WO2019098480A1 - 극저온용 강재 및 그 제조방법 - Google Patents

극저온용 강재 및 그 제조방법 Download PDF

Info

Publication number
WO2019098480A1
WO2019098480A1 PCT/KR2018/007090 KR2018007090W WO2019098480A1 WO 2019098480 A1 WO2019098480 A1 WO 2019098480A1 KR 2018007090 W KR2018007090 W KR 2018007090W WO 2019098480 A1 WO2019098480 A1 WO 2019098480A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel material
steel
cryogenic
less
microstructure
Prior art date
Application number
PCT/KR2018/007090
Other languages
English (en)
French (fr)
Inventor
이학철
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to US16/763,061 priority Critical patent/US11608549B2/en
Priority to JP2020526506A priority patent/JP2021503548A/ja
Priority to EP18878035.7A priority patent/EP3712290A4/en
Priority to CN201880073403.5A priority patent/CN111373066A/zh
Publication of WO2019098480A1 publication Critical patent/WO2019098480A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a cryogenic steel material used for structural materials such as cryogenic storage vessels such as LNG (Liquefied Natural Gas) and the like, and more particularly to a cryogenic steel material containing cryogenic Ni Steel material and a manufacturing method thereof.
  • cryogenic storage vessels such as LNG (Liquefied Natural Gas) and the like
  • LNG storage containers are classified according to various criteria such as purpose of equipment (storage tank, transport tank), installation location, internal and external tank type. Among them, 9% Ni steel inner tank, membrane inner tank and concrete inner tank are divided according to the type of inner tank, that is, material and shape. In order to improve the stability of LNG carriers, 9% Ni steel Of LNG storage vessels is expanding from storage tanks to transport tanks, there is a growing trend for global demand for 9% Ni steels.
  • 9% Ni steel is generally produced by rolling quenching-tempering (QT) or quenching-lamellarizing-tempeing (QLT) processes. Through this process, soft phase austenite is added to the martensite matrix having fine grains, And thus exhibits a good impact toughness at a cryogenic temperature.
  • QT rolling quenching-tempering
  • QLT quenching-lamellarizing-tempeing
  • the 9% Ni steel has a disadvantage that it increases the production cost compared to the general heat treatment material and overloads the heat treatment equipment while undergoing several heat treatment processes.
  • DQT Direct Quenching-Tempering
  • a preferred aspect of the present invention is to provide a cryogenic steel material having high strength and excellent ductility as well as excellent impact toughness and flatness at a cryogenic temperature.
  • Another aspect of the present invention is to provide a method of directly manufacturing a cryogenic steel material having high strength and excellent ductility as well as excellent impact toughness and flatness at a cryogenic temperature by direct quenching and sintering methods.
  • a method of manufacturing a semiconductor device comprising: 0.04 to 0.08% of carbon (C), 8.9 to 9.3% of nickel, 0.6 to 0.7% of manganese (Mn) 0.3%, P: 50 ppm or less, S: 10 ppm or less, the balance iron (Fe) and other unavoidable impurities, and the microstructure in the region of 1/4 t (steel thickness) Bainite, 10% or less retained austenite, and the remaining bare martensite.
  • the thickness of the steel may be 10 to 45 mm.
  • a cryogenic steel produced by directly quenching a steel material and sintering the cementitious steel material, wherein the steel contains 0.04 to 0.08% carbon (C), 8.9 to 9.3% nickel (Ni) (Mn): 0.6 to 0.7%, silicon (Si): 0.2 to 0.3%, P: not more than 50 ppm, S: not more than 10 ppm, and the balance iron (Fe) and other unavoidable impurities.
  • the microstructure of the steel material contains 10% or more of bainite as an area% on the martensite base and the microstructure of the steel material in the 1/4 t (t: steel material thickness) region of the steel material subjected to the bake treatment is 10% Cobaltite, 10% or less retained austenite, and the remaining bare martensite.
  • the average size of the old austenite grains of the microstructure of the steel after direct quenching may be 30 ⁇ or less .
  • a method of manufacturing a semiconductor device comprising: 0.04 to 0.08% of carbon (C), 8.9 to 9.3% of nickel (Ni), 0.6 to 0.7% of manganese (Mn) 0.2 to 0.3%, P: not more than 50 ppm, S: not more than 10 ppm, and the balance iron (Fe) and other unavoidable impurities, followed by finish hot rolling at a temperature of 900 ° C or less to obtain a steel material;
  • microstructure of the steel before the sintering step after the direct quenching step is applied to the martensite base in an area percent of 10%
  • a method for producing a cryogenic steel material containing nitrite is provided.
  • the thickness of the steel may be 10 to 45 mm.
  • a cryogenic steel material having high strength and excellent ductility as well as excellent impact toughness and flatness at a very low temperature can be produced by direct quenching and sintering.
  • the 9% Ni steel has the composition regulations of type 510 conforming to ASTM A553 type-1, JIS SL9N590 and BS 1501-2 according to the country, and it contains C, Mn, Si in addition to 9%
  • the amount of P and S is regulated in order to control problems such as impact toughness reduction and the like.
  • the present invention relates to a cryogenic steel material based on the above-described ASTM and a constituent system (wt%) satisfying the component specifications of 9% Ni steel in each country.
  • the present inventors have conducted research and experiments to solve the problem of a manufacturing method of a cryogenic nickel (Ni) -containing steel material using direct quenching and sintering, and have completed the present invention based on the results.
  • the present invention controls the steel composition and controls the manufacturing conditions, particularly the cooling rate at the time of direct quenching, so that the microstructure after direct quenching is controlled to be an abnormal structure of martensite and bainite, In a subsequent briquetting process, the austenite is readily nucleated through the bainite structure, which can shorten blooming time and improve impact toughness.
  • the shape of the steel can be improved by reducing the residual stress in the microstructure through controlled cooling.
  • the deterioration of the shape of the steel, especially the flatness of the steel is caused by the occurrence of local residual stress as the time of transformation changes depending on the cooling rate variation at each part during cooling.
  • the cooling rate is controlled, that is, when the cooling rate is reduced, the cooling rate deviation is decreased for each part, thereby reducing the difference in the martensitic transformation time point.
  • the local residual stress due to the phase transformation is lowered and the shape of the steel, Will also improve.
  • the cryogenic steel according to the present invention contains 0.04 to 0.08% of carbon (C), 8.9 to 9.3% of nickel (Ni), 0.6 to 0.7% of manganese (Mn) : 0.2 to 0.3%, P: 50 ppm or less, S: 10 ppm or less, the balance iron (Fe) and other unavoidable impurities, and the microstructure in the area of 1/4 t (steel thickness) % Or more paulowniaite, 10% or less retained austenite and the remainder paulownia martensite.
  • Carbon is an important element in lowering the martensitic transformation temperature and stabilizing the austenite. However, as carbon content increases, strength increases, but toughness decreases.
  • the carbon content is preferably 0.04% or more in order to secure the physical properties required by the present invention within the following Ni composition range, and the upper limit is preferably limited to 0.08% in order to secure ductility.
  • Nickel is the most important element in improving steel strength and stabilizing austenite. As the content of nickel increases, martensite and bainite structure can be formed as the main structure. However, if the content of nickel is less than 8.9% in the carbon range, there is a possibility that the mechanical properties are deteriorated due to the formation of microstructures such as the upper bainite, and if it exceeds 9.3%, the toughness may be deteriorated due to high strength have. Therefore, the content of nickel is preferably limited to 8.9 to 9.3%.
  • Manganese is an element that stabilizes the martensite structure by lowering the martensitic transformation temperature and improves the stability of austenite. However, as the content of manganese increases, the strength of the matrix may increase and the toughness may decrease. Therefore, the content of manganese is preferably limited to 0.6 to 0.7%.
