JP2023041248A - Laminated structure and manufacturing method thereof - Google Patents

Laminated structure and manufacturing method thereof Download PDF

Info

Publication number
JP2023041248A
JP2023041248A JP2021148504A JP2021148504A JP2023041248A JP 2023041248 A JP2023041248 A JP 2023041248A JP 2021148504 A JP2021148504 A JP 2021148504A JP 2021148504 A JP2021148504 A JP 2021148504A JP 2023041248 A JP2023041248 A JP 2023041248A
Authority
JP
Japan
Prior art keywords
plate
ceramic
laminated structure
molten metal
structure according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021148504A
Other languages
Japanese (ja)
Inventor
幸司 小林
Koji Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metaltech Co Ltd
Original Assignee
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metaltech Co Ltd filed Critical Dowa Metaltech Co Ltd
Priority to JP2021148504A priority Critical patent/JP2023041248A/en
Publication of JP2023041248A publication Critical patent/JP2023041248A/en
Pending legal-status Critical Current

Links

Images

Abstract

To suppress remarkably Al-Ni alloying of an Al-based plate-like member in a laminated body obtained by a molten metal bonding method in which a ceramic plate, the Al-based plate-like member and a Ni plate are joined.SOLUTION: A ceramic plate and a Ni plate on one surface of which a coating film to form a ceramic film by heating is formed are placed in a mold with a gap therebetween so that the surface of the Ni plate on which the coating film is formed faces the ceramic plate, and molten Al or Al alloy is poured into the mold so that the molten metal filled in a space between the ceramic plate and the Ni plate is solidified to make a laminated structure in which the ceramic plate, the Al-based plate-like member comprising the Al or Al alloy and the Ni plate are joined together. The ceramic film is formed on a bonding interface between the Ni plate and the Al-based plate member.SELECTED DRAWING: Figure 1

Description

本発明は、半導体素子を搭載するための絶縁回路基板として有用な、セラミックス板、Al系板状部材、Ni板が積層して一体化している積層構造体、およびその製造方法に関する。 TECHNICAL FIELD The present invention relates to a laminate structure in which a ceramic plate, an Al-based plate-like member, and a Ni plate are laminated and integrated, and a method for manufacturing the same, which is useful as an insulating circuit board for mounting a semiconductor element.

パワーモジュールなどの発熱量の多い半導体装置では、一般にセラミックス板の表面に板状の回路用金属部材が接合された絶縁回路基板が使用され、半導体素子は前記の回路用金属部材の上にはんだ付けなどの方法で搭載される。回路用金属部材としては、導電性の良好なCu系あるいはAl系の金属材料が適用される。このうちAl系の金属材料は、はんだ濡れ性が悪いため、従来、表面にNiめっきを施した後にはんだ付けに供されるのが一般的である。 Semiconductor devices that generate a large amount of heat, such as power modules, generally use an insulated circuit board in which a plate-like circuit metal member is bonded to the surface of a ceramic plate, and the semiconductor element is soldered onto the circuit metal member. installed in such a way. As the circuit metal member, a Cu-based or Al-based metal material having good conductivity is applied. Of these, Al-based metal materials have poor solder wettability, and are generally used for soldering after their surfaces are plated with Ni.

特許文献1には、半導体素子からの発熱量が大きい厳しい条件でのヒートサイクルにおいて、はんだ層のクラックなどに対する耐久性を改善する手法として、NiめっきをAl系の回路用金属部材の表面に17μm以上に厚く形成する技術が開示されている。しかし、所定の回路形状に厚いNiめっきを施すことは製造コストを上昇させる要因となる。 In Patent Document 1, Ni plating is applied to the surface of an Al-based circuit metal member to a thickness of 17 μm as a method for improving durability against cracks in a solder layer in a heat cycle under severe conditions in which a semiconductor element generates a large amount of heat. Techniques for forming the film thicker than the above are disclosed. However, applying thick Ni plating to a predetermined circuit shape causes an increase in manufacturing cost.

特許文献2には、セラミックス板の表面でAl系金属の溶湯を凝固させることによってセラミックス板とAl系の回路用金属部材とを直接接合する「溶湯接合法」の工程を利用して、Ni板を回路用金属部材のセラミックス板と反対側に位置する面に同時に接合する技術が開示されている。 In Patent Document 2, a Ni plate is formed by using a "melt bonding method" in which a ceramic plate and an Al-based circuit metal member are directly joined by solidifying molten Al-based metal on the surface of the ceramic plate. are simultaneously joined to the surface of the circuit metal member opposite to the ceramic plate.

特開2018-18992号公報JP 2018-18992 A 特開2020-132477号公報JP 2020-132477 A

溶湯接合法を利用してNi板を同時に接合する特許文献2の手法によれば、厚いNiめっきに代わるNi板の表面層を安価に形成することができる。しかし、この手法では、セラミックス板に反りが生じ易く、回路の配置パターンによってはセラミックス板にクラックが生じる例も見られた。その原因として、溶湯接合時にNi板の表層部がAl系金属の溶湯と反応し、凝固後のAl系の回路用金属部材は硬質のAl-Ni合金を主体とする金属組織となってしまうことが挙げられる。硬質のAl-Ni合金を主体とする回路用金属部材の層は、溶湯接合後の冷却時に、熱膨張率の小さいセラミックス板からの拘束力に打ち勝って収縮し、それによってセラミックス板に反りを発生させる応力が付与されると考えられる。 According to the method disclosed in Patent Document 2, in which the Ni plates are simultaneously joined using the molten metal joining method, the surface layer of the Ni plate can be formed at low cost in place of the thick Ni plating. However, with this method, the ceramic plate tends to warp, and there have been cases where cracks occur in the ceramic plate depending on the layout pattern of the circuit. The reason for this is that the surface layer of the Ni plate reacts with the molten Al-based metal during molten metal joining, and the Al-based circuit metal member after solidification becomes a metal structure mainly composed of a hard Al-Ni alloy. is mentioned. The layer of the circuit metal member, which is mainly made of hard Al-Ni alloy, shrinks by overcoming the restraining force from the ceramic plate with a small thermal expansion coefficient during cooling after molten metal joining, thereby causing the ceramic plate to warp. It is thought that a stress that causes

本発明は、溶湯接合法によって形成することができる、セラミックス板、Al系板状部材、Ni板が接合して一体化した積層体において、Al系板状部材のAl-Ni合金化が顕著に抑制された積層構造を持つものを提供することを目的とする。 The present invention provides a laminate in which a ceramic plate, an Al-based plate-like member, and a Ni plate are joined and integrated, which can be formed by a molten metal bonding method, and the Al-Ni alloying of the Al-based plate-like member is remarkable. It is an object of the present invention to provide a restrained lamination structure.

発明者は研究の結果、高温でセラミックス膜が形成される無機物質を含む耐熱塗膜で被覆したNi板を、Al溶湯との溶湯接合に供することによって、溶湯接合時にNi板の表層部とAl系溶湯との反応が顕著に抑制され、かつNi板とAl溶湯由来のAl系板状部材とが良好に接合されることを見出した。この知見に基づき、本明細書では以下の発明を開示する。 As a result of research, the inventors discovered that by subjecting a Ni plate coated with a heat-resistant coating film containing an inorganic substance capable of forming a ceramic film at high temperatures to molten Al bonding, the surface layer portion of the Ni plate and Al The inventors have found that the reaction with the system molten metal is remarkably suppressed, and that the Ni plate and the Al-based plate-like member derived from the molten Al are satisfactorily joined. Based on this finding, the present specification discloses the following inventions.

[1]セラミックス板と、AlまたはAl合金からなるAl系板状部材と、Ni板とが上記の順に積層して接合された積層部を有する積層構造体であって、前記積層部において、前記Al系板状部材と前記Ni板との接合界面にセラミックス膜が形成されている積層構造体。
[2]前記セラミックス膜は、Co、MnおよびFeからなる群より選ばれる1種以上の元素を含む酸化物系セラミックス膜、またはCrを含む窒化物系セラミックス膜である、上記[1]に記載の積層構造体。
[3]前記セラミックス膜は、SiおよびTiからなる群より選ばれる1種以上の元素を含む酸化物系セラミックス膜、またはCrを含む窒化物系セラミックス膜である、上記[1]に記載の積層構造体。
[4]前記セラミックス膜は、Co、MnおよびFeからなる群より選ばれる1種以上の元素とSiおよびTiからなる群より選ばれる1種以上の元素とを含む酸化物系セラミックス膜、またはCrを含む窒化物系セラミックス膜である、上記[1]に記載の積層構造体。
[5]前記セラミックス板の前記Al系板状部材が接合されている面と反対側の面に、AlまたはAl合金からなるAl系背面部材が接合されている、上記[1]~[4]のいずれかに記載の積層構造体。
[6]前記Al系背面部材は、前記セラミックス板の背面部分が板状である放熱部材、または前記セラミックス板との接合部以外の部位にフィンまたは複数のピン状突起を持つ放熱部材である、上記[1]~[5]のいずれかに記載の積層構造体。
[7]前記Al系板状部材は、前記セラミックス板と前記Ni板の間における厚さtが0.2~2.0mmであり、下記(A)により定まる断面平均硬さが30.0HV以下である、上記[1]~[6]のいずれかに記載の積層構造体。
(A)当該積層構造体の積層方向に平行な切断面をバフ研磨仕上げした断面において、Al系板状部材のNi板側の積層方向端部からの距離が下記に規定するt(mm)である測定点を無作為に5点以上設定し、各測定点についてJIS Z2244-1:2020に準拠して試験力F=2.45Nでのビッカース硬さを測定し、それら各測定点での測定値の相加平均値を断面平均硬さとする。
ここで、前記tは以下のように設定する。
0.2mm≦t<0.7mmのとき、t=t/2±t/10(mm)
t≧0.7mmのとき、t=0.35±0.07(mm)
[1] A laminated structure having a laminated portion in which a ceramic plate, an Al-based plate member made of Al or an Al alloy, and a Ni plate are laminated and joined in the above order, wherein the laminated portion includes: A laminated structure in which a ceramic film is formed on a bonding interface between an Al-based plate member and the Ni plate.
[2] The above-mentioned [1], wherein the ceramic film is an oxide ceramic film containing one or more elements selected from the group consisting of Co, Mn and Fe, or a nitride ceramic film containing Cr. laminated structure.
[3] The laminate according to [1] above, wherein the ceramic film is an oxide ceramic film containing one or more elements selected from the group consisting of Si and Ti, or a nitride ceramic film containing Cr. Structure.
[4] The ceramic film is an oxide ceramic film containing at least one element selected from the group consisting of Co, Mn and Fe and at least one element selected from the group consisting of Si and Ti, or Cr The laminated structure according to the above [1], which is a nitride-based ceramic film containing
[5] The above [1] to [4], wherein an Al-based rear member made of Al or an Al alloy is bonded to the surface of the ceramic plate opposite to the surface to which the Al-based plate member is bonded. The laminated structure according to any one of .
[6] The Al-based back member is a heat dissipating member in which the back portion of the ceramic plate is plate-shaped, or a heat dissipating member having fins or a plurality of pin-shaped projections in a portion other than the joint with the ceramic plate. The laminated structure according to any one of [1] to [5] above.
[7] The Al-based plate member has a thickness t between the ceramic plate and the Ni plate of 0.2 to 2.0 mm, and an average cross-sectional hardness determined by (A) below is 30.0 HV or less. , the laminated structure according to any one of the above [1] to [6].
(A) In a cross section obtained by buffing a cut surface parallel to the lamination direction of the laminated structure, the distance from the end in the lamination direction of the Ni plate side of the Al-based plate-like member is t 1 (mm) defined below. Randomly set 5 or more measurement points, and measure the Vickers hardness at each measurement point at a test force F = 2.45 N in accordance with JIS Z2244-1: 2020. Let the arithmetic average value of the measured values be the cross-sectional average hardness.
Here, t1 is set as follows.
When 0.2 mm≦t<0.7 mm, t 1 =t/2±t/10 (mm)
When t≧0.7 mm, t 1 =0.35±0.07 (mm)

