WO2018124715A1 - 반도체 소자 - Google Patents

반도체 소자 Download PDF

Info

Publication number
WO2018124715A1
WO2018124715A1 PCT/KR2017/015519 KR2017015519W WO2018124715A1 WO 2018124715 A1 WO2018124715 A1 WO 2018124715A1 KR 2017015519 W KR2017015519 W KR 2017015519W WO 2018124715 A1 WO2018124715 A1 WO 2018124715A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
semiconductor layer
disposed
layer
electrode
Prior art date
Application number
PCT/KR2017/015519
Other languages
English (en)
French (fr)
Inventor
염웅선
김현주
박진수
이승일
임재영
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to US16/474,197 priority Critical patent/US10950754B2/en
Publication of WO2018124715A1 publication Critical patent/WO2018124715A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • H01L33/145Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure with a current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape

Definitions

  • An embodiment discloses a semiconductor device.
  • a semiconductor device including a compound such as GaN, AlGaN, etc. has many advantages, such as having a wide and easy-to-adjust band gap energy, and can be used in various ways as a light emitting device, a light receiving device, and various diodes.
  • light emitting devices such as light emitting diodes and laser diodes using semiconductors of Group 3-5 or Group 2-6 compound semiconductors have been developed through the development of thin film growth technology and device materials.
  • Various colors such as blue and ultraviolet light can be realized, and efficient white light can be realized by using fluorescent materials or combining colors.Low power consumption, semi-permanent lifespan, and fast response speed compared to conventional light sources such as fluorescent and incandescent lamps can be realized. It has the advantages of safety, environmental friendliness.
  • a light-receiving device such as a photodetector or a solar cell
  • a group 3-5 or 2-6 compound semiconductor material of a semiconductor the development of device materials absorbs light in various wavelength ranges to generate a photocurrent.
  • light in various wavelengths can be used from gamma rays to radio wavelengths. It also has the advantages of fast response speed, safety, environmental friendliness and easy control of device materials, making it easy to use in power control or microwave circuits or communication modules.
  • the semiconductor device may replace a light emitting diode backlight, a fluorescent lamp, or an incandescent bulb, which replaces a cold cathode tube (CCFL) constituting a backlight module of an optical communication means, a backlight of a liquid crystal display (LCD) display device.
  • CCFL cold cathode tube
  • LCD liquid crystal display
  • the light emitting device that emits light in the ultraviolet wavelength region can be used for curing, medical treatment, and sterilization by curing or sterilizing.
  • the research on the ultraviolet light emitting device is active, but the ultraviolet light emitting device has a problem that it is difficult to implement vertically.
  • the embodiment provides a light emitting device having improved light output.
  • a semiconductor device may include a light emitting device including a first conductive semiconductor layer, a second conductive semiconductor layer, and an active layer disposed between the first conductive semiconductor layer and the second conductive semiconductor layer. structure; A first electrode disposed on the first conductive semiconductor layer; A second electrode disposed under the second conductive semiconductor layer; And a current blocking layer disposed between the second conductive semiconductor layer and the second electrode, wherein the first conductive semiconductor layer has a first region in which the first electrode is disposed, and a thickness greater than that of the first region. Including a thin second area, the current blocking layer may be disposed in a region corresponding to the first region in the thickness direction.
  • the thickness ratio of the first region and the second region may be 1: 0.2 to 1: 0.7.
  • the ratio of the total area of the first conductivity type semiconductor layer and the area of the second area may be 1: 0.5 to 1: 0.9.
  • the first region may be disposed at an edge of the first conductive semiconductor layer, and the second region may be disposed at the center of the first conductive semiconductor layer.
  • the first electrode may include at least one pad disposed at an edge of the first conductive semiconductor layer, and a branch electrode extending from the pad.
  • the branch electrode may include a first branch electrode disposed at an edge of the first conductivity type semiconductor layer and at least one second branch electrode extending from the first branch electrode.
  • the first region may include a first sub region in which the first electrode is disposed, a second sub region disposed between the second region and the first sub region, and a third region disposed outside the first sub region. It may include a sub area.
  • the second sub-region may have an inclined surface.
  • the second electrode may include a reflective layer that reflects light in the ultraviolet wavelength range.
  • the current blocking layer may be disposed at a position corresponding to the first region in the thickness direction.
  • the first direction width of the current blocking layer may be greater than the first direction width of the first electrode, and the first direction may be a direction perpendicular to the thickness direction.
  • the second region may be a region where light generated in the active layer is emitted to the outside.
  • the active layer may generate light in the ultraviolet wavelength range.
  • the first conductive semiconductor layer, the active layer, and the second conductive semiconductor layer may include aluminum.
  • the light output may be improved.
  • FIG. 1 is a plan view of a semiconductor device according to an embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional view taken along the direction A-A of FIG. 1.
  • FIG. 3 is an enlarged view of a portion of FIG. 2.
  • FIG. 4 is a plan view of a semiconductor device according to another embodiment of the present invention.
  • FIG. 5 is a cross-sectional view taken along the B-B direction of FIG. 4.
  • FIG. 6 is a first modification of FIG. 2.
  • FIG. 7 is a second modified example of FIG. 2.
  • FIG. 8 is a third modified example of FIG. 2.
  • FIG. 9 is a conceptual diagram of a semiconductor device package according to an embodiment of the present invention.
  • the light emitting structure according to the embodiment of the present invention may output light in the ultraviolet wavelength band.
  • the light emitting structure may output light in the near ultraviolet wavelength range (UV-A), may output light in the far ultraviolet wavelength range (UV-B), and emit light in the deep ultraviolet wavelength range (UV-C).
  • UV-A near ultraviolet wavelength range
  • UV-B far ultraviolet wavelength range
  • UV-C deep ultraviolet wavelength range
  • the wavelength range may be determined by the composition ratio of Al of the light emitting structure.
  • the light of the near ultraviolet wavelength range may have a wavelength in the range of 320 nm to 420 nm
  • the light of the far ultraviolet wavelength range (UV-B) may have a wavelength in the range of 280 nm to 320 nm
  • deep ultraviolet Light in the wavelength band (UV-C) may have a wavelength in the range of 100nm to 280nm.
  • FIG. 1 is a plan view of a semiconductor device according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view taken along the line A-A of FIG. 1.
  • a semiconductor device may include a first conductive semiconductor layer 121, a second conductive semiconductor layer 123, and a first conductive semiconductor layer 121 and a second conductive layer.
  • the light emitting structure 120 includes an active layer 122 disposed between the semiconductor layer 123, and a first electrode 150.
  • the first conductive semiconductor layer 121 may be formed of a compound semiconductor such as a group III-V group or a group II-VI, and may be doped with a first dopant.
  • the first conductive semiconductor layer 121 is a semiconductor material having a composition formula of In x1 Al y1 Ga 1 -x1 -y1 N (0 ⁇ x1 ⁇ 1, 0 ⁇ y1 ⁇ 1, 0 ⁇ x1 + y1 ⁇ 1), for example For example, it may be selected from GaN, AlGaN, InGaN, InAlGaN and the like.
  • the first dopant may be an n-type dopant such as Si, Ge, Sn, Se, or Te. When the first dopant is an n-type dopant, the first conductive semiconductor layer 121 doped with the first dopant may be an n-type semiconductor layer.
  • the active layer 122 may be disposed between the first conductive semiconductor layer 121 and the second conductive semiconductor layer 123.
  • the active layer 122 is a layer where electrons (or holes) injected through the first conductivity type semiconductor layer 121 and holes (or electrons) injected through the second conductivity type semiconductor layer 123 meet each other.
  • the active layer 122 transitions to a low energy level as electrons and holes recombine, and may generate light having an ultraviolet wavelength.
  • the active layer 122 may have any one of a single well structure, a multi well structure, a single quantum well structure, a multi quantum well (MQW) structure, a quantum dot structure, or a quantum line structure, and the active layer 122
  • the structure of is not limited to this.
  • the second conductivity type semiconductor layer 123 is formed on the active layer 122, and may be implemented as a compound semiconductor such as a group III-V group or a group II-VI. Dopants may be doped.
  • the second conductivity-type semiconductor layer 123 is a semiconductor material or AlInN having a composition formula of In x5 Al y2 Ga 1 -x5- y2 N (0 ⁇ x5 ⁇ 1, 0 ⁇ y2 ⁇ 1, 0 ⁇ x5 + y2 ⁇ 1). , AlGaAs, GaP, GaAs, GaAsP, AlGaInP may be formed of a material selected from.
  • the second dopant is a p-type dopant such as Mg, Zn, Ca, Sr, or Ba
  • the second conductive semiconductor layer 123 doped with the second dopant may be a p-type semiconductor layer.
  • a blocking layer may be disposed between the active layer 122 and the second conductive semiconductor layer 123.
  • the blocking layer blocks the flow of the first carrier (eg, electron) supplied from the first conductivity type semiconductor layer 121 to the second conductivity type semiconductor layer 123, thereby preventing electrons and holes in the active layer 122. This can increase the probability of recombination.
  • the energy bandgap of the blocking layer may be greater than the energy bandgap of the active layer 122 and / or the second conductivity type semiconductor layer 123.
  • the first conductivity type semiconductor layer 121 includes a first region P1 in which the first electrode 150 is disposed, and a second region P2 that is thinner than the first region P1.
  • the first region P1 may be an edge of the first conductivity type semiconductor layer 121, and the second region P2 may be a central portion, but is not limited thereto.
  • the first region P1 may be a region where the first electrode 150 is disposed, and the second region P2 may be defined as a region where light generated by the active layer 122 is emitted.
  • the first conductive semiconductor layer 121 may have an aluminum composition smaller than that of the well layer disposed in the active layer 122.
  • the light L1 emitted from the active layer 122 may be absorbed by the first conductivity type semiconductor layer 121, and thus the light output may be reduced. Therefore, in the exemplary embodiment, light extraction efficiency may be improved by thinly etching the first conductivity-type semiconductor layer 121.
  • the thickness d2 of the second region P2 may be 1 ⁇ m to 3 ⁇ m or less.
  • the thickness of the second region P2 is larger than 1 ⁇ m, the current injection efficiency in the second region P2 may be improved.
  • the thickness is smaller than 3 ⁇ m, the light absorption amount may be reduced to improve light output. .
  • At least one section of the second region P2 may be smaller than the aluminum composition of the well layer.
  • the aluminum composition of the second region P2 may be 80% or more of the aluminum composition of the well layer, but is not limited thereto.
  • the thickness d1 of the first region P1 may be 1.5 ⁇ m to 10 ⁇ m or less.
  • the current injected into the light emitting structure 120 through the first electrode 150 may be smoothly dispersed, and when the thickness is less than 10 ⁇ m, the light emitting structure ( The light extraction efficiency may be improved by lowering the probability that light is reabsorbed within 120, so that the luminous flux of the semiconductor device may be improved.
  • the thickness ratio d1: d2 of the first region P1 and the second region P2 may be 1: 0.2 to 1: 0.7. If the thickness ratio is greater than 1: 0.2, the current injection efficiency in the second region P2 may be improved. If the thickness ratio is smaller than 1: 0.7, the light absorption amount of the second region P2 may be reduced, resulting in light output. Can be improved.
  • the first region P1 is thick enough to disperse current, and the second region P1 is thick.
  • the region P2 may be thin enough that most of the light generated in the active layer 122 can be emitted.
  • the ratio of the total area of the first conductive semiconductor layer 121 and the area of the second region P2 may be 1: 0.5 to 1: 0.9. If the area ratio is greater than 1: 0.5, the light output may be improved by increasing the area of the second region P2. If the area ratio is less than 1: 0.9, the current injection efficiency may be secured by securing the area of the first region P1. Can be improved.
