WO2019098377A1 - Composite heat transfer member and method for producing composite heat transfer member - Google Patents

Composite heat transfer member and method for producing composite heat transfer member Download PDF

Info

Publication number
WO2019098377A1
WO2019098377A1 PCT/JP2018/042720 JP2018042720W WO2019098377A1 WO 2019098377 A1 WO2019098377 A1 WO 2019098377A1 JP 2018042720 W JP2018042720 W JP 2018042720W WO 2019098377 A1 WO2019098377 A1 WO 2019098377A1
Authority
WO
WIPO (PCT)
Prior art keywords
transfer member
plate
heat transfer
composite heat
tray
Prior art date
Application number
PCT/JP2018/042720
Other languages
French (fr)
Japanese (ja)
Inventor
前川 敬
進 山嶋
Original Assignee
富士通化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018131470A external-priority patent/JP7119671B2/en
Application filed by 富士通化成株式会社 filed Critical 富士通化成株式会社
Priority to US16/764,135 priority Critical patent/US20200278161A1/en
Priority to CN201880074044.5A priority patent/CN111356544B/en
Priority to EP18878801.2A priority patent/EP3715014A4/en
Publication of WO2019098377A1 publication Critical patent/WO2019098377A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/089Coatings, claddings or bonding layers made from metals or metal alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/02Constructions of heat-exchange apparatus characterised by the selection of particular materials of carbon, e.g. graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3672Foil-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3733Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon having a heterogeneous or anisotropic structure, e.g. powder or fibres in a matrix, wire mesh, porous structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a composite heat transfer member and a method of manufacturing the composite heat transfer member.
  • a laminate of a copper plate or graphene is used as a material of a heat spreader for transferring heat generated from an electronic component or electronic device.
  • the graphene laminate is useful as a heat spreader material in that the thermal conductivity is higher and the specific gravity is smaller than that of a copper plate, so that miniaturization and weight reduction are possible.
  • the stack of graphene since the stack of graphene generally has a fragile composition, it may be damaged by stress when it is brought into contact with a heat source such as an electronic component or an electronic device or attached to a mounting portion.
  • a composite heat transfer member is used in which the stack of graphene is coated with a metal such as copper or aluminum to increase the overall strength.
  • a composite heat transfer member having a plate of carbon and a cast metal body that covers the surface of the plate.
  • a cast and formed body of metal is formed by disposing a plate of carbon in a cavity of a mold and supplying molten metal in the cavity. And covering the surface of the plate with the cast body.
  • the casted body comes into surface contact with the surface of the plate, and the casted body at the time of casted body formation
  • the cast molded body presses the surface of the plate due to the contraction difference with the plate.
  • the cast body adheres strongly to the surface of the plate. For this reason, the thermal resistance at the bonding interface between the cast body and the plate is reduced, and the thermal conductivity of the composite heat transfer member can be improved.
  • FIG. 1A is a cross-sectional view (No. 1) during production of the composite heat transfer member according to the first embodiment.
  • FIG. 1B is a cross-sectional view (part 2) during the production of the composite heat transfer member according to the first embodiment.
  • FIG. 2 is sectional drawing (the 3) in the middle of manufacture of the composite heat-transfer member which concerns on 1st Embodiment.
  • FIG. 3 is a perspective view showing the structure of the plate of the first embodiment.
  • FIG. 4A is a perspective view showing the structure of the composite heat transfer member according to the first embodiment.
  • FIG. 4B is a cross-sectional view taken along line II in FIG. 4A.
  • FIG. 5A is a top view showing a positional relationship between a model used in the calculation of the heat resistance ratio, a point heat source as a heat generating portion, and a cooling portion.
  • FIG. 5B is a side view showing a positional relationship between a model used in the calculation of the heat resistance ratio, a point heat source as a heat generating portion, and a cooling portion.
  • FIG. 6 is a graph showing the results of calculation of the heat resistance ratio of the composite heat transfer member of the first embodiment and the heat transfer member of the comparative example.
  • FIG. 7 is a perspective view showing a structure of a plate of a first modified example of the first embodiment.
  • FIG. 8A is a perspective view showing a structure of a composite heat transfer member according to a first modified example of the first embodiment.
  • FIG. 8B is a cross-sectional view taken along line III-III in FIG. 8A.
  • FIG. 9A is a perspective view showing a structure of a plate of a second modified example of the first embodiment.
  • FIG. 9B is a cross-sectional view taken along line IV-IV in FIG. 9A.
  • FIG. 10A is a perspective view showing a structure of a composite heat transfer member according to a second modified example of the first embodiment.
  • FIG. 10B is a cross-sectional view taken along the line VV in FIG. 10A.
  • FIG. 11A is a cross-sectional view (No. 1) during production of the composite heat transfer member according to the second embodiment.
  • FIG. 11B is a cross-sectional view (part 2) during the production of the composite heat transfer member according to the second embodiment.
  • FIG. 12 is a cross-sectional view (No. 3) in the middle of manufacturing the composite heat transfer member according to the second embodiment.
  • FIG. 13A is a perspective view showing the structure of the tray of the second embodiment.
  • FIG. 13B is a cross-sectional view taken along line VI-VI in FIG. 13A.
  • FIG. 14A is a perspective view showing a structure in which the plate is accommodated in the tray in the second embodiment.
  • FIG. 14B is a cross-sectional view taken along line VII-VII in FIG. 14A.
  • FIG. 15 is a view showing the configuration of a casting apparatus.
  • FIG. 16A is a perspective view showing a structure of a composite heat transfer member according to a second embodiment.
  • FIG. 16A is a perspective view showing a structure of a composite heat transfer member according to a second embodiment.
  • FIG. 16B is a cross-sectional view taken along line VIII-VIII in FIG. 16A.
  • FIG. 17A is a perspective view showing a structure of a plate of a modification of the second embodiment.
  • FIG. 17B is a cross-sectional view taken along line IX-IX in FIG. 17A.
  • FIG. 18A is a perspective view showing the structure of a tray according to a modification of the second embodiment.
  • FIG. 18B is a cross-sectional view taken along line XX in FIG. 18A.
  • FIG. 19A is a perspective view showing a structure in which the plate is accommodated in the tray in a modification of the second embodiment.
  • FIG. 19B is a cross-sectional view taken along line XI-XI in FIG. 19A.
  • FIG. 20A is a perspective view showing a structure of a composite heat transfer member according to a modification of the second embodiment.
  • FIG. 20B is a cross-sectional view taken along line XII-XII in FIG. 20A.
  • FIG. 21A is a perspective view showing a structure of a composite heat transfer member according to a third embodiment.
  • FIG. 21B is a cross-sectional view taken along line XIII-XIII in FIG. 21A.
  • FIG. 22 is a perspective view showing the structure of the plate of the fourth embodiment.
  • FIG. 23A is a perspective view showing a structure of a composite heat transfer member according to a fourth embodiment.
  • FIG. 23B is a cross-sectional view taken along line XIV-XIV in FIG. 23A.
  • FIG. 24 is a view showing an example of a heat transfer path in the plate in the fourth embodiment.
  • FIG. 25A is a perspective view showing the structure of a plate of a modification of the fourth embodiment.
  • FIG. 25B is a cross-sectional view taken along line XV-XV in FIG. 25A.
  • FIG. 26A is a perspective view showing a structure of a composite heat transfer member according to a modification of the fourth embodiment.
  • FIG. 26B is a cross-sectional view taken along line XVI-XVI in FIG. 26A.
  • FIG. 27A is a perspective view showing the structure in which the plate is accommodated in the tray in the fifth embodiment.
  • FIG. 27B is a cross-sectional view taken along line XVII-XVII in FIG. 27A.
  • FIG. 28A is a perspective view showing a structure of a composite heat transfer member according to a fifth embodiment.
  • FIG. 28B is a cross-sectional view taken along line XVIII-XVIII in FIG. 28A.
  • FIG. 29A is a perspective view showing a structure of a plate of a modification of the fifth embodiment.
  • FIG. 29B is a cross-sectional view taken along line XIX-XIX in FIG. 29A.
  • FIG. 30A is a perspective view showing a structure in which the plate is accommodated in the tray in the modification of the fifth embodiment.
  • FIG. 30B is a cross-sectional view taken along line XX-XX in FIG. 30A.
  • FIG. 31A is a perspective view showing the structure of a composite heat transfer member according to a modification of the fifth embodiment.
  • 31B is a cross-sectional view taken along line XXI-XXI in FIG. 31A.
  • FIG. 32A is a perspective view showing a structure of a composite heat transfer member according to a sixth embodiment.
  • 32B is a cross-sectional view taken along line XXII-XXII in FIG. 32A.
  • FIG. 33 is a perspective view showing the structure of the tray of the seventh embodiment.
  • FIG. 34 is a perspective view showing a structure in which the XZ heat transfer member and the XY heat transfer member are accommodated in the tray in the seventh embodiment.
  • FIG. 35A is a perspective view showing a structure of a composite heat transfer member according to a seventh embodiment.
  • FIG. 35B is a cross-sectional view taken along line XXIII-XXIII in FIG. 35A.
  • FIG. 36 is a perspective view showing the structure of a tray according to a modification of the seventh embodiment.
  • FIG. 37 is a perspective view showing a structure in which the XZ heat transfer member and the XY heat transfer member are accommodated in the tray in the modification of the seventh embodiment.
  • FIG. 38A is a perspective view showing a structure of a composite heat transfer member according to a modification of the seventh embodiment.
  • FIG. 38B is a cross-sectional view taken along line XXIV-XXIV in FIG. 38A.
  • FIG. 39 is a perspective view showing a composite heat transfer member according to an eighth embodiment.
  • FIG. 40 is a perspective view showing the configuration of a plate included in the composite heat transfer member according to the eighth embodiment.
  • FIG. 41 is a perspective view showing the configuration of part of the plate included in the composite heat transfer member according to the eighth embodiment.
  • FIG. 42 is a diagram showing an example of a heat transfer path in the plate in the eighth embodiment.
  • FIG. 43 is a partial cross-sectional view showing a composite heat transfer member according to a ninth embodiment.
  • FIG. 44 is a partial cross-sectional view showing a composite heat transfer member according to a first modification of the ninth embodiment.
  • FIG. 45 is a partial cross-sectional view showing a composite heat transfer member according to a second modification of the ninth embodiment.
  • FIG. 40 is a perspective view showing the configuration of a plate included in the composite heat transfer member according to the eighth embodiment.
  • FIG. 41 is a perspective view showing the configuration of part of the plate included in the composite heat transfer
  • FIG. 46 is a partial cross-sectional view showing a composite heat transfer member according to a third modification of the ninth embodiment.
  • FIG. 47A is a perspective view showing a structure of a composite heat transfer member according to a tenth embodiment.
  • FIG. 47B is a top view showing the structure of the composite heat transfer member according to the tenth embodiment.
  • FIG. 1A to FIG. 2 are cross-sectional views of the composite heat transfer member according to the present embodiment in the course of manufacture.
  • a heat spreader is manufactured as a composite heat transfer member as follows.
  • the plate 1 of carbon is prepared as one heat-transfer member which comprises a composite heat-transfer member.
  • FIG. 3 is a perspective view showing the structure of the plate 1.
  • the plate 1 is a plate-like heat transfer member formed by laminating the graphene 2.
  • the graphene 2 is stacked in the Y direction. That is, the graphene 2 is stacked in the direction perpendicular to the thickness direction (Z direction) of the plate 1.
  • the in-plane direction of the graphene 2 is the XZ direction.
  • the thermal conductivity in the in-plane direction of the graphenes 2 is higher than the thermal conductivity in the stacking direction of the graphenes 2.
  • the plate 1 has thermal conductivity anisotropy in which the thermal conductivity in the X direction and the Z direction is higher than the thermal conductivity in the Y direction.
  • a heat transfer member in which the thermal conductivity in the X direction and the Z direction is higher than the thermal conductivity in the Y direction is also referred to as an XZ heat transfer member.
  • the thermal conductivity of the plate 1 in the X direction and the Z direction is about 800 W / m ⁇ k
  • the thermal conductivity in the Y direction is about 10 to 20 W / m ⁇ k.
  • the material of the plate 1 is not limited to the stack of graphene 2.
  • graphite highly oriented pyrolytic graphite (HOPG), or diamond can be used.
  • HOPG highly oriented pyrolytic graphite
  • the upper surface 1a and the lower surface 1b of the plate 1 are rectangular.
  • the direction in which the longer sides of the upper surface 1a and the lower surface 1b extend is the X direction, and the direction in which the shorter sides extend is the Y direction.
  • the fixtures 3 are attached to both ends in the X direction of the plate 1 having such a structure, and these are placed in the space inside the lower portion 4 a of the mold 4.
  • the plate 1 is placed in the cavity 6 of the mold 4.
  • molten metal 7 at a temperature of about 700 ° C. is prepared as a material of a cast-formed body described later, and poured from the pouring port 4 c of the upper portion 4 b of the mold 4.
  • the molten metal 7 is supplied into the cavity 6 of the mold 4.
  • the type of metal 7 is not particularly limited.
  • a magnesium alloy or an aluminum alloy can be used as the metal 7.
  • the metal 7 a magnesium alloy containing aluminum and zinc in magnesium and having a thermal conductivity of about 51 to 100 W / m ⁇ k is used. And the molten metal 7 is formed by heating the magnesium alloy at a temperature of about 700.degree.
  • the mold 4 is at a temperature lower than the solidification temperature (about 400 ° C.) of the magnesium alloy.
  • the molten metal 7 starts to solidify immediately after being supplied into the cavity 6.
  • the temperature of the metal 7 is lowered to about room temperature to form a cast molded body 8 covering the surface of the plate 1 other than the portion to which the fixture 3 is attached.
  • the cast-molded body 8 transfers the shape of the unevenness of the surface of the plate 1 so that the cast-molded body 8 comes in surface contact with the surface of the plate 1.
  • the magnesium alloy which is the material of the cast-formed body 8 shrinks when the temperature drops from the solidification temperature to room temperature.
  • the laminate of graphene 2 which is a material of the plate 1 hardly shrinks or slightly expands.
  • the difference in thermal expansion causes a difference in the amount of contraction between the cast and molded body 8 and the plate 1 so that the cast and molded body 8 has the surface of the plate 1 as shown by the arrows in the dashed circle in FIG. It comes to press.
  • the cast body 8 adheres strongly to the surface of the plate 1.
  • the upper portion 4b of the mold 4 is removed from the lower portion 4a, and the plate 1 and the cast molded body 8 together with the fixture 3 are further removed from the lower portion 4a. Then, the plate 1 and a part of the cast molded body 8 are cut to remove the fixture 3 and the burrs.
  • FIG. 4A is a perspective view showing the structure of the composite heat transfer member 9, and FIG. 4B is a cross-sectional view of the structure taken along the line II.
  • the composite heat-transfer member 9 is plate 1 of the laminated body of the graphene 2 as one heat-transfer member, and plate 1 other than the side 1c of the X direction as the other heat-transfer member. And a cast molding 8 of magnesium alloy coated on the surface of
  • the plate 1 is an XZ heat transfer member in which the thermal conductivity in the X direction and the Z direction is higher than the thermal conductivity in the Y direction.
  • the composite heat transfer member 9 including the plate 1 is also basically an XZ heat transfer member.
  • the heat conductivity in the relatively low Y direction can also be enhanced.
  • the surface of the carbon plate 1 is covered with the cast and molded body 8 of metal.
  • the cast molded body 8 comes in surface contact with the surface of the plate 1, and a difference in shrinkage occurs between the cast molded body 8 and the plate 1, and the cast molded body as shown by the arrow in the dashed circle in FIG. 8 press the surface of the plate 1;
  • the cast molded body 8 adheres strongly to the surface of the plate 1. For this reason, the thermal resistance at the bonding interface between the cast and molded body 8 and the plate 1 is reduced, and the thermal conductivity of the composite heat transfer member 9 can be improved without using a heat transfer member or a heat transfer adhesive. it can.
  • the side surface 1 c of the plate 1 is exposed without being covered with the cast molded body 8 by removing the fixing tool 3.
  • the thermal conductivity is about the same as that of copper (391 W / m ⁇ k)
  • the specific gravity (2.1 g / cm 3 ) can be made significantly smaller than the specific gravity of copper (8.9 g / cm 3 ).
  • the composite heat transfer member 9 can be reduced in weight or in size.
  • the inventor of the present invention produces a copper-only heat transfer member as a comparative example, and the heat transfer member and the composite heat transfer member according to the present embodiment. The heat resistance ratio of each of 9 was calculated.
  • FIG. 5A is a top view showing a positional relationship between a model used in the calculation of the heat resistance ratio, a point heat source as a heat generating portion, and a cooling portion
  • FIG. 5B is a side view showing the positional relationship thereof. .
  • the length of the composite heat transfer member 9 as the model 10 and the heat transfer member of copper in the Y direction is 37 mm, and the length in the Z direction, that is, the thickness is 3 mm. Then, the thermal resistance ratio between the point heat source 11 and the cooling unit 12 was calculated while changing the length of the model 10 in the X direction.
  • the length in the X direction of the point heat source 11 is 1 mm, and the length in the Y direction is 1 mm, and the point heat source 11 is disposed at a position 5 mm from one end of the model 10 in the X direction. Furthermore, the cooling unit 12 was disposed in a region up to 10 mm from one end of the model 10 in the X direction.
  • FIG. 6 is a graph showing the results of calculation of the heat resistance ratio of the composite heat transfer member 9 of the present embodiment and the heat transfer member of the comparative example.
  • the horizontal axis indicates the length in the X direction of the model 10, and the vertical axis indicates the heat resistance ratio of the sample.
  • the heat transfer member of the comparative example has a heat resistance ratio lower than that of the composite heat transfer member 9 of the present embodiment until the length of the model 10 in the X direction is about 70 mm.
  • the heat transfer ratio of the composite heat transfer member 9 of this embodiment becomes lower than that of the heat transfer member of the comparative example.
  • the composite heat transfer member 9 is reduced to about 74% of the heat resistance ratio of the heat transfer member of the comparative example.
  • the plate of the XZ heat transfer member is used as the plate 1, but in this modification, the plate of the heat transfer member having thermal conductivity anisotropy different from that of the XZ heat transfer member is used. .
  • FIG. 7 is a perspective view showing the structure of the plate of this modification.
  • the plate 13 is a thin plate-like heat transfer member made of a stack of graphenes 2.
  • the graphene 2 is stacked in the thickness direction of the plate 13, that is, in the Z direction.
  • the plate 13 has thermal conductivity anisotropy in which the thermal conductivity in the X direction and the Y direction is higher than the thermal conductivity in the Z direction.
  • a heat transfer member in which the thermal conductivity in the X direction and the Y direction is higher than the thermal conductivity in the Z direction is also referred to as an XY heat transfer member.
  • the composite heat transfer member according to the present modification is performed by performing the steps of FIGS. 1A and 2 of the first embodiment and the subsequent removal of the fixture 3 and burrs and the like to the plate 13 having such a structure.
  • the structure of is obtained.
  • FIG. 8A is a perspective view showing the structure of the composite heat transfer member
  • FIG. 8B is a cross-sectional view of the structure taken along line III-III.
  • the composite heat-transfer member 14 which concerns on this modification casts the plate 13 of the laminated body of the graphene 2, and the magnesium alloy which coat
  • the plate 13 is an XY heat transfer member in which the thermal conductivity in the X direction and the Y direction is higher than the thermal conductivity in the Z direction. Therefore, the composite heat transfer member 14 including the plate 13 is basically also an XY heat transfer member.
  • the heat conductivity in the relatively low Z direction can also be enhanced.
  • FIG. 9A is a perspective view showing the structure of the plate of this modification
  • FIG. 9B is a cross-sectional view taken along line IV-IV of the structure.
  • the plate 15 is a thin plate-like XZ heat transfer member formed of a stack of graphenes 2 similarly to the plate 1 of the first embodiment.
  • the plate 15 of the present modified example is provided with a through hole 15d from the upper surface 15a to the lower surface 15b.
  • the positions and the number of the through holes 15 d are not particularly limited. In the present embodiment, two through holes 15 d are provided at intervals in the Y direction at the center of the plate 15 in the X direction.
  • the composite heat transfer member according to the present modification is performed by performing the steps of FIGS. 1A and 2 of the first embodiment and the subsequent removal of the fixture 3 and burrs and the like to the plate 15 having such a structure.
  • the structure of is obtained.
  • FIG. 10A is a perspective view showing the structure of the composite heat transfer member
  • FIG. 10B is a cross-sectional view of the structure taken along line VV.
  • the composite heat-transfer member 16 which concerns on this modification casts the plate 15 of the laminated body of the graphene 2, and the magnesium alloy which coat
  • a portion 8 a of the cast body 8 is filled in the through hole 15 d of the plate 15.
  • the cast molded body 8 covering the upper surface 15 a of the plate 15 and the cast molded body 8 covering the lower surface 15 b are connected via the part 8 a.
  • the residual tensile stress TS exists in the cast molded body 8 as indicated by the arrow due to the difference in the contraction amount between the cast molded body 8 and the plate 15 generated at the time of forming the cast molded body 8.
  • the composite heat transfer member is manufactured by a casting method different from that of the first embodiment.
  • FIG. 11A to 12 are cross-sectional views of the composite heat transfer member according to the present embodiment, which are in the process of being manufactured.
  • FIG. 11A to FIG. 12 the same elements as in the first embodiment are given the same reference numerals as those in the first embodiment, and the description thereof will be omitted below.
  • a heat spreader is manufactured as a composite heat transfer member as follows.
  • a plate 1 of carbon and a metal tray 17 for accommodating the plate 1 are prepared as one of the heat transfer members constituting the composite heat transfer member.
  • the plate 1 is a thin plate-like XZ heat transfer member formed of a stack of graphenes 2.
  • the tray 17 has the following structure.
  • FIG. 13A is a perspective view showing the structure of the tray 17, and FIG. 13B is a cross-sectional view of the structure taken along line VI-VI.
  • the tray 17 is a bottomed metal container which the upper surface opened.
  • a recess 17 b is provided below the outer side surface 17 a of the tray 17. The function of the recess 17b will be described later.
  • the type of metal forming the tray 17 is not particularly limited.
  • a magnesium alloy or an aluminum alloy can be used as a metal forming the tray 17.
  • a magnesium alloy containing aluminum and zinc in magnesium and having a thermal conductivity of about 51 to 100 W / m ⁇ k is used as the metal.
  • the method for producing the tray 17 is also not particularly limited.
  • the tray 17 can be manufactured by a thixo molding method or a die casting method described later.
  • the plate 1 After preparing the plate 1 and the tray 17 having such a structure, the plate 1 is accommodated in the tray 17.
  • FIG. 14A is a perspective view showing a structure in which the plate 1 is accommodated in the tray 17, and FIG. 14B is a cross-sectional view of the structure taken along line VII-VII.
  • the plate 1 is accommodated in the tray 17 such that the lower surface 1b of the surface of the plate 1 is in contact with the inner bottom surface 17c of the tray 17 (see FIGS. 13A and 13B).
  • the plate 1 and the tray 17 in a state in which the plate 1 is accommodated in the tray 17 are disposed in the cavity of the mold of the casting apparatus.
  • FIG. 15 is a view showing the configuration of the casting apparatus. In FIG. 15, a cross-sectional structure of a part of a molding portion described later is also shown.
  • the casting apparatus 18 is an apparatus for producing a cast product of metal by a thixo molding method, and includes a raw material supply unit 19, a molten metal injection unit 20, and a molding unit 21.
  • the raw material supply unit 19 is connected to the molten metal injection unit 20, and supplies, to the molten metal injection unit 20, a metal chip which is a raw material of molten metal described later.
  • metal chip As a raw material, as a metal tip, a magnesium alloy tip or an aluminum alloy tip can be used. In this embodiment, a magnesium alloy chip having aluminum and zinc in magnesium and having a thermal conductivity of about 51 to 100 W / m ⁇ k is used as the metal chip.
  • the molten metal injection unit 20 melts the metal chip supplied from the raw material supply unit 19 and injects the molten metal into the molding unit 21 while applying pressure to the molten metal.
  • the molten metal injection unit 20 includes a cylinder 22, a heater 23 that covers the outer surface of the cylinder 22, and a screw (not shown) installed in the space inside the cylinder 22.
  • the operations of the cylinder 22, the heater 23, and the screw will be described later.
  • the molding unit 21 includes a fixed mold 25 attached to the fixed board 24 and a movable mold 27 attached to the movable board 26.
  • the movable mold 27 moves the fixed mold 25 and the movable mold 27. Or close the cavity 28 or open the cavity 28 between them.
  • the plate 1 and the plate 1 are accommodated in the tray 17 so that the outer bottom surface 17d of the tray 17 contacts the surface 25a of the fixed mold 25.
  • the tray 17 is placed on the surface 25 a of the fixed mold 25 and fixed by a fixing tool (not shown).
  • the movable mold 27 is moved to the fixed mold 25 side to form a cavity 28 between the fixed mold 25 and the movable mold 27.
  • the plate 1 and the tray 17 in a state in which the plate 1 is accommodated in the tray 17 are disposed in the cavity 28 of the molds 25 and 27.
  • molten metal is supplied into the cavity 28 as follows.
  • the cylinder 22 is heated by the heater 23.
  • the cylinder 22 is heated by the heater 23 at a temperature of about 600 ° C., which is close to the melting point of the magnesium alloy.
  • the fixed mold 25 and the movable mold 27 are heated to a temperature of about 300 ° C. by a heater (not shown).
  • chips of magnesium alloy are introduced as raw materials into the cylinder 22 from the raw material supply unit 19. Then, a screw (not shown) is rotated in the cylinder 22.
  • the tip of the magnesium alloy in the cylinder 22 is in a semi-solid state in which solid and liquid coexist. Furthermore, shear stress due to screw rotation is applied to the magnesium alloy in this state, and the dendritic solid phase is finely cut into particles.
  • a thixotropic magnesium alloy with reduced viscosity and increased flow is formed in the cylinder 22. Further, by rotating the screw, the magnesium alloy in the thixotropy state is injected into the forming portion 21 as the molten metal 29 while being applied pressure.
  • the molten metal 29 is supplied into the cavity 28 of the molds 25 and 27 of the molding unit 21.
  • the molds 25 and 27 have a temperature of about 300 ° C. lower than the solidification temperature (about 400 ° C.) of the magnesium alloy. For this reason, the molten metal 29 starts to solidify immediately after being supplied into the cavity 28.
  • the temperature of the metal 29 is lowered to about room temperature by turning off the heaters of the molds 25 and 27 (not shown), and the outer surface 17 a of the tray 17 and the upper surface 1 a of the plate 1 Form a cast molding 30 covering the
  • the cast molded body 30 transfers the shapes of the unevenness of the outer surface 17 a of the tray 17 and the upper surface 1 a of the plate 1, and the cast molded body 30 contacts the outer surface 17 a of the tray 17 and the upper surface 1 a of the plate 1. It will be.
  • the magnesium alloy which is the material of the cast-formed body 30 shrinks when the temperature drops from the solidification temperature to room temperature.
  • the laminate of graphene 2 which is a material of the plate 1 hardly shrinks or slightly expands.
  • the difference in the amount of contraction occurs between the cast molded body 30 and the plate 1 after solidification of the molten metal 29, whereby the cast molded body 30 is the upper surface of the plate 1 as indicated by the arrow in FIG. It comes to press 1a.
  • the cast body 30 is strongly in close contact with the upper surface 1 a of the plate 1.
  • the thermal resistance at the bonding interface between the cast and molded body 30 and the plate 1 is reduced, and the thermal conductivity between the cast and molded body 30 and the plate 1 is improved.
  • the movable mold 27 is moved away from the fixed mold 25 and the cast molded body 30 in a state of covering the plate 1 and the tray 17 is taken out of the fixed mold 25.
  • the plate 1, the tray 17 and a part of the cast molded body 30 are cut to remove fixtures and burrs not shown.
  • FIG. 16A is a perspective view showing the structure of the composite heat transfer member 31, and FIG. 16B is a cross-sectional view of the structure taken along line VIII-VIII.
  • the composite heat-transfer member 31 makes the surface of the plate 1 of the laminated body of the graphene 2 as one heat-transfer member, and the plate 1 other than the upper surface 1a as the other heat-transfer member. It comprises a tray 17 of a coated magnesium alloy and a casted magnesium alloy casting 30 coated on the upper surface 1 a of the plate 1.
  • the plate 1 is an XZ heat transfer member in which the thermal conductivity in the X direction and the Z direction is higher than the thermal conductivity in the Y direction.
  • the composite heat transfer member 31 including the plate 1 is also basically an XZ heat transfer member.
  • the surface of the plate 1 is covered with the magnesium alloy tray 17 and the cast-formed body 30, the relatively low thermal conductivity in the Y direction can also be enhanced.
  • the surface of the carbon plate 1 is covered with the metal tray 17 and the cast body 30.
  • the upper surface 1 a of the plate 1 is covered with the cast molded body 30.
  • the cast molded body 30 comes into surface contact with the upper surface 1 a of the plate 1 and a difference in shrinkage between the cast molded body 30 and the plate 1 occurs when the cast molded body 30 is formed.
  • the upper surface 1a of 1 is pressed.
  • the cast body 30 is in close contact with the upper surface 1 a of the plate 1.
  • the thermal resistance at the bonding interface between the cast and the molded body 30 and the plate 1 is reduced, and the thermal conductivity between the cast and the molded body 30 and the plate 1 is improved without using a heat conductive member or a heat conductive adhesive. be able to.
  • the thermal conductivity is about the same as the thermal conductivity of copper. , Its specific gravity can be made much smaller than that of copper.
  • the composite heat transfer member 31 can be reduced in weight or size.
  • the composition is fragile and handling of the easily fragile plate 1 is facilitated.
  • the convex portion 30 b of the cast molded body 30 is fitted to the concave portion 17 b of the outer side surface 17 a of the tray 17, the cast molded body 30 is prevented from coming off the tray 17. it can.
  • the cast molded body 30 is formed by the thixo molding method, but the method of forming the cast molded body 30 is not limited to this.
  • the cast molded body may be formed by a die casting method.
  • the plate 1 which is an XZ heat transfer member is accommodated in the tray 17
  • the plate 13 which is an XY heat transfer member shown in FIG. 7 may be accommodated in the tray 17.
  • a desired heat transfer path may be formed by the plate of the XZ heat transfer member and the plate of the XY heat transfer member, and may be accommodated in the tray 17.
  • FIG. 17A is a perspective view showing the structure of the plate of this modification
  • FIG. 17B is a cross-sectional view of the structure taken along line IX-IX.
  • the plate 32 is a thin plate-like XZ heat transfer member formed of a stack of graphenes 2 like the plate 1 of the second embodiment.
  • the plate 32 of the present modified example is provided with a through hole 32d that penetrates the upper surface 32a to the lower surface 32b.
  • the position and number of the through holes 32d are not particularly limited. In the present embodiment, two through holes 32 d are provided at intervals in the Y direction at the left end, the center, and the right end of the plate 32 in the X direction.
  • FIG. 18A is a perspective view showing the structure of the tray of this modification
  • FIG. 18B is a cross-sectional view of the structure taken along line XX.
  • the tray 33 is a bottomed metal container whose top surface is open.
  • a recess 33 b is provided below the outer side surface 33 a of the tray 33.
  • a first opening 33e is provided at the center, and a second opening 33f larger than the first opening 33e is provided at the left end and the right end.
  • the positions and the number of the openings 33e and 33f will be described later.
  • first opening 33e and the second opening 33f have a tapered shape in which the width is narrowed from the outer bottom surface 33d to the inner bottom surface 33c of the tray 33.
  • the type of metal forming the tray 33 is not particularly limited.
  • a magnesium alloy or an aluminum alloy can be used as a metal forming the tray 33.
  • a magnesium alloy containing aluminum and zinc in magnesium and having a thermal conductivity of about 51 to 100 W / m ⁇ k is used as the metal.
  • the method of producing the tray 33 is also not particularly limited.
  • the tray 33 can be manufactured by a thixo molding method or a die casting method.
  • the plate 32 After preparing the plate 32 and the tray 33 having such a structure, the plate 32 is accommodated in the tray 33.
  • FIG. 19A is a perspective view showing a structure in which the plate 32 is accommodated in the tray 33
  • FIG. 19B is a cross-sectional view of the structure taken along line XI-XI.
  • the plate 32 is accommodated in the tray 33 such that the lower surface 32b of the surface of the plate 32 is in contact with the inner bottom surface 33c of the tray 33 (see FIGS. 18A and 18B).
