WO2019100433A1 - Led显示器制备方法及led显示器 - Google Patents

Led显示器制备方法及led显示器 Download PDF

Info

Publication number
WO2019100433A1
WO2019100433A1 PCT/CN2017/113980 CN2017113980W WO2019100433A1 WO 2019100433 A1 WO2019100433 A1 WO 2019100433A1 CN 2017113980 W CN2017113980 W CN 2017113980W WO 2019100433 A1 WO2019100433 A1 WO 2019100433A1
Authority
WO
WIPO (PCT)
Prior art keywords
led
single crystal
crystal layer
display
layer
Prior art date
Application number
PCT/CN2017/113980
Other languages
English (en)
French (fr)
Inventor
翁守正
牛小龙
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Publication of WO2019100433A1 publication Critical patent/WO2019100433A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68345Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used as a support during the manufacture of self supporting substrates

Definitions

  • the present application relates to the field of liquid crystal display technology, and in particular, to a method for preparing an LED display and an LED display.
  • Micro Light Emitting Diode not only has the characteristics of high efficiency, high brightness, high reliability and fast response, but also has the advantages of simple structure, small size and energy saving, and is gradually applied to the display field.
  • Micro-LED technology is a technology that thins, miniaturizes and arrays LED structure design.
  • Micro-LED particles In the existing Micro-LED array fabrication process, due to lattice matching, Micro-LED particles must first be grown on the substrate by molecular beam epitaxy, and then by a complex microelectromechanical system (Micro Electro Mechanical System, MEMS). The electrostatic pickup device transfers the micro-LED particles to the display backplane in a giant matrix.
  • MEMS Micro Electro Mechanical System
  • aspects of the present application provide a method of fabricating an LED display and an LED display for avoiding massive matrix transfer and improving the luminous efficiency of the Micro-LED.
  • the embodiment of the present application provides a method for preparing an LED display, including:
  • the substrate is peeled off from the LED single crystal layer
  • the LED single crystal layer and the metal is etched to form an array of LEDs on the display backplane;
  • a layer of transparent or translucent electrode is overlying the LED array to form the LED display.
  • An embodiment of the present application further provides an LED display, comprising: a display backplane, an array of LEDs formed on the display backplane, and a transparent or semi-transparent electrode layer overlying the LED array.
  • the LED single crystal layer on the substrate is directly bonded to the metal layer on the display back plate, and then the substrate on the LED single crystal layer is peeled off, and then on the display back plate.
  • the LED single crystal layer and the metal layer are etched to form an LED array. In this way, the LED particles can be completely transferred to the display backplane without the need of thermal assisted technology to carry out the highly difficult matrix transfer of the LED particles on the substrate, thereby improving the luminous efficiency and the service life of the LED.
  • FIG. 1 is a schematic flow chart of a method for preparing an LED display according to an embodiment of the present application
  • FIG. 2a is a schematic flow chart of another method for fabricating an LED display according to an embodiment of the present application.
  • 2b-2h are schematic structural diagrams of LED displays corresponding to respective stages in a method for fabricating an LED display according to an embodiment of the present application;
  • 3a is a schematic flow chart of a method for preparing an LED display according to another embodiment of the present application.
  • 3b-3h are schematic structural diagrams of LED displays corresponding to respective stages in a method for fabricating an LED display according to another embodiment of the present application;
  • FIG. 4 is a schematic structural diagram of an LED display according to another embodiment of the present application.
  • the embodiment of the present application provides a solution to the problem that the LED chip is transferred to the display backplane by using the heat assisting technology in the existing LED manufacturing process, and the luminous efficiency and the service life of the LED are seriously affected.
  • the basic principle is that the LED single crystal layer on the substrate is directly bonded to the metal layer on the display back panel, and then the substrate on the LED single crystal layer is peeled off, and then the LED is displayed on the display back panel.
  • the single crystal layer and the metal layer are etched to form an LED array. In this way, the LED particles can be completely transferred to the display backplane without the need of a highly assisted transfer of the LED particles on the substrate by the heat assisting technology, thereby improving the transfer success rate, reducing the transfer cost, and improving the LED. Luminous efficiency and service life.
  • FIG. 1 is a schematic flow chart of a method for fabricating an LED display according to an embodiment of the present application. As shown in Figure 1, the method includes:
  • a LED single crystal layer is grown on the substrate, and a metal layer is formed on the display backplane.
  • the substrate is peeled off from the LED single crystal layer.
  • the LED single crystal layer and the metal layer are etched according to the LED array structure of the LED display to form an LED array on the display back panel.
  • an LED single crystal layer is grown on the substrate, and on the other hand, a metal layer is formed on the display back sheet.
  • the display backsheet can be a variety of backsheets, such as a Thin Film Transistor (TFT) backsheet.
  • TFT Thin Film Transistor
  • the metal layer on the display backplane may be, but not limited to, a metal layer formed of a metal such as Cr, In, or Au.
  • an LED single crystal layer such as a sapphire substrate or a silicon carbide substrate, may be grown on the substrate adapted to the LED single crystal layer. Or a silicon substrate or the like, which prevents stress from being generated in the vicinity of the growth interface due to the difference in lattice constant between the substrate and the LED single crystal layer, thereby causing crystal defects in the LED single crystal layer.
  • the LED single crystal layer may be grown on the substrate by molecular beam epitaxy.
  • the substrate is placed in an ultra-high vacuum chamber, and the single crystal material required for the single crystal layer of the LED to be grown is placed in a spray furnace separately depending on the element.
  • the molecular stream ejected from the respective elements heated to the respective temperatures grows a very thin LED single crystal layer on the substrate.
  • the switch baffle of the spray furnace, the temperature and the time of controlling the growth can be adjusted according to the demand to grow LED single crystals of different thicknesses, different compositions and different doping concentrations.
  • Floor the switch baffle of the spray furnace, the temperature and the time of controlling the growth can be adjusted according to the demand to grow LED single crystals of different thicknesses, different compositions and different doping concentrations.
  • forming a metal layer on the display backplane facilitates bonding with the LED single crystal layer through the metal layer, thereby transferring all of the LED single crystal layer to the display backplane. Thereafter, in order to ensure the luminous efficiency of the LED, the substrate was peeled off from the LED single crystal layer.
  • the LED single crystal layer is directly bonded to the metal layer on the display backplane to peel the substrate, instead of first forming the LED single crystal layer on the substrate into individual LED particles.
  • the MEMS electrostatic pick-up device is used to transfer the LED particles to the display backplane, so the bonding difficulty is small, and the LED particles are not heated by the heat assisting technology in the process of mass matrix transfer, which is beneficial to improve the LED light. Efficiency and service life.
  • the structure of the LED array in the LED display is also determined accordingly. Based on this, after the substrate is peeled off, the bonded LED single crystal layer and the metal layer can be etched to form a single LED unit according to the LED array structure required for the LED display, and each LED unit includes an LED.
  • the LED single crystal layer is directly bonded to the metal layer on the display backplane to peel off the substrate, and then the LED array is directly formed on the display backplane by an etching process, and the LED particles in the LED array are no longer Transferring from the substrate solves the problem of damage to the LED particles during the transfer process and improves the overall yield of the LED display.
