JPH11269577A - Metal-based composite casting, and its manufacture - Google Patents

Metal-based composite casting, and its manufacture

Info

Publication number
JPH11269577A
JPH11269577A JP10072690A JP7269098A JPH11269577A JP H11269577 A JPH11269577 A JP H11269577A JP 10072690 A JP10072690 A JP 10072690A JP 7269098 A JP7269098 A JP 7269098A JP H11269577 A JPH11269577 A JP H11269577A
Authority
JP
Japan
Prior art keywords
metal
insulating substrate
based composite
insulation substrate
heat radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10072690A
Other languages
Japanese (ja)
Inventor
Takamasa Suzuki
孝昌 鈴木
Takeshi Yamamoto
剛 山本
Hiroshi Hojo
浩 北條
Naohisa Nishino
直久 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Central R&D Labs Inc
Original Assignee
Denso Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Central R&D Labs Inc filed Critical Denso Corp
Priority to JP10072690A priority Critical patent/JPH11269577A/en
Priority to US09/084,396 priority patent/US6245442B1/en
Publication of JPH11269577A publication Critical patent/JPH11269577A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the stripping of an insulation substrate from a heat radiation plate by improving the adhesive force of the heat radiation plate to the insulation substrate (or a DBC substrate). SOLUTION: In integratedly forming a heat radiation plate 1 with an insulation substrate 5, a metallic thin 18 such as aluminum is interposed between the heat radiation plate 1 and the insulation substrate 5. This metallic thin film 18 increases the adhesion area between the heat radiation plate 1 and the insulation substrate 5, and at the same time, plays a role as a buffer material to improve the adhesion force between the heat radiation plate 1 and the insulation substrate 5. In addition, by adding or applying yttrium which is the sintering assistant to the insulation substrate 5, yttrium is diffused to the metallic thin film 18 side in the high-pressure casting, and the yttrium-based compound is formed in the bonding interface to improve the bonding strength.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属を母材とし
て、セラミックス等の粒子又は繊維、短繊維、ウィスカ
等を分散させた金属基複合鋳造品の製造方法に関し、例
えば、パワーモジュール用のヒートシンク等の部品に用
いて好適である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a metal-based composite casting in which particles or fibers such as ceramics, short fibers, whiskers, etc. are dispersed using a metal as a base material. It is suitable for use in parts such as.

【0002】[0002]

【従来の技術】絶縁基板を金属基複合材に鋳ぐるんだ金
属基複合鋳造品がある。例えば、電子部品の放熱板とし
て金属基複合材を用いる場合には、電子部品と金属基複
合材とを絶縁するために絶縁基板を金属基複合材に鋳ぐ
るんだものを使用することができる。
2. Description of the Related Art There is a metal-based composite casting in which an insulating substrate is cast into a metal-based composite material. For example, when a metal matrix composite is used as a heat sink of an electronic component, an insulating substrate cast into a metal matrix composite to insulate the electronic component from the metal matrix composite can be used. .

【0003】ここで、金属基複合材とは、金属を母材と
してこれに粒子、繊維等の特性改良用分散材を共存させ
た材料を示し、例えば、セラミック粒子をアルミニウム
基材に分散させたものがある。このような金属基複合材
は、予め準備したセラミック粒子の成形体にアルミニウ
ム金属を浸透させる非加圧金属浸透法等によって形成さ
れる。
[0003] Here, the metal-based composite material is a material in which a metal is used as a base material and a dispersion material for improving properties such as particles and fibers coexists with the base material. For example, ceramic particles are dispersed in an aluminum base material. There is something. Such a metal-based composite material is formed by a non-pressurized metal infiltration method or the like in which aluminum metal is penetrated into a prepared ceramic particle compact.

【0004】[0004]

【解決しようとする課題】しかしながら、非加圧浸透法
においては、絶縁基板を鋳ぐるむ際に絶縁基板とセラミ
ック成形体が直接接触してしまうため、絶縁基板と金属
基複合材との接合力が小さくなってしまう。すなわち、
セラミックの成形体の隙間に侵入した金属が絶縁基板と
接合することによって、絶縁基板と金属基複合材との接
合力が生じるのであるが、絶縁基板と直接接触したセラ
ミックによって絶縁基板と金属との接合面積が小さくな
ってしまい、上述のように接合力が小さくなるのであ
る。
However, in the non-pressure infiltration method, the insulating substrate and the ceramic molded body come into direct contact with each other when the insulating substrate is cast, so that the bonding strength between the insulating substrate and the metal matrix composite material is increased. Becomes smaller. That is,
The metal that has penetrated into the gap between the ceramic molded bodies and the insulating substrate joins with the insulating substrate, thereby producing a bonding force between the insulating substrate and the metal matrix composite. The bonding area is reduced, and the bonding force is reduced as described above.

【0005】絶縁基板と金属基複合材との接合力が小さ
いために、熱疲労により接合界面が剥離してしまうとい
う問題がある。本発明は上記問題に鑑みたもので、絶縁
基板と金属基複合材料との接合力を高め、セラミックか
ら絶縁基板が剥離しにくくすることを目的とする。
[0005] Since the bonding strength between the insulating substrate and the metal matrix composite is small, there is a problem that the bonding interface is separated due to thermal fatigue. The present invention has been made in view of the above problems, and has as its object to increase the bonding strength between an insulating substrate and a metal-based composite material and to make it difficult for the insulating substrate to peel off from the ceramic.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、以下の技術的手段を採用する。請求項1に記載の発
明においては、型(14)内の所定の面に絶縁基板
(5)を設置し、該型(14)内に金属基複合材(1)
を形成するための内部空間を形成する工程と、型(1
4)内の内部空間にセラミックス分散材(16)を充填
する工程と、セラミックス分散材(16)の間隙に溶融
金属を加圧浸透させると共に該溶融金属を凝固させて、
絶縁基板(5)との間に金属の薄膜(18)を介在させ
て金属基複合材(1)を形成する工程と、金属基複合材
料を型(14)から取り出す工程と、を備えていること
を特徴としている。
In order to achieve the above object, the following technical means are employed. According to the first aspect of the present invention, the insulating substrate (5) is provided on a predetermined surface in the mold (14), and the metal matrix composite (1) is provided in the mold (14).
Forming an internal space for forming a mold;
4) a step of filling a ceramic dispersion material (16) into the internal space therein, and pressurizing and infiltrating a molten metal into a gap of the ceramic dispersion material (16) and solidifying the molten metal;
A step of forming a metal matrix composite (1) by interposing a metal thin film (18) between the metal substrate and the insulating substrate (5); and a step of removing the metal matrix composite from the mold (14). It is characterized by:

【0007】このように、型(14)内の内部空間にセ
ラミックス分散材(16)を充填しておき、セラミック
ス分散材(16)の間隙に溶融金属を加圧浸透させると
共に該溶融金属を凝固させて、絶縁基板(5)との間に
金属の薄膜(18)を介在させるように金属基複合材
(1)を形成すれば、絶縁基板(5)と金属基複合材
(1)とが、その間に介在する金属の薄膜(18)によ
って接合されるため、接合面積が大きくなると共にヤン
グ率の低い金属の薄膜(18)が緩衝材としての役割を
果たし、接合力を向上させることができる。
As described above, the interior space in the mold (14) is filled with the ceramic dispersion material (16), and the molten metal is infiltrated into the gaps of the ceramic dispersion material (16) under pressure and solidified. Then, if the metal matrix composite (1) is formed such that the metal thin film (18) is interposed between the metal matrix composite (1) and the insulation substrate (5), the insulation matrix (5) and the metal matrix composite (1) are formed. Since the metal thin film (18) interposed therebetween is bonded by the metal thin film (18), the bonding area becomes large and the metal thin film (18) having a low Young's modulus acts as a cushioning material, and the bonding force can be improved. .

【0008】請求項2に記載の発明においては、加圧浸
透時における加圧力を制御することによって、絶縁基板
(5)と金属基複合材(1)との間に介在させる金属の
薄膜(18)の膜厚を制御することを特徴としている。
このように、加圧浸透時における加圧力を制御すること
によって、金属の薄膜(18)の膜厚を制御することが
できるため、膜厚を適宜選択することができる。
According to the second aspect of the present invention, by controlling the pressing force at the time of pressurized infiltration, the metal thin film (18) interposed between the insulating substrate (5) and the metal matrix composite (1). ) Is characterized by controlling the film thickness.
As described above, the thickness of the metal thin film (18) can be controlled by controlling the pressing force at the time of pressurized infiltration, so that the thickness can be appropriately selected.

【0009】請求項3に記載の発明においては、絶縁基
板(5)に焼結助剤を含ませておき、金属基複合材料を
形成する工程にて、焼結助剤を金属の薄膜(18)側に
拡散させるようにすることを特徴としている。このよう
に、絶縁基板(5)に焼結助剤を含ませておき、焼結助
剤を金属膜側に拡散させるようにすれば、この焼結助剤
によってより接合力を向上させることができる。
According to a third aspect of the present invention, a sintering aid is included in the insulating substrate (5), and the sintering aid is used in the step of forming the metal matrix composite material. ) Side. As described above, when the sintering aid is included in the insulating substrate (5) and the sintering aid is diffused to the metal film side, the bonding strength can be further improved by the sintering aid. it can.

【0010】具体的には、請求項4に示すように、焼結
助剤としてイットリウムを用いることができる。このよ
うに、イットリウムを用いた場合、高圧鋳造時にイット
リウムが薄膜層側に拡散して、絶縁基板(5)と金属の
薄膜(18)との接合界面にイットリウム等からなる化
合物が形成されるため、接合強度を向上させることがで
きる。
[0010] Specifically, as described in claim 4, yttrium can be used as a sintering aid. As described above, when yttrium is used, during high-pressure casting, yttrium diffuses to the thin film layer side, and a compound made of yttrium or the like is formed at the bonding interface between the insulating substrate (5) and the metal thin film (18). The joining strength can be improved.

【0011】また、請求項5に示すように、溶融金属と
してアルミニウムを用いることができる。請求項6に記
載の発明においては、絶縁基板(5)と金属基複合材
(1)との間には、金属と焼結助剤と含んだ化合物が介
在していることを特徴としている。このように、絶縁基
板(5)と金属基複合材(1)との間において、金属と
焼結助剤とを含んだ化合物を介在させることにより、絶
縁基板(5)と金属基複合材(1)との接合強度を増加
させることができる。
Further, as described in claim 5, aluminum can be used as the molten metal. The invention according to claim 6 is characterized in that a compound containing a metal and a sintering aid is interposed between the insulating substrate (5) and the metal matrix composite (1). Thus, by interposing a compound containing a metal and a sintering aid between the insulating substrate (5) and the metal-based composite (1), the insulating substrate (5) and the metal-based composite ( 1) The bonding strength with (1) can be increased.

【0012】[0012]

【発明の実施の形態】以下、本発明を図に示す実施形態
について説明する。フィン一体型放熱板(以下、放熱板
という)1を備えたインバータ駆動用のパワーモジュー
ル2の模式的な断面図を図1に示す。パワーモジュール
2は、スイッチング素子である複数のIGBT3によっ
て構成されており、スイッチング動作を行う。また、パ
ワーモジュール1は、フライホイールダイオード(以
下、FRDという)4を備えており、このFRD4によ
ってIGBT3は双方向のスイッチング動作を行うこと
ができるようになっている。そして、これらIGBT3
とFRD4が一組づつ、AlN(窒化アルミニウム)か
らなる複数の絶縁基板(あるいはDBC(Direct
BondingCupper)基板)5のそれぞれの
上にはんだ6を介して配置されると共に、絶縁基板5に
備えられた銅配線7等にワイヤボンディングされて、パ
ワーモジュール2が構成されている。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a first embodiment of the present invention. FIG. 1 is a schematic cross-sectional view of a power module 2 for driving an inverter having a fin-integrated radiator plate (hereinafter referred to as a radiator plate) 1. The power module 2 includes a plurality of IGBTs 3 as switching elements, and performs a switching operation. Further, the power module 1 includes a flywheel diode (hereinafter, referred to as FRD) 4, and the IGBT 3 can perform bidirectional switching operation by the FRD4. And these IGBT3
And a set of FRD4, a plurality of insulating substrates (or DBC (Direct) made of AlN (aluminum nitride).
Bonding Copper (Boarding Cupper) substrate) 5 is arranged via solder 6 and wire-bonded to copper wiring 7 or the like provided on insulating substrate 5 to constitute power module 2.

