WO2019125032A1 - 반도체 소자 패키지 - Google Patents

반도체 소자 패키지 Download PDF

Info

Publication number
WO2019125032A1
WO2019125032A1 PCT/KR2018/016428 KR2018016428W WO2019125032A1 WO 2019125032 A1 WO2019125032 A1 WO 2019125032A1 KR 2018016428 W KR2018016428 W KR 2018016428W WO 2019125032 A1 WO2019125032 A1 WO 2019125032A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
disposed
corner area
area
side face
Prior art date
Application number
PCT/KR2018/016428
Other languages
English (en)
French (fr)
Inventor
이고은
강희성
진민지
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to US16/772,867 priority Critical patent/US11355674B2/en
Publication of WO2019125032A1 publication Critical patent/WO2019125032A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes

Definitions

  • An embodiment relates to a semiconductor device package.
  • Semiconductor devices including compounds such as GaN and AlGaN have many merits such as wide and easy bandgap energy, and can be used variously as light emitting devices, light receiving devices, and various diodes.
  • a light emitting device such as a light emitting diode or a laser diode using a semiconductor material of Group 3-5 or 2-6 group semiconductors can be applied to various devices such as a red, Blue, and ultraviolet rays.
  • fluorescent materials or combining colors it is possible to realize a white light beam with high efficiency.
  • conventional light sources such as fluorescent lamps and incandescent lamps, low power consumption, , Safety, and environmental friendliness.
  • a light-receiving element such as a photodetector or a solar cell
  • a semiconductor material of Group 3-5 or Group 2-6 compound semiconductor development of a device material absorbs light of various wavelength regions to generate a photocurrent , It is possible to use light in various wavelength ranges from the gamma ray to the radio wave region. It also has advantages of fast response speed, safety, environmental friendliness and easy control of device materials, so it can be easily used for power control or microwave circuit or communication module.
  • the semiconductor device can be replaced with a transmission module of an optical communication means, a light emitting diode backlight replacing a cold cathode fluorescent lamp (CCFL) constituting a backlight of an LCD (Liquid Crystal Display) display device, White light emitting diodes (LEDs), automotive headlights, traffic lights, and gas and fire sensors.
  • CCFL cold cathode fluorescent lamp
  • LEDs White light emitting diodes
  • semiconductor devices can be applied to high frequency application circuits, other power control devices, and communication modules.
  • a light emitting device that emits light in the ultraviolet wavelength range can be used for curing, medical use, and sterilization by curing or sterilizing action.
  • One embodiment provides a semiconductor device package with excellent heat dissipation efficiency.
  • One embodiment provides a semiconductor device package capable of increasing the chip size within the same size.
  • a semiconductor device package includes: a body including a cavity; A plurality of electrodes disposed inside the body; A semiconductor element electrically connected to the plurality of electrodes; And a translucent member disposed on the cavity, wherein the body has a first side and a second side facing each other, a third side and a fourth side opposite to each other, a first side and a second side opposing each other, A second corner area formed by the first side surface and the fourth side surface, a third corner area formed by the second side surface and the fourth side surface, and a third corner area formed by the fourth side surface formed by the second side surface and the third side surface, Wherein the first electrode includes a fifth side and a sixth side facing each other, and the fifth side and the sixth side are connected to each other.
  • the plurality of electrodes may include a second electrode to a sixth electrode disposed outside the first electrode, and the second electrode to the sixth electrode may be spaced apart from each other.
  • the second electrode may extend to the first corner region and the second electrode may be connected to the first electrode.
  • a zener diode disposed on the second electrode.
  • the heat radiation efficiency can be improved by the heat radiation pad.
  • the chip size can be increased within the same package size.
  • FIG. 1 is a perspective view of a semiconductor device package according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view of a semiconductor device package according to an embodiment of the present invention
  • Fig. 4 is a first modification of Fig. 3,
  • FIG. 5 is a second modification of FIG. 3,
  • Fig. 6 is a third modification of Fig. 3,
  • FIG. 8 is a view showing a first electrode pad and a second electrode pad
  • FIG. 9 is a view showing a structure in which an electrode pattern layer, a connection electrode, and an electrode pad are electrically connected to each other,
  • FIG. 10 is a conceptual view of a semiconductor device according to an embodiment of the present invention.
  • the upper (upper) or lower (lower) or under are all such that two elements are in direct contact with each other or one or more other elements are indirectly formed between the two elements. Also, when expressed as “on or under”, it may include not only an upward direction but also a downward direction with respect to one element.
  • FIG. 1 is a perspective view of a semiconductor device package according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view of a semiconductor device package according to an embodiment of the present invention.
  • a semiconductor device package includes a body 200 including a cavity 213a, a semiconductor device 100 disposed in a cavity 213a of the body 200, 213a of the light-transmissive member 300.
  • the body 200 may include a material or a coating layer that reflects ultraviolet light.
  • the body 200 may be formed by laminating a plurality of sub-layers 210, 220, 230, 240 and 250.
  • the plurality of sub-layers 210, 220, 230, 240, 250 may be the same material or may comprise different materials.
  • the plurality of sub-layers 210, 220, 230, 240, and 250 may include, but are not necessarily limited to, ceramic materials.
  • the plurality of sub-layers 210, 220, 230, 240, 250 may be secured to one another by an adhesive.
  • the semiconductor element 100 can output light in the ultraviolet wavelength range.
  • the semiconductor device 100 may output the light UV-A in the near ultraviolet wavelength range, output the light UV-B in the far ultraviolet wavelength range, C can be output.
  • the wavelength range can be determined by the composition ratio of Al of the semiconductor structure.
  • the near ultraviolet light (UV-A) may have a maximum peak in the range of 320 nm to 420 nm and the far ultraviolet light (UV-B) may have a maximum peak in the range of 280 nm to 320 nm,
  • the light (UV-C) at the deep ultraviolet wavelength band may have a maximum peak in the range of 100 nm to 280 nm.
  • the translucent member 300 may be disposed on the cavity 213a.
  • the translucent member 300 may be supported in the step difference region 241 between the fourth sub-layer 240 and the fifth sub-layer 250.
  • An adhesive (not shown) may be applied between the stepped region 241 and the translucent member 300.
  • the adhesive may be, but is not necessarily, UV curable resin.
  • the translucent member 300 is not particularly limited as long as it is a material capable of transmitting ultraviolet light.
  • the transmissive layer may include, but is not limited to, an optical material having a high ultraviolet wavelength transmittance such as Quartz.
  • a first electrode pad 262 and a second electrode pad 263 are formed under the first sub layer 210 and a heat radiation pad 261 disposed between the first electrode pad 262 and the second electrode pad 263 May be disposed.
  • the first electrode pad 262 may be electrically connected to any one of the electrodes 221 on which the semiconductor device 100 is disposed and the second electrode pad 263 may be electrically connected to the other electrode 226, .
  • the electrode connection structure may be variously modified depending on the electrode structure of the semiconductor device.
  • FIG. 3 is a view showing an electrode pattern layer
  • FIG. 4 is a first modification of FIG. 3
  • Fifth is a second modification of FIG. 4
  • FIG. 6 is a third modification of FIG.
  • a plurality of electrodes 221, 222, 223, 224, 225, and 226 may be disposed on one surface 220a of the second sub layer 220.
  • the second sub-layer 220 may comprise an insulating material such as AlN.
  • the second sub-layer 220 of the body has a first side S1 and a second side S2 facing each other, a third side S3 and a fourth side S4 facing each other, a first side S1, A second corner area V2 formed by the first side surface S1 and the fourth side surface S4 and a second corner area V2 formed by the second side surface S2 and the fourth side surface S3, A third corner area V3 formed by the second side surface S4 and a fourth corner area V4 formed by the second side surface S2 and the third side surface S3.
  • the plurality of electrodes 221, 222, 223, 224, 225, and 226 may include a first electrode 221 on which the semiconductor device 100 is disposed.
  • the first electrode 221 includes a fifth side surface S5 and a sixth side surface S6 facing each other, a seventh side surface S7 connecting the fifth side surface S5 and the sixth side surface S6, A fifth corner area V5 formed by the fifth side surface S5 and the seventh side surface S7 and a sixth corner area V6 formed by the sixth side surface S6 and the seventh side surface S7.
  • the first angle? 1 between one of the side surfaces of the first electrode 221 and the side surface of the body may be 30 to 60 degrees. That is, the first electrode 221 according to the embodiment may be arranged to rotate at a predetermined angle with respect to the body. According to this structure, the area of the first electrode 221 can be widened, and the chip mounting area can be widened in the package of the same size. Therefore, the large-area chip can be mounted. Or the number of chips mounted can be increased.
  • the first electrode 221 may have a rectangular shape, but is not limited thereto.
  • the first electrode 221 may be connected to a second electrode 222 extending to the first corner region V1.
  • the zener diode 101 may be disposed on the second electrode 222.
  • the Zener diode 101 may be electrically connected to the third electrode 223 disposed adjacent to the second electrode 222 by a wire W1.
  • the second to sixth electrodes 222, 223, 224, 225, and 226 may be disposed to surround the first electrode 221. At this time, the second to sixth electrodes 222, 223, 224, 225, and 226 may be spaced apart from each other.
  • the first electrode 221 may be larger than the second to sixth electrodes 222, 223, 224, 225, and 226.
  • the fourth to sixth electrodes 224, 225, and 226 may be larger than the second and third electrodes 222 and 223.
  • the second to sixth electrodes 222, 223, 224, 225, and 226 may be parallel to the first electrode 221.
  • the first distance d11 between the second to sixth electrodes 222, 223, 224, 225 and 226 and the first electrode 221 may be 50 to 150 ⁇ ⁇ .
  • the first spacing d11 is 50 mu m or more, insulation between the electrodes can be ensured, and when the spacing is 150 mu m or less, the size of the package can be reduced.
  • the third electrode 223 and the fourth electrode 224 may be disposed adjacent to the first side surface S1 and may be spaced apart from each other.
  • the fourth electrode 224 and the fifth electrode 225 may be disposed adjacent to the fourth side surface S4 and may be spaced apart from each other.
  • the fifth electrode 225 and the sixth electrode 226 may be disposed adjacent to the second side surface S2 and may be spaced apart from each other.
  • the sixth electrode 226 and the second electrode 222 may be disposed adjacent to the third side surface S3 and may be spaced apart from each other.
  • the width of the first spacing portion d1 between the third electrode 223 and the fourth electrode 224 and the width of the second spacing portion d2 between the fifth electrode 225 and the sixth electrode 226 may vary depending on the area of the first electrode 221. That is, as the area of the first electrode 221 increases, the widths of the first and second spacers d1 and d2 may increase. Therefore, it is possible to increase the area of the first electrode 221 and to mount a chip having a large area, and to reduce the area of the third to sixth electrodes 223, 224, 225, and 226, thereby maintaining the package size.
  • the first spacing d1 between the fourth electrode 224 and the fifth electrode 225 is disposed between the fifth corner area V5 and the fourth side wall S4 and the fifth electrode 225
  • the second spacing d2 between the sixth electrode 226 and the sixth electrode 226 may be disposed between the sixth corner region V6 and the second side S2.
  • the third spacing d3 may be disposed between the second electrode 222 and the sixth electrode 226 and the fourth spacing d4 may be disposed between the seventh corner region V7 and the first side S1).
  • the third electrode V2 and the third electrode V3 are not contacted with the fifth corner region V5 and the sixth corner region V6,
  • the spacing between the sixth electrodes 223, 224, 225, and 226 can be increased.
  • the widths of the first and second spacers d1 and d2 may be between 50 ⁇ m and 250 ⁇ m. If the widths of the first and second spacers d1 and d2 are larger than 50 mu m, the area of the first electrode 221 can be enlarged to enable the mounting of the large area chip, The area of the sixth electrodes 223, 224, 225, and 226 can be ensured and the wire can be mounted.
  • the first electrode 221 and the second electrode 222 may be separated. 4 may be applied to all of the configurations of FIG. 3 except that the first electrode 221 and the second electrode 222 are separated from each other.
  • the body has a second imaginary straight line L1 passing through the centers of the first side surface S1 and the second side surface S2 and a second imaginary straight line L1 passing through the centers of the third side surface S3 and the fourth side surface S4, A2, A3, A4 defined by the first to fourth divisional areas A1, A2, A3, A4.
  • the first divided area A1 includes a first corner area V1 and the second divided area A2 includes a second corner area V2 and the third divided area A3 includes a third corner area V1, (V3), and the fourth divisional area A4 may include a fourth corner area V4.
  • the second electrode 222 and the third electrode 223 are disposed in the first divisional area A1
  • the fourth electrode 224 is disposed in the second divisional area A2
  • the fifth electrode 225 May be disposed in the third divisional area A3
  • the sixth electrode 226 may be disposed in the fourth divisional area A4.
  • the first electrode 221 may include a point where the first imaginary straight line L1 and the second imaginary straight line L2 intersect. Also, the first electrode 221 may be arranged in all of the first to fourth divisional areas A1 to A4.
  • the second to sixth electrodes 222, 223, 224, 225, and 226 may be disposed to surround the first electrode 221. At this time, the second to sixth electrodes 222, 223, 224, 225, and 226 may be spaced apart from each other.
  • the first electrode 221 may be larger than the second to sixth electrodes 222, 223, 224, 225, and 226.
  • the fourth to sixth electrodes 226 may be larger than the second and third electrodes 222 and 223.
  • the area of the first electrode 221 can be adjusted to enlarge the chip mounting area in the package of the same size. Therefore, the large-area chip can be mounted. Or the number of chips mounted can be increased.
