている。
 質量分析イメージング法における試料調製、すなわち試料へのマトリックス物質の添加を行うための一般的手法として、サンプルが貼り付けられたプレートにマトリックス溶液を吹き付けて塗布する方法(以下、これをスプレー法とよぶ)がある(例えば特許文献1を参照)。スプレー法による試料調製を行うためのマトリックス膜形成装置の概略構成を図3に示す。このマトリックス膜形成装置は、サンプルプレートPが取り付けられる試料ステージ81が収容されたチャンバ80と、サンプルプレートPにマトリックス物質を吹き付けるための噴霧ノズル70を備えている。噴霧ノズル70は、噴霧ガスが流通するガス管72と、マトリックス溶液が流通する溶液管71とを備えている。これらは、ガス管72の内部に溶液管71が挿入された二重管構造となっており、溶液管71の先端はガス管72の先端によって囲まれている。更に、溶液管71の中心にはニードル73が挿入されており、ニードル73の先端は溶液管71の先端から僅かに突出している。溶液管71の内部はマトリックス溶液で満たされており、その基端側は、マトリックス溶液が収容された溶液容器75に挿入されている。また、ガス管72の基端側はガスボンベなどのガス源74に接続されている。
 上述のように溶液管71の先端はガス管72の先端部によって囲まれているため、ガス源74から供給される高圧の噴霧ガスがガス管72の先端から噴出すると、溶液管71の先端付近が減圧され(ベンチュリー効果)、該先端からマトリックス溶液が引き出される。溶液管71の先端から引き出されたマトリックス溶液は、噴霧ガスによってせん断されて微小液滴となり、該微小液滴が噴霧ガスの流れに乗ってノズル70から噴出する。このとき、マトリックス溶液がニードル73に沿って流れることにより、噴霧ガスによるマトリックス溶液のせん断効率が向上し、前記微小液滴をより微細化することができる。以上により噴霧ノズル70から噴射されたマトリックス溶液は、噴霧ノズル70に対向配置された試料ステージ81上のサンプルプレートPに付着する。
特開2016-114400号公報([0004])
 上記のようなマトリックス膜形成装置の噴霧ノズル70における溶液管71の先端部の内径は、0.3mm程度と非常に小さく、更に、噴霧ガスの流れによってマトリックス溶液の乾燥が促進されるため、溶液管71の先端部にはマトリックスの結晶塊が形成されやすい。結晶塊が形成されるとノズル70が詰まるため、適宜、結晶塊を手で取り除いたり、ノズル70の先端を溶媒の入ったカップなどに付けて結晶塊を溶解させたりする必要があった。
 本発明は上記の点に鑑みて成されてものであり、その目的とするところは、質量分析イメージングに使用されるサンプルプレートにマトリックス物質の膜を形成するためのマトリックス膜形成装置において、噴霧ノズルの詰まりを抑制することにある。
 上記課題を解決するために成された本発明に係るマトリックス膜形成装置は、
 a) 管状の流路である溶液管と、前記溶液管に並行する流路であって先端が前記溶液管の先端近傍に位置するガス管と、を備えた噴霧ノズルと、
 b) 前記ガス管の基端側に高圧のガスを送給するガス送給手段と、
 c) マトリックス支援レーザ脱離イオン化法に用いるマトリックス物質を含む溶液を加圧して前記溶液管の基端側に送給する加圧溶液送給手段と、
 を有することを特徴としている。
 上記構成によれば、マトリックス物質を含む溶液(マトリックス溶液)を噴霧ノズルの溶液管に加圧送液することによって、噴霧ノズルにおけるマトリックス物質の結晶形成が抑制され、ノズルの詰まりを防止することができる。なお、上記本発明において、ガス管の先端が「溶液管の先端近傍に位置する」とは、前記溶液管の先端から流出する溶液を前記ガス管の先端から噴出するガスによってせん断して微小液滴とすることができる程度の距離に、該ガス管の先端が位置していることを意味する。また、前記「高圧のガス」とは絶対圧で大気圧よりも高い圧力のガスを意味する。
 上記本発明に係るマトリックス膜形成装置は、更に、
 d) 前記ガス送給手段による前記ガス管へのガスの送給を停止した状態で前記加圧溶液送給手段による前記溶液の送給を行う、ノズル洗浄モードを実行するよう、前記ガス送給手段及び前記加圧溶液送給手段を制御する制御手段、