【0013】このように構成されるパワーモジュール2
の下部に、セラミックス分散材を用いた金属基複合材料
で構成される放熱板1が備えられており、この放熱板1
によってパワーモジュール2が発生する熱の放熱を行う
ようになっている。複数の絶縁基板5は、それぞれの間
が所定の間隔づつ開くように配置された状態で放熱板1
に接合されている。具体的には、複数の絶縁基板5は、
放熱板1を鋳造する際に、放熱板1内に鋳ぐるまれて一
体接合されている。この絶縁基板5と放熱板1との間に
は、アルミニウムからなる金属膜18が厚さ約0.1m
m程度又はそれ以下で形成されており、この金属膜18
が絶縁基板5と放熱板1との接合面積を大きくするとと
もに、緩衝材としての役割を果たし、絶縁基板5と放熱
板1との接合力を向上させている。
The power module 2 thus configured
A radiator plate 1 made of a metal-based composite material using a ceramic dispersion material is provided below the radiator plate.
As a result, heat generated by the power module 2 is radiated. The plurality of insulating substrates 5 are arranged so that the spaces between them are opened at predetermined intervals, and
Is joined to. Specifically, the plurality of insulating substrates 5
When the heat sink 1 is cast, the heat sink 1 is cast into the heat sink 1 and integrally joined. A metal film 18 made of aluminum has a thickness of about 0.1 m between the insulating substrate 5 and the heat sink 1.
m or less, and the metal film 18
Increases the bonding area between the insulating substrate 5 and the radiator plate 1 and also serves as a buffer, thereby improving the bonding strength between the insulating substrate 5 and the radiator plate 1.

【0014】このように、絶縁基板5を介して放熱板1
とパワーモジュール2が一体となっている。図2
(a)、(b)に、絶縁基板5を鋳ぐるんだ放熱板1の
上面斜視図と下面斜視図を示す。但し、図2では、簡略
化のため絶縁基板5が2枚設けられたものを示す。図2
(a)に示すように、絶縁基板5(図中の斜線部分)
は、放熱板1の上部に配され、放熱板1の上面と同一平
面を形成するように鋳ぐるまれている。この絶縁基板5
が配されていない部分となる放熱板1の4隅に、固定用
のネジ穴10が形成されている。このネジ穴10は、放
熱板1を形成する際に、その4隅に鋳ぐるんだ金属部材
を用いて形成されている。
As described above, the heat radiating plate 1 is provided via the insulating substrate 5.
And the power module 2 are integrated. FIG.
(A) and (b) show a top perspective view and a bottom perspective view of the heat sink 1 in which the insulating substrate 5 is cast. However, FIG. 2 shows a case where two insulating substrates 5 are provided for simplification. FIG.
As shown in (a), the insulating substrate 5 (shaded portion in the figure)
Is arranged on the upper part of the heat sink 1 and is formed so as to be flush with the upper surface of the heat sink 1. This insulating substrate 5
Screw holes 10 for fixing are formed at four corners of the heat radiating plate 1 which are portions where no is disposed. The screw holes 10 are formed at the four corners of the heat radiating plate 1 by using metal members that are cast.

【0015】そして、図2(b)に示すように、放熱板
1の裏面、特に絶縁基板5の裏面に相当する部分には、
突起形状で構成された50本のフィン11が備えられて
いる。このフィン11の部分を水等の冷媒の流路内に浸
すことで、フィン11に伝導された熱を冷媒に放熱する
という熱交換を行う。なお、図1及び図2に、冷媒とし
て水を用いた場合の水の流れを矢印にて示す。
As shown in FIG. 2B, the back surface of the heat sink 1, particularly, the portion corresponding to the back surface of the insulating substrate 5,
There are provided 50 fins 11 configured in a projecting shape. By immersing the fin 11 in the flow path of a coolant such as water, heat exchange is performed in which heat conducted to the fin 11 is radiated to the coolant. In FIGS. 1 and 2, the flow of water when water is used as a refrigerant is indicated by arrows.

【0016】フィン11は、高さHが約7mmの断面楕
円形状の柱で構成されており、長径Lが約4mmで冷媒
の流路方向に平行を成し、短径Sが約2mmで冷媒の流
路方向に垂直を成すように配設されている。つまり、フ
ィンの高さHを楕円形状の長径Lや短径Sよりも長くす
ることにより、放熱効率を高くしている。また、複数の
フィン11は、ちどり状に配置されている。このような
形状、配置としているため、フィン11によって冷媒の
流速が妨げられることがないようになっている。
The fin 11 is formed of a column having a height H of about 7 mm and an elliptical cross section. The fin 11 has a major axis L of about 4 mm and is parallel to the direction of the flow path of the refrigerant. Are arranged so as to be perpendicular to the flow path direction. That is, the fin height H is made longer than the major axis L and the minor axis S of the elliptical shape, thereby increasing the heat radiation efficiency. Further, the plurality of fins 11 are arranged in a zigzag shape. With such a shape and arrangement, the fins 11 do not hinder the flow rate of the refrigerant.

【0017】また、絶縁基板5が配されていない部分に
おいて、放熱板1は厚肉部8が形成されており、放熱板
1の反りを抑制している。具体的には、複数の絶縁基板
5のそれぞれの間を他の部分と比べて、例えば2mm程
度厚肉に形成している。すなわち、絶縁基板5と放熱板
1の材質の違いから応力が発生するが、この応力は絶縁
基板5の端部に集中するため、絶縁基板5の間において
放熱板1の反りが最も発生し易く、この間における反り
を最も防止する必要があるからである。なお、このよう
に厚肉形成する場合には、厚肉部8が冷媒流路の垂直方
向を成すことから、この厚肉部8に冷媒流路の水平方向
に延びる溝を設けことで、冷媒の流れの妨げにならない
ようにすることもできる。
In a portion where the insulating substrate 5 is not provided, the heat radiating plate 1 is formed with a thick portion 8 to suppress the warping of the heat radiating plate 1. Specifically, the space between each of the plurality of insulating substrates 5 is formed to be, for example, about 2 mm thicker than other portions. That is, a stress is generated due to a difference in the material of the insulating substrate 5 and the heat radiating plate 1. Since the stress is concentrated on an end portion of the insulating substrate 5, the warping of the heat radiating plate 1 is most likely to occur between the insulating substrates 5. This is because it is necessary to most prevent warpage during this time. When the thick portion is formed in this way, the thick portion 8 forms the vertical direction of the coolant flow path. Can be prevented from obstructing the flow.