  • the lower surface 32 b and the side surface 32 c of the plate 32 are covered with the tray 33, and only the upper surface 32 a of the plate 32 is exposed.
  • the central two through holes 32 d communicate with the first two openings 33 e in the center of the tray 33 in the thickness direction (Z direction) of the plate 32.
  • the two through holes 32d at the left end communicate with the second opening 33f at the left end of the tray 33 larger than the through holes 32d in the Z direction
  • the two through holes 32d at the right end penetrate It communicates with the second opening 33 f at the right end of the tray 33 larger than the hole 32 d in the Z direction.
  • FIG. 20A is a perspective view showing the structure of the composite heat transfer member
  • FIG. 20B is a cross-sectional view of the structure taken along line XII-XII.
  • the composite heat-transfer member 34 which concerns on this modification is other than the plate 32 of the laminated body of the graphene 2 as one heat-transfer member, and the upper surface 32a as the other heat-transfer member.
  • a tray 33 of magnesium alloy coated on the surface of the plate 32 and a cast molding 30 of magnesium alloy coated on the upper surface 32 a of the plate 32 are provided.
  • the part 30 a of the cast body 30 is filled in the through holes 32 d of the plate 32 and the openings 33 e and 33 f of the tray 33.
  • the cast molded body 30 which covers the upper surface 32a of the plate 32 and the cast molded body 30 which covers the lower surface 32b are connected via the part 30a.
  • the cast molded body 30 is There is a residual tensile stress TS.
  • the cast body 30 can continue to press the upper surface 32 a of the plate 32 as shown by the arrows in the dashed circle.
  • the second opening 33 f of the tray 33 is larger than the through hole 32 d of the plate 32 communicating therewith.
  • the cast molded body 30 can continue to press the lower surface 32 b of the plate 32 as shown by the arrow in the broken line circle by the part 30 a of the cast molded body 30 filled in the second opening 33 f.
  • the convex portion 30 b of the cast molded body 30 is fitted in the concave portion 33 b of the outer side surface 33 a of the tray 33.
  • a portion 30 a of the cast body 30 is fitted in the tapered first and second openings 33 e and 33 f of the bottom of the tray 33.
  • the cast body 30 can be further suppressed from coming off the tray 33.
  • the heat spreader is manufactured as the composite heat transfer member, but in the present embodiment, the heat spreader having the function of a heat sink is manufactured as the composite heat transfer member.
  • FIG. 21A is a perspective view showing the structure of the composite heat transfer member
  • FIG. 21B is a cross-sectional view of the structure taken along line XIII-XIII. 21A and 21B, the same elements as in the second embodiment are given the same reference numerals as those in the second embodiment, and the description thereof will be omitted below.
  • the composite heat transfer member 35 according to the present embodiment basically has the same structure as the composite heat transfer member 31 according to the second embodiment.
  • the composite heat transfer member 35 is also a plate 1 of a laminate of graphene 2 as one heat transfer member, and a magnesium alloy tray 17 covering the surface of the plate 1 other than the upper surface 1a as the other heat transfer member, And a cast-formed body 30 of magnesium alloy coated on the upper surface 1 a of the plate 1.
  • a plurality of fins 30d are provided on the outer upper surface 30c of the cast molded body 30.
  • the composite heat transfer member 35 having such a structure is obtained by changing the movable mold 27 used in the second embodiment and using the movable mold for forming the fins 30 d as shown in FIGS. 11A to 12 of the second embodiment. Can be obtained by performing the same steps.
  • the casting 30 is provided with the fin 30 d.
  • the thermally-conductive member and the thermally-conductive adhesive for joining these as compared to the case where the cast-molded body and the fins are separately provided.
  • the heat resistance can be reduced by using no
  • composite heat-transfer member 35 which concerns on this embodiment mentioned above has a fundamentally the same structure as the composite heat-transfer member 31 which concerns on 2nd Embodiment, it is not limited to this structure.
  • the composite heat transfer member according to the present embodiment may have basically the same structure as the composite heat transfer member 9 according to the first embodiment.
  • a plurality of fins may be provided on the outer upper surface of the cast molded body 8.
  • the plate of the XZ heat transfer member is used as the plate 1, but in the present modification, the plate of the heat transfer member having two types of thermal conductivity anisotropy is used.
  • FIG. 22 is a perspective view showing the structure of the plate of the present embodiment.
  • the plate 41 includes the heat transfer member 101 and the heat transfer member 43.
  • the heat transfer member 101 has the same structure as the plate 1. That is, in the heat transfer member 101, the graphene 2 is stacked in the Y direction, and the in-plane direction of the graphene 2 is the XZ direction. Therefore, the heat transfer member 101 is an XZ heat transfer member.
  • the heat transfer member 43 is a thin plate-like heat transfer member formed of a stack of graphenes 2.
  • the graphene 2 is stacked in the thickness direction of the heat transfer member 43, that is, the Z direction, and the in-plane direction of the graphene 2 is the XY direction. Therefore, the heat transfer member 43 is an XY heat transfer member.
  • the dimension of the heat transfer member 43 in the Y direction matches the dimension of the heat transfer member 101 in the Y direction
  • one side surface of the heat transfer member 101 in the X direction is in contact with the side surface of the heat transfer member 43 in the X direction
  • One end of the heat member 101 in the X direction is connected to the heat transfer member 43.
  • the upper surface 41a and the lower surface 41b of the plate 41 are rectangular.
  • the direction in which the longer sides of the upper surface 41a and the lower surface 41b extend is the X direction, and the direction in which the shorter sides extend is the Y direction.
  • the composite heat transfer member according to the present embodiment is performed by performing the steps of FIGS. 1A and 2 of the first embodiment and the subsequent removal of the fixture 3 and burrs and the like to the plate 41 having such a structure.
  • the structure of is obtained.
  • FIG. 23A is a perspective view showing the structure of the composite heat transfer member
  • FIG. 23B is a cross-sectional view of the structure taken along line XIV-XIV.
  • the composite heat-transfer member 49 which concerns on this embodiment casts the magnesium alloy which coat
  • FIG. 24 is a diagram showing an example of a heat transfer path of the plate 41 in the fourth embodiment.
  • FIG. 24 shows the heat transfer path in the XY plane.
  • the heat source 100 is located at the center of the lower surface 41 b of the plate 41.
  • the heat generated from the heat source 100 is first transmitted in the Z direction via the graphene 2 constituting the heat transfer member 101 located in the vicinity of the center in the Y direction and also transmitted in the X direction (( Arrow A). Thereafter, part of the heat is transferred to the heat transfer member 43 at one end of the heat transfer member 101 in the X direction, and this heat is further transferred in the X direction via the heat transfer member 43 and in the Y direction (Arrow B). A part of the heat transferred to the heat transfer member 43 is transferred to a part of the heat transfer member 101, and this heat is transferred in the Z direction via the heat transfer member 101 and in the X direction (arrow C ). Since the plate 41 is in close contact with the cast molded body 8, heat is released from the cast molded body 8 to the outside.
  • the same effect as that of the first embodiment can be obtained, and an excellent thermal conductivity can be obtained in the X direction and the Y direction.
  • Residual compressive stress exists in the cast molded body 8 even after the composite heat transfer member 49 is manufactured, Residual compressive stress is present on the plate 41.
  • the composite heat transfer member 49 is used in a high temperature environment of about 150 ° C., these residual stresses are not lost even if they become smaller, so as shown by the arrows in the dashed circle in FIG.
  • the molded body 8 continues to press the surface of the plate 41. Therefore, good thermal conductivity between the cast and molded body 8 and the plate 41 can be maintained.
  • FIG. 25A is a perspective view showing the structure of the plate of this modification
  • FIG. 25B is a cross-sectional view of the structure taken along line XV-XV.
  • the plate 44 includes a heat transfer member 115 instead of the heat transfer member 101.
  • the heat transfer member 115 has the same structure as the plate 15. That is, the heat transfer member 115 is a thin plate-like XZ heat transfer member which is formed of a stack of graphenes 2 and provided with the through holes 44 d from the upper surface 44 a to the lower surface 44 b.
  • the composite heat transfer member according to the present modification is performed by performing the steps of FIGS. 1A and 2 of the first embodiment and the subsequent removal of the fixture 3 and burrs and the like to the plate 44 having such a structure.
  • the structure of is obtained.
  • FIG. 26A is a perspective view showing the structure of the composite heat transfer member
  • FIG. 26B is a cross-sectional view of the structure taken along line XVI-XVI.
  • the composite heat transfer member 46 according to the present modification is cast of a magnesium alloy in which the surface of the plate 44 of the stack of graphene 2 and the plate 44 other than the side surface 44c in the X direction is covered. And a molded body 8.
  • a part 8 a of the cast body 8 is filled in the through hole 44 d of the plate 44.
  • the cast molded body 8 which covers the upper surface 44a of the plate 44 and the cast molded body 8 which covers the lower surface 44b are connected via the part 8a.
  • the difference in the amount of contraction between the cast molded body 8 and the plate 44 generated when forming the cast molded body 8 causes the cast molded body 8 to remain as shown by the arrows.
  • the composite heat transfer member is manufactured by a casting method different from that of the fourth embodiment. That is, in the present embodiment, the plate 41 and the tray 17 shown in FIGS. 13A and 13B are prepared, and the composite heat transfer member is manufactured by the same method as the second embodiment.
  • FIG. 27A is a perspective view showing a structure in which the plate 41 is accommodated in the tray 17, and FIG. 27B is a cross-sectional view of the structure taken along line XVII-XVII.
  • the plate 41 is accommodated in the tray 17 such that the lower surface 41b of the surface of the plate 41 is in contact with the inner bottom surface 17c of the tray 17 (see FIGS. 13A and 13B).
  • the plate 41 and the tray 17 in a state in which the plate 41 is accommodated in the tray 17 are disposed in the cavity 28 of the movable mold 27 and the fixed mold 25 of the casting apparatus 18.
  • the molten metal is supplied into the chamber 28 to form the cast body 30.
  • the movable mold 27 is moved away from the fixed mold 25, and the cast molding 30 covering the plate 41 and the tray 17 is taken out of the fixed mold 25.
  • the plate 41, the tray 17 and a part of the cast molding 30 are cut to remove fixtures and burrs not shown.
  • FIG. 28A is a perspective view showing the structure of the composite heat transfer member 51
  • FIG. 28B is a cross-sectional view of the structure taken along line XVIII-XVIII.
  • the composite heat-transfer member 51 makes the surface of the plate 41 of the laminated body of the graphene 2 as one heat-transfer member, and the plate 41 other than the upper surface 41a as the other heat-transfer member. It is provided with the tray 17 of the coated magnesium alloy, and the cast molding 30 of the magnesium alloy which coat
  • the effects of the fourth embodiment and the effects of the second embodiment can be obtained.
  • the cast molded body 30 due to the difference in the amount of contraction between the cast molded body 30 and the plate 41 generated when forming the cast molded body 30, residual tensile stress exists in the cast molded body 30 even after the composite heat transfer member 51 is manufactured, Residual compressive stress is present on the plate 41. Then, even when the composite heat transfer member 51 is used in a high temperature environment, these residual stresses are not lost, so the cast molded body 30 is the upper surface 41 a of the plate 41 as shown by the arrow in the dashed circle in FIG. 28B. Keep pressing. Therefore, good thermal conductivity between the cast and molded body 30 and the plate 41 can be maintained.
  • FIG. 29A is a perspective view showing the structure of the plate of this modification
  • FIG. 29B is a cross-sectional view of the structure taken along line XIX-XIX.
  • the plate 52 includes a heat transfer member 132 instead of the heat transfer member 101.
  • the heat transfer member 132 has the same structure as the plate 32. That is, the heat transfer member 132 is a thin plate-like XZ heat transfer member which is formed of a stack of graphenes 2 and provided with the through holes 52 d from the upper surface 52 a to the lower surface 52 b.
  • the tray 33 shown to FIG. 18A and FIG. 18B is used similarly to the modification of 2nd Embodiment. After preparing the plate 52 and the tray 33, the plate 52 is accommodated in the tray 33.
  • FIG. 30A is a perspective view showing a structure in which the plate 52 is accommodated in the tray 33
  • FIG. 30B is a cross-sectional view of the structure taken along line XX-XX.
  • the plate 52 is accommodated in the tray 33 such that the lower surface 52b of the surface of the plate 52 is in contact with the inner bottom surface 33c (see FIGS. 18A and 18B).
  • the central two through holes 52 d communicate with the two first openings 33 e in the center of the tray 33 in the thickness direction (Z direction) of the plate 52.
  • the two through holes 52d at the left end communicate with the second opening 33f at the left end of the tray 33 larger than the through holes 52d in the Z direction
  • the two through holes 52d at the right end penetrate It communicates with the second opening 33 f at the right end of the tray 33 larger than the hole 52 d in the Z direction.
  • FIG. 31A is a perspective view showing the structure of the composite heat transfer member
  • FIG. 31B is a cross-sectional view of the structure taken along line XXI-XXI.
  • the composite heat-transfer member 54 which concerns on this modification is the plate 52 of the laminated body of the graphene 2 as one heat-transfer member, and the upper surfaces 52a as the other heat-transfer member.
  • a magnesium alloy tray 33 coated on the surface of the plate 52 and a casted magnesium alloy molded body 30 coated on the upper surface 52 a of the plate 52 are provided.
  • a portion 30 a of the cast body 30 is filled in the through holes 52 d of the plate 52 and the openings 33 e and 33 f of the tray 33.
  • the cast molded body 30 which covers the upper surface 52a of the plate 52 and the cast molded body 30 which covers the lower surface 52b are connected via the part 30a.
  • the second opening 33f of the tray 33 is larger than the through hole 52d of the plate 52 communicating therewith.
  • the cast molded body 30 can continue to press the lower surface 52b of the plate 52 as shown by the arrow in the dashed circle by the part 30a of the cast molded body 30 filled in the second opening 33f.
  • the convex portion 30 b of the cast molded body 30 is fitted in the concave portion 33 b of the outer side surface 33 a of the tray 33.
  • a portion 30 a of the cast body 30 is fitted in the tapered first and second openings 33 e and 33 f of the bottom of the tray 33.
  • the cast body 30 can be further suppressed from coming off the tray 33.
  • the heat spreader is manufactured as the composite heat transfer member, but in the present embodiment, as in the third embodiment, the heat spreader having the function of a heat sink is manufactured as the composite heat transfer member. .
  • FIG. 32A is a perspective view showing the structure of the composite heat transfer member
  • FIG. 32B is a cross-sectional view of the structure taken along line XXII-XXII.
  • 32A and 32B the same elements as in the modification of the fifth embodiment are denoted by the same reference numerals as those in the modification of the fifth embodiment, and the description thereof will be omitted below.
  • the composite heat transfer member 55 according to the present embodiment basically has the same structure as the composite heat transfer member 54 according to the modification of the fifth embodiment.
  • the composite heat transfer member 55 is also a tray 52 of a laminate of graphene 2 as one heat transfer member, and a magnesium alloy tray 33 which covers the surface of the plate 52 other than the upper surface 52a as the other heat transfer member, And a cast formed body 30 of magnesium alloy coated on the upper surface 52 a of the plate 52.
  • the plurality of fins 30d are provided on the outer upper surface 30c of the cast molded body 30 as in the third embodiment.
  • the composite heat transfer member 55 having such a structure is obtained by changing the movable mold 27 used in the second embodiment and using the movable mold for forming the fins 30 d as shown in FIGS. 11A to 12 of the second embodiment. Can be obtained by performing the same steps.
  • the casting 30 is provided with the fin 30 d.
  • the thermally-conductive member and the thermally-conductive adhesive for joining these as compared to the case where the cast-molded body and the fins are separately provided.
  • the heat resistance can be reduced by using no
  • composite heat-transfer member 55 which concerns on this embodiment mentioned above has a fundamentally the same structure as the composite heat-transfer member 54 which concerns on the modification of 5th Embodiment, it is not limited to this structure.
  • the composite heat transfer member according to the present embodiment may have basically the same structure as the composite heat transfer member 49 according to the fourth embodiment.
  • a plurality of fins may be provided on the outer upper surface of the cast molded body 8.
  • the composite heat transfer member according to the present embodiment may have basically the same structure as the composite heat transfer member 51 according to the fifth embodiment.
  • a tray having a shape different from that of the fifth embodiment is used.
  • FIG. 33 is a perspective view showing the structure of the tray of the seventh embodiment.
  • the tray 117 used in the seventh embodiment is a metal container as in the case of the tray 17, and a recess 117b is provided below the outer side surface 117a as in the case of the tray 17. Further, on the upper surface of the tray 117, five grooves 117s for the XZ heat transfer member and a groove 117t for the XY heat transfer member are formed. Each groove 117s is connected to the groove 117t at one end thereof.
  • the tray 117 can be manufactured by the same method using the same material as the tray 17.
  • the XZ heat transfer member 72 accommodated in the groove 117s is prepared, and the XY heat transfer member 73 accommodated in the groove 117t is prepared.
  • the XZ heat transfer member 72 and the XY heat transfer member 73 can be manufactured, for example, by the same method as the plate 1 or 13.
  • FIG. 34 is a perspective view showing a structure in which the XZ heat transfer member 72 and the XY heat transfer member 73 are accommodated in the tray 117.
  • FIG. 34 is a perspective view showing a structure in which the XZ heat transfer member 72 and the XY heat transfer member 73 are accommodated in the tray 117.
  • XZ heat transfer member 72 is accommodated in groove 117s such that the lower surface of XZ heat transfer member 72 is in contact with the inner bottom surface of tray 117, and the lower surface of XY heat transfer member 73 is the inner surface of tray 117
  • the XY heat transfer member 73 is accommodated in the groove 117t so as to be in contact with the bottom surface. Further, the X-direction side surface of the XY heat transfer member 73 is in contact with one side surface of each XZ heat transfer member 72 in the X direction, and one end portion of each XZ heat transfer member 72 in the X direction It is connected.
  • the XZ heat transfer member 72 and the XY heat transfer member 73 constitute a plate 71.
  • the lower surface and the side surface of the plate 71 are covered with the tray 117, and only the upper surface 71a of the plate 71 is exposed.
  • FIG. 35A is a perspective view showing the structure of the composite heat transfer member
  • FIG. 35B is a cross-sectional view of the structure taken along line XXIII-XXIII.
  • the composite heat-transfer member 74 which concerns on this embodiment is the plate 71 of the laminated body of the graphene 2 as one heat-transfer member, and the upper surfaces 71a as the other heat-transfer member.
  • a magnesium alloy tray 117 covering the surface of the plate 71 and a casted magnesium alloy molding 30 covering the upper surface 71 a of the plate 71 are provided.
  • the same effect as that of the fifth embodiment can be obtained.
  • the same effect as that of the fifth embodiment can be obtained.
  • the composite heat transfer member 74 is used in a high temperature environment, these residual stresses are not lost, so the cast molded body 30 is placed on the upper surface 71a of the plate 71 as shown by the arrow in the dashed circle in FIG. Keep pressing. Therefore, good thermal conductivity between the cast and molded body 30 and the plate 71 can be maintained.
  • the magnesium alloy is lighter than graphene, so the overall weight can be reduced. Furthermore, it is also effective in reducing material costs.
  • the XZ heat transfer member 72 and the XY heat transfer member 73 are accommodated in the tray 117.
  • one heat transfer member may be accommodated in one tray.
  • the XZ heat transfer member may be accommodated at each location corresponding to the heat sources.
  • another XZ heat transfer member may be further accommodated so that heat can be transferred to the vicinity of the outer surface of the tray.
  • FIG. 36 is a perspective view showing the structure of the tray of this modification.
  • the tray 118 used in the present modification is a metal container like the tray 17, and a recess 117 b is provided below the outer side surface 117 a like the tray 17. Further, on the upper surface of the tray 118, three grooves 118s for the XZ heat transfer member and two grooves 118t for the XY heat transfer member are formed. Each groove 118s is in communication with both of the grooves 118t at its two ends.
  • the tray 118 can be manufactured by the same method using the same material as the tray 17.
  • the XZ heat transfer member 76 accommodated in the groove 118s is prepared, and the XY heat transfer member 77 accommodated in the groove 118t is prepared.
  • the XZ heat transfer member 76 and the XY heat transfer member 77 can be manufactured, for example, in the same manner as the plate 1 or 13.
  • FIG. 37 is a perspective view showing a structure in which the XZ heat transfer member 76 and the XY heat transfer member 77 are accommodated in the tray 118. As shown in FIG. 37
  • XZ heat transfer member 76 is accommodated in groove 118s such that the lower surface of XZ heat transfer member 76 is in contact with the inner bottom surface of tray 118, and the lower surface of XY heat transfer member 77 is the inner surface of tray 118
  • An XY heat transfer member 77 is accommodated in the groove 118t so as to be in contact with the bottom surface. Further, the X-direction side surfaces of the XY heat transfer member 77 are in contact with both side surfaces of each XZ heat transfer member 76 in the X direction, and both end portions of each XZ heat transfer member 76 in the X direction It is connected.
  • the XZ heat transfer member 76 and the XY heat transfer member 77 constitute a plate 75.
  • the lower and side surfaces of the plate 75 are covered with the tray 118, and only the upper surface 75a of the plate 75 is exposed.
  • FIG. 38A is a perspective view showing the structure of the composite heat transfer member
  • FIG. 38B is a cross-sectional view of the structure taken along line XXIV-XXIV.
  • the composite heat-transfer member 79 which concerns on this reference example is the plate 75 of the laminated body of the graphene 2 as one heat-transfer member, and the upper surfaces 75a as another heat-transfer member.
  • a magnesium alloy tray 118 covering the surface of the plate 75 and a casted magnesium alloy molding 30 covering the upper surface 75 a of the plate 75 are provided.
  • the heat source be located in the vicinity of the connection point between the XZ heat transfer member 72 and the XY heat transfer member 73 located at the center in the Y direction.
  • the heat source be located near the center in the X direction of the XZ heat transfer member 76 located at the center in the Y direction.
  • fins be provided above the five XZ heat transfer members 72 in the composite heat transfer member 74 and above the three XZ heat transfer members 76 in the composite heat transfer member 79 to also serve as a heat sink. This is to obtain better heat dissipation efficiency.
  • a heat spreader which also functions as a heat sink is manufactured as a composite heat transfer member.
  • FIG. 39 is a perspective view showing a composite heat transfer member according to an eighth embodiment.
  • FIG. 40 is a perspective view showing the configuration of a plate included in the composite heat transfer member according to the eighth embodiment.
  • FIG. 41 is a perspective view showing the configuration of part of the plate included in the composite heat transfer member according to the eighth embodiment.
  • the composite heat transfer member 80 has a plate-like base 81 and fins 82 which stand upright from the base 81.
  • the base 81 has an upper surface 81a and a lower surface 81b parallel to the XY plane, and the fin 82 extends in the Z direction from the upper surface 81a.
  • the heat source is in contact with the lower surface 81 b.
  • the composite heat transfer member 80 includes a plate 88 of a stack of graphene 2 as one heat transfer member, and a cast molded body 89 of magnesium alloy coated on the surface of the plate 88 as the other heat transfer member. .
  • the plate 88 and the cast molded body 89 are configured to be in close contact with each other in the same manner as in the first embodiment or the second embodiment.
  • the plate 88 includes an XZ heat transfer member 85, an XY heat transfer member 86, and a YZ heat transfer member 87, as shown in FIGS.
  • the XZ heat transfer member 85 is configured by stacking the graphene 2 in the Y direction
  • the XY heat transfer member 86 is configured by stacking the graphene 2 in the Z direction
  • the YZ heat transfer member 87 is configured by the graphene 2 in the X direction It is laminated and configured.
  • the X-direction side surfaces of the XY heat transfer member 86 are in contact with both side surfaces of the XZ heat transfer member 85 in the X direction, and the XY heat transfer member 86 is connected to the XZ heat transfer member 85.
  • the dimension (height) in the Z direction of the XZ heat transfer member 85 is substantially the same as the dimension (height) in the Z direction of the XY heat transfer member 86, and the XZ heat transfer member 85 and the XY heat transfer member 86 have a base 81 include.
  • a portion of the side surface of the YZ heat transfer member 87 in the Y direction is in contact with the side surface of the XZ heat transfer member 85 in the Y direction, and the YZ heat transfer member 87 is connected to the XZ heat transfer member 85.
  • the dimension of the XZ heat transfer member 85 in the X direction is approximately the same as the dimension of the YZ heat transfer member 87 in the Z direction.
  • a portion of the YZ heat transfer member 87 in contact with the XZ heat transfer member 85 is included in the base 81, and a portion protruding from this portion in the Z direction is included in the fin 82.
  • FIG. 42 is a diagram showing an example of a heat transfer path of the plate 88 in the eighth embodiment.
  • the heat source 200 is located at the center of the lower surface side of the XZ heat transfer member 85.
  • the heat generated from the heat source 200 is first transmitted in the Z direction via the graphene 2 constituting the XZ heat transfer member 85 located in the vicinity of the center in the Y direction and also transmitted in the X direction. (Arrow D). Thereafter, this heat is transferred to the XY heat transfer member 86 at the end of the XZ heat transfer member 85 in the X direction, and this heat is further transferred in the X direction via the XY heat transfer member 86 and in the Y direction It is transmitted (arrow E). Part of the heat transferred from the XY heat transfer member 86 is transferred to a part of the XZ heat transfer member 85, and this heat is transferred in the Z direction via the XZ heat transfer member 85 and in the X direction (Arrow F).
  • the heat transmitted to one of the graphenes 2 constituting the XZ heat transfer member 85 in contact with the YZ heat transfer member 87 is transferred to the YZ heat transfer member 87 and transferred in the Y direction via the YZ heat transfer member 87. And transmitted in the Z direction (arrow G). Then, since the plate 88 is in close contact with the cast molded body 89, heat is released from the cast molded body 89 to the outside.
  • the ninth embodiment relates to a heat spreader which also functions as a heat sink as a composite heat transfer member.
  • FIG. 43 is a partial cross-sectional view showing a composite heat transfer member according to a ninth embodiment.
  • the composite heat transfer member 90 has a plate-like base 91 and fins 92 standing upright from the base 91.
  • the base portion 91 has an upper surface 91a and a lower surface 91b parallel to the XY plane, and the fin 92 extends in the Z direction from the upper surface 91a.
  • the heat source is in contact with the lower surface 91 b.
  • the base portion 91 includes an XZ heat transfer member 95 configured by stacking graphenes in the Y direction, and an XY heat transfer member 96 configured by stacking graphenes in the Z direction.
  • the fin 92 has a YZ heat transfer member 97 configured by stacking graphene in the X direction.
  • the YZ heat transfer member 97 contacts the XZ heat transfer member 95 and rises from the XZ heat transfer member 95 in the Z direction.
  • Composite heat transfer member 90 includes cast cast body 99B of magnesium alloy which covers the surface of YZ heat transfer member 97, and cast molded body 99A of magnesium alloy which covers the surfaces of XZ heat transfer member 95 and XY heat transfer member 96.
  • the XZ heat transfer member 95, the XY heat transfer member 96 and the YZ heat transfer member 97, and the cast molded bodies 99A and 99B are configured to be in close contact with each other in the same manner as in the first embodiment or the second embodiment. ing.
  • the heat from the heat source attached to the lower surface 91 b is the same as in the eighth embodiment, the heat from the XZ heat transfer member 95, the XY heat transfer member 96, and the YZ heat transfer member 97 From the cast molded bodies 99A and 99B.
  • the present modification is different from the ninth embodiment in the configuration of the cast molded body 99B.
  • FIG. 44 is a partial cross-sectional view showing a composite heat transfer member according to a first modification of the ninth embodiment.
  • the cast molded body 99B also covers the surface on the XZ heat transfer member 95 side of the YZ heat transfer member 97, and the YZ heat transfer member 97 A part of the cast molded body 99 ⁇ / b> B is interposed between the XZ heat transfer member 95 and the XZ heat transfer member 95 to rise in the Z direction.
  • the other configuration is the same as that of the ninth embodiment.
  • the heat from the heat source attached to the lower surface 91 b is the same as in the ninth embodiment, the heat from the XZ heat transfer member 95, the XY heat transfer member 96 and the YZ heat transfer member 97. From the cast molded bodies 99A and 99B.
  • the present modification is different from the ninth embodiment in the configuration of the YZ heat transfer member 97 and the cast molded body 99B.
  • FIG. 45 is a partial cross-sectional view showing a composite heat transfer member according to a second modification of the ninth embodiment.
  • the dimension in the Z direction of the YZ heat transfer member 97 is smaller than that in the ninth embodiment.
  • the other configuration is the same as that of the ninth embodiment.
  • the heat from the heat source attached to the lower surface 91 b is the same as in the ninth embodiment, the heat from the XZ heat transfer member 95, the XY heat transfer member 96, and the YZ heat transfer member 97 From the cast molded bodies 99A and 99B.
  • the dimension in the Z direction of the YZ heat transfer member 97 may be smaller than that in the ninth embodiment.
  • the present modification is different from the ninth embodiment in the configuration of the cast molded body 99A.
  • FIG. 46 is a partial cross-sectional view showing a composite heat transfer member according to a third modification of the ninth embodiment.
  • the cast molded body 99A covers the surface of the XZ heat transfer member 95 on the YZ heat transfer member 97 side, and the YZ heat transfer member 97 A part of the cast molded body 99A is interposed between it and the XZ heat transfer member 95, and rises from the XZ heat transfer member 95 in the Z direction.
  • the other configuration is the same as that of the ninth embodiment.
  • the heat from the heat source attached to the lower surface 91 b is the same as in the ninth embodiment, the heat from the XZ heat transfer member 95, the XY heat transfer member 96 and the YZ heat transfer member 97. From the cast molded bodies 99A and 99B.
  • the present embodiment relates to a composite heat transfer member suitable for a specific heat source.
  • FIG. 47A is a perspective view showing a structure of a composite heat transfer member according to a tenth embodiment
  • FIG. 47B is a top view of the structure.
  • the composite heat transfer member 109 has a plate 107 of carbon and a cast-formed body 108 of magnesium alloy covering the surface of the plate 107.
  • the plate 107 has the XZ heat transfer member 105 configured by stacking graphene in the Y direction perpendicular to the thickness direction (Z direction).
  • the composite heat transfer member 109 is used by being attached to the heat source 102 whose dimension in the Y direction is W2.
  • the dimension of the XZ heat transfer member 105 in the Y direction is W1.
  • the dimension W1 coincides with the dimension W2.
  • the heat source 102 is attached to the composite heat transfer member 109 so as to overlap the XZ heat transfer member 105 in the Y direction in plan view. Therefore, the heat generated by the heat source 102 is efficiently transferred in the X direction and the Y direction by the XZ heat transfer member 105 and released to the outside.
  • the heat transfer performance in the Y direction (stacking direction) of the XZ heat transfer member 105 is lower than the heat transfer performance in the X direction and the Y direction, heat transfer is achieved even if the XZ heat transfer member 105 is provided wider in the Y direction. Performance is comparable. In general, magnesium alloys are less expensive than graphene, and therefore, it is preferable to use a smaller amount of graphene if comparable heat transfer performance can be obtained.
  • the width W1 is preferably 1.00 to 1.10 times the width W2, and more preferably 1.00 to 1.05.
  • the composite heat transfer member according to the above-described first to tenth embodiments can be applied to various parts related to the transfer of heat.
  • composite heat transfer members 9, 16, 31 according to the first embodiment, the second embodiment, the fourth embodiment, the fifth embodiment, the seventh embodiment and the tenth embodiment which are heat spreaders, and their variations.
  • CPU Central Processing Unit
  • heat transfer member 35, 55, 80, 90, 90A according to the third embodiment, the sixth embodiment, the eighth embodiment, the ninth embodiment, and the modifications thereof, which are heat spreaders having a heat sink function.
  • 90B, 90C can be applied to a heat sink for aluminum automotive LED headlamps and a heat sink for mobile phone base stations.

