CN107722581B - 一种高发泡倍率的聚乳酸合金发泡材料及其制备方法 - Google Patents

一种高发泡倍率的聚乳酸合金发泡材料及其制备方法 Download PDF

Info

Publication number
CN107722581B
CN107722581B CN201711031970.8A CN201711031970A CN107722581B CN 107722581 B CN107722581 B CN 107722581B CN 201711031970 A CN201711031970 A CN 201711031970A CN 107722581 B CN107722581 B CN 107722581B
Authority
CN
China
Prior art keywords
polylactic acid
foaming
alloy
foamed
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201711031970.8A
Other languages
English (en)
Other versions
CN107722581A (zh
Inventor
周洪福
王向东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Technology and Business University
Original Assignee
Beijing Technology and Business University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Technology and Business University filed Critical Beijing Technology and Business University
Priority to CN201711031970.8A priority Critical patent/CN107722581B/zh
Publication of CN107722581A publication Critical patent/CN107722581A/zh
Application granted granted Critical
Publication of CN107722581B publication Critical patent/CN107722581B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/005Processes for mixing polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/142Compounds containing oxygen but no halogen atom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/12Organic compounds only containing carbon, hydrogen and oxygen atoms, e.g. ketone or alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/048Bimodal pore distribution, e.g. micropores and nanopores coexisting in the same foam
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/052Closed cells, i.e. more than 50% of the pores are closed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2451/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2451/06Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

本发明提供一种高发泡倍率的聚乳酸合金发泡材料,包括100重量份的聚乳酸树脂和0‑30重量份的聚乙烯树脂,所述合金发泡材料具有闭孔结构。本发明通过熔融共混的方法聚乳酸/聚乙烯共混合金,改善共混物的结晶和流变行为,提高共混合金的粘弹性,制备出具有高发泡倍率的且具有复合泡孔结构的闭孔泡沫。

