JP2007019285A - Flexible heat-sink plate - Google Patents

Flexible heat-sink plate Download PDF

Info

Publication number
JP2007019285A
JP2007019285A JP2005199697A JP2005199697A JP2007019285A JP 2007019285 A JP2007019285 A JP 2007019285A JP 2005199697 A JP2005199697 A JP 2005199697A JP 2005199697 A JP2005199697 A JP 2005199697A JP 2007019285 A JP2007019285 A JP 2007019285A
Authority
JP
Japan
Prior art keywords
aluminum
paper
graphite paper
sink plate
heat sink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005199697A
Other languages
Japanese (ja)
Inventor
Nobuyuki Suzuki
信幸 鈴木
Akira Terashi
晶 寺師
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AM TECHNOLOGY KK
Original Assignee
AM TECHNOLOGY KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AM TECHNOLOGY KK filed Critical AM TECHNOLOGY KK
Priority to JP2005199697A priority Critical patent/JP2007019285A/en
Publication of JP2007019285A publication Critical patent/JP2007019285A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat-sink plate having a raised thermal conductivity in a direction perpendicular to the surface of graphite paper, a flexibility and a fragility improved to raise the strength. <P>SOLUTION: The heat-sink plate has a perforated graphite paper and a metal layer composed of a metal foil or a metal-aluminum or inorganic-aluminum composite. The layer continues from the perforations to both sides of the graphite paper. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、軽量でかつ熱伝導に優れた可撓性を有するヒートシンク板に関する。  The present invention relates to a heat sink plate that is lightweight and has excellent flexibility in heat conduction.

平面方向に優れた熱伝導度を有する材料として黒鉛からなる紙状のものが量産されており、安価である。しかしながら、このもののは可撓性は有しているものの脆く、かつ強度が小さいので取り扱いが困難である。  A paper-like material made of graphite is mass-produced as a material having excellent thermal conductivity in the plane direction, and is inexpensive. However, although this has flexibility, it is fragile and is difficult to handle due to its low strength.

近年、その弊害を克服すべく種々の方法が提案されているが実用化されているものとしてプラズマディスプレーパネルや液晶パネルの放熱板として広く活用されているものは、黒鉛紙の両面にアルミニウム箔を貼り付けたものがある。しかしながらこれも平面方向に優れた熱伝導度は有するが面に対して直角の方向は極めて小さい熱伝導度であるので直角方向から来る熱の流れに対する放熱効果は小さい。  In recent years, various methods have been proposed to overcome the harmful effects, but those that are widely used as heat sinks for plasma display panels and liquid crystal panels are made of aluminum foil on both sides of graphite paper. There is something pasted. However, this also has an excellent thermal conductivity in the plane direction, but the direction perpendicular to the plane has a very small thermal conductivity, so that the heat radiation effect on the heat flow coming from the perpendicular direction is small.

直角方向に優れたヒートシンク板は例えば特開2000−203973でのグラファイト−アルミニウム複合材や、特願2002−323749などの炭化珪素アルミニウム複合材などがあるが、これらは可撓性を有しない。従って、プラズマディスプレーや液晶などの放熱が必要とされる所は様々な曲面形状をしているので可撓性を有するものでないと放熱効果を発揮できない。  Examples of the heat sink plate excellent in the right-angle direction include a graphite-aluminum composite material disclosed in Japanese Patent Application Laid-Open No. 2000-203973 and a silicon carbide aluminum composite material such as Japanese Patent Application No. 2002-323749, but these have no flexibility. Accordingly, the place where heat dissipation such as a plasma display or liquid crystal is required has various curved shapes, and therefore, the heat dissipation effect cannot be exhibited unless it has flexibility.

本発明の目的は、前記黒鉛紙の直角方向の熱伝導度を大きくすることと、および可撓性を有しながらかつ、脆さを改善し強度を大きくすることである。  An object of the present invention is to increase the thermal conductivity in the perpendicular direction of the graphite paper, and to improve the brittleness and increase the strength while having flexibility.

