WO2019103556A1 - 반도체 소자 - Google Patents
반도체 소자 Download PDFInfo
- Publication number
- WO2019103556A1 WO2019103556A1 PCT/KR2018/014636 KR2018014636W WO2019103556A1 WO 2019103556 A1 WO2019103556 A1 WO 2019103556A1 KR 2018014636 W KR2018014636 W KR 2018014636W WO 2019103556 A1 WO2019103556 A1 WO 2019103556A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- semiconductor layer
- type semiconductor
- layer
- conductivity type
- dopant
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 400
- 239000002019 doping agent Substances 0.000 claims abstract description 101
- 229910052782 aluminium Inorganic materials 0.000 claims description 141
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 132
- 239000000203 mixture Substances 0.000 claims description 120
- 238000000034 method Methods 0.000 claims description 23
- 230000007423 decrease Effects 0.000 claims description 11
- 239000000758 substrate Substances 0.000 claims description 11
- 238000013459 approach Methods 0.000 claims description 2
- 230000000149 penetrating effect Effects 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 393
- 239000000463 material Substances 0.000 description 32
- 230000000903 blocking effect Effects 0.000 description 26
- 150000002500 ions Chemical group 0.000 description 21
- 238000002347 injection Methods 0.000 description 16
- 239000007924 injection Substances 0.000 description 16
- 230000008569 process Effects 0.000 description 13
- 229910002704 AlGaN Inorganic materials 0.000 description 12
- 230000003287 optical effect Effects 0.000 description 12
- 238000000605 extraction Methods 0.000 description 11
- 230000001954 sterilising effect Effects 0.000 description 10
- -1 AlInN Inorganic materials 0.000 description 9
- 239000006185 dispersion Substances 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 239000010931 gold Substances 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 229910052737 gold Inorganic materials 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 230000004888 barrier function Effects 0.000 description 5
- 239000000969 carrier Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 229910052733 gallium Inorganic materials 0.000 description 5
- 230000031700 light absorption Effects 0.000 description 5
- 239000011777 magnesium Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 238000004891 communication Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 238000004659 sterilization and disinfection Methods 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- VRIVJOXICYMTAG-IYEMJOQQSA-L iron(ii) gluconate Chemical compound [Fe+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O VRIVJOXICYMTAG-IYEMJOQQSA-L 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910052711 selenium Inorganic materials 0.000 description 3
- 239000011669 selenium Substances 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910019897 RuOx Inorganic materials 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- JAONJTDQXUSBGG-UHFFFAOYSA-N dialuminum;dizinc;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Al+3].[Zn+2].[Zn+2] JAONJTDQXUSBGG-UHFFFAOYSA-N 0.000 description 2
- 238000005401 electroluminescence Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 230000003446 memory effect Effects 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 2
- SKRWFPLZQAAQSU-UHFFFAOYSA-N stibanylidynetin;hydrate Chemical compound O.[Sn].[Sb] SKRWFPLZQAAQSU-UHFFFAOYSA-N 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 238000005011 time of flight secondary ion mass spectroscopy Methods 0.000 description 2
- 238000002042 time-of-flight secondary ion mass spectrometry Methods 0.000 description 2
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910020286 SiOxNy Inorganic materials 0.000 description 1
- 229910020776 SixNy Inorganic materials 0.000 description 1
- 229910020781 SixOy Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- DZLPZFLXRVRDAE-UHFFFAOYSA-N [O--].[O--].[O--].[O--].[Al+3].[Zn++].[In+3] Chemical compound [O--].[O--].[O--].[O--].[Al+3].[Zn++].[In+3] DZLPZFLXRVRDAE-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- YZZNJYQZJKSEER-UHFFFAOYSA-N gallium tin Chemical compound [Ga].[Sn] YZZNJYQZJKSEER-UHFFFAOYSA-N 0.000 description 1
- 230000005251 gamma ray Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- HRHKULZDDYWVBE-UHFFFAOYSA-N indium;oxozinc;tin Chemical compound [In].[Sn].[Zn]=O HRHKULZDDYWVBE-UHFFFAOYSA-N 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000001819 mass spectrum Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N nickel(II) oxide Inorganic materials [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 229910001923 silver oxide Inorganic materials 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/025—Physical imperfections, e.g. particular concentration or distribution of impurities
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/04—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/20—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
- H01L33/22—Roughened surfaces, e.g. at the interface between epitaxial layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/26—Materials of the light emitting region
- H01L33/30—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
- H01L33/32—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/36—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/36—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
- H01L33/38—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
- H01L33/382—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/36—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
- H01L33/40—Materials therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/44—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
- H01L33/46—Reflective coating, e.g. dielectric Bragg reflector
Definitions
- Embodiments relate to semiconductor devices.
- Semiconductor devices including compounds such as GaN and AlGaN have many merits such as wide and easy bandgap energy, and can be used variously as light emitting devices, light receiving devices, and various diodes.
- a light emitting device such as a light emitting diode or a laser diode using a semiconductor material of Group 3-5 or 2-6 group semiconductors can be applied to various devices such as a red, Blue, and ultraviolet rays.
- fluorescent materials or combining colors it is possible to realize a white light beam with high efficiency.
- conventional light sources such as fluorescent lamps and incandescent lamps, low power consumption, , Safety, and environmental friendliness.
- a light-receiving element such as a photodetector or a solar cell
- a semiconductor material of Group 3-5 or Group 2-6 compound semiconductor development of a device material absorbs light of various wavelength regions to generate a photocurrent , It is possible to use light in various wavelength ranges from the gamma ray to the radio wave region. It also has advantages of fast response speed, safety, environmental friendliness and easy control of device materials, so it can be easily used for power control or microwave circuit or communication module.
- the semiconductor device can be replaced with a transmission module of an optical communication means, a light emitting diode backlight replacing a cold cathode fluorescent lamp (CCFL) constituting a backlight of an LCD (Liquid Crystal Display) display device, White light emitting diodes (LEDs), automotive headlights, traffic lights, and gas and fire sensors.
- CCFL cold cathode fluorescent lamp
- LEDs White light emitting diodes
- semiconductor devices can be applied to high frequency application circuits, other power control devices, and communication modules.
- a light emitting device that emits light in the ultraviolet wavelength range can be used for curing, medical use, and sterilization by curing or sterilizing action.
- the embodiment provides a semiconductor device with improved ohmic characteristics.
- a vertical ultraviolet light emitting device is provided.
- a semiconductor device includes a first conductivity type semiconductor layer, a second conductivity type semiconductor layer, and an active layer disposed between the first conductivity type semiconductor layer and the second conductivity type semiconductor layer Semiconductor structure; A first electrode electrically connected to the first conductive semiconductor layer; And a second electrode electrically connected to the second conductive type semiconductor layer, wherein the semiconductor structure includes a third conductive type semiconductor layer disposed between the second conductive type semiconductor layer and the second electrode, wherein the first conductive semiconductor layer includes a first dopant, the second conductive semiconductor layer includes a second dopant, and the third conductive semiconductor layer includes the first dopant and the second dopant, , And the concentration ratio of the first dopant and the second dopant doped to the third conductive type semiconductor layer is 0.01: 1.0 to 0.8: 1.0.
- the ohmic characteristics can be improved and the operating voltage can be lowered.
- light absorption can be suppressed in the semiconductor device, and the light output can be improved.
- FIG. 1 is a conceptual view of a semiconductor structure according to a first embodiment of the present invention
- 2A is a graph showing an aluminum composition ratio of a semiconductor structure according to the first embodiment of the present invention
- FIG. 2B is a schematic diagram of the semiconductor structure according to the first embodiment of the present invention.
- 2C is a view showing the ionic strength of aluminum
- FIG. 3 is a graph showing an aluminum composition ratio of a semiconductor structure according to a second embodiment of the present invention.
- FIG. 5 is a graph showing an aluminum composition ratio of a semiconductor structure according to a fourth embodiment of the present invention.
- FIG. 6 is a conceptual view of a semiconductor device according to an embodiment of the present invention.
- FIGS. 7A and 7B are views for explaining a configuration in which light output is improved in accordance with the number of recesses
- FIG. 8 is an enlarged view of a portion A in Fig. 6,
- FIG. 9 is a conceptual diagram of a semiconductor device according to another embodiment of the present invention.
- Fig. 10 is a plan view of Fig. 9,
- FIG. 11 is a conceptual view of a semiconductor device package according to an embodiment of the present invention.
- FIG. 12 is a plan view of a semiconductor device package according to an embodiment of the present invention.
- the upper (upper) or lower (lower) or under are all such that two elements are in direct contact with each other or one or more other elements are indirectly formed between the two elements. Also, when expressed as “on or under”, it may include not only an upward direction but also a downward direction with respect to one element.
- FIG. 2A is a graph showing an aluminum composition ratio of a semiconductor structure according to an embodiment of the present invention
- FIG. 2B is a graph showing the aluminum composition ratio of a semiconductor according to an embodiment of the present invention. It is the sims data of the structure.
- a semiconductor device includes a first conductive semiconductor layer 124, a second conductive semiconductor layer 127, and a first conductive semiconductor layer 124, Type semiconductor layer 127.
- the semiconductor structure 120 includes an active layer 126,
- the semiconductor structure 120 can output light in the ultraviolet wavelength range.
- the semiconductor structure 120 can output light UV-A at the near ultraviolet wavelength band, output light UV-B at the far ultraviolet wavelength band, and light UV-C at the deep ultraviolet wavelength band Can be output.
- the wavelength range may be determined by the aluminum composition ratio of the semiconductor structure 120.
- the near-ultraviolet light may have a wavelength in the range of 320 to 420 nm
- the far ultraviolet light may have a wavelength in the range of 280 nm to 320 nm
- the light of the wavelength band may have a wavelength in the range of 100 nm to 280 nm.
- the respective semiconductor layers of the semiconductor structure 120 In x1 Al y1 Ga 1 -x1- containing aluminum y1 N (0 ⁇ x1 ⁇ 1, 0 ⁇ y1 1, 0? X1 + y1? 1).
- the composition of Al can be represented by the ratio of the total atomic weight including the In atomic weight, the Ga atomic weight, and the Al atomic weight to the Al atomic weight.
- the Al composition is 40%, the composition of Ga may be 60%, and the composition ratio may be expressed by Al 40 Ga 60 N.
- the meaning of the composition being low or high can be understood as a difference (% point) of the composition% of each semiconductor layer.
- the aluminum composition of the first semiconductor layer is 30% and the aluminum composition of the second semiconductor layer is 60%, the aluminum composition of the second semiconductor layer is 30% higher than the aluminum composition of the first semiconductor layer Can be expressed.
- the first conductive semiconductor layer 124 may be formed of a compound semiconductor such as Group III-V or Group II-VI, and the first dopant may be doped.
- the first conductive semiconductor layer 124 may be a semiconductor material having a composition formula of In x1 Al y1 Ga 1 -x1 -y1 N (0? X1? 1 , 0 ⁇ y1? 1 , 0? X1 + y1? For example, AlGaN, AlN, InAlGaN, and the like.
- the first dopant may be an n-type dopant such as Si, Ge, Sn, Se, or Te.
- the first conductivity type semiconductor layer 124 doped with the first dopant may be an n-type semiconductor layer.
- the first conductivity type semiconductor layer 124 includes the first conductivity type semiconductor layer 124a, the first conductivity type semiconductor layer 124b, the first conductivity type semiconductor layer 124a, And an intermediate layer 124c disposed between the two-conductivity-type semiconductor layers 124b.
- the first conductive semiconductor layer 124b may be disposed closer to the active layer 126 than the first conductive semiconductor layer 124a.
- the aluminum composition of the first-second conductivity-type semiconductor layer 124b may be the same as or lower than that of the first-conductivity-type semiconductor layer 124a.
- the aluminum composition of the first-second conductivity-type semiconductor layer 124b is 40% to 70%
- the aluminum composition of layer 124a may be from 50% to 80%. It is possible to improve the light extraction efficiency by lowering the absorption rate of light (UV-C) emitted from the active layer 126 at the deep ultraviolet wavelength band when the aluminum composition of the first conductivity type semiconductor layer 124b is 40% %, Current injection characteristics into the active layer 126 and current diffusion characteristics in the first-conductivity-type semiconductor layer 124b can be ensured.
- the absorption rate of light (UV-C) emitted from the deep ultraviolet wavelength band emitted from the active layer 126 may be lowered, , 80% or less, current injection characteristics into the active layer 126 and current diffusion characteristics in the first-conductivity-type semiconductor layer 124a can be ensured.
- the aluminum composition of the first-conductivity-type semiconductor layer 124a may be higher than the aluminum composition of the first-conductivity-type semiconductor layer 124b. In this case, it is more advantageous to extract light from the active layer 126 to the outside of the semiconductor structure 120 due to a difference in refractive index, so that the light extraction efficiency of the semiconductor structure 120 can be improved.
- the thickness of the first conductivity type semiconductor layer 124a may be smaller than that of the first conductivity type semiconductor layer 124a.
- the first conductivity type semiconductor layer 124a may be 130% or more of the thickness of the first conductivity type semiconductor layer 124b. According to such a structure, since the intermediate layer 124c is disposed after the thickness of the first-conductivity-type semiconductor layer 124a having a high aluminum composition is sufficiently secured, the crystallinity of the entire semiconductor structure 120 can be improved.
- the aluminum composition of the intermediate layer 124c may be lower than the aluminum composition of the first conductivity type semiconductor layer 124 and the second conductivity type semiconductor layer 124.
- the intermediate layer 124c may serve to absorb the laser beam irradiated to the semiconductor structure 120 during the LLO (Laser Lift-off) process for removing the growth substrate, thereby preventing the active layer 126 from being damaged. Therefore, the semiconductor device according to the embodiment can prevent the active layer 126 from being damaged during the LLO (Laser Lift-off) process, thereby improving the optical characteristics and the electrical characteristics.
- the thickness of the intermediate layer 124c and the aluminum composition can be appropriately adjusted to absorb the laser irradiated to the semiconductor structure 120 during the LLO process. Therefore, the aluminum composition of the intermediate layer 124c can correspond to the laser wavelength used in the LLO process, and the aluminum composition of the intermediate layer 124c is 30% to 60% when the wavelength of the LLO laser is 200 nm to 300 nm, To 10 nm.
- the aluminum composition of the intermediate layer 124c may be increased to 50% to 70%. If the aluminum composition of the intermediate layer 124c is higher than the aluminum composition of the well layer 126a, the intermediate layer 124c may not absorb light emitted from the active layer 126. [ Therefore, the light extraction efficiency can be improved.
- a control layer 124d may be disposed between the first conductivity type semiconductor layer 124b and the active layer 126.
- the control layer 124d may lower the first carrier energy injected from the first conductivity type semiconductor layer 124 toward the active layer to balance the concentration or the density of the first and second carriers recombining in the active layer. Therefore, the light emitting efficiency can be improved and the optical output characteristic of the semiconductor device can be improved.
- the aluminum composition of the control layer 124d may be higher than that of the first conductivity type semiconductor layer 124, the active layer 126, and the second conductivity type semiconductor layer 127.
- the active layer 126 may be disposed between the first conductive semiconductor layer 124 and the second conductive semiconductor layer 127.
- the active layer 126 is a layer where electrons (or holes) injected through the first conductive type semiconductor layer 124 and holes (or electrons) injected through the second conductive type semiconductor layer 127 meet.
- the active layer 126 transitions to a low energy level as electrons and holes recombine, and can generate light having ultraviolet wavelengths.
- the active layer 126 may have any one of a single well structure, a multiple well structure, a single quantum well structure, a multi quantum well (MQW) structure, a quantum dot structure, Is not limited thereto.
- a single well structure a multiple well structure
- a single quantum well structure a single quantum well structure
- a multi quantum well (MQW) structure a quantum dot structure
- the active layer 126 may include a plurality of well layers 126a and a barrier layer 126b.
- the well layer 126a and the barrier layer 126b may have a composition formula of In x 2 Al y 2 Ga 1 -x 2 -y 2 N (0? X 2 ? 1 , 0 ⁇ y 2 ? 1 , 0? X 2 + y 2? 1) .
- the composition of the aluminum layer in the well layer 126a may vary depending on the wavelength of light emitted.
- the second conductive semiconductor layer 127 may be disposed on the active layer 126 and may be formed of a compound semiconductor such as a group III-V or II-VI group. In the second conductive semiconductor layer 127, The dopant can be doped.
- a second conductive semiconductor layer 127 is a semiconductor material having a compositional formula of In x5 Al y2 Ga 1 -x5- y2 N (0 ⁇ x5 ⁇ 1, 0 ⁇ y2 ⁇ 1, 0 ⁇ x5 + y2 ⁇ 1) or AlGaN , AlInN, AlN, AlGaAs, AlGaInP.
- the second conductivity type semiconductor layer 127 doped with the second dopant may be a p-type semiconductor layer.
- the electron blocking layer 129 may be disposed between the active layer 126 and the second conductive semiconductor layer 127.
- the electron blocking layer 129 blocks the flow of the carriers supplied from the first conductivity type semiconductor layer 124 to the second conductivity type semiconductor layer 127 and causes electrons and holes to recombine within the active layer 126 The probability can be increased.
- the energy band gap of the electron blocking layer 129 may be greater than the energy band gap of the active layer 126 and / or the second conductivity type semiconductor layer 127.
- the electron blocking layer 129 may be defined as a part of the second conductive type semiconductor layer 127 because the second dopant is doped.
- the electron blocking layer 129 is a semiconductor material having a composition formula of In x 1 Al y 1 Ga 1 -x 1 -y 1 N (0? X 1 ? 1 , 0? Y 1 ? 1 , 0? X 1 + y 1 ? 1 ) , AlN, InAlGaN, and the like, but is not limited thereto.
- the first conductivity type semiconductor layer 124, the active layer 126, the electron blocking layer 129, the second conductivity type semiconductor layer 127, and the third conductivity type semiconductor layer 128 are formed of aluminum . ≪ / RTI >
- the first conductivity type semiconductor layer 124, the active layer 126, the electron blocking layer 129, the second conductivity type semiconductor layer 127, and the third conductivity type semiconductor layer 128 are formed of AlGaN, InAlGaN, or AlN Composition.