  • Table 1 below is a table measuring operating voltage and light output while gradually increasing the width of the first region P1.
  • Experimental Example 1 was prepared by experimenting with the thickness of the second region (P2) 1 ⁇ m
  • Experimental Example 9 was produced by experimenting with the thickness of the second region (P2) 2 ⁇ m.
  • Experimental Example 2 was conducted by making the width of the first region P1 equal to the width of the current blocking layer 130
  • Experimental Examples 3 to 8 was 10 ⁇ m the width of the first region (P1) in Experimental Example 2 Experiment by increments.
  • the width may be a distance in a direction perpendicular to the thickness direction. Therefore, in Experimental Example 2, the width of the first region P1 is 10 ⁇ m larger than the width of the current blocking layer 130. In Experimental Example 3, the width of the first region P1 is greater than the width of the current blocking layer 130. 20 ⁇ m may be large.
  • a second electrode 140 may be disposed under the second conductive semiconductor layer 123.
  • the second electrode 140 may inject a current into the second conductive semiconductor layer 123.
  • the second electrode 140 may reflect light emitted from the active layer 122.
  • the second electrode 140 may include a transparent electrode layer 141 and a reflective layer 142.
  • the transparent electrode layer 141 may serve as an ohmic electrode.
  • the transparent electrode layer 141 includes indium tin oxide (ITO), indium zinc oxide (IZO), indium zinc tin oxide (IZTO), indium aluminum zinc oxide (IZAO), indium gallium zinc oxide (IGZO), and indium gallium tin oxide (IGTO).
  • the reflective layer 142 may be made of a material having excellent reflectance in the ultraviolet wavelength range.
  • the reflective layer 142 may include aluminum.
  • the light extraction efficiency may be improved by reflecting light L2 emitted from the active layer 122 upward.
  • the current blocking layer 130 may prevent the current injected from the first electrode 150 from flowing in the vertical direction.
  • the current blocking layer 130 may be formed by selecting at least one selected from the group consisting of SiO 2 , SixOy, Si 3 N 4 , Si x N y , SiO x N y , Al 2 O 3 , TiO 2 , AlN, and the like. It is not limited to this.
  • the current blocking layer 130 may be formed in a single layer or multiple layers.
  • the thickness 130 of the current blocking layer may be 0.1 ⁇ m or more, but is not limited thereto.
  • the first electrode 150 may be disposed in the first region P1.
  • the first electrode 150 may be disposed at an edge of the first conductive semiconductor layer 121 to inject a current.
  • the first electrode 150 includes at least one pad 151 disposed at an edge of the first conductive semiconductor layer 121, and a branch electrode 152 extending from the pad 151. can do.
  • the pad 151 may be connected to an external power source by a wire.
  • the branch electrode 152 may extend along an edge of the first conductivity type semiconductor layer 121. Therefore, since the current can be injected uniformly to the first conductivity type semiconductor layer 121, the light output can be improved.
  • FIG. 3 is an enlarged view of a portion of FIG. 2.
  • the current injected into the second electrode 140 may be bent toward the center of the active layer 122 by the current blocking layer 130. That is, the current dispersion efficiency may be improved by the thickness of the first region P1 and the current blocking layer 130. Therefore, it may be advantageous that the current blocking layer 130 is disposed in a region corresponding to the first region P1.
  • the first width P3 of the current blocking layer 130 may be greater than the width of the first region P1. As the first direction width P3 of the current blocking layer 130 is increased, the current may be further bent toward the center of the active layer 122.
  • the first direction (X-axis direction) may be a direction perpendicular to the thickness direction (Y-axis direction) of the light emitting structure 120.
  • the ratio of the width of the first region P1 to the width P3 of the current blocking layer 130 may be 1: 1 to 1: 3.
  • the width ratio P1: P3 is smaller than 1: 1, part of the injected current flows in the thickness direction, and thus the light output may be lowered.
  • the width ratio P1: P3 is greater than 1: 3, the area of the reflective layer of the second electrode 140 may be reduced, thereby reducing light extraction efficiency.
  • the first region P1 may include a first sub region P11 where the first electrode 150 is disposed, a second sub region P12 disposed between the second region P2 and the first sub region P11, And a third sub area P13 disposed outside the first sub area P11.
  • the second subregion P12 and the third subregion P13 may be designed in consideration of a tolerance.
  • the first direction widths of the second subregion P12 and the third subregion P13 may be 1 ⁇ m to 20 ⁇ m.
  • the width is smaller than 1 ⁇ m, when the tolerance occurs, the first electrode 150 may not be disposed on the first area P1, so that the yield may be reduced.
  • the width is larger than 20 ⁇ m, the width of the second area P2 may be relatively low. There is a problem that the area is reduced and the light extraction efficiency is reduced.
  • FIG. 4 is a plan view of a semiconductor device according to another exemplary embodiment
  • FIG. 5 is a cross-sectional view taken along the B-B direction of FIG. 4.
  • the first electrode 150 includes a first branch electrode 152 extending from the pad 151 and a second branch electrode 153 connecting the first branch electrode 152. can do.
  • the shape of the second branch electrode 153 is not particularly limited.
  • the second branch electrode 153 may divide a plurality of second regions P2.
  • the second region P2 may be disposed between the plurality of first regions P1. According to such a configuration, the current dispersion efficiency may be improved, and thus the luminous efficiency may be improved.
  • the number and shape of the second branch electrodes 153 are not particularly limited.
  • the plurality of second branch electrodes 153 may be disposed along a vertical line or a horizontal line, and may be disposed in an appropriate number for distributing current.
  • the ratio of the total area of the first conductive semiconductor layer 121 and the area of the second region P2 may be 1: 0.5 to 1: 0.9. If the area ratio is greater than 1: 0.5, the light output may be improved by increasing the area of the second region P2. If the area ratio is less than 1: 0.9, the current injection efficiency may be secured by securing the area of the first region P1. Can be improved.
  • FIG. 6 is a first modified example of FIG. 2
  • FIG. 7 is a second modified example of FIG. 2
  • FIG. 8 is a third modified example of FIG. 2.
  • the first region P1 may have an inclined surface 121a on a sidewall facing the second region P2. According to this configuration, the amount of light reflected into the light emitting structure 120 at a point between the first region P1 and the second region P2 can be reduced, so that the light output can be improved.
  • the inclined surface may be formed to be concave (121b) from the first region (P1) to the second region (P2).
  • the present invention is not limited thereto, and the inclined surface may be formed convexly.
  • a light extraction pattern 121c may be formed in the second region P2.
  • the light extraction pattern 121c may improve the extraction efficiency emitted from the light emitting structure 120.
  • the light extraction pattern 121c may have an average height different according to the ultraviolet wavelength, and in the case of UV-C, the light extraction efficiency may be improved when the light extraction pattern 121c has a height of about 300 nm to 800 nm and an average of about 500 nm to 600 nm. Can be.
  • the height of the unevenness is not necessarily limited thereto.
  • FIG. 9 is a conceptual diagram of a semiconductor device package according to an embodiment of the present invention.
  • the semiconductor element is composed of a package and can be used in a curing apparatus of resin, resist, SOD or SOG.
  • the semiconductor device package may be used for medical treatment or in an electronic device such as a sterilizer such as an air purifier or a water purifier.
  • a semiconductor device package may be disposed in a body 2 having a groove 3, a semiconductor device 1 disposed in the body 2, and disposed in the body 2 to be electrically connected to the semiconductor device 1. It may include a pair of lead frames (5a, 5b) to be connected.
  • the semiconductor device 1 may include all of the above configurations.
  • the body 2 may include a material or a coating layer that reflects ultraviolet light.
  • the body 2 may be formed by stacking a plurality of layers 2a, 2b, 2c, and 2d.
  • the plurality of layers 2a, 2b, 2c, and 2d may be the same material or may include different materials.
  • the groove 3 may be wider as it is farther from the semiconductor device, and a step 3a may be formed on the inclined surface.
  • the light transmitting layer 4 may cover the groove 3.
  • the light transmitting layer 4 may be made of glass, but is not limited thereto.
  • the light transmitting layer 4 is not particularly limited as long as it is a material that can effectively transmit ultraviolet light.
  • the inside of the groove 3 may be an empty space.
  • the semiconductor device may be used as a light source of an illumination system, or may be used as a light source of an image display device or a light source of an illumination device. That is, the semiconductor device may be applied to various electronic devices disposed in a case to provide light. For example, when the semiconductor device and the RGB phosphor are mixed and used, white light having excellent color rendering (CRI) may be realized.
  • CRI color rendering
  • the above-described semiconductor device may be configured as a light emitting device package and used as a light source of an illumination system.
  • the semiconductor device may be used as a light source or a light source of an image display device.
  • a backlight unit of an image display device When used as a backlight unit of an image display device, it can be used as an edge type backlight unit or a direct type backlight unit, when used as a light source of a lighting device can be used as a luminaire or bulb type, and also used as a light source of a mobile terminal. It may be.
  • the light emitting element includes a laser diode in addition to the light emitting diode described above.
  • the laser diode may include the first conductive semiconductor layer, the active layer, and the second conductive semiconductor layer having the above-described structure.
  • an electric-luminescence phenomenon is used in which light is emitted when an electric current flows.
  • a laser diode may emit light having a specific wavelength (monochromatic beam) in the same direction with the same phase by using a phenomenon called stimulated emission and a constructive interference phenomenon. Due to this, it can be used for optical communication, medical equipment and semiconductor processing equipment.
  • a photodetector may be a photodetector, which is a type of transducer that detects light and converts its intensity into an electrical signal.
  • Such photodetectors include photovoltaic cells (silicon, selenium), photoelectric devices (cadmium sulfide, cadmium selenide), photodiodes (e.g. PD having peak wavelength in visible blind or true blind spectral regions) Transistors, photomultipliers, phototubes (vacuum, gas encapsulation), infrared (Infra-Red) detectors, and the like, but embodiments are not limited thereto.
  • a semiconductor device such as a photodetector may generally be manufactured using a direct bandgap semiconductor having excellent light conversion efficiency.
  • the photodetector has various structures, and the most common structures include a pin photodetector using a pn junction, a Schottky photodetector using a Schottky junction, a metal semiconductor metal (MSM) photodetector, and the like. have.
  • MSM metal semiconductor metal
  • a photodiode may include a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer having the above-described structure, and have a pn junction or pin structure.
  • the photodiode operates by applying a reverse bias or zero bias. When light is incident on the photodiode, electrons and holes are generated and current flows. In this case, the magnitude of the current may be approximately proportional to the intensity of light incident on the photodiode.
  • Photovoltaic cells or solar cells are a type of photodiodes that can convert light into electrical current.
  • the solar cell may include the first conductive semiconductor layer, the active layer, and the second conductive semiconductor layer having the above-described structure, similarly to the light emitting device.
  • a general diode using a p-n junction it may be used as a rectifier of an electronic circuit, it may be applied to an ultra-high frequency circuit and an oscillation circuit.
  • the semiconductor device described above is not necessarily implemented as a semiconductor and may further include a metal material in some cases.
  • a semiconductor device such as a light receiving device may be implemented using at least one of Ag, Al, Au, In, Ga, N, Zn, Se, P, or As, and may be implemented by a p-type or n-type dopant. It may also be implemented using a doped semiconductor material or an intrinsic semiconductor material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