本発明は、前記目的を達成するために黒鉛紙の両面にアルミニウムを配置し、黒鉛紙がアルミニウムの薄板ではさみ込まれた状態にすることで解決する。  In order to achieve the above object, the present invention solves the problem by placing aluminum on both sides of graphite paper so that the graphite paper is sandwiched between thin aluminum plates.

本発明はさらに黒鉛紙を打抜き多孔紙にした後、両面に高圧鋳造法によりアルミニウムの溶湯で鋳造し打抜きした多孔部分を通じてアルミニウムが連続していて可撓性を有する板状のものとする。これにより、黒鉛紙の両面のアルミニウム部分は強固に黒鉛紙と一体になり紙面と直角方向の熱伝導率の向上、および紙の強度の向上になる。  In the present invention, the graphite paper is punched into a perforated paper, and then the aluminum is continuous through the perforated portion cast on the both sides by a high-pressure casting method using a molten aluminum and punched out, so that the plate has flexibility. As a result, the aluminum portions on both sides of the graphite paper are firmly integrated with the graphite paper, improving the thermal conductivity in the direction perpendicular to the paper surface and improving the strength of the paper.

又さらに本発明は、上記高圧鋳造時に打抜きした黒鉛紙の両側に銅又はアルミニウム箔を配置してその後高圧鋳造法によりアルミニウム溶湯で鋳造しアルミニウム又は一部銅が連続している可撓性を有する板状のものとする。これにより黒鉛紙の両側の金属層の厚みを制御できるので板状物の形状を容易に決定できる。銅又はアルミ箔の厚さは2mm以下が望ましい。  Furthermore, the present invention has a flexibility in which copper or aluminum foil is placed on both sides of the graphite paper punched at the time of high pressure casting, and then cast with molten aluminum by a high pressure casting method so that aluminum or part of copper is continuous. It shall be plate-shaped. Thereby, since the thickness of the metal layer on both sides of the graphite paper can be controlled, the shape of the plate can be easily determined. The thickness of the copper or aluminum foil is desirably 2 mm or less.

又、前記銅又はアルミニウム箔の代替にセラミック、炭素、アルミナなどからなる無機質紙を配置してその後、高圧鋳造法によりアルミニウム溶湯で鋳造しアルミニウムが連続している可撓性を有する板状のものとする。これにより黒鉛紙の両側のアルミニウム層の厚みを制御できるので板状の形状を容易に決定できる。  Also, a flexible plate-like material in which an inorganic paper made of ceramic, carbon, alumina or the like is placed instead of the copper or aluminum foil, and then cast with molten aluminum by a high-pressure casting method and aluminum is continuous. And Thereby, since the thickness of the aluminum layer on both sides of the graphite paper can be controlled, the plate shape can be easily determined.

セラミック、炭素、アルミナなどの無機質紙は連続繊維であってもよいし、バルク状の短繊維材からなるものでも良い。無機質紙の厚さは2mm以下が望ましい。打抜きした黒鉛紙の両側に配置する無機質紙の体積率は1〜10%程度にする。10%以上だと可撓性が失われるので好ましくない。1%以下だとアルミニウム層の厚さを決定するスペーサーとしての役割を果たし得なくなるので好ましくない。  Inorganic paper such as ceramic, carbon, and alumina may be continuous fibers or may be made of bulk short fiber material. The thickness of the inorganic paper is desirably 2 mm or less. The volume ratio of the inorganic paper placed on both sides of the punched graphite paper is about 1 to 10%. If it is 10% or more, flexibility is lost, which is not preferable. If it is 1% or less, it cannot serve as a spacer for determining the thickness of the aluminum layer, which is not preferable.