 を有するものとすることが望ましい。
 このように、噴霧ノズルへのガスの供給を停止した状態で、該噴霧ノズルにマトリックス溶液を送給する「ノズル洗浄モード」を実行することにより、溶液管の内部や先端部に形成されたマトリックス物質の結晶を、マトリックス溶液に溶解させて除去することができる。これにより、結晶の付着による流路の狭窄を防止して安定した噴霧を実現することができる。
 なお、前記加圧溶液送給手段としては、例えばシリンジポンプ等を使用することもできるが、ポンプの脈動に起因する導入量の変動を防止するため、加圧溶液送給手段は、マトリックス溶液の液面を加圧することによって加圧送液を行うものとすることが望ましい。
 すなわち、上記本発明に係るマトリックス膜形成装置は、
 前記加圧溶液送給手段が、
 前記溶液が貯留された密閉容器と、
 一端が前記溶液管の基端側に接続され、他端が前記密閉容器内の下部に配置された溶液配管と、
 前記密閉容器内の上部空間にガスを導入する加圧用ガス導入手段と、
を有するものとすることが望ましい。
 ここで、「上部空間」とは、前記密閉容器の内部におけるマトリックス溶液の液面よりも上方の空間を意味する。
 また、上記のようにマトリックス溶液の液面をガスで加圧することによってマトリックス溶液の送液を行う場合、液面を加圧するためのガスと噴霧ノズルに供給するガスとを同一のガス源から供給する構成とすることが望ましい。
 すなわち、本発明に係るマトリックス膜形成装置は、
 前記ガス送給手段が、不活性ガスを供給するガス源と、前記ガス管の基端側と前記ガス源とを繋ぐガス流路と、を有するものであって、
 前記加圧用ガス導入手段が、前記ガス送給手段に設けられた前記ガス源から供給される不活性ガスを前記密閉容器内の上部空間に導入するものとすることが望ましい。
 また、本発明に係るマトリックス膜形成装置は、
 前記加圧溶液送給手段が、
 前記溶液が収容された溶液容器と、
 該溶液容器から前記溶液管の基端側へと至る溶液流路上に介挿された、前記溶液管における流路抵抗よりも大きな流路抵抗を有する抵抗管と、
 を有するものとすることが望ましい。
 このような抵抗管を設けることにより、噴霧ノズルにおける、結晶の付着による流路の狭窄、ニードルの取り付け具合の違い、又は加工誤差による各部品の相対位置の変動等による流路抵抗の変動による影響を相対的に小さくすることができるため、常に一定量での噴霧が可能となる。
 以上の通り、本発明に係るマトリックス膜形成装置によれば、噴霧ノズル内にマトリックス溶液の結晶が形成されることによる噴霧ノズルの詰まりを防止することができる。
本発明の一実施形態に係るマトリックス膜形成装置の要部構成を示す模式図。 同実施形態におけるノズル洗浄時の動作を示すフローチャート。 従来のスプレー式のマトリックス膜形成装置の概略構成を示す模式図。
 以下、本発明を実施するための形態について図面を参照しつつ説明する。図1は、本実施形態に係るマトリックス膜形成装置の要部構成を示す模式図である。本実施形態に係るマトリックス膜形成装置は、サンプルプレートPが収容されるチャンバ10と、サンプルプレートPにマトリックス溶液(マトリックス物質を含む溶液)をスプレーするための噴霧ノズル20とを有している。
 チャンバ10の内部にはサンプルプレートPが取り付けられる試料ステージ11と、試料ステージ11を移動させるためのXYステージ12が収容されている。チャンバ10の壁面の一つには、サンプルプレートPを出し入れするためのドア(図示略)が設けられており、更に、試料ステージ11と対向するチャンバ10の壁面には、噴霧ノズル20が取り付けられている。また、チャンバ10のいずれかの壁面には排気口13が形成されており、排気口13は図示しないドラフトチャンバに接続されている。
 噴霧ノズル20は、溶液管21と、溶液管21と同軸であって外筒として溶液管21を取り囲むように配設されたガス管22とを有する二重管構造となっている。溶液管21は先端部の内径が0.3mm程度であって、その中心には噴霧時に溶液を導くためのニードル23が挿入されている。溶液管21及びガス管22の先端はこれらの管21、22の長さ方向においてほぼ同一位置にあり、ニードル23の先端は溶液管21の先端から僅かに突出している。