上記[1]~[7]に記載の積層構造体は、例えば以下に示す製造方法によって得ることができる。
[8]セラミックス板と、加熱によりセラミックス膜を形成する塗膜が片側表面に形成されているNi板とを、前記Ni板の前記塗膜の形成面が前記セラミックス板と向き合うように間隔を空けて鋳型内に配置し、当該セラミックス板とNi板との間に空間Aを設ける部材配置工程と、
その鋳型内にAlまたはAl合金の溶湯を注入し、前記空間Aに満たされた前記溶湯を凝固させることにより、セラミックス板と、AlまたはAl合金からなるAl系板状部材と、Ni板とが接合した積層構造を形成させる溶湯接合工程と、
を含む積層構造体の製造方法。
[9]前記溶湯接合工程において、前記Al系板状部材と前記Ni板との接合界面にセラミックス膜を形成させる、上記[8]に記載の積層構造体の製造方法。
[10]前記塗膜は、Co、MnおよびFeからなる群より選ばれる1種以上の元素を含む酸化物系セラミックス粒子を含有するものである、上記[8]に記載の積層構造体の製造方法。
[11]前記溶湯接合工程において、前記Al系板状部材と前記Ni板との接合界面に、Co、MnおよびFeからなる群より選ばれる1種以上の元素を含む酸化物系セラミックス膜を形成させる、上記[10]に記載の積層構造体の製造方法。
[12]前記塗膜は、SiおよびTiからなる群より選ばれる1種以上の元素を含む樹脂を含有するものである、上記[8]に記載の積層構造体の製造方法。
[13]前記溶湯接合工程において、前記Al系板状部材と前記Ni板との接合界面に、SiおよびTiからなる群より選ばれる1種以上の元素を含む酸化物系セラミックス膜を形成させる、上記[12]に記載の積層構造体の製造方法。
[14]前記塗膜は、Co、MnおよびFeからなる群より選ばれる1種以上の元素を含む酸化物系セラミックス粒子と、SiおよびTiからなる群より選ばれる1種以上の元素を含む樹脂とを含有するものである、上記[8]に記載の積層構造体の製造方法。
[15]前記溶湯接合工程において、前記Al系板状部材と前記Ni板との接合界面に、Co、MnおよびFeからなる群より選ばれる1種以上の元素とSiおよびTiからなる群より選ばれる1種以上の元素とを含む酸化物系セラミックス膜を形成させる、上記[14]に記載の積層構造体の製造方法。
[16]前記塗膜は、Crを含む窒化物系セラミックス粒子を含有するものである、上記[8]に記載の積層構造体の製造方法。
[17]前記溶湯接合工程において、前記Al系板状部材と前記Ni板との接合界面に、Crを含む窒化物系セラミックス膜を形成させる、上記[16]に記載の積層構造体の製造方法。
[18]前記塗膜は、揮発成分を予め揮発除去した乾燥塗膜である、上記[8]~[17]のいずれかに記載の積層構造体の製造方法。
[19]前記塗膜は、常温から昇温したときに700℃以下の温度域でセラミックス膜となる性質を有するものである、上記[8]~[18]のいずれかに記載の積層構造体の製造方法。
[20]前記部材配置工程において、前記セラミックス板の前記Ni板と向き合う面の背面と、鋳型壁面との間に空間Bを設け、
前記溶湯接合工程において、前記空間Aおよび前記空間Bに満たされた前記溶湯を凝固させることにより、セラミックス板と、AlまたはAl合金からなるAl系板状部材と、Ni板とが接合し、かつ当該セラミックス板の前記Al系板状部材が存在する面の背面に、AlまたはAl合金からなるAl系背面部材が接合した積層構造を形成させる、上記[8]~[19]のいずれかに記載の積層構造体の製造方法。
[21]前記Al系背面部材は、前記セラミックス板の背面部分が板状の放熱部材である、上記[20]に記載の積層構造体の製造方法。
[22]前記空間Bは鋳型壁面によって形成されたフィン状空隙または複数のピン状凹部を有するものであり、前記Al系背面部材はフィンまたは複数のピン状突起を持つ放熱部材である、上記[20]に記載の積層構造体の製造方法。
The laminated structure described in [1] to [7] above can be obtained, for example, by the manufacturing method described below.
[8] A ceramic plate and a Ni plate on which a coating film that forms a ceramic film by heating is formed on one surface are spaced apart so that the surface of the Ni plate on which the coating film is formed faces the ceramic plate. a member placement step of placing in a mold and providing a space A between the ceramic plate and the Ni plate;
A molten metal of Al or an Al alloy is poured into the mold, and the molten metal filled in the space A is solidified to form a ceramic plate, an Al-based plate-like member made of Al or an Al alloy, and a Ni plate. a molten metal bonding step to form a bonded laminated structure;
A method of manufacturing a laminated structure comprising:
[9] The method for producing a laminated structure according to [8] above, wherein in the molten metal joining step, a ceramic film is formed on the joining interface between the Al-based plate member and the Ni plate.
[10] Manufacture of a laminated structure according to [8] above, wherein the coating contains oxide-based ceramic particles containing one or more elements selected from the group consisting of Co, Mn and Fe. Method.
[11] In the molten metal joining step, an oxide-based ceramic film containing at least one element selected from the group consisting of Co, Mn and Fe is formed at the joining interface between the Al-based plate member and the Ni plate. The method for manufacturing a laminated structure according to the above [10], wherein
[12] The method for producing a laminated structure according to [8] above, wherein the coating contains a resin containing one or more elements selected from the group consisting of Si and Ti.
[13] In the molten metal joining step, an oxide-based ceramic film containing one or more elements selected from the group consisting of Si and Ti is formed at the joint interface between the Al-based plate-shaped member and the Ni plate. The method for producing a laminated structure according to [12] above.
[14] The coating film comprises oxide-based ceramic particles containing at least one element selected from the group consisting of Co, Mn and Fe, and a resin containing at least one element selected from the group consisting of Si and Ti. The method for producing a laminated structure according to [8] above, which contains
[15] In the molten metal joining step, one or more elements selected from the group consisting of Co, Mn and Fe and one selected from the group consisting of Si and Ti are added to the joint interface between the Al-based plate member and the Ni plate. The method for producing a laminated structure according to [14] above, wherein an oxide-based ceramic film containing one or more elements is formed.
[16] The method for producing a laminated structure according to [8] above, wherein the coating contains nitride ceramic particles containing Cr.
[17] The method for producing a laminated structure according to [16] above, wherein a nitride-based ceramic film containing Cr is formed on a bonding interface between the Al-based plate member and the Ni plate in the molten metal bonding step. .
[18] The method for producing a laminated structure according to any one of [8] to [17] above, wherein the coating film is a dry coating film from which volatile components have been volatilized and removed in advance.
[19] The laminated structure according to any one of [8] to [18] above, wherein the coating film has the property of becoming a ceramic film in a temperature range of 700°C or less when the temperature is raised from room temperature. manufacturing method.
[20] In the member arrangement step, a space B is provided between the back surface of the ceramic plate facing the Ni plate and the mold wall surface,
In the molten metal joining step, by solidifying the molten metal filled in the space A and the space B, the ceramic plate, the Al-based plate-like member made of Al or an Al alloy, and the Ni plate are joined, and Any one of the above [8] to [19], wherein a laminated structure is formed in which an Al-based back member made of Al or an Al alloy is bonded to the back of the surface of the ceramic plate on which the Al-based plate-shaped member exists. A method for manufacturing a laminated structure.
[21] The method for producing a laminated structure according to [20] above, wherein the Al-based back member is a plate-shaped heat radiating member on the back portion of the ceramic plate.
[22] The above-mentioned [ 20].

ここで、上記[1]に記載の「セラミックス板と、AlまたはAl合金からなるAl系板状部材と、Ni板とが上記の順に積層して接合された」とは、積層している部材の位置関係において、セラミックス板の隣にAlまたはAl合金からなるAl系板状部材が存在し、そのAl系板状部材の前記セラミックス板と反対側の隣にNi板が存在することを意味する。すなわち、セラミックス板とAlまたはAl合金からなるAl系板状部材の間、およびそのAl系板状部材とNi板の間に、それぞれ接合界面がある。 Here, "a ceramic plate, an Al-based plate-shaped member made of Al or an Al alloy, and a Ni plate are laminated and joined in the above order" described in [1] above means the laminated member In the positional relationship of , an Al-based plate-like member made of Al or Al alloy exists next to the ceramic plate, and a Ni plate exists next to the Al-based plate-like member on the opposite side of the ceramic plate. . That is, there are bonding interfaces between the ceramic plate and the Al-based plate-like member made of Al or Al alloy, and between the Al-based plate-like member and the Ni plate.

酸化物系セラミックスは、酸化物を主成分とする無機物質で構成されるセラミックスをいう。窒化物系セラミックスは、窒化物を主成分とする無機物質で構成されるセラミックスをいう。ここで、「酸化物を主成分とする」とは、セラミックスを構成する無機物質に占める酸化物の質量割合が50%以上であることを意味する。同様に、「窒化物を主成分とする」とは、セラミックスを構成する無機物質に占める窒化物の質量割合が50%以上であることを意味する。 Oxide-based ceramics refer to ceramics composed of inorganic substances containing oxides as the main component. Nitride-based ceramics refer to ceramics composed of an inorganic substance containing nitride as a main component. Here, "having an oxide as a main component" means that the mass ratio of the oxide to the inorganic substance constituting the ceramic is 50% or more. Similarly, "mainly composed of nitrides" means that the mass ratio of nitrides to the inorganic substances constituting the ceramics is 50% or more.

本発明によれば、Al系溶湯を用いた溶湯接合法によって得られる、セラミックス板、Al系板状部材、Ni板が接合した積層構造体において、Al系板状部材のAl-Ni合金化が顕著に抑制された積層構造を持つものが実現できた。この積層構造体を用いた絶縁回路基板は、Ni板を溶湯接合する際に硬質のAl-Ni合金が形成されていた従来のNi板使用品と比べ、セラミックス板の反りが少なく、耐久性にも優れる。また、煩雑なNiめっきを必要としないため、従来一般的なNiめっき品と比べ、生産性および製造コストの面で有利である。 According to the present invention, in a laminated structure in which a ceramic plate, an Al-based plate-like member, and a Ni plate are joined by a molten metal bonding method using an Al-based molten metal, the Al-based plate-like member is made into an Al—Ni alloy. It was possible to realize a layered structure that was remarkably suppressed. The insulated circuit board using this laminated structure has less warpage of the ceramic plate and is more durable than conventional Ni plate products in which a hard Al-Ni alloy is formed when the Ni plate is welded with molten metal. is also excellent. Moreover, since complicated Ni-plating is not required, it is advantageous in terms of productivity and manufacturing cost compared to conventional general Ni-plated products.

本発明の積層構造体が有する積層部の断面構造を模式的に示した図。The figure which showed typically the cross-sectional structure of the laminated part which the laminated structure of this invention has. 本発明の積層構造体を利用した絶縁回路基板の断面構造の一例を模式的に示した断面図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view schematically showing an example of the cross-sectional structure of an insulated circuit board using the laminated structure of the present invention; 本発明の積層構造体を利用した絶縁回路基板の断面構造の一例を模式的に示した断面図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view schematically showing an example of the cross-sectional structure of an insulated circuit board using the laminated structure of the present invention; 図2に示した断面構造を有する積層構造体を溶湯接合法により作製するための鋳型内の配置を模式的に例示した断面図。FIG. 3 is a cross-sectional view schematically illustrating the arrangement in a mold for producing the laminated structure having the cross-sectional structure shown in FIG. 2 by the molten metal bonding method; 図3に示した断面構造を有する積層構造体を溶湯接合法により作製するための鋳型内の配置を模式的に例示した断面図。FIG. 4 is a cross-sectional view schematically illustrating an arrangement in a mold for producing a laminated structure having the cross-sectional structure shown in FIG. 3 by a molten metal bonding method; 図4に示した鋳型の内部に溶湯を導入した状態を例示した断面図。FIG. 5 is a cross-sectional view illustrating a state in which molten metal is introduced into the mold shown in FIG. 4; 図5に示した鋳型の内部に溶湯を導入した状態を例示した断面図。FIG. 6 is a cross-sectional view illustrating a state in which molten metal is introduced into the mold shown in FIG. 5; 実施例1で得られた積層構造体のNi板とAl系板状部材との接合界面を含む断面についてのSEM(走査型電子顕微鏡)観察画像を例示した図。FIG. 2 is a diagram illustrating an SEM (scanning electron microscope) observation image of a cross section including the bonding interface between the Ni plate and the Al-based plate-like member of the laminated structure obtained in Example 1; 図8に対応する部分についてのAl、Ni、O、Co、Mn、Fe、Si、TiのEDS(エネルギー分散型X線分析)によるマップ分析カラー画像をモノクロ化して表示した図。FIG. 9 is a diagram showing a monochromatic map analysis color image by EDS (energy dispersive X-ray spectroscopy) of Al, Ni, O, Co, Mn, Fe, Si, and Ti for the portion corresponding to FIG. 8 ; 実施例1で得られた積層構造体についての、硬さ測定後の断面試料の外観写真を例示した図。FIG. 4 is a diagram illustrating an appearance photograph of a cross-sectional sample after hardness measurement of the laminated structure obtained in Example 1;

[積層構造体]
図1に、本発明の積層構造体が有する積層部の断面構造を模式的に例示する。セラミックス板10と、AlまたはAl合金からなるAl系板状部材20と、Ni板30とが積層して接合され、それらの各部材は一体化している。Al系板状部材20とNi板30の接合界面にはセラミックス膜140が形成されている。この積層構造体は、絶縁回路基板として使用される。半導体素子はNi板30の上面にはんだ層等を介して搭載される。Al系板状部材20は、絶縁回路基板の回路用金属部材を構成するものである。
[Laminated structure]
FIG. 1 schematically illustrates the cross-sectional structure of the laminated portion of the laminated structure of the present invention. A ceramic plate 10, an Al-based plate-shaped member 20 made of Al or an Al alloy, and a Ni plate 30 are laminated and joined together, and these members are integrated. A ceramic film 140 is formed on the joint interface between the Al-based plate member 20 and the Ni plate 30 . This laminated structure is used as an insulating circuit board. A semiconductor element is mounted on the upper surface of the Ni plate 30 via a solder layer or the like. The Al-based plate member 20 constitutes a circuit metal member of an insulated circuit board.

セラミックス板10の主成分である代表的なセラミックスとしては、熱伝導性の良いAlN(窒化アルミニウム)、強度の高いSi(窒化ケイ素)、安価で汎用性の高いAl(アルミナ)などが挙げられる。パワーモジュールの場合には、信頼性や放熱性を確保する観点からAlN板またはSi板を適用することが好ましい。セラミックス板10の厚さは、絶縁回路基板の設計に応じて様々であるが、例えば0.30~1.5mmの範囲で設定することができ、0.35~1.0mmであることがより好ましい。 Typical ceramics that are the main component of the ceramic plate 10 include AlN (aluminum nitride) with good thermal conductivity, Si 3 N 4 (silicon nitride) with high strength, and inexpensive and versatile Al 2 O 3 (alumina). ) and the like. In the case of a power module, it is preferable to use an AlN plate or a Si3N4 plate from the viewpoint of ensuring reliability and heat dissipation. The thickness of the ceramic plate 10 varies depending on the design of the insulating circuit board. preferable.