  • Silicon acts as a deoxidizer and improves strength as the solid solution strengthens. Further, the stability of the austenite is improved by suppressing the generation of carbide during the bake. However, the higher the silicon content, the lower the toughness, so the silicon content is preferably limited to 0.2 to 0.3%.
  • P and S are elements which induce brittleness in grain boundaries or coarse inclusions and cause brittleness, which may cause a problem of lowering the impact toughness at the time of plowing. Therefore, in the present invention, P and S are limited to not more than 50 ppm and S not more than 10 ppm .
  • the remainder of the present invention is iron (Fe).
  • impurities that are not intended from the raw material or the surrounding environment may be inevitably incorporated, so that this can not be excluded. Since these impurities are known to anyone skilled in the ordinary steel making process, not all of them are specifically mentioned in this specification.
  • the cryogenic steel material has a microstructure of 1 / 4t (t: steel thickness) area of steel in an area percent of 10% or more of Sorabite, 10% or less of retained austenite, Site.
  • the microstructure of the steel contains residual austenite in excess of 10%, there is a fear of a decrease in impact toughness due to a decrease in the stability of retained austenite Therefore, it is preferable to contain residual austenite of 10% or less.
  • the residual austenite fraction may be 3 to 10%.
  • the percentage of pearlite is 10 to 30%.
  • the steel material may be a cryogenic steel material produced by directly quenching and then sintering a steel material, and the microstructure of the steel material before sintering after direct quenching may include 10% or more of bainite as an area% on a martensite base .
  • the microstructure of the steel material before the bake treatment after direct quenching contains less than 10% of bainite in the martensite base, the residual austenite of 3% or more can not be secured and the impact toughness may be lowered. It is preferable to contain 10% or more of bainite.
  • the bainite fraction may be 10 to 30%.
  • the average size of the old austenite grains of the microstructure of the steel after direct quenching may be 30 ⁇ or less.
  • the steel may have a yield strength of at least 490 MPa, a tensile strength of at least 640 MPa, an elongation of at least 18% and impact toughness (impact energy) of at least 41 J at -196 ⁇ .
  • the thickness of the steel may be 10 to 45 mm.
  • a method of manufacturing a cryogenic steel material which comprises 0.04 to 0.08% of carbon (C), 8.9 to 9.3% of nickel (Ni), 0.6 to 0.7% of manganese (Mn)
  • C carbon
  • Ni nickel
  • Mn manganese
  • the steel slab containing 0.2 to 0.3% of silicon (Si), 50 ppm or less of P, 10 ppm or less of S, and the balance iron (Fe) and other unavoidable impurities is heated and finishing hot-rolled at a temperature of 900 ° C or less, ;
  • the steel slab having the above composition After the steel slab having the above composition is heated, it is subjected to finish hot rolling at a temperature of 900 DEG C or less to obtain a steel material.
  • the heating temperature at the time of heating the steel slab is not particularly limited and may be, for example, 1100 to 1200 ° C Lt; / RTI >
  • the finish hot rolling temperature is preferably limited to 900 ⁇ or lower.
  • the finishing hot rolling temperature may be limited to 700 to 900 ⁇ ⁇ in consideration of the manufacturing environment and the like.
  • the thickness of the steel may be 10 to 45 mm.
  • the steel obtained as described above is directly quenched by cooling at a cooling rate of 10 to 40 DEG C / sec.
  • Bainite and martensite can be stably obtained even at a high speed, and phase fraction control within the microstructure is possible by controlling the cooling rate.
  • the bainite produced during direct quenching contains carbides contained within the tissue, and the austenite is readily nucleated from the carbide during bending, thereby reducing blooming time and improving impact toughness.
  • cooling rate is less than 10 ° C / sec, coarse upper bainite may be generated and toughness may be lowered. Therefore, it is preferable to control the cooling rate at 10 to 40 ⁇ ⁇ / sec during direct quenching.
  • the microstructure of the steel after direct quenching includes 10% or more of bainite as an area% on a martensite base.
  • the bainite fraction may be 10 to 30%.
  • the average size of the old austenite grains of the microstructure after direct quenching may be 30 ⁇ or less.
  • the cryogenic molten steel of the present invention has microstructure, bainite and martensite, and the size of the effective grain size of both structures is determined by the average old austenite grain size. Therefore, the average size of the old austenite grains of the microstructure is less than 30 ⁇ m
  • the impact toughness can be improved due to tissue refinement.
  • the steel material directly quenched as described above is sintered at a temperature of 580 to 600 ° C.
  • the cryogenic molten steel according to the present invention improves the impact toughness by softening the base structure during sintering, and improves impact toughness by generating austenite of about 10%.
  • a blanching temperature of 580 ° C or more is preferable in order to remove the residual stress and soften the matrix.
  • the annealing temperature exceeds 600 ° C.
  • the stability of the austenite produced in the microstructure is lowered.
  • the austenite easily transforms into martensite at a very low temperature and the impact toughness may be lowered.
  • the bake can be carried out for 1.9t (t is the steel thickness, mm) + 40-80 minutes.
  • the microstructure of the hot-rolled steel after the bake treatment includes 10% or more paulowniaite, 10% or less retained austenite, and the remaining paulownia martensite.
  • the residual austenite contains 10% or less of retained austenite.
  • the residual austenite fraction may be 3 to 10%.
  • the slabs satisfying the component systems shown in the following Table 1 were produced by steelmaking and playing back two times and then hot-rolled under the conditions of the hot rolling temperature of Table 2 below (final thickness 10 to 45 mm)
  • the steels (inventive steels 1 to 6 and comparative steels 1 to 4) were produced by direct quenching and plowing under the conditions of speed and air temperature.
  • the yield strength, the tensile strength, the elongation, the impact toughness, the microstructure of the steel after the direct quenching (pre-sintering), the microstructure and the size of the old austenite grains of the steel after the sintering were observed with respect to the steel produced as described above, Table 3 shows the results.
  • the structure other than bainite is martensite.
  • the microstructures of the steel after sintering tissues other than sallow bainite and retained austenite are burnt martensite, and the fraction of burrsite is the same as the fraction of bainite of the steel after direct quenching (before sintering).
  • Fig. Fig. 1 is a TEM photograph showing an entire portion of a bainite in an enlarged scale, and shows a lower bainite.
  • the comparative steel 1 although satisfying the size of the old austenite grains required in the present invention, was found to be inferior to the martensite grains in the direct quenching due to the rapid cooling rate, Single-phase structure was generated, which indicates that the impact strength is lowered as compared with the inventive steel, after having a high strength level.
  • the comparative steel 2 satisfies the range of the present invention both in the cooling condition at the direct quenching and in the size of the old austenite grains. However, by squeezing at a high temperature (610 ° C) outside the range of the present invention, a large amount of austenite having low stability relative to the sowing at 590 ° C is produced, To martensite, it exhibits the lowest impact toughness compared to other steel types.
  • the comparative steel 4 was produced under the same direct quenching cooling conditions as inventive steels 1 and 2, but the coarse austenite grain size was obtained at the end of rolling at a high temperature, resulting in a decrease in impact toughness.
  • inventive steels 1 to 6 show that bainite is contained in the microstructure in an amount of 10% or more and the average size of old austenite grains is 30 ⁇ or less. As a result, excellent impact toughness could be ensured while satisfying the basic physical properties such as yield strength, tensile strength and elongation after sintering.
  • inventive steel 1 contains bainite.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