前記無機質繊維の代替に金属質からなる繊維状又は粒状物質を紙状に成形したものを用いて打抜きされた黒鉛紙の両側に配置して、その後高圧鋳造法によりアルミニウム溶湯で鋳造し、アルミニウムが連続している可撓性を有する板状のものとする。これにより、黒鉛紙の両側のアルミニウム層の厚みを制御できるので板状物の形状を容易に決定できる。  Placed on both sides of graphite paper punched using a fibrous or granular material made of metallic material instead of the inorganic fiber, and then cast with molten aluminum by a high pressure casting method. It is assumed that the plate has a continuous flexibility. Thereby, since the thickness of the aluminum layer on both sides of the graphite paper can be controlled, the shape of the plate can be easily determined.

金属繊維や金属粉は焼結したものが望ましい。又、その材質は銅、ニッケル、シリコン、チタンなどでアルミニウム融点以上のものが望ましい。さらにこれら打抜きした黒鉛紙の両側に配置する金属焼結体などの体積率は1%〜10%程度にする。10%以上だと可撓性が失われる恐れがあるので好ましくない。1%以下だとアルミニウム層の厚さを制御するスペーサーとしての役割を果たし得なくなるので好ましくない。  Sintered metal fibers and metal powder are desirable. The material is preferably copper, nickel, silicon, titanium, or the like having an aluminum melting point or higher. Further, the volume ratio of a sintered metal body or the like disposed on both sides of the punched graphite paper is set to about 1% to 10%. If it is 10% or more, flexibility may be lost. If it is 1% or less, it cannot be used as a spacer for controlling the thickness of the aluminum layer, which is not preferable.

本発明に利用される黒鉛紙は黒鉛粒子又は粉末をロール圧延などの方法により作られるものを用いる。このような黒鉛紙は結晶が面状に並ぶので面と平行な熱伝導度は200〜500W/mKと大きいが面と直角な方向の熱伝導度は5〜10W/mKと極めて小さい。  As the graphite paper used in the present invention, graphite paper or powder made by a method such as roll rolling is used. Since such graphite paper has crystals arranged in a plane, the thermal conductivity parallel to the surface is as large as 200 to 500 W / mK, but the thermal conductivity in the direction perpendicular to the surface is as small as 5 to 10 W / mK.

そこで本発明は、黒鉛紙に10〜40%程度の開孔を施してその開孔部をアルミニウムで充填すれば面と直角の方向にはアルミニウムの熱伝導度が開孔面積に比例して上昇するし、なおかつ黒鉛紙の空隙にもアルミニウムが浸透するのでより一層熱伝導度の向上がはかられる。Therefore, according to the present invention, if graphite paper is made to have an opening of about 10 to 40% and the opening is filled with aluminum, the thermal conductivity of aluminum increases in proportion to the opening area in the direction perpendicular to the surface. However, since aluminum penetrates into the voids of the graphite paper, the thermal conductivity can be further improved.

黒鉛紙に開孔するには紙などを開孔する方法が望ましく金属を開孔する方式ではバリが大きく好ましくない。開孔の形状は丸形状、楕円形状、角形状、十字形状などで別段の指定はない。又、その配列は分布が一様であれば良く四方配列でもちどり配列でも良い。In order to open the graphite paper, a method of opening a paper or the like is desirable, and a method of opening a metal is not preferable because a burr is large. The shape of the opening is round, elliptical, square, cross-shaped, etc., and there is no special designation. Further, the arrangement may be any arrangement as long as the distribution is uniform.

次に黒鉛紙の厚さであるが特に規定はないが0.2mmから2mmまでが市販されており、入手が容易であるので好適である。又、例えば0.5.mm厚さのものを5枚重ねて用いて2.5mm厚さの黒鉛紙としても良い。  Next, the thickness of the graphite paper is not particularly specified, but 0.2 mm to 2 mm is commercially available and is preferable because it is easily available. Further, for example, five sheets of 0.5.mm thickness may be used in piles to obtain 2.5 mm thick graphite paper.