  • the third electrode to the sixth electrode 223, 224, 225, and 226 may have a larger spacing. That is, the areas of the third to sixth electrodes 223, 224, 225, and 226 may be reduced.
  • the areas of the third to sixth electrodes 223, 224, 225, and 226 may increase and be connected to each other.
  • the area of the first electrode 221 may be 50% to 150% of the area of the remaining electrode.
  • the remaining electrode area may be an area obtained by summing the areas of the second to sixth electrodes 222, 223, 224, 225, and 226. If the area of the first electrode 221 is larger than 50%, a large-area chip can be mounted in the same package. If the area is smaller than 150%, wires are formed in the fourth to sixth electrodes 224, 225 and 226 It is possible to secure an area that can be used.
  • FIG. 8 is a view showing a first electrode pad and a second electrode pad
  • FIG. 9 is a view illustrating a structure in which an electrode pattern layer, a connection electrode, and an electrode pad are electrically connected to each other .
  • a first connection electrode 212 and a second connection electrode 211 may be disposed on the lower surface 220b of the second sub-layer 220. That is, a plurality of electrodes may be disposed on the upper surface 220a of the second sub layer 220, and a first connection electrode 212 and a second connection electrode 211 may be disposed on the lower surface 220b.
  • the first connection electrode 212 and the second connection electrode 211 may bond the first sub-layer 210 and the second sub-layer 220.
  • the first sub-layer 210 and the second sub-layer 220 may be made of an insulating material such as AlN and may be relatively difficult to adhere. Therefore, the embodiment may connect the first sub-layer 210 and the second sub-layer 220 by using the first connection electrode 212 and the second connection electrode 211 and may serve as an electrical connection path .
  • the first connection electrode 212 may include a convex portion 212f protruding toward the second connection electrode 211 and the second connection electrode 211 may include a concave portion 211f corresponding to the protrusion 212f can do.
  • a first electrode pad 262, a second electrode pad 263, and a first electrode pad 262 and a second electrode pad 263 are formed on the lower surface of the first sub- A heat radiation pad 261 to be disposed can be disposed.
  • the heat dissipation pad 261 may be relatively larger than the first electrode pad 262 and the second electrode pad 263 for heat dissipation, but is not limited thereto.
  • the first connection electrode 212 may electrically connect the first electrode 221 and the first electrode pad 262.
  • the first through-hole 221a of the first electrode 221 and the second through-hole 212a of the first connection electrode 212 form a first through-hole (not shown) 262, respectively.
  • the second connection electrode 211 may electrically connect the third to sixth electrodes 223, 224, 225, and 226 to the second electrode pad 263.
  • the second penetrating electrode (not shown) is disposed in the third through hole 225a of the fifth electrode 225 and the fourth through hole 211a of the second connecting electrode 211, (Not shown).
  • the remaining third electrode 223, the fifth electrode 225 and the sixth electrode 226 may be connected to the second electrode pad 263 in the same manner. That is, the second connection electrode 211 may be disposed to overlap with the third to sixth electrodes 223, 224, 225, and 226.
  • the third electrode 223 may be electrically connected to the third point 211c of the second connection electrode 211 by the penetrating electrode and the fourth electrode 224 may be electrically connected to the second connection electrode 211 by the penetrating electrode, And may be electrically connected to the fourth point 211d of the second electrode 211.
  • the sixth electrode 226 may be electrically connected to the sixth point 211b of the second connection electrode 211 by a penetrating electrode.
  • the third penetrating electrode 227 can improve the heat dissipation performance by connecting the first sub layer 210 and the second sub layer 220 to the heat dissipating pad 261. That is, the heat dissipation pad 261 may not directly connect to the first electrode 221, but may emit heat flowing in the first sub-layer 210 and the second sub-layer 220. When the heat dissipation pad 261 and the first electrode 221 are electrically connected to each other, the heat dissipation pad may have polarity and may be disadvantageous from the viewpoint of heat dissipation and reliability.
  • the first to sixth electrodes 221 to 226 and the first electrode pad 262, the heat radiating pad 261 and the second electrode pad 263 are formed by stacking a plurality of metal layers Structure. And may have a W / Ni / Pd / Au structure as an example. At this time, the thickness of W is 5 ⁇ ⁇ to 15 ⁇ ⁇ , the thickness of Ni is 4 ⁇ ⁇ to 6 ⁇ ⁇ , the thickness of Pd is 0.05 ⁇ ⁇ to 0.15 ⁇ ⁇ and the thickness of Au may be 0.4 ⁇ ⁇ to 0.6 ⁇ ⁇ , I never do that. Since the first connection electrode 212 and the second connection electrode 211 are one of the main objects of bonding the first sub-layer 210 and the second sub-layer 220, W May be formed as a single layer.
  • FIG. 10 is a conceptual view of a semiconductor device according to an embodiment of the present invention
  • FIG. 11 is a modification of FIG.
  • a semiconductor device 100 may be mounted as a flip chip on a submount 22. That is, the first electrode 152 and the second electrode 151 of the semiconductor device can be mounted on the first pad 23a and the second pad 23b of the submount 22 in a flip chip form. At this time, the first pad 23a and the second pad 23b may be respectively soldered to the body 10 by the wire W.
  • the substrate 110 of the semiconductor device may be disposed on the submount 22 and the first electrode 152 and the second electrode 151 may be directly soldered to the body 10 as shown in FIG.
  • the semiconductor device may include a substrate 110, a first conductive semiconductor layer 120, an active layer 130, and a second conductive semiconductor layer 140.
  • Each semiconductor layer may have an aluminum composition to emit light in the ultraviolet wavelength range.
  • the substrate 110 includes a conductive substrate or an insulating substrate.
  • the substrate 110 may be a material suitable for semiconductor material growth or a carrier wafer.
  • the substrate 110 may be formed of a material selected from the group consisting of sapphire (Al 2 O 3 ), SiC, GaAs, GaN, ZnO, Si, GaP, InP, and Ge.
  • the substrate 110 can be removed as needed.
  • a buffer layer (not shown) may be further provided between the first conductivity type semiconductor layer 120 and the substrate 110.
  • the buffer layer may mitigate lattice mismatch between the light emitting structure 160 and the substrate 110 provided on the substrate 110.
  • the first conductive semiconductor layer 120 may be formed of a compound semiconductor such as a Group III-V or a Group II-VI compound.
  • the first conductive semiconductor layer 120 may be doped with a first dopant.
  • the first conductivity type semiconductor layer 120 may be a semiconductor material having a composition formula of In x 1 Al y 1 Ga 1 -x 1 -y1 N (0 ? X1? 1 , 0 ? Y1? 1 , 0? X1 + y1? For example, GaN, AlGaN, InGaN, InAlGaN, and the like.
  • the first dopant may be an n-type dopant such as Si, Ge, Sn, Se, or Te.
  • the first conductivity type semiconductor layer 120 doped with the first dopant may be an n-type semiconductor layer.
  • the active layer 130 is a layer where electrons (or holes) injected through the first conductive type semiconductor layer 120 and holes (or electrons) injected through the second conductive type semiconductor layer 140 meet. As the electrons and the holes recombine, the active layer 130 transitions to a low energy level and can generate light having a wavelength corresponding thereto.
  • the active layer 130 may have any one of a single well structure, a multiple well structure, a single quantum well structure, a multi quantum well (MQW) structure, a quantum dot structure, Is not limited thereto.
  • a single well structure a multiple well structure
  • a single quantum well structure a single quantum well structure
  • a multi quantum well (MQW) structure a quantum dot structure
  • the second conductivity type semiconductor layer 140 may be formed on the active layer 130 and may be formed of a compound semiconductor such as a group III-V or II-VI group. In the second conductivity type semiconductor layer 140, The dopant can be doped.
  • the second conductive semiconductor layer 140 may be formed of a semiconductor material having a composition formula of In x 5 Al y 2 Ga 1 -x 5 -y2 N ( 0 ? X5? 1, 0? Y2? 1 , 0? X5 + y2? , AlGaAs, GaP, GaAs, GaAsP, and AlGaInP.
  • the second dopant is a p-type dopant such as Mg, Zn, Ca, Sr, or Ba
  • the second conductivity type semiconductor layer 140 doped with the second dopant may be a p-type semiconductor layer.
  • the first electrode 152 may be electrically connected to the first conductive semiconductor layer 120 and the second electrode 151 may be electrically connected to the second conductive semiconductor layer 140.
  • the first and second electrodes 152 and 151 are formed of a material selected from the group consisting of Ti, Ru, Rh, Ir, Mg, Zn, Al, In, Ta, Pd, Co, Ni, Si, Ge, Can be selected.
  • the embodiment has been described with reference to the structure of the horizontal light emitting device, it is not limited thereto.
  • the light emitting device according to the embodiment may be a vertical type or a flip chip type.
  • the light source device may be a concept including a sterilizing device, a curing device, a lighting device, and a display device and a vehicle lamp. That is, semiconductor devices can be applied to various electronic devices arranged in a case to provide light.
  • the sterilizing device may include a semiconductor device according to an embodiment to sterilize a desired area.
  • the sterilization device can be applied to home appliances such as water purifier, air conditioner, refrigerator, but is not limited thereto. That is, the sterilization apparatus can be applied to various products requiring sterilization (for example, medical apparatus).
  • the water purifier may be equipped with a sterilizing device according to an embodiment to sterilize circulating water.
  • the sterilizing apparatus may be disposed in a nozzle or a discharge port through which water circulates and irradiate ultraviolet rays.
  • the sterilizing device may include a waterproof structure.
  • the curing device may include a semiconductor device according to the embodiment to cure various kinds of liquids.
  • Liquids can be the broadest concept that encompasses a variety of materials that cure upon exposure to ultraviolet radiation.
  • the curing device can cure various types of resins.
  • the curing device may be applied to cure a cosmetic product such as manicure.
  • the illumination device may include a light source module including a substrate and semiconductor elements of the embodiment, a heat dissipation unit that dissipates heat of the light source module, and a power supply unit that processes or converts an electrical signal provided from the outside and provides the light source module. Further, the lighting device may include a lamp, a head lamp, or a street lamp or the like.
  • the display device may include a bottom cover, a reflector, a light emitting module, a light guide plate, an optical sheet, a display panel, an image signal output circuit, and a color filter.
  • the bottom cover, the reflector, the light emitting module, the light guide plate, and the optical sheet can constitute a backlight unit.
  • the reflector is disposed on the bottom cover, and the light emitting module can emit light.
  • the light guide plate is disposed in front of the reflection plate to guide the light emitted from the light emitting module forward, and the optical sheet may include a prism sheet or the like and be disposed in front of the light guide plate.
  • the display panel is disposed in front of the optical sheet, and the image signal output circuit supplies an image signal to the display panel, and the color filter can be disposed in front of the display panel.
  • the semiconductor device can be used as a backlight unit of an edge type when used as a backlight unit of a display device or as a backlight unit of a direct-bottom type.
  • the semiconductor device may be a laser diode other than the light emitting diode described above.
  • the laser diode may include the first conductivity type semiconductor layer, the active layer and the second conductivity type semiconductor layer having the above-described structure, like the light emitting element. Then, electro-luminescence (electroluminescence) phenomenon in which light is emitted when an electric current is applied after bonding the p-type first conductivity type semiconductor and the n-type second conductivity type semiconductor is used, And phase. That is, the laser diode can emit light having one specific wavelength (monochromatic beam) with the same phase and in the same direction by using a phenomenon called stimulated emission and a constructive interference phenomenon. It can be used for optical communication, medical equipment and semiconductor processing equipment.
  • a photodetector which is a kind of transducer that detects light and converts the intensity of the light into an electric signal
  • photodetectors silicon, selenium
  • photodetectors cadmium sulfide, cadmium selenide
  • photodiodes for example, visible blind spectral regions or PDs with peak wavelengths in the true blind spectral region
  • a transistor, a photomultiplier tube, a phototube (vacuum, gas-filled), and an IR (Infra-Red) detector but the embodiment is not limited thereto.
  • a semiconductor device such as a photodetector may be fabricated using a direct bandgap semiconductor, which is generally excellent in photo-conversion efficiency.
  • the photodetector has a variety of structures, and the most general structure includes a pinned photodetector using a pn junction, a Schottky photodetector using a Schottky junction, and a metal-semiconductor metal (MSM) photodetector have.
  • MSM metal-semiconductor metal
  • the photodiode may include the first conductivity type semiconductor layer having the structure described above, the active layer, and the second conductivity type semiconductor layer, and may have a pn junction or a pin structure.
  • the photodiode operates by applying reverse bias or zero bias. When light is incident on the photodiode, electrons and holes are generated and a current flows. At this time, the magnitude of the current may be approximately proportional to the intensity of the light incident on the photodiode.
  • a photovoltaic cell or a solar cell is a type of photodiode that can convert light into current.
  • the solar cell like the light emitting device, may include the first conductivity type semiconductor layer, the active layer and the second conductivity type semiconductor layer having the above-described structure.
  • it can be used as a rectifier of an electronic circuit through a rectifying characteristic of a general diode using a p-n junction, and can be applied to an oscillation circuit or the like by being applied to a microwave circuit.
  • the above-described semiconductor element is not necessarily implemented as a semiconductor, and may further include a metal material as the case may be.
  • a semiconductor device such as a light receiving element may be implemented using at least one of Ag, Al, Au, In, Ga, N, Zn, Se, P, or As, Or may be implemented using a doped semiconductor material or an intrinsic semiconductor material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