Abstract

Provided is a composite heat transfer member (9), comprising a carbon plate (1) and a metallic cast-formed article (8) that covers the surface of the plate (1).

Description

複合伝熱部材、及び複合伝熱部材の製造方法Composite heat transfer member and method of manufacturing composite heat transfer member
 本発明は、複合伝熱部材、及び複合伝熱部材の製造方法に関する。 The present invention relates to a composite heat transfer member and a method of manufacturing the composite heat transfer member.
 電子部品や電子機器から発生した熱を移動させるヒートスプレッダの材料として銅プレートやグラフェンの積層体が使用されている。 As a material of a heat spreader for transferring heat generated from an electronic component or electronic device, a laminate of a copper plate or graphene is used.
 これらのうち、グラフェンの積層体は、銅プレートよりも熱伝導率が高く、しかも比重が小さいので、小型化及び軽量化が可能であるという点でヒートスプレッダの材料として有用である。 Among these, the graphene laminate is useful as a heat spreader material in that the thermal conductivity is higher and the specific gravity is smaller than that of a copper plate, so that miniaturization and weight reduction are possible.
 一方、グラフェンの積層体は、一般に組成が脆いため、電子部品や電子機器のような熱源に接触させたり、取付部に取り付けたりする際の応力で破損する可能性がある。 On the other hand, since the stack of graphene generally has a fragile composition, it may be damaged by stress when it is brought into contact with a heat source such as an electronic component or an electronic device or attached to a mounting portion.
 このため、グラフェンの積層体を銅やアルミニウム等の金属で被覆して全体の強度を高めた複合伝熱部材が使用されている。 For this reason, a composite heat transfer member is used in which the stack of graphene is coated with a metal such as copper or aluminum to increase the overall strength.
特開2011-23670号公報JP 2011-23670 A 特開2012-238733号公報JP 2012-238733 A
 しかし、前述の複合伝熱部材ではグラフェンの積層体と金属との接合界面における熱抵抗が大きいため、複合伝熱部材の全体としての熱伝導率が低下してしまう。 However, in the above-described composite heat transfer member, since the thermal resistance at the bonding interface between the stack of graphene and the metal is large, the thermal conductivity of the composite heat transfer member as a whole is lowered.
 一側面によれば、熱伝導率を向上させることが可能な複合伝熱部材とその製造方法を提供することを目的とする。 According to one aspect, it is an object of the present invention to provide a composite heat transfer member capable of improving the thermal conductivity and a method of manufacturing the same.
 以下の開示の技術の一観点によれば、炭素のプレートと、前記プレートの表面を被覆する金属の鋳造成型体とを有する複合伝熱部材が提供される。 According to one aspect of the technology disclosed below, there is provided a composite heat transfer member having a plate of carbon and a cast metal body that covers the surface of the plate.
 また、開示の技術の別の観点によれば、鋳型のキャビティ内に炭素のプレートを配置する工程と、前記キャビティ内に溶融した金属を供給することにより、前記金属の鋳造成型体を形威して、該鋳造成型体で前記プレートの表面を被覆する工程とを有する複合伝熱部材の製造方法が提供される。 Further, according to another aspect of the disclosed technique, a cast and formed body of metal is formed by disposing a plate of carbon in a cavity of a mold and supplying molten metal in the cavity. And covering the surface of the plate with the cast body.
 以下の開示の技術によれば、炭素のプレートの表面が金属の鋳造成型体で被覆されているので、鋳造成型体がプレートの表面に面接触すると共に、鋳造成型体形成時の鋳造成型体とプレートとの収縮最の違いによって鋳造成型体がプレートの表面を押圧する。 According to the technique of the following disclosure, since the surface of the carbon plate is covered with a casted metal body, the casted body comes into surface contact with the surface of the plate, and the casted body at the time of casted body formation The cast molded body presses the surface of the plate due to the contraction difference with the plate.
 これにより、鋳造成型体がプレートの表面に強く密着する。このため、鋳造成型体とプレートとの接合界面における熱抵抗が低下して、複合伝熱部材の熱伝導率を向上させることができる。 Thereby, the cast body adheres strongly to the surface of the plate. For this reason, the thermal resistance at the bonding interface between the cast body and the plate is reduced, and the thermal conductivity of the composite heat transfer member can be improved.
図1Aは、第1実施形態に係る複合伝熱部材の製造途中の断面図(その1)である。FIG. 1A is a cross-sectional view (No. 1) during production of the composite heat transfer member according to the first embodiment. 図1Bは、第1実施形態に係る複合伝熱部材の製造途中の断面図(その2)である。FIG. 1B is a cross-sectional view (part 2) during the production of the composite heat transfer member according to the first embodiment. 図2は、第1実施形態に係る複合伝熱部材の製造途中の断面図(その3)である。FIG. 2: is sectional drawing (the 3) in the middle of manufacture of the composite heat-transfer member which concerns on 1st Embodiment. 図3は、第1実施形態のプレートの構造を示す斜視図である。FIG. 3 is a perspective view showing the structure of the plate of the first embodiment. 図4Aは、第1実施形態に係る複合伝熱部材の構造を示す斜視図である。FIG. 4A is a perspective view showing the structure of the composite heat transfer member according to the first embodiment. 図4Bは、図4A中のI-I線における断面図である。FIG. 4B is a cross-sectional view taken along line II in FIG. 4A. 図5Aは、熱抵抗比率の計算で使用したモデル、発熱部としての点状熱源、及び冷却部との位置関係を示す上面図である。FIG. 5A is a top view showing a positional relationship between a model used in the calculation of the heat resistance ratio, a point heat source as a heat generating portion, and a cooling portion. 図5Bは、熱抵抗比率の計算で使用したモデル、発熱部としての点状熱源、及び冷却部との位置関係を示す側面図である。FIG. 5B is a side view showing a positional relationship between a model used in the calculation of the heat resistance ratio, a point heat source as a heat generating portion, and a cooling portion. 図6は、第1実施形態の複合伝熱部材及び比較例の伝熱部材の熱抵抗比率を計算した結果を示すグラフである。FIG. 6 is a graph showing the results of calculation of the heat resistance ratio of the composite heat transfer member of the first embodiment and the heat transfer member of the comparative example. 図7は、第1実施形態の第1の変形例のプレートの構造を示す斜視図である。FIG. 7 is a perspective view showing a structure of a plate of a first modified example of the first embodiment. 図8Aは、第1実施形態の第1の変形例に係る複合伝熱部材の構造を示す斜視図である。FIG. 8A is a perspective view showing a structure of a composite heat transfer member according to a first modified example of the first embodiment. 図8Bは、図8A中のIII-III線における断面図である。FIG. 8B is a cross-sectional view taken along line III-III in FIG. 8A. 図9Aは、第1実施形態の第2の変形例のプレートの構造を示す斜視図である。FIG. 9A is a perspective view showing a structure of a plate of a second modified example of the first embodiment. 図9Bは、図9A中のIV-IV線における断面図である。FIG. 9B is a cross-sectional view taken along line IV-IV in FIG. 9A. 図10Aは、第1実施形態の第2の変形例に係る複合伝熱部材の構造を示す斜視図である。FIG. 10A is a perspective view showing a structure of a composite heat transfer member according to a second modified example of the first embodiment. 図10Bは、図10A中のV-V線における断面図である。FIG. 10B is a cross-sectional view taken along the line VV in FIG. 10A. 図11Aは、第2実施形態に係る複合伝熱部材の製造途中の断面図(その1)である。FIG. 11A is a cross-sectional view (No. 1) during production of the composite heat transfer member according to the second embodiment. 図11Bは、第2実施形態に係る複合伝熱部材の製造途中の断面図(その2)である。FIG. 11B is a cross-sectional view (part 2) during the production of the composite heat transfer member according to the second embodiment. 図12は、第2実施形態に係る複合伝熱部材の製造途中の断面図(その3)である。FIG. 12 is a cross-sectional view (No. 3) in the middle of manufacturing the composite heat transfer member according to the second embodiment. 図13Aは、第2実施形態のトレイの構造を示す斜視図である。FIG. 13A is a perspective view showing the structure of the tray of the second embodiment. 図13Bは、図13A中のVI-VI線における断面図である。FIG. 13B is a cross-sectional view taken along line VI-VI in FIG. 13A. 図14Aは、第2実施形態においてプレートがトレイに収容された状態の構造を示す斜視図である。FIG. 14A is a perspective view showing a structure in which the plate is accommodated in the tray in the second embodiment. 図14Bは、図14A中のVII-VII線における断面図である。FIG. 14B is a cross-sectional view taken along line VII-VII in FIG. 14A. 図15は、鋳造装置の構成を示す図である。FIG. 15 is a view showing the configuration of a casting apparatus. 図16Aは、第2実施形態に係る複合伝熱部材の構造を示す斜視図である。FIG. 16A is a perspective view showing a structure of a composite heat transfer member according to a second embodiment. 図16Bは、図16A中のVIII-VIII線における断面図である。FIG. 16B is a cross-sectional view taken along line VIII-VIII in FIG. 16A. 図17Aは、第2実施形態の変形例のプレートの構造を示す斜視図である。FIG. 17A is a perspective view showing a structure of a plate of a modification of the second embodiment. 図17Bは、図17A中のIX-IX線における断面図である。FIG. 17B is a cross-sectional view taken along line IX-IX in FIG. 17A. 図18Aは、第2実施形態の変形例のトレイの構造を示す斜視図である。FIG. 18A is a perspective view showing the structure of a tray according to a modification of the second embodiment. 図18Bは、図18A中のX-X線における断面図である。FIG. 18B is a cross-sectional view taken along line XX in FIG. 18A. 図19Aは、第2実施形態の変形例においてプレートがトレイに収容された状態の構造を示す斜視図である。FIG. 19A is a perspective view showing a structure in which the plate is accommodated in the tray in a modification of the second embodiment. 図19Bは、図19A中のXI-XI線における断面図である。FIG. 19B is a cross-sectional view taken along line XI-XI in FIG. 19A. 図20Aは、第2実施形態の変形例に係る複合伝熱部材の構造を示す斜視図である。FIG. 20A is a perspective view showing a structure of a composite heat transfer member according to a modification of the second embodiment. 図20Bは、図20A中のXII-XII線における断面図である。FIG. 20B is a cross-sectional view taken along line XII-XII in FIG. 20A. 図21Aは、第3実施形態に係る複合伝熱部材の構造を示す斜視図である。FIG. 21A is a perspective view showing a structure of a composite heat transfer member according to a third embodiment. 図21Bは、図21A中のXIII-XIII線における断面図である。FIG. 21B is a cross-sectional view taken along line XIII-XIII in FIG. 21A. 図22は、第4実施形態のプレートの構造を示す斜視図である。FIG. 22 is a perspective view showing the structure of the plate of the fourth embodiment. 図23Aは、第4実施形態に係る複合伝熱部材の構造を示す斜視図である。FIG. 23A is a perspective view showing a structure of a composite heat transfer member according to a fourth embodiment. 図23Bは、図23A中のXIV-XIV線における断面図である。FIG. 23B is a cross-sectional view taken along line XIV-XIV in FIG. 23A. 図24は、第4実施形態におけるプレートでの熱の伝達経路の例を示す図である。FIG. 24 is a view showing an example of a heat transfer path in the plate in the fourth embodiment. 図25Aは、第4実施形態の変形例のプレートの構造を示す斜視図である。FIG. 25A is a perspective view showing the structure of a plate of a modification of the fourth embodiment. 図25Bは、図25A中のXV-XV線における断面図である。FIG. 25B is a cross-sectional view taken along line XV-XV in FIG. 25A. 図26Aは、第4実施形態の変形例に係る複合伝熱部材の構造を示す斜視図である。FIG. 26A is a perspective view showing a structure of a composite heat transfer member according to a modification of the fourth embodiment. 図26Bは、図26A中のXVI-XVI線における断面図である。FIG. 26B is a cross-sectional view taken along line XVI-XVI in FIG. 26A. 図27Aは、第5実施形態においてプレートがトレイに収容された状態の構造を示す斜視図である。FIG. 27A is a perspective view showing the structure in which the plate is accommodated in the tray in the fifth embodiment. 図27Bは、図27A中のXVII-XVII線における断面図である。FIG. 27B is a cross-sectional view taken along line XVII-XVII in FIG. 27A. 図28Aは、第5実施形態に係る複合伝熱部材の構造を示す斜視図である。FIG. 28A is a perspective view showing a structure of a composite heat transfer member according to a fifth embodiment. 図28Bは、図28A中のXVIII-XVIII線における断面図である。FIG. 28B is a cross-sectional view taken along line XVIII-XVIII in FIG. 28A. 図29Aは、第5実施形態の変形例のプレートの構造を示す斜視図である。FIG. 29A is a perspective view showing a structure of a plate of a modification of the fifth embodiment. 図29Bは、図29A中のXIX-XIX線における断面図である。FIG. 29B is a cross-sectional view taken along line XIX-XIX in FIG. 29A. 図30Aは、第5実施形態の変形例においてプレートがトレイに収容された状態の構造を示す斜視図である。FIG. 30A is a perspective view showing a structure in which the plate is accommodated in the tray in the modification of the fifth embodiment. 図30Bは、図30A中のXX-XX線における断面図である。FIG. 30B is a cross-sectional view taken along line XX-XX in FIG. 30A. 図31Aは、第5実施形態の変形例に係る複合伝熱部材の構造を示す斜視図である。FIG. 31A is a perspective view showing the structure of a composite heat transfer member according to a modification of the fifth embodiment. 図31Bは、図31A中のXXI-XXI線における断面図である。31B is a cross-sectional view taken along line XXI-XXI in FIG. 31A. 図32Aは、第6実施形態に係る複合伝熱部材の構造を示す斜視図である。FIG. 32A is a perspective view showing a structure of a composite heat transfer member according to a sixth embodiment. 図32Bは、図32A中のXXII-XXII線における断面図である。32B is a cross-sectional view taken along line XXII-XXII in FIG. 32A. 図33は、第7実施形態のトレイの構造を示す斜視図である。FIG. 33 is a perspective view showing the structure of the tray of the seventh embodiment. 図34は、第7実施形態においてXZ伝熱部材及びXY伝熱部材がトレイに収容された状態の構造を示す斜視図である。FIG. 34 is a perspective view showing a structure in which the XZ heat transfer member and the XY heat transfer member are accommodated in the tray in the seventh embodiment. 図35Aは、第7実施形態に係る複合伝熱部材の構造を示す斜視図である。FIG. 35A is a perspective view showing a structure of a composite heat transfer member according to a seventh embodiment. 図35Bは、図35A中のXXIII-XXIII線における断面図である。FIG. 35B is a cross-sectional view taken along line XXIII-XXIII in FIG. 35A. 図36は、第7実施形態の変形例のトレイの構造を示す斜視図である。FIG. 36 is a perspective view showing the structure of a tray according to a modification of the seventh embodiment. 図37は、第7実施形態の変形例においてXZ伝熱部材及びXY伝熱部材がトレイに収容された状態の構造を示す斜視図である。FIG. 37 is a perspective view showing a structure in which the XZ heat transfer member and the XY heat transfer member are accommodated in the tray in the modification of the seventh embodiment. 図38Aは、第7実施形態の変形例に係る複合伝熱部材の構造を示す斜視図である。FIG. 38A is a perspective view showing a structure of a composite heat transfer member according to a modification of the seventh embodiment. 図38Bは、図38A中のXXIV-XXIV線における断面図である。FIG. 38B is a cross-sectional view taken along line XXIV-XXIV in FIG. 38A. 図39は、第8実施形態に係る複合伝熱部材を示す斜視図である。FIG. 39 is a perspective view showing a composite heat transfer member according to an eighth embodiment. 図40は、第8実施形態に係る複合伝熱部材に含まれるプレートの構成を示す斜視図である。FIG. 40 is a perspective view showing the configuration of a plate included in the composite heat transfer member according to the eighth embodiment. 図41は、第8実施形態に係る複合伝熱部材に含まれるプレートの一部の構成を示す斜視図である。FIG. 41 is a perspective view showing the configuration of part of the plate included in the composite heat transfer member according to the eighth embodiment. 図42は、第8実施形態におけるプレートでの熱の伝達経路の例を示す図である。FIG. 42 is a diagram showing an example of a heat transfer path in the plate in the eighth embodiment. 図43は、第9実施形態に係る複合伝熱部材を示す部分断面図である。FIG. 43 is a partial cross-sectional view showing a composite heat transfer member according to a ninth embodiment. 図44は、第9実施形態の第1変形例に係る複合伝熱部材を示す部分断面図である。FIG. 44 is a partial cross-sectional view showing a composite heat transfer member according to a first modification of the ninth embodiment. 図45は、第9実施形態の第2変形例に係る複合伝熱部材を示す部分断面図である。FIG. 45 is a partial cross-sectional view showing a composite heat transfer member according to a second modification of the ninth embodiment. 図46は、第9実施形態の第3変形例に係る複合伝熱部材を示す部分断面図である。FIG. 46 is a partial cross-sectional view showing a composite heat transfer member according to a third modification of the ninth embodiment. 図47Aは、第10実施形態に係る複合伝熱部材の構造を示す斜視図である。FIG. 47A is a perspective view showing a structure of a composite heat transfer member according to a tenth embodiment. 図47Bは、第10実施形態に係る複合伝熱部材の構造を示す上面図である。FIG. 47B is a top view showing the structure of the composite heat transfer member according to the tenth embodiment.
 (第1実施形態)
 本実施形態に係る複合伝熱部材について、その製造方法を追いながら説明する。
First Embodiment
The composite heat transfer member according to the present embodiment will be described following the manufacturing method thereof.
 図1A~図2は、本実施形態に係る複合伝熱部材の製造途中の断面図である。 FIG. 1A to FIG. 2 are cross-sectional views of the composite heat transfer member according to the present embodiment in the course of manufacture.
 本実施形態では、以下のようにして複合伝熱部材としてヒートスプレッダを製造する。 In the present embodiment, a heat spreader is manufactured as a composite heat transfer member as follows.
 まず、図1Aに示すように、複合伝熱部材を構成する一方の伝熱部材として炭素のプレート1を用意する。 First, as shown to FIG. 1A, the plate 1 of carbon is prepared as one heat-transfer member which comprises a composite heat-transfer member.
 図3は、そのプレート1の構造を示す斜視図である。 FIG. 3 is a perspective view showing the structure of the plate 1.
 図3に示すように、プレート1は、グラフェン2を積層してなる板状の伝熱部材である。 As shown in FIG. 3, the plate 1 is a plate-like heat transfer member formed by laminating the graphene 2.
 そのプレート1において、グラフェン2はY方向に積層されている。すなわち、グラフェン2は、プレート1の厚さ方向(Z方向)に対して垂直な方向に積層されている。 In the plate 1, the graphene 2 is stacked in the Y direction. That is, the graphene 2 is stacked in the direction perpendicular to the thickness direction (Z direction) of the plate 1.
 また、グラフェン2の面内方向はX-Z方向となっている。 Further, the in-plane direction of the graphene 2 is the XZ direction.
 一般に、グラフェン2の積層体では、グラフェン2の面内方向の熱伝導率が、グラフェン2の積層方向の熱伝導率よりも高い。 In general, in the stack of graphenes 2, the thermal conductivity in the in-plane direction of the graphenes 2 is higher than the thermal conductivity in the stacking direction of the graphenes 2.
 このため、プレート1は、X方向及びZ方向の熱伝導率がY方向の熱伝導率よりも高い熱伝導異方性を有している。以下、このようなX方向及びZ方向の熱伝導率がY方向の熱伝導率よりも高い伝熱部材のことをXZ伝熱部材とも呼ぶ。 For this reason, the plate 1 has thermal conductivity anisotropy in which the thermal conductivity in the X direction and the Z direction is higher than the thermal conductivity in the Y direction. Hereinafter, such a heat transfer member in which the thermal conductivity in the X direction and the Z direction is higher than the thermal conductivity in the Y direction is also referred to as an XZ heat transfer member.
 この場合、X方向及びZ方向におけるプレート1の熱伝導率は約800W/m・kとなり、Y方向の熱伝導率は10~20W/m・k程度となる。 In this case, the thermal conductivity of the plate 1 in the X direction and the Z direction is about 800 W / m · k, and the thermal conductivity in the Y direction is about 10 to 20 W / m · k.
 プレート1の材料はグラフェン2の積層体に限定されない。例えば、その材料として、グラファイト、高配向性熱分解グラファイト(Highly 0riented Pyrolytic Graphite:HOPG)、又はダイアモンドを使用し得る。 The material of the plate 1 is not limited to the stack of graphene 2. For example, as the material, graphite, highly oriented pyrolytic graphite (HOPG), or diamond can be used.
 また、プレート1の上面1a及び下面1bは矩形状である。その上面1a及び下面1bの長い方の辺が伸びる方向がX方向となり、短い方の辺が伸びる方向がY方向となっている。 Further, the upper surface 1a and the lower surface 1b of the plate 1 are rectangular. The direction in which the longer sides of the upper surface 1a and the lower surface 1b extend is the X direction, and the direction in which the shorter sides extend is the Y direction.
 そして、図1Aに示すように、このような構造のプレート1のX方向の両端部に固定具3を取り付け、これらを鋳型4の下部4aの内側の空間内に設置する。 Then, as shown in FIG. 1A, the fixtures 3 are attached to both ends in the X direction of the plate 1 having such a structure, and these are placed in the space inside the lower portion 4 a of the mold 4.
 続いて、下部4aの上に鋳型の上部4bを載置して固定する。これにより、下部4aと上部4bとの間にキャビティ6を形成する。 Subsequently, the upper part 4b of the mold is placed and fixed on the lower part 4a. Thereby, a cavity 6 is formed between the lower portion 4a and the upper portion 4b.
 このようにして、鋳型4のキャビティ6内にプレート1を配置する。 Thus, the plate 1 is placed in the cavity 6 of the mold 4.
 次に、図1Bに示すように、後述する鋳造成型体の材料として700℃程度の温度の溶融した金属7を用意し、鋳型4の上部4bの注揚口4cから注ぎ込む。 Next, as shown in FIG. 1B, molten metal 7 at a temperature of about 700 ° C. is prepared as a material of a cast-formed body described later, and poured from the pouring port 4 c of the upper portion 4 b of the mold 4.
 このようにして、溶融した金属7を鋳型4のキャビティ6内に供給する。 Thus, the molten metal 7 is supplied into the cavity 6 of the mold 4.
 金属7の種類は特に限定されない。例えば、金属7としてマグネシウム合金やアルミニウム合金を使用し得る。 The type of metal 7 is not particularly limited. For example, a magnesium alloy or an aluminum alloy can be used as the metal 7.
 本実施形態では、金属7として、マグネシウムにアルミニウムと亜鉛とを含み、熱伝導率が51~100W/m・k程度のマグネシウム合金を使用する。そして、そのマグネシウム合金を700℃程度の温度で加熱することにより、溶融した金属7を形成する。 In the present embodiment, as the metal 7, a magnesium alloy containing aluminum and zinc in magnesium and having a thermal conductivity of about 51 to 100 W / m · k is used. And the molten metal 7 is formed by heating the magnesium alloy at a temperature of about 700.degree.
 一方、鋳型4は、マグネシウム合金の凝固温度(約400℃)よりも低い温度となっている。 On the other hand, the mold 4 is at a temperature lower than the solidification temperature (about 400 ° C.) of the magnesium alloy.
 このため、溶融した金属7はキャビティ6内に供給された直後から凝固し始める。 Therefore, the molten metal 7 starts to solidify immediately after being supplied into the cavity 6.
 続いて、図2に示すように、金属7の温度を室温程度まで下げて、固定具3が取り付けられている部分以外のプレート1の表面を被覆する鋳造成型体8を形成する。 Subsequently, as shown in FIG. 2, the temperature of the metal 7 is lowered to about room temperature to form a cast molded body 8 covering the surface of the plate 1 other than the portion to which the fixture 3 is attached.
 このとき、鋳造成型体8がプレート1の表面の凹凸の形状を転写して、鋳造成型体8がプレート1の表面に面接触するようになる。 At this time, the cast-molded body 8 transfers the shape of the unevenness of the surface of the plate 1 so that the cast-molded body 8 comes in surface contact with the surface of the plate 1.
 また、鋳造成型体8の材料であるマグネシウム合金は、凝固温度から室温に温度が下がるときに収縮する。一方、プレート1の材料であるグラフェン2の積層体は、このときに殆ど収縮しないか、あるいは僅かに膨張する。 Moreover, the magnesium alloy which is the material of the cast-formed body 8 shrinks when the temperature drops from the solidification temperature to room temperature. On the other hand, at this time, the laminate of graphene 2 which is a material of the plate 1 hardly shrinks or slightly expands.
 このように、熱膨張率の相違によって鋳造成型体8とプレート1とに収縮量の違いが生じることにより、図2の破線円内で矢印に示すように鋳造成型体8がプレート1の表面を押圧するようになる。 As described above, the difference in thermal expansion causes a difference in the amount of contraction between the cast and molded body 8 and the plate 1 so that the cast and molded body 8 has the surface of the plate 1 as shown by the arrows in the dashed circle in FIG. It comes to press.
 これらにより、鋳造成型体8がプレート1の表面に強く密着する。 As a result, the cast body 8 adheres strongly to the surface of the plate 1.
 このため、鋳造成型体8とプレート1との接合界面における熱抵抗が低下して、鋳造成型体8とプレート1との熱伝導の効率が向上する。 For this reason, the thermal resistance at the bonding interface between the cast and molded body 8 and the plate 1 is reduced, and the efficiency of thermal conduction between the cast and molded body 8 and the plate 1 is improved.
 その後、鋳型4の上部4bを下部4aから取り外し、更に下部4aからプレート1及び鋳造成型体8を固定具3ごと取り出す。そして、プレート1及び鋳造成型体8の一部を切断して、固定具3及びバリ等を削除する。 Thereafter, the upper portion 4b of the mold 4 is removed from the lower portion 4a, and the plate 1 and the cast molded body 8 together with the fixture 3 are further removed from the lower portion 4a. Then, the plate 1 and a part of the cast molded body 8 are cut to remove the fixture 3 and the burrs.
 以上により、本実施形態に係る複合伝熱部材9の基本構造が完成する。 Thus, the basic structure of the composite heat transfer member 9 according to the present embodiment is completed.
 図4Aは、その複合伝熱部材9の構造を示す斜視図であり、図4Bは、その構造のI-I線における断面図である。 FIG. 4A is a perspective view showing the structure of the composite heat transfer member 9, and FIG. 4B is a cross-sectional view of the structure taken along the line II.
 図4A、図4Bに示すように、複合伝熱部材9は、一方の伝熱部材としてのグラフェン2の積層体のプレート1と、他方の伝熱部材としてのX方向の側面1c以外のプレート1の表面を被覆したマグネシウム合金の鋳造成型体8とを備えている。 As shown to FIG. 4A and FIG. 4B, the composite heat-transfer member 9 is plate 1 of the laminated body of the graphene 2 as one heat-transfer member, and plate 1 other than the side 1c of the X direction as the other heat-transfer member. And a cast molding 8 of magnesium alloy coated on the surface of
 プレート1は、X方向及びZ方向の熱伝導率がY方向の熱伝導率よりも高いXZ伝熱部材である。このため、プレート1を含む複合伝熱部材9も基本的にはXZ伝熱部材となる。 The plate 1 is an XZ heat transfer member in which the thermal conductivity in the X direction and the Z direction is higher than the thermal conductivity in the Y direction. For this reason, the composite heat transfer member 9 including the plate 1 is also basically an XZ heat transfer member.
 但し、プレート1の表面がマグネシウム合金の鋳造成型体8で被覆されているので、比較的低いY方向の熱伝導率も高めることができる。 However, since the surface of the plate 1 is covered with the cast molded body 8 of magnesium alloy, the heat conductivity in the relatively low Y direction can also be enhanced.
 以上説明したように、本実施形態に係る複合伝熱部材9によれば、炭素のプレート1の表面が金属の鋳造成型体8で被覆されている。 As described above, according to the composite heat transfer member 9 according to the present embodiment, the surface of the carbon plate 1 is covered with the cast and molded body 8 of metal.
 このため、鋳造成型体8がプレート1の表面に面接触すると共に、鋳造成型体8とプレート1とに収縮量の違いが生じて、図2の破線円内で矢印に示すように鋳造成型体8がプレート1の表面を押圧する。 For this reason, the cast molded body 8 comes in surface contact with the surface of the plate 1, and a difference in shrinkage occurs between the cast molded body 8 and the plate 1, and the cast molded body as shown by the arrow in the dashed circle in FIG. 8 press the surface of the plate 1;
 これにより、鋳造成型体8がプレート1の表面に強く密着する。このため、鋳造成型体8とプレート1との接合界面における熱抵抗が低下して、熱伝導部材や熱伝導接着剤を使用しなくても複合伝熱部材9の熱伝導率を向上させることができる。 Thereby, the cast molded body 8 adheres strongly to the surface of the plate 1. For this reason, the thermal resistance at the bonding interface between the cast and molded body 8 and the plate 1 is reduced, and the thermal conductivity of the composite heat transfer member 9 can be improved without using a heat transfer member or a heat transfer adhesive. it can.
 しかも、鋳造成型体8の形成時に生じた鋳造成型体8とプレート1との収縮量の違いにより、複合伝熱部材9が製造された後にも鋳造成型体8には残留引張応力が存在し、プレート1には残留圧縮応力が存在する。 Moreover, due to the difference in the amount of contraction between the cast molded body 8 and the plate 1 generated at the time of formation of the cast molded body 8, residual tensile stress exists in the cast molded body 8 even after the composite heat transfer member 9 is manufactured, Residual compressive stress is present in the plate 1.
 そして、例えば、複合伝熱部材9を150℃程度の高温の環境で使用したときでも、これらの残留応力は小さくなるとしても失われないので、図4Bの破線円内で矢印に示すように鋳造成型体8がプレート1の表面を押圧し続ける。 Then, for example, even when the composite heat transfer member 9 is used in a high temperature environment of about 150 ° C., these residual stresses are not lost even if they become smaller, so as shown by the arrows in the dashed circle in FIG. 4B The molded body 8 keeps pressing the surface of the plate 1.
 このため、鋳造成型体8とプレート1との良好な熱伝導率を維持することができる。 Therefore, good thermal conductivity between the cast and molded body 8 and the plate 1 can be maintained.
 なお、本実施形態に係る複合伝熱部材9では、固定具3を削除したことにより、プレート1の側面1cは鋳造成型体8で被覆されずに露出する。 In the composite heat transfer member 9 according to the present embodiment, the side surface 1 c of the plate 1 is exposed without being covered with the cast molded body 8 by removing the fixing tool 3.
 前述したように、そのプレート1には残留圧縮応力が存在する。このため、高温の環境で使用したときに、複合伝熱部材9がX方向に熱膨張するのを抑制することができる。 As mentioned above, residual compressive stress exists in the plate 1. Therefore, when used in a high temperature environment, thermal expansion of the composite heat transfer member 9 in the X direction can be suppressed.
 また、複合伝熱部材9では、グラフェン2の積層体のプレート1とマグネシウム合金の鋳造成型体8とを組み合わせることにより、銅の熱伝導率(391W/m・k)と同程度の熱伝導率を有しながら、その比重(2.1g/cm)を銅の比重(8.9g/cm)よりも大幅に小さくすることができる。 Further, in the composite heat transfer member 9, by combining the plate 1 of the stack of graphene 2 and the cast-formed body 8 of the magnesium alloy, the thermal conductivity is about the same as that of copper (391 W / m · k) The specific gravity (2.1 g / cm 3 ) can be made significantly smaller than the specific gravity of copper (8.9 g / cm 3 ).
 このため、複合伝熱部材9を軽重化又は小型化することができる。 For this reason, the composite heat transfer member 9 can be reduced in weight or in size.
 本願発明者は、複合伝熱部材9における熱抵抗が実際に低下することを確かめるため、比較例として銅のみの伝熱部材を作製し、その伝熱部材と本実施形態に係る複合伝熱部材9の各々の熱抵抗比率を計算した。 In order to confirm that the thermal resistance in the composite heat transfer member 9 actually decreases, the inventor of the present invention produces a copper-only heat transfer member as a comparative example, and the heat transfer member and the composite heat transfer member according to the present embodiment. The heat resistance ratio of each of 9 was calculated.
 図5Aは、熱抵抗比率の計算で使用したモデル、発熱部としての点状熱源、及び冷却部との位置関係を示す上面図であり、図5Bは、それらの位置関係を示す側面図である。 FIG. 5A is a top view showing a positional relationship between a model used in the calculation of the heat resistance ratio, a point heat source as a heat generating portion, and a cooling portion, and FIG. 5B is a side view showing the positional relationship thereof. .
 図5A、図5Bに示すように、モデル10としての複合伝熱部材9及び銅の伝熱部材のY方向の長さは37mmで、Z方向の長さ、すなわち厚さは3mmである。そして、モデル10のX方向の長さを変えながら、点状熱源11と冷却部12との間の熱抵抗比率を計算した。 As shown in FIGS. 5A and 5B, the length of the composite heat transfer member 9 as the model 10 and the heat transfer member of copper in the Y direction is 37 mm, and the length in the Z direction, that is, the thickness is 3 mm. Then, the thermal resistance ratio between the point heat source 11 and the cooling unit 12 was calculated while changing the length of the model 10 in the X direction.
 また、点状熱源11のX方向の長さは1mmで、Y方向の長さは1mmであり、その点状熱源11を、モデル10のX方向における一方の端から5mmの位置に配置した。更に、冷却部12をモデル10のX方向における一方の端から10mmまでの領域に配置した。 The length in the X direction of the point heat source 11 is 1 mm, and the length in the Y direction is 1 mm, and the point heat source 11 is disposed at a position 5 mm from one end of the model 10 in the X direction. Furthermore, the cooling unit 12 was disposed in a region up to 10 mm from one end of the model 10 in the X direction.
 図6は、本実施形態の複合伝熱部材9及び比較例の伝熱部材の熱抵抗比率を計算した結果を示すグラフである。図6において、横軸はモデル10のX方向における長さを示し、縦軸は試料の熱抵抗比率を示している。 FIG. 6 is a graph showing the results of calculation of the heat resistance ratio of the composite heat transfer member 9 of the present embodiment and the heat transfer member of the comparative example. In FIG. 6, the horizontal axis indicates the length in the X direction of the model 10, and the vertical axis indicates the heat resistance ratio of the sample.
 図6に示すように、モデル10のX方向の長さが70mm程度までは比較例の伝熱部材が本実施形態の複合伝熱部材9よりも熱抵抗比率が低い。 As shown in FIG. 6, the heat transfer member of the comparative example has a heat resistance ratio lower than that of the composite heat transfer member 9 of the present embodiment until the length of the model 10 in the X direction is about 70 mm.
 しかし、モデル10のX方向の長さが70mmよりも長くなると、本実施形態の複合伝熱部材9が比較例の伝熱部材よりも熱抵抗比率が低くなる。例えば、モデル10の長さが150mmである場合には、複合伝熱部材9は比較例の伝熱部材の熱抵抗比率の74%程度まで低下する。 However, when the length in the X direction of the model 10 is longer than 70 mm, the heat transfer ratio of the composite heat transfer member 9 of this embodiment becomes lower than that of the heat transfer member of the comparative example. For example, when the length of the model 10 is 150 mm, the composite heat transfer member 9 is reduced to about 74% of the heat resistance ratio of the heat transfer member of the comparative example.
 この結果より、本実施形態の複合伝熱部材9による熱抵抗の低下の効果が確かめられた。 From this result, the effect of the reduction of the thermal resistance by the composite heat transfer member 9 of this embodiment was confirmed.
 次に、本実施形態の変形例について説明する。 Next, a modification of the present embodiment will be described.
 (第1の変形例)
 上述した第1実施形態では、プレート1としてXZ伝熱部材のプレートを使用したが、本変形例では、XZ伝熱部材とは異なる熱伝導率異方性を有する伝熱部材のプレートを使用する。
(First modification)
In the first embodiment described above, the plate of the XZ heat transfer member is used as the plate 1, but in this modification, the plate of the heat transfer member having thermal conductivity anisotropy different from that of the XZ heat transfer member is used. .
 なお、本変形例において、第1実施形態と同じ要素には第1実施形態におけるそれと同じ符号を付し、以下ではその説明を省略する。 In addition, in this modification, the same code | symbol as it in 1st Embodiment is attached | subjected to the same element as 1st Embodiment, and the description is abbreviate | omitted below.
 図7は、本変形例のプレートの構造を示す斜視図である。 FIG. 7 is a perspective view showing the structure of the plate of this modification.
 図7に示すように、プレート13は、グラフェン2の積層体からなる薄い板状の伝熱部材である。 As shown in FIG. 7, the plate 13 is a thin plate-like heat transfer member made of a stack of graphenes 2.
 そのプレート13において、グラフェン2は、プレート13の厚さ方向、すなわちZ方向に積層されている。 In the plate 13, the graphene 2 is stacked in the thickness direction of the plate 13, that is, in the Z direction.