실시 예는, 제1 도전형 반도체층, 제2 도전형 반도체층 및 상기 제1 도전형 반도체층과 상기 제2 도전형 반도체층 사이에 배치되는 활성층을 포함하는 발광 구조물; 상기 제1 도전형 반도체층 상에 배치되는 제1전극; 상기 제2 도전형 반도체층의 하부에 배치되는 제2전극; 및 상기 제2 도전형 반도체층과 제2전극 사이에 배치되는 전류 차단층을 포함하고, 상기 제1 도전형 반도체층은 상기 제1전극이 배치되는 제1영역, 및 상기 제1영역보다 두께가 얇은 제2영역을 포함하고, 상기 전류 차단층은 두께 방향으로 상기 제1영역과 대응되는 영역에 배치되는 반도체 소자를 개시한다.

Description

반도체 소자
실시 예는 반도체 소자를 개시한다.
GaN, AlGaN 등의 화합물을 포함하는 반도체 소자는 넓고 조정이 용이한 밴드 갭 에너지를 가지는 등의 많은 장점을 가져서 발광 소자, 수광 소자 및 각종 다이오드 등으로 다양하게 사용될 수 있다.
특히, 반도체의 3-5족 또는 2-6족 화합물 반도체 물질을 이용한 발광 다이오드(Light Emitting Diode)나 레이저 다이오드(Laser Diode)와 같은 발광소자는 박막 성장 기술 및 소자 재료의 개발로 적색, 녹색, 청색 및 자외선 등 다양한 색을 구현할 수 있으며, 형광 물질을 이용하거나 색을 조합함으로써 효율이 좋은 백색 광선도 구현이 가능하며, 형광등, 백열등 등 기존의 광원에 비해 저소비전력, 반영구적인 수명, 빠른 응답속도, 안전성, 환경 친화성의 장점을 가진다.
뿐만 아니라, 광검출기나 태양 전지와 같은 수광 소자도 반도체의 3-5족 또는 2-6족 화합물 반도체 물질을 이용하여 제작하는 경우 소자 재료의 개발로 다양한 파장 영역의 빛을 흡수하여 광 전류를 생성함으로써 감마선부터 라디오 파장 영역까지 다양한 파장 영역의 빛을 이용할 수 있다. 또한 빠른 응답속도, 안전성, 환경 친화성 및 소자 재료의 용이한 조절의 장점을 가져 전력 제어 또는 초고주파 회로나 통신용 모듈에도 용이하게 이용할 수 있다.
따라서, 반도체 소자는 광 통신 수단의 송신 모듈, LCD(Liquid Crystal Display) 표시 장치의 백라이트를 구성하는 냉음극관(CCFL: Cold Cathode Fluorescence Lamp)을 대체하는 발광 다이오드 백라이트, 형광등이나 백열 전구를 대체할 수 있는 백색 발광 다이오드 조명 장치, 자동차 헤드 라이트 및 신호등 및 Gas나 화재를 감지하는 센서 등에까지 응용이 확대되고 있다. 또한, 반도체 소자는 고주파 응용 회로나 기타 전력 제어 장치, 통신용 모듈에까지 응용이 확대될 수 있다.
특히, 자외선 파장 영역의 광을 방출하는 발광소자는 경화작용이나 살균 작용을 하여 경화용, 의료용, 및 살균용으로 사용될 수 있다.
최근 자외선 발광소자에 대한 연구가 활발하나, 아직까지 자외선 발광소자는 수직형으로 구현하기 어려운 문제가 있다.
실시 예는 광 출력이 향상된 발광소자를 제공한다.
또한, 수직형 자외선 발광소자를 제공한다.
실시 예에서 해결하고자 하는 과제는 이에 한정되는 것은 아니며, 아래에서 설명하는 과제의 해결수단이나 실시 형태로부터 파악될 수 있는 목적이나 효과도 포함된다고 할 것이다.
본 발명의 일 실시 예에 따른 반도체 소자는, 제1 도전형 반도체층, 제2 도전형 반도체층 및 상기 제1 도전형 반도체층과 상기 제2 도전형 반도체층 사이에 배치되는 활성층을 포함하는 발광 구조물; 상기 제1 도전형 반도체층 상에 배치되는 제1전극; 상기 제2 도전형 반도체층의 하부에 배치되는 제2전극; 및 상기 제2 도전형 반도체층과 제2전극 사이에 배치되는 전류 차단층을 포함하고, 상기 제1 도전형 반도체층은 상기 제1전극이 배치되는 제1영역, 및 상기 제1영역보다 두께가 얇은 제2영역을 포함하고, 상기 전류 차단층은 두께 방향으로 상기 제1영역과 대응되는 영역에 배치될 수 있다.
상기 제1영역과 제2영역의 두께비는 1:0.2 내지 1:0.7일 수 있다.
상기 제1 도전형 반도체층의 전체 면적과 상기 제2영역의 면적의 비는 1:0.5 내지 1:0.9일 수 있다.
상기 제1영역은 상기 제1 도전형 반도체층의 가장자리에 배치되고, 상기 제2영역은 상기 제1 도전형 반도체층의 중앙에 배치될 수 있다.
상기 제1전극은 상기 제1 도전형 반도체층의 모서리에 배치되는 적어도 하나의 패드, 및 상기 패드에서 연장되는 가지전극을 포함할 수 있다.
상기 가지전극은 상기 제1 도전형 반도체층의 가장자리에 배치되는 제1가지전극 및 상기 제1가지전극에서 연장된 적어도 하나의 제2가지전극을 포함할 수 있다.
상기 제1영역은, 상기 제1전극이 배치되는 제1서브영역, 상기 제2영역과 상기 제1서브영역 사이에 배치되는 제2서브영역, 및 상기 제1서브영역의 외측에 배치되는 제3서브영역을 포함할 수 있다.
상기 제2서브영역은 경사면을 가질 수 있다.
상기 제2전극은 자외선 파장대의 광을 반사하는 반사층을 포함할 수 있다.
상기 전류 차단층은 두께 방향으로 상기 제1영역과 대응되는 위치에 배치될 수 있다.
상기 전류 차단층의 제1방향 폭은 상기 제1전극의 제1방향 폭보다 크고, 상기 제1방향은 두께 방향과 수직한 방향일 수 있다.
상기 제2영역은 상기 활성층에서 생성된 광이 외부로 출사되는 영역일 수 있다.
상기 활성층은 자외선 파장대의 광을 생성할 수 있다.
상기 제1 도전형 반도체층, 활성층, 및 제2 도전형 반도체층은 알루미늄을 포함할 수 있다.
실시 예에 따르면 광 출력을 향상시킬 수 있다.
본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않으며, 본 발명의 구체적인 실시형태를 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시 예에 따른 반도체 소자의 평면도이다.
도 2는 도 1의 A-A 방향 단면도이다.
도 3은 도 2의 일부 확대도이다.
도 4는 본 발명의 다른 실시 예에 따른 반도체 소자의 평면도이다.
도 5는 도 4의 B-B 방향 단면도이다.
도 6은 도 2의 제1변형예이다.
도 7은 도 2의 제2변형예이다.
도 8은 도 2의 제3변형예이다.
도 9는 본 발명의 일 실시 예에 따른 반도체 소자 패키지의 개념도이다.
본 실시 예들은 다른 형태로 변형되거나 여러 실시 예가 서로 조합될 수 있으며, 본 발명의 범위가 이하 설명하는 각각의 실시 예로 한정되는 것은 아니다.
특정 실시 예에서 설명된 사항이 다른 실시 예에서 설명되어 있지 않더라도, 다른 실시 예에서 그 사항과 반대되거나 모순되는 설명이 없는 한, 다른 실시 예에 관련된 설명으로 이해될 수 있다.
예를 들어, 특정 실시 예에서 구성 A에 대한 특징을 설명하고 다른 실시 예에서 구성 B에 대한 특징을 설명하였다면, 구성 A와 구성 B가 결합된 실시 예가 명시적으로 기재되지 않더라도 반대되거나 모순되는 설명이 없는 한, 본 발명의 권리범위에 속하는 것으로 이해되어야 한다.