Ni板30は、Niを99.0質量%以上含有する純Ni板が適用される。Ni板30のNi含有量は99.5質量%以上であることが好ましく、99.7質量%以上であることがより好ましい。 A pure Ni plate containing 99.0% by mass or more of Ni is applied to the Ni plate 30 . The Ni content of the Ni plate 30 is preferably 99.5% by mass or more, more preferably 99.7% by mass or more.

Al系板状部材20は、AlまたはAl合金で構成され、後述の溶湯接合法により当該AlまたはAl合金の溶湯がセラミックス板10とNi板30の間の空間で凝固することにより形成される。Al系板状部材20の厚さは例えば0.2~2.0mmの範囲で設定することができ、0.4~1.5mmであることがより好ましい。 The Al-based plate-shaped member 20 is made of Al or an Al alloy, and is formed by solidifying molten Al or Al alloy in the space between the ceramic plate 10 and the Ni plate 30 by a molten metal joining method, which will be described later. The thickness of the Al-based plate member 20 can be set, for example, in the range of 0.2 to 2.0 mm, more preferably 0.4 to 1.5 mm.

Al系板状部材20は、Niの混入による硬質化が十分に抑制されていることが好ましい。具体的には、セラミックス板10とNi板30の間におけるAl系板状部材20の厚さtが0.2mm以上である場合において、Al系板状部材20の断面平均硬さが30.0HV以下であることが、セラミックス板10の反りを軽減する上で、極めて効果的である。Al系板状部材20の断面平均硬さは26.0HV以下であることが更に好ましい。Al系板状部材20の断面平均硬さは以下のようにして定めることができる。 It is preferable that the Al-based plate-shaped member 20 is sufficiently suppressed from being hardened due to the mixing of Ni. Specifically, when the thickness t of the Al-based plate member 20 between the ceramic plate 10 and the Ni plate 30 is 0.2 mm or more, the cross-sectional average hardness of the Al-based plate member 20 is 30.0 HV. The following is extremely effective in reducing the warpage of the ceramic plate 10 . More preferably, the average cross-sectional hardness of the Al-based plate member 20 is 26.0 HV or less. The cross-sectional average hardness of the Al-based plate member 20 can be determined as follows.

(Al系板状部材の断面平均硬さの測定方法)
当該積層構造体の積層方向に平行な切断面をバフ研磨仕上げした断面において、Al系板状部材のNi板側の積層方向端部からの距離が下記に規定するt(mm)である測定点を無作為に5点以上設定し、各測定点についてJIS Z2244-1:2020に準拠して試験力F=2.45Nでのビッカース硬さを測定し、それら各測定点での測定値の相加平均値を断面平均硬さとする。
ここで、前記tは以下のように設定する。
0.2mm≦t<0.7mmのとき、t=t/2±t/10(mm)
t≧0.7mmのとき、t=0.35±0.07(mm)
(Method for measuring average cross-sectional hardness of Al-based plate member)
In a cross-section obtained by buffing a cut surface parallel to the lamination direction of the laminated structure, the distance from the end in the lamination direction of the Ni plate side of the Al-based plate-shaped member is t 1 (mm) defined below. Randomly set 5 or more points, measure the Vickers hardness at each measurement point at a test force F = 2.45 N in accordance with JIS Z2244-1: 2020, and measure the measured value at each measurement point. Let the arithmetic mean value be the cross-sectional average hardness.
Here, t1 is set as follows.
When 0.2 mm≦t<0.7 mm, t 1 =t/2±t/10 (mm)
When t≧0.7 mm, t 1 =0.35±0.07 (mm)

例えば、Al系板状部材20の厚さtが0.3mmの場合であれば、Al系板状部材20のNi板30側の積層方向端部からの距離tが、次式、t=0.3/2±0.3/10=0.15±0.03(mm)、を満たす積層方向位置にビッカース硬さ測定用の圧子の中心が位置するようにして試験力Fを負荷する。Al系板状部材20の厚さtが1.2mmの場合であれば、Al系板状部材20のNi板30側の積層方向端部からの距離tが、次式、t=0.35±0.07(mm)、を満たす積層方向位置にビッカース硬さ測定用の圧子の中心が位置するようにして試験力Fを負荷する。 For example, when the thickness t of the Al-based plate-shaped member 20 is 0.3 mm, the distance t 1 from the end of the Al-based plate-shaped member 20 on the side of the Ni plate 30 in the stacking direction is given by the following equation, t 1 = 0.3/2 ± 0.3/10 = 0.15 ± 0.03 (mm). do. When the thickness t of the Al-based plate-shaped member 20 is 1.2 mm, the distance t 1 from the end of the Al-based plate-shaped member 20 on the side of the Ni plate 30 in the stacking direction is given by the following equation, t 1 =0 A test force F is applied so that the center of the indenter for Vickers hardness measurement is positioned at a stacking direction position that satisfies 0.35±0.07 (mm).

Ni板30からAl系板状部材20へのNiの混入があると、Al系板状部材20のNi板30に近い領域では硬さに及ぼすAl-Ni合金化による影響が大きくなる。Al系板状部材20の厚さtが大きい場合は、Niの混入があっても、Ni板30からの距離が遠い領域では硬質化の程度が小さくなる。発明者の検討によれば、Al系板状部材20の厚さtが0.7mm程度までの積層構造体であれば、Ni混入による硬質化の程度を、Al系板状部材20の厚さ中央部での断面硬さによって評価することができる。しかし、Al系板状部材20の厚さtが大きくなると、その厚さ中央部の位置がNi板30から遠ざかることによって、硬質化の程度を、厚さ中央部での断面硬さによって十分に評価することができなくなってくる。そこで、Al系板状部材20の厚さtが0.7mm以上である場合には、Ni混入による硬さへの影響が十分に把握可能な測定位置として、Ni板30からの距離が0.35mm程度の位置を採用する。±0.07mmは許容変動幅である。 If Ni is mixed from the Ni plate 30 into the Al-based plate member 20, the Al—Ni alloying effect on the hardness of the region of the Al-based plate member 20 near the Ni plate 30 increases. When the thickness t of the Al-based plate-like member 20 is large, even if Ni is mixed, the degree of hardening is small in a region far from the Ni plate 30 . According to the inventor's study, if the thickness t of the Al-based plate-shaped member 20 is up to about 0.7 mm, the degree of hardening due to Ni mixing is determined by the thickness of the Al-based plate-shaped member 20. It can be evaluated by the cross-sectional hardness at the central portion. However, when the thickness t of the Al-based plate-shaped member 20 increases, the position of the central portion of the thickness moves away from the Ni plate 30, so that the degree of hardening is sufficiently determined by the cross-sectional hardness at the central portion of the thickness. It becomes impossible to evaluate. Therefore, when the thickness t of the Al-based plate-like member 20 is 0.7 mm or more, the distance from the Ni plate 30 is 0.7 mm as a measurement position at which the influence of Ni contamination on hardness can be fully grasped. A position of about 35 mm is adopted. ±0.07 mm is the allowable variation width.

Ni板30は、Al系の回路用金属部材を採用している絶縁回路基板で従来一般的に適用されているNiめっきに代わるものであり、主として半導体素子を接合する際のはんだ付けにおいてはんだ濡れ性を改善する役割を有する。Ni板30の厚さは0.05~1.0mmであることが好ましく、0.1~0.5mmであることがより好ましい。NiはAl系材料に比べ熱伝導率が低いため、Ni板30の厚さがあまり厚くなると放熱性能の観点で不利となる。Ni板30の厚さが薄すぎると塗膜形成したNi板を鋳型へセットするときのハンドリング性が悪くなる。 The Ni plate 30 replaces the Ni plating that has been generally applied to insulated circuit boards that employ Al-based circuit metal members, and is mainly used to prevent solder wetting during soldering when joining semiconductor elements. It has a role in improving sexuality. The thickness of the Ni plate 30 is preferably 0.05-1.0 mm, more preferably 0.1-0.5 mm. Since Ni has a lower thermal conductivity than Al-based materials, if the Ni plate 30 is too thick, it is disadvantageous in terms of heat radiation performance. If the thickness of the Ni plate 30 is too thin, the Ni plate with the coating formed thereon is difficult to handle when set in the mold.

セラミックス膜140は、酸化物系セラミックス膜、または窒化物系セラミックス膜であることが好ましい。酸化物系セラミックス膜としては、Co、MnおよびFeからなる群より選ばれる1種以上を含むものや、SiおよびTiからなる群より選ばれる1種以上を含むものが挙げられる。特に、Co、MnおよびFeからなる群より選ばれる1種以上とSiおよびTiからなる群より選ばれる1種以上とを含むものがより好ましい。窒化物系セラミックス膜としては、Crを含むものが挙げられる。溶湯接合法によりAl系板状部材20を形成させる際、Al系溶湯がNi板の表面に直接接触すると、Ni板の表層部がAl系溶湯と反応してAl系溶湯中にNiが混入し、凝固後のAl系板状部材20は硬質のAl-Ni合金を主体とする金属組織を呈するものとなる。Al系板状部材20のAl-Ni合金化は、上述のように、セラミックス板の反りやクラック発生を招く要因となる。本発明の積層構造体では、Al系溶湯を用いた溶湯接合時に、Ni板30の表面で後述の塗膜に由来するセラミックス膜140が形成されて、Ni板とAl系溶湯との直接的な接触が回避されている。それによってAl系板状部材20のAl-Ni合金化が顕著に抑制されている。また、溶湯接合によって得られた本発明の積層構造体において、Al系板状部材20とNi板30との接合界面に存在するセラミックス膜140は、Al系板状部材20とNi板30との良好な接合を担っている。セラミックス膜140の膜厚は1~15μmの範囲であることが好ましく、2~10μmの範囲がより好ましい。セラミックス膜140が厚いほどNiのAl系合金部材への拡散抑制には有利となるが、放熱性の観点からは過度に厚くないことが有利となる。図1において、セラミックス膜140の厚みは誇張して描いてある(図2、図3、図6、図7において同様。)。 The ceramic film 140 is preferably an oxide ceramic film or a nitride ceramic film. Examples of oxide-based ceramic films include those containing one or more selected from the group consisting of Co, Mn and Fe, and those containing one or more selected from the group consisting of Si and Ti. In particular, one containing one or more selected from the group consisting of Co, Mn and Fe and one or more selected from the group consisting of Si and Ti is more preferred. Nitride-based ceramic films include those containing Cr. When the Al-based plate member 20 is formed by the molten metal bonding method, when the molten Al-based material comes into direct contact with the surface of the Ni plate, the surface layer of the Ni-based plate reacts with the molten Al-based metal, and Ni is mixed into the molten Al-based metal. After solidification, the Al-based plate member 20 presents a metal structure mainly composed of a hard Al--Ni alloy. The Al-Ni alloying of the Al-based plate-like member 20 causes warping and cracking of the ceramic plate as described above. In the laminated structure of the present invention, a ceramic film 140 derived from a coating film, which will be described later, is formed on the surface of the Ni plate 30 at the time of melt bonding using the Al-based molten metal, so that the Ni plate and the Al-based molten metal are directly connected. contact is avoided. As a result, the Al-Ni alloying of the Al-based plate member 20 is remarkably suppressed. In addition, in the laminated structure of the present invention obtained by molten metal bonding, the ceramic film 140 existing at the bonding interface between the Al-based plate-like member 20 and the Ni plate 30 is formed between the Al-based plate-like member 20 and the Ni plate 30. Responsible for good bonding. The film thickness of the ceramic film 140 is preferably in the range of 1-15 μm, more preferably in the range of 2-10 μm. The thicker the ceramic film 140 is, the more advantageous it is for suppressing the diffusion of Ni into the Al-based alloy member. In FIG. 1, the thickness of the ceramic film 140 is exaggerated (the same applies to FIGS. 2, 3, 6 and 7).

図2に、本発明の積層構造体を利用した絶縁回路基板の断面構造の一例を模式的に示す。セラミックス板10の片側の面に、回路用金属部材であるAl系板状部材20が接合されている。Al系板状部材20は、回路パターンに応じて配置される。ここでは、2つのAl系板状部材20が併置されている部分の断面を例示してある。2つのAl系板状部材20は、セラミックス板10上に形成されている溝部21によって互いに電気的に絶縁されている。各Al系板状部材20の上にはNi板30が接合されている。それぞれ、Al系板状部材20とNi板30との接合界面に上述のセラミックス膜140が形成されている。すなわち、セラミックス板10と、Al系板状部材20と、Ni板30とが上記の順に積層して接合された積層部を有し、そのAl系板状部材20とNi板30との接合界面にセラミックス膜140が形成された積層構造体が構築されている。Al系板状部材20は、上述のように溶湯接合法により形成させることができる。
なお、図2ではAl系板状部材20の上の全面にNi板30が接合されている状態を示しているが、例えば半導体素子などの電子部品がはんだ付けされる一部領域のみにNi板30が接合されていてもよい。
FIG. 2 schematically shows an example of a cross-sectional structure of an insulated circuit board using the laminated structure of the present invention. An Al-based plate member 20, which is a metal member for circuits, is bonded to one side surface of the ceramic plate 10. As shown in FIG. The Al-based plate member 20 is arranged according to the circuit pattern. Here, a cross section of a portion where two Al-based plate members 20 are juxtaposed is illustrated. The two Al-based plate members 20 are electrically insulated from each other by grooves 21 formed on the ceramic plate 10 . A Ni plate 30 is bonded onto each Al-based plate member 20 . The ceramic film 140 described above is formed on the bonding interface between the Al-based plate member 20 and the Ni plate 30, respectively. That is, the ceramic plate 10, the Al-based plate-shaped member 20, and the Ni plate 30 have a laminated portion in which they are laminated and bonded in the above order, and the bonding interface between the Al-based plate-shaped member 20 and the Ni plate 30 A laminated structure is constructed in which the ceramic film 140 is formed on the . The Al-based plate member 20 can be formed by the molten metal joining method as described above.
Although FIG. 2 shows a state in which the Ni plate 30 is bonded to the entire surface of the Al-based plate-like member 20, the Ni plate is attached only to a partial region where an electronic component such as a semiconductor element is soldered. 30 may be joined.

