WO2019104946A1 - 一种耐热聚乳酸连续挤出发泡材料及其制备方法 - Google Patents

一种耐热聚乳酸连续挤出发泡材料及其制备方法 Download PDF

Info

Publication number
WO2019104946A1
WO2019104946A1 PCT/CN2018/086269 CN2018086269W WO2019104946A1 WO 2019104946 A1 WO2019104946 A1 WO 2019104946A1 CN 2018086269 W CN2018086269 W CN 2018086269W WO 2019104946 A1 WO2019104946 A1 WO 2019104946A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
formula
polylactic acid
ethylene bis
grafted
Prior art date
Application number
PCT/CN2018/086269
Other languages
English (en)
French (fr)
Inventor
王熊
李鹏
陈虎啸
路丹
Original Assignee
宁波家联科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波家联科技股份有限公司 filed Critical 宁波家联科技股份有限公司
Priority to CA3057542A priority Critical patent/CA3057542A1/en
Priority to AU2018374981A priority patent/AU2018374981B2/en
Priority to ES18884161T priority patent/ES2963663T3/es
Priority to EP18884161.3A priority patent/EP3730486B1/en
Priority to PL18884161.3T priority patent/PL3730486T3/pl
Priority to US16/490,902 priority patent/US10730845B2/en
Publication of WO2019104946A1 publication Critical patent/WO2019104946A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/16Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by esterified hydroxyl radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • C07C235/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C235/04Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C235/10Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton being acyclic and saturated having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by nitrogen atoms not being part of nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/027Polycondensates containing more than one epoxy group per molecule obtained by epoxidation of unsaturated precursor, e.g. polymer or monomer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/685Polyesters containing atoms other than carbon, hydrogen and oxygen containing nitrogen
    • C08G63/6852Polyesters containing atoms other than carbon, hydrogen and oxygen containing nitrogen derived from hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • C08G63/912Polymers modified by chemical after-treatment derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0028Use of organic additives containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • C08J9/0071Nanosized fillers, i.e. having at least one dimension below 100 nanometers
    • C08J9/008Nanoparticles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/142Compounds containing oxygen but no halogen atom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/11Esters; Ether-esters of acyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1515Three-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the invention relates to a green environmentally-friendly whole biodegradable material and a preparation field thereof, in particular to an ethylenebis-12-hydroxystearic acid amide (EBH) grafted glycidyl citrate (ECA) and an ethylenebis-12-hydroxyl group.
  • EH ethylenebis-12-hydroxystearic acid amide
  • ECA grafted glycidyl citrate
  • Polylactic acid (PLA) is an environmentally friendly polymer material which is degradable and has similar mechanical properties to polystyrene and is considered to be the most industrialized.
  • foaming materials mainly include joint extrusion, autoclave, injection foaming, rapid pressure relief and rapid temperature rising.
  • Continuous extrusion is popular for its high production efficiency.
  • polylactic acid foaming is less subject to continuous extrusion. This is because polylactic acid is a semi-crystalline polymer, which is slow in crystallinity, and because the melt strength of the polylactic acid matrix is low and the processing window is narrow, the conventional continuous extrusion foaming technology and process are not suitable for polylactic acid. Production of foam materials.
  • polylactic acid has low heat resistance and foaming problems, including improvement in the prior addition of nanoparticles to improve its foaming properties using the chain extender and the molecular weight increases nucleating agent altering the process conditions and the like.
  • These technical solutions can improve the foaming performance and heat resistance of the PLA to a certain extent, but basically have not left the laboratory.
  • Chinese patents CN101362833B, CN102321269B and CN104140659A disclose batch foaming techniques such as polylactic acid molding foaming or reaction kettle, which have complicated molding process and long molding cycle, which is not conducive to industrial production.
  • CN103819885A discloses a polylactic acid foaming material and a preparation method thereof, but the petroleum-based plastic such as polyethylene or polypropylene is greatly sacrificed, and the advantages of bio-source and biodegradability of polylactic acid are greatly sacrificed, and the solution cannot be completely solved. Oil dependence and white pollution hazards.
  • Polylactic acid foaming materials are prepared by using composite D-configuration PLA, such as US20080262118 and US20110263732, but the foam size is large, the opening ratio is high, the foaming process precision is high, the cost is high, and industrial production is difficult to achieve.
  • the prior patent CN105219044A of the present applicant also discloses a heat-resistant polylactic acid material which is added with a chain extender and a crystallization nucleating agent to improve the melt strength and heat resistance of the polylactic acid, respectively, but because of its melt The strength and crystallization rate are still not ideal.
  • the size of the polylactic acid cells is large and the distribution is uneven, resulting in a decrease in the mechanical properties of the final polylactic acid foaming material.
  • the present invention synthesizes a sequence of polymers which function as both a chain extender and a crystal nucleating agent in the polylactic acid foaming material.
  • EH-g-ECA ethylene bis-12-hydroxystearic acid grafted glycidyl citrate
  • a third object of the present invention is to provide a process for producing the above polymer.
  • a fourth object of the present invention is to provide a polylactic acid foaming material containing EBH-g-ECA, which has high expansion ratio, low density, uniform appearance, mild process, simple preparation and full biodegradation. Advantage.
  • the present invention provides a compound of formula I having the structural formula shown in Formula I:
  • n is an integer and 1 ⁇ n ⁇ 9.
  • n is 1, in which case the compound of formula I is ethylene bis-12-hydroxystearic acid grafted glycidyl citrate (EBH-g-ECA), the chemical formula It is C 82 H 112 N 2 O 28 ; its corresponding structural formula is as shown in Formula Ia.
  • EH-g-ECA ethylene bis-12-hydroxystearic acid grafted glycidyl citrate
  • the invention provides the synthesis of an intermediate compound of formula I, which has the structural formula shown in formula II:
  • n is an integer and 1 ⁇ n ⁇ 9; as an exemplary embodiment, n is 1, in which case Formula II is an ethylene bis-12-hydroxystearic acid grafted olefinic olefin ester, the chemical formula thereof It is C 82 H 112 N 2 O 22 ; its corresponding structural formula is as shown in Formula IIa.
  • the present invention provides an intermediate compound of formula I, ethylene bis-12-hydroxystearic acid grafted citric acid, having the chemical formula C 64 H 88 N 2 O 22 having the structural formula shown in formula III:
  • the present invention provides a process for the preparation of the compound of the above formula I, which comprises the steps of:
  • the present invention provides a synthesis method of formula I wherein n is 1, wherein the structural formula of formula I is as in Formula Ia: ethylene bis-12-hydroxystearic acid grafted glycerol citrate Ester (EBH-g-ECA), the formula of formula II is of formula IIa: ethylene bis-12-hydroxystearic acid grafted olefinic olefin ester.
  • Formula Ia ethylene bis-12-hydroxystearic acid grafted glycerol citrate Ester
  • the formula of formula II is of formula IIa: ethylene bis-12-hydroxystearic acid grafted olefinic olefin ester.
  • the present invention provides an intermediate product of the above formula Ia: ethylene bis-12-hydroxystearic acid grafted glycidyl citrate (EBH-g-ECA), ethylene bis-hydroxyl-hydroxyl hard
  • ESH-g-ECA ethylene bis-12-hydroxystearic acid grafted glycidyl citrate
  • the fatty acid amide is grafted with citric acid, and its structural formula is as shown in formula IIa
  • the intermediate product ethylene bis-12-hydroxystearic acid amide grafted olefinic olefin ester, and its structural formula is as shown in formula III.
  • step S2 The ethylene bis-12-hydroxystearic acid grafted citric acid (formula III) obtained in step S1 is uniformly mixed with a halogenated alkene, a catalyst and a solvent, and heated under the protection of an inert gas under stirring. To 40 ° C -60 ° C, the reaction is 25h-50h, washed and distilled under reduced pressure to obtain ethylene bis-12-hydroxystearic acid grafted olefinic olefin ester (formula IIa).
  • the ethylene bis-12-hydroxystearic acid grafted olefinic olefin ester (formula IIa) obtained in S2 is uniformly mixed with the catalyst and the solvent, and heated to 40 ° C under the protection of an inert gas under stirring. -60 ° C, reaction 20h-50h, washed and distilled under reduced pressure to obtain ethylene bis-12-hydroxystearic acid grafted glycidyl citrate (formula Ia).
  • the catalyst described in S1 is at least one selected from the group consisting of potassium carbonate and sodium carbonate;
  • the solvent is at least one selected from the group consisting of chloroform, toluene, and tetrahydrofuran; preferably, selected from the group consisting of chloroform; It is selected from the group consisting of nitrogen; wherein the molar ratio of citric acid, oxalyl chloride, ethylene bis-12-hydroxystearic acid amide and catalyst is 2.2-2.5:2.2-2.5:1.0:3.0-5.5; the weight ratio of citric acid to solvent is 1:8-10;
  • the catalyst described in the step S2 is at least one of potassium carbonate and sodium carbonate; the solvent is selected from the group consisting of dimethyl sulfoxide, N, N-dimethylformamide, toluene, N, N-dimethyl B.
  • At least one of the amides preferably, selected from N,N-dimethylformamide; the inert gas is selected from the group consisting of nitrogen and the like; wherein the ethylene bis-12-hydroxystearic acid amide is grafted with citric acid, halogen
  • the molar ratio of the alkene to the catalyst is 1.0:7.3-9.6:2-6; the weight ratio of the ethylene bis-12-hydroxystearic acid grafted citric acid to the solvent is 1:10-15;
  • the halogenated alkene Selected from 3-bromo-1 propylene, 4-bromo-1-butene, 5-bromo-1-pentene, 6-bromo-1-diazet, 7-bromo-1-heptene, 8-bromo-1 -octene, 9-bromo-1 decene, 3-chloro-1-propene, 4-chloro-1-butene, 5-chloro-1-pentene, 6-chloro-1-hexene
  • the catalyst described in the step S3 is at least one selected from the group consisting of m-chloroperoxybenzoic acid, peroxybenzoic acid and p-nitroperoxybenzoic acid, preferably selected from the group consisting of m-chloroperoxybenzoic acid; At least one selected from the group consisting of dichloromethane, chloroform, acetone, methyl ethyl ketone, and toluene; preferably, selected from chloroform; and the inert gas is selected from nitrogen gas or the like.
  • the molar ratio of ethylene bis-12-hydroxystearic acid grafted olefinic acid olefin ester to catalyst is 1.0:6.6-8.5; the weight ratio of ethylene bis-12-hydroxystearic acid grafted olefinic acid olefin ester to solvent is 1:8-13.
  • the present invention provides a compound of Formula I and a compound thereof in the synthesis of Formula I as an internal lubricant, a release agent, an interfacial compatibilizer, a plasticizer, a chain extender, and/or a crystal in the plastics field.
  • Nucleating agent applications in particular, provide EBH-g-ECA as an internal lubricant, mold release agent, interfacial compatibilizer, plasticizer, chain extender and/or crystallization nucleating agent in the plastics field.
  • a sequence of the compound of the formula I has both an amide group and an epoxy group, the amide group has a nucleating agent, and the epoxy group has a chain extender function, so that it can be foamed as a polylactic acid.