ヒートシンク板としての厚さは0.5mm〜5mm程度が重量や切断などの容易さから好ましい。その中で黒鉛紙の割合は20〜90%程度が可撓性を失わず又、面と平行の方向の熱伝導度を大きくするので好ましい。  The thickness of the heat sink plate is preferably about 0.5 mm to 5 mm because of ease of weight and cutting. Among them, the proportion of graphite paper is preferably about 20 to 90% because flexibility is not lost and the thermal conductivity in the direction parallel to the surface is increased.

本発明に用いられるアルミニウムとしてはJIS−A1000系合金、3000系合金、6000系合金を用いるとより可撓性が発揮しやすいが、JIS-AC3A、AC4C合金などの鋳造用合金とも用いることができる。特に限定されないがより熱伝導度が大きく、より可撓性が発揮できる合金の方が本発明の目的に整合するのでJIS-A1000系が好適である。As aluminum used in the present invention, JIS-A1000 series alloy, 3000 series alloy, and 6000 series alloy are more flexible, but can be used with casting alloys such as JIS-AC3A and AC4C alloys. . Although not particularly limited, JIS-A1000 is preferable because an alloy having a higher thermal conductivity and exhibiting more flexibility matches the purpose of the present invention.

本発明の製造方法は、高圧鋳造法による。その方法は図-1によって説明する。図-1の1は金型であり、2は加圧用のパンチでありそれぞれ150〜300℃程度に予熱しておく。図-1の3は金属板であり主として鉄板が利用される。5は本発明に供される開孔(17)された黒鉛紙であり、6は金属箔、無機質紙又は金属質紙のいずれかから成り、黒鉛紙5を挟み込むように3の鉄板と4のボルトで固定されている。3〜6を一体で組み付けてアルゴンなどの非酸化性雰囲気下で700〜800℃に予熱しておく。その後、図-1のように金型内に配置しアルミニウム溶湯7を注ぎパンチ2で加圧する。凝固が終了するのに1〜20分間程度要するが、その間は加圧を続ける。The manufacturing method of the present invention is based on a high pressure casting method. The method will be described with reference to FIG. 1 in FIG. 1 is a mold, and 2 is a press punch, each preheated to about 150 to 300 ° C. Reference numeral 3 in FIG. 1 is a metal plate, mainly an iron plate. 5 is graphite paper with holes (17) provided for the present invention, 6 is made of either metal foil, inorganic paper or metallic paper, and 3 iron plates and 4 It is fixed with bolts. 3 to 6 are assembled together and preheated to 700 to 800 ° C. in a non-oxidizing atmosphere such as argon. Thereafter, as shown in FIG. 1, the aluminum melt 7 is poured into the mold and pressurized with the punch 2. Although it takes about 1 to 20 minutes to complete the coagulation, pressurization is continued during that time.

図-1の凝固終了後、図-2に示すように鋳造物を切断した後、本発明の目的物を得る。その構造は16は金属箔又はアルミニウムで含浸された無機質紙或いは金属質紙であり、27は黒鉛紙の開孔部に含浸されたアルミニウムである。15は黒鉛紙で一部アルミニウムが含浸されている。After completion of solidification in FIG. 1, the casting is cut as shown in FIG. 2, and the object of the present invention is obtained. In the structure, 16 is an inorganic paper or metallic paper impregnated with a metal foil or aluminum, and 27 is aluminum impregnated in an opening portion of graphite paper. 15 is graphite paper partially impregnated with aluminum.

