WO2019104885A1 - 一种新型物流穿梭车机器人系统及其控制方法 - Google Patents

一种新型物流穿梭车机器人系统及其控制方法 Download PDF

Info

Publication number
WO2019104885A1
WO2019104885A1 PCT/CN2018/076403 CN2018076403W WO2019104885A1 WO 2019104885 A1 WO2019104885 A1 WO 2019104885A1 CN 2018076403 W CN2018076403 W CN 2018076403W WO 2019104885 A1 WO2019104885 A1 WO 2019104885A1
Authority
WO
WIPO (PCT)
Prior art keywords
plc controller
wcs
motor
vehicle body
storage system
Prior art date
Application number
PCT/CN2018/076403
Other languages
English (en)
French (fr)
Inventor
沈鹭
谷春光
杨艳
Original Assignee
无锡凯乐士科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡凯乐士科技有限公司 filed Critical 无锡凯乐士科技有限公司
Priority to US16/316,628 priority Critical patent/US11370615B2/en
Publication of WO2019104885A1 publication Critical patent/WO2019104885A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0272Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means comprising means for registering the travel distance, e.g. revolutions of wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/0492Storage devices mechanical with cars adapted to travel in storage aisles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/137Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed
    • B65G1/1373Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed for fulfilling orders in warehouses
    • B65G1/1375Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed for fulfilling orders in warehouses the orders being assembled on a commissioning stacker-crane or truck
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/063Automatically guided
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/028Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using a RF signal
    • G05D1/0282Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using a RF signal generated in a local control room
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/36Vehicles designed to transport cargo, e.g. trucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/40Working vehicles
    • B60L2200/42Fork lift trucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/46Vehicles with auxiliary ad-on propulsions, e.g. add-on electric motor kits for bicycles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2203/00Indexing code relating to control or detection of the articles or the load carriers during conveying
    • B65G2203/02Control or detection
    • B65G2203/0266Control or detection relating to the load carrier(s)
    • B65G2203/0283Position of the load carrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2203/00Indexing code relating to control or detection of the articles or the load carriers during conveying
    • B65G2203/04Detection means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2203/00Indexing code relating to control or detection of the articles or the load carriers during conveying
    • B65G2203/04Detection means
    • B65G2203/042Sensors