실시 예의 설명에 있어서, 어느 한 element가 다른 element의 "상(위) 또는 하(아래)(on or under)"에 형성되는 것으로 기재되는 경우에 있어, 상(위) 또는 하(아래)(on or under)는 두 개의 element가 서로 직접(directly)접촉되거나 하나 이상의 다른 element가 상기 두 element 사이에 배치되어(indirectly) 형성되는 것을 모두 포함한다. 또한 "상(위) 또는 하(아래)(on or under)"으로 표현되는 경우 하나의 element를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.
이하에서는 첨부한 도면을 참고로 하여 본 발명의 실시 예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다.
본 발명의 실시 예에 따른 발광 구조물은 자외선 파장대의 광을 출력할 수 있다. 예시적으로 발광 구조물은 근자외선 파장대의 광(UV-A)을 출력할 수도 있고, 원자외선 파장대의 광(UV-B)을 출력할 수 도 있고, 심자외선 파장대의 광(UV-C)을 출력할 수 있다. 파장범위는 발광 구조물의 Al의 조성비에 의해 결정될 수 있다.
예시적으로, 근자외선 파장대의 광(UV-A)은 320nm 내지 420nm 범위의 파장을 가질 수 있고, 원자외선 파장대의 광(UV-B)은 280nm 내지 320nm 범위의 파장을 가질 수 있으며, 심자외선 파장대의 광(UV-C)은 100nm 내지 280nm 범위의 파장을 가질 수 있다.
도 1은 본 발명의 일 실시 예에 따른 반도체 소자의 평면도이고, 도 2는 도 1의 A-A 방향 단면도이다.
도 1 및 도 2를 참조하면, 실시 예에 따른 반도체 소자는 제1 도전형 반도체층(121), 제2 도전형 반도체층(123), 및 제1 도전형 반도체층(121)과 제2 도전형 반도체층(123) 사이에 배치되는 활성층(122)을 포함하는 발광 구조물(120), 및 제1전극(150)을 포함한다.
제1 도전형 반도체층(121)은 Ⅲ-Ⅴ족, Ⅱ-Ⅵ족 등의 화합물 반도체로 구현될 수 있으며, 제1도펀트가 도핑될 수 있다. 제1 도전형 반도체층(121)은 Inx1Aly1Ga1 -x1-y1N(0≤x1≤1, 0≤y1≤1, 0≤x1+y1≤1)의 조성식을 갖는 반도체 재료, 예를 들어 GaN, AlGaN, InGaN, InAlGaN 등에서 선택될 수 있다. 그리고, 제1도펀트는 Si, Ge, Sn, Se, Te와 같은 n형 도펀트일 수 있다. 제1도펀트가 n형 도펀트인 경우, 제1도펀트가 도핑된 제1 도전형 반도체층(121)은 n형 반도체층일 수 있다.
활성층(122)은 제1 도전형 반도체층(121)과 제2 도전형 반도체층(123) 사이에 배치될 수 있다. 활성층(122)은 제1 도전형 반도체층(121)을 통해서 주입되는 전자(또는 정공)와 제2 도전형 반도체층(123)을 통해서 주입되는 정공(또는 전자)이 만나는 층이다. 활성층(122)은 전자와 정공이 재결합함에 따라 낮은 에너지 준위로 천이하며, 자외선 파장을 가지는 빛을 생성할 수 있다.
활성층(122)은 단일 우물 구조, 다중 우물 구조, 단일 양자 우물 구조, 다중 양자 우물(Multi Quantum Well; MQW) 구조, 양자점 구조 또는 양자선 구조 중 어느 하나의 구조를 가질 수 있으며, 활성층(122)의 구조는 이에 한정하지 않는다.
제2 도전형 반도체층(123)은 활성층(122) 상에 형성되며, Ⅲ-Ⅴ족, Ⅱ-Ⅵ족 등의 화합물 반도체로 구현될 수 있으며, 제2 도전형 반도체층(123)에 제2도펀트가 도핑될 수 있다. 제2 도전형 반도체층(123)은 Inx5Aly2Ga1 -x5- y2N (0≤x5≤1, 0≤y2≤1, 0≤x5+y2≤1)의 조성식을 갖는 반도체 물질 또는 AlInN, AlGaAs, GaP, GaAs, GaAsP, AlGaInP 중 선택된 물질로 형성될 수 있다. 제2도펀트가 Mg, Zn, Ca, Sr, Ba 등과 같은 p형 도펀트인 경우, 제2도펀트가 도핑된 제2 도전형 반도체층(123)은 p형 반도체층일 수 있다.
활성층(122)과 제2 도전형 반도체층(123) 사이에는 차단층(미도시)이 배치될 수 있다. 차단층은 제1 도전형 반도체층(121)에서 공급된 제1캐리어(예:전자)가 제2 도전형 반도체층(123)으로 빠져나가는 흐름을 차단하여, 활성층(122) 내에서 전자와 정공이 재결합할 확률을 높일 수 있다. 차단층의 에너지 밴드갭은 활성층(122) 및/또는 제2 도전형 반도체층(123)의 에너지 밴드갭보다 클 수 있다.
제1 도전형 반도체층(121)은 제1전극(150)이 배치되는 제1영역(P1), 및 제1영역(P1)보다 두께가 얇은 제2영역(P2)을 포함한다. 제1영역(P1)은 제1 도전형 반도체층(121)의 가장자리이고 제2영역(P2)은 중앙부일 수 있으나 반드시 이에 한정하지 않는다. 제1영역(P1)은 제1전극(150)이 배치되는 영역일 수 있으며, 제2영역(P2)은 활성층(122)에서 생성된 광이 출사되는 영역으로 정의할 수 있다.
제1 도전형 반도체층(121)은 적어도 일 구간에서 알루미늄 조성이 활성층(122)내에 배치되는 우물층의 알루미늄 조성보다 작을 수 있다. 이 경우 활성층(122)에서 출사된 광(L1)은 제1 도전형 반도체층(121)에 의해 흡수되어 광 출력이 저하될 수 있다. 따라서, 실시 예에서는 제1 도전형 반도체층(121)의 얇게 식각하여 광 추출 효율을 향상시킬 수 있다.
제2영역(P2)의 두께(d2)는 1㎛ 내지 3㎛이하일 수 있다. 제2영역(P2)의 두께가 1㎛보다 큰 경우 제2영역(P2)에서의 전류 주입 효율을 개선할 수 있으며, 두께가 3㎛보다 작은 경우 광 흡수량이 감소하여 광 출력이 향상될 수 있다.
제2영역(P2)은 적어도 일 구간이 우물층의 알루미늄 조성보다 작을 수 있다. 제2영역(P2)의 알루미늄 조성은 우물층의 알루미늄 조성의 80%이상일 수 있으나 반드시 이에 한정하지 않는다.
제1영역(P1)의 두께(d1)는 1.5㎛ 내지 10㎛이하일 수 있다. 제1영역(P1)의 두께가 1.5㎛보다 큰 경우 제1전극(150)을 통해 발광 구조물(120)으로 주입되는 전류가 충분히 분산되기 원활할 수 있고, 두께가 10㎛보다 작은 경우 발광 구조물(120)내에서 광이 재흡수될 확률을 낮추어 광추출효율이 개선될 수 있어, 반도체 소자의 광속이 향상될 수 있다.
제1영역(P1)과 제2영역(P2)의 두께비(d1:d2)는 1:0.2 내지 1:0.7일 수 있다. 두께비가 1:0.2보다 큰 경우에는 제2영역(P2)에서의 전류 주입 효율을 개선할 수 있으며, 두께비가 1:0.7보다 작은 경우에는 제2영역(P2)의 광 흡수량이 감소하여 광 출력이 향상될 수 있다.
실시 예에 따르면, 제1영역(P1)과 제2영역(P2)의 두께비가 1:0.2 내지 1:0.7를 만족하므로, 제1영역(P1)은 전류를 분산시킬 수 있을 만큼 두껍고, 제2영역(P2)은 활성층(122)에서 생성된 광이 대부분 출사될 수 있을 만큼 얇을 수 있다.
제1 도전형 반도체층(121)의 전체 면적과 제2영역(P2)의 면적비는 1:0.5 내지 1:0.9일 수 있다. 면적비가 1:0.5보다 큰 경우에는 제2영역(P2)의 면적이 증가하여 광 출력이 개선될 수 있으며, 면적비가 1:0.9보다 작은 경우 제1영역(P1)의 면적을 확보하여 전류 주입 효율을 개선할 수 있다.