  • the multi-functional additive of the material combines the functions of chain extension and crystallization nucleation, as well as lubrication and foam stabilizer.
  • the EBH-g-ECA synthesized by the present invention functions as a multifunctional auxiliary agent having both a chain extender and a crystallization nucleating agent.
  • the invention also provides a polylactic acid foaming material comprising ethylene bis-12-hydroxystearic acid grafted glycidyl citrate (EBH-g-ECA),
  • the polylactic acid foamed material is made of the following weight percentage components:
  • the preparation method of the EBH-g-ECA is as follows:
  • step S2 The ethylene bis-12-hydroxystearic acid grafted citric acid (formula III) obtained in step S1 is uniformly mixed with a halogenated alkene, a catalyst and a solvent, and heated under the protection of an inert gas under stirring. To 40 ° C -60 ° C, the reaction is 25h-50h, washed and distilled under reduced pressure to obtain ethylene bis-12-hydroxystearic acid grafted olefinic olefin ester (formula IIa).
  • the ethylene bis-12-hydroxystearic acid grafted olefinic olefin ester (formula IIa) obtained in S2 is uniformly mixed with the catalyst and the solvent, and heated to 40 ° C under the protection of an inert gas under stirring. -60 ° C, reaction 20h-50h, washed and distilled under reduced pressure to obtain ethylene bis-12-hydroxystearic acid grafted glycidyl citrate (formula Ia).
  • the catalyst described in S1 is at least one selected from the group consisting of potassium carbonate or sodium carbonate;
  • the solvent is at least one selected from the group consisting of chloroform, toluene, and tetrahydrofuran; preferably, selected from the group consisting of chloroform;
  • Nitrogen the molar ratio of citric acid, oxalyl chloride, ethylene bis-12-hydroxystearic acid amide and catalyst is 2.2-2.5:2.2-2.5:1.0:3.0-5.5; the weight ratio of citric acid to solvent is 1:8 -10.
  • the catalyst described in the step S2 is at least one of potassium carbonate and sodium carbonate; the solvent is selected from the group consisting of dimethyl sulfoxide, N, N-dimethylformamide, toluene, N, N-dimethyl B.
  • At least one of the amides preferably, selected from N,N-dimethylformamide; the inert gas is selected from the group consisting of nitrogen and the like; the ethylene bis-12-hydroxystearic acid amide is grafted with citric acid, halogenated alkene
  • the molar ratio of the catalyst to the catalyst is 1.0:7.3-9.6:2-6; the weight ratio of the ethylene bis-12-hydroxystearic acid grafted citric acid to the solvent is 1:10-15;
  • the halogenated alkene is selected from the group consisting of 3-bromo-1 propylene, 4-bromo-1-butene, 5-bromo-1-pentene, 6-bromo-1-diazet, 7-bromo-1-heptene, 8-bromo-1-octyl Alkene, 9-bromo-1 decene, 3-chloro-1-propene, 4-chloro-1-butene, 5-chloro-1-pentene, 6-ch
  • the catalyst described in the step S3 is at least one selected from the group consisting of m-chloroperoxybenzoic acid, peroxybenzoic acid and p-nitroperoxybenzoic acid, preferably selected from the group consisting of m-chloroperoxybenzoic acid; At least one selected from the group consisting of dichloromethane, chloroform, acetone, methyl ethyl ketone, and toluene is preferably selected from the group consisting of chloroform; and the inert gas is nitrogen.
  • the molar ratio of ethylene bis-12-hydroxystearic acid grafted olefinic acid olefin ester to catalyst is 1.0:6.6-8.5; the weight ratio of ethylene bis-12-hydroxystearic acid grafted olefinic acid olefin ester to solvent is 1:8-13.
  • the polylactic acid is one or a mixture of two or more of L-type polylactic acid, D-type polylactic acid and LD mixed polylactic acid, and the polylactic acid has a weight average molecular weight of 100,000-300,000, and a molecular weight distribution Mw/Mn It is 1.3-1.8.
  • the PBAT resin is a copolymer of butylene adipate and butylene terephthalate.
  • the PBAT resin has a biological weight average molecular weight of 50,000-80,000 and a molecular weight distribution Mw/Mn of 1.2-1.6.
  • the cell nucleating agent is selected from one or two of micron talc, nano mica, nano organic montmorillonite and the like.
  • the co-blowing agent is selected from one or more selected from the group consisting of citric acid fatty acid glyceride, polyoxyethylene sorbitan fatty acid ester, sorbitan fatty acid, castor oil polyoxyethylene ether and the like.
  • the polylactic acid foamed material of the present invention may contain other components in addition to the above-mentioned components, and may be added to the composition of the present invention as long as it does not affect the properties of the polylactic acid foamed material of the present invention, such as Colorants, antioxidants, toughening agents, lubricants, fillers, brighteners, etc.
  • CN105219044A discloses a heat-resistant polylactic acid foaming material which uses a separate chain extender (ADR4368C/CS, BASF AG) and a crystal nucleating agent (ethylene bis-12-). Hydroxystearamide EBH) for improving the heat resistance of polylactic acid foamed materials. Although the heat resistance of the foamed material is improved to some extent, it is unsatisfactory that the foamed material has a rough appearance, insufficient aesthetics, and low mechanical properties of the product.
  • the inventors have also added ethylene bis- 12-hydroxystearic acid amide (EBH) and glycidyl citrate (ECA) as a polylactic acid foaming material to a polylactic acid foaming material (see Comparative Example 2).
  • ESH ethylene bis- 12-hydroxystearic acid amide
  • ECA glycidyl citrate
  • the material density is greater than 0.26 g/cm 3 , which is about twice the density of the foamed material prepared by the technical solution (0.11-0.16 g/cm 3 ), which is not conducive to reducing the application cost of the polylactic acid.
  • the EBH-g-ECA synthesized by the present invention has both a chain extension action (increasing melt strength) and a crystal nucleation (increasing heat resistance) in the polylactic acid foaming material.
  • the prepared EBH-g-ECA is made of citric acid with wide source and low price, and the prepared EBH-g-ECA has high epoxy value, economical environmental protection and low price.
  • the market's existing multi-functional chain extenders such as BASF ADR-4368CS are priced at 380 yuan / KG.
  • the EBH-g-ECA of the present invention performs more excellent than the existing chain extender and crystal nucleating agent compounding system, mainly because the multifunctional auxiliary agent connects a plurality of polylactic acid molecular chains.
  • the amide functionality is shown to exhibit more excellent nucleation nucleation (the amide functionality is at the link of multiple polylactic acid molecular chains).
  • the increase in crystallinity enhances the heat resistance of the polylactic acid foamed material.
  • the polylactic acid foamed material prepared by the invention has a heat distortion temperature of more than 115 ° C.
  • the present invention is compounded by EBH-g-ECA and other auxiliary agents such as a co-blowing agent, a cell nucleating agent, etc., and the cells are uniform while ensuring heat resistance and improving the strength of the melt. Fineness and uniform appearance of the product ensure excellent mechanical properties of the foamed material, and the material density of the foamed material is low, which reduces the application cost of the polylactic acid.
  • the invention also provides a preparation method of a fully biodegradable heat-resistant polylactic acid foaming material, which has the advantages of simple process, easy control, strong operability, continuous production and easy industrial implementation.
  • the specific process is as follows:
  • the heat-resistant polylactic acid foaming material has high melt strength, wide processing window, fast crystallization rate, good heat resistance, and maintains its own full biodegradation advantage.
  • the heat-resistant polylactic acid foaming material has a foaming ratio of 10-20 times and uniform cell size. The advantage of high closed cell ratio.
  • the physical blowing agent is one or a combination of carbon dioxide, nitrogen, pentane, butane or freon; preferably, one or a combination of carbon dioxide and nitrogen is used; particularly preferably, A supercritical carbon dioxide and nitrogen mixture (20% by volume of carbon dioxide and nitrogen: 80%) was used as the main blowing agent.
  • Carbon dioxide and nitrogen are non-toxic, harmless, non-polluting, non-combustible, and carbon dioxide has excellent regulation and control of swelling and osmosis of the polymer, making the cell size finer, and nitrogen helps the cell to grow and ensure the polylactic acid
  • the foam material has a lower density.
  • Another outstanding advantage of the present invention is that continuous twin-screw foaming can be achieved.
  • the preparation of polylactic acid foaming material by continuous extrusion with twin-screw is of great significance for realizing the industrial application of polylactic acid foaming material.
  • the production of polylactic acid continuous foaming materials is immature, and many researchers have studied polylactic acid foaming, such as Yang Zhiyun et al. (2014, Vol. 33, Supplement 1, Chemical Progress), and studied continuous extrusion foaming polylactic acid.
  • the influencing factor of the cell structure is the single-screw continuous foaming.
  • twin screw Compared with single screw, twin screw has higher shear rotation number, foaming agent is easier to mix evenly, and it helps to increase the number of cells, the cell structure is more regular, the cell shape is more uniform, and the production efficiency is higher. .
  • the twin-screw continuous extrusion foaming has higher requirements on the melt strength of the polymer material, and the low-melt strength polylactic acid has a lower performance under high shear state. Therefore, continuous twin-screw foaming is difficult to apply to the production of polylactic acid foamed materials.
  • Ma Yuwu et al. Ma Yuwu, Xin Chunling, He Yadong, et al. Effect of supercritical C0 2 on extrusion foaming of polylactic acid [J].
  • the present invention has the following advantages:
  • the multifunctional auxiliary prepared by the invention is a sequence of the polymer represented by the formula I, including ethylene bis-12-hydroxystearic acid grafted glycidyl citrate, and exhibits chain extension and crystallization. Nuclear role.
  • this multifunctional additive contains a multi-epoxy functional group, which can greatly increase the molecular weight and molecular chain length of polylactic acid by branching, thereby improving the melt strength of polylactic acid and broadening the processing window of polylactic acid, and finally solves Polylactic acid has low melt strength and narrow processing window, which limits the foaming of polylactic acid materials.
  • this multifunctional additive contains an amide functional group and has excellent crystal nucleation effect on polylactic acid, which can greatly improve polylactic acid.
  • the multifunctional auxiliary agent of the invention performs more excellently, mainly because the multifunctional auxiliary agent connects a plurality of polylactic acid molecular chains together to promote the amide.
  • the functional group exhibits more excellent crystal nucleation (the amide functional group is at the link of a plurality of polylactic acid molecular chains).
  • the polylactic acid foamed material prepared by the prior art has defects of low foaming rate, uneven cell size, and high open porosity, which is mainly caused by uncontrolled growth of polylactic acid cells.
  • an auxiliary agent which has a stabilizing effect on the foaming of polylactic acid is finally obtained, thereby realizing the controllability of the growth of polylactic acid cells, and finally obtaining a polylactic acid foaming material having a uniform cell size.
  • the advantage of high closed cell rate This is mainly because the co-blowing agent selected by the invention can effectively improve the affinity of the interface between the polylactic acid and the foaming gas, and realize the stable growth of the polylactic acid cells, thereby overcoming the uneven size and opening of the polylactic acid cells.