Definitions

  • the invention relates to the technical field of freight shuttles, in particular to a novel logistics shuttle robot system and a control method thereof.
  • the shuttle is used to access loading and unloading goods, such as logistics-specific totes, carton-packed goods, etc. It can also be used to move in or out of goods from various horizontal levels of storage shelves, and can also be used to concentrate or sort goods.
  • Most of the shuttles currently in use use electric power to drive the motor to work, and will effectively control between multiple sensors and PLCs, but how to properly plan the operation of the new logistics shuttle robot system is always a problem to be solved. Raise the problem.
  • the object of the present invention is to provide a novel logistics shuttle which has the advantages of compact structure, convenient disassembly and maintenance, intelligent integration and accurate realization of functions such as walking, jacking, handling and fault alarm.
  • a new logistics shuttle robot system including a new logistics shuttle robot and a WCS automatic storage system
  • the new logistics shuttle robot includes a vehicle body, a straight motor, a straight wheel, a transverse motor, a horizontal wheel, a positioning sensor, a jacking motor, an encoder, a PLC controller, a jacking position sensor, a lever, a lever, a telescopic fork position sensor, a telescopic fork motor and an antenna, respectively, the bottom of the vehicle body is provided a straight wheel and a horizontal wheel, the horizontal height of the straight wheel is lower than a horizontal height of the horizontal wheel, wherein the straight motor and the horizontal motor are respectively disposed on the vehicle body, the straight motor is linked with the straight wheel, and the horizontal motor and the horizontal line
  • the encoders are respectively disposed at the straight wheel and the horizontal wheel
  • the positioning sensor, the jacking motor, the PLC controller and the jacking position sensor are disposed on
  • the lever is rotatably engaged with the lever, and the telescopic fork position sensor is disposed on the vehicle body, and includes a supercapacitor and a lithium battery, the supercapacitor being electrically connected to the lithium battery, further comprising a charging contact, the charging contact being disposed on the vehicle body and electrically connected to the super capacitor, the straight motor, the transverse motor, the jacking motor And the telescopic fork motor is electrically connected through the controller and the PLC controller in sequence, and the positioning sensor, the jacking position sensor, the telescopic fork position sensor, the encoder and the telescopic fork position sensor and the PLC controller are electrically connected, and the PLC controller passes The antenna is connected to the WCS automatic storage system signal.
  • the lever sensor 2 is further included, and the telescopic fork rail sensor 2 is disposed on the side wall of the vehicle body.
  • Step 1 The WCS automatic storage system constructs a storage model according to the actual storage path;
  • Step 2 The WCS automatic storage system sends a movement command to the PLC controller through the antenna, and the PLC controller sends the specified position of the movement to the straight motor and the encoder for the vehicle body to walk, and feeds the vehicle body to the PLC controller through the encoder.
  • the positioning sensor feeds back the position signal to the PLC controller when the specified position is reached, and the PLC controller feeds the position signal to the WCS automatic storage system through the antenna;
  • Step 3 The WCS automatic storage system sends a pickup notification to the PLC controller through the antenna.
  • the PLC controller sends the telescopic information to the telescopic fork, and the telescopic fork is removed from the side of the vehicle body.
  • the telescopic fork sensor feeds the PLC controller to the telescopic fork, the telescopic fork arrives.
  • the PLC controller feeds back to the WCS automatic storage system to reach the telescopic position signal;
  • Step 4 The WCS automatic storage system sends the information of the pick-up goods to the PLC controller through the antenna. At this time, the PLC controller sends the information to the dial to perform the rotation, so that the goods are retrieved, and the PLC controller feeds the information through the antenna. WCS automatic storage system;
  • Step 5 The WCS automatic storage system sends the information on the body of the goods to the PLC controller through the antenna.
  • the PLC controller processes the information and sends it to the telescopic fork.
  • the telescopic fork is retracted and the telescopic fork is received by the telescopic fork sensor.
  • the PLC will feedback the position information to the WCS automatic storage system;
  • Step 6 The WCS automatic storage system sends the vehicle body movement designation to the PLC controller through the antenna, and the PLC controller sends the specified position of the movement to the straight-line motor and the encoder for the vehicle body to walk, and feeds the vehicle body to the PLC controller through the encoder.
  • the walking distance, the positioning sensor feeds back the position signal to the PLC controller when it reaches the specified position, and the PLC controller feeds the position signal through the antenna to the WCS automatic storage system.
  • the WCS automatic storage system transmits the vehicle body movement designation to the PLC controller through the antenna, and the PLC controller sends the designated position of the movement to the jacking motor.
  • the jacking motor lifts the horizontal wheel.
  • the PLC controller feeds the signal through the antenna to the WCS automatic storage system, and the WCS automatic storage system passes through the antenna.
  • the PLC controller sends a movement signal.
  • the PLC controller After receiving the movement signal, the PLC controller sends the specified position to the transverse motor and the encoder for vehicle body walking, and feeds the PLC controller to the PLC controller through the encoder, and the positioning sensor is oriented.
  • the PLC controller feeds back the position signal when it reaches the specified position, and the PLC controller feeds the position signal through the antenna to the WCS automatic storage system.
  • the invention has the beneficial effects that the novel logistics shuttle robot system and the control method thereof are simple and compact in structure design, and the installation and disassembly and maintenance of the various mechanisms of the modular design are extremely convenient, and at the same time, It realizes the functions of straight, horizontal and precise positioning, and can complete the lifting of the car body, carry the items with the lever and realize precise and controllable, and can detect faults and alarm in time.
  • FIG. 1 is a schematic diagram of a system architecture of a novel logistics shuttle robot system of the present invention.
  • FIG. 2 is a schematic view showing the structure of a novel logistics shuttle of the present invention.
  • Figure 3 is a schematic view showing the structure of a novel logistics shuttle of the present invention.
  • Figure 4 is a schematic view showing the structure of the interior of the novel logistics shuttle of the present invention.