 溶液管21の基端には、溶液供給管31(本発明における「溶液配管」又は「溶液流路」に相当)の一端が接続され、溶液供給管31の他端は、マトリックス溶液を収容した密閉容器である溶液容器30の下部(溶液容器30の高さ方向の中心よりも下方、望ましくは底面付近)に配置されている。また、溶液供給管31の中間部には抵抗管32が介挿されている。抵抗管32としては、噴霧ノズル20の溶液管21の先端部における抵抗値に比べて十分大きな抵抗値を持つもの、例えば、内径0.075mm長さ20mmのキャピラリ管などを使用する。なお、抵抗管32としては、シリカから成るキャピラリやPEEK(ポリエーテルエーテルケトン)樹脂から成るキャピラリ等を用いることができるが、耐久性を考慮するとPEEKキャピラリを用いることが望ましい。
 ガス管22の基端には、噴霧用ガス配管46の一端が接続されており、噴霧用ガス配管46の他端は、マニホールド(多分岐管)42及び共通配管41を介してガス源40に接続されている。ガス源40は、例えば、ガスボンベ又はガス発生装置等から成り、大気圧よりも高圧の不活性ガス(例えば窒素ガス)を共通配管41に送出する。ここで、共通配管41、マニホールド42、及び噴霧用ガス配管46が本発明における「ガス流路」に相当する。マニホールド42は、1つの入口端と3つの出口端を有しており、入口端には先述の共通配管41が接続され、3つ出口端の一つには先述の噴霧用ガス配管46が接続されている。マニホールド42の残り2つの出口端のうちの1つには置換用ガス配管47の一端が接続され、残りの一つには加圧用ガス配管48の一端が接続されている。置換用ガス配管47の他端はチャンバ10の壁面に位置しており、加圧用ガス配管48の他端は溶液容器30内部の天井付近(少なくとも溶液容器30の高さ方向の中心よりも上方)に位置している。なお、マニホールド42の3つの出口端にはそれぞれ電磁弁が搭載されている。以下、これらの電磁弁のうち、置換用ガス配管47が接続された出口端に設けられているものをガス置換用バルブ43とよび、噴霧用ガス配管46が接続された出口端に設けられているものを噴霧用バルブ44とよび、加圧用ガス配管48が接続された出口端に設けられているものを加圧用バルブ45とよぶ。上記構成において、ガス源40、共通配管41、マニホールド42、噴霧用バルブ44、及び噴霧用ガス配管46が本発明における「ガス送給手段」に相当する。また、ガス源40、共通配管41、マニホールド42、加圧用バルブ45、及び加圧用ガス配管48が、本発明における「加圧用ガス導入手段」に相当し、この加圧用ガス導入手段と、溶液容器30、溶液供給管31、及び抵抗管32が協同して本発明における「加圧溶液供給手段」として機能する。
 共通配管41、噴霧用ガス配管46、及び加圧用ガス配管48には、それぞれ手動式の圧力調整バルブ51、52、53が設けられている。また、置換用ガス配管47には、圧力計54、流量計55、及び手動式の流量調整バルブ56が設けられている。
 更に、本実施形態に係るマトリックス膜形成装置は、XYステージ12及び電磁弁43、44、45の動作を制御するための制御部60を有しており、制御部60にはユーザが設定や指示を入力するための入力部61が接続されている。制御部60の機能は、CPUやメモリを有するコンピュータに所定の制御プログラムを実行させることによって実現される。
 本実施形態に係るマトリックス膜形成装置による成膜を行う際には、まず、作業担当者(以下、ユーザとよぶ)がチャンバ10のドアを開き、組織切片等の薄膜状のサンプルを貼り付けたサンプルプレートPを試料ステージ11に取り付ける。続いて、ユーザが、チャンバ10のドアを閉じ、必要に応じて圧力調整バルブ51、52、53の開度を手作業で調節した上で、入力部61を操作して成膜開始の指示を入力する。なお、本実施形態では、圧力調整バルブ51、52、53を手動式のものとしたが、これらをモータによって駆動されるものとし、ユーザが制御部60を介して圧力調整バルブ51、52、53の開度を調整できる構成としてもよい。