  • the problem of high porosity is mainly because the co-blowing agent selected by the invention can effectively improve the affinity of the interface between the polylactic acid and the foaming gas, and realize the stable growth of the polylactic acid cells, thereby overcoming the uneven size and opening of the polylactic acid cells.
  • the heat-resistant polylactic acid foaming material prepared by the invention can realize continuous expansion of twin-screw by using foaming technology such as supercritical carbon dioxide, nitrogen, pentane, butane or freon, and the heat-resistant temperature of the prepared plastic product Up to 115 ° C and above, the expansion ratio can be controlled to 10-20 times, and the cell size distribution is uniform, and the closed cell ratio is high, which is of great significance for achieving large-scale replacement of foam materials such as PS.
  • foaming technology such as supercritical carbon dioxide, nitrogen, pentane, butane or freon
  • FIG 1 shows the structural formula of the formula I
  • Figure 2 shows a synthetic route diagram of Formula I
  • FIG. 3 shows the structural formula of Formula III
  • FIG. 4 shows the structural formula of Formula II
  • FIG. 5 shows the structural formula of the formula Ia
  • FIG. 6 shows the synthetic route of formula Ia
  • Figure 7 shows the structural formula of the formula IIa
  • Figure 8 is a graph showing the nuclear magnetic carbon spectrum of the ethylene bis-12-hydroxystearic acid grafted citric acid (formula III) prepared by the present invention.
  • Figure 9 shows a nuclear magnetic carbon spectrum of an ethylene bis- 12-hydroxystearic acid grafted olefinic olefin ester (Formula IIa) prepared by the present invention
  • Figure 10 shows the nuclear magnetic carbon spectrum of the ethylene bis-hydroxy-hydroxystearate grafted glycidyl citrate (Formula Ia) prepared by the present invention.
  • n 1, a sequence of compounds of formula I having multiple amide groups and epoxy groups, the amide group having nucleation
  • the action of the agent, and the epoxy group has the function of chain extender. Therefore, the sequence compound can be used as a multifunctional auxiliary agent for the polylactic acid foaming material, and has both chain extension and crystallization nucleation, as well as lubrication and foam stabilization. Agent action.
  • Polylactic acid (American Natureworks 4032D) 92Kg, PBAT resin (Biocosafe2003, Yifan Xinfu Pharmaceutical Co., Ltd.) 5Kg, cell nucleating agent (nano organic montmorillonite DK-2, Zhejiang Fenghong Clay Chemical Co., Ltd.) 2Kg , co-foaming agent (citric acid fatty acid glyceride, Shanghai Mengji Industrial Co., Ltd.) 0.5Kg, EBH-g-ECA (ethylene bis-12-hydroxystearic acid grafted glycidyl citrate, homemade) 0.5 Kg.
  • cell nucleating agent nano organic montmorillonite DK-2, Zhejiang Fenghong Clay Chemical Co., Ltd.
  • co-foaming agent citric acid fatty acid glyceride, Shanghai Mengji Industrial Co., Ltd.
  • EBH-g-ECA ethylene bis-12-hydroxystearic acid grafted glycidyl cit
  • Polylactic acid (American Natureworks 4032D) 91Kg, PBAT resin (Biocosafe2003, Yifan Xinfu Pharmaceutical Co., Ltd.) 5Kg, cell nucleating agent (nano organic montmorillonite DK-2, Zhejiang Fenghong Clay Chemical Co., Ltd.) 2Kg , co-foaming agent (citric acid fatty acid glyceride, Shanghai Mengji Industrial Co., Ltd.) 1Kg, EBH-g-ECA (ethylene bis-12-hydroxystearic acid grafted glycidyl citrate, homemade) 1Kg.
  • cell nucleating agent nano organic montmorillonite DK-2, Zhejiang Fenghong Clay Chemical Co., Ltd.
  • co-foaming agent citric acid fatty acid glyceride, Shanghai Mengji Industrial Co., Ltd.
  • EBH-g-ECA ethylene bis-12-hydroxystearic acid grafted glycidyl citrate,
  • the preparation method is as described in Example 5.
  • Polylactic acid USA Natureworks 4032D 90.5Kg
  • PBAT resin Biocosafe2003, Yifan Xinfu Pharmaceutical Co., Ltd.
  • cell nucleating agent nano organic montmorillonite DK-2, Zhejiang Fenghong Clay Chemical Co., Ltd.
  • co-foaming agent citric acid fatty acid glyceride, Shanghai Mengji Industrial Co., Ltd.
  • EBH-g-ECA ethylene bis-12-hydroxystearic acid grafted glycidyl citrate, homemade 1.5 Kg.
  • the preparation method is as described in Example 5.
  • Polylactic acid (American Natureworks 4032D) 90Kg, PBAT resin (Biocosafe2003, Yifan Xinfu Pharmaceutical Co., Ltd.) 5Kg, cell nucleating agent (nano organic montmorillonite DK-2, Zhejiang Fenghong Clay Chemical Co., Ltd.) 2Kg , co-blowing agent (citric acid fatty acid glyceride, Shanghai Meng Research Industrial Co., Ltd.) 1Kg, EBH-g-ECA (ethylene bis-12-hydroxystearic acid grafted glycidyl citrate, homemade) 2Kg.
  • cell nucleating agent nano organic montmorillonite DK-2, Zhejiang Fenghong Clay Chemical Co., Ltd.
  • co-blowing agent citric acid fatty acid glyceride, Shanghai Meng Research Industrial Co., Ltd.
  • EBH-g-ECA ethylene bis-12-hydroxystearic acid grafted glycidyl citrate, homemade
  • the preparation method is as described in Example 5.
  • Polylactic acid (American Natureworks 4032D) 91.5Kg
  • PBAT resin Biocosafe2003, Yifan Xinfu Pharmaceutical Co., Ltd.) 5Kg
  • cell nucleating agent nano organic montmorillonite DK-2, Zhejiang Fenghong Clay Chemical Co., Ltd.
  • co-foaming agent citric acid fatty acid glyceride, Shanghai Mengji Industrial Co., Ltd.
  • EBH-g-ECA ethylene di-12-hydroxy stearamide grafted glycidyl citrate, homemade
  • the preparation method is as described in Example 5.
  • Polylactic acid (American Natureworks 4032D) 90Kg, PBAT resin (Biocosafe2003, Yifan Xinfu Pharmaceutical Co., Ltd.) 5Kg, cell nucleating agent (nano organic montmorillonite DK-2, Zhejiang Fenghong Clay Chemical Co., Ltd.) 2Kg , co-foaming agent (citric acid fatty acid glyceride, Shanghai Mengji Industrial Co., Ltd.) 1.5Kg, EBH-g-ECA (ethylene bis-12-hydroxystearic acid grafted glycidyl citrate, homemade) 1.5 Kg.
  • PBAT resin Biocosafe2003, Yifan Xinfu Pharmaceutical Co., Ltd.
  • cell nucleating agent nano organic montmorillonite DK-2, Zhejiang Fenghong Clay Chemical Co., Ltd.
  • co-foaming agent citric acid fatty acid glyceride, Shanghai Mengji Industrial Co., Ltd.
  • the preparation method is as described in Example 5.
  • Polylactic acid (American Natureworks 4032D) 90.5Kg, PBAT resin (Biocosafe2003, Yifan Xinfu Pharmaceutical Co., Ltd.) 5Kg, cell nucleating agent (talc powder, 5000 mesh, Dandong Tianci Flame Retardant Material Technology Co., Ltd.) 2Kg, Co-blowing agent (citric acid fatty acid glyceride, Shanghai Mengji Industrial Co., Ltd.) 1.0Kg, EBH-g-ECA (ethylene bis-12-hydroxystearic acid grafted glycidyl citrate, homemade) 1.5Kg .
  • EBH-g-ECA ethylene bis-12-hydroxystearic acid grafted glycidyl citrate, homemade
  • the preparation method is as described in Example 5.
  • Polylactic acid USA Natureworks 4032D 90.5Kg
  • PBAT resin Biocosafe2003, Yifan Xinfu Pharmaceutical Co., Ltd.
  • cell nucleating agent nano organic montmorillonite DK-2, Zhejiang Fenghong Clay Chemical Co., Ltd.
  • co-blowing agent polyoxyethylene sorbitan fatty acid ester T-80, Shanghai Yanwang Industrial Co., Ltd.
  • EBH-g-ECA ethylene bis-12-hydroxystearic acid grafted Glycidyl citrate, homemade
  • the preparation method is as described in Example 5.
  • Polylactic acid (4022D, Natureworks, USA) 88Kg, PBAT resin (Biocosafe2003, Yifan Xinfu Pharmaceutical Co., Ltd.) 5Kg, chain extender (ADR4368C/CS, BASF AG), 1Kg, crystal nucleating agent (ethylene double -12-hydroxystearic acid EBH, Suzhou Liansheng Chemical Co., Ltd.) 1kg; cell nucleating agent (nano organic montmorillonite DK-2, Zhejiang Fenghong Clay Chemical Co., Ltd.) 2kg, co-blowing agent (citric acid) Fatty acid glyceride, Shanghai Mengji Industrial Co., Ltd.) 1Kg.
  • PBAT resin Biocosafe2003, Yifan Xinfu Pharmaceutical Co., Ltd.
  • chain extender ADR4368C/CS, BASF AG
  • crystal nucleating agent ethylene double -12-hydroxystearic acid EBH, Suzhou Liansheng Chemical Co., Ltd.
  • the preparation method is as described in Example 5.
  • Polylactic acid (4022D, Natureworks, USA) 88Kg, PBAT resin (Biocosafe2003, Yifan Xinfu Pharmaceutical Co., Ltd.) 5Kg, chain extender (ADR4368C/CS, BASF AG), 1Kg, crystal nucleating agent (ethylene double -12-hydroxystearic acid EBH, Suzhou Liansheng Chemical Co., Ltd.) 1kg; triglycidyl citrate (homemade) 1kg, cell nucleating agent (nano organic montmorillonite DK-2, Zhejiang Fenghong Clay Chemical Co., Ltd. Company) 2kg, co-foaming agent (citric acid fatty acid glyceride, Shanghai Mengji Industrial Co., Ltd.) 1Kg.
  • the preparation method is as described in Example 5.
  • Polylactic acid (4022D, Natureworks, USA) 91.5Kg
  • PBAT resin Biocosafe2003, Yifan Xinfu Pharmaceutical Co., Ltd.
  • foaming nucleating agent Naorganic montmorillonite DK-2, Zhejiang Fenghong Clay Chemical Co., Ltd. 2 kg
  • EBH-g-ECA ethylene bis-12-hydroxystearic acid grafted glycidyl citrate, homemade
  • the preparation method is as described in Example 5.
  • Polylactic acid (4022D, Natureworks, USA) 92Kg, PBAT resin (Biocosafe2003, Yifan Xinfu Pharmaceutical Co., Ltd.) 5Kg, foaming nucleating agent (nano organic montmorillonite DK-2, Zhejiang Fenghong Clay Chemical Co., Ltd.) 2kg, co-foaming agent (citric acid fatty acid glyceride, Shanghai Mengji Industrial Co., Ltd.) 1Kg.
  • foaming nucleating agent nano organic montmorillonite DK-2, Zhejiang Fenghong Clay Chemical Co., Ltd.
  • co-foaming agent citric acid fatty acid glyceride, Shanghai Mengji Industrial Co., Ltd.
  • the preparation method is as described in Example 5.
  • the modified polylactic acid particles obtained in the twin-screw extruders of Examples 5 to 12 and Comparative Examples 1 to 4 were injection-molded into behavioral standard splines and tested for heat distortion temperature according to GB/T 1634.2-04.
  • the heat-resistant polylactic acid foaming materials obtained in Examples 4 to 11 and Comparative Examples 1 to 4 were subjected to density test using a supercritical carbon dioxide and nitrogen mixed gas foaming technique, and the test method was in accordance with GB/T 4472-2011.
  • the above characterization test results are shown in Table 1.
  • Examples 4 to 11 have superior foaming properties as compared with Comparative Examples 1 to 4, and are particularly excellent in sheet density and heat distortion temperature.
  • EH-g-ECA ethylene bis-12-hydroxystearic acid amide grafted glycidyl citrate
  • the melt strength of polylactic acid is greatly improved to meet the requirements of continuous foaming.
  • the crystallization speed is increased, thereby increasing the heat distortion temperature of the polylactic acid from 55 ° C to above 115 ° C;
  • the co-blowing agent the cell growth of the polylactic acid becomes controllable, and finally the foaming magnification is high.
  • Comparative Example 1 used a chain extender (ADR4368C/CS, BASF AG) and (ethylene bis-12-hydroxystearic acid EBH), and Comparative Example 2 used a chain extender (ADR4368C/CS, BASF AG).
  • Comparative Example 3 in the absence of a co-blowing agent, the foaming material The surface was not uniform and rough; Comparative Example 4 In the absence of the multifunctional auxiliary EBH-g-ECA prepared by the present invention, the polylactic acid material could not be foam molded. It can be seen that the combination of a simple chain extender and a crystallization nucleating agent is difficult to obtain a polylactic acid foaming material having satisfactory properties.
  • the heat-resistant polylactic acid foaming material maintains the advantages of biodegradation of polylactic acid, and fully complies with the American ASTM D6400 and EU EN13432 degradation certification standards, which is of great significance for alleviating the shortage of petroleum resources and solving white pollution. Therefore, this composite material fully meets the development needs of the green low-carbon economy and has a broad application space.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种乙撑双-12-羟基硬脂酰胺接枝柠檬酸缩水甘油酯(EBH-g-ECA)及其制备方法,该EBH-g-ECA可用作高分子材料中的多功能助剂,特别是在聚酯类高分子材料中兼具扩链和结晶成核作用。本发明还提供了含有EBH-g-ECA的耐热聚乳酸连续挤出发泡材料。利用此耐热聚乳酸发泡材料可实现连续发泡技术,制备的发泡产品耐热性高、外观均一、密度较低,并可完全生物降解。本发明还公开了一种耐热聚乳酸发泡材料的制备方法,该制备方法易于产业化生产,对实现大规模取代PP和PS等石油基塑料一次性发泡产品具有重要意义。