  • Figure 5 is a schematic view showing the structure of the interior of the novel logistics shuttle of the present invention.
  • Fig. 6 is a structural schematic view showing the state of the goods of the novel logistics shuttle of the present invention.
  • Figure 7 is a side elevational view of the novel logistics shuttle of the present invention.
  • Figure 8 is a top plan view of the novel logistics shuttle of the present invention.
  • a new logistics shuttle robot, b, WCS automatic storage system, 1, car body, 2, straight motor, 3, straight wheel, 4, horizontal motor, 5, horizontal wheel, 6, positioning sensor, 7 , jacking motor, 8, encoder, 9, PLC controller, 10, jacking position sensor, 11, telescopic fork rail, 12, lever, 13, telescopic fork position sensor, 14, telescopic fork motor, 15, antenna 16, super capacitor, 17, lithium battery, 18, telescopic fork position sensor two, 19, controller.
  • a new type of logistics shuttle robot system includes a new logistics shuttle robot a and a WCS automatic storage system b; the new logistics shuttle robot a includes a vehicle body 1, a straight motor 2, a straight wheel 3, and a horizontal line.
  • the antenna 15, the bottom of the vehicle body 1 is respectively provided with a straight wheel 3 and a horizontal wheel 5, the horizontal height of the straight wheel 3 is lower than the horizontal height of the horizontal wheel 5, and the straight motor 2 and the transverse motor 4 are respectively arranged in the vehicle.
  • the straight motor 2 is linked with the straight wheel 3
  • the transverse motor 4 is interlocked with the horizontal wheel 5
  • the encoder 8 is respectively disposed at the straight wheel 3 and the horizontal wheel 5, the positioning sensor 6, the top
  • the lift motor 7, the PLC controller 9 and the jacking position sensor 10 are disposed on the vehicle body 1.
  • the lever 11 is disposed on the vehicle body 1 and is slidably engaged with the vehicle body 1 and driven by the telescopic fork motor 14, the dialing
  • the rod 12 is rotatably engaged with the lever 11, and the telescopic fork position sensor 13 is disposed on the vehicle body 1
  • the supercapacitor 16 and the lithium battery 17 are further electrically connected to the lithium battery 17 and further include a charging contact 17 which is disposed on the vehicle body 1 and electrically connected to the super capacitor 16
  • the straight motor 2, the transverse motor 4, the jacking motor 11 and the telescopic fork motor 14 are electrically connected in sequence through the controller 19 and the PLC controller 9, the positioning sensor 6, the jacking position sensor 10, and the telescopic fork position sensor 13
  • the encoder 8 and the telescopic fork position sensor 13 are electrically connected to the PLC controller 9, which is signally connected to the WCS automatic storage system b via the antenna 15.
  • a lever sensor 2 18 is also included, and the telescopic fork rail sensor 2 18 is disposed on a side wall of the vehicle body 1.
  • a novel control method for a logistics shuttle robot system includes the following steps: Step 1: The WCS automatic storage system b constructs a storage model according to an actual storage path;
  • Step 2 The WCS automatic storage system b sends a movement command to the PLC controller 9 via the antenna 15, and the PLC controller 9 sends the specified position of the movement to the straight motor 2 and the encoder 8 for the vehicle body 1 to travel, and passes through the encoder 8
  • the PLC controller 9 feeds back the walking distance of the vehicle body 1, the positioning sensor 6 feeds back the position signal to the PLC controller 9 when it reaches the designated position, and the PLC controller feeds the position signal through the antenna to the WCS automatic storage system b;
  • Step 3 The WCS automatic storage system b sends a pickup notification to the PLC controller through the antenna, and the PLC controller sends the telescopic information to the telescopic fork, and the telescopic fork is removed from the side of the vehicle body, and the telescopic fork sensor feeds back to the PLC controller to the telescopic fork.
  • the PLC controller feeds back to the WCS automatic storage system b to reach the telescopic position signal;
  • Step 4 The WCS automatic storage system b sends the information of the pick-up goods to the PLC controller through the antenna. At this time, the PLC controller sends the information to the lever to rotate, so that the goods are picked up, and the PLC controller passes the information through the antenna feedback.
  • WCS automatic storage system b
  • Step 5 The WCS automatic storage system b sends the information on the body of the goods to the PLC controller through the antenna.
  • the PLC controller processes the information and sends it to the telescopic fork.
  • the telescopic fork is retracted and the telescopic fork is received through the telescopic fork sensor. After recovering the completed information, the PLC feeds back the position information to the WCS automatic storage system b;
  • Step 6 The WCS automatic storage system b transmits the vehicle body movement designation to the PLC controller through the antenna, and the PLC controller 9 sends the specified position of the movement to the straight motor 2 and the encoder 8 for the vehicle body 1 to walk, and passes the encoder 8 to The PLC controller 9 feeds back the walking distance of the vehicle body 1, and the positioning sensor 6 feeds back the position signal to the PLC controller 9 when it reaches the designated position, and the PLC controller feeds the position signal to the WCS automatic storage system b through the antenna.
  • the WCS automatic storage system b If the WCS automatic storage system b sends a movement command to the PLC controller 9 via the antenna 15 and needs to be traversed, the WCS automatic storage system b transmits the vehicle body movement designation to the PLC controller through the antenna, and the PLC controller 9 sends the designated position of the movement to the top.
  • the motor is lifted, and the jacking motor lifts the horizontal wheel.
  • the PLC controller 9 feeds the signal through the antenna to the WCS automatic storage system b, the WCS automatic storage system.
  • the PLC controller sends a movement signal to the PLC controller through the antenna, and the PLC controller receives the movement signal and sends the specified position of the movement to the horizontal motor 4 and the encoder 8 for the vehicle body 1 to travel, and passes the encoder 8 to the PLC controller 9
  • the walking distance of the vehicle body 1 is fed back, and the positioning sensor 6 feeds back the position signal when the vehicle reaches the designated position to the PLC controller 9, and the PLC controller feeds the position signal to the WCS automatic storage system b through the antenna.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Sustainable Development (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Civil Engineering (AREA)
  • Geology (AREA)
  • Warehouses Or Storage Devices (AREA)
  • Manipulator (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种物流穿梭车机器人系统及其控制方法,包括物流穿梭车机器人(a)和WCS自动仓储系统(b);所述物流穿梭车机器人(a)包括车体(1)、直行电机(2)、直行轮(3)、横行电机(4)、横行轮(5)、定位传感器(6)、顶升电机(7)、编码器(8)、PLC控制器(9)、顶升位置传感器(10)、伸缩叉导轨(11)、拨杆(12)、伸缩叉位置传感器(13)、伸缩叉电机(14)和天线(15),所述车体(1)底部分别设有直行轮(3)和横行轮(5)。该物流穿梭车机器人系统结构紧凑、拆卸维修方便且智能化集成,可以精准实现行走、顶升、搬运和故障报警等功能。