 このため、プレート13は、X方向及びY方向の熱伝導率がZ方向の熱伝導率よりも高い熱伝導異方性を有している。以下、このようなX方向及びY方向の熱伝導率がZ方向の熱伝導率よりも高い伝熱部材のことをXY伝熱部材とも呼ぶ。 Therefore, the plate 13 has thermal conductivity anisotropy in which the thermal conductivity in the X direction and the Y direction is higher than the thermal conductivity in the Z direction. Hereinafter, such a heat transfer member in which the thermal conductivity in the X direction and the Y direction is higher than the thermal conductivity in the Z direction is also referred to as an XY heat transfer member.
 このような構造のプレート13に対して、第1実施形態の図1A~図2の工程と、その後の固定具3及びバリ等の削除とを行うことにより、本変形例に係る複合伝熱部材の構造が得られる。 The composite heat transfer member according to the present modification is performed by performing the steps of FIGS. 1A and 2 of the first embodiment and the subsequent removal of the fixture 3 and burrs and the like to the plate 13 having such a structure. The structure of is obtained.
 図8Aは、その複合伝熱部材の構造を示す斜視図であり、図8Bは、その構造のIII-III線における断面図である。 FIG. 8A is a perspective view showing the structure of the composite heat transfer member, and FIG. 8B is a cross-sectional view of the structure taken along line III-III.
 図8A、図8Bに示すように、本変形例に係る複合伝熱部材14は、グラフェン2の積層体のプレート13と、X方向の側面13c以外のプレート13の表面を被覆したマグネシウム合金の鋳造成型体8とを備えている。 As shown to FIG. 8A and FIG. 8B, the composite heat-transfer member 14 which concerns on this modification casts the plate 13 of the laminated body of the graphene 2, and the magnesium alloy which coat | covered the surface of the plate 13 other than the side 13c of a X direction. And a molded body 8.
 前述したように、プレート13は、X方向及びY方向の熱伝導率がZ方向の熱伝導率よりも高いXY伝熱部材である。このため、プレート13を含む複合伝熱部材14も基本的にはXY伝熱部材となる。 As described above, the plate 13 is an XY heat transfer member in which the thermal conductivity in the X direction and the Y direction is higher than the thermal conductivity in the Z direction. Therefore, the composite heat transfer member 14 including the plate 13 is basically also an XY heat transfer member.
 但し、プレート13の表面がマグネシウム合金の鋳造成型体8で被覆されているので、比較的低いZ方向の熱伝導率も高めることができる。 However, since the surface of the plate 13 is covered with the cast molded body 8 of magnesium alloy, the heat conductivity in the relatively low Z direction can also be enhanced.
 (第2の変形例)
 本変形例では、プレート1とは異なる形状のプレートを使用する。
(Second modification)
In this modification, a plate having a shape different from that of the plate 1 is used.
 なお、本変形例において、第1実施形態と同じ要素には第1実施形態におけるそれと同じ符号を付し、以下ではその説明を省略する。 In addition, in this modification, the same code | symbol as it in 1st Embodiment is attached | subjected to the same element as 1st Embodiment, and the description is abbreviate | omitted below.
 図9Aは、本変形例のプレートの構造を示す斜視図であり、図9Bは、その構造のIV-IV線における断面図である。 FIG. 9A is a perspective view showing the structure of the plate of this modification, and FIG. 9B is a cross-sectional view taken along line IV-IV of the structure.
 図9A、図9Bに示すように、プレート15は、第1実施形態のプレート1と同じく、グラフェン2の積層体から形成された薄い板状のXZ伝熱部材である。 As shown in FIGS. 9A and 9B, the plate 15 is a thin plate-like XZ heat transfer member formed of a stack of graphenes 2 similarly to the plate 1 of the first embodiment.
 一方、本変形例のプレート15は、第1実施形態のプレート1とは異なり、上面15aから下面15bに至る貫通孔15dが設けられている。 On the other hand, unlike the plate 1 of the first embodiment, the plate 15 of the present modified example is provided with a through hole 15d from the upper surface 15a to the lower surface 15b.
 その貫通孔15dを設ける位置及び数は特に限定されない。本実施形態では、プレート15のX方向の中央において、Y方向に間隔をおいて2つの貫通孔15dを設ける。 The positions and the number of the through holes 15 d are not particularly limited. In the present embodiment, two through holes 15 d are provided at intervals in the Y direction at the center of the plate 15 in the X direction.
 このような構造のプレート15に対して、第1実施形態の図1A~図2の工程と、その後の固定具3及びバリ等の削除とを行うことにより、本変形例に係る複合伝熱部材の構造が得られる。 The composite heat transfer member according to the present modification is performed by performing the steps of FIGS. 1A and 2 of the first embodiment and the subsequent removal of the fixture 3 and burrs and the like to the plate 15 having such a structure. The structure of is obtained.
 図10Aは、その複合伝熱部材の構造を示す斜視図であり、図10Bは、その構造のV-V線における断面図である。 FIG. 10A is a perspective view showing the structure of the composite heat transfer member, and FIG. 10B is a cross-sectional view of the structure taken along line VV.
 図10A、図10Bに示すように、本変形例に係る複合伝熱部材16は、グラフェン2の積層体のプレート15と、X方向の側面15c以外のプレート15の表面を被覆したマグネシウム合金の鋳造成型体8とを備えている。 As shown to FIG. 10A and FIG. 10B, the composite heat-transfer member 16 which concerns on this modification casts the plate 15 of the laminated body of the graphene 2, and the magnesium alloy which coat | covered the surface of the plate 15 other than the side 15c of a X direction. And a molded body 8.
 本変形例によれば、鋳造成型体8の一部8aがプレート15の貫通孔15dに充填されている。 According to this modification, a portion 8 a of the cast body 8 is filled in the through hole 15 d of the plate 15.
 これにより、その一部8aを介してプレート15の上面15aを被覆する鋳造成型体8と下面15bを被覆する鋳造成型体8とが連結される。 Thus, the cast molded body 8 covering the upper surface 15 a of the plate 15 and the cast molded body 8 covering the lower surface 15 b are connected via the part 8 a.
 前述したように、鋳造成型体8の形成時に生じた鋳造成型体8とプレート15との収縮量の違いにより、矢印で示すように鋳造成型体8には残留引張応力TSが存在する。 As described above, the residual tensile stress TS exists in the cast molded body 8 as indicated by the arrow due to the difference in the contraction amount between the cast molded body 8 and the plate 15 generated at the time of forming the cast molded body 8.
 そして、複合伝熱部材16を高温の環境で使用したときでも、この残留引張応力TSは失われないので、破線円内で矢印に示すように鋳造成型体8がプレート15の表面を押圧し続ける。このため、鋳造成型体8とプレート15との良好な熱伝導率を維持することができる。 Then, even when the composite heat transfer member 16 is used in a high temperature environment, the residual tensile stress TS is not lost, so the cast molded body 8 continues to press the surface of the plate 15 as shown by the arrows in the broken line circle. . Therefore, good thermal conductivity between the cast and molded body 8 and the plate 15 can be maintained.
 (第2実施形態)
 本実施形態では、第1実施形態とは異なる鋳造方法によって複合伝熱部材を製造する。
Second Embodiment
In this embodiment, the composite heat transfer member is manufactured by a casting method different from that of the first embodiment.
 図11A~図12は、本実施形態に係る複合伝熱部材の製造途中の断面図である。なお、図11A~図12において、第1実施形態と同じ要素には第1実施形態におけるそれと同じ符号を付し、以下ではその説明を省略する。 11A to 12 are cross-sectional views of the composite heat transfer member according to the present embodiment, which are in the process of being manufactured. In FIG. 11A to FIG. 12, the same elements as in the first embodiment are given the same reference numerals as those in the first embodiment, and the description thereof will be omitted below.
 本実施形態では、以下のようにして複合伝熱部材としてヒートスプレッダを製造する。 In the present embodiment, a heat spreader is manufactured as a composite heat transfer member as follows.
 まず、図11Aに示すように、複合伝熱部材を構成する一方の伝熱部材として炭素のプレート1と、そのプレート1を収容する金属のトレイ17とを用意する。 First, as shown in FIG. 11A, a plate 1 of carbon and a metal tray 17 for accommodating the plate 1 are prepared as one of the heat transfer members constituting the composite heat transfer member.
 これらのうち、プレート1は、グラフェン2の積層体から形成された薄い板状のXZ伝熱部材である。 Among these, the plate 1 is a thin plate-like XZ heat transfer member formed of a stack of graphenes 2.
 一方、トレイ17は、以下のような構造となっている。 On the other hand, the tray 17 has the following structure.
 図13Aは、そのトレイ17の構造を示す斜視図であり、図13Bは、その構造のVI-VI線における断面図である。 FIG. 13A is a perspective view showing the structure of the tray 17, and FIG. 13B is a cross-sectional view of the structure taken along line VI-VI.
 図13A、図13Bに示すように、トレイ17は、上面が開口した有底の金属の容器である。 As shown to FIG. 13A and FIG. 13B, the tray 17 is a bottomed metal container which the upper surface opened.
 また、トレイ17の外側面17aの下側には凹部17bが設けられている。この凹部17bの機能については後述する。 Further, a recess 17 b is provided below the outer side surface 17 a of the tray 17. The function of the recess 17b will be described later.
 トレイ17を形成する金属の種類は特に限定されない。例えば、トレイ17を形成する金属としてマグネシウム合金やアルミニウム合金を使用し得る。本実施形態では、その金属として、マグネシウムにアルミニウムと亜鉛とを含み、熱伝導率が51~100W/m・k程度のマグネシウム合金を使用する。 The type of metal forming the tray 17 is not particularly limited. For example, a magnesium alloy or an aluminum alloy can be used as a metal forming the tray 17. In this embodiment, as the metal, a magnesium alloy containing aluminum and zinc in magnesium and having a thermal conductivity of about 51 to 100 W / m · k is used.
 トレイ17の作製方法も特に限定されない。例えば、後述するチクソモールディング法又はダイカスト法によってトレイ17を作製し得る。 The method for producing the tray 17 is also not particularly limited. For example, the tray 17 can be manufactured by a thixo molding method or a die casting method described later.
 このような構造のプレート1及びトレイ17を用意した後、プレート1をトレイ17に収容する。 After preparing the plate 1 and the tray 17 having such a structure, the plate 1 is accommodated in the tray 17.
 図14Aは、プレート1がトレイ17に収容された状態の構造を示す斜視図であり、図14Bは、その構造のVII-VII線における断面図である。 FIG. 14A is a perspective view showing a structure in which the plate 1 is accommodated in the tray 17, and FIG. 14B is a cross-sectional view of the structure taken along line VII-VII.
 図14A、図14Bに示すように、プレート1の表面のうちの下面1bがトレイ17の内側底面17c(図13A、図13B参照)に接するように、プレート1がトレイ17に収容されている。 As shown in FIGS. 14A and 14B, the plate 1 is accommodated in the tray 17 such that the lower surface 1b of the surface of the plate 1 is in contact with the inner bottom surface 17c of the tray 17 (see FIGS. 13A and 13B).
 これにより、プレート1の下面1b及び側面1cがトレイ17で被覆され、プレート1の上面1aのみが露出する。 Thereby, the lower surface 1b and the side surface 1c of the plate 1 are covered with the tray 17, and only the upper surface 1a of the plate 1 is exposed.
 そして、プレート1がトレイ17に収容された状態のプレート1及びトレイ17を鋳造装置の金型のキャビティ内に配置する。 Then, the plate 1 and the tray 17 in a state in which the plate 1 is accommodated in the tray 17 are disposed in the cavity of the mold of the casting apparatus.
 図15は、その鋳造装置の構成を示す図である。この図15では、後述する成型部の一部の断面構造を併せて示している。 FIG. 15 is a view showing the configuration of the casting apparatus. In FIG. 15, a cross-sectional structure of a part of a molding portion described later is also shown.
 図15に示すように、鋳造装置18は、チクソモールディング法によって金属の鋳造成型体を製造する装置であり、原料供給部19、溶融金属射出部20、及び成型部21を備えている。 As shown in FIG. 15, the casting apparatus 18 is an apparatus for producing a cast product of metal by a thixo molding method, and includes a raw material supply unit 19, a molten metal injection unit 20, and a molding unit 21.
 これらのうち、原料供給部19は、溶融金属射出部20に連結されており、後述する溶融した金属の原料となる金属のチップを溶融金属射出部20に供給する。 Among these, the raw material supply unit 19 is connected to the molten metal injection unit 20, and supplies, to the molten metal injection unit 20, a metal chip which is a raw material of molten metal described later.
 原料となる金属のチップの種類は特に限定されない。例えば、金属のチップとして、マグネシウム合金のチップやアルミニウム合金のチップを使用し得る。本実施形態では、その金属のチップとして、マグネシウムにアルミニウムと亜鉛とを含み、熱伝導率が51~100W/m・k程度のマグネシウム合金のチップを使用する。 There is no particular limitation on the type of metal chip as a raw material. For example, as a metal tip, a magnesium alloy tip or an aluminum alloy tip can be used. In this embodiment, a magnesium alloy chip having aluminum and zinc in magnesium and having a thermal conductivity of about 51 to 100 W / m · k is used as the metal chip.
 溶融金属射出部20は、原料供給部19から供給された金属のチップを溶融し、溶融した金属に圧力を加えながらこの溶融した金属を成型部21に射出する。 The molten metal injection unit 20 melts the metal chip supplied from the raw material supply unit 19 and injects the molten metal into the molding unit 21 while applying pressure to the molten metal.
 その溶融金属射出部20は、シリンダ22と、シリンダ22の外側の表面を被覆するヒータ23と、シリンダ22の内側の空間内に設置された不図示のスクリューとを備えている。これらのシリンダ22、ヒータ23及びスクリューの動作については後述する。 The molten metal injection unit 20 includes a cylinder 22, a heater 23 that covers the outer surface of the cylinder 22, and a screw (not shown) installed in the space inside the cylinder 22. The operations of the cylinder 22, the heater 23, and the screw will be described later.
 成型部21は、固定盤24に取り付けられた固定金型25と、可動盤26に取り付けられた可動金型27とを備え、可動金型27の移動によって固定金型25と可動金型27との間にキャビティ28を閉鎖(形成)したり、キャビティ28を開放したりする。 The molding unit 21 includes a fixed mold 25 attached to the fixed board 24 and a movable mold 27 attached to the movable board 26. The movable mold 27 moves the fixed mold 25 and the movable mold 27. Or close the cavity 28 or open the cavity 28 between them.
 このような構成の鋳造装置18において、図11Aに示すように、トレイ17の外側底面17dが固定金型25の表面25aに接するように、プレート1がトレイ17に収容された状態のプレート1及びトレイ17を固定金型25の表面25a上に載置し、不図示の固定具によって固定する。 In the casting apparatus 18 having such a configuration, as shown in FIG. 11A, the plate 1 and the plate 1 are accommodated in the tray 17 so that the outer bottom surface 17d of the tray 17 contacts the surface 25a of the fixed mold 25. The tray 17 is placed on the surface 25 a of the fixed mold 25 and fixed by a fixing tool (not shown).
 その後、可動金型27を固定金型25側に移動させて、固定金型25と可動金型27との間にキャビティ28を形成する。 Thereafter, the movable mold 27 is moved to the fixed mold 25 side to form a cavity 28 between the fixed mold 25 and the movable mold 27.
 このようにして、金型25、27のキャビティ28内に、プレート1がトレイ17に収容された状態のプレート1及びトレイ17を配置する。 Thus, the plate 1 and the tray 17 in a state in which the plate 1 is accommodated in the tray 17 are disposed in the cavity 28 of the molds 25 and 27.
 次に、以下のようにしてキャビティ28内に溶融した金属を供給する。 Next, molten metal is supplied into the cavity 28 as follows.
 まず、鋳造装置18の溶融金属射出部20では、ヒータ23によってシリンダ22を加熱しておく。本実施形態では、原料としてマグネシウム合金のチップを使用するので、ヒータ23によってマグネシウム合金の融点に近い600℃程度の温度でシリンダ22を加熱しておく。 First, in the molten metal injection unit 20 of the casting apparatus 18, the cylinder 22 is heated by the heater 23. In the present embodiment, since a magnesium alloy chip is used as the raw material, the cylinder 22 is heated by the heater 23 at a temperature of about 600 ° C., which is close to the melting point of the magnesium alloy.
 また、成型部21では、不図示のヒータによって固定金型25及び可動金型27を300℃程度の温度に加熱しておく。 Further, in the molding unit 21, the fixed mold 25 and the movable mold 27 are heated to a temperature of about 300 ° C. by a heater (not shown).
 このような状態の鋳造装置18において、原料供給部19からシリンダ22内に原料としてマグネシウム合金のチップを投入する。そして、シリンダ22内で不図示のスクリューを回転させる。 In the casting apparatus 18 in such a state, chips of magnesium alloy are introduced as raw materials into the cylinder 22 from the raw material supply unit 19. Then, a screw (not shown) is rotated in the cylinder 22.
 これにより、シリンダ22内でマグネシウム合金のチップが固液共存の半溶融状態となる。更に、スクリューの回転による剪断応力がこの状態のマグネシウム合金に付加され、樹枝状の固相が細かく切断されて粒状になる。 As a result, the tip of the magnesium alloy in the cylinder 22 is in a semi-solid state in which solid and liquid coexist. Furthermore, shear stress due to screw rotation is applied to the magnesium alloy in this state, and the dendritic solid phase is finely cut into particles.
 この結果、粘性が低下して流動性が増大したチクソトロピー状態のマグネシウム合金がシリンダ22内で形成される。また、スクリューを回転させることにより、チクソトロピー状態のマグネシウム合金は圧力を加えられながら、溶融した金属29として成型部21に射出される。 As a result, a thixotropic magnesium alloy with reduced viscosity and increased flow is formed in the cylinder 22. Further, by rotating the screw, the magnesium alloy in the thixotropy state is injected into the forming portion 21 as the molten metal 29 while being applied pressure.
 このようにして、図11Bに示すように、溶融した金属29を成型部21の金型25、27のキャビティ28内に供給する。 Thus, as shown in FIG. 11B, the molten metal 29 is supplied into the cavity 28 of the molds 25 and 27 of the molding unit 21.
 前述したように、金型25、27は、マグネシウム合金の凝固温度(約400℃)よりも低い300℃程度の温度となっている。このため、溶融した金属29はキャビティ28内に供給された直後から凝固し始める。 As described above, the molds 25 and 27 have a temperature of about 300 ° C. lower than the solidification temperature (about 400 ° C.) of the magnesium alloy. For this reason, the molten metal 29 starts to solidify immediately after being supplied into the cavity 28.
 続いて、図12に示すように、不図示の金型25、27のヒータをオフにすることにより、金属29の温度を室温程度まで下げて、トレイ17の外側面17a及びプレート1の上面1aを被覆する鋳造成型体30を形成する。 Subsequently, as shown in FIG. 12, the temperature of the metal 29 is lowered to about room temperature by turning off the heaters of the molds 25 and 27 (not shown), and the outer surface 17 a of the tray 17 and the upper surface 1 a of the plate 1 Form a cast molding 30 covering the
 このとき、鋳造成型体30がトレイ17の外側面17a及びプレート1の上面1aの凹凸の形状を転写して、鋳造成型体30がトレイ17の外側面17a及びプレート1の上面1aに面接触するようになる。 At this time, the cast molded body 30 transfers the shapes of the unevenness of the outer surface 17 a of the tray 17 and the upper surface 1 a of the plate 1, and the cast molded body 30 contacts the outer surface 17 a of the tray 17 and the upper surface 1 a of the plate 1. It will be.
 また、鋳造成型体30の材料であるマグネシウム合金は、凝固温度から室温に温度が下がるときに収縮する。一方、プレート1の材料であるグラフェン2の積層体は、このときに殆ど収縮しないか、あるいは僅かに膨張する。 Moreover, the magnesium alloy which is the material of the cast-formed body 30 shrinks when the temperature drops from the solidification temperature to room temperature. On the other hand, at this time, the laminate of graphene 2 which is a material of the plate 1 hardly shrinks or slightly expands.
 このように、溶融した金属29の凝固後に鋳造成型体30とプレート1とに収縮量の違いが生じることにより、図12の破線円内で矢印に示すように鋳造成型体30がプレート1の上面1aを押圧するようになる。 As described above, the difference in the amount of contraction occurs between the cast molded body 30 and the plate 1 after solidification of the molten metal 29, whereby the cast molded body 30 is the upper surface of the plate 1 as indicated by the arrow in FIG. It comes to press 1a.
 これらにより、鋳造成型体30がプレート1の上面1aに強く密着する。 As a result, the cast body 30 is strongly in close contact with the upper surface 1 a of the plate 1.
 このため、鋳造成型体30とプレート1との接合界面における熱抵抗が低下して、鋳造成型体30とプレート1との熱伝導率が向上する。 For this reason, the thermal resistance at the bonding interface between the cast and molded body 30 and the plate 1 is reduced, and the thermal conductivity between the cast and molded body 30 and the plate 1 is improved.
 更に、鋳造成型体8の形成時に鋳造成型体30の一部がトレイ17の外側面17aの凹部17b内に充填されて、この凹部17bに嵌合する凸部30bが形成される。 Furthermore, when the cast molded body 8 is formed, a part of the cast molded body 30 is filled in the concave portion 17b of the outer surface 17a of the tray 17, and the convex portion 30b fitted to the concave portion 17b is formed.
 その後、可動金型27を固定金型25から離れるように移動させて、固定金型25からプレート1及びトレイ17を被覆した状態の鋳造成型体30を取り出す。 Thereafter, the movable mold 27 is moved away from the fixed mold 25 and the cast molded body 30 in a state of covering the plate 1 and the tray 17 is taken out of the fixed mold 25.
 そして、プレート1、トレイ17及び鋳造成型体30の一部を切断して、不図示の固定具及びバリ等を削除する。 Then, the plate 1, the tray 17 and a part of the cast molded body 30 are cut to remove fixtures and burrs not shown.
 以上により、本実施形態に係る複合伝熱部材31の基本構造が完成する。 As described above, the basic structure of the composite heat transfer member 31 according to the present embodiment is completed.
 図16Aは、その複合伝熱部材31の構造を示す斜視図であり、図16Bは、その構造のVIII-VIII線における断面図である。 FIG. 16A is a perspective view showing the structure of the composite heat transfer member 31, and FIG. 16B is a cross-sectional view of the structure taken along line VIII-VIII.
 図16A、図16Bに示すように、複合伝熱部材31は、一方の伝熱部材としてのグラフェン2の積層体のプレート1と、他方の伝熱部材としての上面1a以外のプレート1の表面を被覆したマグネシウム合金のトレイ17、及びプレート1の上面1aを被覆したマグネシウム合金の鋳造成型体30とを備えている。 As shown to FIG. 16A and FIG. 16B, the composite heat-transfer member 31 makes the surface of the plate 1 of the laminated body of the graphene 2 as one heat-transfer member, and the plate 1 other than the upper surface 1a as the other heat-transfer member. It comprises a tray 17 of a coated magnesium alloy and a casted magnesium alloy casting 30 coated on the upper surface 1 a of the plate 1.
 プレート1は、X方向及びZ方向の熱伝導率がY方向の熱伝導率よりも高いXZ伝熱部材である。このため、プレート1を含む複合伝熱部材31も基本的にはXZ伝熱部材となる。 The plate 1 is an XZ heat transfer member in which the thermal conductivity in the X direction and the Z direction is higher than the thermal conductivity in the Y direction. For this reason, the composite heat transfer member 31 including the plate 1 is also basically an XZ heat transfer member.
 但し、プレート1の表面がマグネシウム合金のトレイ17及び鋳造成型体30で被覆されているので、比較的低いY方向の熱伝導率も高めることができる。 However, since the surface of the plate 1 is covered with the magnesium alloy tray 17 and the cast-formed body 30, the relatively low thermal conductivity in the Y direction can also be enhanced.
 以上説明したように、本実施形態に係る複合伝熱部材31によれば、炭素のプレート1の表面が金属のトレイ17及び鋳造成型体30で被覆されている。 As described above, according to the composite heat transfer member 31 according to the present embodiment, the surface of the carbon plate 1 is covered with the metal tray 17 and the cast body 30.
 特に、プレート1の上面1aが鋳造成型体30で被覆されている。 In particular, the upper surface 1 a of the plate 1 is covered with the cast molded body 30.
 このため、鋳造成型体30がプレート1の上面1aに面接触すると共に、鋳造成型体30の形成時に鋳造成型体30とプレート1とに収縮量の違いが生じることにより、鋳造成型体30がプレート1の上面1aを押圧するようになる。 For this reason, the cast molded body 30 comes into surface contact with the upper surface 1 a of the plate 1 and a difference in shrinkage between the cast molded body 30 and the plate 1 occurs when the cast molded body 30 is formed. The upper surface 1a of 1 is pressed.
 これにより、鋳造成型体30がプレート1の上面1aに強く密着する。 As a result, the cast body 30 is in close contact with the upper surface 1 a of the plate 1.
 このため、鋳造成型体30とプレート1との接合界面における熱抵抗が低下して、熱伝導部材や熱伝導接着剤を使用せずに鋳造成型体30とプレート1との熱伝導率を向上させることができる。 For this reason, the thermal resistance at the bonding interface between the cast and the molded body 30 and the plate 1 is reduced, and the thermal conductivity between the cast and the molded body 30 and the plate 1 is improved without using a heat conductive member or a heat conductive adhesive. be able to.
 しかも、鋳造成型体30の形成時に生じた鋳造成型体30とプレート1との収縮量の違いにより、複合伝熱部材31が製造された後にも鋳造成型体30には残留引張応力が存在し、プレート1には残留圧縮応力が存在する。 Moreover, due to the difference in the amount of contraction between the cast molded body 30 and the plate 1 generated when the cast molded body 30 is formed, residual tensile stress exists in the cast molded body 30 even after the composite heat transfer member 31 is manufactured, Residual compressive stress is present in the plate 1.
 そして、複合伝熱部材31を高温の環境で使用したときでも、これらの残留応力は失われないので、図16Bの破線円内で矢印に示すように鋳造成型体30がプレート1の上面1aを押圧し続ける。 Then, even when the composite heat transfer member 31 is used in a high temperature environment, these residual stresses are not lost, so the cast molded body 30 is the upper surface 1a of the plate 1 as shown by the arrows in the dashed circle in FIG. Keep pressing.
 このため、鋳造成型体30とプレート1との良好な熱伝導率を維持することができる。 Therefore, good thermal conductivity between the cast and molded body 30 and the plate 1 can be maintained.
 また、複合伝熱部材31では、グラフェン2の積層体のプレート1とマグネシウム合金のトレイ17及び鋳造成型体30とを組み合わせることにより、銅の熱伝導率と同程度の熱伝導率を有しながら、その比重を銅の比重よりも大幅に小さくすることができる。 Further, in the composite heat transfer member 31, while combining the plate 1 of the laminate of the graphene 2 with the tray 17 of the magnesium alloy and the cast-formed body 30, the thermal conductivity is about the same as the thermal conductivity of copper. , Its specific gravity can be made much smaller than that of copper.
 このため、複合伝熱部材31を軽量化又は小型化することができる。 Therefore, the composite heat transfer member 31 can be reduced in weight or size.
 しかも、プレート1が金属のトレイ17に収容されているので、組成が脆く、崩れ易いプレート1の取り扱いが容易になる。 In addition, since the plate 1 is accommodated in the metal tray 17, the composition is fragile and handling of the easily fragile plate 1 is facilitated.
 また、本実施形態によれば、トレイ17の外側面17aの凹部17bに鋳造成型体30の凸部30bが嵌合しているので、鋳造成型体30がトレイ17から外れるのを抑制することができる。 Further, according to the present embodiment, since the convex portion 30 b of the cast molded body 30 is fitted to the concave portion 17 b of the outer side surface 17 a of the tray 17, the cast molded body 30 is prevented from coming off the tray 17. it can.
 上述した本実施形態では、鋳造成型体30をチクソモールディング法によって形成しているが、鋳造成型体30の形成方法はこれに限定されない。例えば、ダイカスト法によって鋳造成型体を形成してもよい。 In the embodiment described above, the cast molded body 30 is formed by the thixo molding method, but the method of forming the cast molded body 30 is not limited to this. For example, the cast molded body may be formed by a die casting method.
 また、XZ伝熱部材であるプレート1をトレイ17に収容しているが、図7に示すXY伝熱部材であるプレート13をトレイ17に収容してもよい。更に、XZ伝熱部材のプレート及びXY伝熱部材のプレートによって所望の熱移動経路を形成して、トレイ17に収容してもよい。 Further, although the plate 1 which is an XZ heat transfer member is accommodated in the tray 17, the plate 13 which is an XY heat transfer member shown in FIG. 7 may be accommodated in the tray 17. Furthermore, a desired heat transfer path may be formed by the plate of the XZ heat transfer member and the plate of the XY heat transfer member, and may be accommodated in the tray 17.
 (変形例)
 本変形例では、上述した第2実施形態とは異なる形状のプレート及びトレイを使用する。
(Modification)
In this modification, a plate and a tray having a shape different from that of the second embodiment described above are used.
 なお、本変形例において、第2実施形態と同じ要素には第2実施形態におけるのと同じ符号を付し、以下ではその説明を省略する。 In the present modification, the same components as those in the second embodiment are denoted by the same reference numerals as those in the second embodiment, and the description thereof will be omitted below.
 図17Aは、本変形例のプレートの構造を示す斜視図であり、図17Bは、その構造のIX-IX線における断面図である。 FIG. 17A is a perspective view showing the structure of the plate of this modification, and FIG. 17B is a cross-sectional view of the structure taken along line IX-IX.
 図17A、図17Bに示すように、プレート32は、第2実施形態のプレート1と同じく、グラフェン2の積層体から形成された薄い板状のXZ伝熱部材である。 As shown in FIGS. 17A and 17B, the plate 32 is a thin plate-like XZ heat transfer member formed of a stack of graphenes 2 like the plate 1 of the second embodiment.
 一方、本変形例のプレート32は、第2実施形態のプレート1と異なり、上面32aから下面32bを貫通する貫通孔32dが設けられている。 On the other hand, unlike the plate 1 of the second embodiment, the plate 32 of the present modified example is provided with a through hole 32d that penetrates the upper surface 32a to the lower surface 32b.
 その貫通孔32dを設ける位置及び数は特に限定されない。本実施形態では、プレート32のX方向の左側端部、中央、及び右側端部において、Y方向に間隔をおいて2つずつ貫通孔32dを設ける。 The position and number of the through holes 32d are not particularly limited. In the present embodiment, two through holes 32 d are provided at intervals in the Y direction at the left end, the center, and the right end of the plate 32 in the X direction.
 また、図18Aは、本変形例のトレイの構造を示す斜視図であり、図18Bは、その構造のX-X線における断面図である。 FIG. 18A is a perspective view showing the structure of the tray of this modification, and FIG. 18B is a cross-sectional view of the structure taken along line XX.
 図18A、図18Bに示すように、トレイ33は、上面が開口した有底の金属の容器である。 As shown in FIGS. 18A and 18B, the tray 33 is a bottomed metal container whose top surface is open.
 また、トレイ33の外側面33aの下側には凹部33bが設けられている。 Further, a recess 33 b is provided below the outer side surface 33 a of the tray 33.
 更に、トレイ33の底には、中央に第1の開口33eが設けられ、左側端部及び右側端部に第1の開口33eよりも大きい第2の開口33fが設けられている。これらの開口33e、33fを設ける位置及び数については後述する。 Furthermore, at the bottom of the tray 33, a first opening 33e is provided at the center, and a second opening 33f larger than the first opening 33e is provided at the left end and the right end. The positions and the number of the openings 33e and 33f will be described later.
 また、第1の開口33e及び第2の開口33fは、トレイ33の外側底面33dから内側底面33cに向かうにつれて幅が狭くなるテーパ形状となっている。 Further, the first opening 33e and the second opening 33f have a tapered shape in which the width is narrowed from the outer bottom surface 33d to the inner bottom surface 33c of the tray 33.
 トレイ33を形成する金属の種類は特に限定されない。 The type of metal forming the tray 33 is not particularly limited.
 例えば、トレイ33を形成する金属としてマグネシウム合金やアルミニウム合金を使用し得る。本実施形態では、その金属として、マグネシウムにアルミニウムと亜鉛とを含み、熱伝導率が51~100W/m・k程度のマグネシウム合金を使用する。 For example, a magnesium alloy or an aluminum alloy can be used as a metal forming the tray 33. In this embodiment, as the metal, a magnesium alloy containing aluminum and zinc in magnesium and having a thermal conductivity of about 51 to 100 W / m · k is used.
 トレイ33の作製方法も特に限定されない。例えば、チクソモールディング法又はダイカスト法によってトレイ33を作製し得る。 The method of producing the tray 33 is also not particularly limited. For example, the tray 33 can be manufactured by a thixo molding method or a die casting method.
 このような構造のプレート32及びトレイ33を用意した後、プレート32をトレイ33に収容する。 After preparing the plate 32 and the tray 33 having such a structure, the plate 32 is accommodated in the tray 33.
 図19Aは、プレート32がトレイ33に収容された状態の構造を示す斜視図であり、図19Bは、その構造のXI-XI線における断面図である。 FIG. 19A is a perspective view showing a structure in which the plate 32 is accommodated in the tray 33, and FIG. 19B is a cross-sectional view of the structure taken along line XI-XI.
 図19A、図19Bに示すように、プレート32の表面のうちの下面32bがトレイ33の内側底面33c(図18A、図18B参照)に接するように、プレート32がトレイ33に収容されている。 As shown in FIGS. 19A and 19B, the plate 32 is accommodated in the tray 33 such that the lower surface 32b of the surface of the plate 32 is in contact with the inner bottom surface 33c of the tray 33 (see FIGS. 18A and 18B).
 これにより、プレート32の下面32b及び側面32cがトレイ33で被覆され、プレート32の上面32aのみが露出する。 Thereby, the lower surface 32 b and the side surface 32 c of the plate 32 are covered with the tray 33, and only the upper surface 32 a of the plate 32 is exposed.
 また、プレート32の貫通孔32dのうち、中央の2つの貫通孔32dが、プレート32の厚さ方向(Z方向)でトレイ33の中央の2つの第1の開口33eと連通する。 Further, among the through holes 32 d of the plate 32, the central two through holes 32 d communicate with the first two openings 33 e in the center of the tray 33 in the thickness direction (Z direction) of the plate 32.
 更に、左側端部の2つの貫通孔32dが、貫通孔32dよりも大きいトレイ33の左側端部の第2の開口33fとZ方向で連通し、右側端部の2つの貫通孔32dが、貫通孔32dよりも大きいトレイ33の右側端部の第2の開口33fとZ方向で連通する。 Furthermore, the two through holes 32d at the left end communicate with the second opening 33f at the left end of the tray 33 larger than the through holes 32d in the Z direction, and the two through holes 32d at the right end penetrate It communicates with the second opening 33 f at the right end of the tray 33 larger than the hole 32 d in the Z direction.
 このようにプレート32がトレイ33に収容された状態のプレート32及びトレイ33に対して、第2実施形態の図11A~図12の工程と、その後の固定具及びバリ等の削除とを行うことにより、本変形例に係る複合伝熱部材の構造が得られる。 Thus, the steps of FIGS. 11A to 12 of the second embodiment and the subsequent removal of fixtures and burrs are performed on the plate 32 and the tray 33 in a state in which the plate 32 is accommodated in the tray 33. Thus, the structure of the composite heat transfer member according to the present modification is obtained.
 図20Aは、その複合伝熱部材の構造を示す斜視図であり、図20Bは、その構造のXII-XII線における断面図である。 FIG. 20A is a perspective view showing the structure of the composite heat transfer member, and FIG. 20B is a cross-sectional view of the structure taken along line XII-XII.
 図20A、図20Bに示すように、本変形例に係る複合伝熱部材34は、一方の伝熱部材としてのグラフェン2の積層体のプレート32と、他方の伝熱部材としての上面32a以外のプレート32の表面を被覆したマグネシウム合金のトレイ33、及びプレート32の上面32aを被覆したマグネシウム合金の鋳造成型体30とを備えている。 As shown to FIG. 20A and FIG. 20B, the composite heat-transfer member 34 which concerns on this modification is other than the plate 32 of the laminated body of the graphene 2 as one heat-transfer member, and the upper surface 32a as the other heat-transfer member. A tray 33 of magnesium alloy coated on the surface of the plate 32 and a cast molding 30 of magnesium alloy coated on the upper surface 32 a of the plate 32 are provided.
 本変形例によれば、鋳造成型体30の一部30aがプレート32の貫通孔32dとトレイ33の開口33e、33fとに充填されている。 According to this modification, the part 30 a of the cast body 30 is filled in the through holes 32 d of the plate 32 and the openings 33 e and 33 f of the tray 33.
 これにより、その一部30aを介してプレート32の上面32aを被覆する鋳造成型体30と下面32bを被覆する鋳造成型体30とが連結される。 Thereby, the cast molded body 30 which covers the upper surface 32a of the plate 32 and the cast molded body 30 which covers the lower surface 32b are connected via the part 30a.
 前述したように、鋳造成型体30の形成時に生じた鋳造成型体30とプレート32との収縮量の違いにより、複合伝熱部材34が製造された後にも矢印で示すように鋳造成型体30には残留引張応力TSが存在する。 As described above, due to the difference in the amount of contraction between the cast molded body 30 and the plate 32 generated during the formation of the cast molded body 30, even after the composite heat transfer member 34 is manufactured, the cast molded body 30 is There is a residual tensile stress TS.