セラミックス板10のAl系板状部材20が接合されている面と反対側の面には、AlまたはAl合金からなるAl系背面部材50が接合されている。このAl系背面部材50は放熱部材としての機能を有する。図2の例では、Al系背面部材50の厚さ方向に直角方向の端部は、セラミックス板10の端面を囲む構造の周壁部51と一体化している。すなわち、図2のAl系背面部材50は、セラミックス板10のAl系板状部材20が形成されている面と反対側のほぼ全面と、セラミックス板10の端面(側面)と、セラミックス板10のAl系板状部材20が形成されている面の周囲に形成されている。周壁部51とAl系板状部材20とは、セラミックス板10上に形成されている溝部52によって互いに電気的に絶縁されている。また、Al系背面部材50は、セラミックス板10の背面部分(セラミックス板10のAl系板状部材20が接合されている面と反対側の面のAl系背面部材50の部分)が板状となっている。Al系背面部材50は、周壁部51の部分とともに、Al系板状部材20を形成する溶湯接合の過程を利用して、Al系溶湯の鋳造により形成させることができる。 An Al-based rear member 50 made of Al or an Al alloy is bonded to the surface of the ceramic plate 10 opposite to the surface to which the Al-based plate member 20 is bonded. This Al-based back member 50 has a function as a heat dissipation member. In the example of FIG. 2 , the end of the Al-based back member 50 in the direction perpendicular to the thickness direction is integrated with the peripheral wall 51 that surrounds the end face of the ceramic plate 10 . That is, the Al-based back member 50 shown in FIG. It is formed around the surface on which the Al-based plate member 20 is formed. The peripheral wall portion 51 and the Al-based plate member 20 are electrically insulated from each other by a groove portion 52 formed on the ceramic plate 10 . In the Al-based back member 50, the back portion of the ceramic plate 10 (the portion of the Al-based back member 50 on the side opposite to the surface of the ceramic plate 10 to which the Al-based plate-like member 20 is joined) is plate-shaped. It's becoming The Al-based back member 50 and the peripheral wall portion 51 can be formed by casting Al-based molten metal using the molten metal joining process for forming the Al-based plate-shaped member 20 .

図3に、本発明の積層構造体を利用した絶縁回路基板の断面構造の一例を模式的に示す。この例では、図2に示した絶縁回路基板において、複数のピン状突起53を有するタイプのAl系背面部材50が適用されている。ピン状突起53の配置によっては、図3に図示したピン状突起53の間から背後のピン状突起の一部が見える場合があるが、ここでは背後のピン状突起の図示を省略してある。ピン状突起53は放熱性を高めるためのヒートシンク機能を有する。ピン状突起53も、Al系板状部材20を形成する溶湯接合の過程を利用して、Al系背面部材50とともに、Al系溶湯の鋳造により形成させることができる。放熱性を高めるための部材として、板状部材からなる放熱フィンを、溶湯接合の過程を利用して鋳造により形成させることもできる。 FIG. 3 schematically shows an example of a cross-sectional structure of an insulated circuit board using the laminated structure of the present invention. In this example, an Al-based back member 50 of a type having a plurality of pin-like protrusions 53 is applied to the insulating circuit board shown in FIG. Depending on the arrangement of the pin-shaped projections 53, a part of the pin-shaped projections behind may be seen from between the pin-shaped projections 53 shown in FIG. 3, but the illustration of the pin-shaped projections behind is omitted here. . The pin-shaped protrusion 53 has a heat sink function for enhancing heat dissipation. The pin-shaped projections 53 can also be formed by casting Al-based molten metal together with the Al-based back member 50 using the molten metal joining process for forming the Al-based plate member 20 . As a member for enhancing heat dissipation, a heat dissipation fin made of a plate-like member can be formed by casting using the process of joining molten metal.

[製造方法]
本発明の積層構造体は、鋳型内でセラミックス板とNi板との間の空間にAl系溶湯を充填する「溶湯接合法」によって製造することができる。その際、Ni板として、Al系溶湯と接触する面が耐熱性に優れる塗膜で被覆されているものを使用する。その塗膜によって、溶湯接合時にNi板とAl系溶湯の反応を抑制する。
[Production method]
The laminated structure of the present invention can be manufactured by the "melt joining method" in which the space between the ceramic plate and the Ni plate in the mold is filled with Al-based molten metal. At that time, as the Ni plate, a plate whose surface in contact with the Al-based molten metal is coated with a coating film having excellent heat resistance is used. The coating suppresses the reaction between the Ni plate and the Al-based molten metal during welding of the molten metal.

いわゆる耐熱塗膜には種々のものがある。発明者の検討によれば、加熱によりセラミックス膜を形成する塗膜を適用することが有効であることがわかった。溶湯接合法におけるAl溶湯の注湯温度を考慮すると、700℃までの加熱によりセラミックス膜を形成する塗膜が望ましい。すなわち、常温から昇温したときに700℃以下好ましくは650℃以下の温度域でセラミックス膜となる性質を有する塗膜が好適である。また、Al系溶湯と反応しにくく、形成されたセラミックス膜が800℃程度まではNi板の表面を安定して被覆し続ける耐熱性を呈する塗膜であることが望まれる。 There are various kinds of so-called heat-resistant coating films. According to the study of the inventor, it was found that it is effective to apply a coating film that forms a ceramic film by heating. Considering the pouring temperature of molten Al in the molten metal joining method, a coating film that forms a ceramic film by heating up to 700° C. is desirable. That is, a coating film having a property of becoming a ceramic film in a temperature range of 700° C. or less, preferably 650° C. or less when the temperature is raised from room temperature is suitable. In addition, it is desired that the ceramic film is a heat-resistant coating film that does not easily react with Al-based molten metal and that can stably continue to cover the surface of the Ni plate up to about 800°C.

Ni板の表面を被覆している塗膜は、Al系溶湯と接触する前に、揮発成分が十分に揮発除去されていることが望ましい。本明細書では、塗膜を形成するために使用した塗料に含まれる揮発成分(水分や揮発可能な有機成分)を、常温保持あるいは予備加熱などによって予め十分に揮発除去させた塗膜を「乾燥塗膜」と呼ぶ。乾燥塗膜を得るための予備加熱は、塗膜を形成したNi板を鋳型内にセットする前に予め行ってもよいし、塗膜を形成したNi板を鋳型へセットしたのち溶湯注入を開始する前に、鋳型を炉内で加熱する際の昇温過程を利用して行ってもよい。 It is desirable that the volatile components of the coating film covering the surface of the Ni plate are sufficiently removed by volatilization before contact with the Al-based molten metal. In this specification, the volatile components (moisture and volatile organic components) contained in the paint used to form the coating film are sufficiently volatilized in advance by keeping at room temperature or preheating. called "coating". Preheating for obtaining a dry coating film may be performed in advance before setting the Ni plate with the coating film formed in the mold, or after setting the Ni plate with the coating film in the mold, start pouring the molten metal. Prior to heating, the heating process during heating of the mold in the furnace may be utilized.

発明者の現在までの知見によれば、Ni板表面を被覆して溶湯接合時にNi板とAl系溶湯との反応を顕著に抑制する効果の高い塗膜として、以下の2つのタイプを挙げることができる。
(1)加熱により酸化物系セラミックス膜を形成する塗膜
このタイプの塗膜としては、遷移金属の酸化物で構成されるセラミックス粒子や、SiおよびTiからなる群より選ばれる1種以上を含む樹脂を含有する塗膜が挙げられる。前者のセラミックス粒子としては、Co、MnおよびFeからなる群より選ばれる1種以上の元素を含む酸化物系セラミックス粒子を例示することができる。後者の樹脂としては、シリコーン樹脂、チラノ樹脂など、Si-O結合やTi-O結合を持つ高分子を例示することができる。Co、MnおよびFeからなる群より選ばれる1種以上の元素を含む酸化物系セラミックス粒子と、SiおよびTiからなる群より選ばれる1種以上の元素を含む樹脂とを含有する塗膜がより効果的である。
(2)加熱により窒化物系セラミックス膜を形成する塗膜
このタイプの塗膜としては、Crを含む窒化物系セラミックス粒子を含有する塗膜が挙げられる。
According to the knowledge of the inventors so far, the following two types of coating films are highly effective in coating the surface of the Ni plate and significantly suppressing the reaction between the Ni plate and the Al-based molten metal when the molten metal is joined. can be done.
(1) Coating that forms an oxide-based ceramic film by heating This type of coating includes ceramic particles composed of oxides of transition metals, and one or more selected from the group consisting of Si and Ti. Coating films containing resins can be mentioned. Examples of the former ceramic particles include oxide ceramic particles containing one or more elements selected from the group consisting of Co, Mn and Fe. Examples of the latter resin include polymers having Si--O bonds and Ti--O bonds, such as silicone resins and tyranno resins. A coating film containing oxide-based ceramic particles containing at least one element selected from the group consisting of Co, Mn and Fe and a resin containing at least one element selected from the group consisting of Si and Ti is more desirable. Effective.
(2) Coating Film Forming a Nitride Ceramic Film by Heating This type of coating film includes a coating film containing nitride ceramic particles containing Cr.

塗膜の形成方法としては、塗料の性状に応じて、例えばスプレー法、ディップ法(浸漬法)、塗布法などが採用できる。ここで、塗料には、比較的粘性が高く塗布法に適した液状あるいはペースト状のものや、スプレー法、ディップ法に適したコーティング液が含まれる。塗布法としては、バーコーター法、ダイコーター法、ロールコーター法、刷毛塗り法などが挙げられる。乾燥塗膜を得るための処理方法として、塗膜で被覆したNi板を常温で保持する方法や、例えば400℃以下の所定の温度で予備加熱を施す方法が挙げられる。また、Ni板をコーティング液へディップしたのち乾燥させる操作を複数回行うことによってNi板表面への塗膜成分の付着量を増していく乾燥塗膜の形成方法もある。塗膜の膜厚を大きくするほどNi板とAl系溶湯との反応を抑制する効果は高まるが、反面、形成されるセラミックス膜の厚さが大きくなることにより放熱性の点では不利となる場合がある。発明者の検討によれば、塗膜の膜厚は1~15μmの範囲で設定することが好ましく、2~10μmの範囲とすることがより好ましい。塗膜の形成は、所定の部品サイズに切断されたNi板に対して行ってもよいし、長尺Ni板に対して連続塗装ラインで行ってもよい。後者の場合は塗膜を形成した長尺Ni板から所定サイズのNi板部品を切り出すことになる。連続塗装ラインで塗膜の形成と乾燥塗膜を得るための予備加熱を連続して行うこともできる。 As a method for forming the coating film, for example, a spray method, a dipping method (immersion method), a coating method, or the like can be employed depending on the properties of the coating material. Here, the paint includes a liquid or paste that has a relatively high viscosity and is suitable for application, and a coating liquid that is suitable for spraying and dipping. Examples of coating methods include a bar coater method, a die coater method, a roll coater method, and a brush coating method. Examples of a treatment method for obtaining a dry coating film include a method of keeping the Ni plate coated with the coating film at room temperature, and a method of preheating the Ni plate at a predetermined temperature of, for example, 400° C. or lower. There is also a method of forming a dry coating film in which the Ni plate is dipped in a coating liquid and then dried a plurality of times to increase the amount of coating film components adhered to the Ni plate surface. The effect of suppressing the reaction between the Ni plate and the Al-based molten metal increases as the thickness of the coating film increases, but on the other hand, the thickness of the formed ceramic film increases, which is disadvantageous in terms of heat dissipation. There is According to studies by the inventors, the film thickness of the coating film is preferably set in the range of 1 to 15 μm, more preferably in the range of 2 to 10 μm. The coating film may be formed on a Ni plate cut into a predetermined size, or may be formed on a long Ni plate in a continuous coating line. In the latter case, a Ni plate component of a predetermined size is cut out from a long Ni plate on which a coating film is formed. Formation of the coating film and preheating for obtaining a dry coating film can be performed continuously in a continuous coating line.

このようにして上記(1)または(2)の塗膜で片側の面を被覆したNi板を用いて、以下に示す「部材配置工程」および「溶湯接合工程」を含むプロセスで積層構造体を得る。 Using the Ni plate coated on one side with the coating film of (1) or (2) in this way, a laminated structure is manufactured in the following process including a "member placement step" and a "melt bonding step". obtain.