  • a transparent or translucent electrode layer can be overlaid over the LED array with the desired LED brightness. In this way, both the voltage can be applied to the LED array and the desired transparency can be achieved by adjusting the overall transparency of the electrodes.
  • the LED single crystal layer on the substrate is directly bonded to the metal layer on the display backplane, and then the substrate on the LED single crystal layer is peeled off, and then the LED single crystal is displayed on the display backplane.
  • the layers and metal layers are etched to form the desired array of LEDs.
  • the LED particles can be transferred to the display backplane without the need of a highly assisted transfer of the LED particles on the substrate by the heat assisted transfer technology, which can improve the transfer success rate, reduce the transfer cost, and improve the LED. Luminous efficiency and longevity.
  • a strong laser may be used to irradiate the substrate to peel the substrate from the LED single crystal layer.
  • the laser damages the display backplane.
  • the center wavelength can be selected to match the LED single crystal layer and the metal layer, and the laser which does not match the display backplane material can further output the laser to the laser.
  • the optical power is controlled within a reasonable range to reduce damage to the display backplane.
  • the LED single crystal layer and the metal layer when etching the LED single crystal layer and the metal layer, may be etched by dry etching or wet etching, but not Limited to this.
  • dry etching can be divided into physical etching and chemical etching.
  • Physical etching is the use of glow power to ionize a gas (such as argon) into an electropositive ion, and then use a bias voltage to accelerate the ions, splashing the surface of the LED single crystal layer and the metal layer to etch the atoms of the etchant. Attack.
  • a gas such as argon
  • Chemical etching also known as plasma etching, is the use of plasma to ionize the etching gas and form charged ions, molecules and highly reactive atomic groups. They diffuse into the surface of the LED single crystal layer and the metal layer and are etched. Part of the atomic reaction produces a volatile reaction product that is pumped away from the reaction chamber by a vacuum device.
  • wet etching is a technique in which an etching material is immersed in an etching liquid for corrosion. It is a purely etched etch with excellent selectivity and will stop when the current film is etched without damaging the underlying film of other materials.
  • FIG. 2a is a schematic flow chart of another method for fabricating an LED display according to an embodiment of the present application. As shown in Figure 2a, the method includes:
  • a LED single crystal layer is grown on the substrate, and a boundary of each LED particle in the LED array is marked on the LED single crystal layer by using a layout corresponding to the LED array structure.
  • the substrate is peeled off from the LED single crystal layer.
  • the LED single crystal on the substrate 20 is patterned by using the layout corresponding to the LED array structure.
  • the layer 21 is marked with the boundaries of the LED particles in the LED array (as shown by the curve on the LED single crystal layer 21 as shown in Figure 2b), as shown in Figure 2b.
  • step 202 the boundary of the metal bump corresponding to each LED particle is marked on the metal layer 23 of the display backplane 22 by the layout (as shown by the dashed line on the metal layer 23 as shown in Fig. 2b), as shown in Fig. 2b.
  • the layout as shown by the dashed line on the metal layer 23 as shown in Fig. 2b
  • Fig. 2b the layout
  • step 203 the LED single crystal layer is aligned with the metal layer according to the boundary of each LED particle on the LED single crystal layer and the boundary of each bump on the metal layer, and the aligned LED single crystal layer and the metal layer are bonded.
  • a structural state as shown in Fig. 2c is obtained.
  • each LED particle can be aligned strictly with a corresponding metal bump when the LED particles are aligned with corresponding metal bumps.
  • the area of the metal layer on the backplane needs to be greater than or equal to the area of the LED single crystal layer on the substrate. In each of the drawings, the area of the metal layer is equal to the area of the LED single crystal layer as an example.
  • step 204 the substrate 20 is peeled off from the LED single crystal layer 21, thereby obtaining the state shown in Fig. 2d.
  • the metal layer 23 and the LED single crystal layer 21 are disposed on the display back sheet 22 in order from the bottom to the top.
  • step 205 a photoresist 24 is applied over each LED particle based on the boundaries of the LED particles on the LED single crystal layer 21 (as shown by the dashed lines on the LED single crystal layer 21 as shown in Figures 2b-2e). As shown in Figure 2e, each LED particle is coated with a photoresist 24 with no photoresist 24 applied between adjacent LED particles.
  • the photoresist 24 is coated over each of the LED particles to protect it. Moreover, in the above, the boundaries of the LED particles are marked according to the layout, which facilitates accurate coating of the photoresist 24 and improves the precision of the etching.
  • the photoresist 24 coated over each of the LED particles may be a positive gel or a negative gel.
  • the photoresist 24 may employ a photoresist.
  • a thick photoresist can be applied over each LED.
  • the LED single crystal layer 21 and the metal layer 23 may be etched by a dry etching method such as ultraviolet irradiation or a wet etching method such as etching by etching.
  • a dry etching method such as ultraviolet irradiation
  • a wet etching method such as etching by etching.
  • the LED single crystal layer 21 and the metal layer 23 are etched by exposure and development by ultraviolet irradiation.
  • different LED masks can be used to protect each LED particle.
  • the photoresist 24 coated on each LED particle is a positive glue
  • the mask plate selected in step 206 corresponds to the layout to design the corresponding position of each LED particle to be opaque, and the remaining positions are designed to be transparent.
  • the photoresist 24 is exposed and developed, the same model as the light-shielding region of the mask can be obtained, that is, the corresponding LED particles in the layout are obtained to form a corresponding LED array.
  • the mask plate selected in step 206 corresponds to the layout to design the corresponding position of each LED particle to be transparent, and the remaining positions are designed to be opaque.
  • the same model as that of the transparent region of the mask can be obtained, that is, the corresponding LED particles in the layout are obtained to form a corresponding LED array.
  • the mask may be fabricated according to the layout of the LED array, or the layout may be directly used as a mask, which is not limited herein.
  • the photoresist 24 is exposed and developed to form an LED array on the display backplane 22, and after the photoresist 24 over each LED particle is removed through step 207, a defect as shown in FIG. 2f is obtained. status.
  • the display back plate 21 is formed with individual LED particles and metal bumps corresponding to the respective LED particles.
  • the light emitted by each LED particle is diffused to the periphery, in order to prevent the light of the LED particles from spreading to the periphery, and the light of each LED particle is made as far as possible toward the LED display.
  • the direction of the display screen for a better light effect before the transparent or semi-transparent electrode layer is overlaid on the LED array, a reflective layer 25 is applied around each LED particle in the LED array, and adjacent to the LED particles
  • the insulating material 26 is filled.
  • the reflective layer 25 may be coated around each of the LED particles using a Plasma Enhanced Chemical Vapor Deposition (PECVD) or a sputtering process.
  • PECVD Plasma Enhanced Chemical Vapor Deposition
  • sputtering process a plasma Enhanced Chemical Vapor Deposition (PECVD) or a sputtering process.
  • PECVD ionizes a gas containing a film-constituting atom by means of microwave or radio frequency, and forms a plasma locally, and the plasma is chemically active and reacts easily, and a desired reflective layer is deposited on the surface of each LED particle. 25.
  • Sputtering is a process in which particles of a certain energy (ion or neutral atom, molecule) are bombarded with a solid surface, so that atoms or molecules near the surface of the solid obtain sufficient energy to finally escape the solid surface.
  • the sputtering source is placed on the target, and sputtering occurs after bombardment with argon ions, and a reflective layer is formed on the peripheral surface of each of the LED particles.