본 발명은 중량%로, 탄소(C): 0.04~0.08%, 니켈(Ni): 8.9~9.3%, 망간(Mn): 0.6~0.7%, 실리콘(Si): 0.2~0.3%, P: 50ppm 이하, S: 10ppm 이하, 잔부 철(Fe) 및 기타 불가피한 불순물을 포함하고, 강재의 1/4t(t: 강재두께) 영역의 미세조직이 면적%로, 10% 이상의 소려 베이나이트, 10% 이하의 잔류 오스테나이트와 나머지 소려 마르텐사이트를 포함하는 극저온용 강재 및 그 제조방법을 제공한다.

Description

극저온용 강재 및 그 제조방법
본 발명은 LNG(Liquefied Natural Gas) 등의 극저온용 저장용기 등의 구조재 등에 사용되는 극저온용 강재 및 그 제조방법에 관한 것으로서, 보다 상세하게는 베이나이트를 이용한 직접소입형 극저온용 니켈(Ni)함유 강재 및 그 제조방법에 관한 것이다.
LNG의 친환경성과 기술 발전을 통한 비용 저감 및 효율성증가로 인해 세계 LNG 소비가 꾸준하게 증가함에 따라 1980년 6개국 2,300 만톤에 불과하던 LNG 소비는 대략 10년마다 그 규모가 두 배씩 증가해오고 있는 추세이다. 이러한 LNG 시장의 확대 및 성장에 따라서 LNG 생산국가들 간에 기존 운영되고 있는 설비를 개조 또는 증설하고 있으며, 또한 천연가스가 생산되는 국가들이 신규로 LNG 시장에 진입하기 위해서 생산 설비를 건설하려는 추세이다.
LNG 저장용기는 설비의 목적(저장용 탱크, 수송용 탱크), 설치위치, 내외부 탱크 형식 등 여러 가지 기준에 의해 분류된다. 이 중, 내부탱크의 형식, 즉 재료 및 형상에 따라 9% Ni 강재 내부탱크, 멤브레인 내부탱크, 콘크리트 내부탱크로 나뉘어지는데, 최근 LNG 캐리어(carrier)의 안정성 향상을 위해 9% Ni 강재를 이용한 형식의 LNG 저장용기의 사용이 저장용 탱크에서 수송용 탱크 분야까지 확대됨에 따라 9% Ni 강재에 대한 세계적인 수요가 증가하는 추세이다.
일반적으로, LNG 저장용기의 재료로 사용되기 위해서는 극저온에서 우수한 충격인성을 가져야 하며, 구조물의 안정성을 위해 높은 강도수준 및 연성이 필요하다.
9% Ni 강재는 일반적으로 압연 후 QT(Quenching-Tempering) 혹은 QLT(Quenching-Lamellarizing-Tempeing) 의 공정을 통해 생산되며, 이러한 공정을 통해 미세한 결정립을 가지는 마르텐사이트 기지에 연질상의 오스테나이트를 이차상으로 가짐으로써 극저온에서의 좋은 충격인성을 나타낸다. 그러나, 9% Ni 강재의 경우 여러 번의 열처리 과정을 거치면서 일반 열처리재 대비 생산 비용 증가 및 열처리 설비의 과부화를 유발하는 단점을 가지고 있다.
이러한 단점을 해결하기 위해 기존 9% Ni 강재의 제조공정에서 소입(Quenching) 공정을 생략한 직접소입 및 소려법(DQT: Direct Quenching-Tempering) 기술이 개발되었으며, 이를 통해 기존 공정에서 재가열 및 소입 공정이 생략됨으로써 제조비용 저감 및 열처리 부하 감소가 가능하였다.
그러나, 일반 소입 공정에 비해서 직접소입(DQ: Direct Quenching) 공정의 빠른 냉각속도로 인해 소입성이 증가함으로써 소려(Tempering) 공정 시 열처리 시간을 증가시켜야 하는 문제점이 있으며, 이와 더불어 직접 소입 후 미세조직 내부의 잔류 응력 증가로 인해 제품의 형상 제어가 어려워지는 문제점 또한 발생하게 된다.
본 발명의 바람직한 일 측면은 높은 강도 및 우수한 연성을 가질 뿐만 아니라 극저온에서의 충격인성 및 평탄도가 우수한 극저온용 강재를 제공하고자 하는 것이다.
본 발명의 바람직한 다른 일 측면은 높은 강도 및 우수한 연성을 가질 뿐만 아니라 극저온에서의 충격인성 및 평탄도가 우수한 극저온용 강재를 직접소입 및 소려법으로 제조하는 방법을 제공하고자 하는 것이다.
본 발명의 바람직한 일 측면에 의하면, 중량%로, 탄소(C): 0.04~0.08%, 니켈(Ni): 8.9~9.3%, 망간(Mn): 0.6~0.7%, 실리콘(Si): 0.2~0.3%, P: 50ppm 이하, S: 10ppm 이하, 잔부 철(Fe) 및 기타 불가피한 불순물을 포함하고, 강재의 1/4t(t: 강재두께) 영역의 미세조직이 면적%로, 10% 이상의 소려 베이나이트, 10% 이하의 잔류 오스테나이트와 나머지 소려 마르텐사이트를 포함하는 극저온용 강재가 제공된다.
상기 강재의 두께는 10~45mm일 수 있다.
본 발명의 바람직한 다른 일 측면에 의하면, 강재를 직접소입한 후 소려처리하여 제조되는 극저온용 강재로, 중량%로, 탄소(C): 0.04~0.08%, 니켈(Ni): 8.9~9.3%, 망간(Mn): 0.6~0.7%, 실리콘(Si): 0.2~0.3%, P: 50ppm 이하, S: 10ppm 이하, 잔부 철(Fe) 및 기타 불가피한 불순물을 포함하고, 직접소입한 후 소려처리 전의 강재의 미세조직이 마르텐사이트 기지에 면적%로, 10% 이상의 베이나이트를 포함하고, 소려처리 후의 강재의 1/4t(t: 강재두께) 영역의 강재의 미세조직이 면적%로, 10% 이상의 소려 베이나이트, 10%이하의 잔류 오스테나이트와 나머지 소려 마르텐사이트를 포함하는 극저온용 강재가 제공된다.
상기 직접소입한 후 강재의 미세조직의 평균 구 오스테나이트 결정립 크기는 30㎛ 이하일 수 있다.
본 발명의 바람직한 또 다른 일 측면에 의하면, 중량%로, 탄소(C): 0.04~0.08%, 니켈(Ni): 8.9~9.3%, 망간(Mn): 0.6~0.7%, 실리콘(Si): 0.2~0.3%, P: 50ppm 이하, S: 10ppm 이하, 잔부 철(Fe) 및 기타 불가피한 불순물을 포함하는 강 슬라브를 가열한 후 900℃이하의 온도에서 마무리 열간압연하여 강재를 얻는 단계;
상기 강재를 10~40℃/sec의 냉각속도로 냉각하는 직접 소입단계; 및