 入力部61から成膜開始の指示が入力されると、制御部60は、まずガス置換用バルブ43に制御信号を送出して該バルブ43を開放させる。これにより、ガス源40から供給される不活性ガスがマニホールド42及び置換用ガス配管47を経てチャンバ10に流入するようになり、チャンバ10内の空気が不活性ガスによって置換されていく。
 その後、チャンバ10内の空気が不活性ガスで完全に置き換えられるのに十分な時間が経過した時点で、制御部60は加圧用バルブ45に制御信号を送出して該バルブ45を開放させる。これにより、ガス源40からマニホールド42に供給された不活性ガスが加圧用ガス配管48にも流入するようになる。その結果、加圧用ガス配管48の先端から溶液容器30の上部空間に不活性ガスが導入され、該ガスによって溶液容器30内のマトリックス溶液の液面が加圧される。これにより、該マトリックス溶液が溶液供給管31に導入され、抵抗管32を経て噴霧ノズル20の溶液管21から吐出されるようになる。
 続いて、制御部60は噴霧用バルブ44に制御信号を送出して該バルブ44を開放させる。これにより、ガス源40からマニホールド42に供給された不活性ガスが、更に噴霧用ガス配管46にも流入するようになる。なお、ここでは加圧用バルブ45→噴霧用バルブ44の順に開放するものとしたが、これらのバルブ44、45は逆の順で開放してもよいし、同時に開放してもよい。
 以上により、噴霧ノズル20のガス管22の先端から不活性ガスが噴出されると共に、溶液管21の先端から流出するマトリックス溶液が該ガスによってせん断されて微小液滴となり、ガスと共に噴霧ノズル20から噴射される。
 マトリックス物質の噴霧が開始されると、続いて制御部60はXYステージ12に制御信号を送出する。これにより、XYステージ12は、サンプルプレートPの全面に均等にマトリックス溶液が噴霧されるように試料ステージ11を移動させる。
 その後、サンプルプレートPの全面にマトリックス溶液が噴霧された時点で、制御部60は、XYステージ12を停止させ、更に、ガス置換用バルブ43、噴霧用バルブ44、及び加圧用バルブ45を閉鎖させてチャンバ10内のガス置換とマトリックス物質の噴霧を停止させる。以上により、サンプルプレートPへのマトリックス物質の噴霧が完了すると、ユーザはチャンバ10のドアを開けてサンプルプレートPを取り出す。その後、引き続き別のサンプルプレートPへの成膜を行う場合には、新たなサンプルプレートPを試料ステージ11にセットして上記の作業を繰り返し実行する。
 上記のように本実施形態に係るマトリックス膜形成装置では、マトリックス溶液を加圧送液することにより、溶液管21の先端付近におけるマトリックス溶液の滞留を防止し、結晶塊の形成による噴霧ノズル20の詰まりを防止することができる。また、溶液容器30から溶液管21の基端側へと至る溶液流路上に、溶液管21における流路抵抗よりも大きな流路抵抗を有する抵抗管32を介挿したことにより、該溶液流路全体の流路抵抗に占める、溶液管21の流路抵抗の割合を小さくすることができる。その結果、結晶の付着による流路の狭窄、ニードルの取り付け具合の違い、又は加工誤差による各部品の相対位置の変動等によって溶液管21の流路抵抗が変動した場合でも、噴霧量に大きな変化が生じるのを防止することができる。
 なお、上記のような加圧送液を行う場合でも、噴霧を続ける内に、溶液管21内にマトリックス溶液の結晶が付着して噴霧量が変動する場合があるため、以下の方法により、適宜、噴霧ノズル20の洗浄を行うことが望ましい。
 図2は、本実施形態に係るマトリックス膜形成装置のノズル洗浄時における動作を示すフローチャートである。なお、以下のように、噴霧ノズル20に対してガスの供給を行わずに、マトリックス溶液のみを供給する動作モードが、本発明における「洗浄モード」に相当する。
 ユーザが入力部61を操作して噴霧ノズル20の洗浄を指示すると、その旨が制御部60に入力される(ステップS11でYes)。ノズル洗浄の指示を受けた制御部60は、まず、現在、噴霧ノズル20によるマトリックス物質の噴霧が実行されているか否かを判定する(ステップS12)。