【0018】なお、放熱板1の外周部分には、冷媒をフ
ィン11に流すための冷媒循環容器と接合するため、凸
状や凹状のシール部分9が形成されている。これによ
り、放熱板と冷媒循環容器との液密が保持できるように
なっている。なお、シール部分はこのような形状でなく
てもよい。このような構成を有する絶縁基板5を一体と
した放熱板1を、例えば高圧鋳造法によって形成するこ
とができる。こお高圧鋳造法による放熱板1の製造手順
について、図3〜6に示す工程図に基づき説明する。但
し、図3〜図6では、簡略化のため絶縁基板5を1つだ
け設ける場合を示す。
The outer peripheral portion of the radiator plate 1 is formed with a convex or concave seal portion 9 for joining with a refrigerant circulation container for flowing the refrigerant to the fins 11. Thus, the liquid tightness between the heat radiating plate and the refrigerant circulation container can be maintained. Note that the seal portion may not have such a shape. The heat radiating plate 1 in which the insulating substrate 5 having such a configuration is integrated can be formed by, for example, a high-pressure casting method. The manufacturing procedure of the heat sink 1 by the high-pressure casting method will be described with reference to the process charts shown in FIGS. However, FIGS. 3 to 6 show a case where only one insulating substrate 5 is provided for simplification.

【0019】〔図3に示す工程〕まず、最終形状の放熱
板1にフィン11を形成するためのキャビティを有する
成形容器13を成形する。具体的には、塩化ナトリウム
粉末を500kg/cm 2 以上の高い圧力で加圧するこ
とにより、縦50mm、横80mm、厚さ10mmの矩
形状で、かつ楕円形状の穴が50個形成されたキャビテ
ィを有する成形容器13を形成する。成形容器13を成
形した後、成形容器13の強度向上のために加熱処理を
行ってもよいが、上記圧力によって成形しているため、
成形のみでも十分な強度を有している。
[Step shown in FIG. 3] First, heat radiation of the final shape
The plate 1 has a cavity for forming the fin 11
The molding container 13 is molded. Specifically, sodium chloride
500 kg / cm powder TwoPressurized with high pressure
According to the above, a rectangular shape of 50 mm long, 80 mm wide and 10 mm thick
Cavity with 50 oval holes in oval shape
Forming a molded container 13 having Forming container 13
After shaping, heat treatment is performed to improve the strength of the molding container 13.
Although it may be performed, since it is molded by the above pressure,
It has sufficient strength only by molding.

【0020】ここで、成形容器13の材料に塩化ナトリ
ウムを用いるのは、鋳造時に注湯される金属溶湯の温度
以下においては分解、溶解することなく安定に存在する
一方、鋳造後に浸される溶媒に対して易溶解性又は易崩
壊性を有し、さらに放熱板1の形状が複雑であってもそ
の形状に合わせて任意形状に成形することができるから
である。
The reason why sodium chloride is used as the material of the molding container 13 is that the solvent exists stably without decomposition or dissolution below the temperature of the molten metal poured at the time of casting, while the solvent immersed after casting. This is because the heat radiating plate 1 can be easily formed into an arbitrary shape in accordance with the shape even if the shape is complicated.

【0021】このとき用いる塩化ナトリウムの粉末の粒
度は、生産性、成形型の強度など制御目的によって変え
ることができるが、本実施形態では放熱板1と当接する
部分を滑らかにすべく、全体又は表面部分に50Å〜
0.5μmの粒径のものを用いている。なお、塩化ナト
リウムの純度は、溶融温度が高圧鋳造にて用いる金属の
融点よりも高く、またセラミックス分散材を充填した鋼
製容器14の予熱温度で溶融しないような程度のものと
している。
The particle size of the sodium chloride powder used at this time can be changed depending on the purpose of control, such as productivity and strength of a molding die. In this embodiment, in order to make the portion in contact with the heat sink 1 smooth, the whole or the whole is used. 50Å on the surface
A particle having a particle size of 0.5 μm is used. The purity of the sodium chloride is such that the melting temperature is higher than the melting point of the metal used in the high-pressure casting and does not melt at the preheating temperature of the steel container 14 filled with the ceramic dispersion material.

【0022】次に、鋼製容器14を用意し、この鋼製容
器14内の一面に成形容器13を貼付けると共に、鋼製
容器14内のうち成形容器13が貼付けられた面の反対
側の面に絶縁基板5を貼付ける。このとき、絶縁基板5
の表面には、例えばその焼結助剤成分であるイットリウ
ムを塗布しておく。そして、放熱板1の4隅となる部分
のそれぞれにボルト穴形成用の鋼板15を配置する。こ
れにより、鋼製容器14内にフィン11を一体とした放
熱板1を形成するための内部空間が形成される。
Next, a steel container 14 is prepared, a molded container 13 is attached to one surface of the steel container 14, and a side of the steel container 14 opposite to the surface on which the molded container 13 is attached. The insulating substrate 5 is attached to the surface. At this time, the insulating substrate 5
Is coated with, for example, yttrium as a sintering aid component. Then, a steel plate 15 for forming a bolt hole is arranged at each of the four corners of the heat sink 1. Thereby, an internal space for forming the heat radiating plate 1 in which the fins 11 are integrated in the steel container 14 is formed.