[部材配置工程]
溶湯接合を行うに際し、まず鋳型内に、上記塗膜が片側表面に形成されているNi板と、セラミックス板とを、前記Ni板の前記塗膜の形成面が前記セラミックス板と向き合うように間隔を空けて配置する。
[Member placement process]
When performing molten metal joining, first, a Ni plate having the coating film formed on one surface thereof and a ceramic plate are placed in a mold so that the surface of the Ni plate on which the coating film is formed faces the ceramic plate. are placed with a space between them.

図4に、図2に示した断面構造を有する積層構造体を作製するための鋳型内の配置を模式的に例示した断面図を示す。上型1aと下型1bにより鋳型1が構成されている。上型1aと下型1bは、ガス透過性を有する炭素材料または金属材料からなる。鋳型1には上型1aと下型1bの内部空間によって形成される貯湯部5がある。貯湯部5は、鋳型内部の製品形状空間へ供給するための金属溶湯を収容する空間である。貯湯部5でAl系の金属原料を溶融させてAl系溶湯を得ることもできる。その場合、貯湯部5は坩堝としての機能も有する。貯湯部5の上部には加圧口2があり、貯湯部5内の溶湯を製品形状空間に送り込むための圧力が鋳型1の外部から加圧口2を通じて溶湯に付与されるようになっている。下型1bには貯湯部5内の溶湯を鋳型内の各部位へ供給するための湯道3が設けられている。図4の例では、湯道3の一部に、溶湯が通過する流路の断面を細くした狭断面流路103が設けられている。Al系溶湯が狭断面流路103を通過する際に溶湯表面の酸化皮膜が除去される。 FIG. 4 shows a cross-sectional view schematically illustrating the arrangement in the mold for producing the laminated structure having the cross-sectional structure shown in FIG. A mold 1 is composed of an upper mold 1a and a lower mold 1b. The upper mold 1a and the lower mold 1b are made of a gas-permeable carbon material or metal material. The casting mold 1 has a hot water reservoir 5 formed by the internal spaces of the upper mold 1a and the lower mold 1b. The hot water storage part 5 is a space for containing molten metal to be supplied to the product shape space inside the mold. An Al-based molten metal can also be obtained by melting an Al-based metal raw material in the hot water storage section 5 . In that case, the hot water storage part 5 also functions as a crucible. A pressurization port 2 is provided in the upper part of the hot water storage part 5, and a pressure for sending the molten metal in the hot water storage part 5 into the product shape space is applied from the outside of the mold 1 through the pressure port 2 to the molten metal. . The lower mold 1b is provided with a runner 3 for supplying the molten metal in the hot water storage part 5 to each part in the mold. In the example of FIG. 4, a part of the runner 3 is provided with a narrow cross-section channel 103 in which the cross section of the channel through which the molten metal passes is narrowed. When the Al-based molten metal passes through the narrow cross-section flow path 103, the oxide film on the surface of the molten metal is removed.

下型1bの所定位置に、Ni板30とセラミックス板10を、間隔を空けて載置する。その際、Ni板30の塗膜40で被覆されている面がセラミックス板10と向き合うようにする。Ni板30とセラミックス板10の間には、空間Aが形成されている。空間Aは下型1b内の図示しない湯道によって貯湯部5に繋がっている。空間Aに充填されたAl系溶湯が凝固することにより回路用金属部材であるAl系板状部材(図2の符号20)が形成される。セラミックス板10の上面側には上型1aの鋳型壁面との間に空間Bが形成されている。空間Bは下型1b内の湯道によって貯湯部5に繋がっている。空間Bに充填されたAl系溶湯が凝固することにより放熱部材であるAl系背面部材(図2の符号50)が形成される。
図4において、塗膜40の厚みは誇張して描いてある(図5において同様。)。
The Ni plate 30 and the ceramic plate 10 are placed at predetermined positions on the lower mold 1b with a gap therebetween. At that time, the surface of the Ni plate 30 covered with the coating film 40 faces the ceramic plate 10 . A space A is formed between the Ni plate 30 and the ceramic plate 10 . The space A is connected to the hot water storage part 5 by a runner (not shown) in the lower die 1b. By solidifying the Al-based molten metal filled in the space A, an Al-based plate member (reference numeral 20 in FIG. 2), which is a circuit metal member, is formed. A space B is formed between the upper surface of the ceramic plate 10 and the mold wall surface of the upper mold 1a. The space B is connected to the hot water storage part 5 by a runner inside the lower mold 1b. By solidifying the Al-based molten metal filled in the space B, an Al-based back member (reference numeral 50 in FIG. 2), which is a heat radiating member, is formed.
In FIG. 4, the thickness of the coating film 40 is exaggerated (the same applies to FIG. 5).

図5に、図3に示した断面構造を有する積層構造体を作製するための鋳型内の配置を模式的に例示した断面図を示す。この場合は、空間Bは上型1aの壁面によって形成された複数のピン状凹部4を有している。ピン状凹部4に充填されたAl系溶湯が凝固することによりヒートシンク機能を有するピン状突起(図3の符号53)が形成される。図5の鋳型構造は、ピン状凹部4が形成されていることを除き、図4のものと同様である。下型1bに載置するNi板30とセラミックス板10の配置も図4の場合と同様である。鋳型1はセラミックス板10を支持あるいは挟持する構造を備えており、溶湯接合工程においてセラミックス板10は所定位置からずれないようになっている。 FIG. 5 shows a cross-sectional view schematically illustrating the arrangement in the mold for producing the laminated structure having the cross-sectional structure shown in FIG. In this case, the space B has a plurality of pin-shaped recesses 4 formed by the wall surface of the upper die 1a. A pin-shaped protrusion (reference numeral 53 in FIG. 3) having a heat sink function is formed by solidifying the Al-based molten metal filled in the pin-shaped concave portion 4 . The mold structure of FIG. 5 is similar to that of FIG. 4, except that pin-shaped recesses 4 are formed. The arrangement of the Ni plate 30 and the ceramic plate 10 placed on the lower mold 1b is also the same as in FIG. The mold 1 has a structure for supporting or sandwiching the ceramic plate 10 so that the ceramic plate 10 does not shift from a predetermined position during the molten metal joining process.

[溶湯接合工程]
図6および図7に、それぞれ図4および図5に示した鋳型の内部に溶湯を導入した状態の断面図を例示する。溶湯接合を行うための鋳造を、例えば以下のようにして行う。塗膜(図4、図5の符号40)が形成されたNi板30とセラミックス板10が上記のようにセットされた鋳型1を用意する。貯湯部5を坩堝として利用する場合には、Al系溶湯の原料であるAl系金属の粒状物などを貯湯部5の中に入れる。その鋳型1を加熱炉に装入し、窒素ガスなどの非酸化性ガス雰囲気中で加熱する。予備加熱による乾燥塗膜の形成を終えていない場合は、この加熱の昇温過程を利用して乾燥塗膜を形成させることができる。その場合は、例えば400℃以下の所定の温度域で一定時間保持するようなヒートパターンで鋳型を昇温させるとよい。鋳型1の外部にある溶解炉で溶解させたAl系溶湯を使用する場合は、その溶湯を加圧口2から貯湯部5に導入する。貯湯部5を坩堝として利用する場合は、原料のAl系金属を貯湯部5内で溶融させ、Al系溶湯を得る。
[Molten metal joining process]
6 and 7 are cross-sectional views of the molds shown in FIGS. 4 and 5, respectively, in which molten metal is introduced. Casting for joining molten metal is performed, for example, as follows. A casting mold 1 is prepared in which the Ni plate 30 on which a coating film (reference numeral 40 in FIGS. 4 and 5) is formed and the ceramic plate 10 are set as described above. When the hot water storage part 5 is used as a crucible, the hot water storage part 5 is filled with Al-based metal granules or the like, which are raw materials for the Al-based molten metal. The mold 1 is put into a heating furnace and heated in a non-oxidizing gas atmosphere such as nitrogen gas. If the formation of the dry coating film by preheating has not been completed, the temperature rising process of this heating can be used to form the dry coating film. In that case, the temperature of the mold may be increased by a heat pattern in which the temperature is maintained in a predetermined temperature range of 400° C. or less for a certain period of time. When Al-based molten metal melted in a melting furnace outside the mold 1 is used, the molten metal is introduced from the pressure port 2 into the hot water storage portion 5 . When the hot water storage part 5 is used as a crucible, the raw Al-based metal is melted in the hot water storage part 5 to obtain an Al-based molten metal.

鋳型が所定温度(例えば700~720℃)に到達したのち、加圧口2から窒素ガス等の不活性ガスにより例えば5~50kPaの圧力で加圧して、貯湯部5に収容されているAl系溶湯100(すなわちAlまたはAl合金の溶湯)を、湯道3を経由して鋳型内の空間に注入する。図6、図7の例では、Al系溶湯100が狭断面流路103を通過することによって、溶湯表面に形成されている酸化皮膜が除去される。Ni板30の表面を被覆している塗膜は、溶湯注入開始前の鋳型加熱によって塗膜成分の焼結や硬化が進行し、セラミックス膜140になっているものと考えられる。もしその時点で十分にセラミックス膜140が十分に形成されていなかったとしても、Ni板30とセラミックス板10の間の空間AにAl系溶湯100が充填されると迅速にセラミックス膜化が進み、Ni板30の表面はセラミックス膜140で保護される。このセラミックス膜140によってNi板とAl系溶湯100との反応が顕著に抑制される。 After the mold reaches a predetermined temperature (eg, 700 to 720° C.), it is pressurized with an inert gas such as nitrogen gas from the pressurizing port 2 at a pressure of, for example, 5 to 50 kPa, and the Al-based Molten metal 100 (that is, molten Al or Al alloy) is poured into the space within the mold via runners 3 . In the examples of FIGS. 6 and 7, the Al-based molten metal 100 passes through the narrow cross-sectional flow path 103 to remove the oxide film formed on the surface of the molten metal. It is considered that the coating film covering the surface of the Ni plate 30 is formed into the ceramic film 140 by sintering and hardening of coating film components due to heating of the mold before the start of molten metal pouring. Even if the ceramic film 140 is not sufficiently formed at that time, when the space A between the Ni plate 30 and the ceramic plate 10 is filled with the Al-based molten metal 100, the formation of the ceramic film progresses rapidly. The surface of the Ni plate 30 is protected with a ceramics film 140 . This ceramic film 140 remarkably suppresses the reaction between the Ni plate and the Al-based molten metal 100 .

湯道で繋がっている鋳型内の空間が全てAl系溶湯100によって満たされたのち、凝固を開始する。凝固の方法としては、鋳型1の外壁の一部分(例えば図6、図7の左端)に冷却装置として水冷の銅ブロックを接触させるなどの方法で、指向性凝固させることが望ましい。引け巣などの鋳造欠陥を防止するために、加圧口2から窒素ガス等の不活性ガスにより例えば5~50kPaの圧力での加圧を継続しながら凝固を進行させることが望ましい。Al系溶湯100が空間Aで凝固することによって形成されたAl系板状部材(図2、図3の符号20)は、セラミックス膜140の存在によってNi板からのNi混入が顕著に抑制されており、Al-Ni合金化による硬質化が回避される。 After all spaces in the mold connected by runners are filled with Al-based molten metal 100, solidification is started. As a solidification method, it is preferable to effect directional solidification by contacting a part of the outer wall of the mold 1 (for example, the left end in FIGS. 6 and 7) with a water-cooled copper block as a cooling device. In order to prevent casting defects such as shrinkage cavities, it is desirable to proceed with solidification while continuing pressurization at a pressure of, for example, 5 to 50 kPa using an inert gas such as nitrogen gas from the pressurization port 2 . In the Al-based plate-shaped member (reference numeral 20 in FIGS. 2 and 3) formed by solidifying the Al-based molten metal 100 in the space A, the presence of the ceramic film 140 significantly suppresses Ni contamination from the Ni plate. This avoids hardening due to Al—Ni alloying.

[エッチング工程]
上記のようにして得られた積層構造体を用いて、半導体素子を搭載するための絶縁回路基板を作製するためには、鋳型から取り出した積層構造体の湯道部分など、不要なAl系金属を除去する必要がある。その除去処理は、通常、比較的大きい体積を有する湯道部分については切断などの機械加工で行い、回路パターンの形成や寸法調整などは薬液によるエッチングによって行う。後者の除去処理では、Ni板の表面をレジスト膜で被覆した後、薬液を用いて不要なAl系金属を溶解除去させることができる。また、Ni板は従来のNiめっき層より十分に厚いため、レジスト膜の形成を省略して、Ni板表面が多少溶解されることを見込んだエッチングを行うこともできる。その場合、所定厚さのNi層が十分に残存するように、Niの溶解速度よりもAlの溶解速度が大きい薬液を用いてエッチングすることが望ましい。Niの溶解速度よりもAlの溶解速度が大きい薬液としては、例えば塩化第二鉄水溶液が例示できる。そのエッチング温度(薬液温度)は45~60℃とすることが望ましい。
[Etching process]
In order to manufacture an insulated circuit board for mounting a semiconductor element using the laminated structure obtained as described above, unnecessary Al-based metal such as the runner portion of the laminated structure taken out from the mold is removed. must be removed. Generally, the runner portion having a relatively large volume is removed by machining such as cutting, and circuit pattern formation and dimensional adjustment are performed by chemical etching. In the latter removal treatment, after the surface of the Ni plate is coated with a resist film, the unnecessary Al-based metal can be dissolved and removed using a chemical solution. In addition, since the Ni plate is sufficiently thicker than the conventional Ni plating layer, it is possible to omit the formation of the resist film and perform etching in anticipation of the Ni plate surface being somewhat dissolved. In this case, etching is preferably performed using a chemical solution having a higher Al dissolution rate than Ni so that a Ni layer having a predetermined thickness remains sufficiently. As a chemical solution in which the dissolution rate of Al is higher than the dissolution rate of Ni, a ferric chloride aqueous solution can be exemplified. The etching temperature (chemical solution temperature) is preferably 45 to 60.degree.