하기 표 1은 제1영역(P1)의 폭을 점차 증가시키면서 동작 전압 및 광 출력을 측정한 표이다. 실험 예 1은 제2영역(P2)의 두께를 1㎛로 제작하여 실험하였고, 실험 예 9는 제2영역(P2)의 두께를 2㎛로 제작하여 실험하였다. 실험 예 2는 제1영역(P1)의 폭이 전류 차단층(130)의 폭과 동일하게 제작하여 실험하였고, 실험 예 3 내지 8은 실험 예 2에서 제1영역(P1)의 폭을 10㎛씩 증가시켜 실험하였다. 여기서 폭은 두께 방향과 수직한 방향의 거리일 수 있다. 따라서, 실험 예 2는 제1영역(P1)의 폭이 전류 차단층(130)의 폭보다 10㎛ 크고, 실험 예 3은 제1영역(P1)의 폭이 전류 차단층(130)의 폭보다 20㎛ 클 수 있다.
동작 전압(Vf) 광 출력(Po)
실험 예 1 Ref 100.0%
실험 예 2 -0.02 101.6%
실험 예 3 -0.02 97.4%
실험 예 4 -0.03 98.0%
실험 예 5 -0.03 98.6%
실험 예 6 -0.03 96.9%
실험 예 7 -0.03 94.7%
실험 예 8 -0.03 93.0%
실험 예 9 -0.04 72.6%
실험 결과, 실험 예 9는 실험 예 1에 비해 동작 전압이 0.04(V) 낮아졌으나, 광출력이 72.6%로 낮아졌음을 알 수 있다. 따라서, 제2영역(P2)의 면적이 증가하여 광 흡수가 증가한 것을 알 수 있다. 또한, 실험 예 2 내지 8을 참조하면, 제1영역(P1)의 폭이 증가할수록 광 출력이 감소하는 것을 확인할 수 있다. 즉, 제2영역(P2)의 면적이 감소하여 광 출력이 감소한 것을 알 수 있다.
도 2를 참조하면, 제2 도전형 반도체층(123)의 하부에는 제2전극(140)이 배치될 수 있다. 제2전극(140)은 제2 도전형 반도체층(123)에 전류를 주입할 수 있다. 또한, 제2전극(140)은 활성층(122)에서 출사되는 광을 반사할 수 있다.
제2전극(140)은 투명전극층(141)과 반사층(142)을 포함할 수 있다.
투명전극층(141)은 오믹 전극 역할을 수행할 수 있다. 투명전극층(141)은 ITO(indium tin oxide), IZO(indium zinc oxide), IZTO(indium zinc tin oxide), IAZO(indium aluminum zinc oxide), IGZO(indium gallium zinc oxide), IGTO(indium gallium tin oxide), AZO(aluminum zinc oxide), ATO(antimony tin oxide), GZO(gallium zinc oxide), IZON(IZO Nitride), AGZO(Al-Ga ZnO), IGZO(In-Ga ZnO), ZnO, IrOx, RuOx, NiO, RuOx/ITO, Ni/IrOx/Au, 또는 Ni/IrOx/Au/ITO, Ag, Ni, Cr, Ti, Al, Rh, Pd, Ir, Sn, In, Ru, Mg, Zn, Pt, Au, Hf 중 적어도 하나를 포함하여 형성될 수 있으나, 이러한 재료에 한정되는 않는다.
반사층(142)은 자외선 파장대에서 반사율이 우수한 물질로 이루어질 수 있다. 예시적으로 반사층(142)은 알루미늄을 포함할 수 있다. 반사층(142)이 알루미늄을 포함하는 경우, 활성층(122)에서 방출되는 광(L2)을 상부로 반사하는 역할을 하여 광 추출 효율을 향상시킬 수 있다.
전류 차단층(130)은 제1전극(150)에서 주입된 전류가 수직 방향으로 흐르는 것을 저지할 수 있다. 전류 차단층(130)은 SiO2, SixOy, Si3N4, SixNy, SiOxNy, Al2O3, TiO2, AlN 등으로 이루어진 군에서 적어도 하나가 선택되어 형성될 수 있으나, 이에 한정하지 않는다. 전류 차단층(130)은 단층 또는 다층으로 형성될 수 있다. 전류 차단층의 두께(130)는 0.1㎛이상일 수 있으나 반드시 이에 한정하지 않는다.
제1전극(150)은 제1영역(P1)에 배치될 수 있다. 제1전극(150)은 제1 도전형 반도체층(121)의 가장자리에 배치되어 전류를 주입할 수 있다.
도 1을 참조하면, 제1전극(150)은 제1 도전형 반도체층(121)의 모서리에 배치되는 적어도 하나의 패드(151), 및 패드(151)에서 연장되는 가지전극(152)을 포함할 수 있다. 패드(151)는 와이어에 의해 외부 전원과 연결될 수 있다. 가지전극(152)은 제1 도전형 반도체층(121)의 가장자리를 따라 연장될 수 있다. 따라서, 제1 도전형 반도체층(121)에 균일하게 전류를 주입할 수 있어 광 출력이 향상될 수 있다.
도 3은 도 2의 일부 확대도이다.
도 3을 참조하면, 제2전극(140)으로 주입된 전류는 전류 차단층(130)에 의해 활성층(122)의 중심을 향해 휘어져 흐를 수 있다. 즉, 제1영역(P1)의 두께 및 전류 차단층(130)에 의해 전류 분산 효율이 향상될 수 있다. 따라서, 전류 차단층(130)은 제1영역(P1)과 대응되는 영역에 배치되는 것이 유리할 수 있다.
전류 차단층(130)의 제1방향 폭(P3)은 제1영역(P1)의 폭보다 클 수 있다. 전류 차단층(130)의 제1방향폭(P3)이 커지는 만큼 전류는 활성층(122)의 중앙부로 더 휘어져 흐를 수 있다. 여기서 제1방향(X축 방향)은 발광 구조물(120)의 두께 방향(Y축 방향)과 수직한 방향일 수 있다.
제1영역(P1)의 폭과 전류 차단층(130)의 폭(P3)의 비는 1: 1 내지 1:3일 수 있다. 폭의 비(P1:P3)가 1:1보다 작은 경우 주입된 전류의 일부는 두께 방향으로 흐르게 되어 광 출력이 저하될 수 있다. 또한, 폭의 비(P1:P3)가 1:3보다 커지는 경우 제2전극(140)의 반사층 면적이 작아져 광 추출 효율이 감소할 수 있다.
제1영역(P1)은 제1전극(150)이 배치되는 제1서브영역(P11), 제2영역(P2)과 제1서브영역(P11) 사이에 배치되는 제2서브영역(P12), 및 제1서브영역(P11)의 외측에 배치되는 제3서브영역(P13)을 포함할 수 있다. 제2서브영역(P12)과 제3서브영역(P13)은 공차를 고려하여 설계될 수 있다.
예시적으로 제2서브영역(P12)과 제3서브영역(P13)의 제1방향 폭은 1㎛ 내지 20㎛일 수 있다. 폭이 1㎛보다 작은 경우 공차 발생시 제1영역(P1)상에 제1전극(150)이 배치되지 못해 수율이 떨어지는 문제가 있으며, 폭이 20㎛보다 큰 경우 상대적으로 제2영역(P2)의 면적이 작아져 광 추출 효율이 감소하는 문제가 있다.
도 4는 본 발명의 다른 실시 예에 따른 반도체 소자의 평면도이고, 도 5는 도 4의 B-B 방향 단면도이다.
도 4 및 도 5를 참조하면, 제1전극(150)은 패드(151)에서 연장된 제1가지전극(152) 및 제1가지전극(152)을 연결하는 제2가지전극(153)을 포함할 수 있다. 제2가지전극(153)의 형상은 특별히 한정하지 않는다. 제2가지전극(153)은 제2영역(P2)을 복수 개로 구획할 수 있다. 제2영역(P2)은 복수 개의 제1영역(P1) 사이에 배치될 수 있다. 이러한 구성에 의하면 전류 분산 효율이 향상되어 발광 효율이 향상될 수 있다.
제2가지전극(153)의 개수 및 형상은 특별히 제한되지 않는다. 제2가지전극(153)은 수직 또는 수평선을 따라 복수 개 배치될 수 있으며, 전류 분산을 위한 적정한 개수로 배치될 수 있다.
