WO2019098326A1 - 第1保護膜付き半導体チップ、第1保護膜付き半導体チップの製造方法、及び半導体チップ・第1保護膜積層体の評価方法 - Google Patents

第1保護膜付き半導体チップ、第1保護膜付き半導体チップの製造方法、及び半導体チップ・第1保護膜積層体の評価方法 Download PDF

Info

Publication number
WO2019098326A1
WO2019098326A1 PCT/JP2018/042485 JP2018042485W WO2019098326A1 WO 2019098326 A1 WO2019098326 A1 WO 2019098326A1 JP 2018042485 W JP2018042485 W JP 2018042485W WO 2019098326 A1 WO2019098326 A1 WO 2019098326A1
Authority
WO
WIPO (PCT)
Prior art keywords
protective film
semiconductor chip
bump
residue
forming
Prior art date
Application number
PCT/JP2018/042485
Other languages
English (en)
French (fr)
Inventor
明徳 佐藤
圭亮 四宮
沙也香 坂東
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to CN201880072997.8A priority Critical patent/CN111344850A/zh
Priority to KR1020207013181A priority patent/KR102594248B1/ko
Priority to JP2019554310A priority patent/JP7218296B2/ja
Publication of WO2019098326A1 publication Critical patent/WO2019098326A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/227Measuring photoelectric effect, e.g. photoelectron emission microscopy [PEEM]
    • G01N23/2273Measuring photoelectron spectrum, e.g. electron spectroscopy for chemical analysis [ESCA] or X-ray photoelectron spectroscopy [XPS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/6834Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to protect an active side of a device or wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods

Definitions

  • the present invention relates to a semiconductor chip with a first protective film, a method of manufacturing a semiconductor chip with a first protective film, and a method of evaluating a semiconductor chip / first protective film laminate.
  • a convex electrode (hereinafter referred to as a semiconductor chip) made of eutectic solder, high temperature solder, gold etc.
  • a semiconductor chip made of eutectic solder, high temperature solder, gold etc.
  • these bumps are made to face and contact corresponding terminal portions on the chip mounting substrate by the so-called face-down method, and melting / diffusion A flip chip mounting method to bond has been employed.
  • the semiconductor chip used in this mounting method is, for example, a semiconductor wafer having bumps formed on the circuit surface, and the surface on the opposite side to the circuit surface (in other words, the bump formation surface) is ground or the semiconductor wafer is diced. It is obtained by fragmenting.
  • a curable resin film is attached to the bump formed surface, and this film is cured to form the bump formed surface. Form a protective film.
  • the curable resin film is usually attached to the bump formation surface of the semiconductor wafer in a softened state by heating. By doing this, the upper portion including the top of the bump penetrates the curable resin film and protrudes from the curable resin film.
  • the curable resin film spreads between the bumps so as to cover the bumps of the semiconductor wafer and adheres to the bump formation surface, and covers the surface of the bumps, particularly the surface near the bump formation surface.
  • the curable resin film is further cured to cover the bump formation surface of the semiconductor wafer and the surface of the vicinity of the bump formation surface of the bump, to form a protective film for protecting these regions.
  • the semiconductor wafer is singulated into semiconductor chips, and finally, a semiconductor chip provided with a protective film on the bump formation surface (sometimes referred to as “semiconductor chip with protective film” in the present specification) Become.
  • Such a semiconductor chip with a protective film is mounted on a substrate to be a semiconductor package, and the semiconductor package is used to form a target semiconductor device.
  • the semiconductor package and the semiconductor device it is necessary that the electrical connection between the bump of the semiconductor chip with a protective film and the circuit on the substrate is not inhibited.
  • the curable resin film is not appropriately attached to the bump formation surface of the semiconductor wafer, the protrusion of the bump from the curable resin film may be insufficient, or the curable resin film may be formed on the top of the bump. Some will survive.
  • the curable resin film remaining on the top of the bumps is cured as in the case of the curable resin film in the other regions, and a cured product having a composition similar to that of the protective film (herein, It may be called "protective film residue".
  • a cured product having a composition similar to that of the protective film herein, It may be called "protective film residue”.
  • the top of the bump is an electrical connection area between the bump and the circuit on the substrate, the bump on the semiconductor chip with the protective film, and the circuit on the substrate, when the amount of protective film residue is large. , The electrical connection of will be blocked. As a result, the reliability of the semiconductor package is reduced and the semiconductor device does not function properly. That is, at the stage before mounting the semiconductor chip with a protective film on the substrate, at the top of the bump of the semiconductor chip with a protective film, there is no protective film residue or the amount of protective film residue is small. Is required.
  • Patent Document 1 discloses a method of using a curable resin film (adhesive / adhesive layer) containing an agent, a photoreactive monomer, and a photoinitiator.
  • a semiconductor chip with a protective film capable of forming a semiconductor package having sufficient reliability, in which residual protective film residue is suppressed at the top of a bump, and a method of manufacturing the semiconductor chip with a protective film
  • An object of the present invention is to provide an evaluation method capable of evaluating with high accuracy whether or not the semiconductor chip with a protective film.
  • the present invention comprises a semiconductor chip and a first protective film formed on the surface of the semiconductor chip having a bump, and the top of the bump is analyzed by X-ray photoelectron spectroscopy, carbon, A semiconductor chip with a first protective film, wherein the ratio of the concentration of tin to the total concentration of oxygen, silicon and tin is 5% or more.
  • the present invention is a method for producing the semiconductor chip with a first protective film, which comprises the steps of attaching a curable resin film to the surface of the semiconductor wafer having bumps, and curing the curable resin film after attachment. Forming a first protective film, and dividing the semiconductor wafer to obtain a semiconductor chip, and attaching the curable resin film, the tin concentration After the step of causing the top of the bump to protrude from the curable resin film so that the percentage is 5% or more, or after attaching the curable resin film, the percentage of the tin concentration is 5 There is provided a method of manufacturing a semiconductor chip with a first protective film, which comprises the step of reducing the amount of residue on the bumps so as to be at least%.
  • a method of evaluating a semiconductor chip / first protective film laminate comprising: a semiconductor chip; and a first protective film formed on a surface of the semiconductor chip having a bump.
  • the top of the bump in the chip / first protective film stack is analyzed by X-ray photoelectron spectroscopy to determine the ratio of the concentration of tin to the total concentration of carbon, oxygen, silicon and tin, and the concentration of tin If the percentage of is 5% or more, it is determined that the semiconductor chip / first protective film laminate is a target semiconductor chip with a first protective film, and the ratio of the concentration of tin is less than 5%.
  • an evaluation method of the semiconductor chip / first protective film laminate is provided, which determines that the semiconductor chip / first protective film laminate is not a target semiconductor chip with a first protective film.
  • the semiconductor chip with a first protective film of the present invention By using the semiconductor chip with a first protective film of the present invention, a semiconductor package having sufficient reliability can be configured.
  • the method for manufacturing a semiconductor chip with a first protective film of the present invention the above-described semiconductor chip with a first protective film can be manufactured.
  • the evaluation method of the semiconductor chip / first protective film laminate of the present invention it is possible to accurately determine whether the semiconductor chip / first protective film laminate is the above-described semiconductor chip with a first protective film. It can be evaluated.
  • FIG. 7 is an enlarged cross sectional view for schematically illustrating another example of the step of reducing the amount of residue on bumps in the method of manufacturing a semiconductor chip with a first protective film of the present invention.
  • FIG. 14 is an enlarged cross sectional view for schematically illustrating still another example of the step of reducing the amount of residue on bumps in the method of manufacturing a semiconductor chip with a first protective film of the present invention.
  • FIG. 14 is an enlarged cross sectional view for schematically illustrating still another example of the step of reducing the amount of residue on bumps in the method of manufacturing a semiconductor chip with a first protective film of the present invention.
  • it is a top view for explaining the arrangement position on a dicing tape of the semiconductor chip and the 1st protective film layered product which is the object which does XPS analysis about the top of a bump.
  • the semiconductor chip with a first protective film of the present invention is a semiconductor chip, and a surface having bumps of the semiconductor chip (sometimes referred to as a “bump forming surface” in the present specification) And the top of the bump is analyzed by X-ray Photoelectron Spectroscopy (sometimes referred to herein as "XPS").
  • XPS X-ray Photoelectron Spectroscopy
  • the ratio of tin concentration to the total concentration of carbon, oxygen, silicon and tin (sometimes referred to herein simply as "proportion of tin concentration”) is 5% or more.
  • a tin (Sn) signal is usually detected. This is because the bump contains tin as its constituent material.
  • the bump does not contain an organic compound as its constituent material. Therefore, when the top of the bump is analyzed by XPS, the carbon (C) signal is detected because there is an organic compound which is not originally present in the analysis region (that is, the top of the bump). It is. This organic compound originates in the curable resin film used at the time of formation of the first protective film.
  • the curable resin film residue contains the organic compound described above.
  • a signal of carbon (C) is detected when the top of the bump is analyzed by XPS.
  • signals of oxygen (O) and silicon (Si) may be detected in addition to carbon (C). This is because a film containing a non-resin component such as silica is generally used as the first protective film.
  • the ratio of the concentration of the tin at the top of the bump is 5% or more. This means that the total amount of carbon, oxygen and silicon is below a certain level with respect to the amount of tin at the top of the bump. That is, in the semiconductor chip with the first protective film, the first protective film residue does not exist or the amount of the first protective film residue is small at the top of the bump, and the residual of the first protective film residue is suppressed It is done. Thus, when the semiconductor chip with the first protective film is used by suppressing the remaining of the first protective film residue at the top of the bump, the bonding strength between the bump and the substrate is obtained. Becomes higher.
  • the degree of electrical connection in the joined body of the semiconductor chip and the substrate is high, and the conductivity is excellent.
  • a semiconductor package having sufficient reliability can be configured, and a semiconductor device having excellent characteristics can be configured.
  • the amount of the first protective film residue is small at the top of the bump means that the first protective film remains slightly at the top of the bump unless otherwise specified. However, this means that the remaining amount is such that it does not prevent the electrical connection between the semiconductor chip and the wiring substrate when the semiconductor chip having the bumps is flip-chip mounted on the wiring substrate. Moreover, the surface on the opposite side to the bump formation surface of a semiconductor wafer may be called a "back surface.”
  • the first protection is in the concave portion of the bump surface. It is possible that membrane residue has penetrated.
  • the first protective film residue in such a recess is difficult to confirm and quantify by visual methods, and is particularly strong when the amount of the first protective film residue is small.
  • the semiconductor chip with a first protective film of the present invention the degree of remaining of the first protective film residue at the top of the bump is precisely specified based on the analysis result by XPS. Therefore, the semiconductor chip with a first protective film of the present invention is extremely reliable in terms of the amount of the first protective film residue.
  • the ratio of the concentration of the tin at the top of the bump ([concentration of tin (atomic%)] / [total concentration of carbon, oxygen, silicon and tin (atomic%)] ⁇ 100) Is 5% or more, preferably 5.4% or more, more preferably 5.8% or more, and still more preferably 6.2% or more, for example, 7.5% or more 9% or more, 10.5% or more, and 12% or more.
  • the ratio of the concentration of the tin is the lower limit value or more, the residual of the first protective film residue is further suppressed at the top of the bump, so that the semiconductor chip with a first protective film of the present invention The effect is more pronounced, for example, the reliability of the semiconductor package is higher.
  • the upper limit of the ratio of the concentration of the tin at the top of the bump is not particularly limited as long as it is 100% or less.
  • the ratio of the concentration of tin may be 25% or less and 20% or less, and such a semiconductor chip with a first protective film can be manufactured more easily.
  • the ratio of the concentration of tin at the top of the bump can be appropriately adjusted so as to fall within a range set by combining any of the lower limit and the upper limit described above.
  • the ratio of the concentration of tin is preferably 5 to 25%, more preferably 5.4 to 25%, still more preferably 5.8 to 25%, particularly preferably 6.2 to 25. %, And may be any of 7.5 to 25%, 9 to 25%, 10.5 to 25%, 12 to 25%, and the like.
  • the tin concentration ratio is preferably 5 to 20%, more preferably 5.4 to 20%, still more preferably 5.8 to 20%, particularly preferably 6.2 to 20. %, And may be any of 7.5 to 20%, 9 to 20%, 10.5 to 20%, 12 to 20%, and so on.
  • the top of the bump where the XPS analysis is performed means the upper area including the top of the bump.
  • the top of the head includes, for example, the top of the bump when the bump is viewed from above and viewed from above, and preferably has a diameter of 10 to 30 ⁇ m, more preferably 15 to 25 ⁇ m, for example 20 ⁇ m An area recognized as a circular area may be mentioned.
  • XPS analysis can be performed with higher accuracy.
  • the diameter is equal to or less than the upper limit value
  • XPS analysis can be performed with higher efficiency.
  • the surface of the upper region of the bump is a curved surface, the highest position from the bump formation surface of the semiconductor chip can be selected as the top of the bump.
  • the surface of the upper region of the bump is a plane, for example, the center (center of gravity) of the plane can be selected as the top of the bump.
  • the shape of the bumps will be described in detail later.
  • the analysis conditions in XPS are not particularly limited. However, normally, the X-ray irradiation angle is preferably 15 to 90 °, the X-ray beam diameter is preferably 9 to 100 ⁇ m, and the X-ray output power is 1 to 100 W. preferable. Under such conditions, analysis can be performed with higher accuracy.
  • the beam diameter of the X-rays can be the same size as the top of the bump to be subjected to XPS analysis.
  • FIG. 1 is an enlarged cross-sectional view schematically showing an embodiment of a semiconductor chip with a first protective film of the present invention. Note that the drawings used in the following description may be enlarged for convenience, in order to make the features of the present invention intelligible. Not necessarily.
  • the semiconductor chip 1 with a first protective film shown here includes a semiconductor chip 9 and a first protective film 13 formed on a surface (bump formation surface) 9 a having bumps of the semiconductor chip 9.
  • the first protective film 13 is in close contact with the bump forming surface 9a and covers the surface 91a of the bump 91, particularly the surface 91a in the vicinity of the bump forming surface 9a. Embed and protect these areas.
  • reference numeral 9 b denotes a surface (rear surface) opposite to the bump forming surface 9 a of the semiconductor chip 9.
  • the top portions 910 of the bumps 91 protrude through the first protective film 13. Furthermore, the top portion 910 of the bump 91 is free of the first protective film residue. Therefore, when the XPS analysis is performed on the top portion 910 of the bump 91, the ratio of the tin concentration is as high as 5% or more.
  • the bump 91 has a shape in which a part of the sphere is cut off by a plane, and the plane corresponding to the cut and exposed portion is in contact with the bump forming surface (circuit surface) 9 a of the semiconductor chip 9 It has become.
  • the shape of the bumps 91 can be said to be generally spherical.
  • the top portion 910 of the bump 91 is a curved surface although it is part of a spherical surface.
  • the height of the bumps 91 is not particularly limited, but is preferably 60 to 450 ⁇ m, more preferably 120 to 300 ⁇ m, and particularly preferably 180 to 240 ⁇ m.
  • the function of the bump 91 can be further improved.
  • the height of the bumps 91 is equal to or less than the upper limit value, the effect of suppressing the remaining of the first protective film residue in the top portion 910 of the bumps 91 becomes higher.
  • the height of the bump means the height at the portion (the top) of the bump which is at the highest position from the bump formation surface.
  • the width of the bumps 91 is not particularly limited, but is preferably 170 to 350 ⁇ m, more preferably 200 to 320 ⁇ m, and particularly preferably 230 to 290 ⁇ m.
  • the width of the bump 91 is equal to or more than the lower limit value, the function of the bump 91 can be further improved.
  • the width of the bump 91 is equal to or less than the upper limit value, the effect of suppressing the remaining of the first protective film residue in the top portion 910 of the bump 91 is further enhanced.
  • the “bump width” can be obtained by connecting two different points on the surface of the bump with a straight line when the bump is viewed from below in a direction perpendicular to the surface on which the bump is formed. It means the maximum value of the line segment.
  • the distance between adjacent bumps 91 is not particularly limited, but is preferably 80 to 1000 ⁇ m, more preferably 100 to 800 ⁇ m, and particularly preferably 120 to 550 ⁇ m.
  • the function of the bump 91 can be further improved by the distance being equal to or more than the lower limit value.
  • the distance between adjacent bumps means the distance between the central portions of adjacent bumps, and may be referred to as "bump pitch”.
  • the semiconductor chip with a first protective film is shown for the one in which the first protective film residue is not present on the top of the bump, the semiconductor chip with a first protective film of the present invention is the top of the bump.
  • a small amount of the first protective film residue may be present. The amount of the first protective film residue at this time may be small as described above.
  • FIG. 2 is an enlarged sectional view schematically showing an embodiment of such a semiconductor chip with a first protective film of the present invention.
  • the semiconductor chip with a first protective film 2 shown here is the semiconductor chip with a first protective film 1 shown in FIG. 1 except that a small amount of the first protective film residue 131 is present on the top portion 910 of the bump 91. Is the same as
  • the top portion 910 of the bump 91 penetrates the first protective film 13 and protrudes.
  • the amount of the first protective film residue 131 is small at the top portion 910 of the bump 91, and the residual of the first protective film residue 131 is suppressed. Therefore, when the XPS analysis is performed on the top portion 910 of the bump 91, the ratio of the tin concentration is as high as 5% or more.
  • the first protective film residue 131 is present in a narrow region of the surface 91 a of the bump 91, with the top of the top portion 910 of the bump 91 substantially centered on the top.
  • the case is shown.
  • the region where the first protective film residue 131 is present is not limited to this, and may not be centered on the top of the bump 91 or in the vicinity thereof, for example.
  • “the top of the bump (the top in the top of the bump)” means a portion of the surface of the bump that is the highest in height from the surface on which the semiconductor chip is formed.
  • the shape of the bumps is not limited thereto.
  • FIG. 3 is an enlarged cross-sectional view schematically showing an embodiment of the semiconductor chip with a first protective film of the present invention in which the shape of the bumps is not approximately spherical.
  • the semiconductor chip 3 with a first protective film shown here is the same as the semiconductor chip 1 with a first protective film shown in FIG. 1 except that the semiconductor chip 3 with the first protective film is provided with bumps 92 instead of the bumps 91 (that is, the shapes of the bumps are different). is there. More specifically, in the bumps 91 shown in FIG. 1, the bumps 92 are such that the tops 910 are not curved but flat. That is, the tops 920 of the bumps 92 are flat.
  • reference numeral 92 a indicates the surface of the area of the bump 92 other than the crown portion 920.
  • the surface of the top portion 920 of the bump 92 may or may not be parallel to the bump formation surface 9 a of the semiconductor chip 9. And if not parallel, the orientation of the surface of the crown 920 is not particularly limited.
  • Top portions 920 of the bumps 92 protrude through the first protective film 13. Furthermore, the top portion 920 of the bump 92 is free of the first protective film residue. Therefore, when XPS analysis is performed on the top of the bump 92 of the bump 92, the ratio of the concentration of tin is as high as 5% or more.
  • the width of the bumps 92 and the distance between the adjacent bumps 92 are the same as in the case of the bumps 91 shown in FIG.
  • the height of the bumps 92 is not particularly limited, but is preferably 40 to 390 ⁇ m, more preferably 70 to 250 ⁇ m, and particularly preferably 130 to 190 ⁇ m.
  • the function of the bump 92 can be further improved.
  • the height of the bumps 92 is equal to or less than the upper limit value, the effect of suppressing the remaining of the first protective film residue in the top portion 920 of the bumps 92 becomes higher.
  • the semiconductor chip with a first protective film is shown for the one in which the first protective film residue is not present on the top of the bump, the semiconductor chip with a first protective film of the present invention is the top of the bump.
  • a small amount of the first protective film residue may be present. The amount of the first protective film residue at this time may be small as described above.
  • FIG. 4 is an enlarged sectional view schematically showing an embodiment in the case where a small amount of the first protective film residue is present at the top of the bump in the semiconductor chip with the first protective film of the present invention.
  • the semiconductor chip 4 with a first protective film shown here is the semiconductor chip 3 with a first protective film shown in FIG. 3 except that a small amount of the first protective film residue 131 is present on the top portion 920 of the bump 92. Is the same as
  • the top portion 920 of the bump 92 penetrates the first protective film 13 and protrudes.