 噴霧の実行中であった場合(ステップS12でYes)は、噴霧用バルブ44を閉鎖させて噴霧ノズル20へのガスの供給を停止する(ステップS13)。これにより、噴霧ノズル20にはマトリックス溶液のみが供給されている状態となるため、該マトリックス溶液はガスによるせん断を受けることなく溶液管21の先端から流れ出る。このとき、該マトリックス溶液によって噴霧ノズル20先端に存在するマトリックス物質の結晶が溶かされて除去される。噴霧ガスの供給停止から予め定められた時間tが経過すると(ステップS14でYes)、制御部60は、噴霧用バルブ44を開いて噴霧ガスの供給を再開させる(ステップS15)。なお、このように噴霧の実行途中にノズル洗浄を行う場合には、予めXYステージ12を駆動してチャンバ10内のサンプルプレートPを噴霧ノズル20の正面から待避させておくことが望ましい。
 一方、ノズル洗浄の指示を受けた時点でマトリックス物質の噴霧を行っていなかった場合(ステップS12でNo)、制御部60は、加圧用バルブ45を開いて噴霧ノズル20へのマトリックス溶液の送液を開始させる(ステップS16)。このとき、噴霧ノズル20にはガスが供給されていないため、上記同様に、溶液管21に導入されたマトリックス溶液はガスによるせん断を受けることなくマトリックス物質の結晶を溶かしながら溶液管21の先端より流出する。その後、予め定められた時間tが経過すると(ステップS17でYes)、制御部60は、加圧用バルブ45を閉じて噴霧ノズル20へのマトリックス溶液の送液を停止させる(ステップS18)。
 なお、ここでは予め定められた時間tが経過した時点でノズル洗浄を終了するものとしたが、これに代えて、ユーザがノズル洗浄の終了を指示した時点(すなわち、入力部61から制御部60に洗浄終了指示が入力された時点)でノズル洗浄を終了するものとしてもよい。また、洗浄を開始してから予め定められた量のマトリックス溶液を送液した時点でノズル洗浄を終了するものとしてもよい。この場合は、例えば、溶液容器30に供給される不活性ガスの圧力、並びに抵抗管32の長さ及び径等の情報に基づいて制御部60が洗浄開始時点からの送液量(すなわち噴霧されたマトリックス溶液の量)を算出する。また更に、上記のようなユーザからの指示に応じてノズル洗浄を開始する構成に加えて又は代えて、マトリックス物質の噴霧開始から所定時間が経過した時点、又は前回洗浄を行ってから予め定められた量のマトリックス溶液を送液した時点で、ノズル洗浄を開始する構成としてもよい。後者の場合は、上記同様に溶液供給管31に流量計を設けるなどして制御部60で送液量を算出できるようにする。
 以上、本発明を実施するための形態について説明を行ったが、本発明は上記実施形態に限定されるものではなく、本発明の趣旨の範囲で適宜変更が許容される。例えば、上記実施形態では、本発明に係るマトリックス膜形成装置を、スプレー法によるマトリックス物質の噴霧を行うものとしたが、本発明は、これに限らず、エレクトロスプレーデポジション(ESD)法によるマトリックス物質の噴霧を行う装置(特許文献1を参照)などにも適用可能である。なお、ESD法は、溶液管に直流電圧を印加し、これによって形成される電場によって溶液管内のマトリックス溶液を帯電させた上でガスによる噴射を行うものであるが、スプレー法と同様に、溶液管及び溶液管に並行しその先端が溶液管の先端近傍に位置するガス管を備えた噴霧ノズルを使用するものであるため、上記同様にして本発明を適用することができる。
 また、上記実施形態では、XYステージ12によってサンプルプレートPを移動させる構成としたが、これに代えて、噴霧ノズル20をサンプルプレートPと平行な面内で移動させる構成としてもよい。
 更に、上記実施形態では溶液容器30内のマトリックス溶液の液面を、ガス源40から供給されたガスで加圧することによって送液を行うものとしたが、その他の方法、例えばシリンジポンプによってマトリックス溶液の加圧送液を行う構成とすることもできる。
 また更に、本発明に係るマトリックス膜形成装置は、前記溶液管へのマトリックス溶液の供給を、常に加圧送液によって行う構成とするほか、加圧送液による溶液供給とベンチュリー効果による(すなわち加圧を行わない)溶液供給とを切り換えて実行できる構成としてもよい。この場合、例えば溶液容器30の蓋を開閉することによって溶液容器30を密閉状態と大気開放状態の間で切り替える機構を設け、マトリックス溶液の噴霧時には溶液容器を大気開放すると共に加圧用バルブ45を閉鎖することでベンチュリー効果による溶液供給を行い、洗浄モードの実行時には溶液容器30を密閉状態とすると共に加圧用バルブ45を開放することで加圧送液を行う、といったことが可能となる。