- the electron blocking layer 129 may have an aluminum composition of 50% to 100%. If the aluminum composition of the electron blocking layer 129 is less than 50%, it may have a sufficient energy barrier to block the movement of the carrier and may not absorb light emitted from the active layer 126.
- the electron blocking layer 129 may include a first blocking section 129a and a second blocking section 129b.
- the first blocking section 129a may have a higher aluminum composition in a direction from the first conductivity type semiconductor layer 124 toward the second conductivity type semiconductor layer 127.
- the aluminum composition of the first blocking section 129a may be 80% to 100%. Therefore, the first blocking section 129a of the electron blocking layer 129 may be the portion having the highest Al composition in the semiconductor structure 120.
- the first blocking period 129a may be AlGaN or AlN. Or the first blocking section 129a may be a superlattice layer in which AlGaN and AlN are alternately arranged.
- the thickness of the first blocking section 129a may be about 0.1 nm to 4 nm. In order to effectively block the movement of carriers (e.g. electrons), the thickness of the first blocking section 129a can be set to 0.1 nm or more. The thickness of the first blocking section 129a may be 4 nm or less in order to secure the injection efficiency of carriers (e.g., holes) in the active layer 126 from the second conductivity type semiconductor layer 127.
- carriers e.g. electrons
- the third blocking section 129c disposed between the first blocking section 129a and the second blocking section 129b may include an undoped section that does not include a dopant. Therefore, the third blocking section 129c can prevent the dopant from diffusing from the second conductivity type semiconductor layer 127 to the active layer 126.
- the second conductivity type semiconductor layer 127 may include a second conductivity type semiconductor layer 127a and a second conductivity type semiconductor layer 127b.
- the thickness of the second-first conductivity type semiconductor layer 127a may be larger than 10 nm and smaller than 50 nm. Illustratively, the thickness of the second-first conductivity type semiconductor layer 127a may be 25 nm. If the thickness of the second-first conductivity type semiconductor layer 127a is larger than 10 nm, the resistance in the horizontal direction may decrease and the current diffusion efficiency may be improved. In addition, when the thickness of the second-1 conduction type semiconductor layer 127a is smaller than 50 nm, the path through which the light incident on the second-1 conduction type semiconductor layer 127a in the active layer 126 is absorbed can be shortened , The light extraction efficiency of the semiconductor device can be improved.
- the aluminum composition of the second-first conductivity type semiconductor layer 127a may be higher than that of the well layer 126a.
- the aluminum composition of the well layer 126a for producing deep ultraviolet or far ultraviolet light may be about 20% to 60%. Therefore, the aluminum composition of the second-first conductivity type semiconductor layer 127a may be greater than 40% and less than 80%.
- the aluminum composition of the second-first conductivity type semiconductor layer 127a may be 40%.
- the probability that the second-first conductivity type semiconductor layer 127a absorbs ultraviolet light is high, The extraction efficiency may be lowered.
- the second-conductivity-type semiconductor layer 127b may have a relatively uniform aluminum composition to improve hole injection efficiency or improve crystallinity of the semiconductor structure.
- the thickness of the second-second conductivity type semiconductor layer 127b may be 20 nm to 60 nm.
- the aluminum composition of the second-conductivity-type semiconductor layer 127b may be 40% to 80%.
- the third conductive semiconductor layer 128 may be disposed on the second conductive semiconductor layer 127.
- the third conductive semiconductor layer 128 may be a surface region of the semiconductor structure 120 in contact with the second electrode. Current can be injected into the third conductive type semiconductor layer 128 through the second electrode and the current injection efficiency can be controlled by the resistance between the third conductive type semiconductor layer 128 and the second electrode.
- the resistance between the third conductive type semiconductor layer 128 and the second electrode may be one or more of an ohmic contact, a Schottky contact, or a tunnel effect, but the present invention is not limited thereto.
- the third conductive semiconductor layer 128 may be formed of a compound semiconductor such as a III-V group or a II-VI group, and the first dopant may be doped.
- the third conductivity type semiconductor layer 128 may be a semiconductor material having a composition formula of In x1 Al y1 Ga 1 -x1 -y1 N (0? X1? 1 , 0 ⁇ y1? 1 , 0? X1 + y1? For example, AlGaN, InAlGaN, AlN, and the like.
- the first dopant may be an n-type dopant such as Si, Ge, Sn, Se, or Te. That is, the third conductive semiconductor layer 128 may be the same n-type semiconductor layer as the first conductive semiconductor layer 124.
- the third conductive semiconductor layer 128 may include both the first dopant and the second dopant.
- the first dopant may be intentionally doped while the second dopant may be the second dopant diffused into the second conductive semiconductor layer 127.
- the present invention is not limited thereto, and the first dopant and the second dopant may be intentionally doped into the third conductive semiconductor layer 128 for activation of holes.
- the doping concentration of the second dopant may be higher than the doping concentration of the first dopant by a memory effect.
- the concentration ratio of the first dopant and the second dopant doped to the third conductive semiconductor layer 128 may be 0.01: 1.0 to 0.8: 1.0. If the concentration ratio is larger than 0.01: 1.0, the concentration of the first dopant increases, and thus the ohmic resistance may be lowered due to the tunnel effect. In addition, since the third conductive semiconductor layer 128 is a very thin film, it is difficult to perform doping so that the concentration ratio becomes larger than 0.8: 1.0.
- the first dopant concentration of a third conductivity type semiconductor layer 128 may be a 1 ⁇ 10 18 cm -3 to 2 ⁇ 10 20 cm -3.
- the concentration of the second dopant of the third conductive type semiconductor layer 128 may be 1 ⁇ 10 19 cm -3 to 2 ⁇ 10 21 cm -3 .
- the first dopant concentration of the third conductivity type semiconductor layer 128 may be equal to or higher than the first dopant concentration of the first conductivity type semiconductor layer 124 and the first dopant concentration of the barrier layer 126b.
- the thickness of the third conductivity type semiconductor layer 128 may be between 1 nm and 10 nm. When the thickness of the third conductivity type semiconductor layer 128 is larger than 10 nm, there is a problem that the injection efficiency of holes is lowered. Therefore, the thickness of the third conductivity type semiconductor layer 128 may be smaller than that of the first conductivity type semiconductor layer 124 and the second conductivity type semiconductor layer 127.
- the aluminum composition may be controlled to be relatively higher than that of the well layer 126a.
- the aluminum composition of the third conductivity type semiconductor layer 128 may be 20% to 70%.
- the composition of aluminum is 20% or more, the difference in aluminum composition with the well layer 126a is reduced, and the light absorption can be improved.
- the composition of aluminum is 70% or less, the operation voltage is increased and the decrease of light output can be improved.
- the second conductivity type semiconductor layer 127 has a uniform aluminum composition in the second conductivity type semiconductor layer 127b in the direction away from the active layer 126 and the second conductivity type semiconductor layer
- the aluminum composition can be gradually reduced in the step (127a). Also, the aluminum composition in the thickness direction of the third conductivity type semiconductor layer 128 can also be reduced.
- the decrease width of the aluminum composition of the second-first conductivity type semiconductor layer 127a may be different from the reduction width of the third conductivity type semiconductor layer 128 or may be the same.
- the present invention is not limited thereto, and the aluminum composition of the third conductive type semiconductor layer 128 may be constant.
- the aluminum composition P3 of the third conductivity type semiconductor layer may be lower than the aluminum composition P10 of the well layer and the aluminum composition P4 of the intermediate layer. In this case, the ohmic resistance with the second electrode can be effectively lowered.
- the present invention is not limited thereto, and the aluminum composition of the third conductivity type semiconductor layer may be variously modified as described later.
- FIG. 2B is a schematic diagram of the semiconductor structure according to the first embodiment of the present invention
- FIG. 2C is a diagram showing the ionic strength of aluminum.
- the semiconductor structure may include aluminum (Al), gallium (Ga), a first dopant, a second dopant, and a second dopant as the distance from the first conductivity type semiconductor layer 124 to the second conductivity type semiconductor layer 127 May vary.
- the first dopant may be silicon (Si) and the second dopant may be magnesium (Mg) but is not necessarily limited thereto.
- SIMS data may be analytical data by time-of-flight secondary ion mass spectrometry (TOF-SIMS).
- SIMS data can be analyzed by counting the number of secondary ions emitted by irradiating the surface of the target with primary ions.
- the primary ion may be selected from O 2 + , Cs + Bi +, etc.
- the acceleration voltage may be adjusted within 20 to 30 keV
- the irradiation current may be controlled from 0.1 pA to 5.0 pA, May be 20 nm x 20 nm.
- SIMS data can be acquired while gradually etching the surface of the second conductivity type semiconductor layer in the direction of the first conductivity type semiconductor layer from the surface (S0, point where the depth is zero) to collect the secondary ion mass spectrum.
- the secondary ion may be a member constituting the semiconductor layer.
- the secondary ion can be, but is not necessarily limited to, aluminum, gallium, a first dopant, and a second dopant.
- the present invention is not limited thereto, and various measurement conditions for detecting AlGaN-based and / or GaN-based semiconductor materials, first and second dopant materials may be used.
- the result of the simulation analysis can be interpreted as the intensity of the secondary ion or the spectrum of the doping concentration of the secondary ion.
- the secondary ion intensity or the doping concentration noise occurring within 0.9 to 1.1 times . ≪ / RTI >
- the phrase " same / same " may be referred to as including one specific secondary ion intensity or noise no less than 0.9 times and no more than 1.1 times the doping concentration.
- the doping concentration and ion intensity at each point may indicate the highest point among the increasing and decreasing noise.
- FIG. 2B is a graph showing the simulated data and the doping concentration data in one drawing.
- the spectrum of the aluminum ion intensity and a part of the concentration spectrum of the first and second dopants are shown as crossing, the data on the ion intensity and the concentration of the dopant may have an independent relationship with each other.
- the ion intensity of aluminum and the doping concentration of the second dopant are expressed as intersecting in the vicinity of the surface S0.
- the doping concentration graph can be lowered. For example, if the reference point of the dopant concentration of the second dopant is lowered from 1.00E + 14 to 1.00E + 12, the concentration profile of the second dopant becomes lower in the drawing, so that the second dopant data and the aluminum data may not intersect with each other.
- the method of measuring the concentration of the first dopant and the second dopant is not particularly limited.
- the vertical axis (Y axis) is converted into the log scale and shown.
- the ionic strength of aluminum increases gradually with increasing depth from the surface, but it increases and decreases repeatedly after the highest intensity point.
- the ionic strength of gallium can be symmetrical with the ionic strength of aluminum although not shown.
- the ionic strength according to the embodiment can be increased or decreased depending on the measurement conditions.
- the intensity graph of the secondary ion (aluminum ion) increases as a whole
- the intensity graph of the secondary ion (aluminum ion) may decrease as a whole. Therefore, the change in the ion intensity in the thickness direction may be similar even if the measurement conditions are changed.
- the ionic strength of the aluminum at the first point P1 may be highest in the semiconductor structure 120. Since the ion intensity of aluminum at the first point P1 is the highest, it is possible to prevent the first carrier from recombining with the second carrier in a non-luminescent manner in the second conductivity type semiconductor layer. Therefore, the light output of the semiconductor element can be improved.
- the first point P1 may be a region corresponding to the 1-1 section 129a of the blocking layer 129, but is not limited thereto.
- the second ionic strength of the second point P2 may be the point where the ionic strength of aluminum is highest among the points of the ionic strength of aluminum extending from the first point P1 to the first direction D2.
- the second point P2 may be the point where the ionic strength of aluminum is highest in the first conductivity type semiconductor layer 124 and may be the point closest to the active layer 126 in the first conductivity type semiconductor layer 124 have.
- the second point P2 may be the control layer of Fig. 2A. However, it is not necessarily limited to this, and the second point P2 may be a point disposed between the first conductivity type semiconductor layer and the active layer.
- the third ionic strength of the third point P3 may be the point where the ionic strength of aluminum is lowest in the direction D1 toward the surface of the semiconductor structure 120 at the first point P1.
- the third point P3 may be the ionic strength at the surface of the semiconductor structure.
- the extraction efficiency of ultraviolet light can be improved by having the AlGaN composition at the surface of the semiconductor structure.
- the fourth ionic strength of the fourth point P4 may be the point where the ionic strength of aluminum is lowest in the first direction at the second point P2.
- LLO laser lift-off
- the fourth point P4 can prevent the active layer from being damaged by the LLO process by absorbing the laser to prevent the laser from penetrating into the active layer have.
- the resistance between the first electrode and the fourth point P4 may be lowered to improve the injection efficiency of the current injected into the semiconductor structure.
- the ionic strength of aluminum at the fourth point P4 can be arranged at the lowest level from the second point P2 to the first direction D2.
- the fifth point P5 may be disposed between the second point P2 and the fourth point P4.
- the ionic strength of aluminum at the fifth point P5 may have an ionic strength between the second point P2 and the fourth point P4.
- the fifth point P5 may be one specific point, and may constitute one layer.
- the current injected through the fourth point P4 can be uniformly distributed in the layer including the fifth point P5 so that the density with respect to the area of the current injected into the active layer can be improved.
- the tenth point P10 may be disposed between the first point P1 and the third point P3 and may be a point having the smallest ion intensity between the first point P1 and the second point P2, It can have an ionic strength of the same aluminum. That is, the tenth point P10 may have the same ionic strength as the ionic strength of the well layer.
- the eleventh point P11 may be disposed apart from the fourth point P4 in the first direction D2.
- it may include a twelfth section P12 and a thirteenth section P13 in which aluminum ions increase in the first direction D2.
- the first dopant may not be doped in the thirteenth section P13.
- the doping curve of the first dopant may be constant in the first section S1 where the first conductivity type semiconductor layer is disposed.
- a second section S2 having a relatively low doping concentration may be disposed in the first conductivity type semiconductor layer section S1.
- the second region S2 may be formed by varying the doping concentration of the first dopant as the growth conditions are changed when the composition of the first-conductivity-type semiconductor layer is changed to the intermediate layer.
- the second section S2 may be a point corresponding to the fourth point P4 of the aluminum ion intensity.
- the doping curve of the first dopant may have a third section S3 in which the doping concentration between the first conductivity type semiconductor layer and the active layer is lowered.
- the third section S3 may be an undoped layer in which the first dopant is not doped. In the third section S3, since the first dopant is relatively less doped, the resistance increases and the current can be dispersed.
- the doping curve of the first dopant may include a fourth period S4 in which the concentration increases or decreases in the active layer.
- the first dopant can be doped into the barrier layer of the active layer. Therefore, the injection efficiency of the first carrier injected into the active layer can be improved, and the efficiency of luminescent recombination of the first carrier and the second carrier in the active layer can be improved.
- the operating voltage Vf can be lowered.
- the peak of the first dopant in the fourth section S4 may correspond to the peak P61 of the active layer.
- the intensity of the peak P61 of the active layer may be lower than that of the valley P62.
- the doping curve of the first dopant may include a fifth section S5 in which the doping concentration in the second conductivity type semiconductor layer is lowered and a sixth section S6 in which the doping concentration again rises in the surface S0 .
- the doping concentration at the surface S0 is similar to or higher than the doping concentration at the first section S1. Accordingly, in the semiconductor structure according to the embodiment, it can be confirmed that the surface layer on which the second electrode is disposed is n-AlGaN.
- the doping concentration of the second dopant (for example, Mg) is the highest at the surface SO and can gradually decrease as the distance from the surface increases. It can be seen that the doping concentration of the second dopant (e.g., Mg) at the surface S0 of the semiconductor structure is higher than the doping concentration of the first dopant (e.g., Si). This may be because the doping concentration of the second dopant is increased by the memory effect even though the second dopant is not doped on the surface of the semiconductor structure.
- the doping concentration of the second dopant increases as the surface of the second dopant approaches the surface, but may include a period (interval between M2 and M3) in which the doping concentration decreases as the surface of the second dopant becomes closer to the surface. According to this reverse period, the concentration of the second dopant is reduced and the resistance is increased, so that the hole dispersion efficiency can be improved.
- the second dopant may be present in all regions of the second conductivity type semiconductor layer and in a portion of the active layer, but is not limited thereto.
- the second dopant may be disposed only in the second conductivity type semiconductor layer, but may diffuse to the active layer. Therefore, the injection efficiency of the second dopant injected into the active layer can be improved.
- the second dopant when the second dopant is diffused to the first conductivity type semiconductor layer, the leakage current of the semiconductor element and / or the non-emission recombination of the first and second carriers may occur and the reliability and / or luminous efficiency of the semiconductor element may be lowered .
- FIG. 3 is a graph showing the aluminum composition ratio of the semiconductor structure according to the second embodiment of the present invention.
- FIG. 4 is a graph showing the aluminum composition ratio of the semiconductor structure according to the third embodiment of the present invention.
- 5 is a graph showing the aluminum composition ratio of the semiconductor structure according to the fourth embodiment.
- the aluminum composition P3 of the third conductive semiconductor layer 128 may be higher than the aluminum composition P1 of the well layer 126a and lower than the aluminum composition P4 of the intermediate layer 124c.
- the aluminum composition of the well layer 126a can be controlled according to the wavelength of the generated light.
- the aluminum composition may be between 20% and 30% to produce the UVB wavelength, and the aluminum composition may be between 30% and 50% to produce the UVC wavelength.
- the aluminum composition P3 of the third conductive type semiconductor layer 128 is controlled to be higher than the aluminum composition P1 of the well layer 126a, the light absorption of the third conductive type semiconductor layer 128 may be improved .
- the aluminum composition of the intermediate layer 124c may be 50% to 70%. Therefore, when the aluminum composition P3 of the third conductivity type semiconductor layer 128 is set lower than the aluminum composition P4 of the intermediate layer 124c, it is possible to prevent an excessive increase in the operating voltage.