상기와 같이 직접 소입된 강재를 580~600℃의 온도에서 소려처리하는 단계를 포함하고, 상기 직접 소입단계 후 소려처리하는 단계 전의 강재의 미세조직이 마르텐사이트 기지에 면적%로, 10% 이상의 베이나이트를 포함하는 극저온용 강재의 제조방법이 제공된다.
상기 강재의 두께는 10~45mm일 수 있다.
본 발명의 바람직한 측면에 의하면, 높은 강도 및 우수한 연성을 가질 뿐만 아니라 극저온에서의 충격인성 및 평탄도가 우수한 극저온용 강재를 직접소입 및 소려법으로 제조할 수 있다.
본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않으며, 본 발명의 구체적인 실시 형태를 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.
도 1은 발명강 1의 직접 소입 후의 베이나이트를 포함한 강재의 미세조직 사진이다.
9% Ni 강재는 국가에 따라서 ASTM A553 type-1, JIS SL9N590, BS 1501-2 에 부합하는 type 510 등의 성분 규정을 가지고 있으며, 중량 %로 Ni 9% 외에 C, Mn, Si 등을 함유하며 충격인성 저하 등의 문제를 제어하기 위하여, P, S 의 양을 규제하고 있다. 본 발명은 상술한 ASTM 및 각국의 9% Ni 강의 성분 규정을 만족하는 성분계(중량 %)를 기준으로 한 극저온용 강재와 관련되는 것이다.
본 발명자들은 직접소입 및 소려를 이용한 극저온용 니켈(Ni)함유 강재의 제조방법의 문제점을 해결하기 위해 연구 및 실험을 행하고, 그 결과에 기초하여 본 발명을 완성하게 이른 것이다.
본 발명은 강 조성의 제어와 함께, 제조조건, 특히, 직접소입 시 냉각속도를 제어함으로써, 직접소입 후 미세조직을 기존의 마르텐사이트 단상 조직이 아닌 마르텐사이트와 베이나이트의 이상조직으로 제어하고, 후속 소려 공정 시 베이나이트 조직을 통해 오스테나이트가 쉽게 핵 생성 됨으로써 소려 시간을 단축시켜주는 것과 함께 충격인성 또한 향상시킬 수 있다.
본 발명에서는 제어냉각을 통하여 미세조직 내부의 잔류 응력을 감소시킴으로써 강재의 형상, 특히 강재의 평탄도 또한 향상시킬 수 있었다. 강재의 형상, 특히 강재의 평탄도가 나빠지는 것은 냉각 시 각 부위의 냉각속도 편차에 의해서 변태 시점이 달라지면서 국부 잔류응력 발생으로 발생하게 된다. 냉각속도를 제어하면, 즉 냉각속도를 줄이면 부위별 냉각속도 편차가 줄게 되고 이로 인해서 마르텐사이트 변태 시점의 차이가 줄어들게 되어 상변태로 인한 국부 잔류 응력 발생이 낮아지고, 강재의 형상, 특히 강재의 평탄도도 좋아지게 된다.
이하, 본 발명의 바람직한 일 측면에 따르는 극저온용 강재에 대하여 설명한다.
본 발명의 바람직한 일 측면에 따르는 극저온용 강재는 중량%로, 탄소(C): 0.04~0.08%, 니켈(Ni): 8.9~9.3%, 망간(Mn): 0.6~0.7%, 실리콘(Si): 0.2~0.3%, P: 50ppm 이하, S: 10ppm 이하, 잔부 철(Fe) 및 기타 불가피한 불순물을 포함하고, 강재의 1/4t(t: 강재두께) 영역의 미세 조직이 면적%로, 10% 이상의 소려 베이나이트, 10% 이하의 잔류 오스테나이트와 나머지 소려 마르텐사이트를 포함한다.
탄소(C): 0.04~0.08중량%(이하,"%"라고도 함)
탄소는 마르텐사이트 변태온도를 낮추고 오스테나이트를 안정화시키는데 중요한 원소이다. 그러나, 탄소 함량이 증가할수록 강도는 증가하지만, 인성이 감소한다. 탄소의 함량은 하기 Ni 조성범위 내에서 본 발명이 요구하는 물성을 확보하기 위해서 0.04% 이상 포함되는 것이 바람직하며, 연성 확보를 위해서 그 상한을 0.08%로 한정하는 것이 바람직하다.
니켈(Ni): 8.9~9.3%
니켈은 강의 강도를 향상시키고 오스테나이트를 안정시키는데 가장 중요한 역할을 하는 원소이다. 니켈의 함유량이 증가함에 따라 마르텐사이트 및 베이나이트 조직이 주 조직으로 형성될 수 있다. 하지만, 상기 탄소 범위 내에서 니켈의 함량이 8.9% 미만인 경우 상부 베이나이트 등의 미세조직 생성으로 인해 기계적 물성이 열화될 가능성이 있으며, 9.3%를 초과할 경우에는 높은 강도로 인해 인성이 저하될 수 있다. 따라서, 상기 니켈의 함량은 8.9~9.3% 로 제한하는 것이 바람직하다.
망간(Mn): 0.6~0.7%
망간은 마르텐사이트 변태 온도를 낮춰 마르텐사이트 조직을 안정화시키며, 오스테나이트의 안정성을 향상시키는 원소이다. 하지만 망간 함유량이 증가할수록 기지조직의 강도가 증가되어 인성이 저하될 수 있으므로, 상기 망간의 함량은 0.6~0.7% 로 제한하는 것이 바람직하다.
실리콘(Si): 0.2~0.3%
실리콘은 탈산제로서 역할을 하고 고용강화에 따라 강도를 향상시킨다. 또한 소려 시에 탄화물 생성을 억제하여 오스테나이트의 안정성을 향상시킨다. 하지만 실리콘 함량이 높을수록 인성이 저하되므로 상기 실리콘의 함량은 0.2~0.3% 로 제한하는 것이 바람직하다.
P: 50ppm 이하, S: 10ppm 이하
P, S는 결정립계에 취성을 유발하거나 조대한 개재물을 형성시켜 취성을 유발하는 원소로써 소려 시 충격인성을 저하시키는 문제점을 발생시킬 수 있으므로, 본 발명에서는 P: 50ppm 이하 및 S: 10ppm 이하로 제한하는 것이 바람직하다.
본 발명의 나머지 성분은 철(Fe)이다. 다만 통상의 철강제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않은 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 철강제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별이 본 명세서에서 언급하지는 않는다.
본 발명의 바람직한 일 측면에 따르는 극저온용 강재는 강재의 1/4t(t: 강재두께) 영역의 미세 조직이 면적%로, 10% 이상의 소려 베이나이트, 10% 이하의 잔류 오스테나이트와 나머지 소려 마르텐사이트를 포함한다.