Description

一种耐热聚乳酸连续挤出发泡材料及其制备方法 技术领域
本发明涉及绿色环保全生物降解材料及其制备领域,具体涉及一种乙撑双-12-羟基硬脂酰胺(EBH)接枝柠檬酸缩水甘油酯(ECA)及含有乙撑双-12-羟基硬脂酰胺接枝柠檬酸缩水甘油酯(EBH-g-ECA)的耐热聚乳酸连续挤出发泡材料及其制备方法。
背景技术
近年来,高分子材料导致的“石油资源短缺”、“白色污染”、“温室效应”和“雾霾天气”逐渐严峻,生物基可降解高分子材料逐步受到人们的关注。聚乳酸(PLA)具有可降解性,且具有与聚苯乙烯类似的机械性能,被认为最具产业化前景的环境友好高分子材料。
然而,耐热性差和价格高成为限制聚乳酸大规模产业化应用的关键因素。一方面,聚乳酸热变形温度仅为55℃左右,这大大的限制了聚乳酸制品的实际使用性能及运输(夏季集装箱内温度甚至达到70℃以上)。另一方面,相对于聚丙烯、聚苯乙烯等石油基塑料,聚乳酸价格仍然较高。聚乳酸发泡产品可以有效的降低其密度,减少单个产品重量,进而解决其价格高的难题。
发泡材料的生产方法主要有连接挤出、高压釜、注塑发泡、快速泄压和快速升温法。连续挤出法因生产效率高而备受欢迎,然而,目前聚乳酸发泡却较少采用连续挤出法。这是因为,聚乳酸为半结晶性高分子,其在结晶性慢,由于聚乳酸基体的融体强度低,加工窗口窄,导致现有的连续挤出发泡技术及工艺不适用聚乳酸发泡材料的生产。
针对上述聚乳酸发泡和耐热性低难题,现有改善主要包括加入纳米粒子改善其发泡性能、采用扩链剂 大分子量和成核剂改变工艺条件等。这些技术方案可以在一定程度上改善PLA发泡性能和耐热性,但是基本上仍未走出实验室。
如中国专利CN101362833B、CN102321269B及CN104140659A等公开了聚乳酸模压发泡或者反应釜等间歇式发泡技术,成型工艺复杂,成型周期长,不利于工业化生产。CN103819885A公开了一种聚乳酸发泡材料及其制备方法,但是通过复合聚乙烯或聚丙烯等石油基塑料,大大的牺牲了聚乳酸的生物来源性及生物降解性的优势,仍不能彻底解决其石油依赖性及白色污染危害。美国专利US20080262118和US20110263732等利用复合D-构型PLA制备了聚乳酸发泡材料,但是泡沫尺寸较大,开孔率高,发泡工艺精度要求高,成本高,难以实现工业化生产。本发明申请人的在先专利CN105219044A也公开了一 种耐热的聚乳酸材料,其加入扩链剂和结晶成核剂以分别改善聚乳酸的熔体强度和耐热性能,但因为其熔体强度和结晶速率仍不太理想,聚乳酸泡孔尺寸较大,且分布不均匀,导致最终的聚乳酸发泡材料力学性能下降。
虽然耐热聚乳酸发泡材料在一次性餐盒、快餐盒及汉堡盒、方便面碗及包装领域具有广阔的应用市场,但是,至今为止,市面上没有令人完全满意的聚乳酸发泡产品,聚乳酸发泡材料仍然处于理论研究阶段。因此改善聚乳酸发泡材料的耐热性能和实现快速高效的工业化生产,对实现大规模取代石油基发泡产品具有重要的意义。
发明内容
为了解决现有技术中的耐热聚乳酸连续发泡和耐热性难题,本发明合成了一序列聚合物,其在聚乳酸发泡材料中兼具扩链剂和结晶成核剂的作用。
本发明的目的在于提供一系列如式I所示的新聚合物,尤其提供如Ia所示的乙撑双-12-羟基硬脂酰胺接枝柠檬酸缩水甘油酯(EBH-g-ECA)。
本发明的目的之二在于提供上述聚合物用作聚乳酸发泡材料中的扩链剂和结晶成核剂的应用。
本发明的目的之三在于提供上述聚合物的制备方法。
本发明的目的之四在于提供一种含有EBH-g-ECA的聚乳酸发泡材料,该发泡材料具有发泡倍率高、密度低、产品外观均一、工艺温和、制备简单和全生物降解的优势。
本发明的目的还在于提供上述聚乳酸发泡材料的制备方法。
本发明的上述目的通过以下技术手段实现:
本发明提供了如式I所示的化合物,结构式如式I所示:
Figure PCTCN2018086269-appb-000001
其中n为整数,并且1≤n≤9。作为一种示范性的实施例,n为1,此时,式I所示的化合物为乙撑双-12-羟基硬脂酰胺接枝柠檬酸缩水甘油酯(EBH-g-ECA),其化学式为C 82H 112N 2O 28;其对应的结构式如式Ia所示。
Figure PCTCN2018086269-appb-000002
另一方面,本发明提供了合成式I的中间体化合物,其结构式如式II所示:
Figure PCTCN2018086269-appb-000003
其中n为整数,并且1≤n≤9;作为一种示范性的实施例,n为1,此时,式II为乙撑双-12-羟基硬脂酰胺接枝柠檬酸烯烃酯,其化学式为C 82H 112N 2O 22;其对应的结构式如式IIa所示。
Figure PCTCN2018086269-appb-000004
另一方面,本发明提供了合成式I的中间体化合物乙撑双-12-羟基硬脂酰胺接枝柠檬酸,其化学式为C 64H 88N 2O 22,其结构式如式III所示:
Figure PCTCN2018086269-appb-000005
另一方面,本发明还提供了上述式I所示的化合物的制备方法,其包含以下步骤:
S1:柠檬酸、草酰氯、乙撑双-12-羟基硬脂酰胺三者发生消除反应,得到式III:乙撑双-12-羟基硬脂酰胺接枝柠檬酸;
S2:将步骤S1中得到的式III:乙撑双-12-羟基硬脂酰胺接枝柠檬酸与卤代烯进行消除反应,得到式II所示的化合物;
S3.将S2中得到的式II进行氧化反应得到式I所示的化合物;其中n为整数,并且1≤n≤9。
Figure PCTCN2018086269-appb-000006
作为一种示范性的实施方式,本发明提供了式I中n为1的合成方法,此时,式I的结构式如式Ia:乙撑双-12-羟基硬脂酰胺接枝柠檬酸缩水甘油酯(EBH-g-ECA),式II的结构式如式IIa:乙撑双-12-羟基硬脂酰胺接枝柠檬酸烯烃酯。
另一方面,本发明还提供了制备上述式Ia:乙撑双-12-羟基硬脂酰胺接枝柠檬酸缩水甘油酯(EBH-g-ECA)过程的中间产物乙撑双-12-羟基硬脂酰胺接枝柠檬酸,其结构式如式IIa所示;以及中间产物乙撑双-12-羟基硬脂酰胺接枝柠檬酸烯烃酯,其结构式如式III所示。
上述乙撑双-12-羟基硬脂酰胺接枝柠檬酸缩水甘油酯(EBH-g-ECA,式Ia)的制备方法为:
S1.将柠檬酸、草酰氯、乙撑双-12-羟基硬脂酰胺、催化剂与溶剂混合均匀,在搅拌状态下,在惰性气体的保护下,升温至20℃-60℃,反应30-60h,经减压蒸馏得到乙撑双-12-羟基硬脂酰胺接枝柠檬酸(式III);
S2.将步骤S1中得到的乙撑双-12-羟基硬脂酰胺接枝柠檬酸(式III)与卤代烯、催化剂及溶剂混合均匀,在搅拌状态下,在惰性气体的保护下,加热至40℃-60℃,反应25h-50h,经洗涤、减压蒸馏得到乙撑双-12-羟基硬脂酰胺接枝柠檬酸烯烃酯(式IIa)。
S3.将S2中得到的乙撑双-12-羟基硬脂酰胺接枝柠檬酸烯烃酯(式IIa)与催化剂及溶剂混合均匀,在搅拌状态下,在惰性气体的保护下,升温至40℃-60℃,反应20h-50h,经洗涤、减压蒸馏得到乙撑双-12-羟基硬脂酰胺接枝柠檬酸缩水甘油酯(式Ia)。
Figure PCTCN2018086269-appb-000007
其中,S1中所述的催化剂选自碳酸钾和碳酸钠中的至少一种;所述的溶剂选自氯仿、甲苯、四氢呋喃中的至少一种;优选地,选自氯仿;所述的惰性气体选自氮气;其中,柠檬酸、草酰氯、乙撑双-12-羟基硬脂酰胺和催化剂的摩尔比为2.2-2.5:2.2-2.5:1.0:3.0-5.5;柠檬酸与溶剂的重量比为1:8-10;
步骤S2中所述的催化剂为碳酸钾和碳酸钠中至少一种;所述的溶剂选自二甲基亚砜、N,N-二甲基甲酰胺、甲苯、N,N-二甲基乙酰胺中的至少一种;优选地,选自N,N-二甲基甲酰胺;所述的惰性气体选自氮气等;其中,乙撑双-12-羟基硬脂酰胺接枝柠檬酸、卤代烯和催化剂的摩尔比为1.0:7.3-9.6:2-6;乙撑双-12-羟基硬脂酰胺接枝柠檬酸与溶剂的重量比为1:10-15;所述的卤代烯选自3-溴-1丙烯、4-溴-1-丁烯、5-溴-1-戊烯、6-溴-1-已稀、7-溴-1-庚烯、8-溴-1-辛烯、9-溴-1壬烯、3-氯-1-丙烯、4-氯-1-丁烯、5-氯-1-戊烯、6-氯-1-己烯、7-氯-1-庚烯、8氯-1-辛烯、9-氯-1壬烯中的一种;优选地,选自3-溴-1-丙烯和3-氯-1-丙烯,更优选地,选自3-溴-1-丙烯;
步骤S3中所述的催化剂选自间氯过氧苯甲酸、过氧苯甲酸、对硝基过氧苯甲酸中的至少一种,优选地,选自间氯过氧苯甲酸;所述的溶剂选自二氯甲烷、三氯甲烷、丙酮、丁酮和甲苯中的至少一种;优选地,选自三氯甲烷;所述的惰性气体选自氮气等。乙撑双-12-羟基硬脂酰胺接枝柠檬酸烯烃酯和催化剂的摩尔比为1.0:6.6-8.5;乙撑双-12-羟基硬脂酰胺接枝柠檬酸烯烃酯与溶剂的重量比为1:8-13。
另一方面,本发明提供了式I所示的化合物及其合成式I中间的化合物在塑料领域作 为内润滑剂、脱模剂、界面相容剂、增塑剂、扩链剂和/或结晶成核剂应用,尤其提供了EBH-g-ECA在塑料领域作为内润滑剂、脱模剂、界面相容剂、增塑剂、扩链剂和/或结晶成核剂应用。
式I所示的一序列化合物,同时具有酰胺基团和环氧基团,酰胺基团具有成核剂作用,而环氧基团又具有扩链剂作用,所以,其可以作为聚乳酸发泡材料的多功能助剂,兼具扩链和结晶成核作用,以及润滑作用和稳泡剂作用。
在本发明优选的实施例中,本发明合成的EBH-g-ECA作为一种多功能助剂,兼具扩链剂和结晶成核剂的作用。
本发明还提供了一种含有乙撑双-12-羟基硬脂酰胺接枝柠檬酸缩水甘油酯(EBH-g-ECA)的聚乳酸发泡材料,
优选地,所述的聚乳酸发泡材料其由以下重量百分比的组分制成:
Figure PCTCN2018086269-appb-000008
所述的EBH-g-ECA的制备方法为:
S1.将柠檬酸、草酰氯、乙撑双-12-羟基硬脂酰胺、催化剂与溶剂混合均匀,在搅拌状态下,在惰性气体的保护下,升温至20℃-60℃,反应30-60h,经减压蒸馏得到乙撑双-12-羟基硬脂酰胺接枝柠檬酸(式III);
S2.将步骤S1中得到的乙撑双-12-羟基硬脂酰胺接枝柠檬酸(式III)与卤代烯、催化剂及溶剂混合均匀,在搅拌状态下,在惰性气体的保护下,加热至40℃-60℃,反应25h-50h,经洗涤、减压蒸馏得到乙撑双-12-羟基硬脂酰胺接枝柠檬酸烯烃酯(式IIa)。
S3.将S2中得到的乙撑双-12-羟基硬脂酰胺接枝柠檬酸烯烃酯(式IIa)与催化剂及溶剂混合均匀,在搅拌状态下,在惰性气体的保护下,升温至40℃-60℃,反应20h-50h,经洗涤、减压蒸馏得到乙撑双-12-羟基硬脂酰胺接枝柠檬酸缩水甘油酯(式Ia)。
其中,S1中所述的催化剂选自碳酸钾或碳酸钠中的至少一种;所述的溶剂选自氯仿、甲苯、四氢呋喃中的至少一种;优选地,选自氯仿;所述的惰性气体为氮气;柠檬酸、草酰氯、乙撑双-12-羟基硬脂酰胺和催化剂的摩尔比为2.2-2.5:2.2-2.5:1.0:3.0-5.5;柠檬酸与溶剂的重量比为1:8-10。
步骤S2中所述的催化剂为碳酸钾和碳酸钠中至少一种;所述的溶剂选自二甲基亚 砜、N,N-二甲基甲酰胺、甲苯、N,N-二甲基乙酰胺中的至少一种;优选地,选自N,N-二甲基甲酰胺;所述的惰性气体选自氮气等;乙撑双-12-羟基硬脂酰胺接枝柠檬酸、卤代烯和催化剂的摩尔比为1.0:7.3-9.6:2-6;乙撑双-12-羟基硬脂酰胺接枝柠檬酸与溶剂的重量比为1:10-15;所述的卤代烯选自3-溴-1丙烯、4-溴-1-丁烯、5-溴-1-戊烯、6-溴-1-已稀、7-溴-1-庚烯、8-溴-1-辛烯、9-溴-1壬烯、3-氯-1-丙烯、4-氯-1-丁烯、5-氯-1-戊烯、6-氯-1-己烯、7-氯-1-庚烯、8氯-1-辛烯、9-氯-1壬烯中的一种;优选地,选自3-溴-1-丙烯和3-氯-1-丙烯,更优选地,选自3-溴-1-丙烯。