- the aluminum composition P3 of the third conductivity type semiconductor layer 128 is higher than the aluminum composition P1 of the well layer 126a The light absorption rate can be improved.
- the aluminum composition P3 of the third conductivity type semiconductor layer can be controlled to be higher than the aluminum composition P1 of the well layer and lower than the aluminum composition of the second conductivity type semiconductor layer 127 or the intermediate layer 124c.
- the second-first conductivity type semiconductor layer 127a may have a slope so that the aluminum composition continuously changes.
- the aluminum composition P3 of the third conductivity type semiconductor layer 128 and the aluminum composition change of the second conductivity type semiconductor layer 127 may be discontinuous.
- the third conductive type semiconductor layer 128 can be formed without reducing the composition of the aluminum if the difference in the aluminum composition P3 between the second conductive type semiconductor layer 127 and the third conductive type semiconductor layer is not large.
- the second conductivity type semiconductor layer 127 and the third conductivity type semiconductor layer 128 may have the same aluminum composition.
- the hole injection efficiency can be improved by the tunnel effect even if the aluminum composition is increased in the third conductive type semiconductor layer 128 as described above. Therefore, it may be advantageous to control the aluminum composition of the second conductivity type semiconductor layer 127 and the third conductivity type semiconductor layer 128 in the light extraction viewpoint.
- the doping concentration of the dopant is maximized and the thickness of the third conductivity type semiconductor layer 128 is minimized in order to obtain an appropriate ohmic resistance.
- FIG. 6 is a conceptual diagram of a semiconductor device according to an embodiment of the present invention.
- FIGS. 7A and 7B are views for explaining a configuration in which optical output is improved in accordance with the number of recesses, Fig.
- a semiconductor device includes a semiconductor structure 120 including a first conductive semiconductor layer 124, a second conductive semiconductor layer 127, and an active layer 126, And a second electrode 146 electrically connected to the second conductivity type semiconductor layer 127.
- the first electrode 142 is electrically connected to the first conductivity type semiconductor layer 124 and the second electrode 146 is electrically connected to the second conductivity type semiconductor layer 127.
- the first conductive semiconductor layer 124, the active layer 126, and the second conductive semiconductor layer 127 may be disposed in a first direction (Y direction).
- a first direction (Y direction) which is the thickness direction of each layer, is defined as a vertical direction
- a second direction (X direction) perpendicular to the first direction (Y direction) is defined as a horizontal direction.
- the semiconductor structure 120 can be applied to all the structures described above.
- the semiconductor structure 120 may include a plurality of recesses R1 that extend through the second conductivity type semiconductor layer 127 and the active layer 126 to a partial region of the first conductivity type semiconductor layer 124 .
- the first electrode 142 may be disposed on the upper surface of the recess R 1 and electrically connected to the first conductive semiconductor layer 124.
- the second electrode 146 may be disposed under the second conductive semiconductor layer 127.
- the first electrode 142 and the second electrode 146 may be ohmic electrodes.
- the first electrode 142 and the second electrode 146 may be formed of one selected from the group consisting of ITO (indium tin oxide), IZO (indium zinc oxide), IZTO (indium zinc tin oxide), IAZO (indium aluminum zinc oxide), IGZO ), IGTO (indium gallium tin oxide), AZO (aluminum zinc oxide), ATO (antimony tin oxide), GZO (gallium zinc oxide), IZON (IZO Nitride), AGZO ZnO, ZnO, IrOx, RuOx, NiO, RuOx / ITO, Ni / IrOx / Au or Ni / IrOx / Au / ITO, Ag, Ni, Cr, Ti, Al, Rh, Pd, Ru, Mg, Zn, Pt, Au, and Hf.
- the present invention is not limited to these materials.
- the first electrode may have
- the GaN-based semiconductor structure 120 when the GaN-based semiconductor structure 120 emits ultraviolet rays, it may include aluminum. When the aluminum composition of the semiconductor structure 120 is increased, the current dispersion characteristic is degraded in the semiconductor structure 120 . In addition, when the active layer 126 emits ultraviolet rays including Al, the amount of light emitted to the side of the active layer 126 increases (TM mode) as compared with a GaN-based blue light emitting device. This TM mode can mainly occur in an ultraviolet semiconductor device.
- the ultraviolet semiconductor device has a lower current dispersion characteristic than the blue GaN based semiconductor device. Therefore, the ultraviolet semiconductor device needs to arrange the first electrode 142 relatively larger than the blue GaN-based semiconductor device.
- the current is dispersed only in the vicinity of each first electrode 142, and the current density may be drastically lowered at distant points. Therefore, the effective light-emitting region P2 can be narrowed.
- the effective light emitting region P2 can be defined as a region up to the boundary point where the current density is 40% or less based on the current density at the center of the first electrode 142 having the highest current density.
- the effective light emitting region P2 can be adjusted according to the level of the injection current and the composition of Al within a range of 40 ⁇ ⁇ from the center of the recess R1.
- the current density in the low current density region P3 is low and the amount of emitted light may be smaller than that in the effective light emitting region P2. Therefore, the first electrode 142 can be further disposed in the low current density region P3 having a low current density, or the light output can be improved by using the reflective structure.
- the area of the recesses R1 and the first electrode 142 because the current dispersion characteristics are relatively good.
- the composition of aluminum is high and the current dispersion characteristics are relatively low, the area and / or number of the first electrode 142 is increased even if the area of the active layer 126 is sacrificed, Or it may be desirable to arrange the reflective structure in the low current density region P3.
- the recesses R1 may be arranged in a zigzag manner instead of being arranged straight in the transverse direction. In this case, since the area of the low current density region P3 can be narrowed, most of the active layer 126 can participate in light emission.
- the current diffusion characteristics may be degraded in the semiconductor structure 120, and a uniform current density characteristic in the semiconductor structure 120 may be ensured.
- Infusion is required. Therefore, the first electrode 142 can be disposed by forming a relatively larger number of recesses R 1 than the conventional GaN-based semiconductor structure 120 for smooth current injection.
- the first insulating layer 131 may electrically isolate the first electrode 142 from the active layer 126 and the second conductive type semiconductor layer 127.
- the first insulating layer 131 may electrically isolate the second electrode 146 and the second conductive layer 150 from the first conductive layer 165.
- the first insulating layer 131 may function to prevent the side surface of the active layer 126 from being oxidized during the process of the semiconductor device.
- the first insulating layer 131 is SiO 2, SixOy, Si 3 N 4, SixNy, SiOxNy, Al 2 O 3, TiO 2, but may be at least one is selected and formed from the group consisting of AlN, etc., is not limited to, .
- the first insulating layer 131 may be formed as a single layer or a multilayer.
- the first insulating layer 131 may be a DBR (distributed Bragg reflector) having a multi-layer structure including silver oxide or Ti compound.
- the first insulating layer 131 may include various reflective structures without being limited thereto.
- the light extracting efficiency can be improved by upwardly reflecting the light L1 emitted toward the side surface of the active layer 126. [ In this case, as the number of recesses (R1) increases, the light extraction efficiency may be more effective.
- the diameter W3 of the first electrode 142 may be 24 ⁇ ⁇ or more and 50 ⁇ ⁇ or less. When this range is satisfied, it is advantageous for current dispersion and a large number of first electrodes 142 can be disposed.
- the current injected into the first conductivity type semiconductor layer 124 can be sufficiently secured when the diameter W3 of the first electrode 142 is greater than 24 mu m and when the diameter W3 is 50 mu m or less, The number of the first electrodes 142 disposed in the area of the first electrode 124 can be sufficiently secured and the current dispersion characteristics can be ensured.
- the diameter W1 of the recess R1 may be 38 ⁇ ⁇ or more and 60 ⁇ ⁇ or less.
- the diameter W1 of the recess R1 may be defined as the widest area in the recess disposed below the second conductive type semiconductor layer 127.
- the diameter W 1 of the recess R 1 may be the diameter of the recess R 1 disposed on the bottom surface of the second conductive semiconductor layer 127.
- the first electrode 142 is disposed in the recess R1 when the diameter W1 of the recess R1 is 38 mu m or more, It is possible to secure a process margin for securing an area for electrically connecting to the layer 124 and to prevent the volume of the active layer 126 decreasing for disposing the first electrode 142 And therefore the luminous efficiency can be deteriorated.
- the inclination angle [theta] 5 of the recess R1 may be 70 degrees to 90 degrees. If such an area range is satisfied, it may be advantageous to form the first electrode 142 on the upper surface, and a large number of recesses R1 may be formed.
- the inclination angle [theta] 5 is less than 70 degrees, the area of the active layer 126 to be removed can be increased, but the area in which the first electrode 142 is disposed can be reduced. Therefore, the current injection characteristic may be lowered, and the luminous efficiency may be lowered. Therefore, the area ratio between the first electrode 142 and the second electrode 146 can be adjusted by using the inclination angle [theta] 5 of the recess R1.
- the thickness of the second electrode 146 may be thinner than the thickness of the first insulating layer 131. Therefore, the step coverage characteristics of the second conductive layer 150 and the second insulating layer 132 that surround the second electrode 146 can be ensured and the reliability of the semiconductor device can be improved.
- the second electrode 146 may have a first separation distance S1 of 1 mu m to 4 mu m with the first insulation layer 131. [ It is possible to secure a process margin in the process of disposing the second electrode 146 between the first insulating layers 131 and thus to improve the electrical characteristics, optical characteristics and reliability of the semiconductor device . When the spacing distance is 4 ⁇ ⁇ or less, the entire area in which the second electrode 146 can be arranged can be secured and the operating voltage characteristics of the semiconductor device can be improved.
- the second conductive layer 150 may cover the second electrode 146. Accordingly, the second electrode pad 166, the second conductive layer 150, and the second electrode 146 can form one electrical channel.
- the second conductive layer 150 completely surrounds the second electrode 146 and may contact the side surface and the upper surface of the first insulating layer 131.
- the second conductive layer 150 is made of a material having good adhesion to the first insulating layer 131 and includes at least one material selected from the group consisting of Cr, Al, Ti, Ni, and Au, Alloy, and may be a single layer or a plurality of layers.
- the thermal and electrical reliability of the second electrode 146 can be improved.
- it may have a reflection function for reflecting upward the light emitted between the first insulating layer 131 and the second electrode 146.
- the second conductive layer 150 may be disposed at a first separation distance S1 between the first insulation layer 131 and the second electrode 146.
- the second conductive layer 150 may be in contact with the side surface and the upper surface of the second electrode 146 and the side surfaces and the upper surface of the first insulating layer 131 at the first spacing distance S1.
- a region where the second conductive layer 150 and the second conductive type semiconductor layer 127 are in contact with each other and in which the Schottky junction is formed may be disposed within the first spacing distance S1.
- the resistance between the second conductive layer 150 and the second conductive type semiconductor layer 127 is greater than the resistance between the second electrode 146 and the second conductive type semiconductor layer 127. [ Can be freely placed within a larger configuration.
- the second insulating layer 132 may electrically isolate the second electrode 146 and the second conductive layer 150 from the first conductive layer 165.
- the first conductive layer 165 may be electrically connected to the first electrode 142 through the second insulating layer 132.
- the second insulating layer 132 and the first insulating layer 131 may be formed of the same material or different materials.
- the second conductive layer 150 may electrically connect the second electrode 146 and the second electrode pad 166.
- the second electrode 146 may be disposed directly on the second conductive semiconductor layer 127.
- the second conductivity type semiconductor layer 127 is AlGaN
- hole injection may not be smooth due to low electric conductivity. Therefore, it is necessary to appropriately adjust the Al composition of the second conductivity type semiconductor layer 127. This will be described later.
- the second conductive layer 150 may be formed of at least one material selected from the group consisting of Cr, Al, Ti, Ni, and Au, and alloys thereof, and may be a single layer or a plurality of layers .
- the first conductive layer 165 and the bonding layer 160 may be disposed along the bottom surface of the semiconductor structure 120 and the shape of the recess R1.
- the first conductive layer 165 may be made of a material having a high reflectivity.
- the first conductive layer 165 may comprise aluminum.
- the electrode layer 165 includes aluminum, it functions to reflect light emitted from the active layer 126 toward the substrate 170 in an upper direction, thereby improving light extraction efficiency.
- the present invention is not limited thereto, and the first conductive layer 165 may provide a function of being electrically connected to the first electrode 142.
- the first conductive layer 165 may be disposed without containing a material having a high reflectance such as aluminum and / or silver (Ag).
- the first electrode 142 A reflective metal layer (not shown) may be disposed between the first conductive layer 165 and the second conductive type semiconductor layer 127 and between the first conductive layer 165 and the first conductive layer 165, .
- the bonding layer 160 may include a conductive material.
- the bonding layer 160 may comprise a material selected from the group consisting of gold, tin, indium, aluminum, silicon, silver, nickel, and copper, or alloys thereof.
- the substrate 170 may be made of a conductive material.
- substrate 170 may comprise a metal or semiconductor material.
- the substrate 170 may be a metal having excellent electrical conductivity and / or thermal conductivity. In this case, the heat generated during semiconductor device operation can be quickly dissipated to the outside.
- the first electrode 142 may be supplied with current from the outside through the substrate 170.
- the substrate 170 may comprise a material selected from the group consisting of silicon, molybdenum, silicon, tungsten, copper, and aluminum, or alloys thereof.
- a passivation layer 180 may be disposed on the top and sides of the semiconductor structure 120.
- the thickness of the passivation layer 180 may be greater than or equal to 200 nm and less than or equal to 500 nm. When the thickness is not more than 500 nm, the stress applied to the semiconductor device can be reduced, and the optical and electrical reliability of the semiconductor device can be reduced. Or the process time of the semiconductor device is increased, the problem that the unit price of the semiconductor device is increased can be solved.
- Unevenness may be formed on the upper surface of the semiconductor structure 120. Such unevenness can improve the extraction efficiency of light emitted from the semiconductor structure 120.
- the average height of the unevenness may be different depending on the wavelength of ultraviolet light. In the case of UV-C, the height of the unevenness is about 300 nm to 800 nm and the light extraction efficiency can be improved when the average height is 500 nm to 600 nm.
- FIG. 9 is a conceptual view of a semiconductor device according to another embodiment of the present invention
- FIG. 10 is a plan view of FIG.
- the semiconductor structure 120 can be applied as it is.
- the plurality of recesses R 1 may be disposed to a partial region of the first conductivity type semiconductor layer 124 through the second conductivity type semiconductor layer 127 and the active layer 126.
- the semiconductor device may include a side reflector Z1 disposed at the edge.
- the side reflective portion Z1 may be formed by protruding the second conductive layer 150, the first conductive layer 165, and the substrate 170 in the thickness direction (Y axis direction).
- the side reflector Z1 may be disposed along the edge of the semiconductor device, and may surround the semiconductor structure 120.
- the second conductive layer 150 of the side reflecting portion Z1 protrudes higher than the active layer 126 and can upward reflect the light emitted from the active layer 126. [ Accordingly, even if a separate reflection layer is not formed, the light emitted in the horizontal direction (X-axis direction) due to the TM mode at the outermost periphery can be upwardly reflected.
- the angle of inclination of the side reflector Z1 may be greater than 90 degrees and less than 145 degrees.
- the inclination angle may be an angle formed by the second conductive layer 150 and the horizontal plane (XZ plane). If the angle is less than 90 degrees or greater than 145 degrees, the efficiency of reflecting the light traveling toward the side toward the image side may decrease.
- FIG. 11 is a conceptual view of a semiconductor device package according to an embodiment of the present invention
- FIG. 12 is a plan view of a semiconductor device package according to an embodiment of the present invention
- FIG. 13 is a modification of FIG.
- the semiconductor device package comprises a body 2 formed with a groove 3, a semiconductor element 1 disposed on the body 2, and a semiconductor element 1 disposed on the body 2 and electrically connected to the semiconductor element 1 And may include a pair of lead frames 5a and 5b connected thereto.
- the semiconductor element 1 may include all of the structures described above.
- the body 2 may include a material or a coating layer that reflects ultraviolet light.
- the body 2 can be formed by laminating a plurality of layers 2a, 2b, 2c, 2d and 2e.
- the plurality of layers 2a, 2b, 2c, 2d and 2e may be the same material or may comprise different materials.
- the groove 3 may be formed so as to be wider as it is away from the semiconductor element, and a step 3a may be formed on the inclined surface.
- the light-transmitting layer 4 may cover the groove 3.
- the light-transmitting layer 4 may be made of a glass material, but is not limited thereto.
- the light-transmitting layer 4 is not particularly limited as long as it is a material capable of effectively transmitting ultraviolet light.
- the inside of the groove 3 may be an empty space.
- the semiconductor element 10 is disposed on the first lead frame 5a and can be connected to the second lead frame 5b by a wire.
- the second lead frame 5b may be arranged to surround the side surface of the first lead frame.
- a plurality of semiconductor elements 10a, 10b, 10c, and 10d may be disposed in the semiconductor device package.
- the lead frame may include the first to fifth lead frames 5a, 5b, 5c, 5d and 5e.
- the first semiconductor element 10a may be disposed on the first lead frame 5a and connected to the second lead frame 5b by a wire.
- the second semiconductor element 10b may be disposed on the second lead frame 5b and connected to the third lead frame 5c by a wire.
- the third semiconductor element 10c may be disposed on the third lead frame 5c and connected to the fourth lead frame 5d by a wire.
- the fourth semiconductor element 10d may be disposed on the fourth lead frame 5d and connected to the fifth lead frame 5e by a wire.
- the light source device may be a concept including a sterilizing device, a curing device, a lighting device, and a display device and a vehicle lamp. That is, semiconductor devices can be applied to various electronic devices arranged in a case to provide light.
- the sterilizing device may include a semiconductor device according to an embodiment to sterilize a desired area.
- the sterilization device can be applied to home appliances such as water purifier, air conditioner, refrigerator, but is not limited thereto. That is, the sterilization apparatus can be applied to various products requiring sterilization (for example, medical apparatus).
- the water purifier may be equipped with a sterilizing device according to an embodiment to sterilize circulating water.