  • each LED particle can be further prevented from diffusing to the periphery, but also the heat dissipation effect of each LED particle can be enhanced, which helps to improve the luminous efficiency and service life of the LED particle. Moreover, problems such as short circuit of adjacent LED particles can be avoided, and each LED particle can be independently illuminated and used independently.
  • the surface of the LED array may be planarized, so that the surface of the LED array has no height difference, which is convenient for subsequent Covers transparent or translucent electrode layers and facilitates subsequent fabrication Metal lines, and lithographic wiring patterns are more accurate.
  • planarization treatment includes, but is not limited to, reverse etching, glass reflow, dazzling glass method or chemical mechanical planarization.
  • the display backplane 22 includes a single LED unit, a reflective layer 25 coated around each LED unit, and an insulating material 26 filled between adjacent LED units, wherein each LED unit is top to bottom. Contains an LED particle and its corresponding metal bump.
  • a transparent or semi-transparent electrode layer 27 is overlaid over the LED array to form an LED display, resulting in a state as shown in Figure 2h.
  • the display backplane 22 includes a single LED unit, a reflective layer 25 coated around each LED unit, an insulating material 26 filled between adjacent LED units, and a transparent or semi-covered over the LED array.
  • Transparent electrode layer 27 is transparent electrode layer 27.
  • each LED unit contains one LED particle and a corresponding metal bump to the top and bottom.
  • the boundary of each LED particle in the LED array is marked on the LED single crystal layer on the substrate by using the layout design corresponding to the LED array structure, and the LED is marked on the metal layer of the display backplane by using the layout.
  • the boundary of the metal bump corresponding to the particle not only improves the precision of bonding each LED particle with the corresponding metal bump, but also facilitates subsequent coating of the LED particle with the photoresist.
  • the substrate on the LED single crystal layer is peeled off, and then the LED single crystal layer and the LED on the display backplane are The metal layer is etched to form the desired array of LEDs.
  • FIG. 3 is a schematic flow chart of a method for fabricating an LED display according to another embodiment of the present application. As shown in Figure 3a, the method includes:
  • the substrate is peeled off from the LED single crystal layer.
  • step 301 an LED single crystal layer 31 is grown on the substrate 30, and a metal layer 33 is formed on the display backplane 32, as shown in Fig. 3b.
  • step 302 the LED single crystal layer 31 on the substrate 30 is bonded to the metal layer 33 on the display backing plate 32, and the bonded state is as shown in Fig. 3c.
  • the display back plate 32 is provided with the metal layer 33, the LED single crystal layer 31, and the substrate 30 in this order from the top to the bottom.
  • step 303 after bonding, the substrate 30 is peeled off from the LED single crystal layer 31 to obtain a state as shown in Fig. 3d.
  • the display back plate 32 is provided with the metal layer 33 and the LED single crystal layer 31 in this order from the top to the bottom.
  • step 304 after the LED single crystal layer 31 and the metal layer 33 are bonded, the boundary of each LED particle in the LED array is marked on the LED single crystal layer 31 by using the layout corresponding to the LED array structure.
  • the requirement of alignment when bonding the LED single crystal layer 31 and the metal layer 33 can be reduced.
  • marking the boundaries of the respective LED particles can improve the protection of each LED particle-coated photoresist 34 in the subsequent step 305. Accuracy, which prevents each LED particle from being etched by mistake, improves etching efficiency.
  • step 305 a photoresist 34 is applied over the LED particles according to the boundaries of the LED particles on the LED single crystal layer 31, resulting in a state as shown in Fig. 3e.
  • a photoresist 34 is applied over the LED particles according to the boundaries of the LED particles on the LED single crystal layer 31, resulting in a state as shown in Fig. 3e.
  • each of the LED particles in the LED array is coated with a photoresist 34.
  • step 306 and step 307 the photoresist 34 is exposed and developed to form an LED array on the display backplane 32, and the photoresist 34 over the LED particles is removed.
  • the photoresist 34 is exposed and developed to form an LED array on the display backplane 32, and the photoresist 34 over the LED particles is removed.
  • step 306 and step 307 a state as shown in Fig. 3f is obtained.
  • a plurality of independent LED units are formed on the display back plate 31, wherein each of the LED units includes an LED particle and a metal bump corresponding to the LED particle from top to bottom.
  • the photoresist 34 is removed over each of the LED particles. Thereafter, a reflective layer 35 can be applied around each LED unit in the LED array and an insulating material 36 can be filled between adjacent LED units.
  • each LED unit includes an LED particle and a metal bump corresponding to the LED particle from top to bottom.
  • the surface of the LED array can be planarized to obtain a state as shown in Fig. 3g.
  • the display backplane 32 includes a single LED unit, a reflective layer 35 coated around each LED unit, and an insulating material 36 filled between adjacent LED units, wherein each LED unit is top to bottom. Contains an LED particle and its corresponding metal bump.
  • a transparent or semi-transparent electrode layer 37 is overlaid over the LED array to form an LED display, resulting in a state as shown in Figure 3h.
  • the display backplane 32 includes a single LED unit, a reflective layer 35 coated around each LED unit, an insulating material 36 filled between adjacent LED units, and a transparent or semi-covered over the LED array.
  • Transparent electrode layer 37 is transparent electrode layer 37.
  • each LED unit contains one LED particle and a corresponding metal bump to the top and bottom.
  • the LED single crystal layer on the substrate is directly bonded to the metal layer on the display backplane, and then the substrate on the LED single crystal layer is peeled off, and then the LED is displayed on the display backplane.
  • the crystalline layer and the metal layer are etched to form the desired array of LEDs. In this way, it is difficult to avoid the LED particles on the substrate without using the heat assisted transfer technology, and the LED particles can be completely transferred to the display back plate by the massive matrix transfer of the LED particles by the electrostatic pickup device, thereby improving the transfer success. Rate, reduce transfer costs, and improve the luminous efficiency and service life of LEDs.
  • FIG. 4 is a schematic structural diagram of an LED display according to another embodiment of the present application.
  • the LED display 40 includes a display backplane 401, an LED array 402 formed on the display backplane 401, and a transparent or semi-transparent electrode layer 403 overlying the LED array 402.
  • the LED array 402 is formed on the backplane 401 by using the LED array in the LED display manufacturing method provided by the above embodiments.
  • the LED array 402 includes LED particles and metal bumps corresponding to the respective LED particles, and the metal bumps are located on the display backplane 401.
  • LED display 40 may also include a reflective layer 404 that is applied around each of the LED particles in LED array 402.
  • the reflective layer 404 prevents the light emitted by the LED particles from diffusing around, thereby ensuring that the light emitted by each LED particle is directed as far as possible toward the screen of the LED display 40.
  • the LED display 40 may further include adjacent LEDs filled in the LED array 402.
  • a filler insulating material 405 is formed between the particles.
  • the filling insulating material 405 can not only prevent the light emitted by the LED particles from spreading to the surroundings, but also can dissipate heat of the LED particles, improve the luminous efficiency and the service life of the LED particles, and avoid short-circuiting problems of adjacent LED particles. Ensure that each LED particle can be illuminated independently and used independently.
  • the reflective layer 404 applied around each LED particle in the LED array 402 and the filling insulating material 405 filled between adjacent LED particles in the LED array 402 are respectively provided according to the LEDs provided in the above embodiments.
  • the manner in which the reflective layer is applied and the manner in which the insulating material is filled in the display preparation method is applied around each of the LED particles in the LED array 402 and between adjacent LED particles in the LED array 402.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Led Device Packages (AREA)