Description

一种新型物流穿梭车机器人系统及其控制方法 技术领域
本发明涉及货运穿梭车技术领域,具体涉及一种新型物流穿梭车机器人系统及其控制方法。
背景技术
穿梭车是用来进行存取装卸货物,例如物流专用周转箱、纸箱包装货物等,也可用来从仓储货架的各个水平层移入或移出货物,还可以用于对货物进行集中或分拣。目前使用的穿梭车大部分都是使用电力来驱动电机进行工作的,并且会通过多个传感器和PLC之间进行有效控制,但如何合理规划新型物流穿梭车机器人系统的运行始终是一个有待解决和提高的问题。
发明内容
本发明的目的在于,提供一种结构紧凑、拆卸维修方便且智能化集成并且可以精准实现行走、顶升、搬运和故障报警等功能的新型物流穿梭车。
发明解决其技术问题所采用的技术方案是:一种新型物流穿梭车机器人系统,包括新型物流穿梭车机器人和WCS自动仓储系统;所述新型物流穿梭车机器人包括车体、直行电机、直行轮、横行电机、横行轮、定位传感器、顶升电机、编码器、PLC控制器、顶升位置传感器、拨杆、拨杆、伸缩叉位置传感器、伸缩叉电机和天线,所述车体底部分别设有直行轮和横行轮,所述直行轮的水平高度低于横行轮的 水平高度,所述直行电机和横行电机分别设在车体上,所述直行电机与直行轮联动,所述横行电机与横行轮联动,所述编码器分别设在直行轮和横行轮处,所述定位传感器、顶升电机、PLC控制器和顶升位置传感器设在车体上,所述拨杆设在车体上且与车体滑动配合并由伸缩叉电机带动,所述拨杆与拨杆转动配合,所述伸缩叉位置传感器设在车体上,还包括超级电容和锂电池,所述超级电容与锂电池电连接,还包括充电触点,所述充电触点设在车体上且与超级电容电连接,所述直行电机、横行电机、顶升电机和伸缩叉电机依次通过控制器和PLC控制器电连接,所述定位传感器、顶升位置传感器、伸缩叉位置传感器、编码器和伸缩叉位置传感器和PLC控制器电连接,所述PLC控制器通过天线与WCS自动仓储系统信号连接。
作为优选,还包括拨杆传感器二,所述伸缩叉导轨传感器二设在车体侧壁。
发明解决其技术问题所采用的技术方案是:一种新型物流穿梭车机器人系统的控制方法,其特征在于:包括如下步骤:步骤一:WCS自动仓储系统根据实际仓储路径构建仓储模型;
步骤二:WCS自动仓储系统通过天线向PLC控制器发送移动指令,PLC控制器将移动的指定位置发向直行电机和编码器进行车体行走,并通过编码器向PLC控制器反馈车体的行走距离,定位传感器向PLC控制器反馈到达指定位置时的位置信号,PLC控制器将该位置信号通过天线反馈给WCS自动仓储系统;
步骤三:WCS自动仓储系统通过天线向PLC控制器发送取货通知,PLC 控制器向伸缩叉发送伸缩信息,伸缩叉从车体侧边移出,当伸缩叉传感器向PLC控制器反馈给伸缩叉到达指定位置式,PLC控制器向WCS自动仓储系统反馈达到伸缩位置信号;
步骤四:WCS自动仓储系统通过天线向PLC控制器发送勾取货物信息,此时PLC控制器发送信息给拨杆进而进行转动,从而使得货物被勾取,PLC控制器将该信息通过天线反馈给WCS自动仓储系统;
步骤五:WCS自动仓储系统通过天线向PLC控制器发送将货物移植车体上的信息,PLC控制器将该信息处理后发送给伸缩叉,伸缩叉收回并通过伸缩叉传感器接收到伸缩叉已收回完毕的信息,PLC将该位置信息再反馈给WCS自动仓储系统;
步骤六:WCS自动仓储系统通过天线向PLC控制器发送车体移动指定,PLC控制器将移动的指定位置发向直行电机和编码器进行车体行走,并通过编码器向PLC控制器反馈车体的行走距离,定位传感器向PLC控制器反馈到达指定位置时的位置信号,PLC控制器将该位置信号通过天线反馈给WCS自动仓储系统。
作为优选,若WCS自动仓储系统通过天线向PLC控制器发送移动指令需要横行时,WCS自动仓储系统通过天线向PLC控制器发送车体移动指定,PLC控制器将移动的指定位置发向顶升电机,顶升电机将横行轮进行顶升,当顶升位置传感器收到横行轮顶升到指定位置后,PLC控制器将该信号通过天线反馈给WCS自动仓储系统,WCS自动仓储系统再通过天线向PLC控制器发送移动信号,PLC控制器接受该移动信号后将移动的指定位置发向横行电机和编码器进行车体行走,并 通过编码器向PLC控制器反馈车体的行走距离,定位传感器向PLC控制器反馈到达指定位置时的位置信号,PLC控制器将该位置信号通过天线反馈给WCS自动仓储系统。
发明的有益效果是:本发明的新型物流穿梭车机器人系统及其控制方法一方面其结构设计布局简洁且紧凑,并且采用模块化设计整机的各个机构安装和拆卸以及维修也极其方便,同时可以实现直行、横行和精准定位的功能并且可以完成车体顶升、利用拨杆搬运物品且实现精确可控并且可以及时发现故障并报警。
附图说明
图1为本发明的新型物流穿梭车机器人系统的系统架构示意图。
图2为本发明的新型物流穿梭车的结构示意图。
图3为本发明的新型物流穿梭车的结构示意图。
图4为本发明的新型物流穿梭车的内部的结构示意图。
图5为本发明的新型物流穿梭车的内部的结构示意图。