  • the amount of the first protective film residue 131 is small at the top portion 920 of the bump 92, and the remaining of the first protective film residue 131 is suppressed. Therefore, when XPS analysis is performed on the top of the bump 92 of the bump 92, the ratio of the concentration of tin is as high as 5% or more.
  • the present region in the case where the first protective film residue 131 is present is not limited to this, and for example, it may not be present from the approximate center of the bump 92 to the surrounding region.
  • the semiconductor chip with a first protective film of the present invention is not limited to those shown in FIGS. 1 to 4 and, for example, some of the semiconductor chips shown in FIGS. 1 to 4 can be used as long as the effects of the present invention are not impaired.
  • the configuration of may be changed, deleted or added.
  • the semiconductor chip with a first protective film shown in FIGS. 1 to 4 has nothing on the back surface 9 b of the semiconductor chip 9 and the back surface 9 b is an exposed surface.
  • the semiconductor chip with a film may be provided with any layer (film) such as a protective film (sometimes referred to as a “second protective film” in the present specification) on the back surface of the semiconductor wafer.
  • the second protective film is a crack in the semiconductor chip when the semiconductor wafer is diced to produce the above-described semiconductor chip, or while the semiconductor chip obtained by the dicing is packaged to manufacture a semiconductor device.
  • the second protective film is usually a resin film.
  • the semiconductor chip is not particularly limited as long as it has bumps on a bump formation surface (a surface provided with a circuit or also referred to as a circuit surface) and can be used for flip chip mounting.
  • examples of the metal that the bump contains as its constituent material include tin (Sn), and as the other metals, for example, gold (Au), silver (Ag), copper (Cu) Etc.
  • the constituent material of the bumps may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the shape, size, and arrangement of the bumps are as described above.
  • the constituent materials and sizes of the portions of the semiconductor chip excluding the bumps may be the same as known ones.
  • the thickness of the portion of the semiconductor chip excluding the bumps is preferably 50 to 780 ⁇ m, and more preferably 150 to 400 ⁇ m.
  • the first protective film adheres to the bump forming surface of the semiconductor chip and covers the surface of the bump, particularly the surface near the bump forming surface of the semiconductor chip to embed the bump. There is. As described above, the first protective film covers the bump formation surface and the surface of the vicinity of the bump formation surface of the bump in the semiconductor chip to protect these regions. There may be a void part between the surface of the vicinity of the bump formation surface of the bump and the first protective film.
  • the first protective film is usually a resin film containing a resin component, and can be formed using a curable resin film for forming the first protective film by curing.
  • a curable resin film can be formed using the composition for curable resin film formation containing the constituent material.
  • the curable resin film-forming composition can be applied to the formation target surface of the curable resin film, and dried as needed, to form a curable resin film at a target location.
  • the ratio of the contents of the components which do not vaporize at normal temperature in the composition for forming a curable resin film is usually the same as the ratio of the contents of the components of the curable resin film.
  • normal temperature means a temperature which is not particularly cooled or heated, ie, a normal temperature, and includes, for example, a temperature of 15 to 25 ° C. and the like.
  • the components corresponding to the resin in the composition for forming a thermosetting resin film and the composition for forming an energy ray-curable resin film described later are all included in the resin component.
  • the first protective film can be formed by curing the curable resin film after forming the curable resin film using the curable resin film-forming composition.
  • the coating of the curable resin film-forming composition may be performed by a known method.
  • the coating method include various coaters such as an air knife coater, blade coater, bar coater, gravure coater, roll coater, roll knife coater, curtain coater, die coater, knife coater, screen coater, Meyer bar coater, kiss coater, etc.
  • various coaters such as an air knife coater, blade coater, bar coater, gravure coater, roll coater, roll knife coater, curtain coater, die coater, knife coater, screen coater, Meyer bar coater, kiss coater, etc.
  • the drying conditions of the composition for forming a curable resin film are not particularly limited, and it is preferable to appropriately adjust so that the curable component in the composition does not cause curing other than the purpose.
  • the composition for curable resin film formation contains the solvent mentioned later, it is preferable to make it heat-dry.
  • the composition for forming a curable resin film containing a solvent is preferably dried, for example, at 70 to 130 ° C. for 10 seconds to 5 minutes.
  • the first protective film may be only one layer (single layer) or may be a plurality of layers of two or more layers, and in the case of a plurality of layers, the plurality of layers may be the same or different from each other, and a combination of these layers Is not particularly limited.
  • a plurality of layers may be the same as or different from each other” means “all layers may be the same or all layers. May mean that only some of the layers may be the same, and further, “a plurality of layers are different from each other” means “at least one of the constituent material and thickness of each layer is different from each other” "Means.
  • the thickness of the first protective film is preferably 1 to 100 ⁇ m, more preferably 5 to 75 ⁇ m, and particularly preferably 5 to 50 ⁇ m.
  • the thickness of the first protective film is not less than the lower limit value, the protective ability of the first protective film becomes higher.
  • the thickness of the first protective film is equal to or less than the upper limit value, the effect of suppressing the remaining of the first protective film residue becomes higher at the top of the bump.
  • the thickness of the first protective film means the thickness of the entire first protective film, and for example, the thickness of the first protective film composed of a plurality of layers means all of the components of the first protective film. Means the total thickness of the layers.
  • the first protective film may be either a cured product of a thermosetting resin film or a cured product of an energy ray curable resin film. That is, the first protective film may be formed using any of the thermosetting resin film forming composition and the energy ray curable resin film forming composition.
  • the term "energy beam” means one having an energy quantum among electromagnetic waves or charged particle beams, and examples thereof include ultraviolet rays, radiation, electron beams and the like.
  • the ultraviolet light can be irradiated, for example, by using a high pressure mercury lamp, a fusion lamp, a xenon lamp, a black light or an LED lamp as an ultraviolet light source.
  • the electron beam can irradiate what was generated by the electron beam accelerator or the like.
  • “energy ray curing property” means the property of curing by irradiation with energy rays
  • non energy ray curing property means the property of not curing even by irradiation of energy rays. .
  • composition for forming thermosetting resin film for example, a composition for forming a thermosetting resin film (III) containing a polymer component (A) and a thermosetting component (B) (in the present specification, There may be mentioned simply as "the composition for forming a resin layer (III)" and the like.
  • the polymer component (A) is a polymer compound for imparting film forming property, flexibility and the like to a thermosetting resin film, and is a component which can be regarded as formed by polymerization reaction of a polymerizable compound. In the present specification, the polymerization reaction also includes a polycondensation reaction.
  • the polymer component (A) contained in the resin layer-forming composition (III) and the thermosetting resin film may be only one type, or two or more types, and in the case of two or more types, a combination thereof and The ratio can be selected arbitrarily.
  • polymer component (A) polyvinyl acetal, acrylic resin (resin which has a (meth) acryloyl group) etc. are mentioned, for example.
  • (meth) acryloyl group is a concept including both “acryloyl group” and “methacryloyl group”.
  • (meth) acrylic acid is a concept including both “acrylic acid” and “methacrylic acid”, “(meth) acrylic acid”.
  • (acrylate” is a concept encompassing both "acrylate” and "methacrylate”.
  • polyvinyl acetal in a polymer component (A) a well-known thing is mentioned.
  • preferable polyvinyl acetals include, for example, polyvinyl formal, polyvinyl butyral and the like, and polyvinyl butyral is more preferable.
  • polyvinyl butyral those having structural units represented by the following formulas (i) -1, (i) -2 and (i) -3 can be mentioned.
  • the weight average molecular weight (Mw) of the polyvinyl acetal is preferably 100,000 or less, more preferably 70,000 or less, and particularly preferably 40,000 or less. When the weight average molecular weight of the polyvinyl acetal is in such a range, the effect of suppressing the remaining of the first protective film residue becomes higher at the top of the bump.
  • the lower limit value of the weight average molecular weight of the polyvinyl acetal is not particularly limited. However, in terms of further improving the strength and heat resistance of the first protective film, the weight average molecular weight of the polyvinyl acetal is preferably 5000 or more, and more preferably 8000 or more.
  • the weight average molecular weight of the polyvinyl acetal can be appropriately adjusted so as to fall within the range set by arbitrarily combining any of the lower limit value and the upper limit value described above.
  • the weight average molecular weight of the polyvinyl acetal is preferably 5,000 to 100,000, more preferably 5,000 to 70000, and particularly preferably 5,000 to 40,000.
  • the weight average molecular weight of the polyvinyl acetal is preferably 8,000 to 100,000, more preferably 8,000 to 70,000, and particularly preferably 8,000 to 40,000.
  • the glass transition temperature (Tg) of the polyvinyl acetal is preferably 40 to 80 ° C., and more preferably 50 to 70 ° C. When the Tg of the polyvinyl acetal is in such a range, the effect of suppressing the remaining of the first protective film residue becomes higher at the top of the bump.
  • the ratio of three or more types of monomers constituting the polyvinyl acetal can be arbitrarily selected.
  • acrylic resin in the polymer component (A) examples include known acrylic polymers.
  • the weight average molecular weight (Mw) of the acrylic resin is preferably 300000 or less, more preferably 150,000 or less, and particularly preferably 100,000 or less. When the weight average molecular weight of the acrylic resin is in such a range, the effect of suppressing the remaining of the first protective film residue becomes higher at the top of the bump.
  • the lower limit value of the weight average molecular weight of the acrylic resin is not particularly limited. However, from the viewpoint of further improving the strength and heat resistance of the first protective film, the weight average molecular weight of the acrylic resin is preferably 10000 or more, and more preferably 30000 or more.
  • the weight average molecular weight of the acrylic resin can be appropriately adjusted so as to fall within a range set by arbitrarily combining any of the lower limit value and the upper limit value described above.
  • the weight average molecular weight of the acrylic resin is preferably 10,000 to 300,000, more preferably 10,000 to 150,000, and particularly preferably 10,000 to 100,000.
  • the weight average molecular weight of the acrylic resin is preferably 30,000 to 300,000, more preferably 30,000 to 150,000, and particularly preferably 30,000 to 100,000.
  • the glass transition temperature (Tg) of the acrylic resin is preferably ⁇ 50 to 70 ° C., and more preferably ⁇ 30 to 60 ° C.
  • Tg of the acrylic resin is in such a range, the effect of suppressing the remaining of the first protective film residue becomes higher at the top of the bump.
  • the monomer constituting the acrylic resin may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the acrylic resin for example, a polymer of one or more kinds of (meth) acrylic acid esters; (Meth) acrylic acid, itaconic acid, vinyl acetate, acrylonitrile, styrene and copolymers of two or more monomers selected from N-methylol acrylamide and the like; 1 type or 2 or more types of (meth) acrylic acid ester, 1 type or 2 or more types of monomers selected from (meth) acrylic acid, itaconic acid, vinyl acetate, acrylonitrile, styrene, N-methylol acrylamide and the like, And the like.
  • Examples of the (meth) acrylic acid ester constituting the acrylic resin include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, ) N-butyl acrylate, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, (meth) acrylic Heptyl acid, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, n-octyl (meth) acrylate, n-nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate , (Meth) acrylic acid undecyl
  • the acrylic resin may have a functional group capable of binding to other compounds such as a vinyl group, a (meth) acryloyl group, an amino group, a hydroxyl group, a carboxy group and an isocyanate group.
  • the functional group of the acrylic resin may be bonded to another compound through a crosslinking agent (F) described later, or may be directly bonded to another compound without the crosslinking agent (F) .
  • F crosslinking agent
  • the ratio of the content of the polymer component (A) to the total content of all the components other than the solvent that is, the content of the polymer component (A) of the thermosetting resin film
  • the amount of (5) is preferably 5 to 25% by mass, and more preferably 5 to 15% by mass, regardless of the type of the polymer component (A).
  • thermosetting component (B) is a component for curing the thermosetting resin film using heat as a trigger for the reaction to form a hard first protective film.
  • the thermosetting component (B) contained in the resin layer-forming composition (III) and the thermosetting resin film may be only one type, or two or more types, and in the case of two or more types, a combination thereof And the ratio can be selected arbitrarily.
  • thermosetting component (B) is preferably an epoxy-based thermosetting resin.
  • the epoxy-based thermosetting resin comprises an epoxy resin (B1) and a thermosetting agent (B2).
  • the epoxy-based thermosetting resin contained in the composition (III) for forming a resin layer and the thermosetting resin film may be only one type, or two or more types, and in the case of two or more types, a combination thereof and The ratio can be selected arbitrarily.
  • Epoxy resin (B1) As an epoxy resin (B1), a well-known thing is mentioned, for example, a polyfunctional epoxy resin, a biphenyl compound, bisphenol A diglycidyl ether and its hydrogenated substance, an ortho cresol novolak epoxy resin, a dicyclopentadiene type epoxy resin, The bifunctional or more epoxy compound such as biphenyl type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenylene skeleton type epoxy resin, etc. may be mentioned.
  • the epoxy resin (B1) may be an epoxy resin having an unsaturated hydrocarbon group.
  • An epoxy resin having an unsaturated hydrocarbon group has higher compatibility with an acrylic resin than an epoxy resin having no unsaturated hydrocarbon group. Therefore, the reliability of the package obtained using the first protective film containing an epoxy resin having an unsaturated hydrocarbon group and an acrylic resin is improved.
  • an epoxy resin which has an unsaturated hydrocarbon group the compound formed by converting a part of epoxy group of polyfunctional epoxy resin into the group which has an unsaturated hydrocarbon group is mentioned, for example.
  • a compound can be obtained, for example, by addition reaction of (meth) acrylic acid or a derivative thereof to an epoxy group.
  • an epoxy resin which has an unsaturated hydrocarbon group the compound etc. which the group which has an unsaturated hydrocarbon group directly couple
  • the unsaturated hydrocarbon group is a polymerizable unsaturated group, and specific examples thereof include ethenyl group (vinyl group), 2-propenyl group (allyl group), (meth) acryloyl group, (meth) An acrylamide group etc. are mentioned and an acryloyl group is preferable.
  • the weight average molecular weight of the epoxy resin (B1) is preferably 30,000 or less, more preferably 20,000 or less, and particularly preferably 10,000 or less. When the weight average molecular weight of the epoxy resin (B1) is less than or equal to the upper limit value, the effect of suppressing the remaining of the first protective film residue becomes higher at the top of the bump.
  • the lower limit value of the weight average molecular weight of the epoxy resin (B1) is not particularly limited.
  • the weight average molecular weight of the epoxy resin (B1) is preferably 300 or more, and preferably 500 or more, in that the curability of the thermosetting resin film and the strength and heat resistance of the first protective film are further improved. It is more preferable that
  • the weight average molecular weight of the epoxy resin (B1) can be appropriately adjusted so as to fall within the range set by arbitrarily combining any of the lower limit value and the upper limit value described above.
  • the weight average molecular weight of the epoxy resin (B1) is preferably 300 to 30,000, more preferably 300 to 20,000, and particularly preferably 300 to 10,000.
  • the weight average molecular weight of the epoxy resin (B1) is preferably 500 to 30,000, more preferably 500 to 20,000, and particularly preferably 500 to 10,000.
  • the epoxy equivalent of the epoxy resin (B1) is preferably 100 to 1000 g / eq, and more preferably 300 to 800 g / eq.
  • the epoxy resin (B1) is preferably one that is liquid at normal temperature (sometimes referred to herein simply as "liquid epoxy resin (B1)"). By using such an epoxy resin (B1), the effect of suppressing the remaining of the first protective film residue becomes higher at the top of the bump.
  • An epoxy resin (B1) may be used individually by 1 type, and 2 or more types may be used together, and when using 2 or more types together, the combination and ratio of those can be selected arbitrarily.
  • the proportion of the liquid epoxy resin (B1) in the epoxy resin (B1) contained in the resin layer-forming composition (III) and the thermosetting resin film is preferably 40% by mass or more, and 50% by mass % Or more, more preferably 55% by mass or more, for example, 60% by mass or more, 70% by mass or more, 80% by mass or more, and 90% by mass or more.
  • the ratio is equal to or more than the lower limit value, the effect of suppressing the remaining of the first protective film residue becomes higher at the top of the bump.
  • the upper limit of the ratio is not particularly limited, and the ratio may be 100% by mass or less.
  • thermosetting agent (B2) functions as a curing agent for the epoxy resin (B1).
  • a thermosetting agent (B2) the compound which has 2 or more of functional groups which can react with an epoxy group in 1 molecule is mentioned, for example.
  • the functional group include a phenolic hydroxyl group, an alcoholic hydroxyl group, an amino group, a carboxy group, and a group in which an acid group is anhydrated, and the phenolic hydroxyl group, an amino group, or an acid group is anhydrated. It is preferably a group, more preferably a phenolic hydroxyl group or an amino group.
  • thermosetting agents (B2) as a phenol-based curing agent having a phenolic hydroxyl group, for example, polyfunctional phenol resins, biphenols, novolak-type phenol resins, dicyclopentadiene-based phenol resins, aralkylphenol resins and the like can be mentioned.
  • the amine-based curing agent having an amino group among the heat curing agents (B2) include dicyandiamide (hereinafter sometimes abbreviated as “DICY”).
  • the thermosetting agent (B2) may have an unsaturated hydrocarbon group.
  • the thermosetting agent (B2) having an unsaturated hydrocarbon group for example, a compound obtained by substituting a part of hydroxyl groups of a phenol resin with a group having an unsaturated hydrocarbon group, an aromatic ring of a phenol resin, The compound etc. which a group which has a saturated hydrocarbon group directly couple
  • bonds are mentioned.
  • the said unsaturated hydrocarbon group in a thermosetting agent (B2) is a thing similar to the unsaturated hydrocarbon group in the epoxy resin which has the above-mentioned unsaturated hydrocarbon group.
  • thermosetting agents (B2) for example, the number average molecular weight of resin components such as polyfunctional phenol resin, novolak type phenol resin, dicyclopentadiene type phenol resin, aralkyl phenol resin and the like is preferably 300 to 30000, It is more preferably 400 to 10,000, and particularly preferably 500 to 5,000.
  • the molecular weight of non-resin components such as biphenol and dicyandiamide is not particularly limited, but is preferably 60 to 500, for example.
  • thermosetting agent (B2) may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and a ratio can be selected arbitrarily.
  • the content of the thermosetting agent (B2) is 0.1 to 500 parts by mass with respect to 100 parts by mass of the epoxy resin (B1). Is preferably 1 to 200 parts by mass, and more preferably 1 to 150 parts by mass, 1 to 100 parts by mass, 1 to 75 parts by mass, 1 to 50 parts by mass, and 1 to 30 parts by mass. It may be any of the above.
  • the content of the thermosetting agent (B2) is equal to or more than the lower limit value, curing of the thermosetting resin film becomes easier to progress.
  • the content of the thermosetting agent (B2) is not more than the upper limit value, the moisture absorption rate of the thermosetting resin film is reduced, and the reliability of the package obtained using the first protective film is It improves more.
  • the content of the thermosetting component (B) (for example, the total content of the epoxy resin (B1) and the thermosetting agent (B2)) is heavy
  • the amount is preferably 600 to 1000 parts by mass with respect to 100 parts by mass of the content of the united component (A).
  • the content of the thermosetting component (B) is in such a range, the effect of suppressing the remaining of the first protective film residue becomes higher at the top of the bump, and the hard first protection It can form a film.
  • the content of the thermosetting component (B) be appropriately adjusted in accordance with the type of the polymer component (A) from the viewpoint that such effects can be obtained more remarkably.
  • the content of the thermosetting component (B) in the resin layer-forming composition (III) and the thermosetting resin film is the polymer component (A).
  • the amount is preferably 600 to 1000 parts by mass, more preferably 650 to 1000 parts by mass, and particularly preferably 650 to 950 parts by mass with respect to 100 parts by mass of the content of
  • the content of the thermosetting component (B) in the resin layer-forming composition (III) and the thermosetting resin film is the polymer component (B).
  • the amount is preferably 700 to 1000 parts by mass, more preferably 750 to 1000 parts by mass, and particularly preferably 750 to 900 parts by mass with respect to 100 parts by mass of the content of A).