- the sterilizing apparatus may be disposed in a nozzle or a discharge port through which water circulates and irradiate ultraviolet rays.
- the sterilizing device may include a waterproof structure.
- the curing device may include a semiconductor device according to the embodiment to cure various kinds of liquids.
- Liquids can be the broadest concept that encompasses a variety of materials that cure upon exposure to ultraviolet radiation.
- the curing device can cure various types of resins.
- the curing device may be applied to cure a cosmetic product such as manicure.
- the illumination device may include a light source module including a substrate and semiconductor elements of the embodiment, a heat dissipation unit that dissipates heat of the light source module, and a power supply unit that processes or converts an electrical signal provided from the outside and provides the light source module. Further, the lighting device may include a lamp, a head lamp, or a street lamp or the like.
- the display device may include a bottom cover, a reflector, a light emitting module, a light guide plate, an optical sheet, a display panel, an image signal output circuit, and a color filter.
- the bottom cover, the reflector, the light emitting module, the light guide plate, and the optical sheet can constitute a backlight unit.
- the reflector is disposed on the bottom cover, and the light emitting module can emit light.
- the light guide plate is disposed in front of the reflection plate to guide the light emitted from the light emitting module forward, and the optical sheet may include a prism sheet or the like and be disposed in front of the light guide plate.
- the display panel is disposed in front of the optical sheet, and the image signal output circuit supplies an image signal to the display panel, and the color filter can be disposed in front of the display panel.
- the semiconductor device can be used as a backlight unit of an edge type when used as a backlight unit of a display device or as a backlight unit of a direct-bottom type.
- the semiconductor device may be a laser diode other than the light emitting diode described above.
- the laser diode may include the first conductivity type semiconductor layer, the active layer and the second conductivity type semiconductor layer having the above-described structure, like the light emitting element. Then, electro-luminescence (electroluminescence) phenomenon in which light is emitted when an electric current is applied after bonding the p-type first conductivity type semiconductor and the n-type second conductivity type semiconductor is used, And phase. That is, the laser diode can emit light having one specific wavelength (monochromatic beam) with the same phase and in the same direction by using a phenomenon called stimulated emission and a constructive interference phenomenon. It can be used for optical communication, medical equipment and semiconductor processing equipment.
- a photodetector which is a kind of transducer that detects light and converts the intensity of the light into an electric signal
- photodetectors silicon, selenium
- photodetectors cadmium sulfide, cadmium selenide
- photodiodes for example, visible blind spectral regions or PDs with peak wavelengths in the true blind spectral region
- a transistor, a photomultiplier tube, a phototube (vacuum, gas-filled), and an IR (Infra-Red) detector but the embodiment is not limited thereto.
- a semiconductor device such as a photodetector may be fabricated using a direct bandgap semiconductor, which is generally excellent in photo-conversion efficiency.
- the photodetector has a variety of structures, and the most general structure includes a pinned photodetector using a pn junction, a Schottky photodetector using a Schottky junction, and a metal-semiconductor metal (MSM) photodetector have.
- MSM metal-semiconductor metal
- the photodiode may include the first conductivity type semiconductor layer having the structure described above, the active layer, and the second conductivity type semiconductor layer, and may have a pn junction or a pin structure.
- the photodiode operates by applying reverse bias or zero bias. When light is incident on the photodiode, electrons and holes are generated and a current flows. At this time, the magnitude of the current may be approximately proportional to the intensity of the light incident on the photodiode.
- a photovoltaic cell or a solar cell is a type of photodiode that can convert light into current.
- the solar cell like the light emitting device, may include the first conductivity type semiconductor layer, the active layer and the second conductivity type semiconductor layer having the above-described structure.
- it can be used as a rectifier of an electronic circuit through a rectifying characteristic of a general diode using a p-n junction, and can be applied to an oscillation circuit or the like by being applied to a microwave circuit.
- the above-described semiconductor element is not necessarily implemented as a semiconductor, and may further include a metal material as the case may be.
- a semiconductor device such as a light receiving element may be implemented using at least one of Ag, Al, Au, In, Ga, N, Zn, Se, P, or As, Or may be implemented using a doped semiconductor material or an intrinsic semiconductor material.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Led Devices (AREA)
Abstract
실시 예는, 제1 도전형 반도체층, 제2 도전형 반도체층, 및 상기 제1 도전형 반도체층과 상기 제2 도전형 반도체층 사이에 배치되는 활성층을 포함하는 반도체 구조물; 상기 제1 도전형 반도체층과 전기적으로 연결되는 제1 전극; 및 상기 제2 도전형 반도체층과 전기적으로 연결되는 제2 전극을 포함하고, 상기 반도체 구조물은 상기 제2 도전형 반도체층과 상기 제2 전극 사이에 배치되는 제3 도전형 반도체층을 포함하고, 상기 제1 도전형 반도체층은 제1 도펀트를 포함하고, 상기 제2 도전형 반도체층은 제2 도펀트를 포함하고, 상기 제3 도전형 반도체층은 상기 제1 도펀트와 상기 제2 도펀트를 포함하고, 상기 제3 도전형 반도체층에 도핑된 제1 도펀트와 제2 도펀트의 농도비는 0.01:1.0 내지 0.8:1.0인 반도체 소자를 개시한다.
Description
실시 예는 반도체 소자에 관한 것이다.
GaN, AlGaN 등의 화합물을 포함하는 반도체 소자는 넓고 조정이 용이한 밴드 갭 에너지를 가지는 등의 많은 장점을 가져서 발광 소자, 수광 소자 및 각종 다이오드 등으로 다양하게 사용될 수 있다.
특히, 반도체의 3-5족 또는 2-6족 화합물 반도체 물질을 이용한 발광 다이오드(Light Emitting Diode)나 레이저 다이오드(Laser Diode)와 같은 발광소자는 박막 성장 기술 및 소자 재료의 개발로 적색, 녹색, 청색 및 자외선 등 다양한 색을 구현할 수 있으며, 형광 물질을 이용하거나 색을 조합함으로써 효율이 좋은 백색 광선도 구현이 가능하며, 형광등, 백열등 등 기존의 광원에 비해 저소비전력, 반영구적인 수명, 빠른 응답속도, 안전성, 환경 친화성의 장점을 가진다.
뿐만 아니라, 광검출기나 태양 전지와 같은 수광 소자도 반도체의 3-5족 또는 2-6족 화합물 반도체 물질을 이용하여 제작하는 경우 소자 재료의 개발로 다양한 파장 영역의 빛을 흡수하여 광 전류를 생성함으로써 감마선부터 라디오 파장 영역까지 다양한 파장 영역의 빛을 이용할 수 있다. 또한 빠른 응답속도, 안전성, 환경 친화성 및 소자 재료의 용이한 조절의 장점을 가져 전력 제어 또는 초고주파 회로나 통신용 모듈에도 용이하게 이용할 수 있다.
따라서, 반도체 소자는 광 통신 수단의 송신 모듈, LCD(Liquid Crystal Display) 표시 장치의 백라이트를 구성하는 냉음극관(CCFL: Cold Cathode Fluorescence Lamp)을 대체하는 발광 다이오드 백라이트, 형광등이나 백열 전구를 대체할 수 있는 백색 발광 다이오드 조명 장치, 자동차 헤드 라이트 및 신호등 및 Gas나 화재를 감지하는 센서 등에까지 응용이 확대되고 있다. 또한, 반도체 소자는 고주파 응용 회로나 기타 전력 제어 장치, 통신용 모듈에까지 응용이 확대될 수 있다.
특히, 자외선 파장 영역의 광을 방출하는 발광소자는 경화작용이나 살균 작용을 하여 경화용, 의료용, 및 살균용으로 사용될 수 있다.
최근 자외선 발광소자에 대한 연구가 활발하나, 아직까지 자외선 발광소자는 수직형으로 구현하기 어려운 문제가 있으며, 오믹 특성을 위해 GaN 박막을 사용되는 경우 광 출력이 저하되는 문제가 있다.
실시 예는 오믹 특성이 개선된 반도체 소자를 제공한다.
또한, 광 출력이 향상된 반도체 소자를 제공한다.
또한, 수직형 자외선 발광소자를 제공한다.
실시 예에서 해결하고자 하는 과제는 이에 한정되는 것은 아니며, 아래에서 설명하는 과제의 해결수단이나 실시 형태로부터 파악될 수 있는 목적이나 효과도 포함된다고 할 것이다.
본 발명의 일 실시 예에 따른 반도체 소자는, 제1 도전형 반도체층, 제2 도전형 반도체층, 및 상기 제1 도전형 반도체층과 상기 제2 도전형 반도체층 사이에 배치되는 활성층을 포함하는 반도체 구조물; 상기 제1 도전형 반도체층과 전기적으로 연결되는 제1 전극; 및 상기 제2 도전형 반도체층과 전기적으로 연결되는 제2 전극을 포함하고, 상기 반도체 구조물은 상기 제2 도전형 반도체층과 상기 제2 전극 사이에 배치되는 제3 도전형 반도체층을 포함하고, 상기 제1 도전형 반도체층은 제1 도펀트를 포함하고, 상기 제2 도전형 반도체층은 제2 도펀트를 포함하고, 상기 제3 도전형 반도체층은 상기 제1 도펀트와 상기 제2 도펀트를 포함하고, 상기 제3 도전형 반도체층에 도핑된 제1 도펀트와 제2 도펀트의 농도비는 0.01:1.0 내지 0.8:1.0이다.
실시 예에 따르면, 오믹 특성이 개선되어 동작 전압을 낮출 수 있다.
또한, 반도체 소자 내에서 광 흡수를 억제하여 광 출력을 향상시킬 수 있다.
본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않으며, 본 발명의 구체적인 실시형태를 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.
도 1은 본 발명의 제1 실시 예에 따른 반도체 구조물의 개념도이고,
도 2a는 본 발명의 제1 실시 예에 따른 반도체 구조물의 알루미늄 조성비를 나타낸 그래프이고,
도 2b는 본 발명의 제1 실시 예에 따른 반도체 구조물의 심스 데이터이고,
도 2c는 알루미늄의 이온 강도를 보여주는 도면이고,
도 3은 본 발명의 제2 실시 예에 따른 반도체 구조물의 알루미늄 조성비를 나타낸 그래프이고,
도 4는 본 발명의 제3 실시 예에 따른 반도체 구조물의 알루미늄 조성비를 나타낸 그래프이고,
도 5는 본 발명의 제4 실시 예에 따른 반도체 구조물의 알루미늄 조성비를 나타낸 그래프이고,
도 6은 본 발명의 일 실시 예에 따른 반도체 소자의 개념도이고,
도 7a 및 도 7b는 리세스의 개수 변화에 따라 광 출력이 향상되는 구성을 설명하기 위한 도면이고,
도 8은 도 6의 A부분 확대도이고,
도 9는 본 발명의 다른 실시 예에 따른 반도체 소자의 개념도이고,
도 10은 도 9의 평면도이고,
도 11은 본 발명의 일 실시 예에 따른 반도체 소자 패키지의 개념도이고,
도 12는 본 발명의 일 실시 예에 따른 반도체 소자 패키지의 평면도이고,
도 13은 도 12의 변형예이다.
본 실시 예들은 다른 형태로 변형되거나 여러 실시 예가 서로 조합될 수 있으며, 본 발명의 범위가 이하 설명하는 각각의 실시 예로 한정되는 것은 아니다.
특정 실시 예에서 설명된 사항이 다른 실시 예에서 설명되어 있지 않더라도, 다른 실시 예에서 그 사항과 반대되거나 모순되는 설명이 없는 한, 다른 실시 예에 관련된 설명으로 이해될 수 있다.
예를 들어, 특정 실시 예에서 구성 A에 대한 특징을 설명하고 다른 실시 예에서 구성 B에 대한 특징을 설명하였다면, 구성 A와 구성 B가 결합된 실시 예가 명시적으로 기재되지 않더라도 반대되거나 모순되는 설명이 없는 한, 본 발명의 권리범위에 속하는 것으로 이해되어야 한다.
실시 예의 설명에 있어서, 어느 한 element가 다른 element의 "상(위) 또는 하(아래)(on or under)"에 형성되는 것으로 기재되는 경우에 있어, 상(위) 또는 하(아래)(on or under)는 두 개의 element가 서로 직접(directly)접촉되거나 하나 이상의 다른 element가 상기 두 element 사이에 배치되어(indirectly) 형성되는 것을 모두 포함한다. 또한 "상(위) 또는 하(아래)(on or under)"으로 표현되는 경우 하나의 element를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.
이하에서는 첨부한 도면을 참고로 하여 본 발명의 실시 예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다.
도 1은 본 발명의 일 실시 예에 따른 반도체 구조물의 개념도이고, 도 2a는 본 발명의 일 실시 예에 따른 반도체 구조물의 알루미늄 조성비를 나타낸 그래프이고, 도 2b는 본 발명의 일 실시 예에 따른 반도체 구조물의 심스 데이터이다.
도 1 및 도 2a를 참고하면, 실시 예에 따른 반도체 소자는 제1 도전형 반도체층(124), 제2 도전형 반도체층(127), 및 제1 도전형 반도체층(124)과 제2 도전형 반도체층(127) 사이에 배치되는 활성층(126)을 포함하는 반도체 구조물(120)을 포함한다.
본 발명의 실시 예에 따른 반도체 구조물(120)은 자외선 파장대의 광을 출력할 수 있다. 예시적으로 반도체 구조물(120)은 근자외선 파장대의 광(UV-A)을 출력할 수 있고, 원자외선 파장대의 광(UV-B)을 출력할 수 있고, 심자외선 파장대의 광(UV-C)을 출력할 수 있다. 파장범위는 반도체 구조물(120)의 알루미늄 조성비에 의해 결정될 수 있다.
예시적으로, 근자외선 파장대의 광(UV-A)은 320nm 내지 420nm 범위의 파장을 가질 수 있고, 원자외선 파장대의 광(UV-B)은 280nm 내지 320nm 범위의 파장을 가질 수 있으며, 심자외선 파장대의 광(UV-C)은 100nm 내지 280nm 범위의 파장을 가질 수 있다.
반도체 구조물(120)이 자외선 파장대의 광을 발광할 때, 반도체 구조물(120)의 각 반도체층은 알루미늄을 포함하는 Inx1Aly1Ga1
-x1-
y1N(0≤x1≤1, 0<y1≤1, 0≤x1+y1≤1) 물질을 포함할 수 있다. 여기서, Al의 조성은 In 원자량과 Ga 원자량 및 Al 원자량을 포함하는 전체 원자량과 Al 원자량의 비율로 나타낼 수 있다. 예를 들어, Al 조성이 40%인 경우 Ga의 조성은 60%일 수 있고, 이러한 조성비는 Al40Ga60N으로 표현할 수 있다.
또한 실시 예의 설명에 있어서 조성이 낮거나 높다는 의미는 각 반도체층의 조성 %의 차이(% 포인트)로 이해될 수 있다. 예를 들면, 제1 반도체층의 알루미늄 조성이 30%이고 제2 반도체층의 알루미늄 조성이 60%인 경우, 제2 반도체층의 알루미늄 조성은 제1 반도체층의 알루미늄 조성보다 30%가 더 높다라고 표현할 수 있다.
제1 도전형 반도체층(124)은 Ⅲ-Ⅴ족, Ⅱ-Ⅵ족 등의 화합물 반도체로 구현될 수 있으며, 제1도펀트가 도핑될 수 있다. 제1 도전형 반도체층(124)은 Inx1Aly1Ga1
-x1-y1N(0≤x1≤1, 0<y1≤1, 0≤x1+y1≤1)의 조성식을 갖는 반도체 재료, 예를 들어 AlGaN, AlN, InAlGaN 등에서 선택될 수 있다. 그리고, 제1도펀트는 Si, Ge, Sn, Se, Te와 같은 n형 도펀트일 수 있다. 제1도펀트가 n형 도펀트인 경우, 제1도펀트가 도핑된 제1 도전형 반도체층(124)은 n형 반도체층일 수 있다.
제1 도전형 반도체층(124)은 제1-1 도전형 반도체층(124a), 제1-2 도전형 반도체층(124b), 및 제1-1 도전형 반도체층(124a)과 제1-2 도전형 반도체층(124b) 사이에 배치된 중간층(124c)을 포함할 수 있다.
제1-2 도전형 반도체층(124b)은 제1-1 도전형 반도체층(124a)보다 활성층(126)에 가까이 배치될 수 있다. 제1-2 도전형 반도체층(124b)의 알루미늄 조성은 제1-1 도전형 반도체층(124a)과 동일하거나 낮을 수 있다.
반도체 구조물(120)이 심자외선 파장대의 광(UV-C)을 방출하는 경우, 제1-2 도전형 반도체층(124b)의 알루미늄 조성은 40% 내지 70%이고, 제1-1 도전형 반도체층(124a)의 알루미늄 조성은 50% 내지 80%일 수 있다. 제1-2 도전형 반도체층(124b)의 알루미늄 조성이 40% 이상일 때 활성층(126)에서 방출되는 심자외선 파장대의 광(UV-C)의 흡수율을 낮추어 광추출효율을 개선할 수 있고, 70% 이하일 때 활성층(126)으로의 전류 주입 특성 및 제1-2 도전형 반도체층(124b) 내에서의 전류 확산 특성을 확보할 수 있다.
또한, 제1-1 도전형 반도체층(124a)의 알루미늄 조성이 50% 이상일 때 활성층(126)에서 방출되는 심자외선 파장대의 광(UV-C)의 흡수율을 낮추어 광추출 효율을 개선할 수 있고, 80% 이하일 때 활성층(126)으로의 전류 주입 특성 및 제1-1 도전형 반도체층(124a) 내에서의 전류 확산 특성을 확보할 수 있다.
또한, 제1-2 도전형 반도체층(124b)의 알루미늄 조성보다 제1-1 도전형 반도체층(124a)의 알루미늄 조성이 높을 수도 있다. 이 경우 굴절률의 차이에 의해서 활성층(126)에서 반도체 구조물(120) 외부로 광이 추출되기 더 유리할 수 있어 반도체 구조물(120)의 광추출효율이 개선될 수 있다.