步骤S3中所述的催化剂选自间氯过氧苯甲酸、过氧苯甲酸、对硝基过氧苯甲酸中的至少一种,优选地,选自间氯过氧苯甲酸;所述的溶剂选自二氯甲烷、三氯甲烷、丙酮、丁酮和甲苯中的至少一种,优选地,选自三氯甲烷;所述的惰性气体为氮气。乙撑双-12-羟基硬脂酰胺接枝柠檬酸烯烃酯和催化剂的摩尔比为1.0:6.6-8.5;乙撑双-12-羟基硬脂酰胺接枝柠檬酸烯烃酯与溶剂的重量比为1:8-13。
所述的聚乳酸为L型聚乳酸、D型聚乳酸和LD混合型聚乳酸中一种或者两种及以上的混合物,聚乳酸的重均分子量为10万-30万,分子量分布Mw/Mn为1.3-1.8。
所述的PBAT树脂为己二酸丁二醇酯和对苯二甲酸丁二醇酯的共聚物,PBAT树脂生物重均分子量为5万-8万,分子量分布Mw/Mn为1.2-1.6。
所述的泡孔成核剂选自微米滑石粉、纳米云母、纳米有机蒙脱土等中的一种或两种。
所述的助发泡剂选自柠檬酸脂肪酸甘油酯、聚氧乙烯失水山梨醇脂肪酸酯、失水山梨脂肪酸、蓖麻油聚氧乙烯醚等中的一种或两种以上。
本发明的聚乳酸发泡材料,除了包含上述的组分,还可以包含其他的组分,只要是不影响本发明的聚乳酸发泡材料的性能,均可以添加到本发明组合物中,如着色剂、抗氧化剂、增韧剂、润滑剂、填充剂和光亮剂等。
现有的研究中,已经有人通过扩链剂和结晶成核剂来改善聚乳酸的融体强度和耐热性能,然而,改善的效果十分有限,或者解决了融体强度或耐热的问题,但是,出现了新的问题,如泡孔尺寸大,泡孔不均匀,发泡材料力学性能低种种问题。
本技术方案申请人在先专利CN105219044A公开了一种耐热的聚乳酸发泡材料,其采用单独的扩链剂(ADR4368C/CS,巴斯夫股份公司)和结晶成核剂(乙撑双-12-羟基硬脂酰胺EBH),用于改善聚乳酸发泡材料的耐热性。虽然对发泡材料的耐热性具有一定程度的改善,然而,不令人满意的是其发泡材料外观粗糙,美观性不足,产品机械性能较低。
发明人也曾将乙撑双-12-羟基硬脂酰胺(EBH)和柠檬酸缩水甘油酯(ECA)作为聚乳酸发泡材料的共同加入到聚乳酸发泡材料中(见对比例2),导致材料密度较大0.26 g/cm 3,约为本技术方案制备的发泡材料密度(0.11-0.16g/cm 3)的2倍,不利于降低聚乳酸的应用成本。
因此,在实际生产使用发泡助剂的过程中,很难有一种助剂或是多种助剂的组合物能够同时能够提高融体强度,耐热性,同时保证发泡材料的泡孔尺寸小,泡孔密度大,泡孔均匀、同时又保证发泡材料密度小。为了解决现有技术中的聚乳酸发泡材料的助剂至少有一项参数不令人满意,难以实现聚乳酸发泡材料的工业化生产,发明人经过多次摸索,终于合成了一种多功能助剂——乙撑双-12-羟基硬脂酰胺接枝柠檬酸缩水甘油酯(EBH-g-ECA)。
本发明合成的EBH-g-ECA在聚乳酸发泡材料中兼具扩链作用(提高熔体强度)和结晶成核作用(提高耐热性能)。同时,制备的EBH-g-ECA以来源广泛、价格低廉的柠檬酸为原料,制备的EBH-g-ECA环氧值高,经济环保,价格低廉。市场现有的多官能团扩链剂如巴斯夫ADR-4368CS价格高达380元/KG。最主要的,相对于现有的扩链剂和结晶成核剂复配体系,本发明的EBH-g-ECA表现更为优异,这主要是由于多功能助剂将多个聚乳酸分子链连接在一起,促使酰胺官能团表现出更为优异的结晶成核作用(酰胺官能团处于多个聚乳酸分子链的链接处)。结晶度的提高,增强了聚乳酸发泡材料的耐热性能。本发明制备的聚乳酸发泡材料热变形温度大于115℃以上。更为有益的是,本发明通过EBH-g-ECA与其他的助剂如助发泡剂、泡孔成核剂等复配,在保证耐热性能和提高融体强度的同时,泡孔均匀细致,产品外观均匀,保证了发泡材料优异的力学性能,同时发泡材料的材料密度低,降低了聚乳酸的应用成本。
本发明还提供了一种全生物降解耐热聚乳酸发泡材料的制备方法,过程简单、易于控制、可操作性强、可连续生产、易于工业化实施。具体过程如下:
(1).利用高速混合机在100-110℃对聚乳酸干燥处理20-40min,然后加入其他助剂并混合均匀;再将混合后的物料加入至双螺杆挤出机中熔融共混后拉条、风冷、切粒,得到耐热聚乳酸发泡材料粒子,并进行抽真空包装。其中,双螺杆挤出机的螺杆长径比为36:1~48:1;所述的熔融共混的温度为180℃~200℃。
(2).将步骤S4中得到的耐热聚乳酸发泡材料粒子加入双螺杆材料成型机,利用二氧化碳、戊烷、丁烷或者氟利昂作为发泡剂,进行熔融共混挤出,最终得到耐热聚乳酸发泡材料。
所述的耐热聚乳酸发泡材料具有熔体强度高、加工窗口宽、结晶速率快、耐热性好,并且保持了其本身的全生物降解优势。另外,利用双螺杆连续挤出,利用二氧化碳、氮气、戊烷、丁烷或者氟利昂作为物理发泡剂,制备的耐热聚乳酸发泡材料具有10-20倍的发泡倍率、泡孔尺寸均匀、闭孔率高的优势。
在本发明中,采用物理发泡剂为二氧化碳、氮气、戊烷、丁烷或者氟利昂中的一种或几种组合;优选地,采用二氧化碳和氮气中的一种或其组合;尤其优选地,采用以超临界二氧化碳和氮气混合物(二氧化碳和氮气的体积比为20%:80%)作为主发泡剂。二氧化碳和氮气无毒、无害、无污染、不燃,并且二氧化碳具有优异的调节和控制高分子的溶胀和渗透作用,使得泡孔尺寸更细,氮气则有助于泡孔成长,保证聚乳酸发泡材料密度更低。
本发明另外一个突出的优势在于,可实现双螺杆连续发泡。采用双螺杆连续挤出制备聚乳酸发泡材料,对于实现聚乳酸发泡材料的产业化应用具有重要意义。现有技术,聚乳酸连续发泡材料生产不成熟,很多学者对于聚乳酸发泡进行了研究,如杨志云等(2014年第33卷增刊1,化工进展),研究了连续挤出发泡聚乳酸泡孔结构的影响因素,其采用了单螺杆连续发泡。相比于单螺杆,双螺杆具有更高的剪切转数,发泡剂更容易混合均匀,且有助于泡孔数量增加,泡孔结构更加规整,泡孔形状更加均匀,生产效率更高。而双螺杆连续挤出发泡,对高分子材料融体强度要求更高,低融体强度的聚乳酸在高剪切状态下性能下降。所以双螺杆连续发泡难以适用聚乳酸发泡材料的生产。马玉武等(马玉武,信春玲,何亚东,等.超临界C0 2对聚乳酸挤出发泡的影响[J].中国塑料,2012,26(12):72-75)采用双螺杆挤出发泡制备了聚乳酸发泡材料,然而其制备的发泡材料泡孔尺寸为285μm,其物理力学性能大大低于本发明制备的聚乳酸发泡材料。
与现有技术相比,本发明具有如下优点:
(1)本发明制备的多功能助剂为式I所示的一序列聚合物,包括乙撑双-12-羟基硬脂酰胺接枝柠檬酸缩水甘油酯,同时表现出扩链作用和结晶成核作用。一方面,此多功能助剂含有多环氧官能团,通过支化可以大幅度的提高聚乳酸的分子量及分子链长度,从而提高聚乳酸的熔体强度和拓宽聚乳酸的加工窗口,最终解决了聚乳酸熔体强度低和加工窗口窄对聚乳酸材料发泡的限制;另一方面,此多功能助剂含有酰胺官能团,对聚乳酸具有优异的结晶成核作用,可以大幅度的提高聚乳酸的结晶成核速率和结晶度,并保证聚乳酸晶体尺寸较小且均匀,从而解决聚乳酸耐热性差的难题。相对于现有的扩链剂和结晶成核剂复配体系,本发明的多功能助剂表现更为优异,这主要是由于多功能助剂将多个聚乳酸分子链连接在一起,促使酰胺官能团表现出更为优异的结晶成核作用(酰胺官能团处于多个聚乳酸分子链的链接处)。
(2)现有技术制备的聚乳酸发泡材料存在发泡率低、泡孔尺寸不均匀和开孔率高的缺陷,这主要是由于聚乳酸泡孔成长失控导致的。通过大量助发泡剂的筛选,最终获得一种对聚乳酸发泡具有稳定作用的助剂,从而实现聚乳酸泡孔成长的可控性,最终获得聚乳酸发泡材料具有泡孔尺寸均匀、闭孔率高的优势。这主要是由于,本发明选用的助 发泡剂可以有效的改善聚乳酸与发泡气体界面的亲和性,实现聚乳酸泡孔的稳定成长,从而克服了聚乳酸泡孔尺寸不均匀和开孔率高的难题。
(3)本发明制备的耐热聚乳酸发泡材料,利用超临界二氧化碳、氮气、戊烷、丁烷或者氟利昂等发泡技术,可实现双螺杆连续发泡,制备的吸塑产品耐热温度达115℃及以上,发泡倍率可控为10-20倍,且泡孔尺寸分布均匀,且闭孔率高,对实现大规模替代PS等发泡材料具有重要的意义。
附图说明
图1显示了式I的结构式;
图2显示了式I的合成路径图;
图3显示了式III的结构式;
图4显示了式II的结构式;
图5显示了式Ia的结构式;
图6显示了式Ia的合成路径;
图7显示了式IIa的结构式;
图8显示了本发明制备的乙撑双-12-羟基硬脂酰胺接枝柠檬酸(式III)的核磁碳谱图;
图9显示了本发明制备的乙撑双-12-羟基硬脂酰胺接枝柠檬酸烯烃酯(式IIa)的核磁碳谱图;
图10显示了本发明制备的式乙撑双-12-羟基硬脂酰胺接枝柠檬酸缩水甘油酯(式Ia)的核磁碳谱图。
具体实施方式
以下通过具体的实施例进一步说明本发明的技术方案,具体实施例不代表对本发明保护范围的限制。其他人根据本发明理念所做出的一些非本质的修改和调整仍属于本发明的保护范围。
以下实施例仅以式I中n为1时的化合物举例说明本发明的实施方式,式I所示的一序列化合物,同时具有多个酰胺基团和环氧基团,酰胺基团具有成核剂作用,而环氧基团又具有扩链剂作用,所以,该序列化合物其可以作为聚乳酸发泡材料的多功能助剂,兼具扩链和结晶成核作用,以及润滑作用和稳泡剂作用。
实施例1 一种乙撑双-12-羟基硬脂酰胺接枝柠檬酸缩水甘油酯的制备方法
(1)在1000ml四口烧瓶中加入柠檬酸50g(0.26mol)、草酰氯33g(0.26mol)、乙撑双-12-羟基硬脂酰胺68.6g(0.11mol)、碳酸钠106g(1.0mol)和氯仿400g混合均匀,在搅拌状态下,在惰性气体的保护下,升温至60℃,反应45h,经减压蒸馏得到乙撑双-12-羟基硬脂酰胺接枝柠檬酸66.8g。制备的乙撑双-12-羟基硬脂酰胺接枝柠檬酸的核磁碳谱图如图8所示,其中C1=177ppm和C2=180ppm是柠檬酸中羧基上碳的特征峰。
(2)在三口烧瓶中加入步骤(1)中得到的乙撑双-12-羟基硬脂酰胺接枝柠檬酸55.8g(0.05mol)、溴丙烯48.4g(0.4mol)、碳酸钠53g(0.5mol)和N,N-二甲基甲酰胺600g,在搅拌状态下,在惰性气体的保护下,加热至60℃,反应35h,经洗涤、减压蒸馏得到乙撑双-12-羟基硬脂酰胺接枝柠檬酸烯丙酯51.3g。制备的乙撑双-12-羟基硬脂酰胺接枝柠檬酸烯丙酯的核磁碳谱图如图9所示,其中C5/C6=138ppm和C7=116ppm是烯丙基上碳碳双键中碳的特征峰。
(3)在三口烧瓶中加入步骤(2)得到的乙撑双-12-羟基硬脂酰胺接枝柠檬酸烯丙酯67.8g(0.05mol)、间氯过氧苯甲酸60.5g(0.35mol)和三氯甲烷700g,在搅拌状态下,在惰性气体的保护下,升温至50℃,反应30h,经洗涤、减压蒸馏得到乙撑双-12-羟基硬脂酰胺接枝柠檬酸缩水甘油酯23.5g。制备的乙撑双-12-羟基硬脂酰胺接枝柠檬酸缩水甘油酯的核磁碳谱图如图10所示,其中C11=45ppm和C9=49ppm是环氧基上碳的特征峰。
实施例2 一种乙撑双-12-羟基硬脂酰胺接枝柠檬酸缩水甘油酯的制备方法
(1)在1000ml四口烧瓶中加入柠檬酸50g(0.26mol)、草酰氯33g(0.26mol)、乙撑双-12-羟基硬脂酰胺68.6(0.11mol)、碳酸钾138g(1.0mol)和氯仿400g混合均匀,在搅拌状态下,在惰性气体的保护下,升温至60℃,反应45h,经减压蒸馏得到乙撑双-12-羟基硬脂酰胺接枝柠檬酸62.5g。制备的乙撑双-12-羟基硬脂酰胺接枝柠檬酸的核磁碳谱图与图8类似。
(2)在三口烧瓶中加入步骤(1)中得到的乙撑双-12-羟基硬脂酰胺接枝柠檬酸55.8g(0.05mol)、溴丙烯48.4g(0.4mol)、碳酸钾69g(0.5mol)和N,N-二甲基甲酰胺600g,在搅拌状态下,在惰性气体的保护下,加热至60℃,反应35h,经洗涤、减压蒸馏得到乙撑双-12-羟基硬脂酰胺接枝柠檬酸烯丙酯53g。制备的乙撑双-12-羟基硬脂酰胺接枝柠檬酸烯丙酯的核磁碳谱图与图9类似。
(3)在三口烧瓶中加入步骤(2)得到的乙撑双-12-羟基硬脂酰胺接枝柠檬酸烯丙酯67.8g(0.05mol)、间氯过氧苯甲酸60.5g(0.35mol)和三氯甲烷700g,在搅拌状态下,在惰性气体的保护下,升温至50℃,反应30h,经洗涤、减压蒸馏得到乙撑双-12-羟基硬 脂酰胺接枝柠檬酸缩水甘油酯25.4g。制备的乙撑双-12-羟基硬脂酰胺接枝柠檬酸缩水甘油酯的核磁碳谱图与图10类似。