【0023】この後、鋼製容器14の内部空間にセラミ
ックス分散材である炭化珪素粉末16を充填する。炭化
珪素は、AlNからなる絶縁基板5と熱膨張係数が近接
しており、絶縁基板5を放熱板に内蔵したときにおいて
も放熱板1の反りを抑制することができる。また、炭化
珪素は熱伝導率が高く、放熱性に優れている。この炭化
珪素粉末16の粒度や充填量は、放熱板1を構成する金
属基複合材料として要求する特性に応じて変化させれば
よく、特に充填量を増やしたい場合には、微粉と粗粉末
の混合粉末を用いるようにする。本実施形態では、平均
粒径20μmの粉末が30重量%に対して100μmの
粉末が70重量%の割合で混合した炭化珪素粉末16を
用いている。また、充填後、鋳造前に炭化珪素粉末16
に充填用の圧力をかけるようにしてもよい。
Thereafter, the interior space of the steel container 14 is filled with silicon carbide powder 16 which is a ceramic dispersion material. Silicon carbide has a thermal expansion coefficient close to that of the insulating substrate 5 made of AlN, so that even when the insulating substrate 5 is incorporated in the heat sink, warpage of the heat sink 1 can be suppressed. Silicon carbide has high thermal conductivity and excellent heat dissipation. The particle size and the filling amount of the silicon carbide powder 16 may be changed according to the characteristics required as the metal-based composite material constituting the radiator plate 1. In particular, when it is desired to increase the filling amount, the fine powder and the coarse powder are mixed. Use mixed powder. In the present embodiment, silicon carbide powder 16 is used in which powder having a mean particle diameter of 20 μm is mixed with 30 wt% and 100 μm powder is mixed at a proportion of 70 wt%. After filling and before casting, silicon carbide powder 16
May be applied with a pressure for filling.

【0024】〔図4に示す工程〕炭化珪素粉末16を充
填した鋼製容器14を約650℃で予熱したのち、鋳造
用金型内に設置し、直ちに約750℃のアルミニウム合
金溶湯(例えば、A1−12%Si−0.3%Mg合
金)を金型内に注湯する。ついで、加圧パンチにて溶湯
を加圧し、鋼製容器14内の炭化珪素粉末16の間隙に
溶融アルミニウム合金を浸透させ、炭化珪素とアルミニ
ウム合金からなる金属基複合材料17とする。
[Step shown in FIG. 4] After preheating the steel container 14 filled with the silicon carbide powder 16 at about 650 ° C., it is placed in a casting mold, and immediately melts the aluminum alloy melt at about 750 ° C. A1-12% Si-0.3% Mg alloy) is poured into a mold. Next, the molten metal is pressurized by a press punch to infiltrate the gap between the silicon carbide powders 16 in the steel container 14 with the molten aluminum alloy to obtain a metal-based composite material 17 made of silicon carbide and an aluminum alloy.

【0025】このように、高圧鋳造法によって金属基複
合材料17が形成される。この高圧鋳造法によると、静
水圧で金属を加圧して、特性改良用分散材となる炭化珪
素粉末16にアルミニウム合金を含浸させるため、炭化
珪素粉末16が縮小して絶縁基板5との間に隙間が生
じ、この隙間にアルミニウム合金を含浸させることがで
きる。従って、絶縁基板5と金属基複合材料17の間
に、例えば、0.1mm程度のアルミニウム合金の金属
膜18を介在させることが可能になる。
As described above, the metal-based composite material 17 is formed by the high-pressure casting method. According to this high-pressure casting method, the metal is pressurized by hydrostatic pressure to impregnate the aluminum alloy into the silicon carbide powder 16 serving as the property improving dispersing material. A gap is formed, and the gap can be impregnated with the aluminum alloy. Therefore, for example, a metal film 18 of an aluminum alloy of about 0.1 mm can be interposed between the insulating substrate 5 and the metal-based composite material 17.

【0026】このように絶縁基板5と金属基複合材料1
7の間に金属膜18を形成することにより、絶縁基板5
と金属基複合材料17を直接接合する場合に比して絶縁
基板5と接触する金属部分の面積を大きくすることがで
きるため、金属基複合材料17と絶縁基板5との接合力
を向上させることができる。また、金属膜18は、金属
基複合材料17に比してヤング率が低いため(SiC/
Alからなる金属基複合材料17は約260GPa、A
lからなる金属膜18は70GPa)、絶縁基板5との
間で緩衝材としての役割を果たすため、より接合力を向
上させることができる。
Thus, the insulating substrate 5 and the metal-based composite material 1
7, the insulating substrate 5 is formed.
Since the area of the metal portion in contact with the insulating substrate 5 can be increased as compared with the case where the metal-based composite material 17 is directly bonded to the metal-based composite material 17, the bonding strength between the metal-based composite material 17 and the insulating substrate 5 can be improved. Can be. The metal film 18 has a lower Young's modulus than the metal matrix composite material 17 (SiC /
The metal-based composite material 17 made of Al is approximately 260 GPa,
Since the metal film 18 made of l has a role of a buffer between the insulating substrate 5 and 70 GPa), the bonding strength can be further improved.

【0027】また、絶縁基板5の表面にその焼結助剤で
あるイットリウムが塗布されているため、この高圧鋳造
時にイットリウムが薄膜層側に拡散し、絶縁基板5と金
属膜18との接合界面にイットリウム、アルミニウム、
シリコン等からなる化合物が形成されることにより、接
合強度を向上させることができる。なお、この金属膜1
8の膜厚は、加圧パンチの圧力を制御することによって
制御可能である。
Since yttrium, which is a sintering aid, is applied to the surface of the insulating substrate 5, the yttrium diffuses toward the thin film layer during the high-pressure casting, and the bonding interface between the insulating substrate 5 and the metal film 18 is formed. Yttrium, aluminum,
By forming a compound made of silicon or the like, bonding strength can be improved. The metal film 1
The film thickness of 8 can be controlled by controlling the pressure of the pressure punch.

【0028】次に、この金属基複合材料17を凝固、冷
却する。これにより、鋼製容器14内の金属基複合材料
17に絶縁基板5、ボルト穴形成用の鋼板15及び成形
容器13が鋳ぐるまれたインゴットができる。そして、
冷却した後、インゴットから鋼製容器14を取り出す。
ここで、アルミニウム合金を母材として選んでいるが、
これはアルミニウム合金の溶融温度が低く、この程度の
温度であれば塩化ナトリウムでできた成形容器13が溶
融しないからである。また、アルミニウム合金の熱伝導
率は比較的高く、放熱性に優れているからである。
Next, the metal matrix composite material 17 is solidified and cooled. Thereby, an ingot in which the insulating substrate 5, the steel plate 15 for forming the bolt holes, and the molded container 13 are cast in the metal-based composite material 17 in the steel container 14 is formed. And
After cooling, the steel container 14 is taken out of the ingot.
Here, aluminum alloy is selected as the base material,
This is because the melting temperature of the aluminum alloy is low, and at this temperature, the molding container 13 made of sodium chloride does not melt. Further, the thermal conductivity of the aluminum alloy is relatively high, and the aluminum alloy is excellent in heat dissipation.