 以下、マトリックス溶液の加圧送液及び噴霧ノズルの洗浄による効果を確認するために行った試験について説明する。
 まず、図3に示したような従来のマトリックス膜形成装置を使用し、加圧送液を行わない場合に連続噴霧できるマトリックス溶液の量を調べた。なお、噴霧ノズル20としては、内径が0.3mm、先端開口の面積が0.012mm2の溶液管21を備えたものを使用し、マトリックス溶液として、30mg/mLの2, 5-ジヒドロキシ安息香酸 (2, 5-dihydroxybenzoic acid; DHB) 溶液を使用した。また、ガス源40として窒素ジェネレータを有し、ガス源40とガス管22を繋ぐ配管における噴霧中のガス圧が0.1MPaとなるよう、該配管上に設けられた圧力調節バルブ(図示略)を調整した。上記条件下で、マトリックス溶液の連続噴霧を行い、噴霧ノズル20が完全に詰まった時点におけるマトリックス物質の噴霧量を確認した。
 上記実験を5回行った結果を以下の表1に示す(なお、500μLまで噴霧できた場合は「詰まりなし」とした)。
Figure JPOXMLDOC01-appb-T000001
 以上より、マトリックス溶液を300μL噴霧すると噴霧ノズルが完全に詰まる場合があることが確認された。
 続いて、図1に示したような本発明に係るマトリックス膜形成装置を使用し、マトリックス溶液の加圧送液を行うと共に、5分おきにノズル洗浄を実行した場合における噴霧性能を評価した。
 噴霧ノズル20としては、内径が0.3mm、先端開口の面積が0.014mm2の溶液管21を備えたものを使用し、マトリックス溶液として、30mg/mLの2, 5-ジヒドロキシ安息香酸 (2, 5-dihydroxybenzoic acid; DHB) 溶液を使用した。また、ガス源40として窒素ジェネレータを有し、噴霧用バルブ44の解放時における噴霧用ガス配管46内のガス圧が0.1MPaとなるよう圧力調節バルブ52を調整し、加圧用バルブ45の解放時における加圧用ガス配管48内のガス圧が0.16MPaとなるよう圧力調節バルブ53を調整した。噴霧に際しては、予めガス源40で発生する乾燥窒素を流量25L/minでチャンバ10内に1分間導入することによってチャンバ10内のガスを置換し、噴霧の実行中においても上記乾燥窒素のチャンバ10への導入を継続した。
 上記条件下で、マトリックス物質の噴霧を行い、5分ごとに噴霧量の確認(溶液容器30内のマトリックス溶液量の減少量の確認)と、噴霧ノズル20の洗浄を行った。なお、ノズル洗浄は,加圧用ガス配管48内におけるガス圧を0.16MPaとしたまま、噴霧用バルブ44を閉鎖して噴霧用ガス配管46内におけるガス圧を0.1MPaとし、その状態を10秒間維持することによって行った。1回の実験で、上記のような5分間の噴霧、噴霧量の確認、及びノズル洗浄を6回繰り返した。
 上記の実験を3回行って得られた、マトリックス溶液の使用量を以下の表2に示す。
Figure JPOXMLDOC01-appb-T000002
 上記結果から最大値・最小値・平均値を求め、噴霧量がどの程度ばらつくかを計算した結果を以下の表3に示す。
Figure JPOXMLDOC01-appb-T000003
 以上の通り、本発明に係るマトリックス膜形成装置によれば、噴霧量の合計が1000uLを超えてもノズルの詰まりが発生せず、更に、5分毎の噴霧量変動±5%以内で噴霧が可能であることが判明した。
10、80…チャンバ
11、81…試料ステージ
12…XYステージ
13…排気口
20、70…噴霧ノズル
 21、71…溶液管
 22、72…ガス管
 23、73…ニードル
30、75…溶液容器
31…溶液供給管
32…抵抗管
40、74…ガス源
41…共通配管
42…マニホールド
43…ガス置換用バルブ
44…噴霧用バルブ
45…加圧用バルブ
46…噴霧用ガス配管
47…置換用ガス配管
48…加圧用ガス配管
51、52、53…圧力調節バルブ
60…制御部
61…入力部