图6为本发明的新型物流穿梭车的揽货状态的结构示意图。
图7为本发明的新型物流穿梭车的侧视图。
图8为本发明的新型物流穿梭车的俯视图。
附图说明:a、新型物流穿梭车机器人,b、WCS自动仓储系统,1、车体,2、直行电机,3、直行轮,4、横行电机,5、横行轮,6、定位传感器,7、顶升电机,8、编码器,9、PLC控制器,10、顶升位置传感器,11、伸缩叉导轨,12、拨杆,13、伸缩叉位置传感器,14、伸缩叉电机,15、天线,16、超级电容,17、锂电池,18、伸缩叉位 置传感器二,19、控制器。
具体实施方式
现在结合附图对发明作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明发明的基本结构,因此其仅显示与发明有关的构成。
如图所示,一种新型物流穿梭车机器人系统,包括新型物流穿梭车机器人a和WCS自动仓储系统b;所述新型物流穿梭车机器人a包括车体1、直行电机2、直行轮3、横行电机4、横行轮5、定位传感器6、顶升电机7、编码器8、PLC控制器9、顶升位置传感器10、拨杆11、拨杆12、伸缩叉位置传感器13、伸缩叉电机14和天线15,所述车体1底部分别设有直行轮3和横行轮5,所述直行轮3的水平高度低于横行轮5的水平高度,所述直行电机2和横行电机4分别设在车体1上,所述直行电机2与直行轮3联动,所述横行电机4与横行轮5联动,所述编码器8分别设在直行轮3和横行轮5处,所述定位传感器6、顶升电机7、PLC控制器9和顶升位置传感器10设在车体1上,所述拨杆11设在车体1上且与车体1滑动配合并由伸缩叉电机14带动,所述拨杆12与拨杆11转动配合,所述伸缩叉位置传感器13设在车体1上,还包括超级电容16和锂电池17,所述超级电容16与锂电池17电连接,还包括充电触点17,所述充电触点17设在车体1上且与超级电容16电连接,所述直行电机2、横行电机4、顶升电机11和伸缩叉电机14依次通过控制器19和PLC控制器9电连接,所述定位传感器6、顶升位置传感器10、伸缩叉位置传感器13、编码器8和伸缩叉位置传感器13和PLC控制器9电连接,所 述PLC控制器9通过天线15与WCS自动仓储系统b信号连接。
还包括拨杆传感器二18,所述伸缩叉导轨传感器二18设在车体1侧壁。
一种新型物流穿梭车机器人系统的控制方法,包括如下步骤:步骤一:WCS自动仓储系统b根据实际仓储路径构建仓储模型;
步骤二:WCS自动仓储系统b通过天线15向PLC控制器9发送移动指令,PLC控制器9将移动的指定位置发向直行电机2和编码器8进行车体1行走,并通过编码器8向PLC控制器9反馈车体1的行走距离,定位传感器6向PLC控制器9反馈到达指定位置时的位置信号,PLC控制器将该位置信号通过天线反馈给WCS自动仓储系统b;
步骤三:WCS自动仓储系统b通过天线向PLC控制器发送取货通知,PLC控制器向伸缩叉发送伸缩信息,伸缩叉从车体侧边移出,当伸缩叉传感器向PLC控制器反馈给伸缩叉到达指定位置式,PLC控制器向WCS自动仓储系统b反馈达到伸缩位置信号;
步骤四:WCS自动仓储系统b通过天线向PLC控制器发送勾取货物信息,此时PLC控制器发送信息给拨杆进而进行转动,从而使得货物被勾取,PLC控制器将该信息通过天线反馈给WCS自动仓储系统b;
步骤五:WCS自动仓储系统b通过天线向PLC控制器发送将货物移植车体上的信息,PLC控制器将该信息处理后发送给伸缩叉,伸缩叉收回并通过伸缩叉传感器接收到伸缩叉已收回完毕的信息,PLC将该位置信息再反馈给WCS自动仓储系统b;
步骤六:WCS自动仓储系统b通过天线向PLC控制器发送车体移动指 定,PLC控制器9将移动的指定位置发向直行电机2和编码器8进行车体1行走,并通过编码器8向PLC控制器9反馈车体1的行走距离,定位传感器6向PLC控制器9反馈到达指定位置时的位置信号,PLC控制器将该位置信号通过天线反馈给WCS自动仓储系统b。
若WCS自动仓储系统b通过天线15向PLC控制器9发送移动指令需要横行时,WCS自动仓储系统b通过天线向PLC控制器发送车体移动指定,PLC控制器9将移动的指定位置发向顶升电机,顶升电机将横行轮进行顶升,当顶升位置传感器收到横行轮顶升到指定位置后,PLC控制器9将该信号通过天线反馈给WCS自动仓储系统b,WCS自动仓储系统b再通过天线向PLC控制器发送移动信号,PLC控制器接受该移动信号后将移动的指定位置发向横行电机4和编码器8进行车体1行走,并通过编码器8向PLC控制器9反馈车体1的行走距离,定位传感器6向PLC控制器9反馈到达指定位置时的位置信号,PLC控制器将该位置信号通过天线反馈给WCS自动仓储系统b。
以上述依据发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改,本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (4)