실시 예는, 캐비티를 포함하는 몸체; 상기 몸체의 내부에 배치되는 복수 개의 전극; 상기 몸체의 캐비티 내에 배치되는 반도체 소자; 및 상기 캐비티 상에 배치되는 투광부재를 포함하고, 상기 몸체는 서로 마주보는 제1측면과 제2측면, 서로 마주보는 제3측면과 제4측면을 포함하고, 상기 제1측면과 상기 제3측면이 이루는 제1코너 영역, 상기 제1측면과 상기 제4측면이 이루는 제2코너 영역, 상기 제2측면과 상기 제4측면이 이루는 제3코너 영역, 및 상기 제2측면과 상기 제3측면이 이루는 제4코너 영역을 포함하고, 상기 복수 개의 전극은 상기 반도체 소자가 배치되는 제1전극을 포함하고, 상기 제1전극은 서로 마주보는 제5측면과 제6측면, 상기 제5측면과 제6측면을 연결하는 제7측면, 상기 제5측면과 제7측면이 이루는 제5코너 영역, 및 상기 제6측면과 제7측면이 이루는 제6코너 영역을 포함하고, 상기 제5코너 영역은 상기 제2코너 영역과 상기 제3코너 영역 사이에 배치되고, 상기 제6코너 영역은 상기 제3코너 영역과 상기 제4코너 영역 사이에 배치되는 반도체 소자 패키지를 개시한다.