[実施例1]
Ni板として、株式会社日立金属ネオマテリアル製の厚さ0.5mm、サイズ14mm×14mmの純Ni板(Niを99.9質量%以上含有、調質H(硬質材))を用意した。このNi板のバフ研磨仕上げした片側の面に、Co、MnおよびFeを酸化物として含むセラミックス粒子を含有する塗膜を形成した。塗膜形成のための塗料として、オキツモ株式会社製の耐熱塗料、チラノコートTYR-1181を使用した。ウェットの塗膜厚さが数μmとなるようにスプレー法により塗膜を形成させた。塗膜形成後のNi板を、大気中120℃で10分保持したのち、大気中380℃で15分保持する予備加熱処理に供することによって揮発成分を揮発除去し、乾燥塗膜を形成させた。
[Example 1]
As the Ni plate, a pure Ni plate (containing 99.9% by mass or more of Ni, tempered H (hard material)) having a thickness of 0.5 mm and a size of 14 mm×14 mm manufactured by Hitachi Metals Neomaterial Co., Ltd. was prepared. A coating film containing ceramic particles containing Co, Mn and Fe as oxides was formed on one side of the Ni plate which had been buffed. As a paint for forming a coating film, Tyranocoat TYR-1181, a heat-resistant paint manufactured by Okitsumo Co., Ltd., was used. A coating film was formed by a spray method so that the wet coating film thickness was several μm. After forming the coating film, the Ni plate was held in the air at 120°C for 10 minutes, and then subjected to a preheating treatment in which it was held in the air at 380°C for 15 minutes to volatilize and remove volatile components to form a dry coating film. .

セラミックス板として、株式会社トクヤマ製の厚さ0.635mm、サイズ71mm×70mmのAlN板を用意した。1つのセラミックス板につき、上記の乾燥塗膜を形成したNi板2枚を使用して、積層方向に見た大きさが14mm×14mmであり、表面にNi板を有するAl系板状部材を2箇所に持つ積層構造体を以下のようにして作製した。図5に示したように、Ni板とセラミックス板を、Ni板の塗膜形成面がセラミックス板と向き合うように間隔を空けて、ガス透過性を有する炭素材料からなる鋳型内に配置した。Ni板の塗膜表面とセラミックス板の間(図5の空間Aの部分)の距離は1.2mmである。この鋳型の貯湯部(図5の符号5)にAl原料として純度3N(Al含有量99.9質量%以上)の純Al粒状物を入れたのち、鋳型を炉内に装入し、窒素雰囲気中で加熱した。加熱温度は鋳型に取り付けた熱電対によってモニターした。Al原料が溶融したのち、温度720℃において鋳型の加圧口(図7の符号2)から窒素ガスにより16kPaの圧力を付与し、湯道に設けた狭断面流路(図7の符号103)を経由して鋳型内部の空間(図7の空間A)へAl系溶湯を注入するとともに、別の湯道(図7に図示しない)に設けた狭断面流路(図7に図示しない)を経由して鋳型内部の空間(図7の空間B)へAl系溶湯を注入した。その注湯開始から約4分経過した時点で鋳型端部の外壁(図7の左端に相当する部位)に冷却装置として水冷の銅ブロックを接触させる方法で、指向性凝固を開始させた。窒素ガスによる加圧および貯湯部からの溶湯供給を継続しながら凝固を進行させた。鋳型の温度が約50℃以下となった後、炉内を大気に開放し、鋳型から鋳造製品(積層構造体)を取り出した。このようにして、回路用金属部材に相当する複数のAl系板状部材をセラミックス板の一方の面に有し、ピン状突起を持つタイプのAl系背面部材をセラミックス板の他方の面に有する積層構造体を得た。表面に厚さ0.5mmのNi板を有するAl系板状部材の厚さは1.2mmである。 As a ceramic plate, an AlN plate manufactured by Tokuyama Corporation and having a thickness of 0.635 mm and a size of 71 mm×70 mm was prepared. Using two Ni plates on which the above dried coating film was formed, two Al-based plate-like members having a size of 14 mm × 14 mm when viewed in the lamination direction and having a Ni plate on the surface were prepared for each ceramic plate. A laminated structure having a portion was produced as follows. As shown in FIG. 5, the Ni plate and the ceramic plate were placed in a mold made of a gas-permeable carbon material with a gap therebetween so that the coating film forming surface of the Ni plate faced the ceramic plate. The distance between the coating surface of the Ni plate and the ceramic plate (space A in FIG. 5) was 1.2 mm. After putting pure Al granules with a purity of 3N (Al content of 99.9% by mass or more) as an Al raw material into the hot water storage part (reference numeral 5 in FIG. 5) of this mold, the mold was put into a furnace and a nitrogen atmosphere was placed. heated inside. The heating temperature was monitored by a thermocouple attached to the mold. After the Al raw material was melted, a pressure of 16 kPa was applied with nitrogen gas from the pressurizing port (reference numeral 2 in FIG. 7) of the mold at a temperature of 720° C., and a narrow cross-sectional flow path (reference numeral 103 in FIG. 7) provided in the runner was applied. Al-based molten metal is injected into the space inside the mold (space A in FIG. 7) via the narrow cross-sectional flow path (not shown in FIG. 7) provided in another runner (not shown in FIG. 7). Al-based molten metal was injected into the space inside the mold (space B in FIG. 7) via the mold. About 4 minutes after the start of the pouring, directional solidification was started by contacting a water-cooled copper block as a cooling device to the outer wall of the end of the mold (the part corresponding to the left end in FIG. 7). Solidification was allowed to proceed while continuing to pressurize with nitrogen gas and supply the molten metal from the hot water reservoir. After the temperature of the mold reached about 50° C. or less, the inside of the furnace was opened to the atmosphere, and the cast product (laminated structure) was taken out from the mold. In this manner, a plurality of Al-based plate-like members corresponding to circuit metal members are provided on one side of the ceramic plate, and an Al-based back member having pin-like projections is provided on the other side of the ceramic plate. A laminated structure was obtained. The thickness of the Al-based plate member having a 0.5 mm thick Ni plate on its surface is 1.2 mm.

鋳型から取り出した積層構造体を積層方向に平行な断面で切断し、Ni板-Al系板状部材の界面を含む部分の元素分析用観察試料を作製した。観察面の調製はダイヤモンド砥粒(粒径9μm、3μm、1μmの3段階)による研磨仕上げとした。この観察面の、Ni板とAl系板状部材の接合界面を含む領域を、SEM(走査型電子顕微鏡、日本電子社製、JSM-6390A)で観察し、EDS(エネルギー分散型X線分析)により元素分析を行った。EDSによる定性分析では、接合界面を含む領域にAl、Ni、Mn、Fe、Co、Si、Ti、Ca、Oが検出された。図8に、SEM像を例示する。図9に、図8に対応する部分におけるAl、Ni、O、Co、Mn、Fe、Si、TiのEDSマップ分析画像(カラー画像をモノクロ化して表示したもの)を例示する。黒以外の輝点部分に当該元素が分布している。Ni板とAl系板状部材の接合界面には、O、Co、Mn、Fe、Si、Tiの存在が認められる。Al系板状部材側へのNiの混入が顕著に抑制されており、Al-Ni合金の金属相の成長も見られないことから、接合界面には、Co、Mn、Fe、Si、Tiを含む酸化物系セラミックス膜が形成され、その膜がNi板表面の保護膜として機能し、Al系溶湯との反応が顕著に回避されたと考えられる。このセラミックス膜の平均膜厚(O、Co、Mn、Fe、Si、Tiが膜状に分布している領域の積層方向の平均幅)は約7μmであった。 The laminated structure removed from the mold was cut in a cross section parallel to the lamination direction to prepare an observation sample for elemental analysis of a portion including the interface between the Ni plate and the Al-based plate-like member. The observation surface was prepared by polishing with diamond abrasive grains (three stages of particle sizes of 9 μm, 3 μm, and 1 μm). A region of this observation surface including the bonding interface between the Ni plate and the Al-based plate-shaped member is observed with a SEM (scanning electron microscope, manufactured by JEOL Ltd., JSM-6390A), and EDS (energy dispersive X-ray analysis). Elemental analysis was performed by Qualitative analysis by EDS detected Al, Ni, Mn, Fe, Co, Si, Ti, Ca, and O in the region including the joint interface. FIG. 8 illustrates an SEM image. FIG. 9 exemplifies EDS map analysis images of Al, Ni, O, Co, Mn, Fe, Si, and Ti in the portion corresponding to FIG. The element is distributed in bright spots other than black. O, Co, Mn, Fe, Si, and Ti are found at the joint interface between the Ni plate and the Al-based plate member. Mixing of Ni into the Al-based plate-shaped member side is remarkably suppressed, and growth of the metal phase of the Al—Ni alloy is not observed. It is thought that an oxide-based ceramics film containing Ni was formed, and that film functioned as a protective film on the surface of the Ni plate, thereby remarkably avoiding reaction with the Al-based molten metal. The average film thickness of this ceramic film (the average width in the stacking direction of the region where O, Co, Mn, Fe, Si, and Ti are distributed in a film form) was about 7 μm.

(Al系板状部材の断面硬さ)
鋳型から取り出した積層構造体を積層方向に平行な断面で切断し、Ni板-Al系板状部材-セラミックス板を含む部分の断面試料を作製した。試料表面はバフ研磨仕上げとした。この断面試料を用いて、Ni板とセラミックス板の間に形成されたAl系板状部材の断面硬さを測定した。測定方法は上掲の「Al系板状部材の断面平均硬さの測定方法」に記載した手法に従った。本例では、Al系板状部材の厚さtは1.2mmである。Al系板状部材のNi板側の積層方向端部からの距離tが、次式、t=0.35±0.07mm、を満たす積層方向位置にビッカース硬さ測定用の圧子の中心が位置するようにして試験力F(2.45N)を負荷した。その結果、試験数n=5の測定値(HV)は、25.4、25.4、24.8、25.0、26.0であり、本例で得られた積層構造体のAl系板状部材の断面平均硬さは、25.32HVであった。
参考のため、Al系板状部材のセラミックス板側の積層方向端部からの距離が0.35±0.07mmである積層方向位置についても硬さを測定した。その結果、試験数n=5の測定値(HV)は、25.2、24.4、25.0、25.0、25.1であり、それらの平均硬さは、24.94HVであった。
本例で得られた積層構造体では、Al系板状部材の硬さが低く抑えられ、場所による硬さ変動も非常に小さいことが確認された。
(Cross-sectional hardness of Al-based plate-shaped member)
The laminated structure removed from the mold was cut in a cross section parallel to the lamination direction to prepare a cross-sectional sample of a portion including the Ni plate--the Al-based plate-like member--the ceramics plate. The surface of the sample was finished by buffing. Using this cross-sectional sample, the cross-sectional hardness of the Al-based plate member formed between the Ni plate and the ceramic plate was measured. The measuring method followed the method described in the above-mentioned "Method for measuring cross-sectional average hardness of Al-based plate-shaped member". In this example, the thickness t of the Al-based plate member is 1.2 mm. The center of the indenter for Vickers hardness measurement is placed at a position in the lamination direction where the distance t 1 from the end in the lamination direction of the Ni plate side of the Al-based plate member satisfies the following equation: t 1 = 0.35 ± 0.07 mm A test force F (2.45 N) was applied so that As a result, the measured values (HV) for the number of tests n = 5 were 25.4, 25.4, 24.8, 25.0, and 26.0. The cross-sectional average hardness of the plate member was 25.32HV.
For reference, hardness was also measured at positions in the stacking direction at a distance of 0.35±0.07 mm from the stacking direction end of the Al-based plate member on the ceramic plate side. As a result, the measured values (HV) of the test number n = 5 were 25.2, 24.4, 25.0, 25.0, 25.1, and their average hardness was 24.94 HV. rice field.
In the laminated structure obtained in this example, it was confirmed that the hardness of the Al-based plate-like member was kept low, and that the variation in hardness depending on the location was very small.

図10に、硬さ測定後の断面試料の外観写真を例示する。この写真内には、Ni板側の積層方向端部からの距離が0.35±0.07mmである位置、およびセラミックス板側の積層方向端部からの距離が0.35±0.07mmである位置に、それぞれ2箇所ずつ圧子を押し当てた圧痕が見られる。 FIG. 10 shows an appearance photograph of a cross-sectional sample after hardness measurement. In this photograph, a position at a distance of 0.35±0.07 mm from the end of the stacking direction on the Ni plate side and a position at a distance of 0.35±0.07 mm from the end of the stacking direction on the ceramic plate side. Indentations made by pressing the indenter at two locations can be seen at each position.