  1. 一种新型物流穿梭车机器人系统,其特征在于:包括新型物流穿梭车机器人(a)和WCS自动仓储系统(b);所述新型物流穿梭车机器人(a)包括车体(1)、直行电机(2)、直行轮(3)、横行电机(4)、横行轮(5)、定位传感器(6)、顶升电机(7)、编码器(8)、PLC控制器(9)、顶升位置传感器(10)、拨杆(11)、拨杆(12)、伸缩叉位置传感器(13)、伸缩叉电机(14)和天线(15),所述车体(1)底部分别设有直行轮(3)和横行轮(5),所述直行轮(3)的水平高度低于横行轮(5)的水平高度,所述直行电机(2)和横行电机(4)分别设在车体(1)上,所述直行电机(2)与直行轮(3)联动,所述横行电机(4)与横行轮(5)联动,所述编码器(8)分别设在直行轮(3)和横行轮(5)处,所述定位传感器(6)、顶升电机(7)、PLC控制器(9)和顶升位置传感器(10)设在车体(1)上,所述拨杆(11)设在车体(1)上且与车体(1)滑动配合并由伸缩叉电机(14)带动,所述拨杆(12)与拨杆(11)转动配合,所述伸缩叉位置传感器(13)设在车体(1)上,还包括超级电容(16)和锂电池(17),所述超级电容(16)与锂电池(17)电连接,还包括充电触点(17),所述充电触点(17)设在车体(1)上且与超级电容(16)电连接,所述直行电机(2)、横行电机(4)、顶升电机(11)和伸缩叉电机(14)依次通过控制器(19)和PLC控制器(9)电连接,所述定位传感器(6)、顶升位置传感器(10)、伸缩叉位置传感器(13)、编码器(8)和伸缩叉位置传感器(13)和PLC控制器(9)电连接,所述PLC控制器(9)通过天线(15)进行无线局域 网传输与WCS自动仓储系统(b)信号连接。
  2. 根据权利要求1所述的新型物流穿梭车机器人系统,其特征在于:还包括拨杆传感器二(18),所述伸缩叉导轨传感器二(18)设在车体(1)侧壁。
  3. 一种新型物流穿梭车机器人系统的控制方法,其特征在于:包括如下步骤:步骤一:WCS自动仓储系统(b)根据实际仓储路径构建仓储模型;
    步骤二:WCS自动仓储系统(b)通过天线(15)进行无线局域网传输向PLC控制器(9)发送移动指令,PLC控制器(9)将移动的指定位置发向直行电机(2)和编码器(8)进行车体(1)行走,并通过编码器(8)向PLC控制器(9)反馈车体(1)的行走距离,定位传感器(6)向PLC控制器(9)反馈到达指定位置时的位置信号,PLC控制器将该位置信号通过天线反馈给WCS自动仓储系统(b);
    步骤三:WCS自动仓储系统(b)通过天线向PLC控制器发送取货通知,PLC控制器向伸缩叉发送伸缩信息,伸缩叉从车体侧边移出,当伸缩叉传感器向PLC控制器反馈给伸缩叉到达指定位置式,PLC控制器向WCS自动仓储系统(b)反馈达到伸缩位置信号;
    步骤四:WCS自动仓储系统(b)通过天线向PLC控制器发送勾取货物信息,此时PLC控制器发送信息给拨杆进而进行转动,从而使得货物被勾取,PLC控制器将该信息通过天线反馈给WCS自动仓储系统(b);
    步骤五:WCS自动仓储系统(b)通过天线向PLC控制器发送将货物 移植车体上的信息,PLC控制器将该信息处理后发送给伸缩叉,伸缩叉收回并通过伸缩叉传感器接收到伸缩叉已收回完毕的信息,PLC将该位置信息再反馈给WCS自动仓储系统(b);
    步骤六:WCS自动仓储系统(b)通过天线向PLC控制器发送车体移动指定,PLC控制器(9)将移动的指定位置发向直行电机(2)和编码器(8)进行车体(1)行走,并通过编码器(8)向PLC控制器(9)反馈车体(1)的行走距离,定位传感器(6)向PLC控制器(9)反馈到达指定位置时的位置信号,PLC控制器将该位置信号通过天线反馈给WCS自动仓储系统(b)。
  4. 根据权利要求3所述的新型物流穿梭车机器人系统的控制方法,其特征在于:若WCS自动仓储系统(b)通过天线(15)进行无线局域网传输向PLC控制器(9)发送移动指令需要横行时,WCS自动仓储系统(b)通过天线向PLC控制器发送车体移动指定,PLC控制器(9)将移动的指定位置发向顶升电机,顶升电机将横行轮进行顶升,当顶升位置传感器收到横行轮顶升到指定位置后,PLC控制器(9)将该信号通过天线反馈给WCS自动仓储系统(b),WCS自动仓储系统(b)再通过天线向PLC控制器发送移动信号,PLC控制器接受该移动信号后将移动的指定位置发向横行电机(4)和编码器(8)进行车体(1)行走,并通过编码器(8)向PLC控制器(9)反馈车体(1)的行走距离,定位传感器(6)向PLC控制器(9)反馈到达指定位置时的位置信号,PLC控制器将该位置信号通过天线反馈给WCS自动仓储系统(b)。
PCT/CN2018/076403 2017-11-30 2018-02-12 一种新型物流穿梭车机器人系统及其控制方法 WO2019104885A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/316,628 US11370615B2 (en) 2017-11-30 2018-02-12 Robotic shuttle system for logistics and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711232456.0 2017-11-30
CN201711232456.0A CN107826582A (zh) 2017-11-30 2017-11-30 一种新型物流穿梭车机器人系统及其控制方法