제1-2 도전형 반도체층(124b)의 두께는 제1-1 도전형 반도체층(124a)의 두께보다 얇을 수 있다. 제1-1 도전형 반도체층(124a)은 제1-2 도전형 반도체층(124b)의 두께의 130%이상일 수 있다. 이러한 구성에 의하면 알루미늄 조성이 높은 제1-1 도전형 반도체층(124a)의 두께를 충분히 확보한 후에 중간층(124c)이 배치되므로 전체 반도체 구조물(120)의 결정성이 향상될 수 있다.
중간층(124c)의 알루미늄 조성은 제1 도전형 반도체층(124) 및 제2 도전형 반도체층(124)의 알루미늄 조성보다 낮을 수 있다. 중간층(124c)은 성장 기판을 제거하는 LLO(Laser Lift-off) 공정시 반도체 구조물(120)에 조사되는 레이저를 흡수하여 활성층(126)이 손상되는 것을 방지하는 역할을 수행할 수 있다. 따라서, 실시 예에 따른 반도체 소자는 LLO(Laser Lift-off) 공정시 활성층(126)의 손상을 방지할 수 있어 광학적 특성 및 전기적 특성이 향상될 수 있다.
중간층(124c)의 두께와 알루미늄 조성은 LLO 공정 시 반도체 구조물(120)에 조사되는 레이저를 흡수하기 위해 적절히 조절될 수 있다. 따라서 중간층(124c)의 알루미늄 조성은 LLO 공정시 사용하는 레이저 파장에 대응될 수 있으며 LLO용 레이저의 파장이 200nm 내지 300nm인 경우 중간층(124c)의 알루미늄 조성은 30% 내지 60%이고, 두께는 1nm 내지 10nm일 수 있다.
예시적으로 LLO용 레이저의 파장이 270nm보다 낮아지는 경우 중간층(124c)의 알루미늄 조성은 50% 내지 70%로 높아질 수 있다. 중간층(124c)의 알루미늄 조성이 우물층(126a)의 알루미늄 조성보다 높아지면, 중간층(124c)은 활성층(126)에서 출사된 광을 흡수하지 않을 수 있다. 따라서, 광 추출 효율이 향상될 수 있다.
제1-2 도전형 반도체층(124b)과 활성층(126) 사이에는 제어층(124d)이 배치될 수 있다. 제어층(124d)은 제1 도전형 반도체층(124)에서 활성층 방향으로 주입되는 제1 캐리어 에너지를 저하시켜 활성층에서 재결합하는 제1 및 제2 캐리어의 농도 또는 밀도의 균형을 맞출 수 있다. 따라서 발광 효율을 개선하여 반도체 소자의 광출력 특성을 개선할 수 있다. 제어층(124d)의 알루미늄 조성은 제1 도전형 반도체층(124), 활성층(126), 및 제2 도전형 반도체층(127)보다 높을 수 있다.
활성층(126)은 제1 도전형 반도체층(124)과 제2 도전형 반도체층(127) 사이에 배치될 수 있다. 활성층(126)은 제1 도전형 반도체층(124)을 통해서 주입되는 전자(또는 정공)와 제2 도전형 반도체층(127)을 통해서 주입되는 정공(또는 전자)이 만나는 층이다. 활성층(126)은 전자와 정공이 재결합함에 따라 낮은 에너지 준위로 천이하며, 자외선 파장을 가지는 빛을 생성할 수 있다.
활성층(126)은 단일 우물 구조, 다중 우물 구조, 단일 양자 우물 구조, 다중 양자 우물(Multi Quantum Well; MQW) 구조, 양자점 구조 또는 양자선 구조 중 어느 하나의 구조를 가질 수 있으며, 활성층(126)의 구조는 이에 한정하지 않는다.
활성층(126)은 복수 개의 우물층(126a)과 장벽층(126b)을 포함할 수 있다. 우물층(126a)과 장벽층(126b)은 Inx2Aly2Ga1
-x2-
y2N(0≤x2≤1, 0<y2≤1, 0≤x2+y2≤1)의 조성식을 가질 수 있다. 우물층(126a)은 발광하는 파장에 따라 알루미늄 조성이 달라질 수 있다.
제2 도전형 반도체층(127)은 활성층(126) 상에 배치되며, Ⅲ-Ⅴ족, Ⅱ-Ⅵ족 등의 화합물 반도체로 구현될 수 있으며, 제2 도전형 반도체층(127)에 제2도펀트가 도핑될 수 있다.
제2 도전형 반도체층(127)은 Inx5Aly2Ga1
-x5-
y2N (0≤x5≤1, 0<y2≤1, 0≤x5+y2≤1)의 조성식을 갖는 반도체 물질 또는 AlGaN, AlInN, AlN, AlGaAs, AlGaInP 중 선택된 물질로 형성될 수 있다.
제2도펀트가 Mg, Zn, Ca, Sr, Ba 등과 같은 p형 도펀트인 경우, 제2도펀트가 도핑된 제2 도전형 반도체층(127)은 p형 반도체층일 수 있다.
전자 차단층(129)은 활성층(126)과 제2 도전형 반도체층(127) 사이에 배치될 수 있다. 전자 차단층(129)은 제1 도전형 반도체층(124)에서 공급된 캐리어가 제2 도전형 반도체층(127)으로 빠져나가는 흐름을 차단하여, 활성층(126) 내에서 전자와 정공이 재결합할 확률을 높일 수 있다.
전자 차단층(129)의 에너지 밴드갭은 활성층(126) 및/또는 제2 도전형 반도체층(127)의 에너지 밴드갭보다 클 수 있다. 전자 차단층(129)은 제2 도펀트가 도핑되므로 제2 도전형 반도체층(127)의 일부 영역으로 정의될 수도 있다.
전자 차단층(129)은 Inx1Aly1Ga1
-x1-
y1N(0≤x1≤1, 0≤y1≤1, 0≤x1+y1≤1)의 조성식을 갖는 반도체 재료, 예를 들어 AlGaN, AlN, InAlGaN 등에서 선택될 수 있으나 이에 한정하지 않는다.
실시 예에 따르면, 제1 도전형 반도체층(124), 활성층(126), 전자 차단층(129), 제2 도전형 반도체층(127), 및 제3 도전형 반도체층(128)은 모두 알루미늄을 포함할 수 있다. 따라서, 제1 도전형 반도체층(124), 활성층(126), 전자 차단층(129), 제2 도전형 반도체층(127), 및 제3 도전형 반도체층(128)은 AlGaN, InAlGaN 또는 AlN 조성을 가질 수 있다.
전자 차단층(129)은 알루미늄 조성이 50% 내지 100%일 수 있다. 전자 차단층(129)의 알루미늄 조성이 50% 미만일 경우 캐리어의 이동을 차단하기 위한 충분한 에너지 장벽을 가질 수 있고, 활성층(126)에서 방출하는 광을 흡수하지 않을 수 있다.
전자 차단층(129)은 제1 차단구간(129a)과 제2 차단구간(129b)을 포함할 수 있다. 제1 차단구간(129a)은 제1 도전형 반도체층(124)에서 제2 도전형 반도체층(127)으로 향하는 방향으로 향할수록 알루미늄 조성이 높아질 수 있다.
제1 차단구간(129a)의 알루미늄 조성은 80% 내지 100%일 수 있다. 따라서, 전자 차단층(129)의 제1 차단구간(129a)은 반도체 구조물(120) 내에서 Al 조성이 가장 높은 부분일 수 있다. 제1 차단구간(129a)은 AlGaN일 수도 있고 AlN일 수도 있다. 또는 제1 차단구간(129a)은 AlGaN과 AlN이 교대로 배치되는 초격자층일 수도 있다.
제1 차단구간(129a)의 두께는 약 0.1nm 내지 4nm일 수 있다. 캐리어(예: 전자)의 이동을 효율적으로 차단하기 위해서는 제1 차단구간(129a)의 두께는 0.1nm이상으로 배치할 수 있다. 또한, 제2 도전형 반도체층(127)에서 활성층(126)으로 캐리어(예: 정공)의 주입 효율을 확보하기 위해 제1 차단구간(129a)의 두께는 4nm이하로 배치할 수 있다.
제1 차단구간(129a)과 제2 차단구간(129b) 사이에 배치된 제3 차단구간(129c)은 도펀트를 포함하지 않는 언도프(undoped)된 구간을 포함할 수 있다. 따라서, 제3 차단구간(129c)은 도펀트가 제2 도전형 반도체층(127)로부터 활성층(126)으로 확산되는 것을 방지하는 역할을 수행할 수 있다.
제2 도전형 반도체층(127)은 제2-1 도전형 반도체층(127a) 및 제2-2 도전형 반도체층(127b)을 포함할 수 있다.
제2-1 도전형 반도체층(127a)의 두께는 10nm 보다 크고 50nm보다 작을 수 있다. 예시적으로 제2-1 도전형 반도체층(127a)의 두께는 25nm일 수 있다. 제2-1 도전형 반도체층(127a)의 두께가 10nm보다 큰 경우 수평 방향으로 저항이 감소하여 전류 확산 효율이 향상될 수 있다. 또한, 제2-1 도전형 반도체층(127a)의 두께가 50nm보다 작은 경우에는 활성층(126)에서 제2-1 도전형 반도체층(127a)로 입사된 광이 흡수되는 경로가 단축될 수 있고, 반도체 소자의 광 추출 효율이 향상될 수 있다.
제2-1 도전형 반도체층(127a)의 알루미늄 조성은 우물층(126a)의 알루미늄 조성보다 높을 수 있다. 심자외선 또는 원자외선 광을 생성하기 위한 우물층(126a)의 알루미늄 조성은 약 20% 내지 60%일 수 있다. 따라서, 제2-1 도전형 반도체층(127a)의 알루미늄 조성은 40%보다 크고 80%보다 작을 수 있다. 예시적으로, 우물층(126a)의 알루미늄 조성이 30%인 경우 제2-1 도전형 반도체층(127a)의 알루미늄 조성은 40%일 수 있다.
만약, 제2-1 도전형 반도체층(127a)의 알루미늄 조성이 우물층(126a)의 알루미늄 조성보다 낮은 경우 제2-1 도전형 반도체층(127a)이 자외선 광을 흡수하는 확률이 높기 때문에 광 추출 효율이 떨어질 수 있다.
제2-2 도전형 반도체층(127b)은 상대적으로 균일한 알루미늄 조성을 가져 반도체 구조물의 정공 주입 효율을 향상시키거나 결정성을 개선할 수 있다. 제2-2 도전형 반도체층(127b)의 두께는 20nm 내지 60nm일 수 있다. 제2-2 도전형 반도체층(127b)의 알루미늄 조성은 40% 내지 80%일 수 있다.
제3 도전형 반도체층(128)은 제2 도전형 반도체층(127)상에 배치될 수 있다.
제3 도전형 반도체층(128)은 제2 전극과 접하는 반도체 구조물(120)의 표면 영역일 수 있다. 제2 전극을 통해 제3 도전형 반도체층(128)으로 전류를 주입할 수 있고, 전류 주입 효율은 제3 도전형 반도체층(128)과 제2 전극 사이의 저항에 의해 제어될 수 있다. 제3 도전형 반도체층(128)과 제2 전극 사이의 저항은 오믹 컨택, 쇼트키 컨택, 또는 터널 효과 등 하나 이상의 작용에 의할 수 있으나, 반드시 이에 한정하는 것은 아니다.
제3 도전형 반도체층(128)은 Ⅲ-Ⅴ족, Ⅱ-Ⅵ족 등의 화합물 반도체로 구현될 수 있으며, 제1 도펀트가 도핑될 수 있다. 제3 도전형 반도체층(128)은 Inx1Aly1Ga1
-x1-y1N(0≤x1≤1, 0<y1≤1, 0≤x1+y1≤1)의 조성식을 갖는 반도체 재료, 예를 들어 AlGaN, InAlGaN, AlN 등에서 선택될 수 있다. 그리고, 제1 도펀트는 Si, Ge, Sn, Se, Te와 같은 n형 도펀트일 수 있다. 즉, 제3 도전형 반도체층(128)은 제1 도전형 반도체층(124)과 동일한 n형 반도체층일 수 있다.
제3 도전형 반도체층(128)은 제1 도펀트와 제2 도펀트를 모두 포함할 수 있다. 제1 도펀트는 의도적으로 도핑된 반면, 제2 도펀트는 제2 도전형 반도체층(127)에 도핑된 제2 도펀트가 확산된 것일 수 있다. 그러나, 반드시 이에 한정하는 것은 아니고, 정공(hole)의 활성화를 위해 제3 도전형 반도체층(128)에 의도적으로 제1 도펀트와 제2 도펀트를 함께 도핑할 수도 있다.
제3 도전형 반도체층(128)에 제1 도펀트만을 도핑하여도 메모리 효과(Memory Effect)에 의해 제2 도펀트의 도핑 농도가 제1 도펀트의 도핑 농도보다 높을 수 있다.
이때, 제3 도전형 반도체층(128)에 도핑된 제1 도펀트와 제2 도펀트의 농도비는 0.01:1.0 내지 0.8:1.0일 수 있다. 농도비가 0.01:1.0보다 큰 경우에는 제1 도펀트의 농도가 증가하므로 터널 효과(Tunnel Effect)에 의해 오믹 저항이 낮아질 수 있다. 또한, 제3 도전형 반도체층(128)은 매우 얇은 박막이므로 농도비가 0.8:1.0보다 커지도록 도핑하기 어렵다.
예시적으로 제3 도전형 반도체층(128)의 제1 도펀트 농도는 1×1018cm-3 내지 2Х1020cm-3 일 수 있다. 또한, 제3 도전형 반도체층(128)의 제2 도펀트의 농도는 1Х1019cm-3 내지 2×1021cm-3 일 수 있다.
이때, 제3 도전형 반도체층(128)의 제1 도펀트 농도는 제1 도전형 반도체층(124)의 제1 도펀트 농도 및 장벽층(126b)의 제1 도펀트 농도와 동일하거나 높을 수 있다.
제3 도전형 반도체층(128)의 두께는 1nm 내지 10nm일 수 있다. 제3 도전형 반도체층(128)의 두께가 10nm보다 큰 경우에는 정공의 주입 효율이 떨어지는 문제가 있다. 따라서, 제3 도전형 반도체층(128)의 두께는 제1 도전형 반도체층(124) 및 제2 도전형 반도체층(127)보다 작을 수 있다.
실시 예에 따르면, 제3 도전형 반도체층(128)은 터널 효과에 의해 정공의 주입 효율이 개선되므로 알루미늄 조성을 우물층(126a)보다 상대적으로 높게 제어할 수도 있다.
제3 도전형 반도체층(128)의 알루미늄 조성은 20% 내지 70%일 수 있다. 알루미늄의 조성이 20% 이상인 경우 우물층(126a)과의 알루미늄 조성 차이가 줄어들어 광 흡수가 개선될 수 있다. 또한, 알루미늄의 조성이 70% 이하인 경우 동작 전압이 높아져 광 출력이 감소하는 것을 개선할 수 있다.
실시 예에 따르면, 제2 도전형 반도체층(127)은 활성층(126)에서 멀어지는 방향으로 제2-2 도전형 반도체층(127b)에서는 균일한 알루미늄 조성을 갖다가 제2-1 도전형 반도체층(127a)에서 점차 알루미늄 조성이 감소할 수 있다. 또한, 제3 도전형 반도체층(128)도 두께 방향으로 알루미늄 조성이 감소할 수 있다.
제2-1 도전형 반도체층(127a)의 알루미늄 조성의 감소폭은 제3 도전형 반도체층(128)의 감소폭과 상이할 수도 있고 동일할 수도 있다. 그러나, 이에 한정되는 것은 아니고 제3 도전형 반도체층(128)은 알루미늄 조성이 일정할 수도 있다.
실시 예에 따르면, 제3 도전형 반도체층의 알루미늄 조성(P3)은 우물층의 알루미늄 조성(P10) 및 중간층의 알루미늄 조성(P4) 보다 낮을 수 있다. 이 경우 제2 전극과의 오믹 저항을 효과적으로 낮출 수 있다. 그러나, 반드시 이에 한정하는 것은 아니고 후술하는 바와 같이 제3 도전형 반도체층의 알루미늄 조성은 다양하게 변형될 수 있다.
도 2b는 본 발명의 제1 실시 예에 따른 반도체 구조물의 심스 데이터이고, 도 2c는 알루미늄의 이온 강도를 보여주는 도면이다.
도 2b 및 도 2c를 참조하면, 반도체 구조물은 제1 도전형 반도체층(124)에서 제2 도전형 반도체층(127)으로 갈수록 알루미늄(Al), 갈륨(Ga), 제1 도펀트, 제2 도펀트의 조성이 변화할 수 있다. 제1 도펀트는 실리콘(Si)일 수 있고 제2 도펀트는 마그네슘(Mg)일 수 있으나 반드시 이에 한정하지 않는다.
심스 (SIMS) 데이터는 비행 시간형 2차 이온 질량 분석법(TOF-SIMS, Time-of-Flight Secondary Ion Mass Spectrometry)에 의한 분석 데이터일 수 있다.
심스 (SIMS) 데이터는 1차 이온을 타켓의 표면에 조사하여 방출되는 2차 이온의 개수를 카운팅하여 분석할 수 있다. 이때, 1차 이온은 O2
+, Cs+ Bi+등에서 선택될 수 있고, 가속 전압은 20 내지 30 keV 내에서 조절될 수 있고, 조사 전류는 0.1 pA 내지 5.0pA에서 조절될 수 있고, 조사 면적은 20nm×20nm일 수 있다.
심스 (SIMS) 데이터는 제2 도전형 반도체층의 표면(S0, 깊이가 0인 지점)에서 제1 도전형 반도체층 방향으로 점차 식각하면서 2차 이온 질량 스펙트럼을 수집할 수 있다. 2차 이온은 반도체층을 이루는 구성원소일 수 있다. 예시적으로 2차 이온은 알루미늄, 갈륨, 제1도펀트, 및 제2도펀트일 수 있으나 반드시 이에 한정하지 않는다.