(ヒートサイクル特性)
上記と同一条件で作製した積層構造体に、-40℃×30分間、25℃×10分間、150℃×30分間、25℃×10分間を1サイクルとするヒートサイクルを、繰り返し300サイクル加えた後に、上面にNi板を有するAl系板状部材の部分について、Ni板とAl系板状部材との接合界面およびAl系板状部材とセラミックス板との接合界面を超音波探傷装置によって観察した。その結果、300サイクル後においても、Ni板とAl系板状部材との接合界面およびAl系板状部材とセラミックス板との接合界面に、剥離(空隙)は認められなかった。同様に300サイクル後のセラミックス板のクラック発生の有無についても超音波探傷装置で観察した結果、セラミックス基板でのクラックの発生は認められなかった。
(Heat cycle characteristics)
A laminated structure prepared under the same conditions as above was repeatedly subjected to 300 heat cycles of -40°C for 30 minutes, 25°C for 10 minutes, 150°C for 30 minutes, and 25°C for 10 minutes. Later, with respect to the portion of the Al-based plate-shaped member having the Ni plate on its upper surface, the bonding interface between the Ni plate and the Al-based plate-shaped member and the bonding interface between the Al-based plate-shaped member and the ceramic plate were observed with an ultrasonic flaw detector. . As a result, even after 300 cycles, no peeling (void) was observed at the bonding interface between the Ni plate and the Al-based plate-like member and the bonding interface between the Al-based plate-like member and the ceramic plate. Similarly, the presence or absence of cracks in the ceramic substrate after 300 cycles was observed with an ultrasonic flaw detector. As a result, no cracks were observed in the ceramic substrate.

(はんだ濡れ性)
積層構造体のNi板の表面をバフ研磨した後、希硫酸で洗浄、水洗、乾燥後に、ニッケル板のはんだ濡れ性を評価した。3質量%のAgと0.5質量%のCuを含み、残部がSnからなるフラックス入りはんだペーストを厚さ0.5mmになるようにNi板上に塗布し、はんだ付け炉により窒素雰囲気において270℃で3分間保持し、放冷した後、Ni板の表面がはんだで濡れた面積率(はんだ濡れ率)を測定したところ、はんだ濡れ率は95%以上であり、Ni板のはんだ濡れ性は良好であった。
(solder wettability)
After the surface of the Ni plate of the laminated structure was buffed, it was washed with dilute sulfuric acid, washed with water, and dried, and the solder wettability of the nickel plate was evaluated. A flux-containing solder paste containing 3% by mass of Ag and 0.5% by mass of Cu, with the balance being Sn, was applied to a Ni plate to a thickness of 0.5 mm, and was soldered in a nitrogen atmosphere at 270° C. in a soldering furnace. C. for 3 minutes and allowed to cool, the area ratio of the surface of the Ni plate wetted with solder (solder wettability) was measured. It was good.

[実施例2]
Ni板の表面に形成した塗膜として、Crを窒化物として含むセラミックス粒子を含有する塗膜を採用したことを除き、実施例1と同様の条件で実験を行った。塗膜形成のための塗料として、日本アイ・ティ・エフ株式会社製の耐熱塗料、IARを使用した。この塗料のコーティング液にNi板を浸漬する手法(ディップ法)により、Ni板の片側表面に厚さ約数μmの塗膜を形成した。
[Example 2]
An experiment was conducted under the same conditions as in Example 1, except that a coating film containing ceramic particles containing Cr as a nitride was used as the coating film formed on the surface of the Ni plate. A heat-resistant paint IAR manufactured by Japan ITF Co., Ltd. was used as a paint for forming a coating film. A coating film having a thickness of about several μm was formed on one side surface of the Ni plate by a method (dip method) of immersing the Ni plate in the coating liquid of this paint.

溶湯接合法によって得られた積層構造体の積層方向に平行な断面のSEM観察およびEDS分析の結果、Al系板状部材中へのNiの混入が認められた。しかし、後述比較例1と比べ、Ni板とAl系溶湯との反応は大幅に抑制されていた。Ni板とAl系板状部材の接合界面には、Crを含む窒化物の存在が認められた。Al系板状部材側へのNiの混入が顕著に抑制されていることから、接合界面には、Crを窒化物として含むセラミックス膜が形成され、その膜がNi板表面の保護膜として機能し、Al系溶湯との反応が顕著に回避されたと考えられる。このセラミックス膜の平均膜厚(Crを含む窒化物が分布している領域の積層方向の平均幅)は約3μmであった。 As a result of SEM observation and EDS analysis of a cross-section parallel to the lamination direction of the laminated structure obtained by the molten metal bonding method, mixing of Ni into the Al-based plate member was recognized. However, compared with Comparative Example 1 described later, the reaction between the Ni plate and the Al-based molten metal was greatly suppressed. The presence of nitrides containing Cr was observed at the joint interface between the Ni plate and the Al-based plate member. Since the mixing of Ni into the Al-based plate-shaped member is remarkably suppressed, a ceramic film containing Cr as a nitride is formed on the bonding interface, and the film functions as a protective film on the surface of the Ni plate. , the reaction with Al-based molten metal is considered to be remarkably avoided. The average film thickness of this ceramic film (the average width in the stacking direction of the region where nitrides containing Cr are distributed) was about 3 μm.

(Al系板状部材の断面硬さ)
実施例1と同様の方法で、Ni板とセラミックス板の間に形成されたAl系板状部材の断面硬さを測定した結果、Ni板側の積層方向端部からの距離tが0.35±0.07mmである位置での試験数n=5の測定値(HV)は、22.2、24.8、24.1、23.2、22.9であり、本例で得られた積層構造体のAl系板状部材の断面平均硬さは、23.44HVであった。
また、セラミックス板側の積層方向端部からの距離が0.35±0.07mmである位置での試験数n=5の測定値(HV)は、21.0、20.8、23.1、22.8、21.3であり、それらの平均硬さは、21.80HVであった。
本例で得られた積層構造体では、後述比較例1と比べ、Al系板状部材の硬さが低く抑えられた。
(Cross-sectional hardness of Al-based plate-shaped member)
As a result of measuring the cross-sectional hardness of the Al-based plate-shaped member formed between the Ni plate and the ceramic plate in the same manner as in Example 1, the distance t1 from the end in the stacking direction on the Ni plate side was 0.35 ± The measured values (HV) for n = 5 tests at a position of 0.07 mm were 22.2, 24.8, 24.1, 23.2, 22.9, the laminate obtained in this example. The cross-sectional average hardness of the Al-based plate member of the structure was 23.44HV.
In addition, the measured values (HV) of the number of tests n = 5 at the position where the distance from the end of the stacking direction on the ceramic plate side is 0.35 ± 0.07 mm are 21.0, 20.8, and 23.1. , 22.8, 21.3 and their average hardness was 21.80 HV.
In the laminated structure obtained in this example, the hardness of the Al-based plate-like member was kept low compared to Comparative Example 1 described later.

(ヒートサイクル特性)
実施例1と同様の方法で積層構造体のヒートサイクル特性を評価したところ、300サイクル後においても、Ni板とAl系板状部材との接合界面およびAl系板状部材とセラミックス板との接合界面に、剥離(空隙)は認められず、セラミックス基板でのクラックの発生も認められなかった。
(Heat cycle characteristics)
When the heat cycle characteristics of the laminated structure were evaluated in the same manner as in Example 1, even after 300 cycles, the bonding interface between the Ni plate and the Al-based plate-shaped member and the bonding between the Al-based plate-shaped member and the ceramic plate No peeling (void) was observed at the interface, and no cracks were observed in the ceramic substrate.

(はんだ濡れ性)
実施例1と同様の方法で積層構造体のNi板のはんだ濡れ率を測定したところ、はんだ濡れ率は95%以上であり、Ni板のはんだ濡れ性は良好であった。
(solder wettability)
When the solder wettability of the Ni plate of the laminated structure was measured by the same method as in Example 1, the solder wettability was 95% or more, and the solder wettability of the Ni plate was good.

[比較例1]
表面に塗膜を形成していないNi板(被覆層のないもの)を使用したことを除き、実施例1と同様の条件で実験を行った。
[Comparative Example 1]
An experiment was conducted under the same conditions as in Example 1, except that a Ni plate having no coating film formed on its surface (without a coating layer) was used.

溶湯接合法によって得られた積層構造体の積層方向に平行な断面のSEM観察およびEDS分析を行った。その結果、Al系板状部材中へのNiの混入が認められ、Al系板状部材はAl相中にNi含有量の高い相が混在する金属組織を呈し、Al-Ni合金化していた。 SEM observation and EDS analysis of a cross section parallel to the lamination direction of the laminated structure obtained by the molten metal bonding method were performed. As a result, mixing of Ni into the Al-based plate-shaped member was observed, and the Al-based plate-shaped member exhibited a metal structure in which a phase with a high Ni content was mixed in the Al phase, forming an Al--Ni alloy.

Ni板とセラミックス板の間に形成されたAl系板状部材の断面硬さを測定した結果、Ni板側の積層方向端部からの距離tが0.35±0.07mmである位置での試験数n=5の測定値(HV)は、42.5、40.7、41.0、39.6、36.8であり、本例で得られた積層構造体のAl系板状部材の断面平均硬さは、40.12HVであった。
また、セラミックス板側の積層方向端部からの距離が0.35±0.07mmである位置での試験数n=5の測定値(HV)は、34.3、31.8、32.6、32.8、30.9であり、それらの平均硬さは、32.48HVであった。
本例では、Al系溶湯がNi板と直接接触することにより凝固後のAl系板状金属部材はAl-Ni合金化し、硬質化した。
As a result of measuring the cross-sectional hardness of the Al-based plate-shaped member formed between the Ni plate and the ceramic plate, the test was performed at a position where the distance t1 from the end in the stacking direction of the Ni plate was 0.35 ± 0.07 mm. The measured values (HV) of the number n = 5 are 42.5, 40.7, 41.0, 39.6, and 36.8, and the Al-based plate members of the laminated structure obtained in this example The cross-sectional average hardness was 40.12HV.
In addition, the measured values (HV) of the number of tests n = 5 at the position where the distance from the end of the stacking direction on the ceramic plate side is 0.35 ± 0.07 mm are 34.3, 31.8, and 32.6. , 32.8, 30.9 and their average hardness was 32.48 HV.
In this example, the Al-based molten metal was brought into direct contact with the Ni plate, so that the solidified Al-based plate-shaped metal member was made into an Al—Ni alloy and hardened.

(ヒートサイクル特性)
実施例1と同様の方法で積層構造体のヒートサイクル特性を評価したところ、100サイクル後において、セラミックス基板でのクラックの発生が認められた。
(Heat cycle characteristics)
When the heat cycle characteristics of the laminated structure were evaluated in the same manner as in Example 1, cracks were observed in the ceramic substrate after 100 cycles.

[比較例2]
鋳型内にNi板を配置しなかったことを除き、実施例1と同様の条件で積層構造体を作製した。積層構造体は、Al系板状部材が表面にNi板を有していないことを除き、実施例1と同様の形状である。
[Comparative Example 2]
A laminated structure was produced under the same conditions as in Example 1, except that the Ni plate was not placed in the mold. The laminated structure has the same shape as in Example 1, except that the Al-based plate-like member does not have a Ni plate on its surface.

(ヒートサイクル特性)
実施例1と同様の方法で積層構造体のヒートサイクル特性を評価したところ、300サイクル後において、セラミックス基板でのクラックの発生は認められなかった。
(Heat cycle characteristics)
When the heat cycle characteristics of the laminate structure were evaluated in the same manner as in Example 1, no cracks were observed in the ceramic substrate after 300 cycles.

1 鋳型
1a 上型
1b 下型
2 加圧口
3 湯道
4 ピン状凹部
5 貯湯部
10 セラミックス板
20 Al系板状部材
21 溝部
30 Ni板
40 塗膜
50 Al系背面部材
51 周壁部
52 溝部
53 ピン状突起
100 溶湯
103 狭断面流路
140 セラミックス膜
REFERENCE SIGNS LIST 1 mold 1a upper mold 1b lower mold 2 pressurizing port 3 runner 4 pin-shaped concave portion 5 hot water storage portion 10 ceramic plate 20 Al-based plate-like member 21 groove portion 30 Ni plate 40 coating film 50 Al-based back member 51 peripheral wall portion 52 groove portion 53 Pin-shaped protrusion 100 Molten metal 103 Narrow cross-section flow path 140 Ceramic film

Claims (22)