Description

一种高发泡倍率的聚乳酸合金发泡材料及其制备方法
技术领域
本发明涉及一种聚乳酸发泡材料及其制备方法,具体地,涉及一种高发泡倍率的聚乳酸合金发泡材料及其制备方法。
背景技术
近些年来,可降解塑料越来越受到工业者和研究者的关注,其中聚乳酸(PLA)是一种以可再生的植物资源为原料,经过开环聚合法和直接缩聚法化学合成制备的热塑性脂肪族聚酯,可通过堆肥的方式在微生物、水、酸、碱等作用下完全为水和二氧化碳,或者在特定酶的作用下降解为乳酸,不造成环境污染。因其具有可生物降解性、生物相容性、优良的机械加工性能而广泛应用于交通、医疗、食品、汽车航天等领域,被认为是最具产业化前景的环境友好高分子材料。
聚乳酸作为发泡材料也具有独特的性能,聚乳酸发泡后具有优异的隔热性,其热导率可与相同发泡密度下的PS泡沫媲美,同时具有良好的抗冲击性能和回弹性,可以用于承载高载荷。但是因聚乳酸为半结晶型聚合物,结晶速率慢,结晶度较低,熔体强度较低,不利于制备高发泡倍率的泡沫制品,导致耐热性能差和气体阻隔性较差等,从而限制了其应用范围和市场化发展进程。因此对PLA改性研究引起了研究者的广泛关注。
通常改善PLA发泡性能的方法主要有:共混法、扩链法、填充法等。共混法是将两种物料在一定温度下进行熔融共混,通过转子或螺杆的旋转剪切使物料均匀混合,简单高效。中国专利CN201510728879.6公布了一种全生物降解耐热聚乳酸发泡材料及其制备方法,通过将聚乳酸与PBAT树脂、扩链剂、成核剂及助发泡剂等混合制备耐热聚乳酸发泡材料,此发泡材料可实现连续发泡技术,并且具有泡孔尺寸均匀、闭孔率高的优势;CN201410822967.8公布了一种高强度高缓冲POSS杂化聚乳酸发泡材料的制备方法,通过加入热塑性弹性体聚氨酯、相容剂、八臂马来酰胺酸基笼状倍半硅氧烷、缩聚催化剂钛酸四丁酯、及抗氧剂、塑化剂、抗紫外线剂等,该发泡材料采用水蒸气挤出发泡成型,工艺简单,具有优异的强度和缓冲性。
但是获得的PLA发泡材料依然发泡倍数不高,并且泡孔结构单一,因此急需一种高发泡倍率的聚乳酸材料。
发明内容
本发明要解决的一个技术问题在于提供一种高发泡倍率的聚乳酸合金发泡材料,其发泡倍率高且泡孔结构优良。
本发明要解决的第二个技术问题在于提供一种上述聚乳酸合金发泡材料的制备方法,该方法操作简单,能获得高发泡倍率的聚乳酸合金发泡材料。
为了解决上述第一个技术问题,本发明提供一种高发泡倍率的聚乳酸合金发泡材料,其包括100重量份的聚乳酸树脂和1-30重量份的聚乙烯树脂,该聚乳酸合金发泡材料具有闭孔结构。
进一步地,聚乳酸合金发泡材料包括100重量份的聚乳酸树脂和10重量份的聚乙烯树脂。
进一步地,聚乙烯树脂为高密度聚乙烯(HDPE)、低密度聚乙烯(LDPE)或线性低密度聚乙烯(LLDPE)。
进一步地,聚乳酸合金发泡材料具有复合泡孔结构。复合泡孔结构是指在材料内部存在两种不同直径的泡孔,兼具大小泡孔的性能,小泡孔可提高材料的力学性能和绝热性能等,大泡孔可降低材料的泡体密度。大泡孔尺寸范围在0.05-0.4mm,小泡孔的平均尺寸范围小于大泡孔平均尺寸的50%。
进一步地,聚乳酸合金发泡材料的密度为0.03-0.2g/cm3,本文提及的密度指的都是芯密度;发泡倍率为1-45。
进一步地,聚乳酸合金发泡材料还包括增容剂。
进一步地,增容剂为马来酸酐接枝聚乙烯。
为了解决上述第二个技术问题,本发明提供一种上述高发泡倍率的聚乳酸合金发泡材料的制备方法,其包括下列步骤:
将100重量份的聚乳酸树脂和0-30重量份的聚乙烯树脂共混获得共混物;
将共混物制成待发泡样品;
对待发泡样品进行发泡,获得产物。
进一步地,发泡进行为将待发泡样品保持130-210℃的饱和温度和3-30MPa的饱和压力下,在物理发泡剂中浸泡0.3-4小时,之后降温至90-150℃的发泡温度,然后迅速卸压至常压。
进一步地,物理发泡剂为丁烷、二甲醚、CO2或N2气体。
本发明的有益效果
本发明通过熔融共混的方法聚乳酸/聚乙烯共混合金,改善共混物的结晶和流变行为,提高共混合金的粘弹性,制备出具有高发泡倍率的且具有复合泡孔结构的闭孔泡沫。
本发明制备的发泡材料具有复合泡孔,即具有双峰泡孔结构,内部存在两种不同直径的泡孔,兼具小泡孔良好的机械性能、绝热性能和大泡孔的低表观密度等性能。