Claims (5)

  1.  a) 管状の流路である溶液管と、前記溶液管に並行する流路であって先端が前記溶液管の先端近傍に位置するガス管と、を備えた噴霧ノズルと、
     b) 前記ガス管の基端側に高圧のガスを送給するガス送給手段と、
     c) マトリックス支援レーザ脱離イオン化法に用いるマトリックス物質を含む溶液を加圧して前記溶液管の基端側に送給する加圧溶液送給手段と、
     を有することを特徴とするマトリックス膜形成装置。
  2.  更に、
     d) 前記ガス送給手段による前記ガス管へのガスの送給を停止した状態で前記加圧溶液送給手段による前記溶液の送給を行う、ノズル洗浄モードを実行するよう、前記ガス送給手段及び前記加圧溶液送給手段を制御する制御手段、
     を有することを特徴とする請求項1に記載のマトリックス膜形成装置。
  3.  前記加圧溶液送給手段が、
     e) 前記溶液が貯留された密閉容器と、
     f) 一端が前記溶液管の基端側に接続され、他端が前記密閉容器内の下部に配置された溶液配管と、
     g) 前記密閉容器内の上部空間にガスを導入する加圧用ガス導入手段と、
    を有することを特徴とする請求項1に記載のマトリックス膜形成装置。
  4.  前記ガス送給手段が、
     h) 不活性ガスを供給するガス源と、
     i) 前記ガス管の基端側と前記ガス源とを繋ぐガス流路と、
     を有するものであって、
     前記加圧用ガス導入手段が、前記ガス送給手段に設けられた前記ガス源から供給される不活性ガスを前記密閉容器内の上部空間に導入することを特徴とする請求項3に記載のマトリックス膜形成装置。
  5.  前記加圧溶液送給手段が、
     j) 前記溶液が収容された溶液容器と、
     k) 該溶液容器から前記溶液管の基端側へと至る溶液流路上に介挿された、前記溶液管における流路抵抗よりも大きな流路抵抗を有する抵抗管と、
     を有することを特徴とする請求項1に記載のマトリックス膜形成装置。
PCT/JP2017/043145 2017-11-30 2017-11-30 マトリックス膜形成装置 WO2019106799A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/755,955 US20200243318A1 (en) 2017-11-30 2017-11-30 MATRlX FILM DEPOSITION SYSTEM
CN201780096482.7A CN111295584A (zh) 2017-11-30 2017-11-30 基质膜形成装置
JP2019556490A JP6844717B2 (ja) 2017-11-30 2017-11-30 マトリックス膜形成装置
PCT/JP2017/043145 WO2019106799A1 (ja) 2017-11-30 2017-11-30 マトリックス膜形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/043145 WO2019106799A1 (ja) 2017-11-30 2017-11-30 マトリックス膜形成装置