상기 강재의 미세조직이 잔류 오스테나이트를 10%를 초과하여 포함하는 경우에는 잔류 오스테나이트 안정도 저하에 따른 충격인성 저하의 우려가 있으므로, 10% 이하의 잔류 오스테나이트를 포함하는 것이 바람직하다. 상기 잔류 오스테나이트 분율은 3~10%일 수 있다.
상기 소려 베이나이트의 분율은 10~30%일 수 있다.
상기 강재는 강재를 직접소입한 후 소려처리하여 제조되는 극저온용 강재로, 직접소입한 후 소려처리 전의 강재의 미세조직이 마르텐사이트 기지에 면적%로, 10% 이상의 베이나이트를 포함하는 것일 수 있다.
직접소입한 후 소려처리 전의 강재의 미세조직이 마르텐사이트 기지에 10% 미만의 베이나이트를 포함하는 경우에는 3% 이상의 잔류 오스테나이트를 확보하지 못해 충격인성이 저하될 우려가 있으므로, 마르텐사이트 기지에 10% 이상의 베이나이트를 포함하는 것이 바람직하다. 상기 베이나이트 분율은 10~30%일 수 있다.
상기 직접소입한 후 강재의 미세조직의 평균 구 오스테나이트 결정립 크기는 30㎛ 이하일 수 있다.
상기 강재는 490Mpa이상의 항복강도, 640Mpa이상의 인장강도, 18%이상의 연신율 및 -196℃에서 41J이상의 충격인성(충격에너지)을 가질 수 있다.
상기 강재의 두께는 10~45mm일 수 있다.
이하, 본 발명의 바람직한 다른 일 측면에 따르는 극저온용 강재의 제조방법에 대하여 설명한다.
본 발명의 바람직한 다른 일 측면에 따르는 극저온용 강재의 제조방법은 중량%로, 탄소(C): 0.04~0.08%, 니켈(Ni): 8.9~9.3%, 망간(Mn): 0.6~0.7%, 실리콘(Si): 0.2~0.3%, P: 50ppm 이하, S: 10ppm 이하, 잔부 철(Fe) 및 기타 불가피한 불순물을 포함하는 강 슬라브를 가열한 후 900℃이하의 온도에서 마무리 열간압연하여 강재를 얻는 단계;
상기 강재를 10~40℃/sec의 냉각속도로 냉각하는 직접 소입단계; 및
상기와 같이 직접 소입된 강재를 580~600℃의 온도에서 소려처리하는 소려단계를 포함하고, 상기 직접 소입단계 후 소려처리 단계 전의 강재의 미세조직이 마르텐사이트 기지에 10% 이상의 베이나이트를 포함한다.
강재를 얻는 단계
상기한 조성을 갖는 강 슬라브를 가열한 후, 900℃이하의 온도에서 마무리 열간압연하여 강재를 얻는다.
상기 강 슬라브의 가열 시, 가열온도는 특별히 한정되는 것은 아니며, 예를 들면, 1100~1200℃ 일 수 있다.
상기 마무리 열간압연 온도가 900℃보다 높은 경우에는 오스테나이트의 결정립이 조대하게 되어 인성이 열화될 수 있다. 따라서, 상기 마무리 열간압연 온도는 900℃이하로 한정하는 것이 바람직하다. 제조 환경 등을 고려하여 상기 마무리 열간압연 온도는 700~900℃로 한정될 수 있다.
상기 강재의 두께는 10~45mm일 수 있다.
직접 소입단계
상기와 같이 얻은 강재를 10~40℃/sec의 냉각속도로 냉각하는 직접 소입을 실시한다.
상술한 극저온용강의 성분 범위에서는, 연속냉각변태곡선(Continuous Cooling Transformation Diagram) 상에서 베이나이트 또는 페라이트 생성 곡선이 후방으로 급격하게 이동하기 때문에 열간압연 또는 용체화 처리 후 직접소입 시에 탄소강에 비해 낮은 냉각속도에서도 베이나이트 및 마르텐사이트를 안정적으로 얻을 수 있으며, 냉각속도 제어를 통해서 미세조직 내부의 상분율 제어가 가능하다.
직접소입 시 생성된 베이나이트는 조직 내부에 포함된 탄화물(carbide)을 포함하고 있으며, 소려 시 이 탄화물에서 오스테나이트가 쉽게 핵 생성됨으로써 소려 시간을 줄여주는 것과 함께 충격인성 또한 향상시킬 수 있다.
열연강재의 직접 소입 시, 냉각속도가 40℃/sec를 초과하는 경우 미세조직 내의 베이나이트의 분율이 10% 이하로 떨어지기 때문에, 베이나이트를 이용한 충격인성 향상을 기대할 수 없으며 제품의 형상 제어 또한 어려워진다.
냉각속도가 10℃/sec 미만인 경우에는 조대한 상부 베이나이트가 생성되어 인성의 저하가 생길 수 있다. 따라서, 직접소입 시 냉각속도는 10~40℃/sec 로 제어하는 것이 바람직하다.
상기 직접소입 후의 강재의 미세조직은 마르텐사이트 기지에 면적%로, 10% 이상의 베이나이트를 포함한다.
직접소입한 후의 미세조직이 마르텐사이트 기지에 10% 미만의 베이나이트를 포함하는 경우에는 3% 이상의 잔류 오스테나이트를 확보하지 못해 충격인성이 저하될 우려가 있으므로, 마르텐사이트 기지에 10% 이상의 베이나이트를 포함하는 것이 바람직하다. 상기 베이나이트 분율은 10~30%일 수 있다.
직접 소입 후 미세조직의 평균 구 오스테나이트 결정립 크기는 30㎛ 이하일 수 있다.
저온에서의 충격인성은 미세조직의 유효결정립 크기가 감소할수록 증가하게 된다. 본 발명의 극저온용강은 미세조직으로 베이나이트와 마르텐사이트를 가지며, 두 조직 모두 유효결정립의 크기가 평균 구 오스테나이트 결정립 크기로 결정되게 되므로, 미세조직의 평균 구 오스테나이트 결정립 크기가 30㎛ 이하 일 경우 조직 미세화로 인해 충격인성이 향상될 수 있다.
소려단계
상기와 같이 직접 소입된 강재를 580~600℃의 온도에서 소려처리한다.
본 발명의 극저온용강은 소려 시 기지조직의 연화를 통한 충격인성 향상과 더불어 10% 내외의 오스테나이트를 생성시켜 충격인성을 향상시킨다.
일반적인 소입법과 달리 직접소입 시의 빠른 냉각속도로 인한 잔류 응력이 조직 내부에 많이 남아있기 때문에, 이를 제거하고 기지조직을 연화시키기 위해서는 580℃ 이상의 소려 온도가 바람직하다.
한편, 소려온도가 600℃를 초과하는 경우, 미세조직 내에 생성되는 오스테나이트의 안정도가 떨어지게 되며, 이로 인해 극저온에서 오스테나이트가 마르텐사이트로 쉽게 변태하여 충격인성을 저하할 수 있으므로, 소려 온도는 580~600℃의 범위에서 실시하는 것이 바람직하다.
상기 소려는 1.9t(t는 강재두께, mm) + 40~80분의 시간 동안 실시될 수 있다.
상기 소려처리 후의 열연강재의 미세조직은 10%이상의 소려 베이나이트, 10%이하의 잔류 오스테나이트와 나머지 소려 마르텐사이트를 포함한다.