다만 이에 한정하지 않고 AlGaN 기반 및/또는 GaN 기반의 반도체 물질, 제1 및 제2 도펀트 물질을 검출하기 위한 측정 조건이 다양하게 이용될 수 있다.
또한, 심스 분석에 의한 결과는 2차 이온의 강도 또는 2차 이온의 도핑 농도에 대한 스펙트럼으로 해석할 수 있는데, 2차 이온 강도 또는 도핑 농도의 해석에 있어서 0.9배 이상 내지 1.1배 이내에 발생하는 노이즈를 포함할 수 있다. 따라서, "같다/동일하다" 라는 기재는 하나의 특정 2차 이온 강도 또는 도핑 농도의 0.9배 이상 내지 1.1배 이내의 노이즈를 포함하여 지칭할 수 있다. 또한, 각 지점에서의 도핑 농도 및 이온 강도는 증감하는 노이즈 중에서 가장 높은 지점을 의미할 수 있다.
도 2b의 심스 (SIMS) 데이터상에서 알루미늄은 2차 이온 강도에 대한 스펙트럼 데이터이고, 제1 도펀트 및 제2 도펀트는 도핑 농도를 측정한 데이터이다. 즉, 도 2b는 심스 데이터와 도핑 농도 데이터를 하나의 도면에 표현한 그래프이다.
도 2b를 참조하면, 알루미늄 이온 강도의 스펙트럼과 제1 및 제2 도펀트의 농도 스펙트럼의 일부가 교차하는 것으로 도시되었으나 이온 강도와 도펀트의 농도에 대한 데이터는 서로 독립적인 관계를 가질 수 있다.
예시적으로 표면(S0)의 근처에서 알루미늄의 이온 강도와 제2 도펀트의 도핑 농도가 교차하는 것으로 표현되었으나, 도핑 농도의 기준점(도면의 좌측 Y축에서 가장 낮은 지점)을 보다 낮게 설정하는 경우 데이터 상에서 도핑 농도 그래프는 낮아질 수 있다. 예를 들면, 제2 도펀트 도핑 농도의 기준점을 1.00E+14에서 1.00E+12로 낮춘다면 제2 도펀트의 농도 그래프는 도면상에서 낮아지게 되므로 제2 도펀트 데이터와 알루미늄 데이터는 교차하지 않을 수도 있다.
제1 도펀트 및 제2 도펀트의 농도를 측정하는 방법은 특별히 한정하지 않는다. 또한, 본 실시 예에서 종축(Y축)은 로그 스케일로 변환하여 도시하였다.
알루미늄의 이온 강도는 표면에서 깊이가 증가할수록 점차 증가하다가 최고 강도 지점 이후에서는 증감을 반복하는 것을 알 수 있다. GaN 기반의 반도체 물질에서 Al 원자는 Ga 원자를 치환하여 AlGaN 물질을 구성하기 때문에 도시하지는 않았으나 갈륨의 이온 강도는 알루미늄의 이온 강도와 서로 대칭을 이룰 수 있다.
실시 예에 따른 이온 강도는 측정 조건에 따라 증감될 수 있다. 그러나, 1차 이온의 강도가 증가하면 2차 이온(알루미늄 이온)의 강도 그래프는 전체적으로 증가하고, 1차 이온의 강도가 감소하면 2차 이온(알루미늄 이온)의 강도 그래프는 전체적으로 감소할 수 있다. 따라서, 두께 방향으로 이온 강도의 변화는 측정 조건을 변경하여도 유사할 수 있다.
제1지점(P1)의 알루미늄의 이온 강도는 반도체 구조물(120)내에서 가장 높을 수 있다. 제1지점(P1)의 알루미늄의 이온 강도가 가장 높기 때문에 제1 캐리어가 제2 도전형 반도체층에서 제2 캐리어와 비발광성 재결합하는 것을 방지할 수 있다. 따라서, 반도체 소자의 광출력을 개선할 수 있다. 제1지점(P1)은 차단층(129)의 제1-1 구간(129a)에 대응되는 영역일 수 있으나, 반드시 이에 한정하지는 않는다.
제2지점(P2)의 제2 이온 강도는 제1지점(P1)에서 제1 방향(D2)으로 연장되는 알루미늄의 이온 강도의 지점 중 알루미늄의 이온 강도가 가장 높은 지점일 수 있다.
제2지점(P2)은 제1 도전형 반도체층(124) 내에서 알루미늄의 이온 강도가 가장 높은 지점일 수 있고, 제1 도전형 반도체층(124)에서 활성층(126)과 가장 인접한 지점일 수 있다.
제2지점(P2)은 도 2a의 제어층일 수 있다. 그러나, 반드시 이에 한정되는 것은 아니고 제2지점(P2)은 제1 도전형 반도체층과 활성층 사이에 배치되는 지점일 수 있다.
제3지점(P3)의 제3 이온 강도는 제1지점(P1)에서 반도체 구조물(120)의 표면을 향하는 방향(D1)으로 알루미늄의 이온 강도가 가장 낮은 지점일 수 있다. 제3지점(P3)은 반도체 구조물의 표면에서의 이온 강도일 수 있다. 실시 예에 따르면, 반도체 구조물의 표면에서 AlGaN 조성을 가지므로 자외선 광의 추출 효율이 개선될 수 있다.
제4지점(P4)의 제4 이온 강도는 제2지점(P2)에서 제1 방향으로 알루미늄의 이온 강도가 가장 낮은 지점일 수 있다. 제4지점(P4)은 반도체 소자의 공정 중에 있어서 Laser Lift-Off(이하 LLO) 공정이 적용되는 경우, 활성층으로 레이저가 침투하지 못하도록 레이저를 흡수함으로써 LLO 공정에 의한 활성층이 손상되는 것을 방지할 수 있다.
또한, 제4지점(P4)은 제1전극이 접할 경우, 제1전극과 제4지점(P4) 사이의 저항을 낮추어 반도체 구조물로 주입하는 전류의 주입 효율을 개선할 수 있다. 이러한 관점에서 제4지점(P4)의 알루미늄의 이온 강도는 제2지점(P2)에서 제1 방향(D2)으로 가장 낮게 배치될 수 있다.
제5지점(P5)은 제2지점(P2)과 제4지점(P4) 사이에 배치될 수 있다. 제5지점(P5)의 알루미늄의 이온 강도는 제2지점(P2)과 제4지점(P4) 사이의 이온 강도를 가질 수 있다. 제5지점(P5)은 하나의 특정 지점일 수 있고, 하나의 층을 구성할 수 있다. 제4지점(P4)을 통해 주입되는 전류가 제5지점(P5)을 포함하는 층에서 균일하게 분포될 수 있도록 하여 활성층으로 주입되는 전류의 면적에 대한 밀도가 균일하도록 개선될 수 있다.
제10지점(P10)은 제1지점(P1)과 제3지점(P3) 사이에 배치될 수 있고, 제1지점(P1)과 제2지점(P2) 사이에서 가장 작은 이온강도를 갖는 지점과 동일한 알루미늄의 이온 강도를 가질 수 있다. 즉, 제10지점(P10)은 우물층의 이온 강도과 동일한 이온 강도를 가질 수 있다.
제11지점(P11)은 제4지점(P4)에서 제1 방향(D2)으로 이격되어 배치될 수 있다. 또한, 제1 방향(D2)으로 알루미늄 이온이 증가하는 제12구간(P12) 및 제13구간(P13)을 포함할 수 있다. 이때, 제13구간(P13)에는 제1 도펀트가 도핑되지 않을 수 있다.
도 2a 및 도 2c를 참조하면, 제1 도펀트(예: Si)의 도핑 곡선은 제1 도전형 반도체층이 배치된 제1구간(S1)에서 일정할 수 있다. 이때, 제1 도전형 반도체층 구간(S1)내에는 도핑 농도가 상대적으로 낮은 제2구간(S2)이 배치될 수 있다. 제2구간(S2)은 제1-1 도전형 반도체층에서 중간층으로 조성이 변화할 때 성장 조건이 달라지면서 제1 도펀트의 도핑 농도가 변화하여 형성될 수 있다. 제2구간(S2)은 알루미늄 이온 강도의 제4지점(P4)과 대응하는 지점일 수 있다.
제1 도펀트(예: Si)의 도핑 곡선은 제1 도전형 반도체층과 활성층과 사이에서 도핑 농도가 낮아지는 제3구간(S3)을 가질 수 있다. 제3구간(S3)은 제1 도펀트가 도핑되지 않는 언도프층일 수 있다. 제3구간(S3)은 제1 도펀트가 상대적으로 적게 도핑되므로 저항이 높아져 전류를 분산시키는 역할을 수행할 수 있다.
제1 도펀트(예: Si)의 도핑 곡선은 활성층 내에서 농도가 증감하는 제4구간(S4)을 포함할 수 있다. 제4구간(S4)내에서 제1 도펀트는 활성층의 장벽층에 도핑될 수 있다. 따라서, 활성층으로 주입하는 제1 캐리어의 주입 효율이 개선될 수 있고, 활성층에서 제1 캐리어와 제2 캐리어가 발광성 재결합하는 효율이 개선될 수 있다. 또한, 동작 전압(Vf)을 낮출 수 있다. 제4구간(S4)내에서 제1 도펀트의 피크는 활성층의 피크(P61)에 대응될 수 있다. 활성층의 피크(P61)의 강도는 밸리(P62)의 강도보다 낮을 수 있다.
제1 도펀트의 도핑 곡선은 제2 도전형 반도체층에서 도핑 농도가 낮아지는 제5구간(S5), 및, 표면(S0)에서 다시 도핑 농도가 상승하는 제6구간(S6)을 포함할 수 있다. 이때, 표면(S0)에서의 도핑 농도는 제1구간(S1)의 도핑 농도와 유사하거나 더 높은 것을 확인할 수 있다. 따라서, 실시 예에 따른 반도체 구조물은 제2 전극이 배치되는 표면층이 n-AlGaN임을 확인할 수 있다.
제2 도펀트(예: Mg)의 도핑 농도는 표면(S0)에서 가장 높고, 표면에서 멀어질수록 점차 감소할 수 있다. 반도체 구조물의 표면(S0)에서 제2 도펀트(예: Mg)의 도핑 농도는 제1 도펀트(예: Si)의 도핑 농도보다 더 높은 것을 확인할 수 있다. 이는 반도체 구조물의 표면에서 제2 도펀트를 도핑하지 않았음에도 불구하고 메모리 효과에 의해 제2 도펀트의 도핑 농도가 높아지기 때문일 수 있다.
제2 도펀트는 표면에서 가까워질수록 도핑 농도가 증가하나, 일정 구간에서는 표면에 가까워질수록 도핑 농도가 감소하는 구간(M2과 M3 사이 구간)을 포함할 수 있다. 이러한 역전 구간에 의하면 제2 도펀트의 농도가 줄어들어 저항이 높아지므로 정공의 분산 효율을 개선할 수 있다.
제2 도펀트는 제2 도전형 반도체층의 모든 영역 및 활성층의 일부 영역에 존재할 수 있으나 반드시 이에 한정하지 않는다. 제2 도펀트는 제2 도전형 반도체층 내에만 배치할 수 있으나, 활성층까지 확산될 수 있다. 따라서, 활성층으로 주입되는 제2 도펀트의 주입 효율이 개선될 수 있다. 하지만 제2 도펀트가 제1 도전형 반도체층까지 확산될 경우 반도체 소자의 누설 전류 및/또는 제1 및 제2 캐리어의 비발광 재결합이 발생하여 반도체 소자의 신뢰성 및/또는 발광효율이 저하될 수 있다.
도 3는 본 발명의 제2 실시 예에 따른 반도체 구조물의 알루미늄 조성비를 나타낸 그래프이고, 도 4는 본 발명의 제3 실시 예에 따른 반도체 구조물의 알루미늄 조성비를 나타낸 그래프이고, 도 5는 본 발명의 제4 실시 예에 따른 반도체 구조물의 알루미늄 조성비를 나타낸 그래프이다.
도 3을 참조하면, 제3 도전형 반도체층(128)의 알루미늄 조성(P3)은 우물층(126a)의 알루미늄 조성(P1)보다는 높고 중간층(124c)의 알루미늄 조성(P4)보다는 낮을 수 있다. 우물층(126a)의 알루미늄 조성은 생성하는 광의 파장에 따라 제어될 수 있다. 예시적으로 UVB 파장을 생성하기 위해 알루미늄 조성은 20% 내지 30%일 수 있고, UVC 파장을 생성하기 위해 알루미늄 조성은 30% 내지 50%일 수 있다. 이때, 제3 도전형 반도체층(128)의 알루미늄 조성(P3)이 우물층(126a)의 알루미늄 조성(P1)보다 높도록 제어하는 경우 제3 도전형 반도체층(128)의 광 흡수를 개선할 수 있다.
중간층(124c)의 알루미늄 조성은 50% 내지 70%일 수 있다. 따라서, 제3 도전형 반도체층(128)의 알루미늄 조성(P3)이 중간층(124c)의 알루미늄 조성(P4)보다는 낮게 설정되는 경우 과도한 동작 전압 상승을 방지할 수 있다.
실시 예에 따르면 터널 효과에 의해 알루미늄의 조성이 증가하여도 정공 주입 효율이 개선되므로 제3 도전형 반도체층(128)의 알루미늄 조성(P3)을 우물층(126a)의 알루미늄 조성(P1)보다 높여 광 흡수율을 개선할 수 있다.
오믹 특성 관점에서 제3 도전형 반도체층(128)의 알루미늄의 조성은 낮을수록 유리하고 광 흡수 관점에서 알루미늄 조성이 높은 것이 유리할 수 있다. 따라서, 제3 도전형 반도체층의 알루미늄 조성(P3)은 우물층의 알루미늄 조성(P1)보다 높고 제2 도전형 반도체층(127) 또는 중간층(124c)의 알루미늄 조성보다는 낮아지도록 제어할 수 있다. 이때, 제2-1 도전형 반도체층(127a)은 알루미늄 조성이 연속적으로 변화하도록 기울기를 가질 수 있다.
도 4를 참조하면, 제3 도전형 반도체층(128)의 알루미늄 조성(P3)과 제2 도전형 반도체층(127)의 알루미늄 조성 변화는 불연속적일 수 있다. 제2 도전형 반도체층(127)과 제3 도전형 반도체층의 알루미늄 조성(P3)의 차이가 크지 않은 경우 알루미늄의 조성을 줄이는 과정 없이 제3 도전형 반도체층(128)을 형성할 수 있다.
또한, 도 5를 참조하면, 제2 도전형 반도체층(127)과 제3 도전형 반도체층(128)은 알루미늄 조성이 동일할 수도 있다. 전술한 바와 같이 높은 경우 제3 도전형 반도체층(128)은 알루미늄 조성이 높아져도 터널 효과에 의해 정공 주입 효율이 개선될 수 있다. 따라서, 광 추출 관점에서 제2 도전형 반도체층(127)과 제3 도전형 반도체층(128)은 알루미늄 조성을 동일하게 제어하는 것이 유리할 수 있다.
이 경우 적정한 오믹 저항을 갖기 위해 도펀트의 도핑 농도는 최대로 하고 제3 도전형 반도체층(128)의 두께는 최소로 제작할 수 있다.
도 6은 본 발명의 일 실시 예에 따른 반도체 소자의 개념도이고, 도 7a 및 도 7b는 리세스의 개수 변화에 따라 광 출력이 향상되는 구성을 설명하기 위한 도면이고, 도 8은 도 6의 A부분 확대도이다.
도 6을 참고하면, 실시 예에 따른 반도체 소자는 제1 도전형 반도체층(124), 제2 도전형 반도체층(127), 활성층(126)을 포함하는 반도체 구조물(120)과, 제1 도전형 반도체층(124)과 전기적으로 연결되는 제1 전극(142)과, 제2 도전형 반도체층(127)과 전기적으로 연결되는 제2 전극(146)을 포함한다.
제1 도전형 반도체층(124), 활성층(126), 및 제2 도전형 반도체층(127)은 제1방향(Y방향)으로 배치될 수 있다. 이하에서는 각 층의 두께 방향인 제1방향(Y방향)을 수직방향으로 정의하고, 제1방향(Y방향)과 수직한 제2방향(X방향)을 수평방향으로 정의한다.
실시 예에 따른 반도체 구조물(120)은 전술한 구조가 모두 적용될 수 있다. 반도체 구조물(120)은 제2 도전형 반도체층(127) 및 활성층(126)을 관통하여 제1 도전형 반도체층(124)의 일부 영역까지 배치되는 복수 개의 리세스(R1)를 포함할 수 있다.
제1 전극(142)은 리세스(R1)의 상면에 배치되어 제1 도전형 반도체층(124)과 전기적으로 연결될 수 있다. 제2 전극(146)은 제2 도전형 반도체층(127)의 하부에 배치될 수 있다.
제1 전극(142)과 제2 전극(146)은 오믹전극일 수 있다. 제1 전극(142)과 제2 전극(146)은 ITO(indium tin oxide), IZO(indium zinc oxide), IZTO(indium zinc tin oxide), IAZO(indium aluminum zinc oxide), IGZO(indium gallium zinc oxide), IGTO(indium gallium tin oxide), AZO(aluminum zinc oxide), ATO(antimony tin oxide), GZO(gallium zinc oxide), IZON(IZO Nitride), AGZO(Al-Ga ZnO), IGZO(In-Ga ZnO), ZnO, IrOx, RuOx, NiO, RuOx/ITO, Ni/IrOx/Au, 또는 Ni/IrOx/Au/ITO, Ag, Ni, Cr, Ti, Al, Rh, Pd, Ir, Sn, In, Ru, Mg, Zn, Pt, Au, Hf 중 적어도 하나를 포함하여 형성될 수 있으나, 이러한 재료에 한정되는 않는다. 예시적으로, 제1 전극은 복수의 금속층(예: Cr/Al/Ni)을 갖고, 제2 전극은 ITO일 수 있다.