本发明制备方法简单高效,通过简单熔融共混得到聚乳酸合金发泡材料保持了聚乳酸生物降解的优势,完全符合绿色低碳经济的发展需求;降低聚乳酸发泡成本,通过调整工艺条件获得具有优异泡孔结构的泡沫材料,更有利于聚乳酸合金发泡实现产业化,对实现大规模取代PS等石油基塑料发泡产品具有重要的意义。
附图说明
图1示出了实施例1-5的SEM图;
图2示出了实施例1-5的偏光显微镜图片;
图3示出了实施例1-5和对比例1的流变性能测试结果,其中(a)图显示复数黏度,(b)图显示储能模量,(c)图显示损耗因子;
图4示出了实施例1,6-9的SEM图;
图5分别示出了实施例1、6-9的流变性能测试结果,其中(a)图显示复数黏度,(b)图显示储能模量,(c)图显示损耗因子;
图6示出了实施例1-5产物泡孔结构的SEM图,其中发泡过程的发泡温度为110℃;
图7示出了实施例15-19和对比例2的产物泡孔结构SEM图。
具体实施方式
下面通过实施实例来对本发明的技术方面进一步的说明,但本发明并不限于以下实施实例。
实施例1-5和对比例1
称量聚乳酸树脂和高密度聚乙烯树脂,其中聚乳酸树脂为线形构造,其熔体流动速率为1-10g/10min(230℃,2.16kg),分子量为50000-15000g/mol,高密度聚乙烯树脂为线形构造,熔体流动速率为0.29g/10min(230℃,2.16kg),分子量为40000~300000g/mol,具体含量如表1所示。
表1
Figure BDA0001448668970000031
将上述组分烘干,将组分放入转矩流变仪内熔融共混,该转矩流变仪的熔融温度设置为190℃,转速设置为60rads/min,共混10min后形成高熔体强度的聚乳酸共混合金。
用扫描电镜分别观察实施例1-5的聚乳酸共混合金的分散相形态,依次得到图1的(a)-(e)图,从图中可看出,聚乳酸与聚乙烯两相不相容,两相界面清楚,可以为泡孔成核提供异相成核点。
用偏光显微镜对实施例1-5的聚乳酸共混合金进行观察,依次得到图2的(a)-(e)图,从图中可看出,聚乳酸在聚乳酸与高密度聚乙烯界面结晶成核,结晶性能得到提升。
用旋转流变仪分别测试实施例1-5的聚乳酸共混合金和对比例1的纯HDPE的流变性能,其测试温度为190℃,获得的测试结果如图3所示,其中(a)图显示复数黏度,(b)图显示储能模量,(c)图显示损耗因子。由图中可以看出聚乳酸和高密度聚乙烯混合后具有协同作用,粘弹性得到提高,利于泡孔成型和增长。
实施例6-9
称量聚乳酸树脂和马来酸酐接枝聚乙烯树脂,其中聚乳酸树脂为线形构造,其熔体流动速率为1-10g/10min(230℃,2.16kg),分子量为50000-15000g/mol,马来酸酐接枝聚乙烯树脂来自美国ExxoMobil公司,具体含量如表2所示。
表2
Figure BDA0001448668970000041
将上述组分烘干,并将其通过挤出机挤出共混,设定转速为120rads/min,熔融加工温度范围为170-200℃,形成高熔体强度的聚乳酸共混合金。
用扫描电镜分别观察实施例1和6-9的聚乳酸共混合金的分散相形态,依次得到图4的1#-6#图,从图中可看出,在聚乳酸中添加增容剂后,聚乙烯分散相尺寸变小,两相界面数量增加。
用旋转流变仪测试实施例1和6-9的聚乳酸共混合金的流变性能,其测试温度为180℃,获得的测试结果如图5所示,其中(a)图显示复数黏度,(b)图显示储能模量,(c)图显示损耗因子,从图中可看出,聚乳酸与增容剂共混后,粘弹性得到提高,利于泡孔成型和增长。
实施例10-14
待实施例1-5制得的聚乳酸共混合金冷却后,使用平板硫化仪,模压温度为140℃,模压20分钟后制备10mm*10mm*2mm的待发泡样品,以备发泡使用。将待发泡样品放入高压釜内,充入二氧化碳使釜内稳定为饱和温度在170℃,饱和压力在20Mpa,浸泡时间2小时后,降温到110℃的发泡温度,随后迅速泄压,取出发泡产物。
用扫描电镜观察实施例10-14获得的发泡产物的泡孔结构,依次得到图6的(a)-(e)图,从图中可以看出,与纯聚乳酸样品的对比,聚乳酸合金发泡材料具有优异发泡性能,具体表现为泡孔尺寸减小,泡孔密度增加,且部分配方样品出现复合泡孔结构。
用密度天平测试泡沫芯密度并计算出发泡倍率,用Image-Pro Plus统计泡孔尺寸和计算泡孔密度,表3列出了实施例10-14发泡产物的发泡数据:
表3
Figure BDA0001448668970000051
实施例15-19
配备100质量份的聚乳酸树脂和9份的低密度聚乙烯树脂(LDPE),其中聚乳酸树脂为线形构造,其熔体流动速率为1-10g/10min(230℃,2.16kg),分子量为50000-15000g/mol。将上述组分烘干,将组分放入转矩流变仪内熔融共混,该转矩流变仪的熔融温度设置为190℃,转速设置为60rads/min,共混10min后形成高熔体强度的聚乳酸共混合金。待聚乳酸共混合金冷却后,用平板硫化仪在220℃的模压温度下模压10分钟,制备10mm*10mm*2mm的待发泡样品,以备发泡使用。将待发泡样品放入高压釜内,充入二氧化碳使釜内稳定为饱和温度为160℃,饱和压力为30Mpa,浸泡时间1小时后,降温到发泡温度,随后迅速泄压,取出发泡产物。其中发泡温度具体设定如下表4所示。
表4
Figure BDA0001448668970000052
表5列出了实施例15-19的发泡产物的发泡数据:
表5
Figure BDA0001448668970000061
对比例2
重复实施例15,不同仅在于仅采用纯的聚乳酸树脂,不添加低密度聚乙烯树脂。
用扫描电镜分别观察实施例15-19和对比例2获得的发泡产物的泡孔结构,依次得到图7的(a)-(f)图,可以看出与对比例2的纯聚乳酸产物相比,实施例15的合金发泡材料泡孔尺寸更小,且出现复合泡孔结构。
实施例20
配备100质量份的聚乳酸树脂、30质量份的高密度聚乙烯树脂和15质量份的马来酸酐接枝聚乙烯,将上述组分烘干,放入转矩流变仪内熔融共混,该转矩流变仪的熔融温度设置为210℃,转速设置为30rads/min,共混20min后形成高熔体强度的聚乳酸共混合金。待聚乳酸共混合金冷却后,用平板硫化仪在220℃的模压温度下模压0.5分钟,制备10mm*10mm*2mm的待发泡样品,以备发泡使用。将待发泡样品放入高压釜内,充入二氧化碳使釜内稳定为饱和温度在210℃,饱和压力在3Mpa,浸泡时间4小时后,降温到90℃,随后迅速泄压,取出发泡产物,对发泡产物进行测试,其密度为0.2g/cm3,发泡倍率为45倍。
实施例21
配备100质量份的聚乳酸树脂、1质量份的高密度聚乙烯树脂和5质量份的马来酸酐接枝聚乙烯,将上述组分烘干,放入转矩流变仪内熔融共混,该转矩流变仪的熔融温度设置为170℃,转速设置为150rads/min,共混5min后形成高熔体强度的聚乳酸共混合金。待聚乳酸共混合金冷却后,用注射机在220℃的注射温度下,用20bar的注射压力注射制备待发泡样品,将待发泡样品放入高压釜内,充入二甲醚使釜内稳定为饱和温度在130℃,饱和压力在10Mpa,浸泡时间0.3小时后,降温到150℃,随后迅速泄压,取出发泡产物。对发泡产物进行测试,其密度为0.03g/cm3,发泡倍率为40倍。
实施例22
配备100质量份的聚乳酸树脂、1质量份的低密度聚乙烯树脂和5质量份的马来酸酐接枝聚乙烯,将上述组分烘干,放入挤出机内,在300rads/min的转速下,140℃的熔融温度下熔融混合挤出,待混合物冷却后,用注射机在180℃的注射温度下,用100bar的注射压力注射制备待发泡样品,将待发泡样品放入高压釜内,充入氮气使釜内稳定为饱和温度在160℃,饱和压力在15Mpa,浸泡时间1小时后,降温到120℃,随后迅速泄压,取出发泡产物。
实施例23
配备100质量份的聚乳酸树脂、10质量份的高密度聚乙烯树脂和10质量份的马来酸酐接枝聚乙烯,将上述组分烘干,放入挤出机内,在30rads/min的转速下,220℃的熔融温度下熔融混合挤出,待混合物冷却后,用注射机在180℃的注射温度下,用100bar的注射压力注射制备待发泡样品,将待发泡样品放入高压釜内,充入丁烷使釜内稳定为饱和温度在160℃,饱和压力在15Mpa,浸泡时间1小时后,降温到120℃,随后迅速泄压,取出发泡产物。
应当理解,本发明的上述实施例仅仅是为清楚地说明本发明所举例,而并非是对本发明的实施方式的限定。对于本领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无法对所有的实施方式予以穷举。凡是属于本发明的技术方案所引申出的显而易见的变化或改变仍处于本发明的保护范围之列。