  • Hardening accelerator (C) It is preferable that the composition for resin layer formation (III) and the thermosetting resin film contain a hardening accelerator (C).
  • a hardening accelerator (C) is a component for adjusting the hardening speed of composition (III) for resin layer formation.
  • Preferred curing accelerators (C) include, for example, tertiary amines such as triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol and tris (dimethylaminomethyl) phenol; 2-methylimidazole, 2-phenylimidazole Imidazoles such as 2-phenyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole (one or more hydrogen atoms are not hydrogen atoms Imidazoles substituted with the following groups: organic phosphines such as tributyl phosphine, diphenyl phosphine, triphenyl phosphine (phosphines in which one or more hydrogen atoms are substituted with an organic group); tetraphenyl phosphonium tetraphenyl borate Tetraphenyl boron salts such as triphenyl phos
  • the curing accelerator (C) contained in the resin layer-forming composition (III) and the thermosetting resin film may be only one type, or two or more types, and in the case of two or more types, a combination thereof and The ratio can be selected arbitrarily.
  • the content of the curing accelerator (C) is the content 100 mass of the thermosetting component (B)
  • the amount is preferably 0.01 to 10 parts by mass, and more preferably 0.1 to 5 parts by mass.
  • the effect by using a hardening accelerator (C) is acquired more notably by the said content of a hardening accelerator (C) being more than the said lower limit.
  • the high-polarity curing accelerator (C) adheres to the thermosetting resin film under high temperature and high humidity conditions. The effect of suppressing migration and segregation to the adhesion interface side with the body is enhanced, and the reliability of the package obtained using the first protective film is further improved.
  • the composition for forming a resin layer (III) and the thermosetting resin film preferably contain a filler (D).
  • the first protective film containing the filler (D) facilitates adjustment of the thermal expansion coefficient. For example, by optimizing the thermal expansion coefficient of the first protective film with respect to the semiconductor chip, the reliability of the package obtained using the first protective film is further improved.
  • the first protective film containing the filler (D) can also reduce the moisture absorption rate or improve the heat dissipation.
  • the filler (D) may be either an organic filler or an inorganic filler, but is preferably an inorganic filler.
  • Preferred inorganic fillers include, for example, powders of silica, alumina, talc, calcium carbonate, titanium white, bengala, silicon carbide, boron nitride, etc .; spherical beads of these inorganic fillers; surface modification of these inorganic fillers Articles: single crystal fibers of these inorganic fillers; glass fibers and the like.
  • the inorganic filler is preferably silica or alumina.
  • the filler (D) contained in the resin layer-forming composition (III) and the thermosetting resin film may be only one type, or two or more types, and in the case of two or more types, a combination and ratio thereof Is optional.
  • the average particle diameter of the filler (D) is preferably 6 ⁇ m or less, and may be, for example, any of 4 ⁇ m or less, 2 ⁇ m or less, and 0.5 ⁇ m or less.
  • average particle diameter means the value of the particle diameter (D 50 ) at an integrated value of 50% in the particle size distribution curve determined by the laser diffraction scattering method, unless otherwise specified. .
  • the lower limit of the average particle diameter of the filler (D) is not particularly limited.
  • the average particle diameter of the filler (D) is preferably 0.01 ⁇ m or more in that it is easier to obtain the filler (D).
  • the average particle diameter of the filler (D) can be appropriately adjusted so as to fall within the range set by arbitrarily combining the above lower limit value and any upper limit value.
  • the average particle diameter of the filler (D) is preferably 0.01 to 6 ⁇ m, and for example, any of 0.01 to 4 ⁇ m, 0.01 to 2 ⁇ m, and 0.01 to 0.5 ⁇ m. May be However, this is an example of the preferable average particle diameter of filler (D).
  • the ratio of the content of the filler (D) to the total content of all the components other than the solvent (that is, thermosetting) is more preferably 3 to 30 mass%, and still more preferably 4 to 20 mass%. And 5 to 15% by mass is particularly preferable.
  • the composition for resin layer formation (III) and the thermosetting resin film may contain a coupling agent (E).
  • a coupling agent (E) having a functional group capable of reacting with an inorganic compound or an organic compound By using a coupling agent (E) having a functional group capable of reacting with an inorganic compound or an organic compound, the adhesion and adhesiveness of the thermosetting resin film to the adherend can be improved. Moreover, water resistance improves the 1st protective film containing a coupling agent (E), without impairing heat resistance.
  • the coupling agent (E) is preferably a compound having a functional group capable of reacting with a functional group possessed by the polymer component (A), the thermosetting component (B) or the like, and is preferably a silane coupling agent. More preferable.
  • silane coupling agent examples include 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropylmethyldiethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3-glycidyloxymethyldiethoxysilane, 2- (3,4-Epoxycyclohexyl) ethyltrimethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3- (2-aminoethylamino) propyltrimethoxysilane, 3- (2-amino) Ethylamino) propylmethyldiethoxysilane, 3- (phenylamino) propyltrimethoxysilane, 3-anilinopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-mercaptopropyl Trimethoxysi
  • composition for forming a resin layer (III) and the coupling agent (E) contained in the thermosetting resin film may be only one type, or two or more types, and in the case of two or more types, a combination thereof and The ratio can be selected arbitrarily.
  • the content of the coupling agent (E) in the resin layer-forming composition (III) and the thermosetting resin film is the polymer component (A) and the thermosetting component ( It is preferable that it is 0.03-20 mass parts with respect to 100 mass parts of total content of B), It is more preferable that it is 0.05-10 mass parts, It is 0.1-5 mass parts Is particularly preferred.
  • the content of the coupling agent (E) is at least the lower limit value, the dispersibility of the filler (D) in the resin is improved, and the adhesion of the thermosetting resin film to the adherend is improved. The effect of using the coupling agent (E) is more remarkably obtained. Moreover, generation
  • Crosslinking agent (F) When using what has functional groups, such as a vinyl group which can couple
  • the article (III) and the thermosetting resin film may contain a crosslinking agent (F).
  • a crosslinking agent (F) is a component for making the said functional group in a polymer component (A) couple
  • crosslinking agent (F) for example, organic polyvalent isocyanate compounds, organic polyvalent imine compounds, metal chelate type crosslinking agents (crosslinking agents having a metal chelate structure), aziridine type crosslinking agents (crosslinking agents having an aziridinyl group), etc. Can be mentioned.
  • organic polyvalent isocyanate compound for example, an aromatic polyvalent isocyanate compound, an aliphatic polyvalent isocyanate compound and an alicyclic polyvalent isocyanate compound (hereinafter, these compounds are collectively referred to as “aromatic polyvalent isocyanate compound etc.” Abbreviated in some cases); trimers such as the above-mentioned aromatic polyvalent isocyanate compounds, isocyanurates and adducts; terminal isocyanate urethane prepolymers obtained by reacting the above-mentioned aromatic polyvalent isocyanate compounds and the like with a polyol compound Etc.
  • aromatic polyvalent isocyanate compound etc Abbreviated in some cases
  • trimers such as the above-mentioned aromatic polyvalent isocyanate compounds, isocyanurates and adducts
  • terminal isocyanate urethane prepolymers obtained by reacting the above-mentioned aromatic polyvalent isocyanate compounds and the like with a polyol compound Et
  • the “adduct” includes the above-mentioned aromatic polyvalent isocyanate compound, aliphatic polyvalent isocyanate compound or alicyclic polyvalent isocyanate compound, and low contents such as ethylene glycol, propylene glycol, neopentyl glycol, trimethylolpropane or castor oil It means a reactant with a molecule active hydrogen-containing compound.
  • the adduct include xylylene diisocyanate adduct of trimethylolpropane as described later, and the like.
  • the "terminal isocyanate urethane prepolymer" is as described above.
  • organic polyvalent isocyanate compound for example, 2,4-tolylene diisocyanate; 2,6-tolylene diisocyanate; 1,3-xylylene diisocyanate; 1,4-xylene diisocyanate; diphenylmethane-4 Diphenylmethane-2,4'-diisocyanate; 3-methyldiphenylmethane diisocyanate; hexamethylene diisocyanate; isophorone diisocyanate; dicyclohexylmethane-4,4'-diisocyanate; dicyclohexylmethane-2,4'-diisocyanate; trimethylol Any one of tolylene diisocyanate, hexamethylene diisocyanate and xylylene diisocyanate in the hydroxyl groups of all or part of a polyol such as propane Or two or more compounds are added; lysine diisocyanate.
  • a polyol such as propane Or two or
  • organic polyhydric imine compound examples include N, N′-diphenylmethane-4,4′-bis (1-aziridinecarboxamide), trimethylolpropane-tri- ⁇ -aziridinyl propionate, and tetramethylolmethane.
  • a crosslinking agent (F) When using an organic polyhydric isocyanate compound as a crosslinking agent (F), it is preferable to use a hydroxyl-containing polymer as a polymer component (A).
  • a crosslink structure is formed on the thermosetting resin film by the reaction of the crosslinking agent (F) with the polymer component (A). It can be introduced easily.
  • composition (III) for resin layer formation and the crosslinking agent (F) contained in the thermosetting resin film may be only one type, or two or more types, and in the case of two or more types, a combination and ratio thereof Is optional.
  • the content of the crosslinking agent (F) is 100 parts by mass of the content of the polymer component (A)
  • the amount is preferably 0.01 to 20 parts by mass, more preferably 0.1 to 10 parts by mass, and particularly preferably 0.5 to 5 parts by mass.
  • the effect by using a crosslinking agent (F) is acquired more notably by the said content of a crosslinking agent (F) being more than the said lower limit.
  • the excess use of a crosslinking agent (F) is suppressed because the said content of a crosslinking agent (F) is below the said upper limit.
  • thermosetting resin (G) The composition for resin layer formation (III) and the thermosetting resin film may contain an energy ray curable resin (G).
  • a thermosetting resin film can change a characteristic by irradiation of an energy ray by containing energy ray curable resin (G).
  • the energy ray-curable resin (G) is obtained by polymerizing (curing) an energy ray-curable compound.
  • the energy ray curable compound include a compound having at least one polymerizable double bond in the molecule, and an acrylate compound having a (meth) acryloyl group is preferable.
  • acrylate compound examples include trimethylolpropane tri (meth) acrylate, tetramethylolmethane tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, and dipentaerythritol monohydroxy penta
  • Linear aliphatic skeleton-containing (meth) acrylates such as meta) acrylate, dipentaerythritol hexa (meth) acrylate, 1,4-butylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate; Cycloaliphatic skeleton-containing (meth) acrylates such as cyclopentanyl di (meth) acrylate; polyalkylene glycol (meth) acrylates such as polyethylene glycol di (meth) acrylate Oligoester (meth)
  • the weight average molecular weight of the energy ray curable compound is preferably 100 to 30,000, and more preferably 300 to 10,000.
  • the energy ray-curable compound used for the polymerization may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the energy ray curable resin (G) contained in the resin layer forming composition (III) and the thermosetting resin film may be only one type, or two or more types, and in the case of two or more types, Combinations and ratios can be selected arbitrarily.
  • the ratio of the content of the energy ray-curable resin (G) to the total mass of the composition (III) for forming a resin layer Is preferably 1 to 95% by mass, more preferably 5 to 90% by mass, and particularly preferably 10 to 85% by mass.
  • Photoinitiator (H) When the composition for forming a resin layer (III) and the thermosetting resin film contain an energy ray-curable resin (G), photopolymerization is performed to efficiently promote the polymerization reaction of the energy ray-curable resin (G). You may contain the initiator (H).
  • Examples of the photopolymerization initiator (H) in the composition (III) for forming a resin layer include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, methyl benzoin benzoate, benzoin benzoate Benzoin compounds such as dimethyl ketal; acetophenone compounds such as acetophenone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 2,2-dimethoxy-1,2-diphenylethan-1-one; Acyl phosphine oxide compounds such as 2,4,6-trimethyl benzoyl) phenyl phosphine oxide, 2,4,6-trimethyl benzoyl diphenyl phosphine oxide; benzyl phenyl sulfide, tetramethyl Sulfide compounds such as uram monosulfide; ⁇ -ketol compounds
  • composition (III) for forming a resin layer and the photopolymerization initiator (H) contained in the thermosetting resin film may be only one type, or two or more types, and in the case of two or more types, a combination thereof And the ratio can be selected arbitrarily.
  • the content of the photopolymerization initiator (H) in the resin layer-forming composition (III) and the thermosetting resin film is the content of the energy ray-curable resin (G)
  • the amount is preferably 0.1 to 20 parts by mass, more preferably 1 to 10 parts by mass, and particularly preferably 2 to 5 parts by mass with respect to 100 parts by mass.
  • the composition for forming a resin layer (III) and the thermosetting resin film may contain a colorant (I).
  • the colorant (I) is, for example, a component for imparting an appropriate light transmittance to the thermosetting resin film and the first protective film.
  • the colorant (I) may be known and may be, for example, any of a dye and a pigment.
  • the dyes may be any of acid dyes, reactive dyes, direct dyes, disperse dyes, cationic dyes and the like.
  • the colorant (I) contained in the resin layer-forming composition (III) and the thermosetting resin film may be only one type, or two or more types, and in the case of two or more types, a combination and ratio thereof Is optional.
  • the content of the coloring agent (I) of the composition (III) for forming a resin layer is such that the visible light transmittance and the infrared transmittance of the thermosetting resin film become the target values.
  • the content of the coloring agent (I) depends on the type of the coloring agent (I) or, in the case of using two or more kinds of coloring agents (I) in combination, depending on the combination of the coloring agent (I), etc. And may be adjusted as appropriate.
  • the ratio of the content of the colorant (I) to the total content of all components other than the solvent in the resin layer-forming composition (III) that is, heat curing
  • the ratio of the content of the colorant (I) to the total mass of the thermosetting resin film in the transparent resin film is preferably 0.01 to 10% by mass.
  • the composition for forming a resin layer (III) and the thermosetting resin film may contain a general-purpose additive (J) within the range not impairing the effects of the present invention.
  • the general-purpose additive (J) may be a known one, can be optionally selected according to the purpose, and is not particularly limited. Preferred examples thereof include a plasticizer, an antistatic agent, an antioxidant, a gettering agent, etc. Can be mentioned.
  • the general-purpose additive (J) contained in the resin layer-forming composition (III) and the thermosetting resin film may be only one type, or two or more types, and in the case of two or more types, a combination thereof and The ratio can be selected arbitrarily.
  • the content of the general-purpose additive (J) in the composition for forming a resin layer (III) and the thermosetting resin film is not particularly limited, and may be appropriately selected depending on the purpose.
  • the composition for forming a resin layer (III) preferably further contains a solvent.
  • the composition for forming a resin layer (III) containing a solvent has good handleability.
  • the solvent is not particularly limited, but preferred examples thereof include hydrocarbons such as toluene and xylene; alcohols such as methanol, ethanol, 2-propanol, isobutyl alcohol (2-methylpropan-1-ol), 1-butanol and the like Esters such as ethyl acetate; ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran; and amides (compounds having an amide bond) such as dimethylformamide and N-methyl pyrrolidone.
  • the solvent contained in the resin layer-forming composition (III) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the solvent contained in the resin layer-forming composition (III) is preferably methyl ethyl ketone or the like from the viewpoint that the components contained in the resin layer-forming composition (III) can be mixed more uniformly.
  • the content of the solvent in the composition for forming a resin layer (III) is not particularly limited, and may be appropriately selected, for example, according to the types of components other than the solvent.
  • the composition (III) for forming a resin layer and the thermosetting resin film contain the polymer component (A) and the thermosetting component (B), contain polyvinyl acetal as the polymer component (A), and are epoxy As resin (B1), it is preferable to contain what is liquid at normal temperature, and what contains a hardening accelerator (C) and a filler (D) is further more preferable besides these components. And it is preferable that the filler (D) in this case has the above-mentioned average particle diameter.
  • the composition for forming a resin layer (III) for example, a polymer component (A) which is a polyvinyl acetal, an epoxy resin (B1) which is liquid at normal temperature, and a thermosetting agent (B2) And a curing agent (C) and a filler (D), and in the composition (III) for forming a resin layer, the total content of the epoxy resin (B1) and the thermosetting agent (B2) is And 600 to 1000 parts by mass with respect to 100 parts by mass of the polymer component (A), and the content of the curing accelerator (C) is the epoxy resin (B1) and the thermosetting agent (
  • the filler 0.1 to 5 parts by mass with respect to 100 parts by mass of B2), and the filler (the total content of all the components other than the solvent in the composition (III) for forming a resin layer
  • the content ratio of D) is 3 to 30% by mass, and the filling
  • the average particle diameter of (D) may be mentioned those at 6 ⁇ m or less.
  • the composition (III) for forming a resin layer for example, a polymer component (A) which is a polyvinyl acetal, an epoxy resin (B1) which is liquid at normal temperature, and a thermosetting agent (B2) And a curing accelerator (C) and a filler (D), wherein the weight average molecular weight of the polyvinyl acetal is 40000 or less, and the weight average molecular weight of the epoxy resin (B1) is 10000 or less,
  • the total content of the epoxy resin (B1) and the thermosetting agent (B2) is 600 to 100 parts by mass of the content of the polymer component (A).
  • the content of the curing accelerator (C) is 0.1 to 5 parts by mass with respect to 100 parts by mass of the total content of the epoxy resin (B1) and the thermosetting agent (B2).
  • the ratio of the content of the filler (D) to the total content of all the components other than the solvent is 5 to 15% by mass, and the average particle size of the filler (D) is What is 2 micrometers or less in diameter is mentioned.
  • composition for forming a thermosetting resin film such as the composition for forming a resin layer (III) can be obtained by blending the respective components for constituting the composition .
  • a solvent it may be used by mixing the solvent with any compounding component other than the solvent and diluting this compounding component in advance, or by previously diluting any compounding component other than the solvent A solvent may be used by mixing with these compounding ingredients without storage.
  • the method of mixing each component at the time of compounding is not particularly limited, and a method of mixing by rotating a stirrer or a stirring blade, etc .; a method of mixing using a mixer; a method of adding ultrasonic waves and mixing, etc. It may be selected as appropriate.
  • the temperature and time of addition and mixing of the respective components are not particularly limited as long as the respective blended components do not deteriorate, and may be appropriately adjusted, but the temperature is preferably 15 to 30 ° C.
  • composition for forming energy ray curable resin film ⁇ Composition for forming resin layer (IV)
  • a composition for forming an energy ray-curable resin film (IV) containing an energy ray-curable component (a) in the present specification, simply “resin layer And the like, which may be abbreviated as “forming composition (IV)”.
  • the energy ray curable component (a) is a component which is cured by irradiation of energy rays, and is also a component for imparting film forming property, flexibility and the like to the energy ray curable resin film.
  • the energy ray curable component (a) includes, for example, an energy ray curable group, a polymer (a1) having a weight average molecular weight of 80000 to 2,000,000, and an energy ray curable group having a molecular weight of 100 to 80,000. Compound (a2) is mentioned.
  • the polymer (a1) may be at least partially crosslinked by a crosslinking agent, or may be non-crosslinked.
  • Examples of the polymer (a1) having an energy ray curable group and having a weight average molecular weight of 80,000 to 2,000,000 include an acrylic polymer (a11) having a functional group capable of reacting with a group possessed by another compound, Acrylic resin (a1-1) formed by polymerizing an energy ray curable compound (a12) having a group reactive with a functional group and an energy ray curable group such as an energy ray curable double bond .
  • Examples of the functional group capable of reacting with a group possessed by another compound include, for example, a hydroxyl group, a carboxy group, an amino group, and a substituted amino group (one or two hydrogen atoms of the amino group are substituted with a group other than a hydrogen atom Groups), epoxy groups and the like.
  • the functional group is preferably a group other than a carboxy group.
  • the functional group is preferably a hydroxyl group.
  • acrylic polymer (a11) having a functional group examples include those obtained by copolymerizing an acrylic monomer having the functional group and an acrylic monomer having no functional group. In addition to the monomers, monomers (non-acrylic monomers) other than acrylic monomers may be copolymerized.
  • the acrylic polymer (a11) may be a random copolymer or a block copolymer.