도 7a를 참조하면, GaN 기반의 반도체 구조물(120)이 자외선을 발광하는 경우 알루미늄을 포함할 수 있고, 반도체 구조물(120)의 알루미늄 조성이 높아지면 반도체 구조물(120) 내에서 전류 분산 특성이 저하될 수 있다. 또한, 활성층(126)이 Al을 포함하여 자외선을 발광하는 경우, 활성층(126)은 GaN 기반의 청색 발광 소자에 비하여 측면으로 방출하는 광량이 증가하게 된다(TM 모드). 이러한 TM모드는 자외선 반도체 소자에서 주로 발생할 수 있다.
자외선 반도체 소자는 청색 GaN 기반의 반도체 소자에 비해 전류 분산 특성이 떨어진다. 따라서, 자외선 반도체 소자는 청색 GaN 기반의 반도체 소자에 비해 상대적으로 많은 제1 전극(142)을 배치할 필요가 있다.
알루미늄의 조성이 높아지면 전류 분산 특성이 악화될 수 있다. 도 7a를 참고하면, 각각의 제1 전극(142)의 인근지점에만 전류가 분산되며, 거리가 먼 지점에서는 전류밀도가 급격히 낮아질 수 있다. 따라서, 유효 발광 영역(P2)이 좁아질 수 있다.
유효 발광 영역(P2)은 전류 밀도가 가장 높은 제1 전극(142)의 중심에서의 전류 밀도를 기준으로 전류 밀도가 40% 이하인 경계지점까지의 영역으로 정의할 수 있다. 예를 들어, 유효 발광 영역(P2)은 리세스(R1)의 중심으로부터 40㎛이내의 범위에서 주입 전류의 레벨, Al의 조성에 따라 조절될 수 있다.
저전류밀도영역(P3)은 전류밀도가 낮아서 방출되는 광량이 유효 발광 영역(P2)에 비해 적을 수 있다. 따라서, 전류밀도가 낮은 저전류밀도영역(P3)에 제1 전극(142)을 더 배치하거나 반사구조를 이용하여 광 출력을 향상시킬 수 있다.
일반적으로 청색광을 방출하는 GaN 기반의 반도체 소자의 경우 상대적으로 전류 분산 특성이 우수하므로 리세스(R1) 및 제1 전극(142)의 면적을 최소화하는 것이 바람직하다. 리세스(R1)와 제1 전극(142)의 면적이 커질수록 활성층(126)의 면적이 작아지기 때문이다. 그러나, 실시 예의 경우 알루미늄의 조성이 높아서 전류 분산 특성이 상대적으로 떨어지므로, 활성층(126)의 면적을 희생하더라도 제1 전극(142)의 면적 및/또는 개수를 증가시켜 저전류밀도영역(P3)을 줄이거나, 또는 저전류밀도영역(P3)에 반사구조를 배치하는 것이 바람직할 수 있다.
도 7b를 참고하면, 리세스(R1)의 개수가 48개로 증가하는 경우 리세스(R1)는 가로 세로 방향으로 일직선으로 배치하지 않고, 지그재그로 배치될 수 있다. 이 경우 저전류밀도영역(P3)의 면적을 좁힐 수 있기 때문에 대부분의 활성층(126)이 발광에 참여할 수 있다.
자외선 발광소자에서는 반도체 구조물(120) 내에서 전류 확산 특성이 저하될 수 있고, 반도체 구조물(120) 내에서 균일한 전류 밀도 특성을 확보하여 반도체 소자의 전기적, 광학적 특성 및 신뢰성을 확보하기 위해 원활한 전류 주입이 필요하다. 따라서, 원활한 전류 주입을 위해 일반적인 GaN 기반의 반도체 구조물(120)에 비해 상대적으로 많은 개수의 리세스(R1)를 형성하여 제1 전극(142)을 배치할 수 있다.
도 8을 참조하면, 제1절연층(131)은 제1 전극(142)을 활성층(126) 및 제2 도전형 반도체층(127)과 전기적으로 절연시킬 수 있다. 또한, 제1절연층(131)은 제2 전극(146) 및 제2 도전층(150)을 제1 도전층(165)과 전기적으로 절연시킬 수 있다. 또한, 제1절연층(131)은 상기 반도체 소자의 공정 중에 상기 활성층(126)의 측면이 산화되는 것을 방지하는 기능을 할 수 있다.
제1절연층(131)은 SiO2, SixOy, Si3N4, SixNy, SiOxNy, Al2O3, TiO2, AlN 등으로 이루어진 군에서 적어도 하나가 선택되어 형성될 수 있으나, 이에 한정하지 않는다. 제1절연층(131)은 단층 또는 다층으로 형성될 수 있다. 예시적으로 제1절연층(131)은 은 Si 산화물이나 Ti 화합물을 포함하는 다층 구조의 DBR(distributed Bragg reflector) 일 수도 있다. 그러나, 반드시 이에 한정하지 않고 제1절연층(131)은 다양한 반사 구조를 포함할 수 있다.
제1절연층(131)이 반사기능을 수행하는 경우, 활성층(126)에서 측면을 향해 방출되는 광(L1)을 상향 반사시켜 광 추출 효율을 향상시킬 수 있다. 이 경우 리세스(R1)의 개수가 많아질수록 광 추출 효율은 더 효과적일 수 있다.
제1 전극(142)의 직경(W3)은 24㎛ 이상 50㎛ 이하일 수 있다. 이러한 범위를 만족하는 경우 전류 분산에 유리할 수 있고, 많은 개수의 제1 전극(142)을 배치할 수 있다. 제1 전극(142)의 직경(W3)이 24㎛보다 이상일 때, 제1 도전형 반도체층(124)에 주입되는 전류가 충분하게 확보할 수 있고, 50㎛이하일 때, 제1 도전형 반도체층(124)의 면적에 배치되는 복수 개의 제1 전극(142)의 수를 충분히 확보할 수 있고 전류 분산 특성을 확보할 수 있다.
리세스(R1)의 직경(W1)은 38㎛ 이상 60㎛ 이하일 수 있다. 리세스(R1)의 직경(W1)은 제2 도전형 반도체층(127)의 하부에 배치되어 리세스에서 가장 넓은 면적으로 정의할 수 있다. 상기 리세스(R1)의 직경(W1)은 상기 제2 도전형 반도체층(127)의 저면에 배치된 리세스(R1)의 직경일 수 있다.
리세스(R1)의 직경(W1)이 38㎛이상일 때, 리세스(R1) 내부에 배치되는 제1 전극(142)을 형성하는 것에 있어서, 상기 제1 전극(142)이 제1 도전형 반도체층(124)과 전기적으로 연결되기 위한 면적을 확보하기 위한 공정 마진을 확보할 수 있고, 60㎛이하일 때, 제1 전극(142)을 배치하기 위해 감소하는 활성층(126)의 볼륨을 방지할 수 있고, 따라서 발광 효율이 악화될 수 있다.
리세스(R1)의 경사각도(θ5)는 70도 내지 90도일 수 있다. 이러한 면적 범위를 만족하는 경우 상면에 제1 전극(142)을 형성하는데 유리할 수 있고, 많은 개수의 리세스(R1)를 형성할 수 있다.
경사각도(θ5)가 70도보다 작으면 제거되는 활성층(126)의 면적이 증가할 수 있지만, 상기 제1 전극(142)이 배치될 면적이 작아질 수 있다. 따라서 전류 주입 특성이 저하될 수 있고, 발광 효율이 저하될 수 있다. 따라서, 상기 리세스(R1)의 경사각도(θ5)를 이용하여 제1 전극(142)과 제2 전극(146)의 면적비를 조절할 수도 있다.
제2 전극(146)의 두께는 제1절연층(131)의 두께보다 얇을 수 있다. 따라서, 상기 제2 전극(146)을 감싸는 제2 도전층(150)과 제2 절연층(132)의 스텝 커버리지 특성을 확보할 수 있고, 상기 반도체 소자의 신뢰성을 개선할 수 있다. 제2 전극(146)은 제1절연층(131)과 1㎛ ~ 4㎛의 제1 이격 거리(S1)를 가질 수 있다. 1㎛ 이상의 이격 거리를 가질 경우, 제1 절연층(131) 사이에 제2 전극(146)을 배치하는 공정의 공정 마진을 확보할 수 있고, 따라서 반도체 소자의 전기적 특성, 광학적 특성 및 신뢰성이 개선될 수 있다. 이격 거리가 4㎛ 이하일 경우, 제2 전극(146)이 배치될 수 있는 전체 면적을 확보할 수 있고 반도체 소자의 동작 전압 특성을 개선할 수 있다.
제2 도전층(150)은 제2 전극(146)을 덮을 수 있다. 따라서, 제2 전극패드(166)와, 제2 도전층(150), 및 제2 전극(146)은 하나의 전기적 채널을 형성할 수 있다.
제2 도전층(150)은 제2 전극(146)을 완전히 감싸며 제1절연층(131)의 측면과 상면에 접할 수 있다. 제2 도전층(150)은 제1절연층(131)과 접착력이 좋은 물질로 이루어지며, Cr, Al, Ti, Ni, Au 등의 물질로 구성되는 군으로부터 선택되는 적어도 하나의 물질 및 이들의 합금으로 이루어질 수 있으며, 단일층 혹은 복수의 층으로 이루어질 수 있다.
제2 도전층(150)이 제1절연층(131)의 측면과 상면에 접하는 경우, 제2 전극(146)의 열적, 전기적 신뢰성을 향상할 수 있다. 또한, 제1절연층(131)과 제2 전극(146) 사이로 방출되는 광을 상부로 반사하는 반사 기능을 가질 수 있다.
제2 도전층(150)은 제1절연층(131)과 제2 전극(146) 사이의 제1 이격 거리(S1)에 배치될 수 있다. 제2 도전층(150)은 제1이격 거리(S1)에서 제2 전극(146)의 측면과 상면 및 제1절연층(131)의 측면과 상면에 접할 수 있다. 또한, 제1 이격 거리(S1) 내에서 제2 도전층(150)과 제2 도전형 반도체층(127)이 접촉하여 쇼트키 접합이 형성되는 영역이 배치될 수 있으며, 쇼트키 접합을 형성함으로써 전류 분산이 용이해질 수 있다. 다만 이에 한정하지 않고, 상기 제2 전극(146)과 상기 제2 도전형 반도체층(127) 사이의 저항보다 상기 제2 도전층(150)과 상기 제2 도전형 반도체층(127) 사이의 저항이 더 큰 구성 내에서 자유롭게 배치될 수 있다.
제2절연층(132)은 제2 전극(146), 제2 도전층(150)을 제1 도전층(165)과 전기적으로 절연시킬 수 있다. 제1 도전층(165)은 제2절연층(132)을 관통하여 제1 전극(142)과 전기적으로 연결될 수 있다. 상기 제2절연층(132)과 상기 제1절연층(131)은 서로 동일한 물질로 배치될 수 있고, 서로 다른 물질로 배치될 수 있다.
다시 도 6을 참고하면, 제2 도전층(150)은 제2 전극(146)과 제2 전극패드(166)를 전기적으로 연결할 수 있다.
제2 전극(146)은 제2 도전형 반도체층(127)에 직접 배치될 수 있다. 제2 도전형 반도체층(127)이 AlGaN인 경우 낮은 전기 전도도에 의해 정공 주입이 원활하지 않을 수 있다. 따라서, 제2 도전형 반도체층(127)의 Al 조성을 적절히 조절할 필요가 있다. 이에 대해서는 후술한다.
제2 도전층(150)은 Cr, Al, Ti, Ni, Au 등의 물질로 구성되는 군으로부터 선택되는 적어도 하나의 물질 및 이들의 합금으로 이루어질 수 있으며, 단일층 혹은 복수의 층으로 이루어질 수 있다.
반도체 구조물(120)의 하부면과 리세스(R1)의 형상을 따라 제1 도전층(165)과 접합층(160)이 배치될 수 있다. 제1 도전층(165)은 반사율이 우수한 물질로 이루어질 수 있다. 예시적으로 제1 도전층(165)은 알루미늄을 포함할 수 있다. 전극층(165)이 알루미늄을 포함하는 경우, 활성층(126)에서 기판(170) 방향으로 방출되는 광을 상부 반사하는 역할을 하여 광 추출 효율을 향상할 수 있다. 다만 이에 한정하지 않고, 제1 도전층(165)은 상기 제1 전극(142)과 전기적으로 연결되기 위한 기능을 제공할 수 있다. 상기 제1 도전층(165)이 반사율이 높은 물질, 예를 들어 알루미늄 및/또는 은(Ag)을 포함하지 않고 배치될 수 있고, 이러한 경우 상기 리세스(R1) 내에 배치되는 제1 전극(142)과 상기 제1 도전층(165) 사이, 제2 도전형 반도체층(127)과 상기 제1 도전층(165) 사이에는 반사율이 높은 물질로 구성되는 반사금속층(미도시)이 배치될 수 있다.
접합층(160)은 도전성 재료를 포함할 수 있다. 예시적으로 접합층(160)은 금, 주석, 인듐, 알루미늄, 실리콘, 은, 니켈, 및 구리로 구성되는 군으로부터 선택되는 물질 또는 이들의 합금을 포함할 수 있다.
기판(170)은 도전성 물질로 이루어질 수 있다. 예시적으로 기판(170)은 금속 또는 반도체 물질을 포함할 수 있다. 기판(170)은 전기 전도도 및/또는 열 전도도가 우수한 금속일 수 있다. 이 경우 반도체 소자 동작시 발생하는 열을 신속이 외부로 방출할 수 있다. 또한 상기 기판(170)이 도전성 물질로 구성되는 경우, 상기 제1 전극(142)은 상기 기판(170)을 통해 외부에서 전류를 공급받을 수 있다.
기판(170)은 실리콘, 몰리브덴, 실리콘, 텅스텐, 구리 및 알루미늄으로 구성되는 군으로부터 선택되는 물질 또는 이들의 합금을 포함할 수 있다.
반도체 구조물(120)의 상면과 측면에는 패시베이션층(180)이 배치될 수 있다. 패시베이션층(180)의 두께는 200nm 이상 내지 500nm 이하일 수 있다. 200nm이상일 경우, 소자를 외부의 수분이나 이물질로부터 보호하여 소자의 전기적, 광학적 신뢰성을 개선할 수 있고, 500nm 이하일 경우 반도체 소자에 인가되는 스트레스를 줄일 수 있고, 상기 반도체 소자의 광학적, 전기적 신뢰성이 저하되거나 반도체 소자의 공정 시간이 길어짐에 따라 반도체 소자의 단가가 높아지는 문제점을 개선할 수 있다.
반도체 구조물(120)의 상면에는 요철이 형성될 수 있다. 이러한 요철은 반도체 구조물(120)에서 출사되는 광의 추출 효율을 향상시킬 수 있다. 요철은 자외선 파장에 따라 평균 높이가 다를 수 있으며, UV-C의 경우 300 nm 내지 800 nm 정도의 높이를 갖고, 평균 500 nm 내지 600 nm 정도의 높이를 가질 때 광 추출 효율이 향상될 수 있다.
도 9는 본 발명의 다른 실시 예에 따른 반도체 소자의 개념도이고, 도 10은 도 9의 평면도이다.
도 9를 참조하면, 반도체 구조물(120)은 전술한 구성이 그대로 적용될 수 있다. 또한, 복수 개의 리세스(R1)는 제2 도전형 반도체층(127)과 활성층(126)을 관통하여 제1 도전형 반도체층(124)의 일부 영역까지 배치될 수 있다.
반도체 소자는 가장자리에 배치된 측면 반사부(Z1)를 포함할 수 있다. 측면 반사부(Z1)는 제2 도전층(150), 제1 도전층(165), 및 기판(170)이 두께 방향(Y축 방향)으로 돌출되어 형성될 수 있다. 도 11을 참조하면 측면 반사부(Z1)는 반도체 소자의 가장자리를 따라 배치되어, 반도체 구조물(120)을 감싸면서 배치될 수 있다.
측면 반사부(Z1)의 제2 도전층(150)은 활성층(126)보다 높게 돌출되어 활성층(126)에서 방출된 광을 상향 반사할 수 있다. 따라서, 별도의 반사층을 형성하지 않더라고 최외각에서 TM모드로 인해 수평 방향(X축 방향)으로 방출되는 광을 상향 반사할 수 있다.
측면 반사부(Z1)의 경사 각도는 90도 보다 크고 145도보다 작을 수 있다. 경사 각도는 제2 도전층(150)이 수평면(XZ 평면)과 이루는 각도일 수 있다. 각도가 90도 보다 작거나 145도 보다 큰 경우에는 측면을 향해 이동하는 광을 상측으로 반사하는 효율이 떨어질 수 있다.
도 11은 본 발명의 일 실시 예에 따른 반도체 소자 패키지의 개념도이고, 도 12는 본 발명의 일 실시 예에 따른 반도체 소자 패키지의 평면도이고, 도 13은 도 12의 변형예이다.
도 11을 참고하면, 반도체 소자 패키지는 홈(3)이 형성된 몸체(2), 몸체(2)에 배치되는 반도체 소자(1), 및 몸체(2)에 배치되어 반도체 소자(1)와 전기적으로 연결되는 한 쌍의 리드 프레임(5a, 5b)을 포함할 수 있다. 반도체 소자(1)는 전술한 구성을 모두 포함할 수 있다.
몸체(2)는 자외선 광을 반사하는 재질 또는 코팅층을 포함할 수 있다. 몸체(2)는 복수의 층(2a, 2b, 2c, 2d, 2e)을 적층하여 형성할 수 있다. 복수의 층(2a, 2b, 2c, 2d, 2e)은 동일한 재질일 수도 있고 상이한 재질을 포함할 수도 있다.
홈(3)은 반도체 소자에서 멀어질수록 넓어지게 형성되고, 경사면에는 단차(3a)가 형성될 수 있다.