제1 도전형 반도체층(121)의 전체 면적과 제2영역(P2)의 면적비는 1:0.5 내지 1:0.9일 수 있다. 면적비가 1:0.5보다 큰 경우에는 제2영역(P2)의 면적이 증가하여 광 출력이 개선될 수 있으며, 면적비가 1:0.9보다 작은 경우 제1영역(P1)의 면적을 확보하여 전류 주입 효율을 개선할 수 있다.
도 6은 도 2의 제1변형예이고, 도 7은 도 2의 제2변형예이고, 도 8은 도 2의 제3변형예이다.
도 6을 참조하면, 제1영역(P1)은 제2영역(P2)과 마주보는 측벽에 경사면(121a)을 가질 수 있다. 이러한 구성에 의하면 제1영역(P1)과 제2영역(P2) 사이의 지점에서 발광 구조물(120) 내부로 반사되는 광량을 줄일 수 있어 광 출력이 향상될 수 있다.
또한, 제1영역(P1)에서 제2영역(P2)으로 갈수록 면적이 점차 감소하므로 주입되는 전류를 제2영역(P2)으로 가이드할 수 있는 채널 역할을 수행할 수 있다. 따라서, 전류 분산 효율이 증가할 수 있다. 도 7을 참조하면, 경사면은 제1영역(P1)에서 제2영역(P2)으로 갈수록 오목하게 형성(121b)될 수도 있다. 그러나, 반드시 이에 한정되는 것은 아니고 경사면은 볼록하게 형성될 수도 있다.
도 8을 참조하면, 제2영역(P2)에는 광 추출 패턴(121c)이 형성될 수 있다. 광 추출 패턴(121c)은 발광 구조물(120)에서 출사되는 추출 효율을 향상시킬 수 있다. 광 추출 패턴(121c)은 자외선 파장에 따라 평균 높이가 다를 수 있으며, UV-C의 경우 300 nm 내지 800 nm 정도의 높이를 갖고, 평균 500nm 내지 600nm 정도의 높이를 가질 때 광 추출 효율이 향상될 수 있다. 그러나, 요철의 높이는 반드시 이에 한정하지 않는다.
도 9는 본 발명의 일 실시 예에 따른 반도체 소자 패키지의 개념도이다.
반도체 소자는 패키지로 구성되어, 수지(resin)나 레지스트(resist)나 SOD 또는 SOG의 경화 장치에 사용될 수 있다. 또는, 반도체 소자 패키지는 치료용 의료용으로 사용되거나 공기 청정기나 정수기 등의 살균 장치와 같은 전자 장치에 사용될 수도 있다.
도 9를 참고하면, 반도체 소자 패키지는 홈(3)이 형성된 몸체(2), 몸체(2)에 배치되는 반도체 소자(1), 및 몸체(2)에 배치되어 반도체 소자(1)와 전기적으로 연결되는 한 쌍의 리드 프레임(5a, 5b)을 포함할 수 있다. 반도체 소자(1)는 전술한 구성을 모두 포함할 수 있다.
몸체(2)는 자외선 광을 반사하는 재질 또는 코팅층을 포함할 수 있다. 몸체(2)는 복수의 층(2a, 2b, 2c, 2d)을 적층하여 형성할 수 있다. 복수의 층(2a, 2b, 2c, 2d)은 동일한 재질일 수도 있고 상이한 재질을 포함할 수도 있다.
홈(3)은 반도체 소자에서 멀어질수록 넓어지게 형성되고, 경사면에는 단차(3a)가 형성될 수 있다.
투광층(4)은 홈(3)을 덮을 수 있다. 투광층(4)은 글라스 재질일 있으나, 반드시 이에 한정하지 않는다. 투광층(4)은 자외선 광을 유효하게 투과할 수 있는 재질이면 특별히 제한하지 않는다. 홈(3)의 내부는 빈 공간일 수 있다.
반도체 소자는 조명 시스템의 광원으로 사용되거나, 영상표시장치의 광원이나 조명장치의 광원으로 사용될 수 있다. 즉, 반도체 소자는 케이스에 배치되어 광을 제공하는 다양한 전자 디바이스에 적용될 수 있다. 예시적으로, 반도체 소자와 RGB 형광체를 혼합하여 사용하는 경우 연색성(CRI)이 우수한 백색광을 구현할 수 있다.
상술한 반도체 소자는 발광소자 패키지로 구성되어, 조명 시스템의 광원으로 사용될 수 있는데, 예를 들어 영상표시장치의 광원이나 조명 장치 등의 광원으로 사용될 수 있다.
영상표시장치의 백라이트 유닛으로 사용될 때 에지 타입의 백라이트 유닛으로 사용되거나 직하 타입의 백라이트 유닛으로 사용될 수 있고, 조명 장치의 광원으로 사용될 때 등기구나 벌브 타입으로 사용될 수도 있으며, 또한 이동 단말기의 광원으로 사용될 수도 있다.
발광 소자는 상술한 발광 다이오드 외에 레이저 다이오드가 있다.
레이저 다이오드는, 발광소자와 동일하게, 상술한 구조의 제1 도전형 반도체층과 활성층 및 제2 도전형 반도체층을 포함할 수 있다. 그리고, p-형의 제1 도전형 반도체와 n-형의 제2 도전형 반도체를 접합시킨 뒤 전류를 흘러주었을 때 빛이 방출되는 electro-l㎛inescence(전계발광) 현상을 이용하나, 방출되는 광의 방향성과 위상에서 차이점이 있다. 즉, 레이저 다이오드는 여기 방출(stimulated emission)이라는 현상과 보강간섭 현상 등을 이용하여 하나의 특정한 파장(단색광, monochromatic beam)을 가지는 빛이 동일한 위상을 가지고 동일한 방향으로 방출될 수 있으며, 이러한 특성으로 인하여 광통신이나 의료용 장비 및 반도체 공정 장비 등에 사용될 수 있다.
수광 소자로는 빛을 검출하여 그 강도를 전기 신호로 변환하는 일종의 트랜스듀서인 광 검출기(photodetector)를 예로 들 수 있다. 이러한 광 검출기로서, 광전지(실리콘, 셀렌), 광 출력전 소자(황화 카드뮴, 셀렌화 카드뮴), 포토 다이오드(예를 들어, visible blind spectral region이나 true blind spectral region에서 피크 파장을 갖는 PD), 포토 트랜지스터, 광전자 증배관, 광전관(진공, 가스 봉입), IR(Infra-Red) 검출기 등이 있으나, 실시 예는 이에 국한되지 않는다.
또한, 광검출기와 같은 반도체 소자는 일반적으로 광변환 효율이 우수한 직접 천이 반도체(direct bandgap semiconductor)를 이용하여 제작될 수 있다. 또는, 광검출기는 구조가 다양하여 가장 일반적인 구조로는 p-n 접합을 이용하는 pin형 광검출기와, 쇼트키접합(Schottky junction)을 이용하는 쇼트키형 광검출기와, MSM(Metal Semiconductor Metal)형 광검출기 등이 있다.
포토 다이오드(Photodiode)는 발광소자와 동일하게, 상술한 구조의 제1 도전형 반도체층과 활성층 및 제2 도전형 반도체층을 포함할 수 있고, pn접합 또는 pin 구조로 이루어진다. 포토 다이오드는 역바이어스 혹은 제로바이어스를 가하여 동작하게 되며, 광이 포토 다이오드에 입사되면 전자와 정공이 생성되어 전류가 흐른다. 이때 전류의 크기는 포토 다이오드에 입사되는 광의 강도에 거의 비례할 수 있다.
광전지 또는 태양 전지(solar cell)는 포토 다이오드의 일종으로, 광을 전류로 변환할 수 있다. 태양 전지는, 발광소자와 동일하게, 상술한 구조의 제1 도전형 반도체층과 활성층 및 제2 도전형 반도체층을 포함할 수 있다.
또한, p-n 접합을 이용한 일반적인 다이오드의 정류 특성을 통하여 전자 회로의 정류기로 이용될 수도 있으며, 초고주파 회로에 적용되어 발진 회로 등에 적용될 수 있다.
또한, 상술한 반도체 소자는 반드시 반도체로만 구현되지 않으며 경우에 따라 금속 물질을 더 포함할 수도 있다. 예를 들어, 수광 소자와 같은 반도체 소자는 Ag, Al, Au, In, Ga, N, Zn, Se, P, 또는 As 중 적어도 하나를 이용하여 구현될 수 있으며, p형이나 n형 도펀트에 의해 도핑된 반도체 물질이나 진성 반도체 물질을 이용하여 구현될 수도 있다.
이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (10)