Description

반도체 소자 패키지
실시 예는 반도체 소자 패키지에 관한 것이다.
GaN, AlGaN 등의 화합물을 포함하는 반도체 소자는 넓고 조정이 용이한 밴드 갭 에너지를 가지는 등의 많은 장점을 가져서 발광 소자, 수광 소자 및 각종 다이오드 등으로 다양하게 사용될 수 있다.
특히, 반도체의 3-5족 또는 2-6족 화합물 반도체 물질을 이용한 발광 다이오드(Light Emitting Diode)나 레이저 다이오드(Laser Diode)와 같은 발광소자는 박막 성장 기술 및 소자 재료의 개발로 적색, 녹색, 청색 및 자외선 등 다양한 색을 구현할 수 있으며, 형광 물질을 이용하거나 색을 조합함으로써 효율이 좋은 백색 광선도 구현이 가능하며, 형광등, 백열등 등 기존의 광원에 비해 저소비전력, 반영구적인 수명, 빠른 응답속도, 안전성, 환경 친화성의 장점을 가진다.
뿐만 아니라, 광검출기나 태양 전지와 같은 수광 소자도 반도체의 3-5족 또는 2-6족 화합물 반도체 물질을 이용하여 제작하는 경우 소자 재료의 개발로 다양한 파장 영역의 빛을 흡수하여 광 전류를 생성함으로써 감마선부터 라디오 파장 영역까지 다양한 파장 영역의 빛을 이용할 수 있다. 또한 빠른 응답속도, 안전성, 환경 친화성 및 소자 재료의 용이한 조절의 장점을 가져 전력 제어 또는 초고주파 회로나 통신용 모듈에도 용이하게 이용할 수 있다.
따라서, 반도체 소자는 광 통신 수단의 송신 모듈, LCD(Liquid Crystal Display) 표시 장치의 백라이트를 구성하는 냉음극관(CCFL: Cold Cathode Fluorescence Lamp)을 대체하는 발광 다이오드 백라이트, 형광등이나 백열 전구를 대체할 수 있는 백색 발광 다이오드 조명 장치, 자동차 헤드 라이트 및 신호등 및 Gas나 화재를 감지하는 센서 등에까지 응용이 확대되고 있다. 또한, 반도체 소자는 고주파 응용 회로나 기타 전력 제어 장치, 통신용 모듈에까지 응용이 확대될 수 있다.
특히, 자외선 파장 영역의 광을 방출하는 발광소자는 경화작용이나 살균 작용을 하여 경화용, 의료용, 및 살균용으로 사용될 수 있다.
최근 자외선 발광소자 패키지에 대한 연구가 활발하나, 내부의 열을 외부로 효과적으로 방출하지 못하는 문제가 있다. 또한, 동일한 사이즈의 패키지 내에서 칩 사이즈에 제약이 있다.
일 실시 예는 열 방출 효율이 우수한 반도체 소자 패키지를 제공한다.
일 실시 예는 동일한 사이즈 내에서 칩 사이즈를 크게 제작할 수 있는 반도체 소자 패키지를 제공한다.
실시 예에서 해결하고자 하는 과제는 이에 한정되는 것은 아니며, 아래에서 설명하는 과제의 해결수단이나 실시 형태로부터 파악될 수 있는 목적이나 효과도 포함된다고 할 것이다.
본 발명의 일 실시 예에 따른 반도체 소자 패키지는, 캐비티를 포함하는 몸체; 상기 몸체의 내부에 배치되는 복수 개의 전극; 상기 복수 개의 전극과 전기적으로 연결되는 반도체 소자; 및 상기 캐비티 상에 배치되는 투광부재를 포함하고, 상기 몸체는 서로 마주보는 제1측면과 제2측면, 서로 마주보는 제3측면과 제4측면, 상기 제1측면과 상기 제3측면이 이루는 제1코너 영역, 상기 제1측면과 상기 제4측면이 이루는 제2코너 영역, 상기 제2측면과 상기 제4측면이 이루는 제3코너 영역, 및 상기 제2측면과 상기 제3측면이 이루는 제4코너 영역을 포함하고, 상기 복수 개의 전극은 상기 반도체 소자가 배치되는 제1전극을 포함하고, 상기 제1전극은 서로 마주보는 제5측면과 제6측면, 상기 제5측면과 제6측면을 연결하는 제7측면, 상기 제5측면과 제7측면이 이루는 제5코너 영역, 및 상기 제6측면과 제7측면이 이루는 제6코너 영역을 포함하고, 상기 제5코너 영역은 상기 제2코너 영역과 상기 제3코너 영역 사이에 배치되고, 상기 제6코너 영역은 상기 제3코너 영역과 상기 제4코너 영역 사이에 배치된다.
상기 복수 개의 전극은 상기 제1전극의 외측에 배치되는 제2전극 내지 제6전극을 포함하고, 상기 제2전극 내지 제6전극은 서로 이격 배치될 수 있다.
상기 제2전극은 상기 제1코너 영역으로 연장되고 상기 제2전극은 상기 제1전극과 연결될 수 있다.
상기 제2전극에 배치되는 제너 다이오드를 포함할 수 있다.
본 발명의 일 실시 예에 따르면, 방열패드에 의해 열 방출 효율이 개선될 수 있다. 또한, 동일한 패키지 사이즈 내에서 칩 사이즈를 크게 제작할 수 있다.
본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않으며, 본 발명의 구체적인 실시형태를 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시 예에 따른 반도체 소자 패키지의 사시도이고,
도 2는 본 발명의 일 실시 예에 따른 반도체 소자 패키지의 단면도이고,
도 3은 전극 패턴층을 보여주는 도면이고,
도 4는 도 3의 제1변형예이고,
도 5는 도 3의 제2변형예이고,
도 6은 도 3의 제3변형예이고,
도 7은 연결 전극을 보여주는 도면이고,
도 8은 제1전극패드 및 제2전극패드를 보여주는 도면이고,
도 9는 전극 패턴층과 연결전극, 및 전극패드가 전기적으로 연결되는 구조를 보여주는 도면이고,
도 10은 본 발명의 일 실시 예에 따른 반도체 소자의 개념도이고,
도 11은 도 10의 변형예이다.
본 실시 예들은 다른 형태로 변형되거나 여러 실시 예가 서로 조합될 수 있으며, 본 발명의 범위가 이하 설명하는 각각의 실시 예로 한정되는 것은 아니다.
특정 실시 예에서 설명된 사항이 다른 실시 예에서 설명되어 있지 않더라도, 다른 실시 예에서 그 사항과 반대되거나 모순되는 설명이 없는 한, 다른 실시 예에 관련된 설명으로 이해될 수 있다.
예를 들어, 특정 실시 예에서 구성 A에 대한 특징을 설명하고 다른 실시 예에서 구성 B에 대한 특징을 설명하였다면, 구성 A와 구성 B가 결합된 실시 예가 명시적으로 기재되지 않더라도 반대되거나 모순되는 설명이 없는 한, 본 발명의 권리범위에 속하는 것으로 이해되어야 한다.
실시 예의 설명에 있어서, 어느 한 element가 다른 element의 "상(위) 또는 하(아래)(on or under)"에 형성되는 것으로 기재되는 경우에 있어, 상(위) 또는 하(아래)(on or under)는 두 개의 element가 서로 직접(directly)접촉되거나 하나 이상의 다른 element가 상기 두 element 사이에 배치되어(indirectly) 형성되는 것을 모두 포함한다. 또한 "상(위) 또는 하(아래)(on or under)"으로 표현되는 경우 하나의 element를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.
이하에서는 첨부한 도면을 참고로 하여 본 발명의 실시 예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다.
도 1은 본 발명의 일 실시 예에 따른 반도체 소자 패키지의 사시도이고, 도 2는 본 발명의 일 실시 예에 따른 반도체 소자 패키지의 단면도이다.
도 1 및 도 2를 참조하면, 실시 예에 따른 반도체 소자 패키지는 캐비티(213a)를 포함하는 몸체(200), 몸체(200)의 캐비티(213a) 내에 배치되는 반도체 소자(100), 및 캐비티(213a) 상에 배치되는 투광부재(300)를 포함할 수 있다.
몸체(200)는 자외선 광을 반사하는 재질 또는 코팅층을 포함할 수 있다. 몸체(200)는 복수의 서브층(210, 220, 230, 240, 250)을 적층하여 형성할 수 있다. 복수의 서브층(210, 220, 230, 240, 250)은 동일한 재질일 수도 있고 상이한 재질을 포함할 수도 있다. 예시적으로 복수의 서브층(210, 220, 230, 240, 250)은 세라믹 재질을 포함할 수 있으나 반드시 이에 한정하지 않는다. 복수의 서브층(210, 220, 230, 240, 250)은 접착제에 의해 서로 고정될 수 있다.
반도체 소자(100)는 자외선 파장대의 광을 출력할 수 있다. 예시적으로 반도체 소자(100)는 근자외선 파장대의 광(UV-A)을 출력할 수도 있고, 원자외선 파장대의 광(UV-B)을 출력할 수 도 있고, 심자외선 파장대의 광(UV-C)을 출력할 수 있다. 파장범위는 반도체 구조물의 Al의 조성비에 의해 결정될 수 있다.
예시적으로, 근자외선 파장대의 광(UV-A)은 320nm 내지 420nm 범위에서 최대 피크를 가질 수 있고, 원자외선 파장대의 광(UV-B)은 280nm 내지 320nm 범위에서 최대 피크를 가질 수 있으며, 심자외선 파장대의 광(UV-C)은 100nm 내지 280nm 범위에서 최대 피크를 가질 수 있다.
투광부재(300)는 캐비티(213a) 상에 배치될 수 있다. 투광부재(300)는 제4서브층(240)과 제5서브층(250) 사이의 단차 영역(241)에 지지될 수 있다. 단차 영역(241)과 투광부재(300) 사이에는 접착제(미도시)가 도포될 수 있다. 접착제는 UV 경화성 레진일 수 있으나 반드시 이에 한정하지 않는다.
투광부재(300)는 자외선 파장대의 광을 투과할 수 있는 재질이면 특별히 제한하지 않는다. 예시적으로 투과층은 쿼츠(Quartz)와 같이 자외선 파장 투과율이 높은 광학 재료를 포함할 수 있으나 이에 한정하는 것은 아니다.
제1서브층(210)의 하부에는 제1전극패드(262), 제2전극패드(263), 및 제1전극패드(262)와 제2전극패드(263) 사이에 배치되는 방열패드(261)가 배치될 수 있다. 예시적으로 제1전극패드(262)는 반도체 소자(100)가 배치되는 어느 하나의 전극(221)과 전기적으로 연결될 수 있으며, 제2전극패드(263)는 다른 하나의 전극(226)과 전기적으로 연결될 수 있다.
실시 예에서는 반도체 소자가 와이어에 의해 연결되는 것으로 도시하였으나 전극 연결 구조는 반도체 소자의 전극 구조에 따라 다양하게 변형될 수 있다.
도 3은 전극 패턴층을 보여주는 도면이고, 도 4는 도 3의 제1변형예이고, 제 5는 도 4의 제2변형예이고, 도 6은 도 3의 제3변형예이다.
도 3을 참조하면, 제2서브층(220)의 일면(220a)에는 복수 개의 전극(221, 222, 223, 224, 225, 226)이 배치될 수 있다. 제2서브층(220)은 AlN과 같은 절연성 재질을 포함할 수 있다.
몸체의 제2서브층(220)은 서로 마주보는 제1측면(S1)과 제2측면(S2), 서로 마주보는 제3측면(S3)과 제4측면(S4), 제1측면(S1)과 제3측면(S3)이 이루는 제1코너 영역(V1), 제1측면(S1)과 제4측면(S4)이 이루는 제2코너 영역(V2), 제2측면(S2)과 제4측면(S4)이 이루는 제3코너 영역(V3), 및 제2측면(S2)과 제3측면(S3)이 이루는 제4코너 영역(V4)을 포함할 수 있다.