本発明の開孔された黒鉛紙の両側に金属層を設けて開孔部を通して、アルミニウムが連続している可撓性を有するヒートシンク板は表-1に示す特性値を得た。この時の本発明は全体の厚さが2mmで黒鉛紙は1.5mm両側には0.5mmのアルミ箔が接合されたもので、黒鉛紙には直径3mmでピッチ5mmちどり配列のものを用いた。比較のための黒鉛紙は厚さ2mmのものである。  Table 1 shows the characteristic values of the flexible heat sink plate in which aluminum is continuous through a hole formed by providing a metal layer on both sides of the graphite paper having the holes according to the present invention. At this time, the present invention has a total thickness of 2 mm, graphite paper having 1.5 mm aluminum foil bonded to both sides of 1.5 mm, and graphite paper having a diameter of 3 mm and a pitch of 5 mm. The graphite paper for comparison has a thickness of 2 mm.

表-1から明らかなように本発明によるものは、可撓性があるのは最小曲げ半径が小さいことから充分であるといえる。又、引張強度が黒鉛紙のものよりはるかに大きいのでその脆さをも克服している。さらに、熱伝導度は紙又は板と水平方向に於いても優れ、かつ直角方向では圧倒的に優れていることが理解される。  As is apparent from Table 1, it can be said that the device according to the present invention is sufficiently flexible because the minimum bending radius is small. Also, the brittleness is overcome because the tensile strength is much higher than that of graphite paper. Further, it is understood that the thermal conductivity is excellent in the horizontal direction with respect to the paper or board, and is excellent in the perpendicular direction.

以下実施例にて、より発明の詳細を説明する。Hereinafter, the details of the invention will be described with reference to examples.

縦、横の大きさが1000mmで厚さ1mmの黒鉛紙に直径2.5mmでピッチ4mmの直交配列で開孔した。この黒鉛紙の両側に厚さ0.5mmのアルミナ短繊維で作られた体積率3%の無機質紙を縦横の大きさを合わせて重ねた。これを厚さ9mmの鉄板(SS400)2枚を以って図-1に示すような形態でボルトにて固定した。このものをアルゴン中に800℃に加熱しておき、一方で予め250℃に予熱された高圧鋳造用金型に配置し、800℃で溶解されているJIS1050のアルミニウム溶湯を注ぎ、その直後に加圧パンチにて100Mpaの圧力をかけた。加圧保持を10分間とした。その後、凝固した鋳造物を採り出し図-2に示すようなヒートシンク板を得た。このようにして得られたヒートシンク板の熱伝導度、引張強度、可撓性の各物性データを表-1に記載した。  Holes were formed in an orthogonal arrangement with a diameter of 2.5 mm and a pitch of 4 mm on graphite paper having a vertical and horizontal size of 1000 mm and a thickness of 1 mm. On the both sides of this graphite paper, an inorganic paper made of alumina short fibers having a thickness of 0.5 mm and having a volume ratio of 3% was stacked in the vertical and horizontal sizes. This was fixed with bolts in the form as shown in FIG. 1 with two steel plates (SS400) having a thickness of 9 mm. This was heated to 800 ° C. in argon, and placed in a high-pressure casting mold preheated to 250 ° C., and a molten aluminum of JIS 1050 melted at 800 ° C. was poured, and immediately after that, it was added. A pressure of 100 MPa was applied with a pressure punch. Pressurization was held for 10 minutes. Thereafter, the solidified casting was taken out to obtain a heat sink plate as shown in FIG. Table 1 shows physical property data of the heat conductivity, tensile strength, and flexibility of the heat sink plate thus obtained.

実施例1の中で無機質紙の代替に金属質紙の一つであるJIS-SUS304の0.1mm中のバルク繊維を黒鉛紙の両側に配置して、同様の方法でヒートシンク板を得た。このようにして得られたヒートシンク板の各物性データをやはり表-1に記載した。  In Example 1, instead of inorganic paper, bulk fibers in 0.1 mm of JIS-SUS304, which is one of the metallic papers, were arranged on both sides of the graphite paper, and a heat sink plate was obtained in the same manner. The physical property data of the heat sink plate thus obtained are also shown in Table 1.