实施例3 一种乙撑双-12-羟基硬脂酰胺接枝柠檬酸缩水甘油酯的制备方法
(1)在1000ml四口烧瓶中加入柠檬酸50g(0.26mol)、草酰氯33g(0.26mol)、乙撑双-12-羟基硬脂酰胺68.6g(0.11mol)、碳酸钠106g(1.0mol)和氯仿400g混合均匀,在搅拌状态下,在惰性气体的保护下,升温至60℃,反应45h,经减压蒸馏得到乙撑双-12-羟基硬脂酰胺接枝柠檬酸64.6g。制备的乙撑双-12-羟基硬脂酰胺接枝柠檬酸的核磁碳谱图与图8类似。
(2)在三口烧瓶中加入步骤(1)中得到的乙撑双-12-羟基硬脂酰胺接枝柠檬酸55.8g(0.05mol)、溴丙烯48.4g(0.4mol)、碳酸钠53g(0.5mol)和N,N-二甲基甲酰胺600g,在搅拌状态下,在惰性气体的保护下,加热至60℃,反应35h,经洗涤、减压蒸馏得到乙撑双-12-羟基硬脂酰胺接枝柠檬酸烯丙酯52.6g。制备的乙撑双-12-羟基硬脂酰胺接枝柠檬酸烯丙酯的核磁碳谱图与图9类似。
(3)在三口烧瓶中加入步骤(2)得到的乙撑双-12-羟基硬脂酰胺接枝柠檬酸烯丙酯67.8g(0.05mol)、过氧苯甲酸55.2g(0.4mol)和三氯甲烷700g,在搅拌状态下,在惰性气体的保护下,升温至50℃,反应30h,经洗涤、减压蒸馏得到乙撑双-12-羟基硬脂酰胺接枝柠檬酸缩水甘油酯21.3g。制备的乙撑双-12-羟基硬脂酰胺接枝柠檬酸缩水甘油酯的核磁碳谱图与图10类似。
实施例4 一种乙撑双-12-羟基硬脂酰胺接枝柠檬酸缩水甘油酯的制备方法
(1)在1000ml四口烧瓶中加入柠檬酸50g(0.26mol)、草酰氯33g(0.26mol)、乙撑双-12-羟基硬脂酰胺68.6(0.11mol)、碳酸钾138g(1.0mol)和氯仿400g混合均匀,在搅拌状态下,在惰性气体的保护下,升温至60℃,反应45h,经减压蒸馏得到乙撑双-12-羟基硬脂酰胺接枝柠檬酸62.5g。制备的乙撑双-12-羟基硬脂酰胺接枝柠檬酸的核磁碳谱图与图8类似。
(2)在三口烧瓶中加入步骤(1)中得到的乙撑双-12-羟基硬脂酰胺接枝柠檬酸55.8g(0.05mol)、氯丙烯30.6g(0.4mol)、碳酸钾69g(0.5mol)和N,N-二甲基甲酰胺600g,在搅拌状态下,在惰性气体的保护下,加热至60℃,反应35h,经洗涤、减压蒸馏得到乙撑双-12-羟基硬脂酰胺接枝柠檬酸烯丙酯51.3g。制备的乙撑双-12-羟基硬脂酰胺接枝柠檬酸烯丙酯的核磁碳谱图与图9类似。
(3)在三口烧瓶中加入步骤(2)得到的乙撑双-12-羟基硬脂酰胺接枝柠檬酸烯丙酯67.8g(0.05mol)、间氯过氧苯甲酸60.5g(0.35mol)和三氯甲烷700g,在搅拌状态下,在惰性气体的保护下,升温至50℃,反应30h,经洗涤、减压蒸馏得到乙撑双-12-羟基硬脂酰胺接枝柠檬酸缩水甘油酯25.1g。制备的乙撑双-12-羟基硬脂酰胺接枝柠檬酸缩水甘油酯的核磁碳谱图与图10类似。
实施例5 一种耐热聚乳酸发泡材料的制备
称取以下重量的原料:
聚乳酸(美国Natureworks 4032D)92Kg,PBAT树脂(Biocosafe2003,亿帆鑫富药业股份有限公司)5Kg,泡孔成核剂(纳米有机蒙脱土DK-2,浙江丰虹粘土化工有限公司)2Kg,助发泡剂(柠檬酸脂肪酸甘油酯,上海蒙究实业有限公司)0.5Kg,EBH-g-ECA(乙撑双-12-羟基硬脂酰胺接枝的柠檬酸缩水甘油酯,自制)0.5Kg。
耐热聚乳酸发泡材料的制备方法:
(1)利用高速混合机在105℃对聚乳酸干燥处理30min,然后加入其他助剂并混合均匀;再将混合后的物料加入至双螺杆挤出机中熔融共混后拉条、风冷、切粒,得到改性聚乳酸粒子,并进行抽真空包装。其中,双螺杆挤出机的螺杆长径比为36:1~48:1;所述的熔融共混的温度为180℃~200℃。
(2)将步骤(1)中得到的耐热聚乳酸发泡材料粒子加入双螺杆材料成型机,利用二氧化碳和氮气混合物(二氧化碳和氮气的体积比为20%:80%)作为发泡剂,进行熔融共混挤出,最终得到耐热聚乳酸发泡材料。
实施例6 一种耐热聚乳酸发泡材料的制备
称取以下重量的原料:
聚乳酸(美国Natureworks 4032D)91Kg,PBAT树脂(Biocosafe2003,亿帆鑫富药业股份有限公司)5Kg,泡孔成核剂(纳米有机蒙脱土DK-2,浙江丰虹粘土化工有限公司)2Kg,助发泡剂(柠檬酸脂肪酸甘油酯,上海蒙究实业有限公司)1Kg,EBH-g-ECA(乙撑双-12-羟基硬脂酰胺接枝的柠檬酸缩水甘油酯,自制)1Kg。
制备方法如实施例5所述。
实施例7 一种耐热聚乳酸发泡材料的制备
称取以下重量的原料:
聚乳酸(美国Natureworks 4032D)90.5Kg,PBAT树脂(Biocosafe2003,亿帆鑫富 药业股份有限公司)5Kg,泡孔成核剂(纳米有机蒙脱土DK-2,浙江丰虹粘土化工有限公司)2Kg,助发泡剂(柠檬酸脂肪酸甘油酯,上海蒙究实业有限公司)1Kg,EBH-g-ECA(乙撑双-12-羟基硬脂酰胺接枝的柠檬酸缩水甘油酯,自制)1.5Kg。
制备方法如实施例5所述。
实施例8 一种耐热聚乳酸发泡材料的制备
称取以下重量的原料:
聚乳酸(美国Natureworks 4032D)90Kg,PBAT树脂(Biocosafe2003,亿帆鑫富药业股份有限公司)5Kg,泡孔成核剂(纳米有机蒙脱土DK-2,浙江丰虹粘土化工有限公司)2Kg,助发泡剂(柠檬酸脂肪酸甘油酯,上海蒙究实业有限公司)1Kg,EBH-g-ECA(乙撑双-12-羟基硬脂酰胺接枝的柠檬酸缩水甘油酯,自制)2Kg。
制备方法如实施例5所述。
实施例9 一种耐热聚乳酸发泡材料的制备
称取以下重量的原料:
聚乳酸(美国Natureworks 4032D)91.5Kg,PBAT树脂(Biocosafe2003,亿帆鑫富药业股份有限公司)5Kg,泡孔成核剂(纳米有机蒙脱土DK-2,浙江丰虹粘土化工有限公司)2Kg,助发泡剂(柠檬酸脂肪酸甘油酯,上海蒙究实业有限公司)0.5Kg,EBH-g-ECA(乙撑双-12-羟基硬脂酰胺接枝的柠檬酸缩水甘油酯,自制)1.5Kg。
制备方法如实施例5所述。
实施例10 一种耐热聚乳酸发泡材料的制备
称取以下重量的原料:
聚乳酸(美国Natureworks 4032D)90Kg,PBAT树脂(Biocosafe2003,亿帆鑫富药业股份有限公司)5Kg,泡孔成核剂(纳米有机蒙脱土DK-2,浙江丰虹粘土化工有限公司)2Kg,助发泡剂(柠檬酸脂肪酸甘油酯,上海蒙究实业有限公司)1.5Kg,EBH-g-ECA(乙撑双-12-羟基硬脂酰胺接枝的柠檬酸缩水甘油酯,自制)1.5Kg。
制备方法如实施例5所述。
实施例11 一种耐热聚乳酸发泡材料的制备
称取以下重量的原料:
聚乳酸(美国Natureworks 4032D)90.5Kg,PBAT树脂(Biocosafe2003,亿帆鑫富 药业股份有限公司)5Kg,泡孔成核剂(滑石粉,5000目,丹东天赐阻燃材料科技有限公司)2Kg,助发泡剂(柠檬酸脂肪酸甘油酯,上海蒙究实业有限公司)1.0Kg,EBH-g-ECA(乙撑双-12-羟基硬脂酰胺接枝的柠檬酸缩水甘油酯,自制)1.5Kg。
制备方法如实施例5所述。
实施例12 一种耐热聚乳酸发泡材料的制备
称取以下重量的原料:
聚乳酸(美国Natureworks 4032D)90.5Kg,PBAT树脂(Biocosafe2003,亿帆鑫富药业股份有限公司)5Kg,泡孔成核剂(纳米有机蒙脱土DK-2,浙江丰虹粘土化工有限公司)2Kg,助发泡剂(聚氧乙烯失水山梨醇脂肪酸酯T-80,上海岩旺实业有限公司)1.0Kg,EBH-g-ECA(乙撑双-12-羟基硬脂酰胺接枝的柠檬酸缩水甘油酯,自制)1.5Kg。
制备方法如实施例5所述。
对比例1 一种聚乳酸材料的制备(扩链剂和结晶成核剂复配使用)
称取以下重量的原料:
聚乳酸(美国Natureworks的4032D)88Kg,PBAT树脂(Biocosafe2003,亿帆鑫富药业股份有限公司)5Kg,扩链剂(ADR4368C/CS,巴斯夫股份公司),1Kg,结晶成核剂(乙撑双-12-羟基硬脂酰胺EBH,苏州联胜化学有限公司)1kg;泡孔成核剂(纳米有机蒙脱土DK-2,浙江丰虹粘土化工有限公司)2kg,助发泡剂(柠檬酸脂肪酸甘油酯,上海蒙究实业有限公司)1Kg。
制备方法如实施例5所述。
对比例2 一种聚乳酸材料的制备(扩链剂、结晶成核剂和柠檬酸缩水甘油酯复配使用)
称取以下重量的原料:
聚乳酸(美国Natureworks的4032D)88Kg,PBAT树脂(Biocosafe2003,亿帆鑫富药业股份有限公司)5Kg,扩链剂(ADR4368C/CS,巴斯夫股份公司),1Kg,结晶成核剂(乙撑双-12-羟基硬脂酰胺EBH,苏州联胜化学有限公司)1kg;柠檬酸三缩水甘油酯(自制)1kg,泡孔成核剂(纳米有机蒙脱土DK-2,浙江丰虹粘土化工有限公司)2kg,助发泡剂(柠檬酸脂肪酸甘油酯,上海蒙究实业有限公司)1Kg。
制备方法如实施例5所述。
对比例3 一种聚乳酸材料的制备(没有助发泡剂)
称取以下重量的原料:
聚乳酸(美国Natureworks的4032D)91.5Kg,PBAT树脂(Biocosafe2003,亿帆鑫富药业股份有限公司)5Kg,发泡成核剂(纳米有机蒙脱土DK-2,浙江丰虹粘土化工有限公司)2kg,EBH-g-ECA(乙撑双-12-羟基硬脂酰胺接枝的柠檬酸缩水甘油酯,自制)1.5Kg。
制备方法如实施例5所述。
对比例4 一种聚乳酸材料的制备(没有多功能助剂)
称取以下重量的原料:
聚乳酸(美国Natureworks的4032D)92Kg,PBAT树脂(Biocosafe2003,亿帆鑫富药业股份有限公司)5Kg,发泡成核剂(纳米有机蒙脱土DK-2,浙江丰虹粘土化工有限公司)2kg,助发泡剂(柠檬酸脂肪酸甘油酯,上海蒙究实业有限公司)1Kg。
制备方法如实施例5所述。
实施例12 聚乳酸发泡材料性能的测定
利用双螺杆挤出机实施例5~12和对比例1~4得到的改性聚乳酸粒子,将其注塑成行为标准样条,并进行热变形温度测试,测试方法按照GB/T 1634.2-04;采用超临界二氧化碳和氮气混合气体发泡技术,将实施例4~11和对比例1~4得到的耐热聚乳酸发泡材料进行密度测试,测试方法按照GB/T 4472-2011。上述表征测试结果如表1所示。
表1
Figure PCTCN2018086269-appb-000009
续表1
Figure PCTCN2018086269-appb-000010
Figure PCTCN2018086269-appb-000011
由表1可知,通过实施例5~12与对比例1~4相比,实施例4~11具有优异的发泡性能,具体表现在片材密度低以及热变形温度优异。一方面,在乙撑双-12-羟基硬脂酰胺接枝的柠檬酸缩水甘油酯(EBH-g-ECA)作用下,聚乳酸的熔体强度得到大幅度提高,从而满足连续发泡要求,并且结晶速度提高,从而将聚乳酸热变形温度由55℃提升到115℃以上;另一方面,在助发泡剂作用下,聚乳酸的泡孔成长变得可控,最终得到发泡倍率高、材料密度低的发泡材料,并且片材表面均一而不粗糙。对比例1采用了扩链剂(ADR4368C/CS,巴斯夫股份公司)和(乙撑双-12-羟基硬脂酰胺EBH),对比例2采用了扩链剂(ADR4368C/CS,巴斯夫股份公司)、(乙撑双-12-羟基硬脂酰胺EBH)、柠檬酸三缩水甘油酯,二者制备的发泡材料的密度均较大;对比例3在没有助发泡剂的状态下,发泡材料表面不均一且较为粗糙;对比例4在缺乏本发明制备的多功能助剂EBH-g-ECA的情况下,聚乳酸材料不能发泡成型。可见,简单的扩链剂和结晶成核剂的复配难以得到性能满意的聚乳酸发泡材料。
另外,此耐热聚乳酸发泡材料保持了聚乳酸生物降解的优势,完全符合美国ASTM D6400及欧盟EN13432降解认证标准,对缓解石油资源短缺和解决白色污染具有重要的意义。因此,此复合材料完全符合绿色低碳经济的发展需求,具有广阔的应用空间。