【0029】〔図5に示す工程〕鋼製容器14から絶縁
基板5、ボルト穴形成用の鋼板15、成形容器13と共
に金属基複合材料17を取り出す。 〔図6に示す工程〕金属基複合材料17から不要なアル
ミニウム合金を除去するとともに、成形容器13を水洗
除去する。成形容器13は、上述したように塩化ナトリ
ウムで形成されており、水に対して易溶解性の特性を有
するため、上記水洗によって完全に除去される。
[Step shown in FIG. 5] The metal base composite material 17 is taken out of the steel container 14 together with the insulating substrate 5, the steel plate 15 for forming bolt holes, and the forming container 13. [Step shown in FIG. 6] Unnecessary aluminum alloy is removed from the metal-based composite material 17, and the molded container 13 is washed and removed. The molding container 13 is formed of sodium chloride as described above, and has a property of being easily soluble in water, and thus is completely removed by the above-mentioned water washing.

【0030】この後、鋼板15にドリル等でボルト穴1
0を設けることによって、図2に示すようなフィン11
が一体形成された放熱板1が完成する。このように、複
雑な形状に成形でき、かつ金属の溶融温度でも分解・溶
融せず、鋳造後に容易に除去できる塩化ナトリウムによ
って成形容器13を形成しているため、複雑な形状を有
する放熱板1を容易に形成することができる。
Thereafter, the bolt holes 1 are drilled in the steel plate 15 with a drill or the like.
0, the fins 11 as shown in FIG.
Is completed, thereby completing the heat sink 1. As described above, since the forming container 13 is formed of sodium chloride which can be formed into a complicated shape, does not decompose and melt even at the melting temperature of the metal, and can be easily removed after casting, the heat sink 1 having a complicated shape is formed. Can be easily formed.

【0031】また、塩化ナトリウムの粒度を小さくして
いるため、成形容器13の表面は滑らかであり、形成さ
れたフィンの表面も滑らかにすることができる。このた
め、フィンの表面を滑らかにするための仕上げ研磨加工
を行う必要をなくすことができる。 (他の実施形態)上記実施形態では、セラミックス分散
材として炭化珪素粉末16を用いたものを説明したが、
炭化珪素以外の高熱伝導、低熱膨張のものを用いてもよ
い。具体的には、炭化黒鉛、液晶ポリマ(例えば、KE
VLAR、KEVLAR29、KEVLAR49のよう
なポリベンチアゾール(PBZT)(なお、KEVLA
Rはポリ−P−フェニレンテレフタラミド(PPD−
T)から形成される高強度、低密度合成アラミド繊維に
対するデュポン社の登録商標である)、窒化珪素、アル
ミナ、窒化アルミニウム、ボロン、炭化ボロン、ボロン
/タングステン、炭化ボロン/タングステン、窒化ボロ
ン、ベリリウム、ベリリア、溶融シリカ、ムライト、ダ
イヤモンド、ガラス、立方晶窒化ボロン、ボロンシリケ
ート(ホウ化珪素)および酸化物、窒化物、炭化物、ホ
ウ化物、アルミ並びに珪酸アルミニウム(ムライト)お
よびこれらの組み合わせを用いることができる。
Further, since the particle size of sodium chloride is reduced, the surface of the molding container 13 is smooth, and the surface of the formed fin can be smooth. For this reason, it is possible to eliminate the necessity of performing a finish polishing process for smoothing the surface of the fin. (Other Embodiments) In the above embodiment, the one using silicon carbide powder 16 as the ceramic dispersion material was described.
A material having high thermal conductivity and low thermal expansion other than silicon carbide may be used. Specifically, graphite carbide, liquid crystal polymer (for example, KE
Polybenzazole (PBZT) such as VLAR, KEVLAR29, KEVLAR49 (note that KEVLA
R is poly-P-phenylene terephthalamide (PPD-
T) is a registered trademark of DuPont for high-strength, low-density synthetic aramid fibers formed from T)), silicon nitride, alumina, aluminum nitride, boron, boron carbide, boron / tungsten, boron / tungsten carbide, boron nitride, beryllium. , Beryllia, fused silica, mullite, diamond, glass, cubic boron nitride, boron silicate (silicon boride) and oxides, nitrides, carbides, borides, aluminum and aluminum silicate (mullite) and combinations thereof Can be.

【0032】また、セラミックス分散材の形態として
は、粉末の他、ウィスカ、繊維等を用いてもよい。上記
実施形態では、金属としてアルミニウム合金を用いた場
合を示したが、アルミニウム、マグネシウム、銅、亜鉛
及びこれらの合金等を用いてもよい。また、上記実施形
態では、塩化ナトリウムによって成形容器13を成形し
たが、金属溶湯の温度によって分解、溶融せず、鋳造後
において易溶解性、易崩壊性を有する材質のものであれ
ば他のものを用いてもよい。
As the form of the ceramic dispersion material, whiskers, fibers and the like may be used in addition to powder. In the above embodiment, the case where the aluminum alloy is used as the metal has been described, but aluminum, magnesium, copper, zinc, an alloy thereof, or the like may be used. In the above embodiment, the molding container 13 is molded with sodium chloride. However, any other material that does not decompose or melt depending on the temperature of the molten metal and has easy dissolving and disintegrating properties after casting is used. May be used.

【0033】さらに、ボルト穴形成用に鋼板15を用い
ているが、これは金属基複合材料17が加工しにくいた
めに用いているものであり、この他の金属や、水溶性
塩、金属粉末成形体、金属発砲体、金属繊維織物、金属
繊維不織布、炭素又はホウ素窒化物繊維、炭素又はホウ
素窒化物繊維の織物の不織布、炭素又はホウ素窒化粉末
成形体等の易加工性材を用いてもよい。
Further, the steel plate 15 is used for forming the bolt holes, but this is used because the metal matrix composite material 17 is difficult to work, and other metals, water-soluble salts, and metal powders are used. Molding, metal foam, metal fiber woven fabric, metal fiber non-woven fabric, carbon or boron nitride fiber, carbon or boron nitride fiber woven non-woven fabric, carbon or boro-nitride powder compact, etc. Good.