복수 개의 전극(221, 222, 223, 224, 225, 226)은 반도체 소자(100)가 배치되는 제1전극(221)을 포함할 수 있다. 제1전극(221)은 서로 마주보는 제5측면(S5)과 제6측면(S6), 제5측면(S5)과 제6측면(S6)을 연결하는 제7측면(S7), 제5측면(S5)과 제7측면(S7)이 이루는 제5코너 영역(V5), 및 제6측면(S6)과 제7측면(S7)이 이루는 제6코너 영역(V6)을 포함할 수 있다.
제1전극(221)의 측면 중 어느 하나와 몸체의 측면이 이루는 제1각도(θ1)는 30도 내지 60도 일 수 있다. 즉, 실시 예에 따른 제1전극(221)은 몸체를 기준으로 소정 각도로 회전하여 배치될 수 있다. 이러한 구성에 의하면 제1전극(221)의 면적을 넓혀 동일 사이즈의 패키지에서 칩 실장 면적을 넓힐 수 있다. 따라서, 대면적 칩의 실장이 가능해질 수 있다. 또는 칩의 실장 개수를 늘릴 수 있다.
제1전극(221)은 사각 형상을 가질 수 있으나 반드시 이에 한정하지 않는다. 예시적으로 제1전극(221)은 제1코너 영역(V1)으로 연장되는 제2전극(222)과 연결될 수 있다.
제너 다이오드(101)는 제2전극(222)에 배치될 수 있다. 제너 다이오드(101)는 제2전극(222)과 이웃하게 배치되는 제3전극(223)과 와이어(W1)에 의해 전기적으로 연결될 수 있다.
제2전극 내지 제6전극(222, 223, 224, 225, 226)은 제1전극(221)을 둘러싸도록 배치될 수 있다. 이때, 제2전극 내지 제6전극(222, 223, 224, 225, 226)은 서로 이격 배치될 수 있다. 제1전극(221)은 제2전극 내지 제6전극(222, 223, 224, 225, 226)보다 클 수 있다. 또한, 제4 내지 제6전극(224, 225, 226)은 제2, 및 제3전극(222, 223)보다 클 수 있다.
또한, 제2전극 내지 제6전극(222, 223, 224, 225, 226)은 제1전극(221)과 마주보는 면이 평행할 수 있다. 제2전극 내지 제6전극(222, 223, 224, 225, 226)과 제1전극(221) 사이의 제1간격(d11)은 50㎛ 내지 150㎛일 수 있다.
제1간격(d11)이 50㎛ 이상인 경우 전극 간의 절연성을 확보할 수 있으며, 150㎛ 이하인 경우 패키지의 사이즈를 줄일 수 있다.
구체적으로 제3전극(223)과 제4전극(224)은 제1측면(S1)에 인접 배치되고 서로 이격될 수 있다. 제4전극(224)과 제5전극(225)은 제4측면(S4)에 인접 배치되고 서로 이격될 수 있다. 제5전극(225)과 제6전극(226)은 제2측면(S2)에 인접 배치되고 서로 이격배치될 수 있다. 또한, 제6전극(226)과 제2전극(222)은 제3측면(S3)에 인접 배치되고 서로 이격될 수 있다.
제3전극(223)과 제4전극(224) 사이의 제1이격부(d1)의 폭과 제5전극(225)과 제6전극(226) 사이의 제2이격부(d2)의 폭은 제1전극(221)의 면적에 따라 달라질 수 있다. 즉, 제1전극(221)의 면적이 증가할수록 제1이격부 및 제2이격부(d1, d2)의 폭은 증가할 수 있다. 따라서, 제1전극(221)의 면적을 늘려 대면적의 칩이 실장 가능한 동시에 제3전극 내지 제6전극(223, 224, 225, 226)의 면적을 줄임으로써 패키지 사이즈를 유지할 수 있다.
이때, 제4전극(224)과 제5전극(225) 사이의 제1이격부(d1)는 제5코너 영역(V5)과 제4측면(S4) 사이에 배치되고, 제5전극(225)과 제6전극(226) 사이의 제2이격부(d2)는 제6코너 영역(V6)과 제2측면(S2) 사이에 배치될 수 있다. 또한, 제3이격부(d3)는 제2전극(222)과 제6전극(226) 사이에 배치될 수 있고, 제4이격부(d4)는 제7코너 영역(V7)과 제1측면(S1) 사이에 배치될 수 있다.
실시 예에 따르면, 제1전극(221)이 몸체를 기준으로 시계 방향 또는 반시계 방향으로 회전되어 배치되므로 제5코너 영역(V5)과 제6코너 영역(V6)과 접촉하지 않도록 제3전극 내지 제6전극(223, 224, 225, 226)의 이격부 폭이 커질 수 있다.
제1이격부 및 제2이격부(d1, d2)의 폭은 50㎛ 내지 250㎛일 수 있다. 제1이격부 및 제2이격부(d1, d2)의 폭이 50㎛보다 큰 경우 제1전극(221)의 면적을 넓힐 수 있어 대면적 칩의 실장이 가능해지고 250㎛보다 작은 경우 제3 내지 제6전극(223, 224, 225, 226)의 면적을 확보하여 와이어 실장이 가능해질 수 있다.
도 4를 참조하면, 제1전극(221)과 제2전극(222)은 분리될 수도 있다. 도 4는 제1전극(221)과 제2전극(222)이 분리된 것을 제외하고는 도 3의 구성이 모두 적용될 수 있다.
몸체는 제1측면(S1)과 제2측면(S2)의 중심을 통과하는 제1가상직선(L1)과 제3측면(S3)과 제4측면(S4)의 중심을 통과하는 제2가상직선(L2)에 의해 정의되는 제1분할영역 내지 제4분할영역(A1, A2, A3, A4)을 포함할 수 있다.
제1분할영역(A1)은 제1코너 영역(V1)을 포함하고, 제2분할영역(A2)은 제2코너 영역(V2)을 포함하고, 제3분할영역(A3)은 제3코너 영역(V3)을 포함하고, 제4분할영역(A4)은 제4코너 영역(V4)을 포함할 수 있다.
따라서, 제2전극(222) 및 제3전극(223)은 제1분할영역(A1)에 배치되고, 제4전극(224)은 제2분할영역(A2)에 배치되고, 제5전극(225)은 제3분할영역(A3)에 배치되고, 제6전극(226)은 제4분할영역(A4)에 배치될 수 있다.
제1전극(221)은 제1가상직선(L1)과 제2가상직선(L2)이 교차하는 지점을 포함할 수 있다. 또하느 제1전극(221)은 제1분할영역(A1) 내지 제4분할영역(A4)에 모두 배치될 수 있다.
제2전극 내지 제6전극(222, 223, 224, 225, 226)은 제1전극(221)을 둘러싸도록 배치될 수 있다. 이때, 제2전극 내지 제6전극(222, 223, 224, 225, 226)은 서로 이격 배치될 수 있다. 제1전극(221)은 제2전극 내지 제6전극(222, 223, 224, 225, 226)보다 클 수 있다. 또한, 제4 내지 제6전극(226)은 제2, 및 제3전극(222, 223)보다 클 수 있다.
실시 예에 따르면, 제1전극(221)의 면적을 조절하여 동일 사이즈의 패키지에서 칩 실장 면적을 넓힐 수 있다. 따라서, 대면적 칩의 실장이 가능해질 수 있다. 또는 칩의 실장 개수를 늘릴 수 있다.
도 5를 참조하면, 제1전극(221)의 면적이 커질수록 제3전극 내지 제6전극(223, 224, 225, 226)의 이격부 폭은 더 커질 수 있다. 즉, 제3전극 내지 제6전극(223, 224, 225, 226)의 면적은 줄어들 수 있다.
이와 반대로 도 6과 같이 제1전극의 면적이 작아지면 제3전극 내지 제6전극(223, 224, 225, 226)의 면적이 증가하여 서로 연결될 수도 있다.
제1전극(221)의 면적은 나머지 전극 면적의 50% 내지 150%일 수 있다. 나머지 전극 면적은 제2전극 내지 제6전극(222, 223, 224, 225, 226)의 면적을 합한 면적일 수 있다. 제1전극(221)의 면적이 50%보다 큰 경우 동일 패키지 내에서 대면적 칩을 실장할 수 있으며, 150%보다 작은 경우 제4전극 내지 제6전극(224, 225, 226)에 와이어를 형성할 수 있는 면적을 확보할 수 있다.
도 7은 연결 전극을 보여주는 도면이고, 도 8은 제1전극패드 및 제2전극패드를 보여주는 도면이고, 도 9는 전극 패턴층과 연결전극, 및 전극패드가 전기적으로 연결되는 구조를 보여주는 도면이다.
도 7을 참조하면, 제2서브층(220)의 하면(220b)에는 제1연결전극(212) 및 제2연결전극(211)이 배치될 수 있다. 즉, 제2서브층(220)은 상면(220a)에 복수 개의 전극이 배치되고, 하면(220b)에는 제1연결전극(212) 및 제2연결전극(211)이 배치될 수 있다.
제1연결전극(212) 및 제2연결전극(211)은 제1서브층(210)과 제2서브층(220)을 접착할 수 있다. 제1서브층(210)과 제2서브층(220)이 모두 AlN과 같은 절연성 재질로 이루어져 상대적으로 접착이 어려울 수 있다. 따라서, 실시 예는 제1연결전극(212) 및 제2연결전극(211)을 이용하여 제1서브층(210)과 제2서브층(220)을 연결하는 동시에 전기적 연결 통로 역할을 할 수 있다.
제1연결전극(212)은 제2연결전극(211)을 향해 볼록한 돌출부(212f)를 포함할 수 있고, 제2연결전극(211)은 돌출부(212f)에 대응하는 오목부(211f)를 포함할 수 있다.
도 8을 참조하면, 제1서브층(210)의 하면에는 제1전극패드(262), 제2전극패드(263), 및 제1전극패드(262)와 제2전극패드(263) 사이에 배치되는 방열패드(261)가 배치될 수 있다. 방열패드(261)는 열 방출을 위해 상대적으로 제1전극패드(262) 및 제2전극패드(263)보다 클 수 있으나 반드시 이에 한정하지 않는다.
도 9를 참조하면, 제1연결전극(212)은 제1전극(221)과 제1전극패드(262)를 전기적으로 연결할 수 있다. 이때, 제1관통전극(미도시)은 제1전극(221)의 제1관통홀(221a)과, 제1연결전극(212)의 제2관통홀(212a)에 배치되어 제1전극패드(262)와 전기적으로 연결될 수 있다.
또한, 제2연결전극(211)은 제3전극 내지 제6전극(223, 224, 225, 226)과 제2전극패드(263)를 전기적으로 연결할 수 있다. 예시적으로 제2관통전극(미도시)은 제5전극(225)의 제3관통홀(225a)과, 제2연결전극(211)의 제4관통홀(211a)에 배치되어 제2전극패드(263)와 전기적으로 연결될 수 있다.
나머지 제3전극(223), 제5전극(225) 및 제6전극(226)도 동일한 방법으로 제2전극패드(263)와 연결될 수 있다. 즉, 제2연결전극(211)은 제3전극 내지 제6전극(223, 224, 225, 226)과 중첩되도록 배치될 수 있다.
예시적으로 제3전극(223)은 관통전극에 의해 제2연결전극(211)의 제3지점(211c)과 전기적으로 연결될 수 있으며, 제4전극(224)은 관통전극에 의해 제2연결전극(211)의 제4지점(211d)과 전기적으로 연결될 수 있다. 또한, 제6전극(226)은 관통전극에 의해 제2연결전극(211)의 제6지점(211b)과 전기적으로 연결될 수 있다.
또한, 제3관통전극(227)은 제1서브층(210), 제2서브층(220)을 방열패드(261)와 연결하여 방열 성능을 개선할 수 있다. 즉, 방열패드(261)는 직접 제1전극(221)과 연결되지 않고 제1서브층(210), 제2서브층(220)에 흐르는 열을 방출할 수 있다. 방열패드(261)와 제1전극(221)이 전기적으로 연결되면 방열패드가 극성을 갖게 되고 열 방출 관점 및 신뢰성 관점에서 불리할 수 있다.