 そして、高温の環境で使用したときでも、この残留引張応力TSは失われないので、破線円内で矢印に示すように鋳造成型体30がプレート32の上面32aを押圧し続けることができる。 And, even when used in a high temperature environment, the residual tensile stress TS is not lost, so that the cast body 30 can continue to press the upper surface 32 a of the plate 32 as shown by the arrows in the dashed circle.
 更に、トレイ33の第2の開口33fが、これと連通するプレート32の貫通孔32dよりも大きい。 Furthermore, the second opening 33 f of the tray 33 is larger than the through hole 32 d of the plate 32 communicating therewith.
 このため、その第2の開口33fに充填された鋳造成型体30の一部30aにより、破線円内で矢印に示すように鋳造成型体30がプレート32の下面32bも押圧し続けることができる。 For this reason, the cast molded body 30 can continue to press the lower surface 32 b of the plate 32 as shown by the arrow in the broken line circle by the part 30 a of the cast molded body 30 filled in the second opening 33 f.
 これらにより、鋳造成型体30とプレート32とのより一層良好な熱伝導率を維持することができる。 By these, it is possible to maintain better thermal conductivity of the cast and molded body 30 and the plate 32.
 また、本変形例によれば、トレイ33の外側面33aの凹部33bに、鋳造成型体30の凸部30bが嵌合している。これに加えて、トレイ33の底のテーパ形状の第1の開口33e及び第2の開口33fに、鋳造成型体30の一部30aが嵌合している。 Further, according to this modification, the convex portion 30 b of the cast molded body 30 is fitted in the concave portion 33 b of the outer side surface 33 a of the tray 33. In addition to this, a portion 30 a of the cast body 30 is fitted in the tapered first and second openings 33 e and 33 f of the bottom of the tray 33.
 これらにより、鋳造成型体30がトレイ33から外れるのをより一層抑制することができる。 As a result, the cast body 30 can be further suppressed from coming off the tray 33.
 (第3実施形態)
 第1実施形態及び第2実施形態では、複合伝熱部材としてヒートスプレッダを製造したが、本実施形態では、複合伝熱部材としてヒートシンクの機能を兼ねたヒートスプレッダを製造する。
Third Embodiment
In the first embodiment and the second embodiment, the heat spreader is manufactured as the composite heat transfer member, but in the present embodiment, the heat spreader having the function of a heat sink is manufactured as the composite heat transfer member.
 図21Aは、その複合伝熱部材の構造を示す斜視図であり、図21Bは、その構造のXIII-XIII線における断面図である。なお、図21A、図21Bにおいて、第2実施形態と同じ要素には第2実施形態におけるそれと同じ符号を付し、以下ではその説明を省略する。 FIG. 21A is a perspective view showing the structure of the composite heat transfer member, and FIG. 21B is a cross-sectional view of the structure taken along line XIII-XIII. 21A and 21B, the same elements as in the second embodiment are given the same reference numerals as those in the second embodiment, and the description thereof will be omitted below.
 図21A、図21Bに示すように、本実施形態に係る複合伝熱部材35は、基本的には第2実施形態に係る複合伝熱部材31と同じ構造を有している。 As shown in FIGS. 21A and 21B, the composite heat transfer member 35 according to the present embodiment basically has the same structure as the composite heat transfer member 31 according to the second embodiment.
 すなわち、複合伝熱部材35も、一方の伝熱部材としてのグラフェン2の積層体のプレート1と、他方の伝熱部材としての上面1a以外のプレート1の表面を被覆したマグネシウム合金のトレイ17、及びプレート1の上面1aを被覆したマグネシウム合金の鋳造成型体30とを備えている。 That is, the composite heat transfer member 35 is also a plate 1 of a laminate of graphene 2 as one heat transfer member, and a magnesium alloy tray 17 covering the surface of the plate 1 other than the upper surface 1a as the other heat transfer member, And a cast-formed body 30 of magnesium alloy coated on the upper surface 1 a of the plate 1.
 更に、複合伝熱部材35では、鋳造成型体30の外側上面30cに複数のフィン30dが設けられている。 Furthermore, in the composite heat transfer member 35, a plurality of fins 30d are provided on the outer upper surface 30c of the cast molded body 30.
 このような構造の複合伝熱部材35は、第2実施形態で使用した可動金型27を替えて、フィン30d形成用の可動金型を使用すれば、第2実施形態の図11A~図12と同じ工程を行うことによって得ることができる。 The composite heat transfer member 35 having such a structure is obtained by changing the movable mold 27 used in the second embodiment and using the movable mold for forming the fins 30 d as shown in FIGS. 11A to 12 of the second embodiment. Can be obtained by performing the same steps.
 このように、本実施形態によれば、鋳造成型体30にフィン30dが設けられている。 Thus, according to the present embodiment, the casting 30 is provided with the fin 30 d.
 このため、複合伝熱部材35により、電子部品や電子機器から発生した熱を移動させるだけでなく、その熱をフィン30dから放熱することもできる。 Therefore, not only the heat generated from the electronic component or the electronic device can be moved by the composite heat transfer member 35, but also the heat can be dissipated from the fins 30d.
 しかも、鋳造成型体30とフィン30dとが一体になっているので、鋳造成型体とフィンとが個別に設けられている場合と比べると、これらを接合するための熱伝導部材や熱伝導接着剤を使用しない分、熱抵抗を低減することができる。 Moreover, since the cast-molded body 30 and the fins 30 d are integrated, the thermally-conductive member and the thermally-conductive adhesive for joining these as compared to the case where the cast-molded body and the fins are separately provided. The heat resistance can be reduced by using no
 なお、上述した本実施形態に係る複合伝熱部材35は、第2実施形態に係る複合伝熱部材31と基本的に同じ構造を有するものであるが、この構造に限定されない。 In addition, although the composite heat-transfer member 35 which concerns on this embodiment mentioned above has a fundamentally the same structure as the composite heat-transfer member 31 which concerns on 2nd Embodiment, it is not limited to this structure.
 例えば、本実施形態に係る複合伝熱部材が、第1実施形態に係る複合伝熱部材9と基本的に同じ構造を有するものであってもよい。この場合は、鋳造成型体8の外側上面に複数のフィンが設けられるようにすればよい。 For example, the composite heat transfer member according to the present embodiment may have basically the same structure as the composite heat transfer member 9 according to the first embodiment. In this case, a plurality of fins may be provided on the outer upper surface of the cast molded body 8.
 (第4実施形態)
 上述した第1実施形態では、プレート1としてXZ伝熱部材のプレートを使用したが、本変形例では、2種類の熱伝導率異方性を有する伝熱部材のプレートを使用する。
Fourth Embodiment
In the first embodiment described above, the plate of the XZ heat transfer member is used as the plate 1, but in the present modification, the plate of the heat transfer member having two types of thermal conductivity anisotropy is used.
 なお、本実施形態において、第1実施形態と同じ要素には第1実施形態におけるそれと同じ符号を付し、以下ではその説明を省略する。 In the present embodiment, the same elements as in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and the description thereof will be omitted below.
 図22は、本実施形態のプレートの構造を示す斜視図である。 FIG. 22 is a perspective view showing the structure of the plate of the present embodiment.
 図22に示すように、プレート41は、伝熱部材101及び伝熱部材43を含む。 As shown in FIG. 22, the plate 41 includes the heat transfer member 101 and the heat transfer member 43.
 伝熱部材101はプレート1と同様の構造を有する。すなわち、伝熱部材101では、Y方向にグラフェン2が積層され、グラフェン2の面内方向はX-Z方向となっている。従って、伝熱部材101はXZ伝熱部材である。 The heat transfer member 101 has the same structure as the plate 1. That is, in the heat transfer member 101, the graphene 2 is stacked in the Y direction, and the in-plane direction of the graphene 2 is the XZ direction. Therefore, the heat transfer member 101 is an XZ heat transfer member.
 伝熱部材43はグラフェン2の積層体からなる薄い板状の伝熱部材である。伝熱部材43において、グラフェン2は伝熱部材43の厚さ方向、すなわちZ方向に積層され、グラフェン2の面内方向はX-Y方向となっている。従って、伝熱部材43はXY伝熱部材である。 The heat transfer member 43 is a thin plate-like heat transfer member formed of a stack of graphenes 2. In the heat transfer member 43, the graphene 2 is stacked in the thickness direction of the heat transfer member 43, that is, the Z direction, and the in-plane direction of the graphene 2 is the XY direction. Therefore, the heat transfer member 43 is an XY heat transfer member.
 例えば、伝熱部材43のY方向の寸法は伝熱部材101のY方向の寸法と一致し、伝熱部材101のX方向の一方の側面に伝熱部材43のX方向の側面が接し、伝熱部材101のX方向の一方の端部が伝熱部材43に連結されている。 For example, the dimension of the heat transfer member 43 in the Y direction matches the dimension of the heat transfer member 101 in the Y direction, one side surface of the heat transfer member 101 in the X direction is in contact with the side surface of the heat transfer member 43 in the X direction, One end of the heat member 101 in the X direction is connected to the heat transfer member 43.
 また、プレート41の上面41a及び下面41bは矩形状である。その上面41a及び下面41bの長い方の辺が伸びる方向がX方向となり、短い方の辺が伸びる方向がY方向となっている。 The upper surface 41a and the lower surface 41b of the plate 41 are rectangular. The direction in which the longer sides of the upper surface 41a and the lower surface 41b extend is the X direction, and the direction in which the shorter sides extend is the Y direction.
 このような構造のプレート41に対して、第1実施形態の図1A~図2の工程と、その後の固定具3及びバリ等の削除とを行うことにより、本実施形態に係る複合伝熱部材の構造が得られる。 The composite heat transfer member according to the present embodiment is performed by performing the steps of FIGS. 1A and 2 of the first embodiment and the subsequent removal of the fixture 3 and burrs and the like to the plate 41 having such a structure. The structure of is obtained.
 図23Aは、その複合伝熱部材の構造を示す斜視図であり、図23Bは、その構造のXIV-XIV線における断面図である。 FIG. 23A is a perspective view showing the structure of the composite heat transfer member, and FIG. 23B is a cross-sectional view of the structure taken along line XIV-XIV.
 図23A、図23Bに示すように、本実施形態に係る複合伝熱部材49は、グラフェン2の積層体のプレート41と、X方向の側面41c以外のプレート41の表面を被覆したマグネシウム合金の鋳造成型体8とを備えている。 As shown to FIG. 23A and FIG. 23B, the composite heat-transfer member 49 which concerns on this embodiment casts the magnesium alloy which coat | covered the surface of the plate 41 of the laminated body of the graphene 2, and the plate 41 other than the side 41c of a X direction. And a molded body 8.
 ここで、複合伝熱部材49における熱の伝達経路について説明する。図24は、第4実施形態におけるプレート41での熱の伝達経路の例を示す図である。図24には、XY平面内の熱の伝達経路を示す。ここでは、プレート41の下面41b側の中央に熱源100があるとする。 Here, the heat transfer path in the composite heat transfer member 49 will be described. FIG. 24 is a diagram showing an example of a heat transfer path of the plate 41 in the fourth embodiment. FIG. 24 shows the heat transfer path in the XY plane. Here, it is assumed that the heat source 100 is located at the center of the lower surface 41 b of the plate 41.
 熱源100から発せられた熱は、先ず、伝熱部材101を構成するグラフェン2のうちでY方向の中心付近に位置するものを介してZ方向に伝達されると共に、X方向に伝達される(矢印A)。その後、熱の一部は伝熱部材101のX方向の一方の端部にて伝熱部材43に伝達され、この熱は伝熱部材43を介して更にX方向に伝達されると共に、Y方向に伝達される(矢印B)。伝熱部材43を伝達する熱の一部は伝熱部材101の一部に伝達され、この熱は伝熱部材101を介してZ方向に伝達されると共に、X方向に伝達される(矢印C)。そして、プレート41は鋳造成型体8に密着しているため、鋳造成型体8から熱が外部に放出される。 The heat generated from the heat source 100 is first transmitted in the Z direction via the graphene 2 constituting the heat transfer member 101 located in the vicinity of the center in the Y direction and also transmitted in the X direction (( Arrow A). Thereafter, part of the heat is transferred to the heat transfer member 43 at one end of the heat transfer member 101 in the X direction, and this heat is further transferred in the X direction via the heat transfer member 43 and in the Y direction (Arrow B). A part of the heat transferred to the heat transfer member 43 is transferred to a part of the heat transfer member 101, and this heat is transferred in the Z direction via the heat transfer member 101 and in the X direction (arrow C ). Since the plate 41 is in close contact with the cast molded body 8, heat is released from the cast molded body 8 to the outside.
 従って、第4実施形態によれば、第1実施形態と同様の効果が得られると共に、X方向及びY方向において優れた熱伝導率を得ることができる。例えば、鋳造成型体8の形成時に生じた鋳造成型体8とプレート41との収縮量の違いにより、複合伝熱部材49が製造された後にも鋳造成型体8には残留引張応力が存在し、プレート41には残留圧縮応力が存在する。そして、例えば、複合伝熱部材49を150℃程度の高温の環境で使用したときでも、これらの残留応力は小さくなるとしても失われないので、図23Bの破線円内で矢印に示すように鋳造成型体8がプレート41の表面を押圧し続ける。このため、鋳造成型体8とプレート41との良好な熱伝導率を維持することができる。 Therefore, according to the fourth embodiment, the same effect as that of the first embodiment can be obtained, and an excellent thermal conductivity can be obtained in the X direction and the Y direction. For example, due to the difference in the amount of contraction between the cast molded body 8 and the plate 41 generated during the formation of the cast molded body 8, residual tensile stress exists in the cast molded body 8 even after the composite heat transfer member 49 is manufactured, Residual compressive stress is present on the plate 41. Then, for example, even when the composite heat transfer member 49 is used in a high temperature environment of about 150 ° C., these residual stresses are not lost even if they become smaller, so as shown by the arrows in the dashed circle in FIG. The molded body 8 continues to press the surface of the plate 41. Therefore, good thermal conductivity between the cast and molded body 8 and the plate 41 can be maintained.
 (変形例)
 本変形例では、プレート41とは異なる形状のプレートを使用する。
(Modification)
In this modification, a plate having a shape different from that of the plate 41 is used.
 なお、本変形例において、第4実施形態と同じ要素には第4実施形態におけるそれと同じ符号を付し、以下ではその説明を省略する。 In the present modification, the same elements as in the fourth embodiment are denoted by the same reference numerals as those in the fourth embodiment, and the description thereof will be omitted below.
 図25Aは、本変形例のプレートの構造を示す斜視図であり、図25Bは、その構造のXV-XV線における断面図である。 FIG. 25A is a perspective view showing the structure of the plate of this modification, and FIG. 25B is a cross-sectional view of the structure taken along line XV-XV.
 図25A、図25Bに示すように、プレート44は伝熱部材101に代えて伝熱部材115を含む。伝熱部材115はプレート15と同様の構造を有する。すなわち、伝熱部材115は、グラフェン2の積層体から形成され、上面44aから下面44bに至る貫通孔44dが設けられた薄い板状のXZ伝熱部材である。 As shown in FIGS. 25A and 25B, the plate 44 includes a heat transfer member 115 instead of the heat transfer member 101. The heat transfer member 115 has the same structure as the plate 15. That is, the heat transfer member 115 is a thin plate-like XZ heat transfer member which is formed of a stack of graphenes 2 and provided with the through holes 44 d from the upper surface 44 a to the lower surface 44 b.
 このような構造のプレート44に対して、第1実施形態の図1A~図2の工程と、その後の固定具3及びバリ等の削除とを行うことにより、本変形例に係る複合伝熱部材の構造が得られる。 The composite heat transfer member according to the present modification is performed by performing the steps of FIGS. 1A and 2 of the first embodiment and the subsequent removal of the fixture 3 and burrs and the like to the plate 44 having such a structure. The structure of is obtained.
 図26Aは、その複合伝熱部材の構造を示す斜視図であり、図26Bは、その構造のXVI-XVI線における断面図である。 FIG. 26A is a perspective view showing the structure of the composite heat transfer member, and FIG. 26B is a cross-sectional view of the structure taken along line XVI-XVI.
 図26A、図26Bに示すように、本変形例に係る複合伝熱部材46は、グラフェン2の積層体のプレート44と、X方向の側面44c以外のプレート44の表面を被覆したマグネシウム合金の鋳造成型体8とを備えている。 As shown in FIGS. 26A and 26B, the composite heat transfer member 46 according to the present modification is cast of a magnesium alloy in which the surface of the plate 44 of the stack of graphene 2 and the plate 44 other than the side surface 44c in the X direction is covered. And a molded body 8.
 本変形例によれば、鋳造成型体8の一部8aがプレート44の貫通孔44dに充填されている。 According to this modification, a part 8 a of the cast body 8 is filled in the through hole 44 d of the plate 44.
 これにより、その一部8aを介してプレート44の上面44aを被覆する鋳造成型体8と下面44bを被覆する鋳造成型体8とが連結される。 Thereby, the cast molded body 8 which covers the upper surface 44a of the plate 44 and the cast molded body 8 which covers the lower surface 44b are connected via the part 8a.
 第1実施形態の第2の変形例と同様に、鋳造成型体8の形成時に生じた鋳造成型体8とプレート44との収縮量の違いにより、矢印で示すように鋳造成型体8には残留引張応力TSが存在する。 As in the second modification of the first embodiment, the difference in the amount of contraction between the cast molded body 8 and the plate 44 generated when forming the cast molded body 8 causes the cast molded body 8 to remain as shown by the arrows. There is a tensile stress TS.
 そして、複合伝熱部材46を高温の環境で使用したときでも、この残留引張応力TSは失われないので、破線円内で矢印に示すように鋳造成型体8がプレート44の表面を押圧し続ける。このため、鋳造成型体8とプレート44との良好な熱伝導率を維持することができる。 And, even when the composite heat transfer member 46 is used in a high temperature environment, the residual tensile stress TS is not lost, so the cast molded body 8 continues to press the surface of the plate 44 as shown by the arrows in the dashed circle. . Thus, good thermal conductivity between the cast and molded body 8 and the plate 44 can be maintained.
 (第5実施形態)
 本実施形態では、第4実施形態とは異なる鋳造方法によって複合伝熱部材を製造する。すなわち、本実施形態では、プレート41及び図13A、図13Bに示すトレイ17を用意し、第2実施形態と同様の方法によって複合伝熱部材を製造する。
Fifth Embodiment
In this embodiment, the composite heat transfer member is manufactured by a casting method different from that of the fourth embodiment. That is, in the present embodiment, the plate 41 and the tray 17 shown in FIGS. 13A and 13B are prepared, and the composite heat transfer member is manufactured by the same method as the second embodiment.
 図27Aは、プレート41がトレイ17に収容された状態の構造を示す斜視図であり、図27Bは、その構造のXVII-XVII線における断面図である。 FIG. 27A is a perspective view showing a structure in which the plate 41 is accommodated in the tray 17, and FIG. 27B is a cross-sectional view of the structure taken along line XVII-XVII.
 図27A、図27Bに示すように、プレート41の表面のうちの下面41bがトレイ17の内側底面17c(図13A、図13B参照)に接するように、プレート41がトレイ17に収容されている。 As shown in FIGS. 27A and 27B, the plate 41 is accommodated in the tray 17 such that the lower surface 41b of the surface of the plate 41 is in contact with the inner bottom surface 17c of the tray 17 (see FIGS. 13A and 13B).
 これにより、プレート41の下面41b及び側面41cがトレイ17で被覆され、プレート41の上面41aのみが露出する。 Thereby, the lower surface 41 b and the side surface 41 c of the plate 41 are covered with the tray 17, and only the upper surface 41 a of the plate 41 is exposed.
 そして、第2実施形態と同様にして、プレート41がトレイ17に収容された状態のプレート41及びトレイ17を鋳造装置18の可動金型27及び固定金型25のキャビティ28内に配置し、キャビティ28内に溶融した金属を供給し、鋳造成型体30を形成する。 Then, as in the second embodiment, the plate 41 and the tray 17 in a state in which the plate 41 is accommodated in the tray 17 are disposed in the cavity 28 of the movable mold 27 and the fixed mold 25 of the casting apparatus 18. The molten metal is supplied into the chamber 28 to form the cast body 30.
 その後、可動金型27を固定金型25から離れるように移動させて、固定金型25からプレート41及びトレイ17を被覆した状態の鋳造成型体30を取り出す。 Thereafter, the movable mold 27 is moved away from the fixed mold 25, and the cast molding 30 covering the plate 41 and the tray 17 is taken out of the fixed mold 25.
 そして、プレート41、トレイ17及び鋳造成型体30の一部を切断して、不図示の固定具及びバリ等を削除する。 Then, the plate 41, the tray 17 and a part of the cast molding 30 are cut to remove fixtures and burrs not shown.
 以上により、本実施形態に係る複合伝熱部材51の基本構造が完成する。 As described above, the basic structure of the composite heat transfer member 51 according to the present embodiment is completed.
 図28Aは、その複合伝熱部材51の構造を示す斜視図であり、図28Bは、その構造のXVIII-XVIII線における断面図である。 FIG. 28A is a perspective view showing the structure of the composite heat transfer member 51, and FIG. 28B is a cross-sectional view of the structure taken along line XVIII-XVIII.
 図28A、図28Bに示すように、複合伝熱部材51は、一方の伝熱部材としてのグラフェン2の積層体のプレート41と、他方の伝熱部材としての上面41a以外のプレート41の表面を被覆したマグネシウム合金のトレイ17、及びプレート41の上面41aを被覆したマグネシウム合金の鋳造成型体30とを備えている。 As shown to FIG. 28A and FIG. 28B, the composite heat-transfer member 51 makes the surface of the plate 41 of the laminated body of the graphene 2 as one heat-transfer member, and the plate 41 other than the upper surface 41a as the other heat-transfer member. It is provided with the tray 17 of the coated magnesium alloy, and the cast molding 30 of the magnesium alloy which coat | covered the upper surface 41a of the plate 41. As shown in FIG.
 このような第5実施形態によれば、第4実施形態の効果及び第2実施形態の効果を得ることができる。例えば、鋳造成型体30の形成時に生じた鋳造成型体30とプレート41との収縮量の違いにより、複合伝熱部材51が製造された後にも鋳造成型体30には残留引張応力が存在し、プレート41には残留圧縮応力が存在する。そして、複合伝熱部材51を高温の環境で使用したときでも、これらの残留応力は失われないので、図28Bの破線円内で矢印に示すように鋳造成型体30がプレート41の上面41aを押圧し続ける。このため、鋳造成型体30とプレート41との良好な熱伝導率を維持することができる。 According to such a fifth embodiment, the effects of the fourth embodiment and the effects of the second embodiment can be obtained. For example, due to the difference in the amount of contraction between the cast molded body 30 and the plate 41 generated when forming the cast molded body 30, residual tensile stress exists in the cast molded body 30 even after the composite heat transfer member 51 is manufactured, Residual compressive stress is present on the plate 41. Then, even when the composite heat transfer member 51 is used in a high temperature environment, these residual stresses are not lost, so the cast molded body 30 is the upper surface 41 a of the plate 41 as shown by the arrow in the dashed circle in FIG. 28B. Keep pressing. Therefore, good thermal conductivity between the cast and molded body 30 and the plate 41 can be maintained.
 (変形例)
 本変形例では、上述した第5実施形態とは異なる形状のプレート及びトレイを使用する。
(Modification)
In this modification, plates and trays having shapes different from those of the fifth embodiment described above are used.
 なお、本変形例において、第5実施形態と同じ要素には第5実施形態におけるのと同じ符号を付し、以下ではその説明を省略する。 In the present modification, the same elements as in the fifth embodiment are given the same reference numerals as in the fifth embodiment, and the description thereof will be omitted below.
 図29Aは、本変形例のプレートの構造を示す斜視図であり、図29Bは、その構造のXIX-XIX線における断面図である。 FIG. 29A is a perspective view showing the structure of the plate of this modification, and FIG. 29B is a cross-sectional view of the structure taken along line XIX-XIX.
 図29A、図29Bに示すように、プレート52は伝熱部材101に代えて伝熱部材132を含む。伝熱部材132はプレート32と同様の構造を有する。すなわち、伝熱部材132は、グラフェン2の積層体から形成され、上面52aから下面52bに至る貫通孔52dが設けられた薄い板状のXZ伝熱部材である。 As shown in FIGS. 29A and 29B, the plate 52 includes a heat transfer member 132 instead of the heat transfer member 101. The heat transfer member 132 has the same structure as the plate 32. That is, the heat transfer member 132 is a thin plate-like XZ heat transfer member which is formed of a stack of graphenes 2 and provided with the through holes 52 d from the upper surface 52 a to the lower surface 52 b.
 トレイとしては、第2実施形態の変形例と同様に、図18A、図18Bに示すトレイ33を用いる。プレート52及びトレイ33を用意した後、プレート52をトレイ33に収容する。 As a tray, the tray 33 shown to FIG. 18A and FIG. 18B is used similarly to the modification of 2nd Embodiment. After preparing the plate 52 and the tray 33, the plate 52 is accommodated in the tray 33.
 図30Aは、プレート52がトレイ33に収容された状態の構造を示す斜視図であり、図30Bは、その構造のXX-XX線における断面図である。 FIG. 30A is a perspective view showing a structure in which the plate 52 is accommodated in the tray 33, and FIG. 30B is a cross-sectional view of the structure taken along line XX-XX.
 図30A、図30Bに示すように、プレート52の表面のうちの下面52bがトレイ33の内側底面33c(図18A、図18B参照)に接するように、プレート52がトレイ33に収容されている。 As shown in FIGS. 30A and 30B, the plate 52 is accommodated in the tray 33 such that the lower surface 52b of the surface of the plate 52 is in contact with the inner bottom surface 33c (see FIGS. 18A and 18B).
 これにより、プレート52の下面52b及び側面52cがトレイ33で被覆され、プレート52の上面52aのみが露出する。 Thereby, the lower surface 52 b and the side surface 52 c of the plate 52 are covered with the tray 33, and only the upper surface 52 a of the plate 52 is exposed.
 また、プレート52の貫通孔52dのうち、中央の2つの貫通孔52dが、プレート52の厚さ方向(Z方向)でトレイ33の中央の2つの第1の開口33eと連通する。 Further, among the through holes 52 d of the plate 52, the central two through holes 52 d communicate with the two first openings 33 e in the center of the tray 33 in the thickness direction (Z direction) of the plate 52.
 更に、左側端部の2つの貫通孔52dが、貫通孔52dよりも大きいトレイ33の左側端部の第2の開口33fとZ方向で連通し、右側端部の2つの貫通孔52dが、貫通孔52dよりも大きいトレイ33の右側端部の第2の開口33fとZ方向で連通する。 Furthermore, the two through holes 52d at the left end communicate with the second opening 33f at the left end of the tray 33 larger than the through holes 52d in the Z direction, and the two through holes 52d at the right end penetrate It communicates with the second opening 33 f at the right end of the tray 33 larger than the hole 52 d in the Z direction.
 このようにプレート52がトレイ33に収容された状態のプレート52及びトレイ33に対して、第2実施形態の図11A~図12の工程と、その後の固定具及びバリ等の削除とを行うことにより、本変形例に係る複合伝熱部材の構造が得られる。 As described above, the steps of FIGS. 11A to 12 of the second embodiment and the subsequent removal of fixtures and burrs are performed on the plate 52 and the tray 33 in a state in which the plate 52 is accommodated in the tray 33. Thus, the structure of the composite heat transfer member according to the present modification is obtained.
 図31Aは、その複合伝熱部材の構造を示す斜視図であり、図31Bは、その構造のXXI-XXI線における断面図である。 31A is a perspective view showing the structure of the composite heat transfer member, and FIG. 31B is a cross-sectional view of the structure taken along line XXI-XXI.
 図31A、図31Bに示すように、本変形例に係る複合伝熱部材54は、一方の伝熱部材としてのグラフェン2の積層体のプレート52と、他方の伝熱部材としての上面52a以外のプレート52の表面を被覆したマグネシウム合金のトレイ33、及びプレート52の上面52aを被覆したマグネシウム合金の鋳造成型体30とを備えている。 As shown to FIG. 31A and FIG. 31B, the composite heat-transfer member 54 which concerns on this modification is the plate 52 of the laminated body of the graphene 2 as one heat-transfer member, and the upper surfaces 52a as the other heat-transfer member. A magnesium alloy tray 33 coated on the surface of the plate 52 and a casted magnesium alloy molded body 30 coated on the upper surface 52 a of the plate 52 are provided.
 本変形例によれば、鋳造成型体30の一部30aがプレート52の貫通孔52dとトレイ33の開口33e、33fとに充填されている。 According to this modification, a portion 30 a of the cast body 30 is filled in the through holes 52 d of the plate 52 and the openings 33 e and 33 f of the tray 33.
 これにより、その一部30aを介してプレート52の上面52aを被覆する鋳造成型体30と下面52bを被覆する鋳造成型体30とが連結される。 Thereby, the cast molded body 30 which covers the upper surface 52a of the plate 52 and the cast molded body 30 which covers the lower surface 52b are connected via the part 30a.
 第2実施形態の変形例と同様に、鋳造成型体30の形成時に生じた鋳造成型体30とプレート52との収縮量の違いにより、複合伝熱部材54が製造された後にも矢印で示すように鋳造成型体30には残留引張応力TSが存在する。 As in the modification of the second embodiment, as shown by the arrows after the composite heat transfer member 54 is manufactured due to the difference in the amount of contraction of the cast molded body 30 and the plate 52 generated when the cast molded body 30 is formed. There is residual tensile stress TS in the cast molded body 30.
 そして、高温の環境で使用したときでも、この残留引張応力TSは失われないので、破線円内で矢印に示すように鋳造成型体30がプレート52の上面52aを押圧し続けることができる。 And, even when used in a high temperature environment, the residual tensile stress TS is not lost, so that the cast body 30 can continue to press the upper surface 52 a of the plate 52 as shown by the arrows in the broken line circle.
 更に、トレイ33の第2の開口33fが、これと連通するプレート52の貫通孔52dよりも大きい。 Further, the second opening 33f of the tray 33 is larger than the through hole 52d of the plate 52 communicating therewith.
 このため、その第2の開口33fに充填された鋳造成型体30の一部30aにより、破線円内で矢印に示すように鋳造成型体30がプレート52の下面52bも押圧し続けることができる。 Therefore, the cast molded body 30 can continue to press the lower surface 52b of the plate 52 as shown by the arrow in the dashed circle by the part 30a of the cast molded body 30 filled in the second opening 33f.
 これらにより、鋳造成型体30とプレート52とのより一層良好な熱伝導率を維持することができる。 By these, it is possible to maintain better thermal conductivity of the cast and molded body 30 and the plate 52.
 また、本変形例によれば、第2実施形態の変形例と同様に、トレイ33の外側面33aの凹部33bに、鋳造成型体30の凸部30bが嵌合している。これに加えて、トレイ33の底のテーパ形状の第1の開口33e及び第2の開口33fに、鋳造成型体30の一部30aが嵌合している。 Further, according to the present modification, as in the modification of the second embodiment, the convex portion 30 b of the cast molded body 30 is fitted in the concave portion 33 b of the outer side surface 33 a of the tray 33. In addition to this, a portion 30 a of the cast body 30 is fitted in the tapered first and second openings 33 e and 33 f of the bottom of the tray 33.
 これらにより、鋳造成型体30がトレイ33から外れるのをより一層抑制することができる。 As a result, the cast body 30 can be further suppressed from coming off the tray 33.
 (第6実施形態)
 第4実施形態及び第5実施形態では、複合伝熱部材としてヒートスプレッダを製造したが、本実施形態では、第3実施形態と同様に、複合伝熱部材としてヒートシンクの機能を兼ねたヒートスプレッダを製造する。
Sixth Embodiment
In the fourth and fifth embodiments, the heat spreader is manufactured as the composite heat transfer member, but in the present embodiment, as in the third embodiment, the heat spreader having the function of a heat sink is manufactured as the composite heat transfer member. .
 図32Aは、その複合伝熱部材の構造を示す斜視図であり、図32Bは、その構造のXXII-XXII線における断面図である。なお、図32A、図32Bにおいて、第5実施形態の変形例と同じ要素には第5実施形態の変形例におけるそれと同じ符号を付し、以下ではその説明を省略する。 32A is a perspective view showing the structure of the composite heat transfer member, and FIG. 32B is a cross-sectional view of the structure taken along line XXII-XXII. 32A and 32B, the same elements as in the modification of the fifth embodiment are denoted by the same reference numerals as those in the modification of the fifth embodiment, and the description thereof will be omitted below.
 図32A、図32Bに示すように、本実施形態に係る複合伝熱部材55は、基本的には第5実施形態の変形例に係る複合伝熱部材54と同じ構造を有している。 As shown in FIGS. 32A and 32B, the composite heat transfer member 55 according to the present embodiment basically has the same structure as the composite heat transfer member 54 according to the modification of the fifth embodiment.
 すなわち、複合伝熱部材55も、一方の伝熱部材としてのグラフェン2の積層体のプレート52と、他方の伝熱部材としての上面52a以外のプレート52の表面を被覆したマグネシウム合金のトレイ33、及びプレート52の上面52aを被覆したマグネシウム合金の鋳造成型体30とを備えている。 That is, the composite heat transfer member 55 is also a tray 52 of a laminate of graphene 2 as one heat transfer member, and a magnesium alloy tray 33 which covers the surface of the plate 52 other than the upper surface 52a as the other heat transfer member, And a cast formed body 30 of magnesium alloy coated on the upper surface 52 a of the plate 52.
 更に、複合伝熱部材55では、第3実施形態と同様に、鋳造成型体30の外側上面30cに複数のフィン30dが設けられている。 Furthermore, in the composite heat transfer member 55, the plurality of fins 30d are provided on the outer upper surface 30c of the cast molded body 30 as in the third embodiment.
 このような構造の複合伝熱部材55は、第2実施形態で使用した可動金型27を替えて、フィン30d形成用の可動金型を使用すれば、第2実施形態の図11A~図12と同じ工程を行うことによって得ることができる。 The composite heat transfer member 55 having such a structure is obtained by changing the movable mold 27 used in the second embodiment and using the movable mold for forming the fins 30 d as shown in FIGS. 11A to 12 of the second embodiment. Can be obtained by performing the same steps.
 このように、本実施形態によれば、鋳造成型体30にフィン30dが設けられている。 Thus, according to the present embodiment, the casting 30 is provided with the fin 30 d.
 このため、複合伝熱部材55により、電子部品や電子機器から発生した熱を移動させるだけでなく、その熱をフィン30dから放熱することもできる。 Therefore, not only the heat generated from the electronic component or the electronic device can be moved by the composite heat transfer member 55, but also the heat can be dissipated from the fins 30d.
 しかも、鋳造成型体30とフィン30dとが一体になっているので、鋳造成型体とフィンとが個別に設けられている場合と比べると、これらを接合するための熱伝導部材や熱伝導接着剤を使用しない分、熱抵抗を低減することができる。 Moreover, since the cast-molded body 30 and the fins 30 d are integrated, the thermally-conductive member and the thermally-conductive adhesive for joining these as compared to the case where the cast-molded body and the fins are separately provided. The heat resistance can be reduced by using no
 なお、上述した本実施形態に係る複合伝熱部材55は、第5実施形態の変形例に係る複合伝熱部材54と基本的に同じ構造を有するものであるが、この構造に限定されない。 In addition, although the composite heat-transfer member 55 which concerns on this embodiment mentioned above has a fundamentally the same structure as the composite heat-transfer member 54 which concerns on the modification of 5th Embodiment, it is not limited to this structure.
 例えば、本実施形態に係る複合伝熱部材が、第4実施形態に係る複合伝熱部材49と基本的に同じ構造を有するものであってもよい。この場合は、鋳造成型体8の外側上面に複数のフィンが設けられるようにすればよい。本実施形態に係る複合伝熱部材が、第5実施形態に係る複合伝熱部材51と基本的に同じ構造を有するものであってもよい。 For example, the composite heat transfer member according to the present embodiment may have basically the same structure as the composite heat transfer member 49 according to the fourth embodiment. In this case, a plurality of fins may be provided on the outer upper surface of the cast molded body 8. The composite heat transfer member according to the present embodiment may have basically the same structure as the composite heat transfer member 51 according to the fifth embodiment.
 (第7実施形態)
 本実施形態では、第5実施形態とは異なる形状のトレイを使用する。
Seventh Embodiment
In this embodiment, a tray having a shape different from that of the fifth embodiment is used.
 図33は、第7実施形態のトレイの構造を示す斜視図である。 FIG. 33 is a perspective view showing the structure of the tray of the seventh embodiment.