  1. 제1 도전형 반도체층, 제2 도전형 반도체층 및 상기 제1 도전형 반도체층과 상기 제2 도전형 반도체층 사이에 배치되는 활성층을 포함하는 발광 구조물;
    상기 제1 도전형 반도체층 상에 배치되는 제1전극;
    상기 제2 도전형 반도체층의 하부에 배치되는 제2전극; 및
    상기 제2 도전형 반도체층과 제2전극 사이에 배치되는 전류 차단층을 포함하고,
    상기 제1 도전형 반도체층은 상기 제1전극이 배치되는 제1영역, 및 상기 제1영역보다 두께가 얇은 제2영역을 포함하고,
    상기 전류 차단층은 두께 방향으로 상기 제1영역과 대응되는 영역에 배치되는 반도체 소자.
  2. 제1항에 있어서,
    상기 제1영역과 제2영역의 두께비는 1:0.2 내지 1:0.7인 반도체 소자.
  3. 제1항에 있어서,
    상기 제1 도전형 반도체층의 전체 면적과 상기 제2영역의 면적의 비는 1:0.5 내지 1:0.9인 반도체 소자.
  4. 제1항에 있어서,
    상기 제1영역은 상기 제1 도전형 반도체층의 가장자리에 배치되고, 상기 제2영역은 상기 제1 도전형 반도체층의 중앙에 배치되고,
    상기 제1전극은 상기 제1 도전형 반도체층의 모서리에 배치되는 적어도 하나의 패드, 및 상기 패드에서 연장되는 가지전극을 포함하는 반도체 소자.
  5. 제4항에 있어서,
    상기 가지전극은 상기 제1 도전형 반도체층의 가장자리에 배치되는 제1가지전극 및 상기 제1가지전극에서 연장된 적어도 하나의 제2가지전극을 포함하는 반도체 소자.
  6. 제1항에 있어서,
    상기 제1영역은,
    상기 제1전극이 배치되는 제1서브영역,
    상기 제2영역과 상기 제1서브영역 사이에 배치되는 제2서브영역, 및
    상기 제1서브영역의 외측에 배치되는 제3서브영역을 포함하고,
    상기 제2서브영역은 경사면을 갖는 반도체 소자.
  7. 제1항에 있어서,
    상기 제1영역의 두께는 1.5㎛ 내지 10㎛이하이고,
    상기 제2영역의 두께는 1㎛ 내지 3㎛이하인 반도체 소자.
  8. 제1항에 있어서,
    상기 전류 차단층은 두께 방향으로 상기 제1영역과 대응되는 위치에 배치되고,
    상기 전류 차단층의 제1방향 폭은 상기 제1전극의 제1방향 폭보다 크고,
    상기 제1방향은 두께 방향과 수직한 방향인 반도체 소자.
  9. 제1항에 있어서,
    상기 제2영역은 상기 활성층에서 생성된 광이 외부로 출사되는 영역인 반도체 소자.
  10. 제1항에 있어서,
    상기 제1 도전형 반도체층, 활성층, 및 제2 도전형 반도체층은 알루미늄을 포함하고,
    상기 활성층은 자외선 파장대의 광을 생성하는 반도체 소자.
PCT/KR2017/015519 2016-12-29 2017-12-27 반도체 소자 WO2018124715A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/474,197 US10950754B2 (en) 2016-12-29 2017-12-27 Semiconductor device increasing light output