제1전극 내지 제6전극(221, 222, 223, 224, 225, 226)과 제1전극패드(262), 방열패드(261), 및 제2전극패드(263)는 복수 개의 금속층이 적층된 구조일 수 있다. 예시적으로 W/Ni/Pd/Au 구조를 가질 수 있다. 이때, W의 두께는 5㎛ 내지 15㎛이고, Ni의 두께는 4㎛ 내지 6㎛이고, Pd의 두께는 0.05㎛ 내지 0.15㎛이고, Au의 두께는 0.4㎛ 내지 0.6㎛일 수 있으나 반드시 이에 한정하지 않는다. 제1연결전극(212)과 제2연결전극(211)은 제1서브층(210)과 제2서브층(220)을 접합하는 것이 주 목적 중 하나이므로 5㎛ 내지 15㎛의 두께를 갖는 W 단일층으로 형성될 수 있다.
도 10은 본 발명의 일 실시 예에 따른 반도체 소자의 개념도이고, 도 11은 도 10의 변형예이다.
도 10을 참조하면, 실시 예에 따른 반도체 소자(100)는 서브 마운트(22) 상에 플립칩과 같이 실장될 수 있다. 즉, 반도체 소자의 제1전극(152)과 제2전극(151)이 서브 마운트(22)의 제1패드(23a)와 제2패드(23b)에 플립칩 형태로 실장될 수 있다. 이때, 제1패드(23a)와 제2패드(23b)는 와이어(W)에 의해 몸체(10)에 각각 솔더링될 수 있다.
그러나, 반도체 소자를 실장하는 방법은 특별히 제한하지 않는다. 예시적으로 도 11과 같이 반도체 소자의 기판(110)을 서브 마운트(22)상에 배치하고 제1전극(152)과 제2전극(151)을 직접 몸체(10)에 솔더링할 수도 있다.
실시 예에 따른 반도체 소자는 기판(110), 제1 도전형 반도체층(120), 활성층(130), 및 제2 도전형 반도체층(140)을 포함할 수 있다. 각 반도체층은 자외선 파장대의 광을 방출할 수 있도록 알루미늄 조성을 가질 수 있다.
기판(110)은 도전성 기판 또는 절연성 기판을 포함한다. 기판(110)은 반도체 물질 성장에 적합한 물질이나 캐리어 웨이퍼일 수 있다. 기판(110)은 사파이어(Al2O3), SiC, GaAs, GaN, ZnO, Si, GaP, InP 및 Ge 중 선택된 물질로 형성될 수 있으며, 이에 대해 한정하지는 않는다. 필요에 따라 기판(110)은 제거될 수 있다.
제1 도전형 반도체층(120)과 기판(110) 사이에는 버퍼층(미도시)이 더 구비될 수 있다. 버퍼층은 기판(110) 상에 구비된 발광 구조물(160)과 기판(110)의 격자 부정합을 완화할 수 있다.
제1 도전형 반도체층(120)은 Ⅲ-Ⅴ족, Ⅱ-Ⅵ족 등의 화합물 반도체로 구현될 수 있으며, 제1 도전형 반도체층(120)에 제1도펀트가 도핑될 수 있다. 제1 도전형 반도체층(120)은 Inx1Aly1Ga1 -x1- y1N(0≤x1≤1, 0≤y1≤1, 0≤x1+y1≤1)의 조성식을 갖는 반도체 재료, 예를 들어 GaN, AlGaN, InGaN, InAlGaN 등에서 선택될 수 있다. 그리고, 제1도펀트는 Si, Ge, Sn, Se, Te와 같은 n형 도펀트일 수 있다. 제1도펀트가 n형 도펀트인 경우, 제1도펀트가 도핑된 제1 도전형 반도체층(120)은 n형 반도체층일 수 있다.
활성층(130)은 제1 도전형 반도체층(120)을 통해서 주입되는 전자(또는 정공)와 제2 도전형 반도체층(140)을 통해서 주입되는 정공(또는 전자)이 만나는 층이다. 활성층(130)은 전자와 정공이 재결합함에 따라 낮은 에너지 준위로 천이하며, 그에 상응하는 파장을 가지는 빛을 생성할 수 있다.
활성층(130)은 단일 우물 구조, 다중 우물 구조, 단일 양자 우물 구조, 다중 양자 우물(Multi Quantum Well; MQW) 구조, 양자점 구조 또는 양자선 구조 중 어느 하나의 구조를 가질 수 있으며, 활성층(130)의 구조는 이에 한정하지 않는다.
제2 도전형 반도체층(140)은 활성층(130) 상에 형성되며, Ⅲ-Ⅴ족, Ⅱ-Ⅵ족 등의 화합물 반도체로 구현될 수 있으며, 제2 도전형 반도체층(140)에 제2도펀트가 도핑될 수 있다. 제2 도전형 반도체층(140)은 Inx5Aly2Ga1 -x5- y2N (0≤x5≤1, 0≤y2≤1, 0≤x5+y2≤1)의 조성식을 갖는 반도체 물질 또는 AlInN, AlGaAs, GaP, GaAs, GaAsP, AlGaInP 중 선택된 물질로 형성될 수 있다. 제2도펀트가 Mg, Zn, Ca, Sr, Ba 등과 같은 p형 도펀트인 경우, 제2도펀트가 도핑된 제2 도전형 반도체층(140)은 p형 반도체층일 수 있다.
제1전극(152)은 제1 도전형 반도체층(120)과 전기적으로 연결될 수 있고, 제2전극(151)은 제2 도전형 반도체층(140)과 전기적으로 연결될 수 있다. 제1 및 제2전극(152, 151)은 Ti, Ru, Rh, Ir, Mg, Zn, Al, In, Ta, Pd, Co, Ni, Si, Ge, Ag 및 Au와 이들의 선택적인 합금 중에서 선택될 수 있다.
실시 예에서는 수평형 발광소자의 구조로 설명하였으나, 반드시 이에 한정하지 않는다. 예시적으로 실시 예에 따른 발광소자는 수직형 또는 플립칩 구조일 수도 있다.
반도체 소자는 다양한 종류의 광원 장치에 적용될 수 있다. 예시적으로 광원장치는 살균 장치, 경화 장치, 조명 장치, 및 표시 장치 및 차량용 램프 등을 포함하는 개념일 수 있다. 즉, 반도체 소자는 케이스에 배치되어 광을 제공하는 다양한 전자 디바이스에 적용될 수 있다.
살균 장치는 실시 예에 따른 반도체 소자를 구비하여 원하는 영역을 살균할수 있다. 살균 장치는 정수기, 에어컨, 냉장고 등의 생활 가전에 적용될 수 있으나 반드시 이에 한정하지 않는다. 즉, 살균 장치는 살균이 필요한 다양한 제품(예: 의료 기기)에 모두 적용될 수 있다.
예시적으로 정수기는 순환하는 물을 살균하기 위해 실시 예에 따른 살균 장치를 구비할 수 있다. 살균 장치는 물이 순환하는 노즐 또는 토출구에 배치되어 자외선을 조사할 수 있다. 이때, 살균 장치는 방수 구조를 포함할 수 있다.
경화 장치는 실시 예에 따른 반도체 소자를 구비하여 다양한 종류의 액체를 경화시킬 수 있다. 액체는 자외선이 조사되면 경화되는 다양한 물질을 모두 포함하는 최광의 개념일 수 있다. 예시적으로 경화장치는 다양한 종류의 레진을 경화시킬 수 있다. 또는 경화장치는 매니큐어와 같은 미용 제품을 경화시키는 데 적용될 수도 있다.
조명 장치는 기판과 실시 예의 반도체 소자를 포함하는 광원 모듈, 광원 모듈의 열을 발산시키는 방열부 및 외부로부터 제공받은 전기적 신호를 처리 또는 변환하여 광원 모듈로 제공하는 전원 제공부를 포함할 수 있다. 또한, 조명 장치는, 램프, 해드 램프, 또는 가로등 등을 포함할 수 있다.
표시 장치는 바텀 커버, 반사판, 발광 모듈, 도광판, 광학 시트, 디스플레이 패널, 화상 신호 출력 회로 및 컬러 필터를 포함할 수 있다. 바텀 커버, 반사판, 발광 모듈, 도광판 및 광학 시트는 백라이트 유닛(Backlight Unit)을 구성할 수 있다.
반사판은 바텀 커버 상에 배치되고, 발광 모듈은 광을 방출할 수 있다. 도광판은 반사판의 전방에 배치되어 발광 모듈에서 발산되는 빛을 전방으로 안내하고, 광학 시트는 프리즘 시트 등을 포함하여 이루어져 도광판의 전방에 배치될 수 있다. 디스플레이 패널은 광학 시트 전방에 배치되고, 화상 신호 출력 회로는 디스플레이 패널에 화상 신호를 공급하며, 컬러 필터는 디스플레이 패널의 전방에 배치될 수 있다.
반도체 소자는 표시장치의 백라이트 유닛으로 사용될 때 에지 타입의 백라이트 유닛으로 사용되거나 직하 타입의 백라이트 유닛으로 사용될 수 있다.
반도체 소자는 상술한 발광 다이오드 외에 레이저 다이오드일 수도 있다.
레이저 다이오드는, 발광소자와 동일하게, 상술한 구조의 제1 도전형 반도체층과 활성층 및 제2 도전형 반도체층을 포함할 수 있다. 그리고, p-형의 제1 도전형 반도체와 n-형의 제2 도전형 반도체를 접합시킨 뒤 전류를 흘러주었을 때 빛이 방출되는 electro-luminescence(전계발광) 현상을 이용하나, 방출되는 광의 방향성과 위상에서 차이점이 있다. 즉, 레이저 다이오드는 여기 방출(stimulated emission)이라는 현상과 보강간섭 현상 등을 이용하여 하나의 특정한 파장(단색광, monochromatic beam)을 가지는 빛이 동일한 위상을 가지고 동일한 방향으로 방출될 수 있으며, 이러한 특성으로 인하여 광통신이나 의료용 장비 및 반도체 공정 장비 등에 사용될 수 있다.
수광 소자로는 빛을 검출하여 그 강도를 전기 신호로 변환하는 일종의 트랜스듀서인 광 검출기(photodetector)를 예로 들 수 있다. 이러한 광 검출기로서, 광전지(실리콘, 셀렌), 광 출력전 소자(황화 카드뮴, 셀렌화 카드뮴), 포토 다이오드(예를 들어, visible blind spectral region이나 true blind spectral region에서 피크 파장을 갖는 PD), 포토 트랜지스터, 광전자 증배관, 광전관(진공, 가스 봉입), IR(Infra-Red) 검출기 등이 있으나, 실시 예는 이에 국한되지 않는다.
또한, 광검출기와 같은 반도체 소자는 일반적으로 광변환 효율이 우수한 직접 천이 반도체(direct bandgap semiconductor)를 이용하여 제작될 수 있다. 또는, 광검출기는 구조가 다양하여 가장 일반적인 구조로는 p-n 접합을 이용하는 pin형 광검출기와, 쇼트키접합(Schottky junction)을 이용하는 쇼트키형 광검출기와, MSM(Metal Semiconductor Metal)형 광검출기 등이 있다.
포토 다이오드(Photodiode)는 발광소자와 동일하게, 상술한 구조의 제1 도전형 반도체층과 활성층 및 제2 도전형 반도체층을 포함할 수 있고, pn접합 또는 pin 구조로 이루어진다. 포토 다이오드는 역바이어스 혹은 제로바이어스를 가하여 동작하게 되며, 광이 포토 다이오드에 입사되면 전자와 정공이 생성되어 전류가 흐른다. 이때 전류의 크기는 포토 다이오드에 입사되는 광의 강도에 거의 비례할 수 있다.
광전지 또는 태양 전지(solar cell)는 포토 다이오드의 일종으로, 광을 전류로 변환할 수 있다. 태양 전지는, 발광소자와 동일하게, 상술한 구조의 제1 도전형 반도체층과 활성층 및 제2 도전형 반도체층을 포함할 수 있다.
또한, p-n 접합을 이용한 일반적인 다이오드의 정류 특성을 통하여 전자 회로의 정류기로 이용될 수도 있으며, 초고주파 회로에 적용되어 발진 회로 등에 적용될 수 있다.
또한, 상술한 반도체 소자는 반드시 반도체로만 구현되지 않으며 경우에 따라 금속 물질을 더 포함할 수도 있다. 예를 들어, 수광 소자와 같은 반도체 소자는 Ag, Al, Au, In, Ga, N, Zn, Se, P, 또는 As 중 적어도 하나를 이용하여 구현될 수 있으며, p형이나 n형 도펀트에 의해 도핑된 반도체 물질이나 진성 반도체 물질을 이용하여 구현될 수도 있다.
이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (10)