  • the acrylic monomer having the functional group, the acrylic monomer having no functional group, and the non-acrylic monomer may be used alone or in combination of two or more. More than one species may be used in combination, and when two or more species are used in combination, their combination and ratio can be arbitrarily selected.
  • the energy ray curable compound (a12) is one or two selected from the group consisting of an isocyanate group, an epoxy group and a carboxy group as a group capable of reacting with the functional group possessed by the acrylic polymer (a11) What has the above is preferable, and what has an isocyanate group as said group is more preferable.
  • the energy beam curable compound (a12) has, for example, an isocyanate group as the group, the isocyanate group easily reacts with the hydroxyl group of the acrylic polymer (a11) having a hydroxyl group as the functional group.
  • Examples of the energy ray-curable group in the compound (a2) having an energy ray-curable group and having a molecular weight of 100 to 80,000 include a group containing an energy ray-curable double bond, and preferred examples thereof Acryloyl group, a vinyl group etc. are mentioned.
  • composition for forming a resin layer (IV) and the energy ray-curable resin film contain the compound (a2) as the energy ray-curable component (a), a polymer having no energy ray-curable group ( It is preferable to also contain b).
  • the polymer (b) may be at least partially crosslinked by a crosslinking agent, or may be non-crosslinked.
  • polymer (b) having no energy ray curable group examples include acrylic polymers, phenoxy resins, urethane resins, polyesters, rubber resins, acrylic urethane resins, and the like.
  • the polymer (b) is preferably an acrylic polymer (sometimes referred to as “acrylic polymer (b-1)” in the present specification).
  • composition (IV) for forming a resin layer examples include those containing one or both of the polymer (a1) and the compound (a2). And when the composition (IV) for resin layer formation contains the said compound (a2), it is preferable to also contain the polymer (b) which does not have an energy ray curable group further, and in this case, the said weight is further added. It is also preferable to contain a united body (a1). In addition, the composition for forming a resin layer (IV) contains neither the compound (a2) but the polymer (a1) and the polymer (b) having no energy ray curable group. It is also good.
  • the energy ray-curable component (a) and the polymer (b) having no energy ray-curable group may be used alone, respectively. Two or more types may be used in combination, and when two or more types are used in combination, their combination and ratio can be arbitrarily selected.
  • the composition for resin layer formation (IV) contains the polymer (a1), the compound (a2) and the polymer (b) having no energy ray curable group
  • the composition for resin layer formation (IV) In the above, the content of the compound (a2) is 10 to 400 parts by mass with respect to 100 parts by mass of the total content of the polymer (a1) and the polymer (b) having no energy ray curable group. Is preferred.
  • the ratio of the total content of the energy ray-curable component (a) and the polymer (b) having no energy ray-curable group to the total content of components other than the solvent (Ie, the total content of the energy ray-curable component (a) and the polymer (b) having no energy ray-curable group in the energy ray-curable resin film relative to the total mass of the energy ray-curable resin film is preferably 5 to 90% by mass.
  • the composition for forming a resin layer (IV) may contain, according to the purpose, a thermosetting component, a photopolymerization initiator, a filler, a coupling agent, a crosslinking agent, a coloring agent, and a general-purpose addition, in addition to the energy ray curable component. It may contain one or more selected from the group consisting of an agent and a solvent.
  • a thermosetting component a photopolymerization initiator
  • a filler e.g., a thermosetting component
  • a coupling agent e.g., a crosslinking agent
  • a coloring agent e.g., a coloring agent
  • a general-purpose addition e.g., a general-purpose addition, in addition to the energy ray curable component. It may contain one or more selected from the group consisting of an agent and a solvent.
  • the energy ray-curable resin film formed has an adhesive force to an adherend by heating. The strength of the first protective film formed from the energy ray
  • thermosetting component As the thermosetting component, the photopolymerization initiator, the filler, the coupling agent, the crosslinking agent, the colorant, the general-purpose additive and the solvent in the composition (IV) for forming a resin layer, a composition for forming a resin layer (III) thermosetting component (B), photopolymerization initiator (H), filler (D), coupling agent (E), crosslinking agent (F), colorant (I), general purpose additive (J And the same as the solvent.
  • thermosetting component In the composition (IV) for forming a resin layer, the thermosetting component, the photopolymerization initiator, the filler, the coupling agent, the crosslinking agent, the crosslinking agent, the coloring agent, the general-purpose additive and the solvent are each used alone. When using together 2 or more types and 2 or more types together, those combinations and ratios can be selected arbitrarily.
  • the content of the thermosetting component, the photopolymerization initiator, the filler, the coupling agent, the crosslinking agent, the coloring agent, the general-purpose additive and the solvent in the composition (IV) for forming a resin layer is appropriately adjusted according to the purpose. There is no particular limitation as long as the
  • composition for forming an energy ray-curable resin film such as the composition for forming a resin layer (IV)
  • the composition for forming an energy ray-curable resin film is obtained by blending the components for constituting the composition can get. There is no particular limitation on the order of addition of each component at the time of blending, and two or more components may be added simultaneously.
  • a solvent it may be used by mixing the solvent with any compounding component other than the solvent and diluting this compounding component in advance, or by previously diluting any compounding component other than the solvent A solvent may be used by mixing with these compounding ingredients without storage.
  • the method of mixing each component at the time of compounding is not particularly limited, and a method of mixing by rotating a stirrer or a stirring blade, etc .; a method of mixing using a mixer; a method of adding ultrasonic waves and mixing, etc. It may be selected as appropriate.
  • the temperature and time of addition and mixing of the respective components are not particularly limited as long as the respective blended components do not deteriorate, and may be appropriately adjusted, but the temperature is preferably 15 to 30 ° C.
  • a method of manufacturing a semiconductor chip with a first protective film of the present invention is a method of manufacturing a semiconductor chip with a first protective film described above, and the method of manufacturing the semiconductor chip with a first protective film Forming a first protective film by attaching a curable resin film (which may be abbreviated as "adhering step” in the present specification) and curing the curable resin film after application;
  • a step sometimes abbreviated "first protective film forming step” in the present specification
  • a step of obtaining a semiconductor chip by dividing the semiconductor wafer the “division step” in the present specification
  • the top portion of the bump on the bump is the curable resin foil such that the concentration ratio of the tin is 5% or more.
  • a step of reducing the amount of residue on the bump so that the ratio of the concentration of the tin is 5% or more after the step of projecting from the film or attaching the curable resin film In the present specification, it may be abbreviated as “residue reduction step”.
  • the manufacturing method will be described with reference to the drawings.
  • FIG. 5 is an enlarged cross-sectional view for schematically describing the present embodiment.
  • the attaching process is performed, and as shown in FIG. 5A, the curable resin film 13 ′ is attached to the bump forming surface 9a of the semiconductor wafer 9 ′.
  • the curable resin film 13 'spreads between the large number of bumps 91 and adheres to the bump forming surface 9a, and at the same time, the surface 91a of the bumps 91, particularly the vicinity of the bump forming surface 9a. It is possible to cover the surface 91 a and embed the bumps 91 so as to cover these areas.
  • the top portion 910 of the bump 91 of the semiconductor wafer 9 ′ penetrates the curable resin film 13 ′ and protrudes from the curable resin film 13 ′.
  • the curable resin film 13 ′ may be used alone, but as shown here, the first support sheet 10 and the curable resin film 13 formed on the first support sheet 10 It is preferable to use the first protective film forming sheet 191 configured to include '.
  • the first protective film forming sheet 191 configured to include '.
  • the first step is to attach the curable resin film in the sheet for forming a first protective film to the bump forming surface of the semiconductor wafer.
  • the protective film forming sheet itself may be attached to the bump forming surface of the semiconductor wafer.
  • laminated structure (1) a structure in which a sheet for forming a first protective film is attached to a bump forming surface of a semiconductor wafer.
  • the first support sheet 10 is configured to include the first base 11 and the buffer layer 12 formed on the first base 11. That is, the first protective film-forming sheet 191 is configured by laminating the first base material 11, the buffer layer 12, and the curable resin film 13 'in this order in the thickness direction.
  • FIG. 6 is an enlarged cross-sectional view schematically showing the first protective film formation sheet 191. As shown in FIG.
  • the first support sheet 10 As the first support sheet 10, a known one can be used.
  • the first substrate 11 is in the form of a sheet or a film, and examples of the constituent material thereof include various resins.
  • the resin include polyethylenes such as low density polyethylene (LDPE), linear low density polyethylene (LLDPE), high density polyethylene (HDPE); polyethylene other than polyethylene such as polypropylene, polybutene, polybutadiene, polymethylpentene and norbornene resin Polyolefins; Ethylene copolymers such as ethylene-vinyl acetate copolymer, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester copolymer, ethylene-norbornene copolymer (ethylene as monomer Copolymers obtained by using a vinyl chloride resin such as polyvinyl chloride and vinyl chloride copolymer (resin obtained by using vinyl chloride as a monomer), polystyrene, polycycloolefin, polyethylene terephthalate, polyethylene Nafta Polyesters
  • the polymer alloy of the polyester and the other resin is preferably one in which the amount of the resin other than the polyester is relatively small.
  • the resin for example, a crosslinked resin obtained by crosslinking one or more of the above-described resins exemplified so far; modification of an ionomer using one or more of the above-described resins exemplified so far Resin is also mentioned.
  • the resin constituting the first substrate 11 may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the first substrate 11 may be only one layer (single layer) or may be a plurality of layers of two or more layers, and in the case of a plurality of layers, the plurality of layers may be the same or different from each other.
  • the combination is not particularly limited.
  • the thickness of the first substrate 11 is preferably 25 to 150 ⁇ m.
  • the thickness of the first base material 11 means the thickness of the entire first base material 11, and for example, the thickness of the first base material 11 composed of a plurality of layers refers to the first base material 11 Means the total thickness of all the layers that make up.
  • the buffer layer 12 has a buffering action on the force applied to the buffer layer 12 and the layer adjacent thereto.
  • the curable resin film 13 ′ is shown.
  • the buffer layer 12 is in the form of a sheet or a film, and is preferably energy ray curable.
  • the energy ray-curable buffer layer 12 can be more easily peeled off from a curable resin film 13 'described later by energy ray curing.
  • the constituent material of the buffer layer 12 As a constituent material of the buffer layer 12, various adhesive resins are mentioned, for example.
  • the constituent materials thereof When the buffer layer 12 is energy ray curable, the constituent materials thereof also include various components necessary for energy ray curing.
  • the buffer layer 12 may be only one layer (single layer) or may be a plurality of layers of two or more layers, and in the case of multiple layers, these multiple layers may be the same or different from one another, and the combination of these multiple layers is It is not particularly limited.
  • the thickness of the buffer layer 12 is preferably 60 to 675 ⁇ m.
  • the thickness of the buffer layer 12 means the entire thickness of the buffer layer 12, and, for example, the thickness of the buffer layer 12 composed of a plurality of layers is the total of all the layers constituting the buffer layer 12. Means the thickness of.
  • the thermosetting resin film 13 ' can be attached to the bump forming surface 9a by pressure bonding to the bump forming surface 9a of the semiconductor wafer 9'.
  • the attaching step it is preferable to attach the curable resin film 13 'to the bump forming surface 9a while heating. In this manner, the generation of the void is caused between the curable resin film 13 'and the bump forming surface 9a and between the curable resin film 13' and the surface 91a of the bump 91. It can suppress more. Finally, at the top of the bump, the effect of suppressing the remaining of the first protective film residue becomes higher.
  • the heating temperature of the curable resin film 13 'at this time is not required to be an excessively high temperature, and is preferably, for example, 60 to 100.degree.
  • “excessive high temperature” means, for example, when the curable resin film 13 ′ is thermosetting, the thermosetting of the curable resin film 13 ′ proceeds, etc., to the curable resin film 13 ′. It means the temperature at which an unintended effect appears.
  • the pressure applied to the curable resin film 13 ′ (sometimes referred to as “sticking pressure” in the present specification) is 0.
  • the pressure is preferably in the range of 3 to 1 MPa.
  • the laminated structure (1) 101 may be used as it is in the next step, but if necessary, the bump forming surface 9a of the semiconductor wafer 9 '
  • the thickness of the semiconductor wafer 9 ' may be adjusted by grinding the opposite surface (back surface) 9b. Grinding of the back surface 9b of the semiconductor wafer 9 'can be performed by a known method such as a method using a grinder.
  • the thickness of the portion excluding the bumps of the semiconductor wafer 9' is the same as the thickness of the portion excluding the bumps of the semiconductor chip described above. preferable.
  • the thickness of the portion excluding the bumps of the semiconductor wafer 9' before grinding is preferably 400 to 1200 ⁇ m, and more preferably 650 to 780 ⁇ m. .
  • the first support sheet 10 is peeled off from the thermosetting resin film 13 ′ in the laminated structure (1) 101.
  • the back surface 9 b of the semiconductor wafer 9 ′ is ground, it is preferable to peel off the first support sheet 10 after the grinding.
  • a laminated structure (2) is provided, which is provided with a thermosetting resin film 13 'on the bump formation surface 9a of the semiconductor wafer 9'. That is, a semiconductor wafer with a curable resin film is obtained.
  • the buffer layer 12 is energy ray curable
  • the buffer layer 12 is cured by irradiation of energy rays to reduce the adhesiveness of the buffer layer 12, and then the first thermosetting resin film 13 ′ is removed from the thermosetting resin film 13 ′. It is preferable to peel off the support sheet 10.
  • the first protective film forming step is performed after the sticking step, and as shown in FIG. 5C, the first protective film 13 is cured by curing the curable resin film 13 ′ after the sticking.
  • a 1st protective film formation process can be performed after peeling of the above-mentioned 1st support sheet 10.
  • the first protective film forming step can be performed after the grinding of the back surface 9b.
  • the curing conditions of the curable resin film 13 ′ are not particularly limited as long as the first protective film has a curing degree sufficient to exhibit its function, and may be appropriately selected according to the type of the thermosetting resin film. Good.
  • the heating temperature is preferably 100 to 180 ° C. and the heating time is 0.5 to 5 hours at the time of thermosetting of the curable resin film 13'. Is preferred.
  • the curable resin film 13 ′ may be pressurized, and in this case, the pressure is preferably 0.3 to 1 MPa.
  • the illuminance of the energy ray is preferably 180 to 280 mW / cm 2 at the time of energy ray curing of the curable resin film 13'.
  • the light quantity is preferably 450 to 1500 mJ / cm 2 .
  • the dividing step is performed after the step of forming the first protective film, and as shown in FIG. 5D, the semiconductor wafer 9 'is divided to obtain the semiconductor chip 9.
  • the semiconductor chip 1 with a first protective film, which is an object, is obtained.
  • the division of the semiconductor wafer 9 ' can be performed by a known method.
  • the back surface 9b of the semiconductor wafer 9' in the laminated structure (3) (semiconductor wafer with first protective film) 103 is used.
  • a dicing sheet (or dicing tape) may be attached, and thereafter dicing may be performed by a known method.
  • laminated structure (5) a structure in which the first protective film is provided on the bump formation surface of the semiconductor wafer and the dicing sheet is provided on the back surface of the semiconductor wafer. It may be called.
  • the semiconductor wafer in this laminated structure (5) may be singulated together with the first protective film, and a semiconductor chip may be formed, which may be referred to as "laminated structure (6)".
  • the layer in contact with the object to be attached (for example, a semiconductor chip) is energy ray curable as the dicing sheet
  • this layer is cured by irradiation of energy rays after dicing and tackiness is obtained.
  • the dicing sheet can be more easily removed from the object to be attached.
  • a second protective film-forming sheet may be used in place of the above-described dicing sheet.
  • the second protective film-forming sheet has a configuration in which a protective film-forming film for forming the above-mentioned second protective film on the back surface of the semiconductor chip is formed on the dicing sheet.
  • the dicing sheet is removed after dicing, and finally, a semiconductor chip in a state in which the second protective film is attached to the back surface is obtained. That is, the semiconductor chip with a first protective film provided with the second protective film on the back surface of the semiconductor chip described above can be obtained by such a manufacturing method.
  • the residual of the first protective film residue is suppressed at the top portion 910 of the bump 91 as described above immediately after the step of forming the first protective film. Therefore, in the top portion 910 of the bump 91 of the semiconductor chip 1 with a first protective film, which is the object, the remaining of the first protective film residue is suppressed.
  • the curable resin film 13 ′ it is preferable to use one which hardly leaves the residue on the top portion 910 of the bump 91. Then, in the attaching process, the top portion 910 of the bump 91 may be protruded from the curable resin film 13 ′ so that the ratio of the concentration of the tin is 5% or more.
  • curable resin film 13 which is easy to acquire the effect of such this invention notably, what was demonstrated previously is mentioned. That is, in the case of a thermosetting resin film, as the composition (III) for forming a resin layer, one having a small weight average molecular weight of a resin component such as a polymer component (A) or an epoxy resin (B1), It is preferable to use one having a range in which the average particle diameter of the filler (D) is small, one having a range in which the content of the filler (D) is small, and the like. As an epoxy resin (B1), it is preferable to use what is liquid at normal temperature.
  • a resin component such as a polymer component (A) or an epoxy resin (B1)
  • an epoxy resin (B1) it is preferable to use what is liquid at normal temperature.
  • the residue reduction step is a step of reducing the amount of residue on the bumps 91 so that the ratio of the concentration of the tin is 5% or more after the attachment step. More specifically, the residue reduction step is performed at any stage after the attaching step until the target semiconductor chip with a protective film is obtained. Then, in the residue reduction step, for example, a residue such as a curable resin film residue or a first protective film residue remaining on the top portion 910 of the bump 91 of the semiconductor wafer 9 ′ or the semiconductor chip 9.
  • “to reduce the amount of residue” means that the amount of residue is small to such an extent that the effect is not recognized even if the residue is not present or is present. means.
  • a residue reducing step is performed after the first protective film forming step to reduce the amount of the first protective film residue on the bumps 91.
  • FIG. 7 is an enlarged cross-sectional view for schematically explaining an example of the residue reduction step in the present embodiment.
  • the first protective film after completion of the first protective film forming step, the first protective film remains on the top portion 910 of the bumps 91 in the laminated structure (3) (semiconductor wafer with first protective film) 103 described above.
  • the object 131 may remain.
  • FIG. 7 (a) shows such a laminated structure (3), and the laminated structure (3) 103 is the same as the laminated structure (3) 103 in FIG. The difference is that the remaining amount of the object 131 is large.
  • the upper portion of the bump 91 of the semiconductor wafer 9 ′ in the laminated structure (3) 103 is irradiated with plasma to leave the first protective film remaining on the upper portion of the bump 91. Reduce the amount of objects 131.
  • FIG. 7B a laminated structure in which the remaining of the first protective film residue 131 is suppressed in the top portion 910 of the bumps 91 as in the case shown in FIG. 5C. Get the body.
  • a product obtained by performing the residue reduction step on the laminated structure (3) in this manner may be referred to as a laminated structure (4).
  • reference numeral 104 is given to indicate the laminated structure (4).
  • the irradiation conditions of the plasma in the residue reduction step are not particularly limited as long as the amount of the first protective film residue 131 can be sufficiently reduced.
  • the pressure of the gas is 80 to 120 Pa
  • the applied power is 200 to 300 W
  • the plasma is irradiated for 0.5 to 5 minutes in the presence of a reactive gas such as tetrafluoromethane (CF 4 ) gas or oxygen gas.
  • CF 4 tetrafluoromethane
  • the irradiation range of plasma in the residue reduction step is not particularly limited as long as the amount of the first protective film residue 131 can be sufficiently reduced, and at least the upper portion of the bump 91 may be included. Then, in the residue reduction step, for example, plasma may be irradiated on the entire surface of the semiconductor wafer 9 ′ provided with the first protective film 13 on the side having the bumps 91.
  • the residue reduction step in the present embodiment may be performed after the division step.
  • the object to be irradiated with plasma in this case is not the semiconductor wafer 9 'but the semiconductor chip 9 (in other words, with the first protective film in which the first protective film residue 131 remains, not the laminated structure (3) 103) It becomes a semiconductor chip 1).
  • a residue reduction process can be performed by the same method as the above-mentioned case except this point.
  • the fine particles may collide with at least the upper portion of the bumps 91, and the range in which the fine particles collide can be made similar to the above-described irradiation range of plasma.