Abstract

一种LED显示器(40)制备方法及LED显示器(40),先将衬底(20)上的LED单晶层(21)与显示背板(22)上的金属层(23)直接进行键合后,再对LED单晶层(21)上的衬底(20)进行剥离,之后在显示背板(22)上对LED单晶层(21)和金属层(23)进行刻蚀而形成LED阵列(402)。无需经过热辅助技术对衬底(20)上的LED颗粒进行高难度的巨量矩阵转移,便可将LED颗粒全部转移至显示背板(22),提高转移成功率,降低转移成本,提高LED的发光效率和使用寿命。

Description

LED显示器制备方法及LED显示器
交叉引用
本申请引用于2017年11月21日递交的名称为“LED显示器制备方法及LED显示器”的第2017111675466号中国专利申请,其通过引用被全部并入本申请。
技术领域
本申请涉及液晶显示技术领域,尤其涉及一种LED显示器制备方法及LED显示器。
背景技术
微型发光二极管(Micro Light Emitting Diode,Micro-LED)不仅具有高效率、高亮度、高可靠度及反应快的特点,还具有结构简易、体积小、节能等优势,逐渐被应用于显示领域。
Micro-LED技术是一种将LED结构设计进行薄膜化、微小化与阵列化的技术。在现有的Micro-LED阵列制备工艺上,由于晶格匹配的原因,Micro-LED颗粒必须先在衬底上通过分子束外延生长出来,再由复杂的微机电系统(Micro Electro Mechanical System,MEMS)静电拾取器件将Micro-LED颗粒进行巨量矩阵转移至显示背板上。
在基于静电拾取器件的巨量矩阵转移过程中需要采用热辅助技术对Micro-LED颗粒进行加热,这会影响LED的发光效率和使用寿命。
发明内容
本申请的多个方面提供一种LED显示器制备方法及LED显示器,用以避免巨量矩阵转移,提高Micro-LED的发光效率。
本申请实施例提供一种LED显示器制备方法,包括:
在衬底上生长LED单晶层,并在显示背板上形成金属层;
将所述衬底上的LED单晶层与所述显示背板上的金属层进行键合;
在键合后,将所述衬底从所述LED单晶层上剥离掉;
按照所述LED显示器的LED阵列结构,对所述LED单晶层和所述金属 层进行刻蚀,以在所述显示背板上形成LED阵列;
在所述LED阵列上方覆盖透明或半透明电极层,以形成所述LED显示器。
本申请实施例还提供一种LED显示器,包括:显示背板、形成于所述显示背板上的LED阵列以及覆盖于所述LED阵列上方的透明或半透明电极层。
在本申请实施例中,先将衬底上的LED单晶层与显示背板上的金属层直接进行键合后,再对LED单晶层上的衬底进行剥离,之后在显示背板上对LED单晶层和金属层进行刻蚀而形成LED阵列。这样,无需经过热辅助技术对衬底上的LED颗粒进行高难度的巨量矩阵转移,便可将LED颗粒全部转移至显示背板,可提高LED的发光效率和使用寿命。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请一实施例提供的一种LED显示器制备方法的流程示意图;
图2a为本申请一实施例提供的另一种LED显示器制备方法的流程示意图;
图2b-图2h为本申请一实施例提供的LED显示器制备方法中各阶段对应的LED显示器的结构示意图;
图3a为本申请另一实施例提供的一种LED显示器制备方法的流程示意图;
图3b-图3h为本申请另一实施例提供的LED显示器制备方法中各阶段对应的LED显示器的结构示意图;
图4为本申请又一实施例提供的一种LED显示器的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有 其他实施例,都属于本申请保护的范围。
针对现有LED制备工艺中采用热辅助技术将衬底上的LED颗粒巨量矩阵转移至显示背板,而严重影响LED的发光效率和使用寿命的问题,本申请实施例提供一种解决方案,其基本原理是:先将衬底上的LED单晶层与显示背板上的金属层直接进行键合后,再对LED单晶层上的衬底进行剥离,之后在显示背板上对LED单晶层和金属层进行刻蚀而形成LED阵列。这样,无需经过热辅助技术对衬底上的LED颗粒进行高难度的巨量矩阵转移,便可将LED颗粒全部转移至显示背板,可提高转移成功率,降低转移成本,并可提高LED的发光效率和使用寿命。
以下结合附图,详细说明本申请各实施例提供的技术方案。
图1为本申请一实施例提供的一种LED显示器制备方法的流程示意图。如图1所示,该方法包括:
101、在衬底上生长LED单晶层,并在显示背板上形成金属层。
102、将衬底上的LED单晶层与显示背板上的金属层进行键合。
103、在键合后,将衬底从LED单晶层上剥离掉。
104、按照LED显示器的LED阵列结构,对LED单晶层和金属层进行刻蚀,以在显示背板上形成LED阵列。
105、在LED阵列上方覆盖透明或半透明电极层,以形成LED显示器。
本实施例中,一方面在衬底上生长LED单晶层,另一方面在显示背板上形成金属层。显示背板可以是各种形式的背板,例如薄膜晶体(Thin Film Transistor,TFT)背板。可选地,显示背板上的金属层可以是但不限于Cr、In或Au等金属形成的金属层。
在衬底上生长LED单晶层时,考虑到LED单晶层的晶格常数,可以选择与LED单晶层适配的衬底上生长LED单晶层,例如蓝宝石衬底、碳化硅衬底或硅衬底等,这样可防止因衬底与LED单晶层的晶格常数不同而在生长界面附近产生应力,进而导致LED单晶层产生晶体缺陷。
可选地,可采用分子束外延技术在衬底上生长LED单晶层。即将衬底放置在超高真空腔体内,将需要生长的LED单晶层所需的单晶物质按元素的不同分别放在喷射炉中。由分别加热到相应温度的各元素喷射出的分子流在衬底上生长出极薄的LED单晶层。可根据需求调节喷射炉的开关挡板、温度和控制生长的时间,以生长出不同厚度、不同组份、不同掺杂浓度的LED单晶 层。
本实施例中,在显示背板形成金属层,可便于通过该金属层与LED单晶层进行键合,从而将LED单晶层全部转移至显示背板。之后,为了保证LED的发光效率,将衬底从LED单晶层上剥离掉。在本实施例中,直接将LED单晶层与显示背板上的金属层进行键合再将衬底剥离,而不是先将衬底上的LED单晶层形成一个个独立的LED颗粒,再采用MEMS静电拾取器件将LED颗粒进行巨量矩阵转移至显示背板上,因此键合难度较小,且无需巨量矩阵转移过程中的热辅助技术对LED颗粒进行加热,有利于提高LED的发光效率和使用寿命。
不同LED显示器的形状、图案等要求不同,所以对LED阵列的结构具有不同要求。当LED显示器的形状、图案等要求确定时,LED显示器中LED阵列的结构也相应确定。基于此,在将衬底剥离之后,可按照LED显示器所需的LED阵列结构,对键合后的LED单晶层和金属层进行刻蚀形成一个个独立的LED单元,每个LED单元包含LED单晶层刻蚀后形成的LED颗粒和与该LED颗粒对应键合的金属凸点,其中金属凸点是对金属层进行刻蚀得到的。这样便可在显示背板上形成所需的LED阵列,该LED阵列包括多个独立的LED单元。本实施例中,直接将LED单晶层与显示背板上的金属层进行键合并剥离衬底,之后通过刻蚀工艺直接在显示背板上形成LED阵列,LED阵列中的LED颗粒不再是从衬底上转移过来,解决了转移过程对LED颗粒造成损伤的问题,提高了LED显示器的整体良率。
进一步,在形成LED阵列之后,可以在LED阵列上方按照所需的LED亮度覆盖透明或半透明的电极层。这样,既可对LED阵列施加电压,又可通过调整电极整的透明度来达到所需的亮度。