소려처리 후의 강재의 미세조직이 잔류 오스테나이트를 10%를 초과하여 포함하는 경우에는 잔류 오스테나이트 안정도 저하에 따른 충격인성 저하의 우려가 있으므로, 10% 이하의 잔류 오스테나이트를 포함하는 것이 바람직하다. 상기 잔류 오스테나이트 분율은 3~10%일 수 있다.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다. 다만, 하기의 실시예는 예시를 통하여 본 발명을 설명하기 위한 것일 뿐 본 발명의 권리범위를 제한하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다.
하기 표 1에 기재된 성분계를 만족하는 슬라브를 2차에 걸쳐 제강 및 연주하여 생산한 뒤, 하기 표 2의 열간 마무리압연온도 조건으로 열간압연한 후(최종두께 10~45mm), 하기 표 2의 냉각속도 및 소려온도 조건으로 직접소입 및 소려 공정을 실시하여 강재(발명강 1 내지6 및 비교강1 내지 4)를 제조하였다.
발명강과 비교강 모두 본 발명에 부합되는 성분 범위를 만족한다.
모든 강재는 [1.9t(t:강재두께(mm))+40분]의 소려시간으로 소려처리되었다.
상기와 같이 제조된 강재에 대하여 항복강도, 인장강도, 연신율, 충격인성, 직접소입 후(소려 전) 강재의 미세조직, 소려 후 강재의 미세조직 및 구 오스테나이트 결정립 크기를 관찰하고, 그 결과를 하기 표 3에 나타내었다. 직접소입 후(소려 전) 강재의 미세조직 중 베이나이트 이외의 조직은 마르텐사이트이다. 소려 후 강재의 미세조직 중 소려 베이나이트 및 잔류 오스테나이트 이외의 조직은 소려 마르텐사이트이며, 상기 소려 베이나이트의 분율은 직접소입 후(소려 전) 강재의 베이나이트의 분율과 동일하다.
한편, 발명강 1에 대해서는 직접소입 후의 강재의 미세조직을 관찰하고, 그 결과를 도 1에 나타내었다. 도 1은 전체가 베이나이트인 부분을 확대해서 찍은 TEM 사진이며, 하부 베이나이트를 나타낸다.
강종 화학조성(중량%)
C Ni Mn Si P S
발명강 1 0.066 9.1 0.65 0.24 0.0024 0.001
발명강 2
발명강 3
발명강 4 0.062 8.93 0.64 0.23 0.0037 0.001
발명강 5
발명강 6
비교강 1 0.066 9.1 0.65 0.24 0.0024 0.001
비교강 2
비교강 3 0.062 8.93 0.64 0.23 0.0037 0.001
비교강 4
강종 마무리압연온도(℃) 강재두께(mm) 직접소입냉각속도(℃/sec) 소려온도(℃)
발명강 1 758 15 38.1 590
발명강 2 801 13 39.3 590
발명강 3 771 17 36.5 590
발명강 4 760 35 11.5 590
발명강 5 791 40 12.9 590
발명강 6 831 35 15.4 590
비교강 1 802 10 75.5 590
비교강 2 816 20 35.6 610
비교강 3 807 45 4.5 590
비교강 4 957 18 39.5 590
강종 항복강도(Mpa) 인장강도(Mpa) 연신율(%) 충격인성(-196℃) (J) 소려 전의 베이나이트 분율(면적%) 소려 후 잔류오스테나이트 분율(면적%) 구 오스테나이트 결정립크기(㎛)
발명강 1 715 778 28.3 151 14.5 7.2 24.3
발명강 2 723 790 27.9 145 16.3 6.5 26.7
발명강 3 703 775 28.2 160 17.2 5.8 23.2
발명강 4 680 736 28.6 151 26.1 9.3 28.6
발명강 5 685 755 29.3 160 23.7 8.7 20.5
발명강 6 720 761 28.1 134 23.6 6.9 29.7
비교강 1 760 805 24.3 103 0 2.1 26.2
비교강 2 630 742 29.3 75 16.3 13.8 27.3
비교강 3 687 760 28.3 43 39.5 8.9 39.3
비교강 4 755 790 26.1 105 13.2 4.5 37.5
상기 표 1 내지 표 3에 나타난 바와 같이, 비교강 1은 본 발명에서 요구하는 구 오스테나이트 결정립 크기는 만족시킴에도 불구하고, 직접소입 시 본 발명의 요구 냉각조건을 벗어나는 빠른 냉각속도로 인해 마르텐사이트 단상 조직이 생성되었으며, 이로 인해 발명강에 비해 소려 후 높은 강도수준을 가지며 충격인성 또한 저하되었음을 알 수 있다.
또한, 비교강 1의 경우, 빠른 냉각속도로 인하여 일부 판에서 냉각 후 사이드 웨이브(side wave) 및 에지 웨이브(edge wave)가 발생하여 판 형상 확보에 어려움을 나타냈다.
비교강 2는 직접소입 시 냉각조건과 구 오스테나이트 결정립 크기 등은 모두 본 발명의 범위를 만족시킨다. 하지만 본 발명의 범위를 벗어나는 높은 온도(610℃)에서 소려함으로 다른 강재들에 비해 기지조직에 연화가 많이 일어나 강도가 낮으며, 590℃ 온도에서의 소려 대비 안정도가 낮은 오스테나이트가 다량 생성되어 저온에서 마르텐사이트로 변태하기 때문에 다른 강종 대비 가장 낮은 충격인성을 나타낸다.
비교강 3은 직접 소입 시 본 발명에서 제시하는 냉각속도 하한보다 느린 속도로 냉각됨에 따라, 다량의 상부 베이나이트가 생성되어 조대한 구 오스테나이트 결정립을 가지며 이로인해 100J 이하의 낮은 충격인성을 나타내었다.
비교강 4는 발명강 1 및 2와 동일한 직접소입 냉각조건에서 생성되었으나, 높은 온도에서 압연이 종료됨에 따라 조대한 구 오스테나이트 결정립 크기를 가지게 되었으며, 이로 인해 충격인성이 저하되었다.
한편, 발명강 1 내지 6은 미세조직 내에 베이나이트가 10% 이상 포함되고 평균 구 오스테나이트 결정립 크기가 30㎛ 이하임을 알 수 있다. 이로 인해, 소려 후에 항복강도, 인장강도, 연신율 등의 기본 물성을 만족시키면서 우수한 충격인성을 확보할 수 있었다.
한편, 직접소입 후의 발명강 1의 미세조직을 나타내는 도 1에서 알 수 있는 바와 같이, 발명강 1은 베이나이트를 포함하고 있음을 알 수 있다.