Publications (1)

Publication Number Publication Date
WO2019104885A1 true WO2019104885A1 (zh) 2019-06-06

Family

ID=61646856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076403 WO2019104885A1 (zh) 2017-11-30 2018-02-12 一种新型物流穿梭车机器人系统及其控制方法

Country Status (3)

Country Link
US (1) US11370615B2 (zh)
CN (1) CN107826582A (zh)
WO (1) WO2019104885A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113759819A (zh) * 2021-09-15 2021-12-07 合肥工业大学 一种用于物流搬送的升降机构控制系统及流程
WO2022052810A1 (zh) * 2020-09-11 2022-03-17 灵动科技(北京)有限公司 用于引导机器人在仓库中运输货物的方法和装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10921819B2 (en) * 2018-08-28 2021-02-16 Asi Technologies, Inc. Automated guided vehicle system and automated guided vehicle for use therein
CN110371591A (zh) * 2018-11-22 2019-10-25 天津京东深拓机器人科技有限公司 穿梭车和物流系统
CN109733262A (zh) * 2019-01-15 2019-05-10 张瑞华 一种智能搬运机器人
CN110304466B (zh) * 2019-06-18 2020-10-27 徐州工程学院 一种物流输送装卸用搬运装置
CN110255042A (zh) * 2019-07-22 2019-09-20 浙江凯乐士科技有限公司 一种货物取放机构、货物运送装置及系统
CN110255041A (zh) * 2019-07-22 2019-09-20 无锡凯乐士科技有限公司 一种穿梭车控制装置、方法及穿梭车
CN110980074A (zh) * 2019-11-14 2020-04-10 安徽驿星智能物流装备制造有限公司 一种低功耗自换向升降小车
IT202000005632A1 (it) * 2020-03-17 2021-09-17 Automha S P A Dispositivo di prelievo e/o deposito di articoli per magazzini automatici.
CN111392213B (zh) * 2020-03-20 2021-06-08 深圳市易通安达国际物流有限公司 一种具有货物加固结构的智能物流运输机器人
CN112093355B (zh) * 2020-09-18 2022-01-28 湖北省机电研究设计院股份公司 一种存取机器人
CN112230655B (zh) * 2020-09-30 2023-02-14 江苏智库智能科技有限公司 一种四向穿梭车的行走控制系统及方法
CN113277257A (zh) * 2021-06-23 2021-08-20 无锡职业技术学院 一种地面托盘式自主移动机器人amr及其工作方法
CN113955419A (zh) * 2021-11-09 2022-01-21 中国兵器装备集团自动化研究所有限公司 一种适用于危险环境的有轨穿梭小车
CN114476475A (zh) * 2022-03-24 2022-05-13 普罗格智芯科技(湖北)有限公司 一种料箱式四向穿梭车控制方法及系统
CN114987998B (zh) * 2022-06-13 2023-04-25 泸州职业技术学院 一种基于智慧物流的拼接式物流存储设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103171851A (zh) * 2013-04-03 2013-06-26 上海速锐信息技术有限公司 一种具有爬坡功能的智能四向穿梭车
CN104071542A (zh) * 2014-07-09 2014-10-01 沈鹭 一种自走式穿梭车
WO2015131924A1 (de) * 2014-03-03 2015-09-11 Ssi Schaefer Ag Kanalfahrzeug, regallager mit einem kanalfahrzeug sowie verfahren zur steuerung eines kanalfahrzeugs
CN105631616A (zh) * 2014-10-25 2016-06-01 深圳市科陆电子科技股份有限公司 仓储物流的智能定位系统和定位方法
CN105858030A (zh) * 2016-05-20 2016-08-17 九州通医药集团物流有限公司 一种带夹抱机构的可换向式穿梭车