 第7実施形態で用いるトレイ117は、トレイ17と同様に金属の容器であり、その外側面117aの下側には、トレイ17と同様に、凹部117bが設けられている。また、トレイ117の上面には、XZ伝熱部材用の5つの溝117s及びXY伝熱部材用の溝117tが形成されている。各溝117sはその一方の端部で溝117tと繋がっている。トレイ117はトレイ17と同様の材料を用いて、同様の方法により作製することができる。 The tray 117 used in the seventh embodiment is a metal container as in the case of the tray 17, and a recess 117b is provided below the outer side surface 117a as in the case of the tray 17. Further, on the upper surface of the tray 117, five grooves 117s for the XZ heat transfer member and a groove 117t for the XY heat transfer member are formed. Each groove 117s is connected to the groove 117t at one end thereof. The tray 117 can be manufactured by the same method using the same material as the tray 17.
 また、溝117sに収容するXZ伝熱部材72を準備し、溝117tに収容するXY伝熱部材73を準備する。XZ伝熱部材72及びXY伝熱部材73は、例えばプレート1又は13と同様の方法で作製することができる。 Further, the XZ heat transfer member 72 accommodated in the groove 117s is prepared, and the XY heat transfer member 73 accommodated in the groove 117t is prepared. The XZ heat transfer member 72 and the XY heat transfer member 73 can be manufactured, for example, by the same method as the plate 1 or 13.
 図34は、XZ伝熱部材72及びXY伝熱部材73がトレイ117に収容された状態の構造を示す斜視図である。 FIG. 34 is a perspective view showing a structure in which the XZ heat transfer member 72 and the XY heat transfer member 73 are accommodated in the tray 117. FIG.
 XZ伝熱部材72の表面のうちの下面がトレイ117の内側底面に接するように、XZ伝熱部材72が溝117sに収容され、XY伝熱部材73の表面のうちの下面がトレイ117の内側底面に接するように、XY伝熱部材73が溝117tに収容されている。また、各XZ伝熱部材72のX方向の一方の側面にXY伝熱部材73のX方向の側面が接し、各XZ伝熱部材72のX方向の一方の端部がXY伝熱部材73に連結されている。そして、XZ伝熱部材72及びXY伝熱部材73からプレート71が構成されている。 XZ heat transfer member 72 is accommodated in groove 117s such that the lower surface of XZ heat transfer member 72 is in contact with the inner bottom surface of tray 117, and the lower surface of XY heat transfer member 73 is the inner surface of tray 117 The XY heat transfer member 73 is accommodated in the groove 117t so as to be in contact with the bottom surface. Further, the X-direction side surface of the XY heat transfer member 73 is in contact with one side surface of each XZ heat transfer member 72 in the X direction, and one end portion of each XZ heat transfer member 72 in the X direction It is connected. The XZ heat transfer member 72 and the XY heat transfer member 73 constitute a plate 71.
 第7実施形態では、プレート71の下面及び側面がトレイ117で被覆され、プレート71の上面71aのみが露出する。 In the seventh embodiment, the lower surface and the side surface of the plate 71 are covered with the tray 117, and only the upper surface 71a of the plate 71 is exposed.
 このようにプレート71がトレイ117に収容された状態のプレート71及びトレイ117に対して、第2実施形態の図11A~図12の工程と、その後の固定具及びバリ等の削除とを行うことにより、本実施形態に係る複合伝熱部材の構造が得られる。 Thus, the steps of FIGS. 11A to 12 of the second embodiment and the subsequent removal of fixtures and burrs are performed on the plate 71 and the tray 117 in a state where the plate 71 is accommodated in the tray 117. Thus, the structure of the composite heat transfer member according to the present embodiment is obtained.
 図35Aは、その複合伝熱部材の構造を示す斜視図であり、図35Bは、その構造のXXIII-XXIII線における断面図である。 FIG. 35A is a perspective view showing the structure of the composite heat transfer member, and FIG. 35B is a cross-sectional view of the structure taken along line XXIII-XXIII.
 図35A、図35Bに示すように、本実施形態に係る複合伝熱部材74は、一方の伝熱部材としてのグラフェン2の積層体のプレート71と、他方の伝熱部材としての上面71a以外のプレート71の表面を被覆したマグネシウム合金のトレイ117、及びプレート71の上面71aを被覆したマグネシウム合金の鋳造成型体30とを備えている。 As shown to FIG. 35A and FIG. 35B, the composite heat-transfer member 74 which concerns on this embodiment is the plate 71 of the laminated body of the graphene 2 as one heat-transfer member, and the upper surfaces 71a as the other heat-transfer member. A magnesium alloy tray 117 covering the surface of the plate 71 and a casted magnesium alloy molding 30 covering the upper surface 71 a of the plate 71 are provided.
 本実施形態によれば、第5実施形態と同様の効果を得ることができる。例えば、鋳造成型体30の形成時に生じた鋳造成型体30とプレート71との収縮量の違いにより、複合伝熱部材74が製造された後にも鋳造成型体30には残留引張応力が存在し、プレート71には残留圧縮応力が存在する。そして、複合伝熱部材74を高温の環境で使用したときでも、これらの残留応力は失われないので、図35Bの破線円内で矢印に示すように鋳造成型体30がプレート71の上面71aを押圧し続ける。このため、鋳造成型体30とプレート71との良好な熱伝導率を維持することができる。 According to this embodiment, the same effect as that of the fifth embodiment can be obtained. For example, due to the difference in the amount of contraction between the cast molded body 30 and the plate 71 generated at the time of forming the cast molded body 30, residual tensile stress exists in the cast molded body 30 even after the composite heat transfer member 74 is manufactured, Residual compressive stress is present on the plate 71. Then, even when the composite heat transfer member 74 is used in a high temperature environment, these residual stresses are not lost, so the cast molded body 30 is placed on the upper surface 71a of the plate 71 as shown by the arrow in the dashed circle in FIG. Keep pressing. Therefore, good thermal conductivity between the cast and molded body 30 and the plate 71 can be maintained.
 また、XZ伝熱部材72及びXY伝熱部材73の組み合わせにより、XY平面内のほぼ全方向において良好な熱伝導率を得ることができる。 Further, by the combination of the XZ heat transfer member 72 and the XY heat transfer member 73, a good thermal conductivity can be obtained in almost all directions in the XY plane.
 また、マグネシウム合金はグラフェンよりも軽量であるため、全体の重量を低減することができる。更に、材料コストの削減にも有効である。 In addition, the magnesium alloy is lighter than graphene, so the overall weight can be reduced. Furthermore, it is also effective in reducing material costs.
 なお、第7実施形態では、トレイ117にXZ伝熱部材72及びXY伝熱部材73を収容しているが、1つのトレイに1種類の伝熱部材が複数収容されてもよい。例えば、電子部品や電磁機器に複数の熱源が含まれる場合に、これら熱源に対応する箇所毎にXZ伝熱部材が収容されてもよい。この場合、トレイの外側面近傍まで熱を伝達できるように、他のXZ伝熱部材を更に収容してもよい。 In the seventh embodiment, the XZ heat transfer member 72 and the XY heat transfer member 73 are accommodated in the tray 117. However, one heat transfer member may be accommodated in one tray. For example, in the case where a plurality of heat sources are included in the electronic component or the electromagnetic device, the XZ heat transfer member may be accommodated at each location corresponding to the heat sources. In this case, another XZ heat transfer member may be further accommodated so that heat can be transferred to the vicinity of the outer surface of the tray.
 (変形例)
 本変形例では、第7実施形態とは異なる形状のトレイを使用する。
(Modification)
In this modification, a tray having a shape different from that of the seventh embodiment is used.
 図36は、本変形例のトレイの構造を示す斜視図である。 FIG. 36 is a perspective view showing the structure of the tray of this modification.
 本変形例で用いるトレイ118は、トレイ17と同様に金属の容器であり、その外側面117aの下側には、トレイ17と同様に、凹部117bが設けられている。また、トレイ118の上面には、XZ伝熱部材用の3つの溝118s及びXY伝熱部材用の2つの溝118tが形成されている。各溝118sはその両方の端部で溝118tの両方と繋がっている。トレイ118はトレイ17と同様の材料を用いて、同様の方法により作製することができる。 The tray 118 used in the present modification is a metal container like the tray 17, and a recess 117 b is provided below the outer side surface 117 a like the tray 17. Further, on the upper surface of the tray 118, three grooves 118s for the XZ heat transfer member and two grooves 118t for the XY heat transfer member are formed. Each groove 118s is in communication with both of the grooves 118t at its two ends. The tray 118 can be manufactured by the same method using the same material as the tray 17.
 また、溝118sに収容するXZ伝熱部材76を準備し、溝118tに収容するXY伝熱部材77を準備する。XZ伝熱部材76及びXY伝熱部材77は、例えばプレート1又は13と同様の方法で作製することができる。 Further, the XZ heat transfer member 76 accommodated in the groove 118s is prepared, and the XY heat transfer member 77 accommodated in the groove 118t is prepared. The XZ heat transfer member 76 and the XY heat transfer member 77 can be manufactured, for example, in the same manner as the plate 1 or 13.
 図37は、XZ伝熱部材76及びXY伝熱部材77がトレイ118に収容された状態の構造を示す斜視図である。 FIG. 37 is a perspective view showing a structure in which the XZ heat transfer member 76 and the XY heat transfer member 77 are accommodated in the tray 118. As shown in FIG.
 XZ伝熱部材76の表面のうちの下面がトレイ118の内側底面に接するように、XZ伝熱部材76が溝118sに収容され、XY伝熱部材77の表面のうちの下面がトレイ118の内側底面に接するように、XY伝熱部材77が溝118tに収容されている。また、各XZ伝熱部材76のX方向の両方の側面にXY伝熱部材77のX方向の側面が接し、各XZ伝熱部材76のX方向の両方の端部がXY伝熱部材77に連結されている。そして、XZ伝熱部材76及びXY伝熱部材77からプレート75が構成されている。 XZ heat transfer member 76 is accommodated in groove 118s such that the lower surface of XZ heat transfer member 76 is in contact with the inner bottom surface of tray 118, and the lower surface of XY heat transfer member 77 is the inner surface of tray 118 An XY heat transfer member 77 is accommodated in the groove 118t so as to be in contact with the bottom surface. Further, the X-direction side surfaces of the XY heat transfer member 77 are in contact with both side surfaces of each XZ heat transfer member 76 in the X direction, and both end portions of each XZ heat transfer member 76 in the X direction It is connected. The XZ heat transfer member 76 and the XY heat transfer member 77 constitute a plate 75.
 本変形例では、プレート75の下面及び側面がトレイ118で被覆され、プレート75の上面75aのみが露出する。 In this modification, the lower and side surfaces of the plate 75 are covered with the tray 118, and only the upper surface 75a of the plate 75 is exposed.
 このようにプレート75がトレイ118に収容された状態のプレート75及びトレイ118に対して、第2実施形態の図11A~図12の工程と、その後の固定具及びバリ等の削除とを行うことにより、本参考例に係る複合伝熱部材の構造が得られる。 As described above, the steps of FIGS. 11A to 12 of the second embodiment and the subsequent removal of fixtures and burrs are performed on the plate 75 and the tray 118 in a state where the plate 75 is accommodated in the tray 118. Thus, the structure of the composite heat transfer member according to the present embodiment is obtained.
 図38Aは、その複合伝熱部材の構造を示す斜視図であり、図38Bは、その構造のXXIV-XXIV線における断面図である。 FIG. 38A is a perspective view showing the structure of the composite heat transfer member, and FIG. 38B is a cross-sectional view of the structure taken along line XXIV-XXIV.
 図38A、図38Bに示すように、本参考例に係る複合伝熱部材79は、一方の伝熱部材としてのグラフェン2の積層体のプレート75と、他方の伝熱部材としての上面75a以外のプレート75の表面を被覆したマグネシウム合金のトレイ118、及びプレート75の上面75aを被覆したマグネシウム合金の鋳造成型体30とを備えている。 As shown to FIG. 38A and FIG. 38B, the composite heat-transfer member 79 which concerns on this reference example is the plate 75 of the laminated body of the graphene 2 as one heat-transfer member, and the upper surfaces 75a as another heat-transfer member. A magnesium alloy tray 118 covering the surface of the plate 75 and a casted magnesium alloy molding 30 covering the upper surface 75 a of the plate 75 are provided.
 従って、本変形例によっても第7実施形態と同様の効果を得ることができる。 Therefore, the same effect as that of the seventh embodiment can be obtained by this modification as well.
 なお、第7実施形態に係る複合伝熱部材74の使用時には、Y方向で中央に位置するXZ伝熱部材72とXY伝熱部材73との連結箇所の近傍に熱源が位置することが好ましい。一方、変形例に係る複合伝熱部材79の使用時には、Y方向で中央に位置するXZ伝熱部材76のX方向の中央の近傍に熱源が位置することが好ましい。XZ伝熱部材72又は76の近傍に熱源を位置させることで、高効率で熱を伝達させることができる。 When the composite heat transfer member 74 according to the seventh embodiment is used, it is preferable that the heat source be located in the vicinity of the connection point between the XZ heat transfer member 72 and the XY heat transfer member 73 located at the center in the Y direction. On the other hand, when using the composite heat transfer member 79 according to the modification, it is preferable that the heat source be located near the center in the X direction of the XZ heat transfer member 76 located at the center in the Y direction. By locating the heat source in the vicinity of the XZ heat transfer member 72 or 76, heat can be transferred with high efficiency.
 また、複合伝熱部材74においては5つのXZ伝熱部材72の上方に、複合伝熱部材79においては3つのXZ伝熱部材76の上方に、フィンが設けられてヒートシンクを兼ねることが好ましい。より優れた放熱効率を得るためである。 Further, it is preferable that fins be provided above the five XZ heat transfer members 72 in the composite heat transfer member 74 and above the three XZ heat transfer members 76 in the composite heat transfer member 79 to also serve as a heat sink. This is to obtain better heat dissipation efficiency.
 (第8実施形態)
 本実施形態では、複合伝熱部材としてヒートシンクの機能を兼ねたヒートスプレッダを製造する。
Eighth Embodiment
In the present embodiment, a heat spreader which also functions as a heat sink is manufactured as a composite heat transfer member.
 図39は、第8実施形態に係る複合伝熱部材を示す斜視図である。図40は、第8実施形態に係る複合伝熱部材に含まれるプレートの構成を示す斜視図である。図41は、第8実施形態に係る複合伝熱部材に含まれるプレートの一部の構成を示す斜視図である。 FIG. 39 is a perspective view showing a composite heat transfer member according to an eighth embodiment. FIG. 40 is a perspective view showing the configuration of a plate included in the composite heat transfer member according to the eighth embodiment. FIG. 41 is a perspective view showing the configuration of part of the plate included in the composite heat transfer member according to the eighth embodiment.
 図39に示すように、第8実施形態に係る複合伝熱部材80は、板状の基部81と、基部81から直立するフィン82とを有する。例えば、基部81はXY平面に平行な上面81a及び下面81bを有し、フィン82は上面81aからZ方向に延びる。下面81bに熱源が接する。複合伝熱部材80は、一方の伝熱部材としてのグラフェン2の積層体のプレート88と、他方の伝熱部材としてのプレート88の表面を被覆したマグネシウム合金の鋳造成型体89とを備えている。プレート88と鋳造成型体89とは、第1実施形態又は第2実施形態等と同様の方法により互いに強く密着するように構成されている。 As shown in FIG. 39, the composite heat transfer member 80 according to the eighth embodiment has a plate-like base 81 and fins 82 which stand upright from the base 81. For example, the base 81 has an upper surface 81a and a lower surface 81b parallel to the XY plane, and the fin 82 extends in the Z direction from the upper surface 81a. The heat source is in contact with the lower surface 81 b. The composite heat transfer member 80 includes a plate 88 of a stack of graphene 2 as one heat transfer member, and a cast molded body 89 of magnesium alloy coated on the surface of the plate 88 as the other heat transfer member. . The plate 88 and the cast molded body 89 are configured to be in close contact with each other in the same manner as in the first embodiment or the second embodiment.
 プレート88は、図40及び図41に示すように、XZ伝熱部材85、XY伝熱部材86及びYZ伝熱部材87を含む。XZ伝熱部材85は、グラフェン2がY方向に積層されて構成され、XY伝熱部材86は、グラフェン2がZ方向に積層されて構成され、YZ伝熱部材87は、グラフェン2がX方向に積層されて構成されている。 The plate 88 includes an XZ heat transfer member 85, an XY heat transfer member 86, and a YZ heat transfer member 87, as shown in FIGS. The XZ heat transfer member 85 is configured by stacking the graphene 2 in the Y direction, the XY heat transfer member 86 is configured by stacking the graphene 2 in the Z direction, and the YZ heat transfer member 87 is configured by the graphene 2 in the X direction It is laminated and configured.
 XZ伝熱部材85のX方向の両方の側面にXY伝熱部材86のX方向の側面が接し、XY伝熱部材86がXZ伝熱部材85に連結されている。XZ伝熱部材85のZ方向の寸法(高さ)は、XY伝熱部材86のZ方向の寸法(高さ)と同程度であり、XZ伝熱部材85及びXY伝熱部材86は基部81に含まれる。 The X-direction side surfaces of the XY heat transfer member 86 are in contact with both side surfaces of the XZ heat transfer member 85 in the X direction, and the XY heat transfer member 86 is connected to the XZ heat transfer member 85. The dimension (height) in the Z direction of the XZ heat transfer member 85 is substantially the same as the dimension (height) in the Z direction of the XY heat transfer member 86, and the XZ heat transfer member 85 and the XY heat transfer member 86 have a base 81 include.
 XZ伝熱部材85のY方向の側面にYZ伝熱部材87のY方向の側面の一部が接し、YZ伝熱部材87がXZ伝熱部材85に連結されている。XZ伝熱部材85のX方向の寸法は、YZ伝熱部材87のZ方向の寸法と同程度である。YZ伝熱部材87のXZ伝熱部材85と接する部分が基部81に含まれ、この部分からZ方向に突出する部分がフィン82に含まれる。 A portion of the side surface of the YZ heat transfer member 87 in the Y direction is in contact with the side surface of the XZ heat transfer member 85 in the Y direction, and the YZ heat transfer member 87 is connected to the XZ heat transfer member 85. The dimension of the XZ heat transfer member 85 in the X direction is approximately the same as the dimension of the YZ heat transfer member 87 in the Z direction. A portion of the YZ heat transfer member 87 in contact with the XZ heat transfer member 85 is included in the base 81, and a portion protruding from this portion in the Z direction is included in the fin 82.
 ここで、複合伝熱部材80における熱の伝達経路について説明する。図42は、第8実施形態におけるプレート88での熱の伝達経路の例を示す図である。ここでは、XZ伝熱部材85の下面側の中央に熱源200があるとする。 Here, the heat transfer path in the composite heat transfer member 80 will be described. FIG. 42 is a diagram showing an example of a heat transfer path of the plate 88 in the eighth embodiment. Here, it is assumed that the heat source 200 is located at the center of the lower surface side of the XZ heat transfer member 85.
 熱源200から発せられた熱は、先ず、XZ伝熱部材85を構成するグラフェン2のうちでY方向の中心付近に位置するものを介してZ方向に伝達されると共に、X方向に伝達される(矢印D)。その後、この熱はXZ伝熱部材85のX方向の端部にてXY伝熱部材86に伝達され、この熱はXY伝熱部材86を介して更にX方向に伝達されると共に、Y方向に伝達される(矢印E)。XY伝熱部材86を伝達する熱の一部はXZ伝熱部材85の一部に伝達され、この熱はXZ伝熱部材85を介してZ方向に伝達されると共に、X方向に伝達される(矢印F)。そして、XZ伝熱部材85を構成するグラフェン2のうちでYZ伝熱部材87に接するものを伝達する熱は、YZ伝熱部材87に伝達され、YZ伝熱部材87を介してY方向に伝達されると共に、Z方向に伝達される(矢印G)。そして、プレート88は鋳造成型体89に密着しているため、鋳造成型体89から熱が外部に放出される。 The heat generated from the heat source 200 is first transmitted in the Z direction via the graphene 2 constituting the XZ heat transfer member 85 located in the vicinity of the center in the Y direction and also transmitted in the X direction. (Arrow D). Thereafter, this heat is transferred to the XY heat transfer member 86 at the end of the XZ heat transfer member 85 in the X direction, and this heat is further transferred in the X direction via the XY heat transfer member 86 and in the Y direction It is transmitted (arrow E). Part of the heat transferred from the XY heat transfer member 86 is transferred to a part of the XZ heat transfer member 85, and this heat is transferred in the Z direction via the XZ heat transfer member 85 and in the X direction (Arrow F). Then, the heat transmitted to one of the graphenes 2 constituting the XZ heat transfer member 85 in contact with the YZ heat transfer member 87 is transferred to the YZ heat transfer member 87 and transferred in the Y direction via the YZ heat transfer member 87. And transmitted in the Z direction (arrow G). Then, since the plate 88 is in close contact with the cast molded body 89, heat is released from the cast molded body 89 to the outside.
 (第9実施形態)
 本実施形態は、複合伝熱部材としてヒートシンクの機能を兼ねたヒートスプレッダに関する。
The ninth embodiment
The present embodiment relates to a heat spreader which also functions as a heat sink as a composite heat transfer member.
 図43は、第9実施形態に係る複合伝熱部材を示す部分断面図である。 FIG. 43 is a partial cross-sectional view showing a composite heat transfer member according to a ninth embodiment.
 図43に示すように、第9実施形態に係る複合伝熱部材90は、板状の基部91と、基部91から直立するフィン92とを有する。例えば、基部91はXY平面に平行な上面91a及び下面91bを有し、フィン92は上面91aからZ方向に延びる。下面91bに熱源が接する。基部91は、Y方向にグラフェンが積層されて構成されたXZ伝熱部材95と、Z方向にグラフェンが積層されて構成されたXY伝熱部材96とを有する。フィン92は、X方向にグラフェンが積層されて構成されたYZ伝熱部材97を有する。YZ伝熱部材97は、XZ伝熱部材95に接すると共に、XZ伝熱部材95からZ方向に立ち上がっている。複合伝熱部材90は、YZ伝熱部材97の表面を被覆するマグネシウム合金の鋳造成型体99Bと、XZ伝熱部材95及びXY伝熱部材96の表面を被覆するマグネシウム合金の鋳造成型体99Aとを有する。XZ伝熱部材95、XY伝熱部材96及びYZ伝熱部材97と鋳造成型体99A及び99Bとは、第1実施形態又は第2実施形態等と同様の方法により互いに強く密着するように構成されている。 As shown in FIG. 43, the composite heat transfer member 90 according to the ninth embodiment has a plate-like base 91 and fins 92 standing upright from the base 91. For example, the base portion 91 has an upper surface 91a and a lower surface 91b parallel to the XY plane, and the fin 92 extends in the Z direction from the upper surface 91a. The heat source is in contact with the lower surface 91 b. The base portion 91 includes an XZ heat transfer member 95 configured by stacking graphenes in the Y direction, and an XY heat transfer member 96 configured by stacking graphenes in the Z direction. The fin 92 has a YZ heat transfer member 97 configured by stacking graphene in the X direction. The YZ heat transfer member 97 contacts the XZ heat transfer member 95 and rises from the XZ heat transfer member 95 in the Z direction. Composite heat transfer member 90 includes cast cast body 99B of magnesium alloy which covers the surface of YZ heat transfer member 97, and cast molded body 99A of magnesium alloy which covers the surfaces of XZ heat transfer member 95 and XY heat transfer member 96. Have. The XZ heat transfer member 95, the XY heat transfer member 96 and the YZ heat transfer member 97, and the cast molded bodies 99A and 99B are configured to be in close contact with each other in the same manner as in the first embodiment or the second embodiment. ing.
 このように構成された第9実施形態においても、第8実施形態と同様に、下面91bに取り付けられた熱源からの熱は、XZ伝熱部材95、XY伝熱部材96及びYZ伝熱部材97を介して、鋳造成型体99A及び99Bから外部に放出される。 Also in the ninth embodiment configured as above, the heat from the heat source attached to the lower surface 91 b is the same as in the eighth embodiment, the heat from the XZ heat transfer member 95, the XY heat transfer member 96, and the YZ heat transfer member 97 From the cast molded bodies 99A and 99B.
 (第1変形例)
 本変形例では、鋳造成型体99Bの構成の点で第9実施形態と相違する。
(First modification)
The present modification is different from the ninth embodiment in the configuration of the cast molded body 99B.
 図44は、第9実施形態の第1変形例に係る複合伝熱部材を示す部分断面図である。 FIG. 44 is a partial cross-sectional view showing a composite heat transfer member according to a first modification of the ninth embodiment.
 図44に示すように、本変形例に係る複合伝熱部材90Aでは、鋳造成型体99BがYZ伝熱部材97のXZ伝熱部材95側の面も被覆しており、YZ伝熱部材97は鋳造成型体99Bの一部をXZ伝熱部材95との間に介在させて、XZ伝熱部材95からZ方向に立ち上がっている。他の構成は第9実施形態と同様である。 As shown in FIG. 44, in the composite heat transfer member 90A according to this modification, the cast molded body 99B also covers the surface on the XZ heat transfer member 95 side of the YZ heat transfer member 97, and the YZ heat transfer member 97 A part of the cast molded body 99 </ b> B is interposed between the XZ heat transfer member 95 and the XZ heat transfer member 95 to rise in the Z direction. The other configuration is the same as that of the ninth embodiment.
 このように構成された第1変形例においても、第9実施形態と同様に、下面91bに取り付けられた熱源からの熱は、XZ伝熱部材95、XY伝熱部材96及びYZ伝熱部材97を介して、鋳造成型体99A及び99Bから外部に放出される。 Also in the first modified example configured as above, the heat from the heat source attached to the lower surface 91 b is the same as in the ninth embodiment, the heat from the XZ heat transfer member 95, the XY heat transfer member 96 and the YZ heat transfer member 97. From the cast molded bodies 99A and 99B.
 (第2変形例)
 本変形例では、YZ伝熱部材97及び鋳造成型体99Bの構成の点で第9実施形態と相違する。
(2nd modification)
The present modification is different from the ninth embodiment in the configuration of the YZ heat transfer member 97 and the cast molded body 99B.
 図45は、第9実施形態の第2変形例に係る複合伝熱部材を示す部分断面図である。 FIG. 45 is a partial cross-sectional view showing a composite heat transfer member according to a second modification of the ninth embodiment.
 図45に示すように、本変形例に係る複合伝熱部材90Bでは、YZ伝熱部材97のZ方向における寸法が第9実施形態よりも小さい。他の構成は第9実施形態と同様である。 As shown in FIG. 45, in the composite heat transfer member 90B according to the present modification, the dimension in the Z direction of the YZ heat transfer member 97 is smaller than that in the ninth embodiment. The other configuration is the same as that of the ninth embodiment.
 このように構成された第2変形例においても、第9実施形態と同様に、下面91bに取り付けられた熱源からの熱は、XZ伝熱部材95、XY伝熱部材96及びYZ伝熱部材97を介して、鋳造成型体99A及び99Bから外部に放出される。 Also in the second modified example configured as above, the heat from the heat source attached to the lower surface 91 b is the same as in the ninth embodiment, the heat from the XZ heat transfer member 95, the XY heat transfer member 96, and the YZ heat transfer member 97 From the cast molded bodies 99A and 99B.
 なお、第1変形例において、第2変形例と同様に、YZ伝熱部材97のZ方向における寸法が第9実施形態よりも小さくなっていてもよい。 In the first modification, as in the second modification, the dimension in the Z direction of the YZ heat transfer member 97 may be smaller than that in the ninth embodiment.
 (第3変形例)
 本変形例では、鋳造成型体99Aの構成の点で第9実施形態と相違する。
(Third modification)
The present modification is different from the ninth embodiment in the configuration of the cast molded body 99A.
 図46は、第9実施形態の第3変形例に係る複合伝熱部材を示す部分断面図である。 FIG. 46 is a partial cross-sectional view showing a composite heat transfer member according to a third modification of the ninth embodiment.
 図46に示すように、本変形例に係る複合伝熱部材90Cでは、鋳造成型体99AがXZ伝熱部材95のYZ伝熱部材97側の面を被覆しており、YZ伝熱部材97は鋳造成型体99Aの一部をXZ伝熱部材95との間に介在させて、XZ伝熱部材95からZ方向に立ち上がっている。他の構成は第9実施形態と同様である。 As shown in FIG. 46, in the composite heat transfer member 90C according to this modification, the cast molded body 99A covers the surface of the XZ heat transfer member 95 on the YZ heat transfer member 97 side, and the YZ heat transfer member 97 A part of the cast molded body 99A is interposed between it and the XZ heat transfer member 95, and rises from the XZ heat transfer member 95 in the Z direction. The other configuration is the same as that of the ninth embodiment.
 このように構成された第3変形例においても、第9実施形態と同様に、下面91bに取り付けられた熱源からの熱は、XZ伝熱部材95、XY伝熱部材96及びYZ伝熱部材97を介して、鋳造成型体99A及び99Bから外部に放出される。 Also in the third modification configured as above, the heat from the heat source attached to the lower surface 91 b is the same as in the ninth embodiment, the heat from the XZ heat transfer member 95, the XY heat transfer member 96 and the YZ heat transfer member 97. From the cast molded bodies 99A and 99B.
 (第10実施形態)
 本実施形態は、特定の熱源に好適な複合伝熱部材に関する。
Tenth Embodiment
The present embodiment relates to a composite heat transfer member suitable for a specific heat source.
 図47Aは、第10実施形態に係る複合伝熱部材の構造を示す斜視図であり、図47Bは、その構造の上面図である。 FIG. 47A is a perspective view showing a structure of a composite heat transfer member according to a tenth embodiment, and FIG. 47B is a top view of the structure.
 第10実施形態に係る複合伝熱部材109は、炭素のプレート107と、プレート107の表面を被覆するマグネシウム合金の鋳造成型体108とを有する。プレート107は、その厚さ方向(Z方向)に対して垂直なY方向にグラフェンが積層されて構成されたXZ伝熱部材105を有する。 The composite heat transfer member 109 according to the tenth embodiment has a plate 107 of carbon and a cast-formed body 108 of magnesium alloy covering the surface of the plate 107. The plate 107 has the XZ heat transfer member 105 configured by stacking graphene in the Y direction perpendicular to the thickness direction (Z direction).
 複合伝熱部材109は、Y方向の寸法がW2である熱源102に取り付けられて使用される。そして、XZ伝熱部材105のY方向の寸法はW1である。本実施形態において、寸法W1は寸法W2と一致する。 The composite heat transfer member 109 is used by being attached to the heat source 102 whose dimension in the Y direction is W2. The dimension of the XZ heat transfer member 105 in the Y direction is W1. In the present embodiment, the dimension W1 coincides with the dimension W2.
 第10実施形態では、図47A、図47Bに示すように、平面視でY方向において熱源102がXZ伝熱部材105と重なるようにして複合伝熱部材109に取り付けられる。従って、熱源102が発した熱は、XZ伝熱部材105によりX方向及びY方向に高効率に伝達され、外部に放出される。 In the tenth embodiment, as shown in FIGS. 47A and 47B, the heat source 102 is attached to the composite heat transfer member 109 so as to overlap the XZ heat transfer member 105 in the Y direction in plan view. Therefore, the heat generated by the heat source 102 is efficiently transferred in the X direction and the Y direction by the XZ heat transfer member 105 and released to the outside.
 XZ伝熱部材105のY方向(積層方向)における熱伝達性能はX方向及びY方向における熱伝達性能よりも低いため、XZ伝熱部材105がY方向により広く設けられていたとしても、熱伝達性能は同程度である。一般に、グラフェンと比較してマグネシウム合金は安価であるため、同程度の熱伝達性能が得られるのであれば、グラフェンの使用量は少ない方が好ましい。 Since the heat transfer performance in the Y direction (stacking direction) of the XZ heat transfer member 105 is lower than the heat transfer performance in the X direction and the Y direction, heat transfer is achieved even if the XZ heat transfer member 105 is provided wider in the Y direction. Performance is comparable. In general, magnesium alloys are less expensive than graphene, and therefore, it is preferable to use a smaller amount of graphene if comparable heat transfer performance can be obtained.
 なお、ここでいう「一致」とは、厳密な意味での一致を意味するものではなく、社会通念上、一致とみなすことができる程度であればよく、厳密に一致でなくても、熱源が発した熱を高効率で外部に放出することができる。例えば、幅W1は幅W2の1.00倍~1.10倍であることが好ましく、1.00倍~1.05倍であることがより好ましい。 Here, "coincidence" does not mean coincidence in a strict sense, and it is sufficient for social conception to be a degree that can be regarded as coincidence, and even if it is not strictly a heat source Heat generated can be released to the outside with high efficiency. For example, the width W1 is preferably 1.00 to 1.10 times the width W2, and more preferably 1.00 to 1.05.
 (複合伝熱部材の適用例)
 上述した第1実施形態~第10実施形態に係る複合伝熱部材を、熱の移動に関係する種々の部品に適用することができる。
(Application example of composite heat transfer member)
The composite heat transfer member according to the above-described first to tenth embodiments can be applied to various parts related to the transfer of heat.
 例えば、ヒートスプレッダである第1実施形態、第2実施形態、第4実施形態、第5実施形態、第7実施形態及び第10実施形態やこれらの変形例に係る複合伝熱部材9、16、31、34、49、46、51、54、74、79、109を、サーバのCPU(Central Processing Unit)等の発熱部品用の銅製の水冷ジャケツト及び冷却水の配管や、パワーモジュール用のベース基板に適用することができる。 For example, composite heat transfer members 9, 16, 31 according to the first embodiment, the second embodiment, the fourth embodiment, the fifth embodiment, the seventh embodiment and the tenth embodiment, which are heat spreaders, and their variations. , 34, 49, 46, 51, 54, 74, 79, 109 as copper water-cooled jackets and cooling water pipes for heat-generating parts such as CPU (Central Processing Unit) of servers, and base substrates for power modules It can apply.
 また、ヒートシンクの機能を兼ねたヒートスプレッダである第3実施形態、第6実施形態、第8実施形態及び第9実施形態やこれらの変形例に係る複合伝熱部材35、55、80、90、90A、90B、90Cを、アルミニウム製の自動車用LEDヘッドランプのヒートシンクや、携帯電話機基地局用のヒートシンクに適用することができる。 In addition, the heat transfer member 35, 55, 80, 90, 90A according to the third embodiment, the sixth embodiment, the eighth embodiment, the ninth embodiment, and the modifications thereof, which are heat spreaders having a heat sink function. , 90B, 90C can be applied to a heat sink for aluminum automotive LED headlamps and a heat sink for mobile phone base stations.
 本出願は、2017年11月20日に日本国特許庁に出願された特許出願第2017-222862号、及び、2018年7月11日に日本国特許庁に出願された特許出願第2018-131470号に基づく優先権を主張するものであり、これらの全内容を含むものである。 The present application is directed to Patent Application No. 2017-222862 filed with the Japanese Patent Office on November 20, 2017, and Patent Application No. 2018-131470 applied to the Japanese Patent Office on July 11, 2018. Claiming priority based on the above, and including the entire content of these.
 1、13、15、32、41、44、52、71、75、88、107…プレート、1a、15a、32a、41a、44a、52a、71a、75a…プレートの上面、1b、15b、32b、41b、44b、52b…プレートの下面、1c、13c、15c、41c、44c、52c…プレートの側面、2…グラフェン、4…鋳型、4a…鋳型の下部、4b…鋳型の上部、6…鋳型のキャビティ、7、29…溶融した金属、8、30、99A、99B、108…鋳造成型体、8a、30a…鋳造成型体の一部、9、14、16、31、34、35、46、49、51、54、55、74、79、80、90、90A、90B、90C、109…複合伝熱部材、15d、32d、44d、52d…プレートの貫通孔、17、33、117、118…トレイ、17a、33a、117a…トレイの外側面、17b、33b、117b…トレイの凹部、17c、33c…トレイの内側底面、17d、33d…トレイの外側底面、18…鋳造装置、25…固定金型、25a…固定金型の表面、27…可動金型、28…金型のキャビティ、30b…鋳造成型体の凸部、30c…鋳造成型体の外側上面、30d…フィン、33e…トレイの第1の開口、33f…トレイの第2の開口、72、76、85、95…XZ伝熱部材、73、77、86、96…XY伝熱部材、87、97…YZ伝熱部材、81、91…基部、102…熱源、82、92…フィン、117s、117t、118s、118t…溝。 1, 13, 15, 32, 32, 44, 44, 52, 71, 75, 88, 107 ... plate, 1a, 15a, 32a, 41a, 44a, 52a, 71a, 75a ... top surface of the plate, 1b, 15b, 32b, 41b, 44b, 52b ... lower surface of plate, 1c, 13c, 15c, 41c, 44c, 52c ... side surface of plate, 2 ... graphene, 4 ... mold, 4a ... lower part of mold, 4b ... upper part of mold, 6 ... mold Cavities 7, 29 ... Molten metal, 8, 30, 99A, 99B, 108 ... Cast molded body, 8a, 30a ... Part of cast molded body, 9, 14, 16, 31, 34, 35, 46, 49 51, 54, 55, 74, 79, 80, 90, 90A, 90B, 90C, 109 ... composite heat transfer member, 15d, 32d, 44d, 52d ... through hole of plate, 17, 33, 11 , 118: tray, 17a, 33a, 117a: outer surface of tray, 17b, 33b, 117b: recessed portion of tray, 17c, 33c: inner bottom surface of tray, 17d, 33d: outer bottom surface of tray, 18: casting device, 25 ... fixed mold, 25a ... surface of fixed mold, 27 ... movable mold, 28 ... cavity of mold, 30b ... convex portion of cast body, 30c ... outer upper surface of cast body, 30d ... fin, 33e ... First opening of tray, 33f Second opening of tray, 72, 76, 85, 95: XZ heat transfer member, 73, 77, 86, 96: XY heat transfer member, 87, 97: YZ heat transfer member , 81, 91 ... base, 102 ... heat source, 82, 92 ... fin, 117s, 117t, 118s, 118t ... groove.