Figure 2007019285
Figure 2007019285

本発明によるヒートシンク板は液晶のバックライトの部分からの放熱、プラズマディスプレーの画面裏からの放熱、ラップトップパソコンからの背面からの放熱を効率よくさせられる。従ってそれらに使用される半導体素子の熱からの障害を大きく減じるので各器材の長寿命化に多大な貢献をする。    The heat sink plate according to the present invention can efficiently dissipate heat from the backlight portion of the liquid crystal, heat from the back of the screen of the plasma display, and heat from the back of the laptop personal computer. Therefore, since the obstacle from the heat | fever of the semiconductor element used for them is reduced significantly, it contributes greatly to the lifetime improvement of each equipment.

本発明のヒートシンク板の製造の形態とManufacturing form of the heat sink plate of the present invention and ヒートシンクの構造を示す概略断面説明図。Schematic cross-sectional explanatory drawing which shows the structure of a heat sink.

符号の説明Explanation of symbols

1 金型
2 パンチ
3 鉄製治具
4 ネジ、ボルト
5 黒鉛紙
6 無機質紙、金属箔又は金属質紙のいずれかのもの
7 アルミニウム湯
17 黒鉛紙の開孔部
15 黒鉛紙とアルミニウムの複合物
16 金属箔又は無機質紙或いは金属質とアルミニウムの複合物のいずれかのもの
27 アルミニウム
1 Mold
2 punch
3 Iron jig
4 Screws, bolts
5 Graphite paper
6 Any of inorganic paper, metal foil or metal paper
7 Aluminum hot water
17 Opening of graphite paper
15 Composite of graphite paper and aluminum
16 Any of metal foil or inorganic paper or a composite of metal and aluminum
27 Aluminum

Claims (6)

黒鉛紙の紙面の両面にアルミニウム又はその合金(以下アルミニウム)ではさみ込まれた可撓性を有するヒートシンク板。A heat sink plate having flexibility, sandwiched between both surfaces of graphite paper by aluminum or an alloy thereof (hereinafter, aluminum). 黒鉛紙に打抜きし、多孔紙にした後、両面に高圧鋳造方法によりアルミニウム又はその合金の溶湯で鋳造し、打抜き多孔部分を通じてアルミニウム又はその合金が連続している可撓性を有するヒートシンク板。A heat sink plate having flexibility in which aluminum or an alloy thereof is continuously cast through a perforated porous portion after being punched into graphite paper and made into perforated paper and then cast on both sides with a molten aluminum or an alloy thereof by a high pressure casting method. 前項の鋳造時に予め黒鉛紙の両面に銅又はアルミニウム箔を配置してその後高圧鋳造法によりアルミニウム溶湯で鋳造しアルミニウム又は一部銅が連続している可撓性を有するヒートシンク板。A flexible heat sink plate in which copper or aluminum foil is placed on both surfaces of graphite paper in advance during casting, and then cast with molten aluminum by a high-pressure casting method, and aluminum or partial copper is continuous. 前項の鋳造時にアルミニウム箔の代替にセラミック、炭素、アルミナなどからなる無機質紙を配置してその後、高圧鋳造方法によりアルミニウム溶湯で鋳造し、アルミニウムが連続している可撓性を有するヒートシンク板。A flexible heat sink plate in which an inorganic paper made of ceramic, carbon, alumina, or the like is disposed in place of the aluminum foil at the time of casting, and then cast with molten aluminum by a high pressure casting method, and aluminum is continuous. 前項の無機質紙の代替に金属質からなる繊維状又は粒状物質を紙状に成形したものを配置してその後高圧鋳造方法によりアルミニウム溶湯で鋳造し、アルミニウムが連続している可撓性を有するヒートシンク板。A flexible heat sink in which aluminum is continuous by placing a fibrous or granular material made of metallic material into a paper shape instead of the inorganic paper of the preceding paragraph, and then casting it with molten aluminum by a high pressure casting method Board. 第4項、第5項の無機質又は金属質の紙の体積率が1〜10%であること。The volume ratio of the inorganic or metallic paper of Item 4 or Item 5 is 1 to 10%.
JP2005199697A 2005-07-08 2005-07-08 Flexible heat-sink plate Pending JP2007019285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005199697A JP2007019285A (en) 2005-07-08 2005-07-08 Flexible heat-sink plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005199697A JP2007019285A (en) 2005-07-08 2005-07-08 Flexible heat-sink plate