Claims (16)

  1. 중량%로, 탄소(C): 0.04~0.08%, 니켈(Ni): 8.9~9.3%, 망간(Mn): 0.6~0.7%, 실리콘(Si): 0.2~0.3%, P: 50ppm 이하, S: 10ppm 이하, 잔부 철(Fe) 및 기타 불가피한 불순물을 포함하고, 강재의 1/4t(t: 강재두께) 영역의 미세 조직이 면적%로, 10% 이상의 소려 베이나이트, 10% 이하의 잔류 오스테나이트와 나머지 소려 마르텐사이트를 포함하는 극저온용 강재.
  2. 제1항에 있어서, 상기 잔류 오스테나이트 분율이 3~10%인 것을 특징으로 하는 극저온용 강재.
  3. 제1항에 있어서, 상기 소려 베이나이트 분율이 10~30%인 것을 특징으로 하는 극저온용 강재.
  4. 제1항에 있어서, 상기 강재의 두께가 10~45mm인 것을 특징으로 하는 극저온용 강재.
  5. 제1항에 있어서, 상기 강재는 강재를 직접소입한 후 소려처리하여 제조되는 극저온용 강재로, 직접소입한 후 소려처리 전의 강재의 미세조직이 마르텐사이트 기지에 면적%로, 10% 이상의 베이나이트를 포함하고, 상기 직접소입한 후 강재의 미세조직의 평균 구 오스테나이트 결정립 크기가 30㎛ 이하인 것임을 특징으로 하는 극저온용 강재.
  6. 제5항에 있어서, 상기 베이나이트 분율이 10~30%인 것을 특징으로 하는 극저온용 강재.
  7. 중량%로, 탄소(C): 0.04~0.08%, 니켈(Ni): 8.9~9.3%, 망간(Mn): 0.6~0.7%, 실리콘(Si): 0.2~0.3%, P: 50ppm 이하, S: 10ppm 이하, 잔부 철(Fe) 및 기타 불가피한 불순물을 포함하는 강 슬라브를 가열한 후 900℃이하의 온도에서 마무리 열간압연하여 강재를 얻는 단계;
    상기 강재를 10~40℃/sec의 냉각속도로 냉각하는 직접 소입단계; 및
    상기와 같이 직접 소입된 강재를 580~600℃의 온도에서 소려처리하는 단계를 포함하고, 상기 직접 소입단계 후 소려처리 단계 전의 강재의 미세조직이 마르텐사이트 기지에 면적%로, 10% 이상의 베이나이트를 포함하는 극저온용 강재의 제조방법.
  8. 제7항에 있어서, 상기 강 슬라브의 가열온도가 1100~1200℃인 것을 특징으로 하는 극저온용 강재의 제조방법.
  9. 제7항에 있어서, 상기 마무리 열간압연 온도가 700~900℃인 것을 특징으로 하는 극저온용 강재의 제조방법.
  10. 제7항에 있어서, 상기 소려는 1.9t(t는 강재두께, mm) + 40~80분의 시간 동안 실시되는 것을 특징으로 하는 극저온용 강재의 제조방법.
  11. 제7항에 있어서, 상기 베이나이트 분율이 10~30%인 것을 특징으로 하는 극저온용 강재의 제조방법.
  12. 제7항에 있어서, 상기 미세조직의 평균 구 오스테나이트 결정립 크기는 30㎛ 이하인 것을 특징으로 하는 극저온용 강재의 제조방법.
  13. 제7항에 있어서, 상기 소려처리 단계 후의 강재의 미세조직이 면적%로, 10% 이상의 소려 베이나이트, 10% 이하의 잔류 오스테나이트와 나머지 소려 마르텐사이트를 포함하는 것임을 특징으로 하는 극저온용 강재의 제조방법.
  14. 제13항에 있어서, 상기 소려 베이나이트의 분율이 10~30%인 것을 특징으로 하는 극저온용 강재의 제조방법.
  15. 제13항에 있어서, 상기 잔류 오스테나이트 분율이 3~10%인 것을 특징으로 하는 극저온용 강재의 제조방법.
  16. 제7항에 있어서, 상기 강재의 두께가 10~45mm인 것을 특징으로 하는 극저온용 강재의 제조방법.
PCT/KR2018/007090 2017-11-17 2018-06-22 극저온용 강재 및 그 제조방법 WO2019098480A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/763,061 US11608549B2 (en) 2017-11-17 2018-06-22 Cryogenic steel plate and method for manufacturing same
JP2020526506A JP2021503548A (ja) 2017-11-17 2018-06-22 極低温用鋼材及びその製造方法
EP18878035.7A EP3712290A4 (en) 2017-11-17 2018-06-22 Cryogenic steel plate and process for the manufacture thereof
CN201880073403.5A CN111373066A (zh) 2017-11-17 2018-06-22 超低温钢及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170154083A KR102075205B1 (ko) 2017-11-17 2017-11-17 극저온용 강재 및 그 제조방법
KR10-2017-0154083 2017-11-17

Publications (1)

Publication Number Publication Date
WO2019098480A1 true WO2019098480A1 (ko) 2019-05-23

Family

ID=66538626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/007090 WO2019098480A1 (ko) 2017-11-17 2018-06-22 극저온용 강재 및 그 제조방법

Country Status (6)

Country Link
US (1) US11608549B2 (ko)
EP (1) EP3712290A4 (ko)
JP (1) JP2021503548A (ko)
KR (1) KR102075205B1 (ko)
CN (1) CN111373066A (ko)
WO (1) WO2019098480A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114891980A (zh) * 2022-04-27 2022-08-12 中材科技(成都)有限公司 一种钢质内胆气瓶的回火冷却设备及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112647021B (zh) * 2020-12-09 2021-10-15 上海电气上重铸锻有限公司 超低温工程紧固件用高强度9%Ni钢及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4776900A (en) * 1984-11-26 1988-10-11 Nippon Steel Corporation Process for producing nickel steels with high crack-arresting capability
US5454883A (en) * 1993-02-02 1995-10-03 Nippon Steel Corporation High toughness low yield ratio, high fatigue strength steel plate and process of producing same
US6159312A (en) * 1997-12-19 2000-12-12 Exxonmobil Upstream Research Company Ultra-high strength triple phase steels with excellent cryogenic temperature toughness
KR20010062884A (ko) * 1999-12-20 2001-07-09 이구택 극저온인성이 우수한 항복강도 63kgf/㎟급 후강판의제조방법
JP2011219848A (ja) * 2010-04-14 2011-11-04 Sumitomo Metal Ind Ltd 極低温用厚鋼板およびその製造方法
JP2014125678A (ja) * 2012-12-27 2014-07-07 Kobe Steel Ltd 極低温靱性に優れた厚鋼板