本实施例,先将衬底上的LED单晶层与显示背板上的金属层直接进行键合后,再将LED单晶层上的衬底剥离,之后在显示背板上对LED单晶层和金属层进行刻蚀而形成所需的LED阵列。这样,无需经过热辅助转移技术对衬底上的LED颗粒进行高难度的巨量矩阵转移,便可将LED颗粒全部转移至显示背板,可提高转移成功率,降低转移成本,并可提高LED的发光效率和使用寿命。
在上述实施例或下述实施例中,在将衬底从LED单晶层上剥离时,可选地,可以选用强激光对衬底进行照射,以将衬底与LED单晶层剥离。为了防 止剥离时,激光对显示背板造成损伤,在选用激光器时,可选择中心波长与LED单晶层和金属层适配,而与显示背板材质不匹配的激光器,进一步还可以将激光器输出激光的光功率控制在合理范围内,以降低对显示背板的损伤。
在上述实施例或下述实施例中,在对LED单晶层和金属层进行刻蚀时,可以采用干法刻蚀或湿法刻蚀对LED单晶层和金属层进行刻蚀,但不限于此。
其中,干法刻蚀可分为物理性刻蚀和化学性刻蚀。物理性刻蚀是利用辉光发电将气体(如氩)电离成电正电的离子,再利用偏压将离子加速,溅击在LED单晶层和金属层的表面而将刻蚀物的原子出击。
化学性刻蚀,又称等离子体刻蚀,是利用等离子将刻蚀气体电离并形成带电离子、分子以及反应性很强的原子团,它们扩散到LED单晶层和金属层表面后与被刻蚀的部分的原子反应生成具有挥发性的反应产物,并被真空设备抽离反应腔。
湿法刻蚀,是将刻蚀材料浸泡在腐蚀液内进行腐蚀的技术。它是一种纯化学刻蚀,具有优良的选择性,刻蚀完当前薄膜就会停止,而不会损坏下面一层其他材料的薄膜。
图2a为本申请一实施例提供的另一种LED显示器制备方法的流程示意图。如图2a所示,该方法包括:
201、在衬底上生长LED单晶层,并利用LED阵列结构对应的版图在LED单晶层上标记出LED阵列中各LED颗粒的边界。
202、在显示背板上形成金属层,并利用对应的版图在金属层上标记出与各LED颗粒对应的凸点的边界。
203、按照LED单晶层上各LED颗粒的边界与金属层上各凸点的边界,将LED单晶层与金属层对齐,并将对齐后的LED单晶层与金属层进行键合。
204、在键合后,将所述衬底从所述LED单晶层上剥离掉。
205、根据LED单晶层上各LED颗粒的边界,在各LED颗粒上方涂覆光刻胶。
206、对光刻胶进行曝光显影,以在显示背板上形成LED阵列。
207、去除各LED颗粒上方的光刻胶。
208、在LED阵列上方覆盖透明或半透明电极层,以形成LED显示器。
本步骤201中,利用LED阵列结构对应的版图在衬底20上的LED单晶 层21上标记出LED阵列中各LED颗粒的边界(如图2b所示LED单晶层21上的曲线),如图2b所示。
在步骤202中,利用该版图在显示背板22的金属层23上标记出各LED颗粒对应的金属凸点的边界(如图2b所示金属层23上的虚线),如图2b所示。这样,当各LED颗粒与对应的各金属凸点键合时,便于各LED颗粒与对应的金属凸点对齐,有利于提高二者键合的效率。
在步骤203中,按照LED单晶层上各LED颗粒的边界与金属层上各凸点的边界,将LED单晶层与金属层对齐,并将对齐后的LED单晶层与金属层进行键合,得到如图2c所示的结构状态。可选地,在将各LED颗粒与对应的金属凸点对齐时,可使各LED颗粒与对应的金属凸点严格对齐。其中,显示背板上金属层的面积需大于或等于衬底上LED单晶层的面积。在各图示中,以金属层的面积与LED单晶层的面积相等为例进行图示。
在步骤204中,将衬底20从LED单晶层21上剥离,从而得到图2d所示的状态。此时,显示背板22上从下至上依次设置有金属层23和LED单晶层21。在步骤205中,根据LED单晶层21上各LED颗粒的边界(如图2b-图2e所示LED单晶层21上的虚线),在各LED颗粒上方涂覆光刻胶24。如图2e所示,每个LED颗粒上方涂覆有光刻胶24,相邻LED颗粒之间未涂覆光刻胶24。这样,在对LED单晶层和金属层进行刻蚀时,在各LED颗粒上方涂覆光刻胶24可对其进行保护。而且上述中按照版图对各LED颗粒的边界进行标记,便于准确涂覆光刻胶24,提高刻蚀的精准度。
在一可选实施方式中,步骤205中,在各LED颗粒上方涂覆的光刻胶24可为正胶,也可为负胶。可选地,光刻胶24可采用光阻。为了增强对各LED颗粒的保护,防止其被损伤,可在各LED上方涂覆厚光阻。
相应地,在步骤206中,可采用紫外线照射等干法刻蚀的方法或腐蚀液腐蚀等湿法刻蚀的方法对LED单晶层21和金属层23进行刻蚀。此处,以紫外线照射进行曝光显影来对LED单晶层21和金属层23进行刻蚀为例进行说明。在对光刻胶24进行曝光显影时,可选用不同的掩膜板对各LED颗粒进行保护。当各LED颗粒上方涂覆的光刻胶24为正胶时,步骤206中选用的掩膜板对应版图将各LED颗粒对应的位置设计为不透光,而其余位置设计为可以透光。这样,当对光刻胶24进行曝光显影时,便可得到与掩膜板遮光区相同的模型,即得到版图中对应的各LED颗粒,形成相应的LED阵列。
当各LED颗粒上方涂覆的光刻胶24为负胶时,步骤206中选用的掩膜板对应版图将各LED颗粒对应的位置设计为透光,而其余位置设计为不透光。这样,当对光刻胶24进行曝光显影时,便可得到与掩膜板透光区相同的模型,即得到版图中对应的各LED颗粒,形成相应的LED阵列。
需要说明的是,上述掩膜板可根据LED阵列的版图进行制作,也可直接使用版图作为掩膜板,此处不做限制。
在经过步骤206中,在对光刻胶24进行曝光显影,以在显示背板22上形成LED阵列,以及经过步骤207去除各LED颗粒上方的光刻胶24之后,得到如图2f所示的状态。此时,显示背板21上形成一个个独立的LED颗粒和与各LED颗粒对应的一个个的金属凸点。在上述实施例或下述实施例中,考虑到各LED颗粒所发的光是向四周扩散的,为了防止LED颗粒的光向四周扩散,且使各LED颗粒的光尽可能朝着LED显示器中显示屏的方向,达到更好的亮光效果,可在对LED阵列上方覆盖透明或半透明电极层之前,在LED阵列中每个LED颗粒周围涂覆反射层25,并在相邻的LED颗粒之间填充绝缘材料26。
其中,可使用等离子体增强化学气相沉积法(Plasma Enhanced Chemical Vapor Deposition,PECVD)或溅射工艺对每个LED颗粒周围涂覆反射层25。
其中,PECVD借助微波或射频等使含有薄膜组成原子的气体电离,在局部形成等离子体,而等离子体化学活性很强,很容易发生反应,在每个LED颗粒周围表面上沉积出所期望的反射层25。
溅射是以一定能量的粒子(离子或中性原子、分子)轰击固体表面,使固体近表面的原子或分子获得足够大的能量而最终逸出固体表面的工艺。溅射源置于靶极,受氩离子轰击后发生溅射,在各LED颗粒的周围表面上生成反射层。
对于上述在相邻的LED颗粒之间填充绝缘材料26,不仅可进一步防止各LED颗粒的光往四周扩散,还可加强各LED颗粒的散热效果,有助于提高LED颗粒的发光效率和使用寿命,且可避免相邻LED颗粒出现短路等问题,保障每个LED颗粒可独立发光和独立使用。
进一步,在上述实施例或下述实施例中,在相邻LED颗粒之间填充绝缘材料26之后,还可对LED阵列表面进行平坦化处理,这样可使LED阵列的表面没有高低落差,便于后续覆盖透明或半透明电极层,而且便于后续制作 金属线,而且光刻出来的连线图形比较精确。
其中,上述平坦化处理包括但不局限于:反刻、玻璃回流、炫凃玻璃法或化学机械平坦化。