  • the fine particles are not particularly limited as long as the amount of the first protective film residue 131 can be reduced, and specific examples thereof include abrasives made of an inorganic material such as silica sand, alumina, glass, etc .; dry ice fine particles etc. Can be mentioned. Among these, it is preferable that the fine particles are dry ice fine particles in that the remaining of the fine particles in the semiconductor chip with the first protective film can be remarkably easily suppressed by the vaporization.
  • FIG. 8 is an enlarged cross-sectional view for schematically illustrating another example of the residue reduction step in the present embodiment.
  • the curable resin film residue 131 ′ is present on the top portion 910 of the bumps 91 in the laminated structure (2) (semiconductor wafer with curable resin film) 102 described above. It may remain.
  • FIG. 8 (a) shows such a laminated structure (2), and the laminated structure (2) 102 is the same as the laminated structure (2) 102 in FIG. The difference is that the remaining amount of the object 131 ′ is large.
  • the upper portion of at least the bumps 91 of the semiconductor wafer 9 ′ in the laminated structure (2) 102 is irradiated with plasma to form a curable resin film on the upper portions of the bumps 91. Reduce the amount of residue 131 '.
  • FIG. 8 (b) in the same manner as shown in FIG. 5 (b), in the top portion 910 of the bump 91, the lamination in which the remaining of the curable resin film residue 131 'is suppressed.
  • a structure is obtained.
  • a product obtained by performing the residue reduction step on the laminated structure (2) in this manner may be referred to as a laminated structure (10).
  • reference numeral 110 is attached to indicate the laminated structure (10).
  • the irradiation conditions of plasma in the present embodiment can be the same as the irradiation conditions described above except that the irradiation object is different.
  • the curable resin film residue 131 ′ instead of plasma irradiation is used, thereby the curable resin film residue is The amount of 131 'can be reduced. Also in this embodiment, the fine particles can be made to collide in the same manner as described above.
  • FIG. 9 is an enlarged cross-sectional view for schematically illustrating still another example of the residue reduction step in the present embodiment.
  • FIG. 9 (a) shows such a laminated structure (3), and the laminated structure (3) 103 is the same as the laminated structure (3) 103 in FIG. The difference is that the remaining amount of the object 131 is large.
  • the portion of the upper portion of the bump 91 of the semiconductor wafer 9 ′ in the laminated structure (3) 103 where the first protective film residue 131 remains is the first portion.
  • the protective film residue 131 is removed together. More specifically, in the laminated structure (3) 103, the bump 91 of the semiconductor wafer 9 'is cut at a specific distance below the vertex thereof, and the cut piece is removed to thereby form the first bump 91.
  • the upper part where the protective film residue 131 remains is removed together with the first protective film residue 131.
  • laminated-structure (11) 111 which the shape of bump changed is obtained.
  • a method of cutting a specific portion of the bump 91 there is a method of cutting the bump 91 using a dicing blade.
  • An ordinary dicing sheet can be used as the dicing sheet in this case.
  • the cutting of the specific portion of the bump 91 using a dicing blade can be performed by the same method as dicing of a normal semiconductor wafer except that the cutting portion is different.
  • the rotation speed of the blade is preferably 20000 to 45000 rpm
  • the feed speed (moving speed) of the blade is preferably 10 to 100 mm / s.
  • the first protective film is provided on the bump formation surface of the semiconductor wafer in the laminated structure (3) before the specific portion of the bump 91 is cut like this, and the back surface of the semiconductor wafer What is constituted by providing a dicing tape is sometimes referred to as "laminated structure (7)".
  • the cut site of the bump 91 in the residue reduction step is not particularly limited as long as the amount of the first protective film residue 131 can be sufficiently reduced.
  • the distance from the vertex of the bump is preferably any distance of 0.15 H to 0.4 H
  • the lower site more preferably, the lower site by any distance of 0.18 H to 0.35 H, and further preferably, the lower site by any distance of 0.21 H to 0.3 H, is the cut site of the bump. is there.
  • the portion specified in the above numerical range should be included in the cut portion. Is preferred.
  • the semiconductor chip 3 with the first protective film is obtained by performing the same process using the stacked structure (7) instead of the stacked structure (3) 103.
  • the laminated structure (7) the one in which the specific part of the bump is cut as described above is referred to as "laminated structure (8)", and further, in the laminated structure (8).
  • the semiconductor wafer may be singulated with the first protective film to form a semiconductor chip, which may be referred to as a “laminated structure (9)”.
  • the upper portion of the bump 91 is removed together with the first protective film residue 131, but depending on the conditions in any of the steps until the target semiconductor chip with the first protective film is obtained, a small amount of The first protective film residue 131 may remain on the top portion 920 of the bump 92.
  • the semiconductor chip with a first protective film in such a state is the semiconductor chip 4 with a first protective film shown in FIG.
  • the residue reduction step in the present embodiment is as described above, It may be performed after the dividing step.
  • the object to be cut in this case is not the bumps 91 of the semiconductor wafer 9 'but the bumps 91 of the semiconductor chip 9 (in other words, the first protective film residue 131 remains, not the laminated structure (3)). It becomes the semiconductor chip 1 with a protective film).
  • a residue reduction process can be performed by the same method as the above-mentioned case except this point. However, it is preferable to perform the residue reduction step in the present embodiment after the first protective film formation step and before the division step in that cutting of the specific portion of the bump 91 is easier.
  • FIG. 10 is an enlarged cross-sectional view for schematically illustrating still another example of the residue reduction step in the present embodiment.
  • the curable resin is applied to the top portion 910 of the bumps 91 in the laminated structure (2) (semiconductor wafer with curable resin film) 102 described above.
  • Film residue 131 ' may remain.
  • FIG. 10 (a) shows such a laminated structure (2), and the laminated structure (2) 102 is the same as the laminated structure (2) 102 in FIG. The difference is that the remaining amount of the object 131 ′ is large.
  • the portion of the upper portion of the bumps 91 of the semiconductor wafer 9 ′ in the laminated structure (2) 102 where the curable resin film residue 131 ′ remains is cured. Resin film residue 131 'together. More specifically, in the laminated structure (2) 102, the bumps 91 of the semiconductor wafer 9 'are cut at a specific distance below the apex thereof, and the cut pieces are removed, whereby the curability of the bumps 91 is achieved. The upper portion where the resin film residue 131 'remains is removed together with the curable resin film residue 131'. Thereby, as shown in FIG.10 (b), laminated-structure (12) 112 which the shape of bump changed is obtained.
  • the cutting conditions of the bumps 91 in the present embodiment can be the same as the cutting conditions described above, except that the object to be cut is different.
  • the manufacturing method of the semiconductor chip with the first protective film in which the top of the bump is a curved surface as shown in FIGS. 1 and 2, and the bumps as shown in FIGS. 3 and 4.
  • the manufacturing method of the semiconductor chip with a 1st protective film whose top of the head is a plane was explained.
  • the method of manufacturing the semiconductor chip with a first protective film, in which the top of the bump is flat removes a part of the bump of the semiconductor wafer or the semiconductor chip together with the residue adhering thereto. Process (residue reduction process).
  • the method of manufacturing a semiconductor chip with a first protective film without such a residue reduction process wastes a part of the bump and a part of the material used to form the first protective film.
  • the amount of removal of the bumps can be made the minimum necessary amount to achieve the purpose, and the excessive amount is suppressed It has the advantage of being able to
  • the semiconductor chip with a first protective film obtained by the manufacturing method not having the residue reduction step can be obtained by the first manufacturing method having the residue reduction step in that the height of the bumps can be easily increased. It is advantageous over a semiconductor chip with a protective film.
  • the semiconductor chip with a first protective film which needs to carry out a residue reduction step at the time of manufacture between the bump and the surface of a portion near the bump forming surface of the semiconductor chip and the first protective film, There is a tendency for fine gaps to easily occur. This is because, in the pasting process, when the residue of the curable resin film is likely to remain on the top of the bump, between the surface of the bump near the surface on which the bump is formed and the curable resin film, This is because a fine gap tends to be generated.
  • the semiconductor chip with the first protective film obtained by the manufacturing method not having the residue reduction step is advantageous in that the void portion is not easily generated and the protective effect by the first protective film is higher. .
  • the manufacturing method of the semiconductor chip with a first protective film shown in FIGS. 1 to 4 has been mainly described, but other semiconductor chips with a first protective film are also required other processes based on their structures.
  • it can manufacture suitably by the manufacturing method which has separately at suitable timing.
  • the evaluation method of the semiconductor chip and first protective film laminate of the present invention is formed on the semiconductor chip and the surface (bump formation surface) of the semiconductor chip having bumps.
  • An evaluation method of a semiconductor chip-first protection film laminate comprising: X-ray photoelectron spectroscopy of a top portion of the bump in the semiconductor chip-first protection film laminate
  • the analysis is performed by the method (XPS) to determine the ratio of the concentration of tin to the total concentration of carbon, oxygen, silicon and tin, and when the ratio of the concentration of tin is 5% or more, the semiconductor chip ⁇ first
  • the protective film laminate is a target semiconductor chip with a first protective film, and the ratio of the concentration of tin is less than 5%
  • the semiconductor chip / first protective film laminate is Target first protective film It is determined that the semiconductor chip is not attached.
  • the semiconductor chip / first protective film laminate is the same as the semiconductor chip with the first protective film described above except that the ratio of the concentration of tin is not specified, and the ratio of the ratio of the concentration of tin is Depending on the specific result, it may be a semiconductor chip with a first protective film, or may be other than that.
  • the semiconductor chip / first protective film laminate to be evaluated is the semiconductor chip with the first protective film of the present invention described above It can be determined. Then, whether or not the semiconductor chip / first protective film laminate can increase the bonding strength between the bumps and the substrate, and the degree of electrical connection in the joined body of the semiconductor chip and the substrate It can be determined whether (conductivity) can be increased. Then, it can be determined whether or not the semiconductor chip-first protective film laminate can finally constitute a highly reliable semiconductor package.
  • the XPS analysis of the top of the bump in the semiconductor chip / first protective film laminate is the case of the XPS analysis of the top of the bump in the semiconductor chip with the first protective film described above. And can be done in the same way.
  • the semiconductor chip / first protective film laminate before determination in which the ratio of the concentration of the tin is large to the extent that it is determined to be the semiconductor chip with the first protective film, is, for example, the first protection shown in FIG. It has the same configuration as the filmed semiconductor chip.
  • the semiconductor chip / first protective film laminate before the determination in which the ratio of the concentration of the tin is small to such an extent that the semiconductor chip with the first protective film is not determined, is, for example, the first shown in FIG.
  • the semiconductor chip with a protective film has a configuration similar to that in which the amount of the first protective film residue on the bump is further increased.
  • Polymer component (A) Polymer component (A) -1: polyvinyl butyral having structural units represented by the following formulas (i) -1, (i) -2 and (i) -3 ("S-Lec BL-10" manufactured by Sekisui Chemical Co., Ltd.) , Weight average molecular weight 25,000, glass transition temperature 59 ° C)
  • l 1 is about 28, m 1 is 1 to 3, and n 1 is an integer of 68 to 74.
  • Epoxy resin (B1) -1 Liquid bisphenol A type epoxy resin (manufactured by DIC "EPICLON EXA-4810-1000", weight average molecular weight 4300, epoxy equivalent 408 g / eq)
  • Epoxy resin (B1) -2 dicyclopentadiene type epoxy resin ("EPICLON HP-7200" manufactured by DIC, molecular weight 550, epoxy equivalent 254 to 264 g / eq) ⁇ Heat curing agent (B2) Thermosetting agent (B2) -1: Novolak-type phenol resin ("Shonol (registered trademark) BRG-556" manufactured by Showa Denko KK) ⁇ Hardening accelerator (C) Hardening accelerator (C) -1: 2-phenyl-4,5-dihydroxymethylimidazole ("Cuazole 2PHZ” manufactured by Shikoku Kasei Kogyo Co., Ltd.) ⁇ Filler (D) Filler (D) -1: Sp
  • Example 1 Production of Sheet for Forming First Protective Film >> ⁇ Production of Composition for Forming Thermosetting Resin Film> Polymer component (A) -1 (9.9 parts by mass), epoxy resin (B1) -1 (37.8 parts by mass), epoxy resin (B1) -2 (25.0 parts by mass), thermosetting agent ( B2) -1 (18.1 parts by mass), curing accelerator (C) -1 (0.2 parts by mass) and filler (D) -1 (9.0 parts by mass) are dissolved or dispersed in methyl ethyl ketone By stirring at 23 ° C., a composition for forming a resin layer (III) having a solid content concentration of 55% by mass was obtained as a composition for forming a thermosetting resin film.
  • the compounding quantity of each component shown here is all solid content.
  • thermosetting resin film obtained above is used on the release-treated surface of a release film (“SP-PET 381031” manufactured by Lintec Corporation, 38 ⁇ m thick) obtained by release treatment of one side of a polyethylene terephthalate film by silicone treatment.
  • the composition for formation was applied and dried by heating at 120 ° C. for 2 minutes to form a thermosetting resin film with a thickness of 30 ⁇ m.
  • thermosetting resin film on the above-mentioned release film is bonded to the sticking target layer of the sticking tape to obtain the first A support sheet, a thermosetting resin film, and a release film were laminated in this thickness direction in this order, to obtain a first protective film-forming sheet having a structure shown in FIG.
  • the shape of the bumps is generally spherical as shown in FIG. 1, the height of the bumps is 210 ⁇ m, the width of the bumps is 250 ⁇ m, and the distance between adjacent bumps is 400 ⁇ m.
  • the thickness of the removed portion was 780 ⁇ m.
  • the surface (rear surface) opposite to the bump formation surface of the semiconductor wafer in the obtained laminated structure (1) was ground.
  • the back surface was ground until the thickness of the portion excluding the bumps of the semiconductor wafer became 280 ⁇ m.
  • the laminated structure (1) after grinding the back surface under the conditions of illuminance 230 mW / cm 2 and light quantity 570 mJ / cm 2
  • the first protective film forming sheet was irradiated with ultraviolet light.
  • the layer in contact with the thermosetting resin film in the first support sheet in the first protective film-forming sheet was cured by ultraviolet light.
  • the first support sheet (sticking sheet) was peeled from the thermosetting resin film in the laminated structure (1) using a sticking apparatus (“RAD-2700 F / 12” manufactured by Lintec Corporation).
  • the laminated structure (2) semiconductor wafer with a curable resin film
  • thermosetting resin film in (2) was thermally cured to form a first protective film.
  • a laminated structure (3) (a semiconductor wafer with a first protective film) including the first protective film provided on the bump formation surface of the semiconductor wafer was obtained.
  • plasma is applied to the bump upper portion of the semiconductor wafer in the laminated structure (3) obtained above using a plasma irradiator (“RIE-10 NRT” manufactured by samco), and An operation to reduce the amount of the first protective film residue was performed.
  • the plasma was irradiated for 5 minutes by setting the flow rate of tetrafluoromethane (CF 4 ) gas as 40 sccm, the flow rate of oxygen gas as 80 sccm, the output as 250 W, and the pressure after gas introduction as 100 Pa.
  • CF 4 tetrafluoromethane
  • a dicing tape ("Adwill D-675" manufactured by Lintec Corporation) is attached to the back surface (ground surface) of the semiconductor wafer in the obtained laminated structure (4) to form a bump-formed surface of the semiconductor wafer
  • a laminated structure (5) was obtained, which was provided with the first protective film and the dicing tape on the back surface.
  • the semiconductor wafer in the laminated structure (5) is singulated together with the first protective film (Ie, the laminated structure (4) was singulated) to form a semiconductor chip having a size of 6 mm ⁇ 6 mm to obtain a laminated structure (6).
  • the semiconductor chip / first protective film laminate configured to include the first protective film on the bump formation surface of the semiconductor chip was separated from the dicing tape after the ultraviolet irradiation and picked up.
  • FIG. 11 is a plan view for explaining the arrangement position on the dicing tape of the semiconductor chip-first protective film laminate to be analyzed. As shown in FIG. 11, 144 semiconductor chip / first protective film laminates 1 ′ are disposed on the dicing tape 8.
  • XPS analysis was performed on six semiconductor chip / first protective film laminates 1 ′ denoted by reference numerals 1′-1 to 1′-6.
  • XPS analysis was performed on the upper region including the top of the bump.
  • the upper area is an area recognized as a circular area including the top of the bump and having a diameter of 20 ⁇ m when the bump is viewed from above and viewed in plan from above.
  • required tin was employ
  • the XPS analysis was performed using an X-ray photoelectron spectrometer ("Quantra SXM” manufactured by ULVAC, Inc.) under the conditions of an irradiation angle of 45 °, an X-ray beam diameter of 20 ⁇ m ⁇ , and an output of 4.5 W. The results are shown in the column “Proportion of Sn concentration (%)" in Table 1.
  • the semiconductor chip / first protective film laminate after pickup obtained above is placed on the surface of a substrate (KIT WLP (s) 300 P / 400 P, thickness 1000 ⁇ m) coated with flux, and it is at 350 ° C.
  • the substrate was bonded by heating for 2 minutes. At this time, the bumps in the semiconductor chip-first protective film laminate were in contact with the surface of the substrate. The substrate was then cleaned to remove the flux. Next, a resistance value between the semiconductor chip and the substrate was measured using a tester (“3422 HiCARDTESTER” manufactured by HIOKI).
  • the semiconductor chip / first protective film laminate after pickup obtained above is placed on the surface of the substrate (KIT WLP (s) 300 P / 400 P, thickness (1000) ⁇ m) coated with flux, The substrate was bonded by heating at 260 ° C. for 2 minutes. At this time, the bumps in the semiconductor chip-first protective film laminate were in contact with the surface of the substrate. The substrate was then cleaned to remove the flux. Next, the obtained conjugate is stored in a TCT tester (“TSE-11A” manufactured by ESPEC), maintained at ⁇ 40 ° C. for 5 minutes, heated to 125 ° C., and kept at 125 ° C.
  • TCT tester TSE-11A manufactured by ESPEC
  • This stored assembly was placed under temperature cycling conditions where it was maintained for minutes and then cooled to -40.degree. Then, every time this temperature cycle is repeated 100 times (every 100 cycles), the bonded body is taken out of the TCT tester, and in the case of the evaluation of "the degree of electrical connection in the bonded body of the substrate and the semiconductor chip" described above. In the same manner as in the above, the degree of electrical connection in the removed conjugate was evaluated. Then, the Weibull distribution is created from the evaluation result, and the TCT reliability when the number of cycles when the failure rate is 63.2% is 1360 or more is determined as A (good), and is less than 1360. The TCT reliability of was determined to be B (defect).
  • the number of cycles of 1360 is the number of cycles in Reference Example 1 described later, and this evaluation is performed based on Reference Example 1.
  • the “failure” is caused by the destruction of the bonding structure between the bump and the substrate.
  • the results are shown in the column “TCT reliability" in Table 1.
  • Example 2 In the same manner as in Example 1, a sheet for forming a first protective film was produced. Then, the semiconductor chip is manufactured in the same manner as in Example 1 except that the plasma irradiation time is changed to 5 minutes instead of 5 minutes for the upper portion of the bump of the semiconductor wafer in the laminated structure (3). -The 1st protective film laminated body (semiconductor chip with a 1st protective film) was manufactured, and bump was evaluated. The results are shown in Table 1.
  • Example 3 In the same manner as in Example 1, a sheet for forming a first protective film was produced. Then, the semiconductor chip is manufactured in the same manner as in Example 1 except that the plasma irradiation time is changed to 5 minutes instead of 5 minutes for the bump upper portion of the semiconductor wafer in the laminated structure (3). -The 1st protective film laminated body (semiconductor chip with a 1st protective film) was manufactured, and bump was evaluated. The results are shown in Table 1.
  • Example 4 Production of Sheet for Forming First Protective Film >> In the same manner as in Example 1, a sheet for forming a first protective film was produced.
  • a dicing tape ("Adwill D-675" manufactured by Lintec Corporation) is attached to the back surface (grind surface) of the semiconductor wafer in the obtained laminated structure (3) to form a bump-formed surface of the semiconductor wafer A laminated structure (7) was obtained, which was provided with the first protective film and the dicing tape on the back surface.