Publications (1)

Publication Number Publication Date
JP2007019285A true JP2007019285A (en) 2007-01-25

Family

ID=37756163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005199697A Pending JP2007019285A (en) 2005-07-08 2005-07-08 Flexible heat-sink plate

Country Status (1)

Country Link
JP (1) JP2007019285A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019098377A1 (en) * 2017-11-20 2019-05-23 富士通化成株式会社 Composite heat transfer member and method for producing composite heat transfer member
JP2019096858A (en) * 2017-11-20 2019-06-20 富士通化成株式会社 Composite heat transfer member and method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019098377A1 (en) * 2017-11-20 2019-05-23 富士通化成株式会社 Composite heat transfer member and method for producing composite heat transfer member
JP2019096858A (en) * 2017-11-20 2019-06-20 富士通化成株式会社 Composite heat transfer member and method of manufacturing the same
CN111356544A (en) * 2017-11-20 2020-06-30 三菱综合材料株式会社 Composite heat transfer member and method for manufacturing composite heat transfer member
CN111356544B (en) * 2017-11-20 2022-01-14 三菱综合材料株式会社 Composite heat transfer member and method for manufacturing composite heat transfer member
JP7119671B2 (en) 2017-11-20 2022-08-17 三菱マテリアル株式会社 COMPOSITE HEAT TRANSFER MEMBER AND METHOD FOR MANUFACTURING COMPOSITE HEAT TRANSFER MEMBER

Similar Documents

Publication Publication Date Title
JP6580385B2 (en) Composite of aluminum and carbon particles and method for producing the same
JP5335339B2 (en) A heat radiator composed of a combination of a graphite-metal composite and an aluminum extruded material.
WO2011096542A1 (en) Substrate for power module, and power module
WO2012127958A1 (en) Composite member provided with substrate formed from composite material
WO2009066692A1 (en) Process for producing substrate for power module, substrate for power module, and power module
US20070243407A1 (en) Machinable Metallic Composites
CN106238849B (en) A kind of welding method of laser slab and heat sink two-sided engagement
JPWO2011065457A1 (en) Laminate and method for producing the same
JP2004241765A (en) Composite material and manufacturing method therefor
TW201111733A (en) Heat sink and method to produce the same
JPWO2015115649A1 (en) Silicon carbide based composite, method for producing the same, and heat dissipation component using the same
JP4490506B1 (en) LAMINATED SHEET, ITS MANUFACTURING METHOD, AND PROCESSING METHOD
JP2007019285A (en) Flexible heat-sink plate
JP5057904B2 (en) Temperature control plate and manufacturing method thereof
CN103123952B (en) A kind of three dimensional high thermal conductivity graphite composite material and preparation method thereof
JP6962803B2 (en) Clad material and its manufacturing method
JP2010106362A (en) Composite member and process for producing the same
CN109808282A (en) A kind of graphite aluminum matrix composite and preparation method thereof
JP7142864B2 (en) Method for producing anisotropic graphite composite
TW201219131A (en) comprising multiple stacked and bonded composite bodies each of which is formed by using a metal substrate to enclose a single layer of planar arrangement of diamond particles
JP3812321B2 (en) Heat sink and manufacturing method thereof
JP2010029919A (en) Aluminum-graphite composite, circuit board using it, and manufacturing method therefor
JP5659542B2 (en) Insulating substrate and power module
JPH11269577A (en) Metal-based composite casting, and its manufacture
JP6670605B2 (en) Manufacturing method of insulating substrate