【0034】また、上記実施形態では、フィン11の断
面形状が楕円状のものを示したが、フィン11の形状は
これに限るものではなく、円形等の形状にしてもよい。
しかしながら、水の流速を妨げずに熱交換効率を高める
ためには、断面が楕円状や長円形状等にするのが好まし
い。上記実施形態では、絶縁基板5の表面にその焼結助
剤であるイットリウムを塗布するようにしているが、焼
結助剤であるイットリウムの添加量を増して焼結した絶
縁基板5を用いてもよい。また、焼結助剤としてイット
リウムを用いている例を示しているが、これに限らず例
えばカルシウム、リチウム、ランタン等およびこれらの
酸化物を用いることも可能である。
In the above-described embodiment, the fin 11 has an elliptical cross section. However, the shape of the fin 11 is not limited to this, and may be a circle or the like.
However, in order to increase the heat exchange efficiency without hindering the flow rate of water, it is preferable that the cross section be an elliptical shape, an elliptical shape, or the like. In the above embodiment, yttrium, which is a sintering aid, is applied to the surface of the insulating substrate 5, but the amount of yttrium, which is a sintering aid, is increased and the insulating substrate 5 is sintered. Is also good. Although an example using yttrium as a sintering aid is shown, the invention is not limited thereto, and for example, calcium, lithium, lanthanum, and oxides thereof can be used.

【0035】なお、上記実施形態では、高圧鋳造法によ
って粉状のセラミック分散材を用い絶縁基板5を備えた
放熱板1を形成しているが、粉状のセラミック分散材1
6を予め固形にしておく高圧鋳造用およびダイカスト法
によって放熱板1を形成するようにしても良い。
In the above embodiment, the radiator plate 1 provided with the insulating substrate 5 is formed by using a powdered ceramic dispersion material by a high-pressure casting method.
The heat radiating plate 1 may be formed by high-pressure casting and die casting in which 6 is previously solidified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態における放熱板1を適用し
たパワーモジュール2の模式的な断面図である。
FIG. 1 is a schematic sectional view of a power module 2 to which a heat sink 1 according to an embodiment of the present invention is applied.

【図2】図1における放熱板1の模式図である。FIG. 2 is a schematic view of a heat sink 1 in FIG.

【図3】放熱板1の製造工程を示す図である。FIG. 3 is a view showing a manufacturing process of the heat sink 1;

【図4】図3に続く放熱板1の製造工程を示す図であ
る。
FIG. 4 is a view illustrating a manufacturing process of the heat sink 1 subsequent to FIG. 3;

【図5】図4に続く放熱板1の製造工程を示す図であ
る。
FIG. 5 is a view illustrating a manufacturing process of the heat sink 1 subsequent to FIG. 4;

【図6】図5に続く放熱板1の製造工程を示す図であ
る。
FIG. 6 is a view illustrating a manufacturing process of the heat sink 1 subsequent to FIG. 5;

【符号の説明】[Explanation of symbols]

1…放熱板、2…パワーモジュール、3…IGBT、5
…絶縁基板、10…ネジ穴、11…フィン、13…成形
容器、14…鋼製容器、15…鋼板、16…炭化珪素、
17…金属基複合材料、18…金属膜。
DESCRIPTION OF SYMBOLS 1 ... Heat sink, 2 ... Power module, 3 ... IGBT, 5
... Insulating substrate, 10 ... Screw hole, 11 ... Fin, 13 ... Molded container, 14 ... Steel container, 15 ... Steel plate, 16 ... Silicon carbide,
17: metal matrix composite material, 18: metal film.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 23/36 H01L 23/36 D (72)発明者 山本 剛 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 北條 浩 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 西野 直久 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI H01L 23/36 H01L 23/36 D (72) Inventor Tsuyoshi Yamamoto 1-1-1, Showa-cho, Kariya-shi, Aichi Pref. 72) Inventor Hiroshi Hojo 41-Cho, Yokomichi, Nagakute-cho, Aichi-gun, Aichi Prefecture Inside Toyota Central Research Laboratory Co., Ltd. Inside Toyota Central Research Laboratory

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 一面側に電気素子(3、4)が配置され
る絶縁基板(5)と、該絶縁基板の他面側に配置される
金属基複合材(1)とを備えてなる金属基複合鋳造品の
製造方法であって、 型(14)内の所定の面に前記絶縁基板(5)を設置
し、前記型(14)内に前記金属基複合材(1)を形成
するための内部空間を形成する工程と、 前記型(14)内の内部空間に、セラミックス分散材
(16)を充填する工程と、 前記セラミックス分散材(16)の間隙に溶融金属を加
圧浸透させると共に該溶融金属を凝固させて、前記絶縁
基板(5)との間に前記金属の薄膜(18)を介在させ
て前記金属基複合材(1)を形成する工程と、 前記金属基複合材料を前記型(14)から取り出す工程
と、を備えたことを特徴とする金属基複合鋳造品の製造
方法。
1. A metal comprising: an insulating substrate (5) on one surface of which an electric element (3, 4) is disposed; and a metal matrix composite (1) disposed on the other surface of the insulating substrate. A method of manufacturing a base composite casting, comprising: placing said insulating substrate (5) on a predetermined surface in a mold (14); and forming said metal matrix composite (1) in said mold (14). Forming a space inside the mold; filling the space inside the mold (14) with a ceramic dispersion material (16); Solidifying the molten metal to form the metal-based composite material (1) with the metal thin film (18) interposed between the molten metal and the insulating substrate (5); Removing from the mold (14). Production method.
【請求項2】 前記金属基複合材(1)を形成する工程
では、前記加圧浸透時における加圧力を制御することに
よって、前記絶縁基板(5)と前記金属基複合材(1)
との間に介在させる前記金属の薄膜(18)の膜厚を制
御することを特徴とする請求項1に記載の金属基複合鋳
造品の製造方法。
2. In the step of forming the metal matrix composite (1), the insulating substrate (5) and the metal matrix composite (1) are controlled by controlling a pressing force during the pressurized infiltration.
The method for producing a metal-based composite casting according to claim 1, wherein the thickness of the metal thin film (18) interposed between the metal-based composite casting and the metal thin film (18) is controlled.
【請求項3】 前記絶縁基板(5)に焼結助剤を含ませ
ておき、前記金属基複合材料を形成する工程にて、前記
焼結助剤を前記溶融金属側に拡散させるようにすること
を特徴とする請求項1又は2に記載の金属基複合鋳造品
の製造方法。
3. A sintering aid is included in the insulating substrate (5), and the sintering aid is diffused toward the molten metal in the step of forming the metal-based composite material. The method for producing a metal-based composite casting according to claim 1 or 2, wherein:
【請求項4】 前記焼結助剤として、イットリウムを用
いることを特徴とする請求項3に記載の金属基複合鋳造
品の製造方法。
4. The method according to claim 3, wherein yttrium is used as the sintering aid.
【請求項5】 前記溶融金属としてアルミニウムを用い
ることを特徴とする請求項1乃至4のいずれか1つに記
載の金属基複合鋳造品の製造方法。
5. The method for producing a metal-based composite casting according to claim 1, wherein aluminum is used as the molten metal.
【請求項6】 一面側に電気素子(3、4)が配置さ
れる絶縁基板(5)と、該絶縁基板の他面側に配置され
る金属基複合材(1)とを備えてなる金属基複合鋳造品
であって、 前記絶縁基板と前記金属基複合材との間には、金属と焼
結助剤と含んだ化合物が介在していることを特徴とする
金属基複合鋳造品。
6. A metal comprising: an insulating substrate (5) on one side of which an electric element (3, 4) is disposed; and a metal matrix composite (1) disposed on the other side of the insulating substrate. A metal-based composite casting, wherein a compound containing a metal and a sintering aid is interposed between the insulating substrate and the metal-based composite.
JP10072690A 1997-05-28 1998-03-20 Metal-based composite casting, and its manufacture Pending JPH11269577A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10072690A JPH11269577A (en) 1998-03-20 1998-03-20 Metal-based composite casting, and its manufacture
US09/084,396 US6245442B1 (en) 1997-05-28 1998-05-27 Metal matrix composite casting and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10072690A JPH11269577A (en) 1998-03-20 1998-03-20 Metal-based composite casting, and its manufacture