经过上述在LED阵列中每个LED颗粒周围涂覆反射层25,并在相邻的LED颗粒之间填充绝缘材料26,以及对LED阵列表面进行平坦化处理后,得到如图2g所示的状态。此时,显示背板22上包含一个个独立的LED单元、涂覆于各LED单元周围的反射层25以及填充于相邻LED单元之间的绝缘材料26,其中,每个LED单元至上而下包含一个LED颗粒以及与其对应的金属凸点。
之后,在步骤208中,在LED阵列上方覆盖透明或半透明电极层27,以形成LED显示器,得到如图2h所示的状态。此时,显示背板22上包含一个个独立的LED单元、涂覆于各LED单元周围的反射层25、填充于相邻LED单元之间的绝缘材料26以及覆盖在LED阵列上方的透明或半透明电极层27。其中,每个LED单元至上而下包含一个LED颗粒以及与其对应的金属凸点。
本实施例中,利用LED阵列结构对应的版图设计在衬底上的LED单晶层上标记出LED阵列中各LED颗粒的边界,并利用该版图在显示背板的金属层上标记出各LED颗粒对应的金属凸点的边界,不仅可提高各LED颗粒与对应的金属凸点键合的精准度,还便于后续对LED颗粒涂覆光刻胶。同样,先将衬底上的LED单晶层与显示背板上的金属层直接进行键合后,再将LED单晶层上的衬底剥离,之后在显示背板上对LED单晶层和金属层进行刻蚀,形成所需的LED阵列。这样,无需经过热辅助转移技术对衬底上的LED颗粒进行高难度的可避免因借助静电拾取器件对LED颗粒进行巨量矩阵转移,便可将LED颗粒全部转移至显示背板,可提高转移成功率,降低转移成本,并可提高LED的发光效率和使用寿命。
图3a为本申请另一实施例提供的一种LED显示器制备方法的流程示意图。如图3a所示,该方法包括:
301、在衬底上生长LED单晶层,并在显示背板上形成金属层。
302、将衬底上的LED单晶层与显示背板上的金属层进行键合。
303、在键合后,将衬底从LED单晶层上剥离掉。
304、利用LED阵列结构对应的版图,在LED单晶层上标记出LED阵 列中各LED颗粒的边界。
305、根据LED单晶层上各LED颗粒的边界,在LED颗粒上方涂覆光刻胶。
306、对所述光刻胶进行曝光显影,以形成LED阵列。
307、去除LED颗粒上方的光刻胶。
308、在LED阵列上方覆盖透明或半透明电极层,以形成LED显示器。
在步骤301中,在衬底30上生长LED单晶层31,并在显示背板32上形成金属层33,如图3b所示。
在步骤302中,将衬底30上的LED单晶层31与显示背板32上的金属层33进行键合,键合后得到的状态如图3c所示。此时,显示背板32上至下而上依次设置有金属层33、LED单晶层31以及衬底30。
在步骤303中,在键合后,将衬底30从LED单晶层31上剥离掉,得到如图3d所示的状态。此时,显示背板32上至下而上依次设置有金属层33和LED单晶层31。步骤303中,将衬底30从LED单晶层31上剥离的描述,可参见上述实施例,此处不再赘述。
在步骤304中,在LED单晶层31和金属层33键合后,再利用LED阵列结构对应的版图,在LED单晶层31上标记出LED阵列中各LED颗粒的边界,这样,一方面可降低对LED单晶层31和金属层33键合时对齐的要求,另一方面,标出各LED颗粒的边界,可提高后续步骤305中对各LED颗粒涂覆光刻胶34进行保护的精确度,进而防止各LED颗粒被误刻蚀,提高刻蚀效率。
在步骤305中,根据LED单晶层31上各LED颗粒的边界,在LED颗粒上方涂覆光刻胶34,得到如图3e所示的状态。此时,对应LED阵列结构的版图,LED阵列中各LED颗粒上方涂覆有光刻胶34。
在步骤306和步骤307中,对光刻胶34进行曝光显影,以在显示背板32上形成LED阵列,以及去除各LED颗粒上方的光刻胶34,对该步骤的描述可参见上述实施例,此处不再赘述。
经过步骤306和步骤307之后,得到如图3f所示的状态。此时,显示背板31上形成一个个独立的LED单元,其中,每个LED单元至上而下包括一个LED颗粒和与该LED颗粒对应的金属凸点。
在上述实施例或下述实施例中,在去除各LED颗粒上方的光刻胶34之 后,可在LED阵列中每个LED单元周围涂覆反射层35,并在相邻的LED单元之间填充绝缘材料36。其中,每个LED单元至上而下包括一个LED颗粒和与该LED颗粒对应的金属凸点。之后,还可对LED阵列表面进行平坦化处理,得到如图3g所示的状态。此时,显示背板32上包含一个个独立的LED单元、涂覆于各LED单元周围的反射层35以及填充于相邻LED单元之间的绝缘材料36,其中,每个LED单元至上而下包含一个LED颗粒以及与其对应的金属凸点。而对于这些步骤的描述可参见上述实施例,此处不再赘述。
之后,在步骤308中,在LED阵列上方覆盖透明或半透明电极层37,以形成LED显示器,得到如图3h所示的状态。此时,显示背板32上包含一个个独立的LED单元、涂覆于各LED单元周围的反射层35、填充于相邻LED单元之间的绝缘材料36以及覆盖在LED阵列上方的透明或半透明电极层37。其中,每个LED单元至上而下包含一个LED颗粒以及与其对应的金属凸点。
本实施例也同样先将衬底上的LED单晶层与显示背板上的金属层直接进行键合后,再将LED单晶层上的衬底剥离,之后在显示背板上对LED单晶层和金属层进行刻蚀而形成所需的LED阵列。这样,无需经过热辅助转移技术对衬底上的LED颗粒进行高难度的可避免因借助静电拾取器件对LED颗粒进行巨量矩阵转移,便可将LED颗粒全部转移至显示背板,提高转移成功率,降低转移成本,并可提高LED的发光效率和使用寿命。
图4为本申请又一实施例提供的一种LED显示器的结构示意图。如图4所示,该LED显示器40包括:显示背板401、形成于显示背板401上的LED阵列402以及覆盖于LED阵列402上方的透明或半透明电极层403。
其中,LED阵列402利用上述实施例提供的LED显示器制备方法中LED阵列的形成方式形成于背板401上。LED阵列402包含各LED颗粒以及与各LED颗粒对应键合的金属凸点,金属凸点位于显示背板401上。
可选地,LED显示器40还可包括涂覆于LED阵列402中每个LED颗粒周围的反射层404。反射层404可防止各LED颗粒所发出的光往四周扩散,进而保证各LED颗粒所发出的光尽可能的朝向LED显示器40的屏幕的方向。
进一步,LED显示器40还可包括填充于LED阵列402中相邻LED颗 粒之间的填充绝缘材料405。填充绝缘材料405不仅可进一步防止各LED颗粒所发出的光往四周扩散,还可对各LED颗粒进行散热,提高LED颗粒的发光效率和使用寿命,且可避免相邻LED颗粒出现短路等问题,保障每个LED颗粒可独立发光和独立使用。
在本实施例中,涂覆于LED阵列402中每个LED颗粒周围的反射层404以及填充于LED阵列402中相邻LED颗粒之间的填充绝缘材料405,均分别按照上述实施例提供的LED显示器制备方法中反射层的涂覆方式和绝缘材料的填充方式涂覆于LED阵列402中每个LED颗粒周围以及填充于LED阵列402中相邻LED颗粒之间。
需要说明的是,在上述实施例及附图中的描述的一些流程中,包含了按照特定顺序出现的多个操作,但是应该清楚了解,这些操作可以不按照其在本文中出现的顺序来执行或并行执行,操作的序号如201、202等,仅仅是用于区分各个不同的操作,序号本身不代表任何的执行顺序。另外,这些流程可以包括更多或更少的操作,并且这些操作可以按顺序执行或并行执行。
还需要说明的是,本申请实施例和附图提供的LED显示器的产品形态和式样均是示例性说明,而非对本发明进行限制,任何对其进行适当变化或修饰,皆应视为不脱离本发明的权利要求保护范畴。
另外需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (10)