Claims (21)

  1.  炭素のプレートと、
     前記プレートの表面を被覆する金属の鋳造成型体と
     を有することを特徴とする複合伝熱部材。
    With a plate of carbon,
    And a metal heat-formed body covering the surface of the plate.
  2.  前記プレートに貫通孔が設けられ、
     前記鋳造成型体の一部が、前記貫通孔に充填されたことを特徴とする請求項1に記載の複合伝熱部材。
    The plate is provided with a through hole,
    The composite heat transfer member according to claim 1, wherein a part of the cast body is filled in the through hole.
  3.  前記プレートを収容する金属のトレイを有し、
     前記鋳造成型体は、前記プレートの上面と、前記トレイの外側面とを被覆したことを特徴とする請求項1に記載の複合伝熱部材。
    Having a metal tray for receiving the plate;
    The composite heat transfer member according to claim 1, wherein the cast molded body covers the upper surface of the plate and the outer surface of the tray.
  4.  前記鋳造成型体は、更に前記プレートの下面を被覆することを特徴とする請求項3に記載の複合伝熱部材。 The composite heat transfer member according to claim 3, wherein the cast body further covers the lower surface of the plate.
  5.  前記プレートに貫通孔が設けられ、
     前記トレイの底に、前記プレートの前記貫通孔と連通する開口が設けられ、
     前記鋳造成型体の一部が、前記貫通孔と前記開口とに充填されたことを特徴とする請求項3に記載の複合伝熱部材。
    The plate is provided with a through hole,
    The bottom of the tray is provided with an opening in communication with the through hole of the plate;
    The composite heat transfer member according to claim 3, wherein a part of the cast body is filled in the through hole and the opening.
  6.  前記開口は、前記貫通孔よりも大きく、
     前記鋳造成型体の前記一部が、前記開口から露出する前記プレートの前記表面を被覆したことを特徴とする請求項5に記載の複合伝熱部材。
    The opening is larger than the through hole,
    The composite heat transfer member according to claim 5, wherein the part of the cast molded body covers the surface of the plate exposed from the opening.
  7.  前記外側面に凹部が設けられ、
     前記鋳造成型体は、前記凹部に嵌合する凸部を有することを特徴とする請求項3に記載の複合伝熱部材。
    The outer side is provided with a recess,
    The composite heat transfer member according to claim 3, wherein the cast body has a convex portion fitted to the concave portion.
  8.  前記トレイの前記金属は、前記鋳造成型体の前記金属と同じであることを特徴とする請求項3に記載の複合伝熱部材。 The composite heat transfer member according to claim 3, wherein the metal of the tray is the same as the metal of the cast molded body.
  9.  前記鋳造成型体にフィンが設けられたことを特徴とする請求項1に記載の複合伝熱部材。 The composite heat transfer member according to claim 1, wherein the casting is provided with a fin.
  10.  前記鋳造成型体の前記金属は、マグネシウム合金又はアルミニウム合金であることを特徴とする請求項1に記載の複合伝熱部材。 The composite heat transfer member according to claim 1, wherein the metal of the cast body is a magnesium alloy or an aluminum alloy.
  11.  前記プレートは、グラフェンの積層体であることを特徴とする請求項1に記載の複合伝熱部材。 The composite heat transfer member according to claim 1, wherein the plate is a stack of graphene.
  12.  前記積層体は、前記プレートの厚さ方向に対して垂直な方向に積層された前記グラフェンを有することを特徴とする請求項11に記載の複合伝熱部材。 The composite heat transfer member according to claim 11, wherein the laminate includes the graphene stacked in a direction perpendicular to a thickness direction of the plate.
  13.  前記プレートは、
     前記プレートの厚さ方向に対して垂直な第1の方向にグラフェンが積層されて構成された第1の積層体と、
     前記プレートの厚さ方向に平行な第2の方向にグラフェンが積層されて構成された第2の積層体と、
     を有し、
     前記第1の方向及び前記第2の方向に垂直な第3の方向において、前記第1の積層体と前記第2の積層体とが互いに接していることを特徴とする請求項1に記載の複合伝熱部材。
    The plate is
    A first laminate formed by laminating graphene in a first direction perpendicular to the thickness direction of the plate;
    A second stacked body configured by stacking graphene in a second direction parallel to the thickness direction of the plate;
    Have
    The first laminate and the second laminate are in contact with each other in a third direction perpendicular to the first direction and the second direction. Composite heat transfer member.
  14.  前記プレートは、
     前記プレートの厚さ方向に対して垂直な第1の方向にグラフェンが積層されて構成された第1の積層体と、
     前記プレートの厚さ方向に平行な第2の方向にグラフェンが積層されて構成された第2の積層体と、
     を有し、
     前記トレイは、
     前記第1の積層体を収容する第1の溝と、
     前記第1の溝に繋がり、前記第2の積層体を収容する第2の溝と、
     を有し、
     前記第1の方向及び前記第2の方向に垂直な第3の方向において、前記第1の積層体と前記第2の積層体とが互いに接していることを特徴とする請求項3に記載の複合伝熱部材。
    The plate is
    A first laminate formed by laminating graphene in a first direction perpendicular to the thickness direction of the plate;
    A second stacked body configured by stacking graphene in a second direction parallel to the thickness direction of the plate;
    Have
    The tray is
    A first groove for housing the first stacked body;
    A second groove connected to the first groove and accommodating the second stacked body;
    Have
    The first laminate and the second laminate are in contact with each other in the first direction and a third direction perpendicular to the second direction. Composite heat transfer member.
  15.  前記第3の方向にグラフェンが積層されて構成された第3の積層体を有し、
     前記鋳造成型体は、前記第3の積層体の表面を被覆し、
     前記第3の積層体は、前記第1の積層体に接すると共に、前記第1の積層体から前記第2の方向に立ち上がることを特徴とする請求項13に記載の複合伝熱部材。
    It has a third stacked body configured by stacking graphene in the third direction,
    The cast molded body covers the surface of the third laminate,
    The composite heat transfer member according to claim 13, wherein the third stacked body contacts the first stacked body and rises in the second direction from the first stacked body.
  16.  前記第3の方向にグラフェンが積層されて構成された第3の積層体を有し、
     前記鋳造成型体は、前記第3の積層体の表面を被覆し、
     前記第3の積層体は、前記鋳造成型体の一部を前記第1の積層体との間に介在させて、前記第1の積層体から前記第2の方向に立ち上がることを特徴とする請求項13に記載の複合伝熱部材。
    It has a third stacked body configured by stacking graphene in the third direction,
    The cast molded body covers the surface of the third laminate,
    The third laminate is characterized in that a part of the cast molded body is interposed between the third laminate and the first laminate, and the third laminate stands up from the first laminate in the second direction. Item 13. A composite heat transfer member according to item 13.
  17.  前記プレートは、前記プレートの厚さ方向に対して垂直な第1の方向にグラフェンが積層されて構成された第1の積層体を有し、
     前記第1の方向において、前記第1の積層体の寸法と前記複合伝熱部材が取り付けられる熱源の寸法とが一致していることを特徴とする請求項1に記載の複合伝熱部材。
    The plate has a first stack body in which graphene is stacked in a first direction perpendicular to the thickness direction of the plate,
    The composite heat transfer member according to claim 1, wherein in the first direction, the dimensions of the first laminate and the dimensions of a heat source to which the composite heat transfer member is attached match.
  18.  鋳型のキャビティ内に炭素のプレートを配置する工程と、
     前記キャビティ内に溶融した金属を供給することにより、前記金属の鋳造成型体を形成して、該鋳造成型体で前記プレートの表面を被覆する工程と
     を有することを特徴とする複合伝熱部材の製造方法。
    Placing a plate of carbon in the cavity of the mold;
    Forming a cast of the metal by supplying a molten metal into the cavity, and covering the surface of the plate with the cast. Production method.
  19.  前記キャビティ内に前記プレートを配置する工程では、金属のトレイに前記プレートを収容した状態で前記プレートを前記キャビティ内に配置し、
     前記鋳造成型体で前記プレートの表面を被覆する工程では、前記鋳造成型体で前記プレートの上面と、前記トレイの外側面とを被覆することを特徴とする請求項18に記載の複合伝熱部材の製造方法。
    Placing the plate in the cavity, placing the plate in the cavity with the plate housed in a metal tray;
    The composite heat transfer member according to claim 18, wherein in the step of covering the surface of the plate with the cast molded body, the upper surface of the plate and the outer side surface of the tray are coated with the cast molded body. Manufacturing method.
  20.  前記プレートは、
     前記プレートの厚さ方向に対して垂直な第1の方向にグラフェンが積層されて構成された第1の積層体と、
     前記プレートの厚さ方向に平行な第2の方向にグラフェンが積層されて構成された第2の積層体と、
     を有し、
     前記第1の方向及び前記第2の方向に垂直な第3の方向において、前記第1の積層体と前記第2の積層体とが互いに接していることを特徴とする請求項18に記載の複合伝熱部材の製造方法。
    The plate is
    A first laminate formed by laminating graphene in a first direction perpendicular to the thickness direction of the plate;
    A second stacked body configured by stacking graphene in a second direction parallel to the thickness direction of the plate;
    Have
    The first laminate and the second laminate are in contact with each other in a third direction perpendicular to the first direction and the second direction. Method of manufacturing composite heat transfer member.
  21.  前記トレイは、
     第1の溝と、
     前記第1の溝に繋がる第2の溝と、
     を有し、
     前記プレートは、
     前記プレートの厚さ方向に対して垂直な第1の方向にグラフェンが積層されて構成された第1の積層体と、
     前記プレートの厚さ方向に平行な第2の方向にグラフェンが積層されて構成された第2の積層体と、
     を有し、
     前記第1の溝内に前記第1の積層体を収容し、前記第2の溝内に前記第2の積層体を収容することで、前記第1の方向及び前記第2の方向に垂直な第3の方向において、前記第1の積層体と前記第2の積層体とが互いに接することを特徴とする請求項19に記載の複合伝熱部材の製造方法。
    The tray is
    The first groove,
    A second groove connected to the first groove;
    Have
    The plate is
    A first laminate formed by laminating graphene in a first direction perpendicular to the thickness direction of the plate;
    A second stacked body configured by stacking graphene in a second direction parallel to the thickness direction of the plate;
    Have
    By accommodating the first laminate in the first groove and accommodating the second laminate in the second groove, the first laminate is perpendicular to the first direction and the second direction. The method according to claim 19, wherein the first laminate and the second laminate are in contact with each other in a third direction.
PCT/JP2018/042720 2017-11-20 2018-11-19 Composite heat transfer member and method for producing composite heat transfer member WO2019098377A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/764,135 US20200278161A1 (en) 2017-11-20 2018-11-19 Composite heat transfer member and method for producing composite heat transfer member
CN201880074044.5A CN111356544B (en) 2017-11-20 2018-11-19 Composite heat transfer member and method for manufacturing composite heat transfer member
EP18878801.2A EP3715014A4 (en) 2017-11-20 2018-11-19 Composite heat transfer member and method for producing composite heat transfer member