  1. 캐비티를 포함하는 몸체;
    상기 몸체의 내부에 배치되는 복수 개의 전극;
    상기 복수 개의 전극과 전기적으로 연결되는 반도체 소자; 및
    상기 캐비티 상에 배치되는 투광부재를 포함하고,
    상기 몸체는 서로 마주보는 제1측면과 제2측면, 서로 마주보는 제3측면과 제4측면, 상기 제1측면과 상기 제3측면이 이루는 제1코너 영역, 상기 제1측면과 상기 제4측면이 이루는 제2코너 영역, 상기 제2측면과 상기 제4측면이 이루는 제3코너 영역, 및 상기 제2측면과 상기 제3측면이 이루는 제4코너 영역을 포함하고,
    상기 복수 개의 전극은 상기 반도체 소자가 배치되는 제1전극 및 상기 제1전극의 외측에 배치되는 제2전극 내지 제6전극을 포함하고,
    상기 제1전극은 서로 마주보는 제5측면과 제6측면, 상기 제5측면과 제6측면을 연결하는 제7측면, 상기 제5측면과 제7측면이 이루는 제5코너 영역, 및 상기 제6측면과 제7측면이 이루는 제6코너 영역을 포함하고,
    상기 제5코너 영역은 상기 제2코너 영역과 상기 제3코너 영역 사이에 배치되고,
    상기 제6코너 영역은 상기 제3코너 영역과 상기 제4코너 영역 사이에 배치되고,
    상기 제4전극과 상기 제5전극 사이의 이격부는 상기 제5코너 영역과 상기 제4측면 사이에 배치되고,
    상기 제5전극과 상기 제6전극 사이의 이격부는 상기 제6코너 영역과 상기 제2측면 사이에 배치되는 반도체 소자 패키지.
  2. 제1항에 있어서,
    상기 제2전극 내지 제6전극은 서로 이격 배치되고,
    상기 제2전극은 상기 제1코너 영역으로 연장되고
    상기 제2전극은 상기 제1전극과 연결되는 반도체 소자 패키지.
  3. 제2항에 있어서,
    상기 제2전극에 배치되는 제너 다이오드 및
    상기 제너 다이오드과 상기 제3전극과 전기적으로 연결하는 와이어를 포함하는 반도체 소자 패키지.
  4. 제1항에 있어서,
    상기 몸체는 상기 제1측면과 상기 제2측면의 중심을 통과하는 제1가상직선과 상기 제3측면과 상기 제4측면의 중심을 통과하는 제2가상직선에 의해 정의되는 제1분할영역 내지 제4분할 영역을 포함하고,
    상기 제1분할영역은 상기 제1코너 영역을 포함하고,
    상기 제2분할영역은 상기 제2코너 영역을 포함하고,
    상기 제3분할영역은 상기 제3코너 영역을 포함하고,
    상기 제4분할영역은 상기 제4코너 영역을 포함하고,
    상기 제2전극 및 제3전극은 상기 제1분할영역에 배치되고,
    상기 제4전극은 상기 제2분할영역에 배치되고,
    상기 제5전극은 상기 제3분할영역에 배치되고,
    상기 제6전극은 상기 제4분할영역에 배치되는 반도체 소자 패키지.
  5. 제4항에 있어서,
    상기 제1전극은 상기 제1가상직선과 제2가상직선의 교차점을 포함하고,
    상기 제4전극 내지 제6전극은 상기 제2전극보다 큰 반도체 소자 패키지.
  6. 제5항에 있어서,
    상기 제1전극은 상기 제4전극 내지 제6전극보다 큰 반도체 소자 패키지.
  7. 제5항에 있어서,
    상기 제1전극의 면적은 상기 제2전극 내지 제6전극의 면적을 합한 면적보다 큰 반도체 소자 패키지.
  8. 제2항에 있어서,
    상기 제1전극과 전기적으로 연결되는 제1전극패드,
    상기 제3전극 내지 제6전극과 전기적으로 연결되는 제2전극패드, 및
    상기 제1전극패드와 제2전극패드 사이에 배치되는 방열패드를 포함하는 반도체 소자 패키지.
  9. 제8항에 있어서,
    상기 제1전극과 상기 제1전극패드를 전기적으로 연결하는 제1연결전극, 및
    상기 제3전극 내지 제6전극과 상기 제2전극패드를 연결하는 제2연결전극을 포함하는 반도체 소자 패키지.
  10. 제1항에 있어서,
    상기 반도체 소자는 제1 도전형 반도체층, 제2 도전형 반도체층, 및 상기 제1 도전형 반도체층과 상기 제2 도전형 반도체층 사이에 배치되는 활성층을 포함하고,
    상기 활성층은 자외선 파장대의 광을 생성하는 반도체 소자 패키지.
PCT/KR2018/016428 2017-12-22 2018-12-21 반도체 소자 패키지 WO2019125032A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/772,867 US11355674B2 (en) 2017-12-22 2018-12-21 Semiconductor device package