  • the bumps were processed under conditions of a blade rotational speed of 30,000 rpm and a blade feed speed of 50 mm / s. At a portion 50 ⁇ m below the apex, cutting was performed in a direction parallel to the bump formation surface to remove a cut piece.
  • the bump has a height of 160 ⁇ m and the head is flat except for the example 1
  • the shape of the bumps is as shown in FIG.
  • the obtained laminated structure (8) was further washed using the washing unit of the dicing apparatus.
  • a laminated structure (9) was obtained by singulating together with 1 protective film and forming a semiconductor chip having a size of 6 mm ⁇ 6 mm.
  • the dicing tape in the laminated structure (9) was irradiated with ultraviolet light using the laminated structure (9) obtained above in place of the laminated structure (6) described above. Thereby, the layer in contact with the semiconductor chip in the dicing tape was cured by ultraviolet light.
  • the semiconductor chip / first protective film laminate configured to have the first protective film on the bump formed surface of the semiconductor chip is separated from the dicing tape after the ultraviolet irradiation. I picked it up.
  • the semiconductor in the laminated structure (1R) is the same method as in Example 1 except that the laminated structure (1R) obtained above is used instead of the above-mentioned laminated structure (1)
  • the backside of the wafer was ground until the thickness of the portion excluding the bumps was 280 ⁇ m.
  • a dicing tape (“Adwill D-675” manufactured by Lintec Corporation) was attached to the back surface (ground surface) of the semiconductor wafer to obtain a laminated structure (2R).
  • Example 2 In the same manner as in Example 1, except that the above-described laminated structure (4R) was used instead of the above-described laminated structure (6), the conditions in the laminated structure (4R) were used.
  • the dicing tape was irradiated with ultraviolet light. Thereby, the layer in contact with the semiconductor chip in the dicing tape was cured by ultraviolet light.
  • the semiconductor chip was separated from the dicing tape after ultraviolet irradiation and picked up.
  • Comparative Example 2 In the same manner as in Example 1, a sheet for forming a first protective film was produced. Then, in the same manner as in Example 1, except that the plasma irradiation time was changed to 5 minutes instead of 5 minutes for the bump upper portion of the semiconductor wafer in the laminated structure (3), A semiconductor chip / first protective film laminate was manufactured, and bumps were evaluated. The results are shown in Table 1.
  • the ratio of the concentration of tin is 6.5% or more (6.5 to 13.3%).
  • the amount of the first protective film residue was small at the top of the bump. This is carried out by performing the above-mentioned residue reduction step by irradiating plasma on the bump top of the semiconductor wafer for 5 to 1 minutes in the manufacturing of the semiconductor chip / first protective film laminate in Examples 1 to 3.
  • the residue reduction step was performed by removing the upper part of the bump.
  • the bonding strength between the copper plate and the bump was high, and the shear failure in the bonded body of the copper plate and the semiconductor chip was cohesive failure (breaking of the bump).
  • the degree of electrical connection in the joined body of the substrate and the semiconductor chip was also high.
  • the TCT reliability of the joined object of a substrate and a semiconductor chip was also high.
  • the semiconductor chip / first protective film laminate manufactured in Examples 1 to 4 is the target semiconductor chip with a first protective film.
  • the semiconductor chip with a first protective film (semiconductor chip / first protective film laminate) of Examples 1 to 4 has high reliability by suppressing the remaining of the first protective film residue at the top of the bump. It has been confirmed that the semiconductor package can be configured.
  • the first protective film is not provided, there is no factor that the ratio of the concentration of tin decreases, and the ratio of the concentration of tin is actually high level .
  • the above-mentioned evaluation results in Examples 1 to 4, particularly Examples 1, 2 and 4 are at the same level as the evaluation results in Reference Example 1, and in Examples 1 to 4, the first protection at the top of the bump It was judged that the reduction effect of the amount of film residue was high.
  • the concentration of the tin is lower than that of Examples 1 to 4 because the residue reduction step is not performed.
  • the proportion was significantly lower and substantially no tin could be detected.
  • the bond strength between the copper plate and the bump is low reflecting the above result, and the shear failure in the bonded body of the copper plate and the semiconductor chip is an interface failure (interface failure between the bump and the copper plate )Met.
  • the degree of electrical connection in the bonded body of the substrate and the semiconductor chip was also low. Then, when evaluating the TCT reliability of the bonded body of the substrate and the semiconductor chip, the bonded structure between the bump and the substrate is broken before the temperature cycle is completed for one cycle.
  • the tin concentration ratio was 3.4%, and the amount of the first protective film residue was large at the top of the bump. This is because, during the production of the semiconductor chip / first protective film laminate, the irradiation time of plasma to the bump upper portion of the semiconductor wafer is short, and the reduction of the amount of the first protective film residue on the bump upper portion is insufficient. is there.
  • the bond strength between the copper plate and the bump was high reflecting such results, the degree of electrical connection in the bonded body of the substrate and the semiconductor chip was low. And the TCT reliability of the joined object of a substrate and a semiconductor chip was also low.
  • the present invention can be used to manufacture a semiconductor chip or the like having bumps in the connection pad portion, which is used in flip chip mounting.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Adhesive Tapes (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Dicing (AREA)
  • Wire Bonding (AREA)

Abstract

本実施形態の第1保護膜付き半導体チップは、半導体チップと、前記半導体チップのバンプを有する面に形成された第1保護膜と、を備えており、前記バンプの頭頂部について、X線光電子分光法によって分析を行ったとき、炭素、酸素、ケイ素及びスズの合計濃度に対するスズの濃度の割合が、5%以上となる。

Description

第1保護膜付き半導体チップ、第1保護膜付き半導体チップの製造方法、及び半導体チップ・第1保護膜積層体の評価方法
 本発明は、第1保護膜付き半導体チップ、第1保護膜付き半導体チップの製造方法、及び半導体チップ・第1保護膜積層体の評価方法に関する。
 本願は、2017年11月17日に、日本に出願された特願2017-221987号に基づき優先権を主張し、その内容をここに援用する。
 従来、MPUやゲートアレー等に用いる多ピンのLSIパッケージをプリント配線基板に実装する場合には、半導体チップとして、その接続パッド部に共晶ハンダ、高温ハンダ、金等からなる凸状電極(以下、本明細書においては「バンプ」と称する)が形成されたものを用い、所謂フェースダウン方式により、それらのバンプをチップ搭載用基板上の相対応する端子部に対面、接触させ、溶融/拡散接合するフリップチップ実装方法が採用されてきた。
 この実装方法で用いる半導体チップは、例えば、回路面にバンプが形成された半導体ウエハの、回路面(換言するとバンプ形成面)とは反対側の面を研削したり、半導体ウエハをダイシングして個片化することにより得られる。このような半導体チップを得る過程においては、通常、半導体ウエハのバンプ形成面及びバンプを保護する目的で、硬化性樹脂フィルムをバンプ形成面に貼付し、このフィルムを硬化させて、バンプ形成面に保護膜を形成する。
 硬化性樹脂フィルムは、通常、加熱により軟化した状態で、半導体ウエハのバンプ形成面に貼付される。このようにすることにより、バンプの頭頂部を含む上部は、硬化性樹脂フィルムを貫通して、硬化性樹脂フィルムから突出する。その一方で、硬化性樹脂フィルムは、半導体ウエハのバンプを覆うようにしてバンプ間に広がり、バンプ形成面に密着するとともに、バンプの表面、特にバンプ形成面の近傍部位の表面を覆って、バンプを埋め込む。この後、硬化性樹脂フィルムは、さらに硬化によって、半導体ウエハのバンプ形成面と、バンプのバンプ形成面の近傍部位の表面と、を被覆して、これらの領域を保護する保護膜となる。さらに、半導体ウエハは、半導体チップに個片化され、最終的に、バンプ形成面に保護膜を備えた半導体チップ(本明細書においては、「保護膜付き半導体チップ」と称することがある)となる。
 このような保護膜付き半導体チップは、基板上に搭載されて半導体パッケージとなり、さらにこの半導体パッケージを用いて、目的とする半導体装置が構成される。半導体パッケージ及び半導体装置が正常に機能するためには、保護膜付き半導体チップのバンプと、基板上の回路と、の電気的接続が阻害されないことが必要である。ところが、硬化性樹脂フィルムが、半導体ウエハのバンプ形成面に対して適切に貼付されなければ、バンプの硬化性樹脂フィルムからの突出が不十分となったり、バンプの頭頂部に硬化性樹脂フィルムの一部が残存したりしてしまう。このようにバンプの頭頂部に残存した硬化性樹脂フィルムは、他の領域の硬化性樹脂フィルムの場合と同様に硬化して、保護膜と同様の組成を有する硬化物(本明細書においては、「保護膜残留物」と称することがある)となる。すると、バンプの頭頂部は、バンプと基板上の回路との電気的接続領域であるため、保護膜残留物の量が多い場合には、保護膜付き半導体チップのバンプと、基板上の回路と、の電気的接続が阻害されてしまう。その結果、半導体パッケージの信頼性が低下し、半導体装置が正常に機能しなくなってしまう。
 すなわち、保護膜付き半導体チップの基板上への搭載前の段階で、保護膜付き半導体チップのバンプの頭頂部においては、保護膜残留物が存在しないか、又は保護膜残留物の量が少ないことが求められる。
 このように、バンプの頭頂部において、保護膜残留物の残存を抑制できるとされている方法としては、重量平均分子量が2万~100万の高分子量成分と、熱硬化性樹脂と、硬化促進剤と、光反応性モノマーと、光開始剤と、を含有する硬化性樹脂フィルム(粘接着剤層)を用いる方法が開示されている(特許文献1参照)。
日本国特許第5515811号公報
 通常、バンプの表面には、微小な凹凸が多数存在し、バンプの頭頂部に保護膜残留物が存在する場合には、バンプ表面の凹部内に保護膜残留物が侵入している可能性がある。したがって、バンプの頭頂部における保護膜残留物の量の評価は、容易ではない。
 これに対して、特許文献1に記載の方法では、硬化性樹脂フィルム(粘接着剤層)に由来する、バンプの頭頂部における残留物の有無を、目視又は顕微鏡を用いた観察によって評価している。このように、この方法では、バンプの頭頂部における保護膜残留物の量を定量するなど、より高精度な評価は行っておらず、バンプの頭頂部における残留物の残存を実際に抑制できているか定かでなはい、という問題点があった。さらに、この方法で得られた保護膜付き半導体チップを用いて、半導体パッケージの信頼性が評価されておらず、半導体パッケージが十分な信頼性を有しているか定かではない、という問題点があった。
 本発明は、バンプの頭頂部において保護膜残留物の残存が抑制されており、十分な信頼性を有する半導体パッケージを構成可能な保護膜付き半導体チップと、前記保護膜付き半導体チップの製造方法と、前記保護膜付き半導体チップであるか否かを高精度に評価できる評価方法と、を提供することを目的とする。
 本発明は、半導体チップと、前記半導体チップのバンプを有する面に形成された第1保護膜と、を備え、前記バンプの頭頂部について、X線光電子分光法によって分析を行ったとき、炭素、酸素、ケイ素及びスズの合計濃度に対するスズの濃度の割合が、5%以上となる、第1保護膜付き半導体チップを提供する。
 また、本発明は、前記第1保護膜付き半導体チップの製造方法であって、半導体ウエハのバンプを有する面に、硬化性樹脂フィルムを貼付する工程と、貼付後の前記硬化性樹脂フィルムを硬化させることにより、第1保護膜を形成する工程と、前記半導体ウエハを分割することにより、半導体チップを得る工程と、を有し、前記硬化性樹脂フィルムを貼付する工程において、前記スズの濃度の割合が5%以上となるように、前記バンプの頭頂部を前記硬化性樹脂フィルムから突出させるか、又は、前記硬化性樹脂フィルムを貼付する工程の後に、さらに、前記スズの濃度の割合が5%以上となるように、前記バンプ上の残留物の量を低減する工程を有する、第1保護膜付き半導体チップの製造方法を提供する。
 また、本発明は、半導体チップと、前記半導体チップのバンプを有する面に形成された第1保護膜と、を備えた、半導体チップ・第1保護膜積層体の評価方法であって、前記半導体チップ・第1保護膜積層体中の前記バンプの頭頂部について、X線光電子分光法によって分析を行い、炭素、酸素、ケイ素及びスズの合計濃度に対するスズの濃度の割合を求め、前記スズの濃度の割合が5%以上である場合には、前記半導体チップ・第1保護膜積層体を、目的とする第1保護膜付き半導体チップであると判定し、前記スズの濃度の割合が5%未満である場合には、前記半導体チップ・第1保護膜積層体を、目的とする第1保護膜付き半導体チップではないと判定する、半導体チップ・第1保護膜積層体の評価方法を提供する。
 本発明の第1保護膜付き半導体チップを用いることで、十分な信頼性を有する半導体パッケージを構成できる。
 本発明の第1保護膜付き半導体チップの製造方法を適用することで、上述の第1保護膜付き半導体チップを製造できる。
 本発明の半導体チップ・第1保護膜積層体の評価方法を適用することで、半導体チップ・第1保護膜積層体が、上述の第1保護膜付き半導体チップであるか否かを高精度に評価できる。
本発明の第1保護膜付き半導体チップの一実施形態を模式的に示す拡大断面図である。 本発明の第1保護膜付き半導体チップの他の実施形態を模式的に示す拡大断面図である。 本発明の第1保護膜付き半導体チップのさらに他の実施形態を模式的に示す拡大断面図である。 本発明の第1保護膜付き半導体チップのさらに他の実施形態を模式的に示す拡大断面図である。 本発明の第1保護膜付き半導体チップの製造方法の一実施形態を模式的に説明するための拡大断面図である。 本発明の第1保護膜付き半導体チップの製造方法で用いる、第1保護膜形成用シートの一例を模式的に示す拡大断面図である。 本発明の第1保護膜付き半導体チップの製造方法における、バンプ上の残留物の量を低減する工程の一例を、模式的に説明するための拡大断面図である。 本発明の第1保護膜付き半導体チップの製造方法における、バンプ上の残留物の量を低減する工程の他の例を、模式的に説明するための拡大断面図である。 本発明の第1保護膜付き半導体チップの製造方法における、バンプ上の残留物の量を低減する工程のさらに他の例を、模式的に説明するための拡大断面図である。 本発明の第1保護膜付き半導体チップの製造方法における、バンプ上の残留物の量を低減する工程のさらに他の例を、模式的に説明するための拡大断面図である。 実施例において、バンプの頭頂部についてXPS分析を行う対象である半導体チップ・第1保護膜積層体の、ダイシングテープ上での配置位置を説明するための平面図である。
◇第1保護膜付き半導体チップ
 本発明の第1保護膜付き半導体チップは、半導体チップと、前記半導体チップのバンプを有する面(本明細書においては、「バンプ形成面」と称することがある)に形成された第1保護膜と、を備えており、前記バンプの頭頂部について、X線光電子分光法(X-ray Photoelectron Spectroscopy、本明細書においては「XPS」と称することがある)によって分析を行ったとき、炭素、酸素、ケイ素及びスズの合計濃度に対するスズの濃度の割合(本明細書においては、単に「スズの濃度の割合」と称することがある)が、5%以上となる。