  1. 一种LED显示器制备方法,其特征在于,包括:
    在衬底上生长LED单晶层,并在显示背板上形成金属层;
    将所述衬底上的LED单晶层与所述显示背板上的金属层进行键合;
    在键合后,将所述衬底从所述LED单晶层上剥离掉;
    按照所述LED显示器的LED阵列结构,对所述LED单晶层和所述金属层进行刻蚀,以在所述显示背板上形成LED阵列;
    在所述LED阵列上方覆盖透明或半透明电极层,以形成所述LED显示器。
  2. 根据权利要求1所述的方法,其特征在于,所述在衬底上生长LED单晶层,并在显示背板上形成金属层,包括:
    在所述衬底上生长所述LED单晶层,并利用所述LED阵列结构对应的版图在所述LED单晶层上标记出LED阵列中各LED颗粒的边界;
    在所述显示背板上形成所述金属层,并利用所述版图在所述金属层上标记出与所述各LED颗粒对应的凸点的边界。
  3. 根据权利要求2所述的方法,其特征在于,所述将所述衬底上的LED单晶层与所述显示背板上的金属层进行键合,包括:
    按照所述LED单晶层上各LED颗粒的边界与所述金属层上各凸点的边界,将所述LED单晶层与所述金属层对齐;
    将对齐后的所述LED单晶层与所述金属层进行键合。
  4. 根据权利要求3所述的方法,其特征在于,所述按照所述LED显示器的LED阵列结构,对所述LED单晶层和所述金属层进行刻蚀,以在所述显示背板上形成LED阵列,包括:
    根据所述LED单晶层上各LED颗粒的边界,在所述LED颗粒上方涂覆光刻胶;
    对所述光刻胶进行曝光显影,以在所述显示背板上形成所述LED阵列;
    去除所述LED颗粒上方的所述光刻胶。
  5. 根据权利要求1所述的方法,其特征在于,所述按照所述LED显示器的LED阵列结构,对所述LED单晶层和所述金属层进行刻蚀,以在所述显示背板上形成LED阵列,包括:
    利用所述LED阵列结构对应的版图,在所述LED单晶层上标记出LED 阵列中各LED颗粒的边界;
    根据所述LED单晶层上各LED颗粒的边界,在所述LED颗粒上方涂覆光刻胶;
    对所述光刻胶进行曝光显影,以在所述显示背板上形成所述LED阵列;
    去除所述LED颗粒上方的所述光刻胶。
  6. 根据权利要求1所述的方法,其特征在于,在所述LED阵列上方覆盖透明或半透明电极层之前,所述方法还包括:
    在所述LED阵列中每个LED颗粒周围涂覆反射层,并在相邻LED颗粒之间填充绝缘材料。
  7. 根据权利要求6所述的方法,其特征在于,所述在所述LED阵列中每个LED颗粒周围涂覆反射层,包括:
    使用PECVD或溅射工艺对每个LED颗粒周围涂覆反射层。
  8. 根据权利要求6所述的方法,其特征在于,所述在相邻LED颗粒之间填充绝缘材料之后,所述方法还包括:
    对所述LED阵列表面进行平坦化处理。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,
    所述金属层的面积大于或等于所述LED单晶层的面积。
  10. 一种使用权利要求1-9任一项所述方法制备的LED显示器,其特征在于,所述LED显示器包括:显示背板、形成于所述显示背板上的LED阵列以及覆盖于所述LED阵列上方的透明或半透明电极层。
PCT/CN2017/113980 2017-11-21 2017-11-30 Led显示器制备方法及led显示器 WO2019100433A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711167546.6 2017-11-21
CN201711167546.6A CN107910414B (zh) 2017-11-21 2017-11-21 Led显示器制备方法及led显示器