Claims (7)

1.一种高发泡倍率的聚乳酸合金发泡材料,其特征在于,所述聚乳酸合金发泡材料的原料由以下组成:100重量份的聚乳酸树脂、1-30重量份的聚乙烯树脂和发泡剂,所述聚乳酸合金发泡材料具有闭孔结构;所述聚乙烯树脂为高密度聚乙烯;在所述聚乳酸和所述高密度聚乙烯发泡形成所述聚乳酸合金发泡材料之前,所述聚乳酸在与高密度聚乙烯的界面结晶成核。
2.根据权利要求1所述的聚乳酸合金发泡材料,其特征在于,所述聚乳酸合金发泡材料的原料由以下组成:100重量份的聚乳酸树脂、10重量份的聚乙烯树脂和发泡剂。
3.根据权利要求1所述的聚乳酸合金发泡材料,其特征在于,所述聚乳酸合金发泡材料具有复合泡孔结构。
4.根据权利要求1所述的聚乳酸合金发泡材料,其特征在于,所述聚乳酸合金发泡材料的密度为0.03-0.2g/cm3,发泡倍率为1-45。
5.一种根据权利要求1所述的高发泡倍率的聚乳酸合金发泡材料的制备方法,其特征在于,所述方法包括下列步骤:
将100重量份的聚乳酸树脂和1-30重量份的高密度聚乙烯树脂共混获得共混物;
将所述共混物制成待发泡样品;
对待发泡样品进行发泡,获得产物。
6.根据权利要求5所述的制备方法,其特征在于,所述进行 发泡为将待发泡样品保持130-210℃的饱和温度和3-30MPa的饱和压力下,在物理发泡剂中浸泡0.3-4小时,之后降温至90-150℃的发泡温度,然后迅速卸压至常压。
7.根据权利要求6所述的制备方法,其特征在于,所述物理发泡剂为丁烷、二甲醚、CO2或N2气体。
CN201711031970.8A 2017-10-27 2017-10-27 一种高发泡倍率的聚乳酸合金发泡材料及其制备方法 Expired - Fee Related CN107722581B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711031970.8A CN107722581B (zh) 2017-10-27 2017-10-27 一种高发泡倍率的聚乳酸合金发泡材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711031970.8A CN107722581B (zh) 2017-10-27 2017-10-27 一种高发泡倍率的聚乳酸合金发泡材料及其制备方法

Publications (2)

Publication Number Publication Date
CN107722581A CN107722581A (zh) 2018-02-23
CN107722581B true CN107722581B (zh) 2020-05-05

Family

ID=61203180

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711031970.8A Expired - Fee Related CN107722581B (zh) 2017-10-27 2017-10-27 一种高发泡倍率的聚乳酸合金发泡材料及其制备方法

Country Status (1)