Publications (1)

Publication Number Publication Date
WO2019106799A1 true WO2019106799A1 (ja) 2019-06-06

Family

ID=66664789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043145 WO2019106799A1 (ja) 2017-11-30 2017-11-30 マトリックス膜形成装置

Country Status (4)

Country Link
US (1) US20200243318A1 (ja)
JP (1) JP6844717B2 (ja)
CN (1) CN111295584A (ja)
WO (1) WO2019106799A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112485076A (zh) * 2019-09-12 2021-03-12 株式会社岛津制作所 试样预处理装置
JP2021060241A (ja) * 2019-10-04 2021-04-15 株式会社島津製作所 Maldi用前処理装置
US11988683B2 (en) 2019-10-04 2024-05-21 Shimadzu Corporation Pretreatment device for MALDI

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110931344B (zh) * 2019-12-09 2022-06-03 广东省半导体产业技术研究院 一种用于质谱检测的介电型样品靶片及其制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5770272A (en) * 1995-04-28 1998-06-23 Massachusetts Institute Of Technology Matrix-bearing targets for maldi mass spectrometry and methods of production thereof
JP2003215101A (ja) * 2002-01-23 2003-07-30 Shimadzu Corp 液体クロマトグラフ質量分析計
JP2005259477A (ja) * 2004-03-11 2005-09-22 Hitachi High-Technologies Corp エレクトロスプレイイオン化質量分析装置
JP3121568U (ja) * 2006-03-01 2006-05-18 株式会社島津製作所 質量分析計
JP2016114400A (ja) * 2014-12-12 2016-06-23 株式会社島津製作所 マトリックス膜形成装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4258318B2 (ja) * 2003-08-22 2009-04-30 株式会社島津製作所 液体クロマトグラフ質量分析装置
JP4577280B2 (ja) * 2006-07-05 2010-11-10 株式会社島津製作所 液体クロマトグラフ質量分析装置
JP2013033025A (ja) * 2011-06-27 2013-02-14 National Institute Of Advanced Industrial & Technology 液体クロマトグラフ質量分析装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5770272A (en) * 1995-04-28 1998-06-23 Massachusetts Institute Of Technology Matrix-bearing targets for maldi mass spectrometry and methods of production thereof
JP2003215101A (ja) * 2002-01-23 2003-07-30 Shimadzu Corp 液体クロマトグラフ質量分析計
JP2005259477A (ja) * 2004-03-11 2005-09-22 Hitachi High-Technologies Corp エレクトロスプレイイオン化質量分析装置
JP3121568U (ja) * 2006-03-01 2006-05-18 株式会社島津製作所 質量分析計
JP2016114400A (ja) * 2014-12-12 2016-06-23 株式会社島津製作所 マトリックス膜形成装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112485076A (zh) * 2019-09-12 2021-03-12 株式会社岛津制作所 试样预处理装置
JP2021043093A (ja) * 2019-09-12 2021-03-18 株式会社島津製作所 試料前処理装置
US11607701B2 (en) 2019-09-12 2023-03-21 Shimadzu Corporation Sample pretreatment device
JP7306180B2 (ja) 2019-09-12 2023-07-11 株式会社島津製作所 試料前処理装置
JP2021060241A (ja) * 2019-10-04 2021-04-15 株式会社島津製作所 Maldi用前処理装置
US11988683B2 (en) 2019-10-04 2024-05-21 Shimadzu Corporation Pretreatment device for MALDI

Also Published As

Publication number Publication date
CN111295584A (zh) 2020-06-16
JPWO2019106799A1 (ja) 2020-08-27
JP6844717B2 (ja) 2021-03-17
US20200243318A1 (en) 2020-07-30

Similar Documents

Publication Publication Date Title
WO2019106799A1 (ja) マトリックス膜形成装置
JP6863474B2 (ja) マトリックス膜形成装置
JP2001516140A (ja) 多重試料導入質量分光測定法
JP5492552B2 (ja) 液体噴射による脱離イオン化のための方法及び装置
US6458597B1 (en) Direct flow injection analysis nebulization electrospray and apci mass spectrometry
JP4556645B2 (ja) 液体クロマトグラフ質量分析装置
US6478238B1 (en) Miniaturized fluid transfer device
US8507851B2 (en) Nano-electrospray ionization technique and device
JP2011007690A (ja) イオン源装置、イオン化プローブの製造方法及びイオン源装置の駆動方法
US7095017B2 (en) Systems and method of a gated electrospray interface with variable flow rate for high throughput mass spectrometric analysis
JP2005201828A (ja) 液体クロマトグラフ等の分画装置
Zhang et al. Induced self-aspiration electrospray ionization mass spectrometry for flexible sampling and analysis
JP7306180B2 (ja) 試料前処理装置
WO2020178900A1 (ja) マトリックス膜形成装置及びマトリックス膜形成方法
JP2023525885A (ja) エレクトロスプレーイオン化によってフェムトリットルからナノリットルまでの流量を提供するキャピラリ・エミッタ
JP6780617B2 (ja) 荷電粒子の供給制御方法及び装置
US11709157B2 (en) Charged-particle supply control method and device
WO2017025205A1 (de) Sprühvorrichtung und verfahren zum beschichten von proben
JP6753533B2 (ja) 液体試料導入方法及び液体試料導入装置
CN117413339A (zh) 分析仪系统
CA2606480A1 (en) Direct flow injection analysis nebulization electrospray and apci mass spectrometry

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17933500

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019556490

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17933500

Country of ref document: EP

Kind code of ref document: A1