투광층(4)은 홈(3)을 덮을 수 있다. 투광층(4)은 글라스 재질일 있으나, 반드시 이에 한정하지 않는다. 투광층(4)은 자외선 광을 유효하게 투과할 수 있는 재질이면 특별히 제한하지 않는다. 홈(3)의 내부는 빈 공간일 수 있다.
도 12를 참조하면, 반도체 소자(10)는 제1 리드프레임(5a)상에 배치되고, 제2 리드프레임(5b)과 와이어에 의해 연결될 수 있다. 이때, 제2 리드프레임(5b)은 제1 리드프레임의 측면을 둘러싸도록 배치될 수 있다.
도 13을 참조하면, 반도체 소자 패키지는 복수 개의 반도체 소자(10a, 10b, 10c, 10d)가 배치될 수도 있다. 이때, 리드프레임은 제1 내지 제5 리드프레임(5a, 5b, 5c, 5d, 5e)을 포함할 수 있다.
제1 반도체 소자(10a)는 제1 리드프레임(5a)상에 배치되고 제2 리드프레임(5b)과 와이어로 연결될 수 있다. 제2 반도체 소자(10b)는 제2 리드프레임(5b)상에 배치되고 제3 리드프레임(5c)과 와이어로 연결될 수 있다. 제3 반도체 소자(10c)는 제3 리드프레임(5c)상에 배치되고 제4 리드프레임(5d)과 와이어로 연결될 수 있다. 제4 반도체 소자(10d)는 제4 리드프레임(5d)상에 배치되고 제5 리드프레임(5e)과 와이어로 연결될 수 있다.
반도체 소자는 다양한 종류의 광원 장치에 적용될 수 있다. 예시적으로 광원장치는 살균 장치, 경화 장치, 조명 장치, 및 표시 장치 및 차량용 램프 등을 포함하는 개념일 수 있다. 즉, 반도체 소자는 케이스에 배치되어 광을 제공하는 다양한 전자 디바이스에 적용될 수 있다.
살균 장치는 실시 예에 따른 반도체 소자를 구비하여 원하는 영역을 살균할수 있다. 살균 장치는 정수기, 에어컨, 냉장고 등의 생활 가전에 적용될 수 있으나 반드시 이에 한정하지 않는다. 즉, 살균 장치는 살균이 필요한 다양한 제품(예: 의료 기기)에 모두 적용될 수 있다.
예시적으로 정수기는 순환하는 물을 살균하기 위해 실시 예에 따른 살균 장치를 구비할 수 있다. 살균 장치는 물이 순환하는 노즐 또는 토출구에 배치되어 자외선을 조사할 수 있다. 이때, 살균 장치는 방수 구조를 포함할 수 있다.
경화 장치는 실시 예에 따른 반도체 소자를 구비하여 다양한 종류의 액체를 경화시킬 수 있다. 액체는 자외선이 조사되면 경화되는 다양한 물질을 모두 포함하는 최광의 개념일 수 있다. 예시적으로 경화장치는 다양한 종류의 레진을 경화시킬 수 있다. 또는 경화장치는 매니큐어와 같은 미용 제품을 경화시키는 데 적용될 수도 있다.
조명 장치는 기판과 실시 예의 반도체 소자를 포함하는 광원 모듈, 광원 모듈의 열을 발산시키는 방열부 및 외부로부터 제공받은 전기적 신호를 처리 또는 변환하여 광원 모듈로 제공하는 전원 제공부를 포함할 수 있다. 또한, 조명 장치는, 램프, 해드 램프, 또는 가로등 등을 포함할 수 있다.
표시 장치는 바텀 커버, 반사판, 발광 모듈, 도광판, 광학 시트, 디스플레이 패널, 화상 신호 출력 회로 및 컬러 필터를 포함할 수 있다. 바텀 커버, 반사판, 발광 모듈, 도광판 및 광학 시트는 백라이트 유닛(Backlight Unit)을 구성할 수 있다.
반사판은 바텀 커버 상에 배치되고, 발광 모듈은 광을 방출할 수 있다. 도광판은 반사판의 전방에 배치되어 발광 모듈에서 발산되는 빛을 전방으로 안내하고, 광학 시트는 프리즘 시트 등을 포함하여 이루어져 도광판의 전방에 배치될 수 있다. 디스플레이 패널은 광학 시트 전방에 배치되고, 화상 신호 출력 회로는 디스플레이 패널에 화상 신호를 공급하며, 컬러 필터는 디스플레이 패널의 전방에 배치될 수 있다.
반도체 소자는 표시장치의 백라이트 유닛으로 사용될 때 에지 타입의 백라이트 유닛으로 사용되거나 직하 타입의 백라이트 유닛으로 사용될 수 있다.
반도체 소자는 상술한 발광 다이오드 외에 레이저 다이오드일 수도 있다.
레이저 다이오드는, 발광소자와 동일하게, 상술한 구조의 제1 도전형 반도체층과 활성층 및 제2 도전형 반도체층을 포함할 수 있다. 그리고, p-형의 제1 도전형 반도체와 n-형의 제2 도전형 반도체를 접합시킨 뒤 전류를 흘러주었을 때 빛이 방출되는 electro-luminescence(전계발광) 현상을 이용하나, 방출되는 광의 방향성과 위상에서 차이점이 있다. 즉, 레이저 다이오드는 여기 방출(stimulated emission)이라는 현상과 보강간섭 현상 등을 이용하여 하나의 특정한 파장(단색광, monochromatic beam)을 가지는 빛이 동일한 위상을 가지고 동일한 방향으로 방출될 수 있으며, 이러한 특성으로 인하여 광통신이나 의료용 장비 및 반도체 공정 장비 등에 사용될 수 있다.
수광 소자로는 빛을 검출하여 그 강도를 전기 신호로 변환하는 일종의 트랜스듀서인 광 검출기(photodetector)를 예로 들 수 있다. 이러한 광 검출기로서, 광전지(실리콘, 셀렌), 광 출력전 소자(황화 카드뮴, 셀렌화 카드뮴), 포토 다이오드(예를 들어, visible blind spectral region이나 true blind spectral region에서 피크 파장을 갖는 PD), 포토 트랜지스터, 광전자 증배관, 광전관(진공, 가스 봉입), IR(Infra-Red) 검출기 등이 있으나, 실시 예는 이에 국한되지 않는다.
또한, 광검출기와 같은 반도체 소자는 일반적으로 광변환 효율이 우수한 직접 천이 반도체(direct bandgap semiconductor)를 이용하여 제작될 수 있다. 또는, 광검출기는 구조가 다양하여 가장 일반적인 구조로는 p-n 접합을 이용하는 pin형 광검출기와, 쇼트키접합(Schottky junction)을 이용하는 쇼트키형 광검출기와, MSM(Metal Semiconductor Metal)형 광검출기 등이 있다.
포토 다이오드(Photodiode)는 발광소자와 동일하게, 상술한 구조의 제1 도전형 반도체층과 활성층 및 제2 도전형 반도체층을 포함할 수 있고, pn접합 또는 pin 구조로 이루어진다. 포토 다이오드는 역바이어스 혹은 제로바이어스를 가하여 동작하게 되며, 광이 포토 다이오드에 입사되면 전자와 정공이 생성되어 전류가 흐른다. 이때 전류의 크기는 포토 다이오드에 입사되는 광의 강도에 거의 비례할 수 있다.
광전지 또는 태양 전지(solar cell)는 포토 다이오드의 일종으로, 광을 전류로 변환할 수 있다. 태양 전지는, 발광소자와 동일하게, 상술한 구조의 제1 도전형 반도체층과 활성층 및 제2 도전형 반도체층을 포함할 수 있다.
또한, p-n 접합을 이용한 일반적인 다이오드의 정류 특성을 통하여 전자 회로의 정류기로 이용될 수도 있으며, 초고주파 회로에 적용되어 발진 회로 등에 적용될 수 있다.
또한, 상술한 반도체 소자는 반드시 반도체로만 구현되지 않으며 경우에 따라 금속 물질을 더 포함할 수도 있다. 예를 들어, 수광 소자와 같은 반도체 소자는 Ag, Al, Au, In, Ga, N, Zn, Se, P, 또는 As 중 적어도 하나를 이용하여 구현될 수 있으며, p형이나 n형 도펀트에 의해 도핑된 반도체 물질이나 진성 반도체 물질을 이용하여 구현될 수도 있다.
이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
Claims (10)
- 제1 도전형 반도체층, 제2 도전형 반도체층, 및 상기 제1 도전형 반도체층과 상기 제2 도전형 반도체층 사이에 배치되는 활성층을 포함하는 반도체 구조물;상기 제1 도전형 반도체층과 전기적으로 연결되는 제1 전극; 및상기 제2 도전형 반도체층과 전기적으로 연결되는 제2 전극을 포함하고,상기 반도체 구조물은 상기 제2 도전형 반도체층과 상기 제2 전극 사이에 배치되는 제3 도전형 반도체층을 포함하고,상기 제1 도전형 반도체층은 제1 도펀트를 포함하고,상기 제2 도전형 반도체층은 제2 도펀트를 포함하고,상기 제3 도전형 반도체층은 상기 제1 도펀트와 상기 제2 도펀트를 포함하고,상기 제3 도전형 반도체층에 도핑된 제1 도펀트와 제2 도펀트의 농도비는 0.01:1.0 내지 0.8:1.0인 반도체 소자.
- 제1항에 있어서,상기 반도체 구조물은 상기 제1 도전형 반도체층과 활성층의 사이에서 상기 제1 도펀트가 도핑되는 않는 언도프 구간을 포함하는 반도체 소자.
- 제1항에 있어서,상기 반도체 구조물은 상기 제2 전극에 가까워질수록 상기 제2 도펀트의 도핑 농도가 작아지는 역전 구간을 갖는 반도체 소자.
- 제1항에 있어서,상기 제1 도전형 반도체층, 활성층, 제2 도전형 반도체층, 및 제3 도전형 반도체층은 알루미늄을 포함하고,상기 제3 도전형 반도체층의 알루미늄 조성은 상기 활성층, 및 제1 도전형 반도체층의 알루미늄 조성보다 높고,상기 제3 도전형 반도체층의 알루미늄 조성은 상기 활성층, 및 제1 도전형 반도체층의 알루미늄 조성보다 낮고,상기 활성층은 자외선 파장대의 광을 생성하는 반도체 소자.
- 제1항에 있어서,상기 제3 도전형 반도체층의 제1 도펀트 농도는 1×1018cm-3 내지 2×1020cm- 3 이고,상기 제3 도전형 반도체층의 제1 도펀트 농도는 상기 제1 도전형 반도체층의 제1 도펀트 농도보다 높고,상기 제3 도전형 반도체층에서 제2 도펀트의 농도는 1×1019cm-3 내지 2×1021cm-3 인 반도체 소자.
- 제4항에 있어서,상기 제3 도전형 반도체층의 알루미늄 조성은 상기 활성층, 및 제1 도전형 반도체층의 알루미늄 조성보다 높은 반도체 소자.
- 제4항에 있어서,상기 제3 도전형 반도체층의 알루미늄 조성은 상기 활성층, 및 제1 도전형 반도체층의 알루미늄 조성보다 낮은 반도체 소자.
- 제1항에 있어서,상기 제1 도전형 반도체층은 제1-1 도전형 반도체층, 제1-2 도전형 반도체층, 및 상기 제1-1 도전형 반도체층과 상기 제1-2 도전형 반도체층 사이에 배치되는 중간층을 포함하고,상기 중간층의 알루미늄 조성은 상기 제1-1 도전형 반도체층과 상기 제1-2 도전형 반도체층의 알루미늄 조성보다 낮은 반도체 소자.
- 제8항에 있어서,상기 중간층의 알루미늄 조성은 상기 활성층의 우물층의 알루미늄 조성보다 높고,상기 제3 도전형 반도체층의 알루미늄 조성은 상기 우물층의 알루미늄 조성보다 높고 상기 중간층의 알루미늄 조성보다 낮은 반도체 소자.
- 제1항에 있어서,상기 제1 전극과 전기적으로 연결되는 제1 도전층,상기 제2 전극과 전기적으로 연결되는 제2 도전층,상기 제1 도전층과 제2 도전층 사이에 배치되는 제2 절연층, 및상기 제2 도전층의 하부에 배치되는 도전성 기판을 포함하고,상기 반도체 구조물은 상기 제3 도전형 반도체층, 제2 도전형 반도체층, 및 상기 활성층을 관통하여 상기 제1 도전형 반도체층의 일부 영역까지 배치되는 복수 개의 리세스를 포함하고,상기 제1 전극은 상기 리세스의 내부에 배치되고,상기 제2 전극은 상기 제3 도전형 반도체층에 접촉하는 반도체 소자.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/766,172 US11227973B2 (en) | 2017-11-24 | 2018-11-26 | Semiconductor device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170158948A KR102407739B1 (ko) | 2017-11-24 | 2017-11-24 | 반도체 소자 |
KR10-2017-0158948 | 2017-11-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019103556A1 true WO2019103556A1 (ko) | 2019-05-31 |
Family
ID=66630696
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/014636 WO2019103556A1 (ko) | 2017-11-24 | 2018-11-26 | 반도체 소자 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11227973B2 (ko) |
KR (1) | KR102407739B1 (ko) |
WO (1) | WO2019103556A1 (ko) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015115810A1 (de) * | 2015-09-18 | 2017-03-23 | Osram Opto Semiconductors Gmbh | Optoelektronisches Halbleiterbauteil und 3D-Drucker |
JP6824501B2 (ja) * | 2017-02-08 | 2021-02-03 | ウシオ電機株式会社 | 半導体発光素子 |
JP7312953B2 (ja) * | 2020-07-21 | 2023-07-24 | 日亜化学工業株式会社 | 発光素子及び発光素子の製造方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008160025A (ja) * | 2006-12-26 | 2008-07-10 | Sharp Corp | 窒化物半導体発光素子 |
US20110204403A1 (en) * | 2010-04-15 | 2011-08-25 | Sung Kyoon Kim | Light emitting device, light emitting device package, and lighting system |
KR20120003774A (ko) * | 2010-07-05 | 2012-01-11 | 엘지이노텍 주식회사 | 발광 소자, 발광 소자 제조방법, 발광 소자 패키지, 및 조명 시스템 |
KR20120111364A (ko) * | 2011-03-31 | 2012-10-10 | 엘지이노텍 주식회사 | 발광 소자 및 발광 소자 패키지 |
KR20160084992A (ko) * | 2015-01-07 | 2016-07-15 | 엘지이노텍 주식회사 | 발광 소자 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102244220B1 (ko) * | 2014-10-15 | 2021-04-27 | 삼성전자주식회사 | 반도체 발광 소자 |
EP3506374A1 (en) * | 2017-12-27 | 2019-07-03 | Lg Innotek Co. Ltd | Semiconductor device |
-
2017
- 2017-11-24 KR KR1020170158948A patent/KR102407739B1/ko active IP Right Grant
-
2018
- 2018-11-26 WO PCT/KR2018/014636 patent/WO2019103556A1/ko active Application Filing
- 2018-11-26 US US16/766,172 patent/US11227973B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008160025A (ja) * | 2006-12-26 | 2008-07-10 | Sharp Corp | 窒化物半導体発光素子 |
US20110204403A1 (en) * | 2010-04-15 | 2011-08-25 | Sung Kyoon Kim | Light emitting device, light emitting device package, and lighting system |
KR20120003774A (ko) * | 2010-07-05 | 2012-01-11 | 엘지이노텍 주식회사 | 발광 소자, 발광 소자 제조방법, 발광 소자 패키지, 및 조명 시스템 |
KR20120111364A (ko) * | 2011-03-31 | 2012-10-10 | 엘지이노텍 주식회사 | 발광 소자 및 발광 소자 패키지 |
KR20160084992A (ko) * | 2015-01-07 | 2016-07-15 | 엘지이노텍 주식회사 | 발광 소자 |
Also Published As
Publication number | Publication date |
---|---|
KR102407739B1 (ko) | 2022-06-10 |
US11227973B2 (en) | 2022-01-18 |
US20200287076A1 (en) | 2020-09-10 |
KR20190060598A (ko) | 2019-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20170024534A (ko) | 발광소자 및 이를 포함하는 발광소자 패키지 | |
WO2018097649A1 (ko) | 반도체 소자 및 이를 포함하는 반도체 소자 패키지 | |
WO2013183888A1 (ko) | 발광소자 | |
WO2017213455A1 (ko) | 반도체 소자 | |
WO2018088851A1 (ko) | 반도체 소자 | |
WO2019103556A1 (ko) | 반도체 소자 | |
WO2020040449A1 (ko) | 반도체 소자 | |
KR102656815B1 (ko) | 반도체 소자 | |
WO2019125032A1 (ko) | 반도체 소자 패키지 | |
KR20180006821A (ko) | 반도체 소자 | |
KR102410809B1 (ko) | 반도체 소자 | |
WO2018084631A1 (ko) | 반도체 소자 및 이를 포함하는 반도체 소자 패키지 | |
WO2019194646A1 (ko) | 반도체 소자 | |
WO2018135908A1 (ko) | 반도체 소자 및 이를 포함하는 반도체 소자 패키지 | |
WO2019108038A1 (ko) | 반도체 소자 | |
WO2020022695A1 (ko) | 반도체 소자 | |
US10950754B2 (en) | Semiconductor device increasing light output | |
WO2018074885A1 (ko) | 반도체 소자 및 이를 포함하는 반도체 소자 패키지 | |
KR20170129008A (ko) | 반도체 소자 패키지 | |
WO2018236183A1 (ko) | 반도체 소자 | |
WO2018016894A1 (ko) | 반도체 소자 | |
WO2019194438A1 (ko) | 반도체 소자 | |
US11437555B2 (en) | Semiconductor device | |
KR102564211B1 (ko) | 반도체 소자 및 이의 제조 방법 | |
KR102632201B1 (ko) | 반도체 소자 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18880705 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18880705 Country of ref document: EP Kind code of ref document: A1 |