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160181985A KR102608517B1 (ko) 2016-12-29 2016-12-29 반도체 소자
KR10-2016-0181985 2016-12-29

Publications (1)

Publication Number Publication Date
WO2018124715A1 true WO2018124715A1 (ko) 2018-07-05

Family

ID=62710076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/015519 WO2018124715A1 (ko) 2016-12-29 2017-12-27 반도체 소자

Country Status (3)

Country Link
US (1) US10950754B2 (ko)
KR (1) KR102608517B1 (ko)
WO (1) WO2018124715A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7173044B2 (ja) 2017-12-05 2022-11-16 ソニーグループ株式会社 撮像素子、積層型撮像素子及び固体撮像装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060095690A (ko) * 2005-02-28 2006-09-01 삼성전기주식회사 수직구조 질화물 반도체 발광소자
KR20110083256A (ko) * 2010-01-14 2011-07-20 서울옵토디바이스주식회사 전극패드들을 갖는 발광 다이오드
US20120292653A1 (en) * 2007-11-23 2012-11-22 Sang Youl Lee Semiconductor light emitting device
KR20150078088A (ko) * 2013-12-30 2015-07-08 일진엘이디(주) 전류 집중 방지 효과 및 광추출 효과가 우수한 질화물 반도체 발광소자 및 그 제조 방법
KR101668629B1 (ko) * 2015-07-16 2016-10-24 포항공과대학교 산학협력단 2차원 구조의 질화물 반도체를 이용한 심자외선 발광 소자 및 그 제조 방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100969126B1 (ko) * 2009-03-10 2010-07-09 엘지이노텍 주식회사 발광 소자
CN102231413A (zh) * 2009-10-13 2011-11-02 鸿富锦精密工业(深圳)有限公司 发光二极管芯片及其制作方法
WO2011083923A2 (en) 2010-01-07 2011-07-14 Seoul Opto Device Co., Ltd. Light emitting diode having electrode pads
KR20110085609A (ko) * 2010-01-21 2011-07-27 엘지이노텍 주식회사 발광 소자 및 그 제조방법
KR101039982B1 (ko) * 2010-03-18 2011-06-09 엘지이노텍 주식회사 발광 소자 및 그 제조방법
JP2012231000A (ja) * 2011-04-26 2012-11-22 Toshiba Corp 半導体発光装置
KR20130019276A (ko) * 2011-08-16 2013-02-26 엘지이노텍 주식회사 발광소자
KR101836122B1 (ko) * 2011-08-24 2018-04-19 엘지이노텍 주식회사 발광소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060095690A (ko) * 2005-02-28 2006-09-01 삼성전기주식회사 수직구조 질화물 반도체 발광소자
US20120292653A1 (en) * 2007-11-23 2012-11-22 Sang Youl Lee Semiconductor light emitting device
KR20110083256A (ko) * 2010-01-14 2011-07-20 서울옵토디바이스주식회사 전극패드들을 갖는 발광 다이오드
KR20150078088A (ko) * 2013-12-30 2015-07-08 일진엘이디(주) 전류 집중 방지 효과 및 광추출 효과가 우수한 질화물 반도체 발광소자 및 그 제조 방법
KR101668629B1 (ko) * 2015-07-16 2016-10-24 포항공과대학교 산학협력단 2차원 구조의 질화물 반도체를 이용한 심자외선 발광 소자 및 그 제조 방법

Also Published As

Publication number Publication date
KR102608517B1 (ko) 2023-12-04
KR20180077535A (ko) 2018-07-09
US20190355875A1 (en) 2019-11-21
US10950754B2 (en) 2021-03-16

Similar Documents

Publication Publication Date Title
US10593838B2 (en) Semiconductor device
WO2018097649A1 (ko) 반도체 소자 및 이를 포함하는 반도체 소자 패키지
WO2019125032A1 (ko) 반도체 소자 패키지
WO2019103556A1 (ko) 반도체 소자
WO2018186655A1 (ko) 반도체 소자 및 이를 포함하는 반도체 소자 패키지
KR102657311B1 (ko) 반도체 소자
WO2019194646A1 (ko) 반도체 소자
CN109314156A (zh) 半导体器件
WO2018135908A1 (ko) 반도체 소자 및 이를 포함하는 반도체 소자 패키지
WO2018124715A1 (ko) 반도체 소자
KR102410809B1 (ko) 반도체 소자
WO2017034167A1 (ko) 발광소자
WO2019108038A1 (ko) 반도체 소자
KR102606859B1 (ko) 반도체 소자 및 이를 포함하는 반도체 소자 패키지
WO2017179908A1 (ko) 반도체 소자
KR102603255B1 (ko) 반도체 소자
KR20190109848A (ko) 반도체 소자
KR20190098624A (ko) 반도체 소자 및 이를 포함하는 반도체 소자 패키지
KR20190098625A (ko) 반도체 소자
US11329097B2 (en) Semiconductor device having a first pad not overlapping first connection electrodes and a second pad not overlapping second connection electrodes in a thickness direction
KR102411948B1 (ko) 반도체 소자
KR102392866B1 (ko) 반도체 소자
KR102648675B1 (ko) 반도체 소자 및 이를 갖는 반도체 소자 패키지
KR20170124283A (ko) 반도체 소자 패키지
WO2020013501A1 (ko) 반도체 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887674

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17887674

Country of ref document: EP

Kind code of ref document: A1