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017222862 2017-11-20
JP2017-222862 2017-11-20
JP2018131470A JP7119671B2 (en) 2017-11-20 2018-07-11 COMPOSITE HEAT TRANSFER MEMBER AND METHOD FOR MANUFACTURING COMPOSITE HEAT TRANSFER MEMBER
JP2018-131470 2018-07-11

Publications (1)

Publication Number Publication Date
WO2019098377A1 true WO2019098377A1 (en) 2019-05-23

Family

ID=66539703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042720 WO2019098377A1 (en) 2017-11-20 2018-11-19 Composite heat transfer member and method for producing composite heat transfer member

Country Status (2)

Country Link
CN (1) CN111356544B (en)
WO (1) WO2019098377A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000336438A (en) * 1999-03-25 2000-12-05 Kubota Corp Metal-ceramics composite material and its manufacture
JP2007019285A (en) * 2005-07-08 2007-01-25 Am Technology:Kk Flexible heat-sink plate
JP2007073875A (en) * 2005-09-09 2007-03-22 Ngk Insulators Ltd Heat spreader module and its manufacturing method
JP2011023670A (en) 2009-07-17 2011-02-03 Thermo Graphitics Co Ltd Anisotropic thermally-conductive element, and method of manufacturing the same
JP2012238733A (en) 2011-05-12 2012-12-06 Thermo Graphitics Co Ltd Anisotropic thermally-conductive element and manufacturing method thereof
JP2016035945A (en) * 2014-08-01 2016-03-17 株式会社日立製作所 Power module and heat diffusion plate
JP2017222862A (en) 2011-10-19 2017-12-21 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Compound, manufacturing thereof, use of the compound for manufacturing detergent for washing tableware
JP2018131470A (en) 2012-12-13 2018-08-23 ベイラー リサーチ インスティテュートBaylor Research Institute Triheptanoin for treatment of glucose transporter 1 deficiency

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080265403A1 (en) * 2004-12-29 2008-10-30 Metal Matrix Cast Composites, Llc Hybrid Metal Matrix Composite Packages with High Thermal Conductivity Inserts
WO2008093808A1 (en) * 2007-01-31 2008-08-07 Ngk Insulators, Ltd. Heat spreader module, method for manufacturing the heat spreader module, and heat sink
WO2008123172A1 (en) * 2007-03-27 2008-10-16 Ngk Insulators, Ltd. Heat spreader module, heat sink and method for manufacturing the heat spreader module and the heat sink
JP5619437B2 (en) * 2010-03-12 2014-11-05 Dowaメタルテック株式会社 Method for producing metal / ceramic bonding substrate
WO2014052282A1 (en) * 2012-09-25 2014-04-03 Momentive Performance Materials Inc. Thermal management assembly comprising bulk graphene material
CN104754913B (en) * 2013-12-27 2018-06-05 华为技术有限公司 Heat-conductive composite material piece and preparation method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000336438A (en) * 1999-03-25 2000-12-05 Kubota Corp Metal-ceramics composite material and its manufacture
JP2007019285A (en) * 2005-07-08 2007-01-25 Am Technology:Kk Flexible heat-sink plate
JP2007073875A (en) * 2005-09-09 2007-03-22 Ngk Insulators Ltd Heat spreader module and its manufacturing method
JP2011023670A (en) 2009-07-17 2011-02-03 Thermo Graphitics Co Ltd Anisotropic thermally-conductive element, and method of manufacturing the same
JP2012238733A (en) 2011-05-12 2012-12-06 Thermo Graphitics Co Ltd Anisotropic thermally-conductive element and manufacturing method thereof
JP2017222862A (en) 2011-10-19 2017-12-21 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Compound, manufacturing thereof, use of the compound for manufacturing detergent for washing tableware
JP2018131470A (en) 2012-12-13 2018-08-23 ベイラー リサーチ インスティテュートBaylor Research Institute Triheptanoin for treatment of glucose transporter 1 deficiency
JP2016035945A (en) * 2014-08-01 2016-03-17 株式会社日立製作所 Power module and heat diffusion plate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3715014A4

Also Published As

Publication number Publication date
CN111356544B (en) 2022-01-14
CN111356544A (en) 2020-06-30

Similar Documents

Publication Publication Date Title
JP7119671B2 (en) COMPOSITE HEAT TRANSFER MEMBER AND METHOD FOR MANUFACTURING COMPOSITE HEAT TRANSFER MEMBER
KR20100105641A (en) Method of forming a thermo pyrolytic graphite-embedded heatsink
US20070175506A1 (en) Thermoelectric module, method of forming a thermoelectric element, and method of thermoelectric module
US9622382B2 (en) Heat-sink device intended for at least one electronic component and corresponding method
JP2011508447A5 (en)
CN107787147B (en) A kind of semisolid communication radiating shell and its production method
CN113874203A (en) Composite heat transfer member and method for manufacturing composite heat transfer member
JP2007123516A (en) Heat spreader, its manufacturing method, and semiconductor device using the same
WO2019098377A1 (en) Composite heat transfer member and method for producing composite heat transfer member
JP6818768B2 (en) Metal-ceramic bonded substrate and its manufacturing method
WO2002045161A1 (en) Integral-type ceramic circuit board and method of producing same
JP5631446B2 (en) Method for producing metal / ceramic bonding substrate
CN110325310A (en) The manufacturing method of the manufacturing method of conjugant, the manufacturing method of insulate electrical substrate and the insulate electrical substrate having heat radiating fins
WO2013153721A1 (en) Resin sealing device and resin sealing method
JP2023041248A (en) Laminated structure and manufacturing method thereof
US20060141675A1 (en) Method of manufacturing heat spreader having vapor chamber defined therein
CN114619204B (en) Method for forming arched surface of metal-based ceramic composite material substrate
JP2011073194A (en) Metal-ceramics joint base and method of manufacturing the same
JP7165361B2 (en) heatsink
JP2012050987A (en) Heat dissipation base board having electric insulation
KR101468920B1 (en) Pressure-impregnation type multi-layered heat dissipation substrate that ceramic plate and metal matrix composites(MMC) are joined each other, and method for fabricating the same
JP5519299B2 (en) Heat sink manufacturing method
CN218827071U (en) Heat dissipation structure for chip packaging, die and chip packaging device
TW202348119A (en) Heat dissipation member
KR20160013371A (en) Heatsink and Method for Manufacturing the Heatsink, Lead-frame Assembly for Electronic Component Package Having the Heatsink and Method for Manufacturing the Lead-frame Assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18878801

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018878801

Country of ref document: EP

Effective date: 20200622