 バンプの頭頂部をXPSによって分析したときには、通常、スズ(Sn)のシグナルが検出される。これは、バンプがその構成材料としてスズを含有するためである。
 その一方で、バンプは、その構成材料として、有機化合物を含有しない。したがって、バンプの頭頂部をXPSによって分析したときに、炭素(C)のシグナルが検出されるのは、分析領域(すなわちバンプの頭頂部)に、本来は存在しないはずの有機化合物が存在するためである。この有機化合物は、第1保護膜の形成時に用いた硬化性樹脂フィルムに由来する。硬化性樹脂フィルムをバンプ形成面に貼付するときに、バンプの頭頂部に本来は不要な硬化性樹脂フィルムが残留すると、この残留物(本明細書においては、「硬化性樹脂フィルム残留物」と称することがある)が硬化によって、第1保護膜と同様の組成を有する硬化物(本明細書においては、「第1保護膜残留物」と称することがある)となる。この第1保護膜残留物に、上述の有機化合物が含まれる。このような第1保護膜残留物が存在すると、バンプの頭頂部をXPSによって分析したときに、炭素(C)のシグナルが検出される。また、バンプの頭頂部をXPSによって分析したときには、炭素(C)以外に、酸素(O)及びケイ素(Si)のシグナルも検出される可能性がある。これは、第1保護膜として、シリカ等の非樹脂成分を含有するものが汎用されるためである。なお、本発明の第1保護膜付き半導体チップの製造方法については、後ほど詳しく説明する。
 第1保護膜付き半導体チップにおいて、バンプの頭頂部における前記スズの濃度の割合は5%以上である。これは、バンプの頭頂部において、スズの量に対して炭素、酸素及びケイ素の合計量が一定水準以下であることを意味している。すなわち、第1保護膜付き半導体チップは、バンプの頭頂部において、第1保護膜残留物が存在しないか、又は第1保護膜残留物の量が少なく、第1保護膜残留物の残存が抑制されている。このように、バンプの頭頂部において、第1保護膜残留物の残存が抑制されていることにより、第1保護膜付き半導体チップを用いた場合には、そのバンプと基板との間の接合強度が高くなる。また、その半導体チップと基板との接合体における電気的接続度が高くなり、導電性に優れる。そして、このような第1保護膜付き半導体チップを用いることで、十分な信頼性を有する半導体パッケージを構成でき、良好な特性を有する半導体装置を構成できる。
 なお、本明細書において、「バンプの頭頂部において、第1保護膜残留物の量が少ない」とは、特に断りのない限り、バンプの頭頂部に第1保護膜残留物が僅かに残存しているものの、その残存量が、このバンプを備えた半導体チップを配線基板にフリップチップ実装したときに、半導体チップと配線基板との電気的接続を妨げない程度であること、を意味する。
 また、半導体ウエハのバンプ形成面とは反対側の面を「裏面」と称することがある。
 第1保護膜付き半導体チップ中のバンプの表面には、微小な凹凸が多数存在し、バンプの頭頂部に第1保護膜残留物が存在する場合には、バンプ表面の凹部内に第1保護膜残留物が侵入している可能性がある。このような凹部内の第1保護膜残留物は、視覚的な方法では確認と定量が難しく、第1保護膜残留物の量が少ない場合には、特にその傾向が強い。これに対して、本発明の第1保護膜付き半導体チップにおいては、バンプの頭頂部における第1保護膜残留物の残存の程度が、XPSでの分析結果に基づいて精密に特定されている。したがって、本発明の第1保護膜付き半導体チップは、第1保護膜残留物の量の点において、極めて信頼性が高い。
 第1保護膜付き半導体チップにおいて、バンプの頭頂部における前記スズの濃度の割合([スズの濃度(atomic%)]/[炭素、酸素、ケイ素及びスズの合計濃度(atomic%)]×100)は、5%以上であり、5.4%以上であることが好ましく、5.8%以上であることがより好ましく、6.2%以上であることがさらに好ましく、例えば、7.5%以上、9%以上、10.5%以上及び12%以上等のいずれかであってもよい。前記スズの濃度の割合が前記下限値以上であることで、バンプの頭頂部において、第1保護膜残留物の残存がより抑制されているため、第1保護膜付き半導体チップが奏する本発明の効果がより顕著となり、例えば、半導体パッケージの信頼性がより高くなる。
 第1保護膜付き半導体チップにおいて、バンプの頭頂部における前記スズの濃度の割合の上限値は、100%以下であれば特に限定されない。例えば、前記スズの濃度の割合は、25%以下、及び20%以下、のいずれかであってもよく、このような第1保護膜付き半導体チップは、より容易に製造できる。
 第1保護膜付き半導体チップにおいて、バンプの頭頂部における前記スズの濃度の割合は、上述のいずれかの下限値及び上限値を任意に組み合わせて設定される範囲内となるように、適宜調節できる。
 例えば、一実施形態において、前記スズの濃度の割合は、好ましくは5~25%、より好ましくは5.4~25%、さらに好ましくは5.8~25%、特に好ましくは6.2~25%であり、例えば、7.5~25%、9~25%、10.5~25%、及び12~25%等のいずれかであってもよい。また、一実施形態において、前記スズの濃度の割合は、好ましくは5~20%、より好ましくは5.4~20%、さらに好ましくは5.8~20%、特に好ましくは6.2~20%であり、例えば、7.5~20%、9~20%、10.5~20%、及び12~20%等のいずれかであってもよい。ただし、これらは、前記スズの濃度の割合の一例である。
 XPS分析を行うバンプの頭頂部とは、バンプの頂上を含む上部領域を意味する。前記頭頂部としては、例えば、バンプをその上方から見下ろして平面視したときに、バンプの頂上を含み、かつ、直径が好ましくは10~30μm、より好ましくは15~25μmであり、例えば20μm等である円形領域、として認識される領域が挙げられる。前記直径が前記下限値以上であることで、XPS分析をより高精度に行うことができる。前記直径が前記上限値以下であることで、XPS分析をより高効率で行うことができる。
 バンプの前記上部領域の面が曲面である場合には、バンプの頂上として、半導体チップのバンプ形成面からの高さが最も高い位置を選択できる。一方、バンプの前記上部領域の面が平面である場合には、バンプの頂上として、例えば、その平面の中心(重心)を選択できる。
 バンプの形状については、後ほど詳しく説明する。
 XPSでの分析条件は、特に限定されない。ただし、通常は、X線の照射角度は15~90°であることが好ましく、X線のビーム径は9~100μmであることが好ましく、X線照射時の出力は1~100Wであることが好ましい。このような条件とすることで、より高精度に分析できる。
 X線のビーム径は、XPS分析を行うバンプの頭頂部と同じサイズとすることができる。
 図1は、本発明の第1保護膜付き半導体チップの一実施形態を模式的に示す拡大断面図である。なお、以下の説明で用いる図は、本発明の特徴を分かり易くするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率等が実際と同じであるとは限らない。
 ここに示す第1保護膜付き半導体チップ1は、半導体チップ9と、半導体チップ9のバンプを有する面(バンプ形成面)9aに形成された第1保護膜13と、を備えている。
 第1保護膜付き半導体チップ1において、第1保護膜13は、バンプ形成面9aに密着するとともに、バンプ91の表面91a、特にバンプ形成面9aの近傍部位の表面91aを覆って、バンプ91を埋め込み、これらの領域を保護している。
 図1中、符号9bは、半導体チップ9のバンプ形成面9aとは反対側の面(裏面)を示す。
 バンプ91の頭頂部910は、第1保護膜13を貫通して、突出している。さらに、バンプ91の頭頂部910には、第1保護膜残留物が存在しない。したがって、バンプ91の頭頂部910について、XPS分析を行ったとき、前記スズの濃度の割合は5%以上と、高水準となる。
 バンプ91は、球の一部が平面によって切り取られた形状を有しており、その切り取られて露出した部位に相当する平面が、半導体チップ9のバンプ形成面(回路面)9aに接触した状態となっている。
 バンプ91の形状は、概ね球状であるといえる。
 バンプ91の頭頂部910は、球面の一部であるといえ、曲面となっている。
 バンプ91の高さは特に限定されないが、60~450μmであることが好ましく、120~300μmであることがより好ましく、180~240μmであることが特に好ましい。バンプ91の高さが前記下限値以上であることで、バンプ91の機能をより向上させることができる。また、バンプ91の高さが前記上限値以下であることで、バンプ91の頭頂部910における、第1保護膜残留物の残存を抑制する効果がより高くなる。
 なお、本明細書において、「バンプの高さ」とは、バンプのうち、バンプ形成面から最も高い位置に存在する部位(頂上)での高さを意味する。
 バンプ91の幅は特に限定されないが、170~350μmであることが好ましく、200~320μmであることがより好ましく、230~290μmであることが特に好ましい。バンプ91の幅が前記下限値以上であることで、バンプ91の機能をより向上させることができる。また、バンプ91の幅が前記上限値以下であることで、バンプ91の頭頂部910における、第1保護膜残留物の残存を抑制する効果がより高くなる。
 なお、本明細書において、「バンプの幅」とは、バンプ形成面に対して垂直な方向からバンプを見下ろして平面視したときに、バンプ表面上の異なる2点間を直線で結んで得られる線分の最大値を意味する。
 隣り合うバンプ91間の距離は、特に限定されないが、80~1000μmであることが好ましく、100~800μmであることがより好ましく、120~550μmであることが特に好ましい。前記距離が前記下限値以上であることで、バンプ91の機能をより向上させることができる。また、前記距離が前記上限値以下であることで、バンプ91の頭頂部910における、第1保護膜残留物の残存を抑制する効果がより高くなる。
 なお、本明細書において、「隣り合うバンプ間の距離」とは、隣り合うバンプ同士の中心部間の距離を意味し、「バンプピッチ」と呼ばれることもある。
 ここでは、第1保護膜付き半導体チップとして、バンプの頭頂部に、第1保護膜残留物が存在しないものについて示しているが、本発明の第1保護膜付き半導体チップは、バンプの頭頂部に、第1保護膜残留物が少量存在したものであってもよい。このときの第1保護膜残留物の量は、上述のように少なければよい。
 図2は、このような本発明の第1保護膜付き半導体チップの一実施形態を模式的に示す拡大断面図である。なお、図2以降の図において、既に説明済みの図に示すものと同じ構成要素には、その説明済みの図の場合と同じ符号を付し、その詳細な説明は省略する。
 ここに示す第1保護膜付き半導体チップ2は、バンプ91の頭頂部910に、第1保護膜残留物131が少量存在している点以外は、図1に示す第1保護膜付き半導体チップ1と同じである。
 第1保護膜付き半導体チップ2は、第1保護膜残留物131が残存しているものの、バンプ91の頭頂部910は、第1保護膜13を貫通して、突出している。
 第1保護膜付き半導体チップ2は、バンプ91の頭頂部910において、第1保護膜残留物131の量が少なく、第1保護膜残留物131の残存が抑制されている。したがって、バンプ91の頭頂部910について、XPS分析を行ったとき、前記スズの濃度の割合は5%以上と、高水準となる。
 第1保護膜付き半導体チップ2においては、第1保護膜残留物131が、バンプ91の頭頂部910のうち、頂上をほぼ中心として、バンプ91の表面91aの狭い領域に広がって存在している場合を示している。ただし、第1保護膜残留物131が存在する場合のその存在領域は、これに限定されず、例えば、バンプ91の頂上又はその近傍を中心としていなくてもよい。なお、本明細書において、「バンプの頂上(バンプの頭頂部中の頂上)」とは、バンプの表面のうち、半導体チップのバンプ形成面からの高さが最も高い箇所を意味する。
 ここまでは、第1保護膜付き半導体チップとして、バンプが概ね球状であるものについて説明したが、本発明の第1保護膜付き半導体チップにおいて、バンプの形状はこれに限定されない。
 図3は、本発明の第1保護膜付き半導体チップのうち、バンプの形状が概ね球状ではない場合の一実施形態を模式的に示す拡大断面図である。
 ここに示す第1保護膜付き半導体チップ3は、バンプ91に代えてバンプ92を備える(すなわち、バンプの形状が異なる)点以外は、図1に示す第1保護膜付き半導体チップ1と同じである。
 より具体的には、バンプ92は、図1に示すバンプ91において、頭頂部910が曲面ではなく、平面となったものである。すなわち、バンプ92の頭頂部920は平面である。
 なお、図3中、符号92aは、バンプ92のうち、頭頂部920以外の領域の表面を示す。
 バンプ92の頭頂部920の面は、例えば、半導体チップ9のバンプ形成面9aに対して、平行であってもよいし、平行でなくてもよい。そして、平行でない場合、頭頂部920の面の向きは、特に限定されない。
 バンプ92の頭頂部920は、第1保護膜13を貫通して、突出している。さらに、バンプ92の頭頂部920には、第1保護膜残留物が存在しない。したがって、バンプ92の頭頂部920について、XPS分析を行ったとき、前記スズの濃度の割合は5%以上と、高水準となる。
 バンプ92の幅と、隣り合うバンプ92間の距離は、図1に示すバンプ91の場合と同じである。
 バンプ92の高さは特に限定されないが、40~390μmであることが好ましく、70~250μmであることがより好ましく、130~190μmであることが特に好ましい。バンプ92の高さが前記下限値以上であることで、バンプ92の機能をより向上させることができる。また、バンプ92の高さが前記上限値以下であることで、バンプ92の頭頂部920における、第1保護膜残留物の残存を抑制する効果がより高くなる。
 ここでは、第1保護膜付き半導体チップとして、バンプの頭頂部に、第1保護膜残留物が存在しないものについて示しているが、本発明の第1保護膜付き半導体チップは、バンプの頭頂部に、第1保護膜残留物が少量存在したものであってもよい。このときの第1保護膜残留物の量は、上述のように少なければよい。
 図4は、本発明の第1保護膜付き半導体チップのうち、バンプの頭頂部に第1保護膜残留物が少量存在している場合の一実施形態を模式的に示す拡大断面図である。
 ここに示す第1保護膜付き半導体チップ4は、バンプ92の頭頂部920に、第1保護膜残留物131が少量存在している点以外は、図3に示す第1保護膜付き半導体チップ3と同じである。
 第1保護膜付き半導体チップ4は、第1保護膜残留物131が残存しているものの、バンプ92の頭頂部920は、第1保護膜13を貫通して、突出している。
 第1保護膜付き半導体チップ4は、バンプ92の頭頂部920において、第1保護膜残留物131の量が少なく、第1保護膜残留物131の残存が抑制されている。したがって、バンプ92の頭頂部920について、XPS分析を行ったとき、前記スズの濃度の割合は5%以上と、高水準となる。
 第1保護膜付き半導体チップ4においては、第1保護膜残留物131が、バンプ92の頭頂部920のうち、そのほぼ中央から、周囲の狭い領域に広がって存在している場合を示している。ただし、第1保護膜残留物131が存在する場合のその存在領域は、これに限定されず、例えば、バンプ92のほぼ中央から、周囲の領域に広がって存在していなくてもよい。
 本発明の第1保護膜付き半導体チップは、図1~図4に示すものに限定されず、例えば、本発明の効果を損なわない範囲内において、図1~図4に示すものにおいて、一部の構成が変更、削除又は追加されたものであってもよい。
 例えば、図1~図4に示す第1保護膜付き半導体チップは、半導体チップ9の裏面9bに何も備えておらず、前記裏面9bは露出面となっているが、本発明の第1保護膜付き半導体チップは、半導体ウエハの裏面に保護膜(本明細書においては、「第2保護膜」と称することがある)等の何らかの層(膜)を備えていてもよい。
 第2保護膜は、上述の半導体チップを作製するために、半導体ウエハをダイシングしたときや、ダイシングによって得られた半導体チップをパッケージングして半導体装置を製造するまでの間に、半導体チップにおいてクラックが発生するのを防止する。
 第2保護膜は、通常、樹脂膜である。
 次に、第1保護膜付き半導体チップを構成する半導体チップ及び第1保護膜について、説明する。
<<半導体チップ>>
 前記半導体チップは、バンプ形成面(回路を備える面、又は回路面とも称する)にバンプを有し、フリップチップ実装に用いることができるものであれば、特に限定されない。
 半導体チップのうち、バンプがその構成材料として含有する金属としては、スズ(Sn)が挙げられ、さらに、それ以外の金属としては、例えば、金(Au)、銀(Ag)、銅(Cu)等が挙げられる。
 バンプの構成材料は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 バンプの形状、大きさ、配置状態は、先に説明したとおりである。
 半導体チップのうち、バンプを除いた部位の構成材料及び大きさは、公知のものと同じであってよい。
 例えば、半導体チップのバンプを除いた部位の厚さは、50~780μmであることが好ましく、150~400μmであることがより好ましい。
<<第1保護膜>>
 第1保護膜付き半導体チップにおいて、第1保護膜は、半導体チップのバンプ形成面に密着するとともに、バンプの表面、特に半導体チップのバンプ形成面の近傍部位の表面を覆って、バンプを埋め込んでいる。第1保護膜は、このように、半導体チップのうち、バンプ形成面と、バンプのバンプ形成面の近傍部位の表面と、を被覆して、これらの領域を保護している。なお、バンプのバンプ形成面の近傍部位の表面と、第1保護膜と、の間には、一部、空隙部が存在することもある。
 第1保護膜は、通常、樹脂成分を含有する樹脂膜であり、硬化によって第1保護膜を形成するための硬化性樹脂フィルムを用いて形成できる。そして、硬化性樹脂フィルムは、その構成材料を含有する硬化性樹脂フィルム形成用組成物を用いて形成できる。例えば、硬化性樹脂フィルムの形成対象面に対して、硬化性樹脂フィルム形成用組成物を塗工し、必要に応じて乾燥させることにより、目的とする箇所に硬化性樹脂フィルムを形成できる。硬化性樹脂フィルム形成用組成物中の、常温で気化しない成分同士の含有量の比率は、通常、硬化性樹脂フィルムの前記成分同士の含有量の比率と同じとなる。なお、本明細書において、「常温」とは、特に冷やしたり、熱したりしない温度、すなわち平常の温度を意味し、例えば、15~25℃の温度等が挙げられる。
 後述する熱硬化性樹脂フィルム形成用組成物及びエネルギー線硬化性樹脂フィルム形成用組成物中の樹脂に相当する成分は、すべて前記樹脂成分に包含される。
 このように、第1保護膜は、硬化性樹脂フィルム形成用組成物を用いて硬化性樹脂フィルムを形成した後、硬化性樹脂フィルムを硬化させることによって形成できる。
 硬化性樹脂フィルム形成用組成物の塗工は、公知の方法で行えばよい。前記塗工方法としては、例えば、エアーナイフコーター、ブレードコーター、バーコーター、グラビアコーター、ロールコーター、ロールナイフコーター、カーテンコーター、ダイコーター、ナイフコーター、スクリーンコーター、マイヤーバーコーター、キスコーター等の各種コーターを用いる方法が挙げられる。
 硬化性樹脂フィルム形成用組成物の乾燥条件は、特に限定されず、前記組成物中の硬化性成分が目的外の硬化を起こさないように、適宜調節することが好ましい。
 例えば、硬化性樹脂フィルム形成用組成物は、後述する溶媒を含有している場合には、加熱乾燥させることが好ましい。溶媒を含有する硬化性樹脂フィルム形成用組成物は、例えば、70~130℃で10秒~5分の条件で乾燥させることが好ましい。
 第1保護膜は1層(単層)のみでもよいし、2層以上の複数層でもよく、複数層である場合、これら複数層は、互いに同一でも異なっていてもよく、これら複数層の組み合わせは特に限定されない。
 なお、本明細書においては、第1保護膜の場合に限らず、「複数層が互いに同一でも異なっていてもよい」とは、「すべての層が同一であってもよいし、すべての層が異なっていてもよく、一部の層のみが同一であってもよい」ことを意味し、さらに「複数層が互いに異なる」とは、「各層の構成材料及び厚さの少なくとも一方が互いに異なる」ことを意味する。
 第1保護膜の厚さは、1~100μmであることが好ましく、5~75μmであることがより好ましく、5~50μmであることが特に好ましい。第1保護膜の厚さが前記下限値以上であることで、第1保護膜の保護能がより高くなる。第1保護膜の厚さが前記上限値以下であることで、バンプの頭頂部において、第1保護膜残留物の残存を抑制する効果がより高くなる。
 ここで、「第1保護膜の厚さ」とは、第1保護膜全体の厚さを意味し、例えば、複数層からなる第1保護膜の厚さとは、第1保護膜を構成するすべての層の合計の厚さを意味する。
 第1保護膜は、熱硬化性樹脂フィルムの硬化物及びエネルギー線硬化性樹脂フィルムの硬化物のいずれであってもよい。すなわち、第1保護膜は、熱硬化性樹脂フィルム形成用組成物及びエネルギー線硬化性樹脂フィルム形成用組成物のいずれを用いて形成されたものであってもよい。
 なお、本明細書において、「エネルギー線」とは、電磁波又は荷電粒子線の中でエネルギー量子を有するものを意味し、その例として、紫外線、放射線、電子線等が挙げられる。
 紫外線は、例えば、紫外線源として高圧水銀ランプ、ヒュージョンランプ、キセノンランプ、ブラックライト又はLEDランプ等を用いることで照射できる。電子線は、電子線加速器等によって発生させたものを照射できる。
 本発明において、「エネルギー線硬化性」とは、エネルギー線を照射することにより硬化する性質を意味し、「非エネルギー線硬化性」とは、エネルギー線を照射しても硬化しない性質を意味する。
◎熱硬化性樹脂フィルム形成用組成物
○樹脂層形成用組成物(III)
 熱硬化性樹脂フィルム形成用組成物としては、例えば、重合体成分(A)及び熱硬化性成分(B)を含有する熱硬化性樹脂フィルム形成用組成物(III)(本明細書においては、単に「樹脂層形成用組成物(III)」と略記することがある)等が挙げられる。
[重合体成分(A)]
 重合体成分(A)は、熱硬化性樹脂フィルムに造膜性や可撓性等を付与するための重合体化合物であり、重合性化合物が重合反応して形成されたとみなせる成分である。なお、本明細書において重合反応には、重縮合反応も含まれる。
 樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムが含有する重合体成分(A)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 重合体成分(A)としては、例えば、ポリビニルアセタール、アクリル系樹脂((メタ)アクリロイル基を有する樹脂)等が挙げられる。
 なお、本明細書において、「(メタ)アクリロイル基」とは、「アクリロイル基」及び「メタクリロイル基」の両方を包含する概念である。(メタ)アクリロイル基と類似の用語につても同様であり、例えば、「(メタ)アクリル酸」とは、「アクリル酸」及び「メタクリル酸」の両方を包含する概念であり、「(メタ)アクリレート」とは、「アクリレート」及び「メタクリレート」の両方を包含する概念である。
 重合体成分(A)における前記ポリビニルアセタールとしては、公知のものが挙げられる。
 なかでも、好ましいポリビニルアセタールとしては、例えば、ポリビニルホルマール、ポリビニルブチラール等が挙げられ、ポリビニルブチラールがより好ましい。
 ポリビニルブチラールとしては、下記式(i)-1、(i)-2及び(i)-3で表される構成単位を有するものが挙げられる。
Figure JPOXMLDOC01-appb-C000001
 (式中、l、m及びnは、それぞれ独立に1以上の整数である。)
 ポリビニルアセタールの重量平均分子量(Mw)は、100000以下であることが好ましく、70000以下であることがより好ましく、40000以下であることが特に好ましい。ポリビニルアセタールの重量平均分子量がこのような範囲であることで、バンプの頭頂部において、第1保護膜残留物の残存を抑制する効果がより高くなる。
 ポリビニルアセタールの重量平均分子量の下限値は、特に限定されない。ただし、第1保護膜の強度及び耐熱性がより向上する点では、ポリビニルアセタールの重量平均分子量は、5000以上であることが好ましく、8000以上であることがより好ましい。
 ポリビニルアセタールの重量平均分子量は、上述のいずれかの下限値及び上限値を任意に組み合わせて設定される範囲内となるように、適宜調節できる。