セラミックス板と、AlまたはAl合金からなるAl系板状部材と、Ni板とが上記の順に積層して接合された積層部を有する積層構造体であって、前記積層部において、前記Al系板状部材と前記Ni板との接合界面にセラミックス膜が形成されている積層構造体。 A laminated structure having a laminated portion in which a ceramic plate, an Al-based plate-shaped member made of Al or an Al alloy, and a Ni plate are laminated and joined in the above order, wherein the laminated portion includes the Al-based plate A laminated structure in which a ceramic film is formed on the bonding interface between the shaped member and the Ni plate. 前記セラミックス膜は、Co、MnおよびFeからなる群より選ばれる1種以上の元素を含む酸化物系セラミックス膜、またはCrを含む窒化物系セラミックス膜である、請求項1に記載の積層構造体。 The laminated structure according to claim 1, wherein the ceramic film is an oxide ceramic film containing one or more elements selected from the group consisting of Co, Mn and Fe, or a nitride ceramic film containing Cr. . 前記セラミックス膜は、SiおよびTiからなる群より選ばれる1種以上の元素を含む酸化物系セラミックス膜、またはCrを含む窒化物系セラミックス膜である、請求項1に記載の積層構造体。 2. The laminated structure according to claim 1, wherein said ceramic film is an oxide ceramic film containing at least one element selected from the group consisting of Si and Ti, or a nitride ceramic film containing Cr. 前記セラミックス膜は、Co、MnおよびFeからなる群より選ばれる1種以上の元素とSiおよびTiからなる群より選ばれる1種以上の元素とを含む酸化物系セラミックス膜、またはCrを含む窒化物系セラミックス膜である、請求項1に記載の積層構造体。 The ceramic film is an oxide ceramic film containing at least one element selected from the group consisting of Co, Mn and Fe and at least one element selected from the group consisting of Si and Ti, or a nitriding film containing Cr. 2. The laminated structure according to claim 1, which is a solid-state ceramics film. 前記セラミックス板の前記Al系板状部材が接合されている面と反対側の面に、AlまたはAl合金からなるAl系背面部材が接合されている、請求項1~4のいずれか1項に記載の積層構造体。 5. The method according to any one of claims 1 to 4, wherein an Al-based rear member made of Al or an Al alloy is bonded to the surface of the ceramic plate opposite to the surface to which the Al-based plate member is bonded. Laminate structure as described. 前記Al系背面部材は、前記セラミックス板の背面部分が板状である放熱部材、または前記セラミックス板との接合部以外の部位にフィンまたは複数のピン状突起を持つ放熱部材である、請求項1~5のいずれか1項に記載の積層構造体。 2. The Al-based back member is a heat radiating member in which the back portion of the ceramic plate is plate-shaped, or a heat radiating member having fins or a plurality of pin-like protrusions in a portion other than the joint portion with the ceramic plate. 6. The laminated structure according to any one of 1 to 5. 前記Al系板状部材は、前記セラミックス板と前記Ni板の間における厚さtが0.2~2.0mmであり、下記(A)により定まる断面平均硬さが30.0HV以下である、請求項1~6のいずれか1項に記載の積層構造体。
(A)当該積層構造体の積層方向に平行な切断面をバフ研磨仕上げした断面において、Al系板状部材のNi板側の積層方向端部からの距離が下記に規定するt(mm)である測定点を無作為に5点以上設定し、各測定点についてJIS Z2244-1:2020に準拠して試験力F=2.45Nでのビッカース硬さを測定し、それら各測定点での測定値の相加平均値を断面平均硬さとする。
ここで、前記tは以下のように設定する。
0.2mm≦t<0.7mmのとき、t=t/2±t/10(mm)
t≧0.7mmのとき、t=0.35±0.07(mm)
The Al-based plate member has a thickness t of 0.2 to 2.0 mm between the ceramic plate and the Ni plate, and an average cross-sectional hardness determined by (A) below is 30.0 HV or less. 7. The laminated structure according to any one of 1 to 6.
(A) In a cross section obtained by buffing a cut surface parallel to the lamination direction of the laminated structure, the distance from the end in the lamination direction of the Ni plate side of the Al-based plate-like member is t 1 (mm) defined below. Randomly set 5 or more measurement points, and measure the Vickers hardness at each measurement point at a test force F = 2.45 N in accordance with JIS Z2244-1: 2020. Let the arithmetic average value of the measured values be the cross-sectional average hardness.
Here, t1 is set as follows.
When 0.2 mm≦t<0.7 mm, t 1 =t/2±t/10 (mm)
When t≧0.7 mm, t 1 =0.35±0.07 (mm)
セラミックス板と、加熱によりセラミックス膜を形成する塗膜が片側表面に形成されているNi板とを、前記Ni板の前記塗膜の形成面が前記セラミックス板と向き合うように間隔を空けて鋳型内に配置し、当該セラミックス板とNi板との間に空間Aを設ける部材配置工程と、
その鋳型内にAlまたはAl合金の溶湯を注入し、前記空間Aに満たされた前記溶湯を凝固させることにより、セラミックス板と、AlまたはAl合金からなるAl系板状部材と、Ni板とが接合した積層構造を形成させる溶湯接合工程と、
を含む積層構造体の製造方法。
A ceramic plate and a Ni plate having a coating film that forms a ceramic film by heating on one side thereof are placed in a mold with a gap therebetween so that the surface of the Ni plate on which the coating film is formed faces the ceramic plate. A member placement step of providing a space A between the ceramic plate and the Ni plate,
A molten metal of Al or an Al alloy is poured into the mold, and the molten metal filled in the space A is solidified to form a ceramic plate, an Al-based plate-like member made of Al or an Al alloy, and a Ni plate. a molten metal bonding step to form a bonded laminated structure;
A method of manufacturing a laminated structure comprising:
前記溶湯接合工程において、前記Al系板状部材と前記Ni板との接合界面にセラミックス膜を形成させる、請求項8に記載の積層構造体の製造方法。 9. The method for manufacturing a laminated structure according to claim 8, wherein in said molten metal joining step, a ceramic film is formed on a joining interface between said Al-based plate member and said Ni plate. 前記塗膜は、Co、MnおよびFeからなる群より選ばれる1種以上の元素を含む酸化物系セラミックス粒子を含有するものである、請求項8に記載の積層構造体の製造方法。 9. The method for producing a laminated structure according to claim 8, wherein said coating contains oxide-based ceramic particles containing at least one element selected from the group consisting of Co, Mn and Fe. 前記溶湯接合工程において、前記Al系板状部材と前記Ni板との接合界面に、Co、MnおよびFeからなる群より選ばれる1種以上の元素を含む酸化物系セラミックス膜を形成させる、請求項10に記載の積層構造体の製造方法。 In the molten metal joining step, an oxide-based ceramic film containing at least one element selected from the group consisting of Co, Mn and Fe is formed at the joining interface between the Al-based plate member and the Ni plate. Item 11. A method for manufacturing a laminated structure according to Item 10. 前記塗膜は、SiおよびTiからなる群より選ばれる1種以上の元素を含む樹脂を含有するものである、請求項8に記載の積層構造体の製造方法。 9. The method for manufacturing a laminated structure according to claim 8, wherein said coating film contains a resin containing one or more elements selected from the group consisting of Si and Ti. 前記溶湯接合工程において、前記Al系板状部材と前記Ni板との接合界面に、SiおよびTiからなる群より選ばれる1種以上の元素を含む酸化物系セラミックス膜を形成させる、請求項12に記載の積層構造体の製造方法。 12. An oxide-based ceramic film containing one or more elements selected from the group consisting of Si and Ti is formed on a bonding interface between the Al-based plate member and the Ni plate in the molten metal bonding step. 3. The method for manufacturing the laminated structure according to 1. 前記塗膜は、Co、MnおよびFeからなる群より選ばれる1種以上の元素を含む酸化物系セラミックス粒子と、SiおよびTiからなる群より選ばれる1種以上の元素を含む樹脂とを含有するものである、請求項8に記載の積層構造体の製造方法。 The coating film contains oxide ceramic particles containing at least one element selected from the group consisting of Co, Mn and Fe, and a resin containing at least one element selected from the group consisting of Si and Ti. The method for manufacturing a laminated structure according to claim 8, wherein 前記溶湯接合工程において、前記Al系板状部材と前記Ni板との接合界面に、Co、MnおよびFeからなる群より選ばれる1種以上の元素とSiおよびTiからなる群より選ばれる1種以上の元素とを含む酸化物系セラミックス膜を形成させる、請求項14に記載の積層構造体の製造方法。 In the molten metal joining step, at least one element selected from the group consisting of Co, Mn and Fe and one selected from the group consisting of Si and Ti are added to the joint interface between the Al-based plate member and the Ni plate. 15. The method for manufacturing a laminated structure according to claim 14, wherein an oxide-based ceramic film containing the above elements is formed. 前記塗膜は、Crを含む窒化物系セラミックス粒子を含有するものである、請求項8に記載の積層構造体の製造方法。 9. The method of manufacturing a laminated structure according to claim 8, wherein said coating contains nitride ceramic particles containing Cr. 前記溶湯接合工程において、前記Al系板状部材と前記Ni板との接合界面に、Crを含む窒化物系セラミックス膜を形成させる、請求項16に記載の積層構造体の製造方法。 17. The method of manufacturing a laminated structure according to claim 16, wherein in said molten metal joining step, a nitride-based ceramic film containing Cr is formed on a joining interface between said Al-based plate member and said Ni plate. 前記塗膜は、揮発成分を予め揮発除去した乾燥塗膜である、請求項8~17のいずれか1項に記載の積層構造体の製造方法。 The method for producing a laminated structure according to any one of claims 8 to 17, wherein the coating film is a dry coating film from which volatile components have been volatilized and removed in advance. 前記塗膜は、常温から昇温したときに700℃以下の温度域でセラミックス膜となる性質を有するものである、請求項8~18のいずれか1項に記載の積層構造体の製造方法。 The method for manufacturing a laminated structure according to any one of claims 8 to 18, wherein the coating film has the property of becoming a ceramic film in a temperature range of 700°C or less when the temperature is raised from room temperature. 前記部材配置工程において、前記セラミックス板の前記Ni板と向き合う面の背面と、鋳型壁面との間に空間Bを設け、
前記溶湯接合工程において、前記空間Aおよび前記空間Bに満たされた前記溶湯を凝固させることにより、セラミックス板と、AlまたはAl合金からなるAl系板状部材と、Ni板とが接合し、かつ当該セラミックス板の前記Al系板状部材が存在する面の背面に、AlまたはAl合金からなるAl系背面部材が接合した積層構造を形成させる、請求項8~19のいずれか1項に記載の積層構造体の製造方法。
In the member arrangement step, a space B is provided between the back surface of the ceramic plate facing the Ni plate and the mold wall surface,
In the molten metal joining step, by solidifying the molten metal filled in the space A and the space B, the ceramic plate, the Al-based plate-like member made of Al or an Al alloy, and the Ni plate are joined, and 20. The laminate structure according to any one of claims 8 to 19, wherein an Al-based back member made of Al or an Al alloy is bonded to the back of the surface of the ceramic plate on which the Al-based plate-shaped member exists. A method for manufacturing a laminated structure.
前記Al系背面部材は、前記セラミックス板の背面部分が板状の放熱部材である、請求項20に記載の積層構造体の製造方法。 21. The method of manufacturing a laminated structure according to claim 20, wherein the Al-based back member is a plate-shaped heat radiating member having a back portion of the ceramic plate. 前記空間Bは鋳型壁面によって形成されたフィン状空隙または複数のピン状凹部を有するものであり、前記Al系背面部材はフィンまたは複数のピン状突起を持つ放熱部材である、請求項20に記載の積層構造体の製造方法。 21. The method according to claim 20, wherein the space B has a fin-shaped gap or a plurality of pin-shaped recesses formed by the wall surface of the mold, and the Al-based back member is a heat dissipation member having fins or a plurality of pin-shaped projections. A method for manufacturing a laminated structure of
JP2021148504A 2021-09-13 2021-09-13 Laminated structure and manufacturing method thereof Pending JP2023041248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021148504A JP2023041248A (en) 2021-09-13 2021-09-13 Laminated structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021148504A JP2023041248A (en) 2021-09-13 2021-09-13 Laminated structure and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2023041248A true JP2023041248A (en) 2023-03-24

Family

ID=85641508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021148504A Pending JP2023041248A (en) 2021-09-13 2021-09-13 Laminated structure and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2023041248A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117488244A (en) * 2023-12-29 2024-02-02 中国科学院宁波材料技术与工程研究所 Surface function decorative coating and preparation method thereof
CN117488244B (en) * 2023-12-29 2024-05-03 中国科学院宁波材料技术与工程研究所 Surface function decorative coating and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117488244A (en) * 2023-12-29 2024-02-02 中国科学院宁波材料技术与工程研究所 Surface function decorative coating and preparation method thereof
CN117488244B (en) * 2023-12-29 2024-05-03 中国科学院宁波材料技术与工程研究所 Surface function decorative coating and preparation method thereof

Similar Documents

Publication Publication Date Title
CN101427367B (en) Aluminum/silicon carbide composite and radiating part comprising the same
CN101361184B (en) Aluminum/silicon carbide composite and heat radiation part making use of the same
TWI357788B (en)
KR20200004799A (en) Ceramic circuit board, its manufacturing method and module using the same
EP3121847B1 (en) Aluminium-silicon carbide composite, and power-module base plate
EP1122780A2 (en) Laminated radiation member, power semiconductor apparatus and method for producing the same
JP2010024077A (en) Aluminum-silicon carbide composite and method for producing the same
JP4864593B2 (en) Method for producing aluminum-silicon carbide composite
WO1995024113A1 (en) Copper ball and method for producing the same
JP2022048812A (en) Heat dissipation member and method for manufacturing the same
WO2002045161A1 (en) Integral-type ceramic circuit board and method of producing same
JP2023041248A (en) Laminated structure and manufacturing method thereof
JP2019029510A (en) Aluminum-ceramic bonded substrate and method for manufacturing the same
JP7062464B2 (en) Aluminum-ceramic bonded substrate and its manufacturing method
JP2020012194A (en) Metal-silicon carbide composite and production method of the same
CN110325310A (en) The manufacturing method of the manufacturing method of conjugant, the manufacturing method of insulate electrical substrate and the insulate electrical substrate having heat radiating fins
JP5668506B2 (en) Power module substrate manufacturing method and power module substrate
JP3871599B2 (en) Structure
JP4895638B2 (en) Manufacturing method of ceramic circuit board
JP4669965B2 (en) Aluminum-ceramic bonding substrate and manufacturing method thereof
JP2003008177A (en) Manufacturing method of monolithic ceramics circuit board
JP5132962B2 (en) Aluminum alloy-silicon carbide composite
JP4127379B2 (en) Method for producing aluminum-silicon carbide composite
WO2022201662A1 (en) Aluminum-ceramic bonded substrate and manufacturing method therefor
JP5668507B2 (en) Power module substrate manufacturing method and power module substrate