Publications (1)

Publication Number Publication Date
JPH11269577A true JPH11269577A (en) 1999-10-05

Family

ID=13496627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10072690A Pending JPH11269577A (en) 1997-05-28 1998-03-20 Metal-based composite casting, and its manufacture

Country Status (1)

Country Link
JP (1) JPH11269577A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6485816B2 (en) 2000-01-31 2002-11-26 Ngk Insulators, Ltd. Laminated radiation member, power semiconductor apparatus, and method for producing the same
JP2008053759A (en) * 2000-08-09 2008-03-06 Mitsubishi Materials Corp Power module and power module with heat sink
JP2008172197A (en) * 2007-10-22 2008-07-24 Dowa Holdings Co Ltd Combined member of aluminum-ceramics
US7487585B2 (en) 2000-09-04 2009-02-10 Dowa Metaltech Co., Ltd. Method of manufacturing a metal-ceramic circuit board
JP2016048789A (en) * 2015-11-05 2016-04-07 Dowaホールディングス株式会社 Manufacturing method of aluminum-ceramic joined body
JP2021034710A (en) * 2019-08-14 2021-03-01 朋程科技股▲ふん▼有限公司 Packaging structure for power device
CN112447614A (en) * 2019-08-30 2021-03-05 朋程科技股份有限公司 Power device packaging structure

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6485816B2 (en) 2000-01-31 2002-11-26 Ngk Insulators, Ltd. Laminated radiation member, power semiconductor apparatus, and method for producing the same
US7170186B2 (en) 2000-01-31 2007-01-30 Ngk Insulators, Ltd. Laminated radiation member, power semiconductor apparatus, and method for producing the same
JP2008053759A (en) * 2000-08-09 2008-03-06 Mitsubishi Materials Corp Power module and power module with heat sink
US7487585B2 (en) 2000-09-04 2009-02-10 Dowa Metaltech Co., Ltd. Method of manufacturing a metal-ceramic circuit board
JP2008172197A (en) * 2007-10-22 2008-07-24 Dowa Holdings Co Ltd Combined member of aluminum-ceramics
JP2016048789A (en) * 2015-11-05 2016-04-07 Dowaホールディングス株式会社 Manufacturing method of aluminum-ceramic joined body
JP2021034710A (en) * 2019-08-14 2021-03-01 朋程科技股▲ふん▼有限公司 Packaging structure for power device
JP2022062235A (en) * 2019-08-14 2022-04-19 朋程科技股▲ふん▼有限公司 Package structure for power devices
CN112447614A (en) * 2019-08-30 2021-03-05 朋程科技股份有限公司 Power device packaging structure

Similar Documents

Publication Publication Date Title
US6245442B1 (en) Metal matrix composite casting and manufacturing method thereof
US5570502A (en) Fabricating metal matrix composites containing electrical insulators
US5616421A (en) Metal matrix composites containing electrical insulators
JP2000077584A (en) Metal matrix composite body
US6473303B2 (en) Cooling device for a high-power semiconductor module
US5775403A (en) Incorporating partially sintered preforms in metal matrix composites
US20120063071A1 (en) Machinable metal/diamond metal matrix composite compound structure and method of making same
JP2000281468A (en) Silicon carbide complex, its production and radiator article uisng the same
EP0538457A1 (en) Fabrication of metal matrix composites by vacuum die casting
US20090255660A1 (en) High Thermal Conductivity Heat Sinks With Z-Axis Inserts
JP2000336438A (en) Metal-ceramics composite material and its manufacture
US6003221A (en) Metal matrix composites containing electrical insulators
JP2007500450A (en) Composite materials and electrical circuits or modules
JPH11269577A (en) Metal-based composite casting, and its manufacture
JP2002066724A (en) Compound material and manufacturing method thereof
JP2002237556A (en) Power semiconductor device
JP3496816B2 (en) Metal-ceramic composites and heat dissipating parts using them
WO2002045161A1 (en) Integral-type ceramic circuit board and method of producing same
JP3548991B2 (en) Heat dissipating substrate and manufacturing method thereof
JP3812321B2 (en) Heat sink and manufacturing method thereof
JP3449683B2 (en) Ceramic circuit board and method of manufacturing the same
JP4067165B2 (en) Composite and heat sink using the same
JP2004022964A (en) Al-SiC COMPOSITE BODY, HEAT SINK COMPONENT USING THE SAME, AND SEMICONDUCTOR MODULE DEVICE
JP3837680B2 (en) Mold for metal-ceramic composite substrate manufacturing
JP2000277953A (en) Ceramic circuit board