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3619302A (en) * 1968-11-18 1971-11-09 Yawata Iron & Steel Co Method of heat-treating low temperature tough steel
JPS61143516A (ja) * 1984-12-14 1986-07-01 Kobe Steel Ltd 9%Ni鋼の製造方法
JPH06179909A (ja) * 1992-12-14 1994-06-28 Sumitomo Metal Ind Ltd 極低温用鋼材の製造方法
JPH06240348A (ja) * 1993-02-19 1994-08-30 Kobe Steel Ltd 高靭性低温用鋼の製造法
JPH07150239A (ja) * 1993-11-30 1995-06-13 Kobe Steel Ltd 低温用鋼の製造方法
JPH07173534A (ja) 1993-12-21 1995-07-11 Kobe Steel Ltd 靱性と加工性の優れた含Ni鋼板の製造方法
JPH09256039A (ja) * 1996-03-25 1997-09-30 Kawasaki Steel Corp 高降伏強さ、高靱性含Ni厚鋼板の製造方法
TW459052B (en) 1997-12-19 2001-10-11 Exxon Production Research Co Ultra-high strength steels with excellent cryogenic temperature toughness
KR100957929B1 (ko) * 2002-12-18 2010-05-13 주식회사 포스코 저온인성이 우수한 고장력 강판의 제조방법
JP5076423B2 (ja) * 2006-09-27 2012-11-21 Jfeスチール株式会社 Ni含有鋼板の製造方法
JP5565050B2 (ja) * 2010-03-31 2014-08-06 Jfeスチール株式会社 強度および低温靭性と脆性亀裂伝播停止特性に優れた9Ni鋼
JP5655351B2 (ja) 2010-03-31 2015-01-21 Jfeスチール株式会社 強度および低温靭性に優れた9%Ni鋼の製造方法
KR101271974B1 (ko) 2010-11-19 2013-06-07 주식회사 포스코 극저온 인성이 우수한 고강도 강재 및 그 제조방법
US9821401B2 (en) * 2011-01-28 2017-11-21 Exxonmobil Upstream Research Company High toughness weld metals with superior ductile tearing resistance
JP5673399B2 (ja) 2011-07-06 2015-02-18 新日鐵住金株式会社 極低温用鋼材およびその製造方法
JP5594329B2 (ja) 2012-07-23 2014-09-24 Jfeスチール株式会社 低温靱性に優れたNi含有厚鋼板
JP5833991B2 (ja) 2012-08-23 2015-12-16 株式会社神戸製鋼所 極低温靱性に優れた厚鋼板
WO2014203347A1 (ja) * 2013-06-19 2014-12-24 新日鐵住金株式会社 鋼材およびその製造方法並びにlngタンク
JP5556948B1 (ja) 2013-10-28 2014-07-23 Jfeスチール株式会社 低温用鋼板およびその製造方法
EP3098331B1 (en) * 2014-01-28 2018-09-26 Jfe Steel Corporation Wear-resistant steel plate and process for producing same
CN105349886B (zh) 2015-12-03 2017-08-29 攀钢集团成都钢钒有限公司 ‑195℃超低温用无缝钢管及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4776900A (en) * 1984-11-26 1988-10-11 Nippon Steel Corporation Process for producing nickel steels with high crack-arresting capability
US5454883A (en) * 1993-02-02 1995-10-03 Nippon Steel Corporation High toughness low yield ratio, high fatigue strength steel plate and process of producing same
US6159312A (en) * 1997-12-19 2000-12-12 Exxonmobil Upstream Research Company Ultra-high strength triple phase steels with excellent cryogenic temperature toughness
KR20010062884A (ko) * 1999-12-20 2001-07-09 이구택 극저온인성이 우수한 항복강도 63kgf/㎟급 후강판의제조방법
JP2011219848A (ja) * 2010-04-14 2011-11-04 Sumitomo Metal Ind Ltd 極低温用厚鋼板およびその製造方法
JP2014125678A (ja) * 2012-12-27 2014-07-07 Kobe Steel Ltd 極低温靱性に優れた厚鋼板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3712290A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114891980A (zh) * 2022-04-27 2022-08-12 中材科技(成都)有限公司 一种钢质内胆气瓶的回火冷却设备及方法

Also Published As

Publication number Publication date
US11608549B2 (en) 2023-03-21
EP3712290A1 (en) 2020-09-23
KR102075205B1 (ko) 2020-02-07
US20200347487A1 (en) 2020-11-05
KR20190056782A (ko) 2019-05-27
EP3712290A4 (en) 2020-09-23
CN111373066A (zh) 2020-07-03
JP2021503548A (ja) 2021-02-12

Similar Documents

Publication Publication Date Title
WO2019098483A1 (ko) 충격인성이 우수한 저온용 강재 및 그 제조방법
WO2015099363A1 (ko) 표면 가공 품질이 우수한 저온용강
WO2020067685A1 (ko) 우수한 경도와 충격인성을 갖는 내마모강 및 그 제조방법
WO2016104975A1 (ko) Pwht 후 인성이 우수한 고강도 압력용기용 강재 및 그 제조방법
WO2019117536A1 (ko) 인장강도 및 저온충격인성이 우수한 압력용기용 강판 및 그 제조방법
WO2019125083A1 (ko) 우수한 경도와 충격인성을 갖는 내마모강 및 그 제조방법
WO2017111290A1 (ko) Pwht 저항성이 우수한 저온 압력용기용 강판 및 그 제조 방법
WO2019132465A1 (ko) 수소유기균열 저항성이 우수한 강재 및 그 제조방법
WO2017111489A1 (ko) 내수소취화성이 우수한 오스테나이트계 강재
WO2019098480A1 (ko) 극저온용 강재 및 그 제조방법
WO2019124671A1 (ko) 용접부 인성이 우수한 저온용 강재 및 그 제조방법
WO2020085684A1 (ko) 극저온 인성 및 연성이 우수한 압력용기용 강판 및 그 제조 방법
WO2018117650A1 (ko) 표면부 nrl-dwt 물성이 우수한 극후물 강재 및 그 제조방법
WO2017111443A1 (ko) 열간 저항성이 우수한 고강도 구조용 강판 및 그 제조방법
WO2019125076A1 (ko) 우수한 경도와 충격인성을 갖는 내마모강 및 그 제조방법
WO2015099214A1 (ko) 강도와 연성이 우수한 열처리 경화형 강판 및 그 제조방법
KR20190078164A (ko) 방향성 전기강판 및 그의 제조방법
KR100435465B1 (ko) 극저온인성이 우수한 항복강도 63kgf/㎟급 후강판의제조방법
WO2020111547A1 (ko) 수소유기균열 저항성이 우수한 압력용기용 강재 및 그 제조방법
WO2020111858A1 (ko) 수소유기균열 저항성이 우수한 압력용기용 강재 및 그 제조방법
WO2019093689A1 (ko) 파단 특성이 우수한 고강도, 저인성 냉연강판 및 그 제조 방법
KR101676128B1 (ko) 강도와 연성이 우수한 열처리 경화형 강판 및 그 제조방법
WO2022139277A1 (ko) 공구용 강재 및 그 제조방법
WO2018117727A1 (ko) 저온 충격인성 및 ctod 특성이 우수한 후강판 및 그 제조방법
KR102487758B1 (ko) 저온 충격인성이 우수한 고강도 강판 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18878035

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020526506

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018878035

Country of ref document: EP

Effective date: 20200617