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050135907A1 (en) * 2003-11-24 2005-06-23 Romano James P. Medical lift and transport system, method and apparatus
US8810198B2 (en) * 2011-09-02 2014-08-19 Tesla Motors, Inc. Multiport vehicle DC charging system with variable power distribution according to power distribution rules
US8914176B2 (en) * 2012-01-23 2014-12-16 Nanotek Instruments, Inc. Surface-mediated cell-powered vehicles and methods of operating same
US9428334B2 (en) * 2013-05-17 2016-08-30 The Heil Co. Automatic control of a refuse front end loader

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103171851A (zh) * 2013-04-03 2013-06-26 上海速锐信息技术有限公司 一种具有爬坡功能的智能四向穿梭车
WO2015131924A1 (de) * 2014-03-03 2015-09-11 Ssi Schaefer Ag Kanalfahrzeug, regallager mit einem kanalfahrzeug sowie verfahren zur steuerung eines kanalfahrzeugs
CN104071542A (zh) * 2014-07-09 2014-10-01 沈鹭 一种自走式穿梭车
CN105631616A (zh) * 2014-10-25 2016-06-01 深圳市科陆电子科技股份有限公司 仓储物流的智能定位系统和定位方法
CN105858030A (zh) * 2016-05-20 2016-08-17 九州通医药集团物流有限公司 一种带夹抱机构的可换向式穿梭车

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022052810A1 (zh) * 2020-09-11 2022-03-17 灵动科技(北京)有限公司 用于引导机器人在仓库中运输货物的方法和装置
CN113759819A (zh) * 2021-09-15 2021-12-07 合肥工业大学 一种用于物流搬送的升降机构控制系统及流程
CN113759819B (zh) * 2021-09-15 2023-09-01 合肥工业大学 一种用于物流搬送的升降机构控制系统及流程

Also Published As

Publication number Publication date
US20200216266A1 (en) 2020-07-09
US11370615B2 (en) 2022-06-28
CN107826582A (zh) 2018-03-23

Similar Documents

Publication Publication Date Title
WO2019104885A1 (zh) 一种新型物流穿梭车机器人系统及其控制方法
CN111320107B (zh) 一种自动装卸运输一体化搬运装置、系统及方法
CN111620024B (zh) 一种搬运机器人、取货箱方法及放货箱方法
WO2019104886A1 (zh) 一种新型物流穿梭车
JP6748919B2 (ja) 水平搬送台車
CN209480472U (zh) 一种搬运机器人及仓储物流系统
CN112644328A (zh) 一种agv式电动车换电系统
JP3233367U (ja) 自動トレー搬送装置
CN216512675U (zh) 一种agv叉车
CN112875119A (zh) 一种自带储存位的堆垛机
CN204237239U (zh) 纸盘上料机械手
CN111392447A (zh) 一种火车棚车袋装货物自动装车码垛装置
WO2019154433A2 (zh) 货物搬运机器人及其控制方法
CN209973398U (zh) 一种新型物流穿梭车机器人系统
WO2018221409A1 (ja) ドライブユニットおよび水平搬送台車
CN113460846A (zh) 一种塔吊式物流快递运输机器人及其控制方法
CN207107574U (zh) 一种可跨货架取货的立体仓库
CN109292684B (zh) 三向前移式属具叉车的控制方法以及控制装置
CN110683485A (zh) 放射性废物货包门式堆高机
CN111268379B (zh) 一种全向多载智能搬运小车
CN213201592U (zh) 一种火车棚车袋装货物自动装车码垛装置
CN206447528U (zh) 一种用于转运车的升降装置及转运车
JP2018165197A (ja) 水平搬送台車
CN209554078U (zh) 一种转运车的定位机构
CN206735140U (zh) 一种智能化立体仓库堆垛机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18884238

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18884238

Country of ref document: EP

Kind code of ref document: A1