Country Link
CN (1) CN107722581B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108409985B (zh) * 2018-04-09 2020-12-29 山东大学 一种通过预等温冷结晶处理提高聚乳酸发泡倍率的方法
CN110016213B (zh) * 2019-03-21 2021-07-30 北京工商大学 一种具有微纳米复合泡孔的聚乳酸发泡材料及其制备方法
CN112189886A (zh) * 2020-09-27 2021-01-08 河南中烟工业有限责任公司 一种卷烟滤嘴棒发泡材料的制备方法
CN112406150B (zh) * 2020-11-06 2023-07-18 贵州黔峰实业有限公司 一种纳米改性高密度聚乙烯合金管制备及其生产工艺
CN113121868A (zh) * 2021-05-21 2021-07-16 江苏中科聚合新材料产业技术研究院有限公司 一种高倍发泡聚乳酸板材及其制备方法
CN114989581B (zh) * 2022-04-24 2024-04-05 宁波能之光新材料科技股份有限公司 一种生物可降解聚乳酸发泡粒子及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007052543A1 (ja) * 2005-11-04 2007-05-10 Unitika Ltd. 生分解性樹脂発泡シート、生分解性樹脂発泡体および生分解性樹脂成形容器
US20130102695A1 (en) * 2011-10-19 2013-04-25 Chieh-Chun Chau Poly(lactic acid) and polyolefin films containing porosity and sorbents
CN105385024B (zh) * 2015-10-29 2018-05-15 中国科学院长春应用化学研究所 具有双峰分布的聚丙烯发泡材料及其制备方法
CN107011542A (zh) * 2017-05-31 2017-08-04 三斯达(江苏)环保科技有限公司 一种可生物降解的发泡材料及其制备方法

Also Published As

Publication number Publication date
CN107722581A (zh) 2018-02-23

Similar Documents

Publication Publication Date Title
CN107722581B (zh) 一种高发泡倍率的聚乳酸合金发泡材料及其制备方法
Kakroodi et al. Facile production of biodegradable PCL/PLA in situ nanofibrillar composites with unprecedented compatibility between the blend components
Javadi et al. Processing and characterization of microcellular PHBV/PBAT blends
Li et al. Fabrication of biodegradable poly (lactic acid)/carbon nanotube nanocomposite foams: significant improvement on rheological property and foamability
CN102241830B (zh) 一种生物降解聚合物发泡片材制品的制备方法
Zhao et al. Role of high-density polyethylene in the crystallization behaviors, rheological property, and supercritical CO2 foaming of poly (lactic acid)
CN102675842B (zh) 聚乳酸发泡材料及其制备方法
US20230054285A1 (en) Supercritical fluid injection foaming polylactide foam material and preparation method therefor
US20120009420A1 (en) Compostable or Biobased Foams
Li et al. Introduction of a long-chain branching structure by ultraviolet-induced reactive extrusion to improve cell morphology and processing properties of polylactide foam
CN108424626B (zh) 一种聚乳酸聚碳酸亚丙酯复合材料及其制备方法
Liu et al. Preparation and characterization of reinforced starch-based composites with compatibilizer by simple extrusion
Li et al. A facile and efficient method for preparing chain extended poly (lactic acid) foams with high volume expansion ratio
CN101525487A (zh) 一种可环境降解的复合材料及其制备方法
CN103819885B (zh) 一种聚乳酸发泡材料及其制备方法
CN111234481A (zh) 一种高韧性、低成本的聚乳酸复合材料的制备方法
CN108409985B (zh) 一种通过预等温冷结晶处理提高聚乳酸发泡倍率的方法
CN113956630A (zh) 一种完全生物降解薄膜及其制备方法
Wu et al. Super toughened blends of poly (lactic acid) and poly (butylene adipate-co-terephthalate) injection-molded foams via enhancing interfacial compatibility and cellular structure
AU2012278774A1 (en) Compostable or biobased foams, method of manufacture and use
CN109867638A (zh) 一种耐热聚乳酸连续挤出发泡材料及其制备方法
Gendron et al. Extrusion foaming of polylactide
CN114350008B (zh) 一种高发泡倍率的尼龙发泡板材及其制备方法
CN115160745A (zh) 一种改性聚对苯二甲酸乙二醇酯发泡材料及其制备方法
CN110283436B (zh) 一种高强度芳香族聚酯微孔发泡材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200505

Termination date: 20211027

CF01 Termination of patent right due to non-payment of annual fee