Claims (10)

  1. 一种化合物,其结构式如式I所示:
    Figure PCTCN2018086269-appb-100001
    其中n为整数,并且1≤n≤9;
    优选地,n为1,此时,所述化合物的结构式如式Ia所示:
    Figure PCTCN2018086269-appb-100002
  2. 一种化合物,其结构式如式II所示:
    Figure PCTCN2018086269-appb-100003
    其中n为整数,并且1≤n≤9;
    优选地,n为1,此时,所述化合物的如式IIa所示:
    Figure PCTCN2018086269-appb-100004
  3. 一种化合物,其结构式如式III所示:
    Figure PCTCN2018086269-appb-100005
  4. 一种如式I所示的化合物的制备方法,其特征在于包含以下步骤:
    Figure PCTCN2018086269-appb-100006
    S1:柠檬酸、草酰氯、乙撑双-12-羟基硬脂酰胺三者发生消除反应,得到式III:乙撑双-12-羟基硬脂酰胺接枝柠檬酸;
    S2:将步骤S1中得到的式III:乙撑双-12-羟基硬脂酰胺接枝柠檬酸与卤代烯进行消除 反应,得到式II所示的化合物;
    S3.将S2中得到的式II所示的化合物进行氧化反应得到式I所示的化合物;
    其中n为整数,并且1≤n≤9。
  5. 根据权利要求4所述的方法,其特征在于:
    n为1,此时,式I的结构式如Ia所示,式II的结构式如IIa所示;优选地,所述的方法包括以下步骤:
    S1.将柠檬酸、草酰氯、乙撑双-12-羟基硬脂酰胺、催化剂与溶剂混合均匀,在搅拌状态下,在惰性气体的保护下,加热反应,经减压蒸馏得到式III:乙撑双-12-羟基硬脂酰胺接枝柠檬酸;
    S2.将步骤S1中得到的式III:乙撑双-12-羟基硬脂酰胺接枝柠檬酸与卤代烯、催化剂及溶剂混合均匀,在搅拌状态下,在惰性气体的保护下,加热反应,经洗涤、减压蒸馏得到式IIa:乙撑双-12-羟基硬脂酰胺接枝柠檬酸烯烃酯;
    S3.将S2中得到的式IIa:乙撑双-12-羟基硬脂酰胺接枝柠檬酸烯烃酯与催化剂及溶剂混合均匀,在搅拌状态下,在惰性气体的保护下,加热反应,经洗涤、减压蒸馏得到式Ia:乙撑双-12-羟基硬脂酰胺接枝柠檬酸缩水甘油酯;
    Figure PCTCN2018086269-appb-100007
  6. 如权利要求5所述的制备方法,其特征在于:
    步骤S1中所述的催化剂选自碳酸钾、碳酸钠中的至少一种;
    优选地,步骤S1中,所述的溶剂选自氯仿、甲苯、四氢呋喃中的至少一种;更优选氯仿;
    优选地,步骤S1中,加热反应的条件为20℃-60℃,反应30-60h;
    优选地,步骤S1中,柠檬酸、草酰氯、乙撑双-12-羟基硬脂酰胺和催化剂的摩尔比为2.2-2.5:2.2-2.5:1.0:3.0-5.5;乙撑双-12-羟基硬脂酰胺与溶剂的重量比为1:8-10;
    优选地,步骤S2中,所述的催化剂为碳酸钾、碳酸钠中至少一种;
    优选地,步骤S2中,所述的溶剂选自二甲基亚砜、N,N-二甲基甲酰胺、甲苯、N,N-二甲基乙酰胺中的至少一种;更优选N,N-二甲基甲酰胺;
    优选地,步骤S2中所述的卤代烯选自3-溴-1丙烯、4-溴-1-丁烯、5-溴-1-戊烯、6-溴-1-已稀、7-溴-1-庚烯、8-溴-1-辛烯、9-溴-1壬烯、3-氯-1-丙烯、4-氯-1-丁烯、5-氯-1-戊烯、6-氯-1-己烯、7-氯-1-庚烯、8氯-1-辛烯、9-氯-1壬烯中的一种;优选地,选自3-溴-1-丙烯和3-氯-1-丙烯,更优选地,选自3-溴-1-丙烯;
    优选地,步骤S2中,加热反应的条件为40℃-60℃,反应25h-50h;
    优选地,步骤S3中,所述的催化剂选自间氯过氧苯甲酸、过氧苯甲酸、对硝基过氧苯甲酸中的至少一种;更优选间氯过氧苯甲酸;
    优选地,步骤S2中,乙撑双-12-羟基硬脂酰胺接枝柠檬酸、卤代烯和催化剂的摩尔比为1.0:7.3-9.6:2-6;乙撑双-12-羟基硬脂酰胺接枝柠檬酸与溶剂的重量比为1:10-15;
    优选地,步骤S3中,所述的溶剂选自二氯甲烷、三氯甲烷、丙酮、丁酮和甲苯中的至少一种;更优选三氯甲烷;
    优选地,步骤S3中,加热反应的条件为升温至40℃-60℃,反应20h-50h;
    优选地,步骤S3中,乙撑双-12-羟基硬脂酰胺接枝柠檬酸烯烃酯和催化剂的摩尔比为1.0:6.6-8.5;乙撑双-12-羟基硬脂酰胺接枝柠檬酸烯烃酯与溶剂的重量比为1:8-13;
    优选地,步骤S1、S2、S3中,所述的惰性气体为氮气。
  7. 如式I、式Ia、式II、式IIa和式III任一所示的化合物作为内润滑剂、脱模剂、增塑剂、界面相容剂、扩链剂和结晶成核剂的应用;优选地,作为扩链剂和结晶成核剂应用。
  8. 一种聚乳酸发泡材料,其特征在于含有权利要求1式Ia所示的乙撑双-12-羟基硬脂酰胺接枝柠檬酸缩水甘油酯和聚乳酸;
    优选地,所述的聚乳酸发泡材料含有以下重量百分比的组分:
    Figure PCTCN2018086269-appb-100008
  9. 如权利要求8所述的聚乳酸发泡材料,其特征在于,
    所述的聚乳酸选自L型聚乳酸、D型聚乳酸和LD混合型聚乳酸中一种或者多种组合;
    优选地,所述聚乳酸的重均分子量为10万-30万,分子量分布Mw/Mn为1.3-1.8;
    优选地,所述的PBAT树脂为己二酸丁二醇酯和对苯二甲酸丁二醇酯的共聚物;
    优选地,所述PBAT树脂的重均分子量为5万-8万,分子量分布Mw/Mn为1.2-1.6;
    优选地,所述的泡孔成核剂选自微米滑石粉、纳米云母、纳米有机蒙脱土中的一种或几种组合;更优选纳米有机蒙脱土;
    优选地,所述的助发泡剂选自柠檬酸脂肪酸甘油酯、聚氧乙烯失水山梨醇脂肪酸酯、失水山梨脂肪酸、蓖麻油聚氧乙烯醚等中的一种或几种组合;更优选柠檬酸脂肪酸甘油酯。
  10. 一种如权利要求8-9任一项所述的聚乳酸发泡材料的制备方法,其特征在于,包括以下步骤:
    (1).利用高速混合机在-100℃-110℃对聚乳酸干燥处理20-40min,然后加入其他组分并混合均匀;再将混合后的物料加入至双螺杆挤出机中熔融共混后拉条、风冷、切粒,得到改性聚乳酸粒子,并进行抽真空包装;其中,双螺杆挤出机的螺杆长径比为36:1-48:1;所述的熔融共混的温度为180℃-200℃;
    (2).将步骤(1)中得到的耐热聚乳酸发泡材料粒子加入双螺杆材料成型机,利用物理发泡剂,进行熔融共混挤出,最终得到耐热聚乳酸发泡材料,发泡倍率为10-20倍;
    优选地,步骤(2)中的所述的物理发泡剂选自二氧化碳、氮气、戊烷、丁烷和者氟利昂中的一种或几种组合;更优选自二氧化碳和氮气中的一种或两种组合;更优选自二氧化碳和氮气的组合;进一步地,二氧化碳和氮气的体积比为20%:80%。
PCT/CN2018/086269 2017-12-01 2018-05-10 一种耐热聚乳酸连续挤出发泡材料及其制备方法 WO2019104946A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA3057542A CA3057542A1 (en) 2017-12-01 2018-05-10 Heat resistant polylactic acid continuous extrusion foaming material and preparation method therefor
AU2018374981A AU2018374981B2 (en) 2017-12-01 2018-05-10 Heat resistant polylactic acid continuous extrusion foaming material and preparation method therefor
ES18884161T ES2963663T3 (es) 2017-12-01 2018-05-10 Material de espumación de extrusión continua de ácido poliláctico resistente al calor y método de preparación del mismo
EP18884161.3A EP3730486B1 (en) 2017-12-01 2018-05-10 Heat resistant polylactic acid continuous extrusion foaming material and preparation method therefor
PL18884161.3T PL3730486T3 (pl) 2017-12-01 2018-05-10 Wytrzymały na ciepło materiał spieniający z kwasu polimlekowego do ciągłego wytłaczania i sposób wytwarzania go
US16/490,902 US10730845B2 (en) 2017-12-01 2018-05-10 Heat-resistant polylactic acid continuously-extruded foamed material and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711249187.9A CN109867638B (zh) 2017-12-01 2017-12-01 一种耐热聚乳酸连续挤出发泡材料及其制备方法
CN201711249187.9 2017-12-01