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170177995A KR102471689B1 (ko) 2017-12-22 2017-12-22 반도체 소자 패키지
KR10-2017-0177995 2017-12-22

Publications (1)

Publication Number Publication Date
WO2019125032A1 true WO2019125032A1 (ko) 2019-06-27

Family

ID=66993543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/016428 WO2019125032A1 (ko) 2017-12-22 2018-12-21 반도체 소자 패키지

Country Status (3)

Country Link
US (1) US11355674B2 (ko)
KR (1) KR102471689B1 (ko)
WO (1) WO2019125032A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP1655194S (ko) * 2019-06-04 2020-03-16
JP1655195S (ko) * 2019-06-04 2020-03-16
TWI797845B (zh) * 2021-11-24 2023-04-01 財團法人工業技術研究院 封裝散熱結構及包含其的晶片

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120056217A1 (en) * 2009-07-03 2012-03-08 Seoul Semiconductor Co., Ltd. Light emitting diode package
KR20120082190A (ko) * 2011-01-13 2012-07-23 삼성엘이디 주식회사 발광소자 패키지
KR20120127109A (ko) * 2011-05-13 2012-11-21 엘지이노텍 주식회사 발광 소자 패키지 및 이를 구비한 자외선 램프
KR20140057805A (ko) * 2012-11-05 2014-05-14 엘지이노텍 주식회사 발광 소자 패키지 및 이를 포함하는 발광 모듈
KR20170118511A (ko) * 2016-04-15 2017-10-25 엘지이노텍 주식회사 발광소자 패키지 및 이를 포함하는 표시장치

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7244965B2 (en) * 2002-09-04 2007-07-17 Cree Inc, Power surface mount light emitting die package
JP5192811B2 (ja) * 2004-09-10 2013-05-08 ソウル セミコンダクター カンパニー リミテッド 多重モールド樹脂を有する発光ダイオードパッケージ
WO2006065007A1 (en) * 2004-12-16 2006-06-22 Seoul Semiconductor Co., Ltd. Leadframe having a heat sink supporting ring, fabricating method of a light emitting diodepackage using the same and light emitting diodepackage fabbricated by the method
JP5968674B2 (ja) * 2011-05-13 2016-08-10 エルジー イノテック カンパニー リミテッド 発光素子パッケージ及びこれを備える紫外線ランプ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120056217A1 (en) * 2009-07-03 2012-03-08 Seoul Semiconductor Co., Ltd. Light emitting diode package
KR20120082190A (ko) * 2011-01-13 2012-07-23 삼성엘이디 주식회사 발광소자 패키지
KR20120127109A (ko) * 2011-05-13 2012-11-21 엘지이노텍 주식회사 발광 소자 패키지 및 이를 구비한 자외선 램프
KR20140057805A (ko) * 2012-11-05 2014-05-14 엘지이노텍 주식회사 발광 소자 패키지 및 이를 포함하는 발광 모듈
KR20170118511A (ko) * 2016-04-15 2017-10-25 엘지이노텍 주식회사 발광소자 패키지 및 이를 포함하는 표시장치

Also Published As

Publication number Publication date
KR102471689B1 (ko) 2022-11-28
KR20190076301A (ko) 2019-07-02
US20200350468A1 (en) 2020-11-05
US11355674B2 (en) 2022-06-07

Similar Documents

Publication Publication Date Title
US10790413B2 (en) Semiconductor device having a light emitting structure
WO2018097649A1 (ko) 반도체 소자 및 이를 포함하는 반도체 소자 패키지
WO2019125032A1 (ko) 반도체 소자 패키지
TWI802587B (zh) 半導體裝置封裝
KR20170143336A (ko) 반도체 소자 및 이를 포함하는 표시 장치
WO2019103556A1 (ko) 반도체 소자
KR20180126739A (ko) 반도체 소자 패키지 및 그 제조 방법
KR102656815B1 (ko) 반도체 소자
WO2018186655A1 (ko) 반도체 소자 및 이를 포함하는 반도체 소자 패키지
WO2019194646A1 (ko) 반도체 소자
WO2019231283A1 (ko) 반도체 소자 패키지
WO2018135908A1 (ko) 반도체 소자 및 이를 포함하는 반도체 소자 패키지
EP3451396A1 (en) Semiconductor device package
WO2018124715A1 (ko) 반도체 소자
WO2017034167A1 (ko) 발광소자
KR20170129008A (ko) 반도체 소자 패키지
US20210273148A1 (en) Semiconductor device package
KR102709072B1 (ko) 반도체 소자 패키지
KR20190098624A (ko) 반도체 소자 및 이를 포함하는 반도체 소자 패키지
KR102509089B1 (ko) 반도체 소자 패키지
KR102518578B1 (ko) 반도체 소자 패키지 및 이를 포함하는 발광모듈
US20200357967A1 (en) Semiconductor device package and light emitting device comprising same
KR20200136149A (ko) 반도체 소자 패키지
WO2019194438A1 (ko) 반도체 소자
WO2020005009A1 (ko) 반도체 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18890955

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18890955

Country of ref document: EP

Kind code of ref document: A1