Publications (1)

Publication Number Publication Date
WO2019100433A1 true WO2019100433A1 (zh) 2019-05-31

Family

ID=61846783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113980 WO2019100433A1 (zh) 2017-11-21 2017-11-30 Led显示器制备方法及led显示器

Country Status (2)

Country Link
CN (1) CN107910414B (zh)
WO (1) WO2019100433A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3869211A1 (en) * 2020-02-19 2021-08-25 InnoLux Corporation Display device and manufacturing method thereof

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI667643B (zh) * 2018-04-18 2019-08-01 英屬開曼群島商錼創科技股份有限公司 微型發光二極體顯示面板
US11515299B2 (en) 2018-05-16 2022-11-29 Industrial Technology Research Institute Method for manufacturing display array
US11837628B2 (en) 2018-05-16 2023-12-05 Industrial Technology Research Institute Display array
CN108538878A (zh) 2018-07-11 2018-09-14 大连德豪光电科技有限公司 微发光二极管基板及其制备方法、显示装置
CN109326548B (zh) * 2018-08-29 2020-09-25 华映科技(集团)股份有限公司 一种实现垂直结构mLED或uLED巨量转移的方法
TWI683157B (zh) * 2018-10-19 2020-01-21 友達光電股份有限公司 顯示面板及其製造方法
CN109742200A (zh) * 2019-01-11 2019-05-10 京东方科技集团股份有限公司 一种显示面板的制备方法、显示面板及显示装置
CN111863871A (zh) * 2019-04-29 2020-10-30 云谷(固安)科技有限公司 一种显示面板及其制备方法
CN110112148A (zh) * 2019-05-20 2019-08-09 京东方科技集团股份有限公司 发光二极管模组及其制造方法、显示装置
CN111029360B (zh) * 2019-11-19 2022-06-07 深圳市华星光电半导体显示技术有限公司 micro-LED显示器件的制作方法
CN111048634B (zh) * 2019-12-26 2021-11-23 重庆康佳光电技术研究院有限公司 一种Micro LED转移方法及背板
CN111883553A (zh) * 2020-09-11 2020-11-03 东南大学 无需巨量转移操作的Micro LED显示面板制备方法
CN112992884A (zh) * 2020-12-08 2021-06-18 重庆康佳光电技术研究院有限公司 显示模组、其制作方法及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101465402A (zh) * 2008-07-11 2009-06-24 厦门市三安光电科技有限公司 一种基于无缝隙平面键合的薄膜led芯片器件制造方法
CN106652820A (zh) * 2016-12-28 2017-05-10 歌尔股份有限公司 一种led微显示屏及其制备方法
CN106716641A (zh) * 2014-10-17 2017-05-24 英特尔公司 微型led显示器和组装
CN106783648A (zh) * 2016-12-28 2017-05-31 歌尔股份有限公司 一种led显示屏的制备方法
CN106876406A (zh) * 2016-12-30 2017-06-20 张希娟 基于iii‑v族氮化物半导体的led全彩显示器件结构及制备方法
CN107026220A (zh) * 2016-01-29 2017-08-08 映瑞光电科技(上海)有限公司 垂直led芯片结构及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8835940B2 (en) * 2012-09-24 2014-09-16 LuxVue Technology Corporation Micro device stabilization post
CN103474557A (zh) * 2013-09-22 2013-12-25 中国科学院半导体研究所 一种发光二极管阵列的制备方法
US9698134B2 (en) * 2014-11-27 2017-07-04 Sct Technology, Ltd. Method for manufacturing a light emitted diode display
CN106711291B (zh) * 2015-11-13 2019-03-26 映瑞光电科技(上海)有限公司 一种led垂直芯片结构及其制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101465402A (zh) * 2008-07-11 2009-06-24 厦门市三安光电科技有限公司 一种基于无缝隙平面键合的薄膜led芯片器件制造方法
CN106716641A (zh) * 2014-10-17 2017-05-24 英特尔公司 微型led显示器和组装
CN107026220A (zh) * 2016-01-29 2017-08-08 映瑞光电科技(上海)有限公司 垂直led芯片结构及其制备方法
CN106652820A (zh) * 2016-12-28 2017-05-10 歌尔股份有限公司 一种led微显示屏及其制备方法
CN106783648A (zh) * 2016-12-28 2017-05-31 歌尔股份有限公司 一种led显示屏的制备方法
CN106876406A (zh) * 2016-12-30 2017-06-20 张希娟 基于iii‑v族氮化物半导体的led全彩显示器件结构及制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3869211A1 (en) * 2020-02-19 2021-08-25 InnoLux Corporation Display device and manufacturing method thereof

Also Published As

Publication number Publication date
CN107910414B (zh) 2020-02-14
CN107910414A (zh) 2018-04-13

Similar Documents

Publication Publication Date Title
WO2019100433A1 (zh) Led显示器制备方法及led显示器
CN103682176B (zh) 刚性衬底基板及柔性显示器件的制作方法、刚性衬底基板
US9065001B2 (en) Light-emitting display backplane, display device and manufacturing method of pixel define layer
CN103794630B (zh) 用于制造有机电致发光显示器的方法
JP2007318144A (ja) Tft−lcdアレイ基板構造及びその製造方法
JP2009062565A (ja) マスク、マスクの製造方法、電気光学装置の製造方法
WO2015143745A1 (zh) 一种阵列基板的制造方法
WO2017128765A1 (zh) 像素结构及其制备方法、阵列基板和显示装置
CN108321311A (zh) 硅基oled的制备方法及硅基oled显示模组
KR102189680B1 (ko) 마이크로 led의 선택 전사방법
WO2015100776A1 (zh) 一种液晶显示器的阵列基板的制造方法
WO2016141805A1 (zh) 薄膜层图案、薄膜晶体管及阵列基板的制备方法
CN109727901A (zh) 转印基板及其制作方法、微发光二极管转印方法
CN111490135A (zh) 微型器件的制作方法和显示背板的制作方法
CN107978521B (zh) 显示面板母板的切割方法、显示面板、显示装置
JP2003347524A (ja) 素子の転写方法、素子の配列方法及び画像表示装置の製造方法
CN102931298B (zh) 一种GaN基LED制造工艺中ITO图形的制作方法
US20150249006A1 (en) Method of defining poly-silicon growth direction
US10622582B2 (en) Substrate for display panel, manufacturing method thereof, display panel and encapsulation method
US11018328B2 (en) Method and apparatus for manufacturing display substrate
CN106910703B (zh) 载台及其制备方法、加工装置及其操作方法
CN105206567B (zh) 一种阵列基板及其制作方法
CN116190503A (zh) 转移装置及显示面板的制备方法
CN103383925A (zh) 显示设备、裸眼3d功能面板的信号基板及其制造方法
CN100349047C (zh) 硅基液晶铝反射电极的钝化保护方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17932976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17932976

Country of ref document: EP

Kind code of ref document: A1