Publications (1)

Publication Number Publication Date
WO2019104946A1 true WO2019104946A1 (zh) 2019-06-06

Family

ID=66664311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086269 WO2019104946A1 (zh) 2017-12-01 2018-05-10 一种耐热聚乳酸连续挤出发泡材料及其制备方法

Country Status (9)

Country Link
US (1) US10730845B2 (zh)
EP (1) EP3730486B1 (zh)
CN (1) CN109867638B (zh)
AU (1) AU2018374981B2 (zh)
CA (1) CA3057542A1 (zh)
ES (1) ES2963663T3 (zh)
PL (1) PL3730486T3 (zh)
TW (1) TWI700269B (zh)
WO (1) WO2019104946A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2021379913A1 (en) * 2020-11-16 2023-05-04 O2 Partners, Llc Recyclable, biodegradable, and industrially compostable extruded foams, and methods of manufacturing the same
CN112480617A (zh) * 2020-11-18 2021-03-12 杨勇 一种多种植物材料制备的聚乳酸树脂及其制备方法
CN114106310B (zh) * 2021-12-30 2023-03-14 华东理工大学 一种高结晶耐热聚乳酸材料及其制备方法
CN115260717B (zh) * 2022-05-17 2023-12-19 万华化学(宁波)有限公司 一种聚乳酸发泡材料及其制备方法和制备聚乳酸发泡珠粒的方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080262118A1 (en) 2004-03-26 2008-10-23 Kevin Cink Extruded Polylactide Foams Blown With Carbon Dioxide
CN101362833A (zh) 2008-09-25 2009-02-11 上海交通大学 聚乳酸发泡材料的制备方法
US20090054559A1 (en) * 2006-02-14 2009-02-26 Nec Corporation Polylactic acid resin composition and molded article
CN102086299A (zh) * 2011-01-14 2011-06-08 中国科学院宁波材料技术与工程研究所 一种透明结晶聚乳酸塑料及其制备方法
US20110263732A1 (en) 2010-04-22 2011-10-27 Sealed Air Corporation (Us) Polylactic Acid Foam Composition
CN102321269A (zh) 2011-09-26 2012-01-18 浙江工业大学 超临界co2发泡制备介孔二氧化硅/聚乳酸发泡材料的方法
CN103232694A (zh) * 2006-02-14 2013-08-07 日本电气株式会社 聚乳酸类树脂组合物及成形体
CN103819885A (zh) 2012-11-19 2014-05-28 青岛科技大学 一种聚乳酸发泡材料及其制备方法
CN104140659A (zh) 2014-06-19 2014-11-12 湖北工业大学 一种聚乳酸发泡粒子及其制备方法
CN105219044A (zh) 2015-10-30 2016-01-06 宁波家塑生物材料科技有限公司 一种全生物降解耐热聚乳酸发泡材料及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7576152B2 (en) * 2002-11-12 2009-08-18 Kao Corporation Additive for polyester base synthetic resin containing plasticizer and plasticizer for biodegradable resin
US20090259000A1 (en) * 2006-07-26 2009-10-15 Mitsui Chemicals , Inc. Polylactic acid resin composition, molded article thereof and polylactic acid compound
US10100191B2 (en) * 2013-07-31 2018-10-16 Kao Corporation Polylactic acid resin composition
WO2015119155A1 (ja) * 2014-02-10 2015-08-13 花王株式会社 熱成形用ポリ乳酸樹脂シート
CN106687511B (zh) * 2014-09-30 2020-02-21 积水化成品工业株式会社 酰胺系弹性体发泡颗粒、其制造方法、发泡成形体和发泡成形体的制造方法
CN107446327A (zh) * 2016-06-01 2017-12-08 黑龙江鑫达企业集团有限公司 一种全生物降解耐热聚乳酸发泡材料及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080262118A1 (en) 2004-03-26 2008-10-23 Kevin Cink Extruded Polylactide Foams Blown With Carbon Dioxide
US20090054559A1 (en) * 2006-02-14 2009-02-26 Nec Corporation Polylactic acid resin composition and molded article
CN103232694A (zh) * 2006-02-14 2013-08-07 日本电气株式会社 聚乳酸类树脂组合物及成形体
CN101362833A (zh) 2008-09-25 2009-02-11 上海交通大学 聚乳酸发泡材料的制备方法
US20110263732A1 (en) 2010-04-22 2011-10-27 Sealed Air Corporation (Us) Polylactic Acid Foam Composition
CN102086299A (zh) * 2011-01-14 2011-06-08 中国科学院宁波材料技术与工程研究所 一种透明结晶聚乳酸塑料及其制备方法
CN102321269A (zh) 2011-09-26 2012-01-18 浙江工业大学 超临界co2发泡制备介孔二氧化硅/聚乳酸发泡材料的方法
CN103819885A (zh) 2012-11-19 2014-05-28 青岛科技大学 一种聚乳酸发泡材料及其制备方法
CN104140659A (zh) 2014-06-19 2014-11-12 湖北工业大学 一种聚乳酸发泡粒子及其制备方法
CN105219044A (zh) 2015-10-30 2016-01-06 宁波家塑生物材料科技有限公司 一种全生物降解耐热聚乳酸发泡材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MA YUWUXIN CHUNLINGHE YADONG ET AL.: "Effect of supercritical C0 on extrusion foaming of polylactic acid [J", CHINA PLASTICS, vol. 26, no. 12, 2012, pages 72 - 75
YANG ZHIYUN ET AL., CHEMICAL PROGRESS, vol. 33, no. 1, 2014

Also Published As

Publication number Publication date
CN109867638A (zh) 2019-06-11
TW201925165A (zh) 2019-07-01
CN109867638B (zh) 2021-06-15
EP3730486C0 (en) 2023-10-25
US20200024243A1 (en) 2020-01-23
US10730845B2 (en) 2020-08-04
AU2018374981A1 (en) 2019-09-12
ES2963663T3 (es) 2024-04-01
EP3730486B1 (en) 2023-10-25
AU2018374981B2 (en) 2021-06-17
EP3730486A1 (en) 2020-10-28
TWI700269B (zh) 2020-08-01
PL3730486T3 (pl) 2024-03-11
EP3730486A4 (en) 2021-11-03
CA3057542A1 (en) 2019-06-06

Similar Documents

Publication Publication Date Title
WO2019104946A1 (zh) 一种耐热聚乳酸连续挤出发泡材料及其制备方法
CN102585465B (zh) 一种中空微珠增强聚乳酸基复合发泡材料及其制备方法
Wang et al. Study on the effect of dispersion phase morphology on porous structure of poly (lactic acid)/poly (ethylene terephthalate glycol-modified) blending foams
CN102241830B (zh) 一种生物降解聚合物发泡片材制品的制备方法
CN105980467B (zh) 聚合物泡沫
CN108929527B (zh) 一种兼具高延展性和高阻隔性能的pbat/改性淀粉全生物降解薄膜及其制备方法和应用
CN111138755A (zh) 一种低密度低介电聚丙烯复合材料及其制备方法
CN101619158A (zh) 聚乳酸发泡材料及其制备方法
Zhang et al. Enhancing the melt strength of poly (lactic acid) via micro-crosslinking and blending with poly (butylene adipate-co-butylene terephthalate) for the preparation of foams
CN107722581B (zh) 一种高发泡倍率的聚乳酸合金发泡材料及其制备方法
CN102702705A (zh) 一种增韧聚乳酸/聚烯烃弹性体复合材料及其制备方法
CN105219044A (zh) 一种全生物降解耐热聚乳酸发泡材料及其制备方法
WO2018090412A1 (zh) 多嵌段支化聚乙烯及其制备方法
Liu et al. Preparation and characterization of reinforced starch-based composites with compatibilizer by simple extrusion
CN101870823A (zh) 一种可完全生物降解材料填充母料及其制备方法
Zhou et al. Mechanical and thermal properties of poly-ether ether ketone reinforced with CaCO3
CN106674923A (zh) 一种降解可控pbat/pla复合膜及其制备方法
CN108285625A (zh) 一种3d打印制备聚乳酸立构复合物的方法
CN104877162B (zh) 原位微纤化聚丙烯系树脂复合发泡颗粒及其应用
CN104844770A (zh) 一种冰柜内胆材料及其制备方法
CN105199339A (zh) 一种用于3D打印的PBS/PBAT/CNTs材料及其制备方法
CN113442401A (zh) 一种高强高阻隔pga/pbat食品包装膜及其制备方法
CN106751568B (zh) 一种抗菌pbat/pla复合膜及其制备方法
CN109608838A (zh) 一种可完全降解长效增韧透明聚乳酸及其制备方法
CN102311575A (zh) 一种pp发泡复合添加剂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18884161

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018374981

Country of ref document: AU

Date of ref document: 20180510

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3057542

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018884161

Country of ref document: EP

Effective date: 20200701