 例えば、一実施形態において、ポリビニルアセタールの重量平均分子量は、好ましくは5000~100000、より好ましくは5000~70000、特に好ましくは5000~40000である。また、一実施形態において、ポリビニルアセタールの重量平均分子量は、好ましくは8000~100000、より好ましくは8000~70000、特に好ましくは8000~40000である。ただし、これらは、ポリビニルアセタールの好ましい重量平均分子量の一例である。
 ポリビニルアセタールのガラス転移温度(Tg)は、40~80℃であることが好ましく、50~70℃であることがより好ましい。ポリビニルアセタールのTgがこのような範囲であることで、バンプの頭頂部において、第1保護膜残留物の残存を抑制する効果がより高くなる。
 ポリビニルアセタールを構成する3種以上のモノマーの比率は任意に選択できる。
 重合体成分(A)における前記アクリル系樹脂としては、公知のアクリル重合体が挙げられる。
 アクリル系樹脂の重量平均分子量(Mw)は、300000以下であることが好ましく、150000以下であることがより好ましく、100000以下であることが特に好ましい。アクリル系樹脂の重量平均分子量がこのような範囲であることで、バンプの頭頂部において、第1保護膜残留物の残存を抑制する効果がより高くなる。
 アクリル系樹脂の重量平均分子量の下限値は、特に限定されない。ただし、第1保護膜の強度及び耐熱性がより向上する点では、アクリル系樹脂の重量平均分子量は、10000以上であることが好ましく、30000以上であることがより好ましい。
 アクリル系樹脂の重量平均分子量は、上述のいずれかの下限値及び上限値を任意に組み合わせて設定される範囲内となるように、適宜調節できる。
 例えば、一実施形態において、アクリル系樹脂の重量平均分子量は、好ましくは10000~300000、より好ましくは10000~150000、特に好ましくは10000~100000である。また、一実施形態において、アクリル系樹脂の重量平均分子量は、好ましくは30000~300000、より好ましくは30000~150000、特に好ましくは30000~100000である。ただし、これらは、アクリル系樹脂の好ましい重量平均分子量の一例である。
 アクリル系樹脂のガラス転移温度(Tg)は、-50~70℃であることが好ましく、-30~60℃であることがより好ましい。アクリル系樹脂のTgがこのような範囲であることで、バンプの頭頂部において、第1保護膜残留物の残存を抑制する効果がより高くなる。
 アクリル系樹脂を構成するモノマーは、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 アクリル系樹脂としては、例えば、1種又は2種以上の(メタ)アクリル酸エステルの重合体;
 (メタ)アクリル酸、イタコン酸、酢酸ビニル、アクリロニトリル、スチレン及びN-メチロールアクリルアミド等から選択される2種以上のモノマーの共重合体;
 1種又は2種以上の(メタ)アクリル酸エステルと、(メタ)アクリル酸、イタコン酸、酢酸ビニル、アクリロニトリル、スチレン及びN-メチロールアクリルアミド等から選択される1種又は2種以上のモノマーと、の共重合体等が挙げられる。
 アクリル系樹脂を構成する前記(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸n-ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル((メタ)アクリル酸ラウリル)、(メタ)アクリル酸トリデシル、(メタ)アクリル酸テトラデシル((メタ)アクリル酸ミリスチル)、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ヘキサデシル((メタ)アクリル酸パルミチル)、(メタ)アクリル酸ヘプタデシル、(メタ)アクリル酸オクタデシル((メタ)アクリル酸ステアリル)等の、アルキルエステルを構成するアルキル基が、炭素数が1~18の鎖状構造である(メタ)アクリル酸アルキルエステル;
 (メタ)アクリル酸イソボルニル、(メタ)アクリル酸ジシクロペンタニル等の(メタ)アクリル酸シクロアルキルエステル;
 (メタ)アクリル酸ベンジル等の(メタ)アクリル酸アラルキルエステル;
 (メタ)アクリル酸ジシクロペンテニルエステル等の(メタ)アクリル酸シクロアルケニルエステル;
 (メタ)アクリル酸ジシクロペンテニルオキシエチルエステル等の(メタ)アクリル酸シクロアルケニルオキシアルキルエステル;
 (メタ)アクリル酸イミド;
 (メタ)アクリル酸グリシジル等のグリシジル基含有(メタ)アクリル酸エステル;
 (メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル等の水酸基含有(メタ)アクリル酸エステル;
 (メタ)アクリル酸N-メチルアミノエチル等の置換アミノ基含有(メタ)アクリル酸エステル等が挙げられる。ここで、「置換アミノ基」とは、アミノ基の1個又は2個の水素原子が水素原子以外の基で置換されてなる基を意味する。
 アクリル系樹脂は、ビニル基、(メタ)アクリロイル基、アミノ基、水酸基、カルボキシ基、イソシアネート基等の他の化合物と結合可能な官能基を有していてもよい。アクリル系樹脂の前記官能基は、後述する架橋剤(F)を介して他の化合物と結合してもよいし、架橋剤(F)を介さずに他の化合物と直接結合していてもよい。アクリル系樹脂が前記官能基により他の化合物と結合することで、第1保護膜を用いて得られたパッケージの信頼性が向上する傾向がある。
 樹脂層形成用組成物(III)において、溶媒以外の全ての成分の総含有量に対する重合体成分(A)の含有量の割合(すなわち、熱硬化性樹脂フィルムの重合体成分(A)の含有量)は、重合体成分(A)の種類によらず、5~25質量%であることが好ましく、5~15質量%であることがより好ましい。
[熱硬化性成分(B)]
 熱硬化性成分(B)は、熱を反応のトリガーとして、熱硬化性樹脂フィルムを硬化させて、硬質の第1保護膜を形成するための成分である。
 樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムが含有する熱硬化性成分(B)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 熱硬化性成分(B)は、エポキシ系熱硬化性樹脂であることが好ましい。
(エポキシ系熱硬化性樹脂)
 エポキシ系熱硬化性樹脂は、エポキシ樹脂(B1)及び熱硬化剤(B2)からなる。
 樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムが含有するエポキシ系熱硬化性樹脂は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
・エポキシ樹脂(B1)
 エポキシ樹脂(B1)としては、公知のものが挙げられ、例えば、多官能系エポキシ樹脂、ビフェニル化合物、ビスフェノールAジグリシジルエーテル及びその水添物、オルソクレゾールノボラックエポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェニレン骨格型エポキシ樹脂等、2官能以上のエポキシ化合物が挙げられる。
 エポキシ樹脂(B1)は、不飽和炭化水素基を有するエポキシ樹脂であってもよい。不飽和炭化水素基を有するエポキシ樹脂は、不飽和炭化水素基を有しないエポキシ樹脂よりもアクリル系樹脂との相溶性が高い。そのため、不飽和炭化水素基を有するエポキシ樹脂と、アクリル系樹脂と、を含有する第1保護膜を用いて得られたパッケージの信頼性が向上する。
 不飽和炭化水素基を有するエポキシ樹脂としては、例えば、多官能系エポキシ樹脂のエポキシ基の一部が不飽和炭化水素基を有する基に変換されてなる化合物が挙げられる。このような化合物は、例えば、エポキシ基へ(メタ)アクリル酸又はその誘導体を付加反応させることにより得られる。
 また、不飽和炭化水素基を有するエポキシ樹脂としては、例えば、エポキシ樹脂を構成する芳香環等に、不飽和炭化水素基を有する基が直接結合した化合物等が挙げられる。
 不飽和炭化水素基は、重合性を有する不飽和基であり、その具体的な例としては、エテニル基(ビニル基)、2-プロペニル基(アリル基)、(メタ)アクリロイル基、(メタ)アクリルアミド基等が挙げられ、アクリロイル基が好ましい。
 エポキシ樹脂(B1)の重量平均分子量は、30000以下であることが好ましく、20000以下であることがより好ましく、10000以下であることが特に好ましい。エポキシ樹脂(B1)の重量平均分子量が前記上限値以下であることで、バンプの頭頂部において、第1保護膜残留物の残存を抑制する効果がより高くなる。
 エポキシ樹脂(B1)の重量平均分子量の下限値は、特に限定されない。ただし、熱硬化性樹脂フィルムの硬化性、並びに第1保護膜の強度及び耐熱性がより向上する点では、エポキシ樹脂(B1)の重量平均分子量は、300以上であることが好ましく、500以上であることがより好ましい。
 エポキシ樹脂(B1)の重量平均分子量は、上述のいずれかの下限値及び上限値を任意に組み合わせて設定される範囲内となるように、適宜調節できる。
 例えば、一実施形態において、エポキシ樹脂(B1)の重量平均分子量は、好ましくは300~30000、より好ましくは300~20000、特に好ましくは300~10000である。また、一実施形態において、エポキシ樹脂(B1)の重量平均分子量は、好ましくは500~30000、より好ましくは500~20000、特に好ましくは500~10000である。ただし、これらは、エポキシ樹脂(B1)の好ましい重量平均分子量の一例である。
 エポキシ樹脂(B1)のエポキシ当量は、100~1000g/eqであることが好ましく、300~800g/eqであることがより好ましい。
 エポキシ樹脂(B1)は、常温で液状であるもの(本明細書においては、単に「液状のエポキシ樹脂(B1)」と称することがある)が好ましい。このようなエポキシ樹脂(B1)を用いることで、バンプの頭頂部において、第1保護膜残留物の残存を抑制する効果がより高くなる。
 エポキシ樹脂(B1)は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
 樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムが含有する、エポキシ樹脂(B1)のうち、液状のエポキシ樹脂(B1)の割合は、40質量%以上であることが好ましく、50質量%以上であることがより好ましく、55質量%以上であることが特に好ましく、例えば、60質量%以上、70質量%以上、80質量%以上及び90質量%以上のいずれかであってもよい。前記割合が前記下限値以上であることで、バンプの頭頂部において、第1保護膜残留物の残存を抑制する効果がより高くなる。
 前記割合の上限値は特に限定されず、前記割合は100質量%以下であればよい。
・熱硬化剤(B2)
 熱硬化剤(B2)は、エポキシ樹脂(B1)に対する硬化剤として機能する。
 熱硬化剤(B2)としては、例えば、1分子中にエポキシ基と反応し得る官能基を2個以上有する化合物が挙げられる。前記官能基としては、例えば、フェノール性水酸基、アルコール性水酸基、アミノ基、カルボキシ基、酸基が無水物化された基等が挙げられ、フェノール性水酸基、アミノ基、又は酸基が無水物化された基であることが好ましく、フェノール性水酸基又はアミノ基であることがより好ましい。
 熱硬化剤(B2)のうち、フェノール性水酸基を有するフェノール系硬化剤としては、例えば、多官能フェノール樹脂、ビフェノール、ノボラック型フェノール樹脂、ジシクロペンタジエン系フェノール樹脂、アラルキルフェノール樹脂等が挙げられる。
 熱硬化剤(B2)のうち、アミノ基を有するアミン系硬化剤としては、例えば、ジシアンジアミド(以下、「DICY」と略記することがある)等が挙げられる。
 熱硬化剤(B2)は、不飽和炭化水素基を有するものでもよい。
 不飽和炭化水素基を有する熱硬化剤(B2)としては、例えば、フェノール樹脂の水酸基の一部が、不飽和炭化水素基を有する基で置換されてなる化合物、フェノール樹脂の芳香環に、不飽和炭化水素基を有する基が直接結合してなる化合物等が挙げられる。
 熱硬化剤(B2)における前記不飽和炭化水素基は、上述の不飽和炭化水素基を有するエポキシ樹脂における不飽和炭化水素基と同様のものである。
 熱硬化剤(B2)のうち、例えば、多官能フェノール樹脂、ノボラック型フェノール樹脂、ジシクロペンタジエン系フェノール樹脂、アラルキルフェノール樹脂等の樹脂成分の数平均分子量は、300~30000であることが好ましく、400~10000であることがより好ましく、500~5000であることが特に好ましい。
 熱硬化剤(B2)のうち、例えば、ビフェノール、ジシアンジアミド等の非樹脂成分の分子量は、特に限定されないが、例えば、60~500であることが好ましい。
 熱硬化剤(B2)は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
 樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムにおいて、熱硬化剤(B2)の含有量は、エポキシ樹脂(B1)の含有量100質量部に対して、0.1~500質量部であることが好ましく、1~200質量部であることがより好ましく、例えば、1~150質量部、1~100質量部、1~75質量部、1~50質量部、及び1~30質量部のいずれかであってもよい。熱硬化剤(B2)の前記含有量が前記下限値以上であることで、熱硬化性樹脂フィルムの硬化がより進行し易くなる。また、熱硬化剤(B2)の前記含有量が前記上限値以下であることで、熱硬化性樹脂フィルムの吸湿率が低減されて、第1保護膜を用いて得られたパッケージの信頼性がより向上する。
 樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムにおいて、熱硬化性成分(B)の含有量(例えば、エポキシ樹脂(B1)及び熱硬化剤(B2)の総含有量)は、重合体成分(A)の含有量100質量部に対して、600~1000質量部であることが好ましい。熱硬化性成分(B)の前記含有量がこのような範囲であることで、バンプの頭頂部において、第1保護膜残留物の残存を抑制する効果がより高くなり、かつ硬質な第1保護膜を形成できる。
 さらに、このような効果がより顕著に得られる点から、熱硬化性成分(B)の含有量は、重合体成分(A)の種類に応じて、適宜調節することが好ましい。
 例えば、重合体成分(A)が前記ポリビニルアセタールである場合、樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムにおいて、熱硬化性成分(B)の含有量は、重合体成分(A)の含有量100質量部に対して、600~1000質量部であることが好ましく、650~1000質量部であることがより好ましく、650~950質量部であることが特に好ましい。
 例えば、重合体成分(A)が前記アクリル系樹脂である場合、樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムにおいて、熱硬化性成分(B)の含有量は、重合体成分(A)の含有量100質量部に対して、700~1000質量部であることが好ましく、750~1000質量部であることがより好ましく、750~900質量部であることが特に好ましい。
[硬化促進剤(C)]
 樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムは、硬化促進剤(C)を含有することが好ましい。硬化促進剤(C)は、樹脂層形成用組成物(III)の硬化速度を調整するための成分である。
 好ましい硬化促進剤(C)としては、例えば、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の第3級アミン;2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール等のイミダゾール類(1個以上の水素原子が水素原子以外の基で置換されたイミダゾール);トリブチルホスフィン、ジフェニルホスフィン、トリフェニルホスフィン等の有機ホスフィン類(1個以上の水素原子が有機基で置換されたホスフィン);テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレート等のテトラフェニルボロン塩等が挙げられる。
 樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムが含有する硬化促進剤(C)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 硬化促進剤(C)を用いる場合、樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムにおいて、硬化促進剤(C)の含有量は、熱硬化性成分(B)の含有量100質量部に対して、0.01~10質量部であることが好ましく、0.1~5質量部であることがより好ましい。硬化促進剤(C)の前記含有量が前記下限値以上であることで、硬化促進剤(C)を用いたことによる効果がより顕著に得られる。また、硬化促進剤(C)の含有量が前記上限値以下であることで、例えば、高極性の硬化促進剤(C)が、高温・高湿度条件下で熱硬化性樹脂フィルム中において被着体との接着界面側に移動して偏析することを抑制する効果が高くなり、第1保護膜を用いて得られたパッケージの信頼性がより向上する。
[充填材(D)]
 樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムは、充填材(D)を含有することが好ましい。充填材(D)を含有する第1保護膜は、熱膨張係数の調整が容易となる。例えば、第1保護膜の熱膨張係数を半導体チップに対して最適化することで、第1保護膜を用いて得られたパッケージの信頼性がより向上する。また、充填材(D)を含有する第1保護膜は、吸湿率を低減したり、放熱性を向上させたりすることもできる。
 充填材(D)は、有機充填材及び無機充填材のいずれでもよいが、無機充填材であることが好ましい。
 好ましい無機充填材としては、例えば、シリカ、アルミナ、タルク、炭酸カルシウム、チタンホワイト、ベンガラ、炭化ケイ素、窒化ホウ素等の粉末;これら無機充填材を球形化したビーズ;これら無機充填材の表面改質品;これら無機充填材の単結晶繊維;ガラス繊維等が挙げられる。
 これらの中でも、無機充填材は、シリカ又はアルミナであることが好ましい。
 樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムが含有する充填材(D)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 充填材(D)の平均粒径は、6μm以下であることが好ましく、例えば、4μm以下、2μm以下、及び0.5μm以下のいずれかであってもよい。充填材(D)の平均粒径が前記上限値以下であることで、バンプの頭頂部において、第1保護膜残留物の残存を抑制する効果がより高くなる。
 なお、本明細書において「平均粒径」とは、特に断りのない限り、レーザー回折散乱法によって求められた粒度分布曲線における、積算値50%での粒子径(D50)の値を意味する。
 充填材(D)の平均粒径の下限値は、特に限定されない。例えば、充填材(D)の平均粒径は、充填材(D)の入手がより容易である点では、0.01μm以上であることが好ましい。
 充填材(D)の平均粒径は、上述の下限値と、いずれかの上限値と、を任意に組み合わせて設定される範囲内となるように、適宜調節できる。
 例えば、充填材(D)の平均粒径は、好ましくは0.01~6μmであり、例えば、0.01~4μm、0.01~2μm、及び0.01~0.5μmのいずれかであってもよい。ただし、これは、充填材(D)の好ましい平均粒径の一例である。
 一方、充填材(D)を用いる場合、樹脂層形成用組成物(III)において、溶媒以外の全ての成分の総含有量に対する、充填材(D)の含有量の割合(すなわち、熱硬化性樹脂フィルムにおける、熱硬化性樹脂フィルムの総質量に対する、充填材(D)の含有量の割合)は、3~30質量%であることがより好ましく、4~20質量%であることがさらに好ましく、5~15質量%であることが特に好ましい。充填材(D)の含有量がこのような範囲であることで、バンプの頭頂部において、第1保護膜残留物の残存を抑制する効果がより高くなるとともに、上記の熱膨張係数の調整がより容易となる。
[カップリング剤(E)]
 樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムは、カップリング剤(E)を含有していてもよい。カップリング剤(E)として、無機化合物又は有機化合物と反応可能な官能基を有するものを用いることにより、熱硬化性樹脂フィルムの被着体に対する接着性及び密着性を向上させることができる。また、カップリング剤(E)を含有する第1保護膜は、耐熱性を損なうことなく、耐水性が向上する。
 カップリング剤(E)は、重合体成分(A)、熱硬化性成分(B)等が有する官能基と反応可能な官能基を有する化合物であることが好ましく、シランカップリング剤であることがより好ましい。
 好ましい前記シランカップリング剤としては、例えば、3-グリシジルオキシプロピルトリメトキシシラン、3-グリシジルオキシプロピルメチルジエトキシシラン、3-グリシジルオキシプロピルトリエトキシシラン、3-グリシジルオキシメチルジエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-メタクリロイルオキシプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-(2-アミノエチルアミノ)プロピルトリメトキシシラン、3-(2-アミノエチルアミノ)プロピルメチルジエトキシシラン、3-(フェニルアミノ)プロピルトリメトキシシラン、3-アニリノプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、ビス(3-トリエトキシシリルプロピル)テトラスルファン、メチルトリメトキシシラン、メチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリアセトキシシラン、イミダゾールシラン等が挙げられる。
 樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムが含有するカップリング剤(E)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 カップリング剤(E)を用いる場合、樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムにおいて、カップリング剤(E)の含有量は、重合体成分(A)及び熱硬化性成分(B)の総含有量100質量部に対して、0.03~20質量部であることが好ましく、0.05~10質量部であることがより好ましく、0.1~5質量部であることが特に好ましい。カップリング剤(E)の前記含有量が前記下限値以上であることで、充填材(D)の樹脂への分散性の向上や、熱硬化性樹脂フィルムの被着体との接着性の向上など、カップリング剤(E)を用いたことによる効果がより顕著に得られる。また、カップリング剤(E)の前記含有量が前記上限値以下であることで、アウトガスの発生がより抑制される。
[架橋剤(F)]
 重合体成分(A)として、他の化合物と結合可能なビニル基、(メタ)アクリロイル基、アミノ基、水酸基、カルボキシ基、イソシアネート基等の官能基を有するものを用いる場合、樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムは、架橋剤(F)を含有していてもよい。架橋剤(F)は、重合体成分(A)中の前記官能基を他の化合物と結合させて架橋するための成分であり、このように架橋することにより、熱硬化性樹脂フィルムの初期接着力及び凝集力を調節できる。
 架橋剤(F)としては、例えば、有機多価イソシアネート化合物、有機多価イミン化合物、金属キレート系架橋剤(金属キレート構造を有する架橋剤)、アジリジン系架橋剤(アジリジニル基を有する架橋剤)等が挙げられる。
 前記有機多価イソシアネート化合物としては、例えば、芳香族多価イソシアネート化合物、脂肪族多価イソシアネート化合物及び脂環族多価イソシアネート化合物(以下、これら化合物をまとめて「芳香族多価イソシアネート化合物等」と略記することがある);前記芳香族多価イソシアネート化合物等の三量体、イソシアヌレート体及びアダクト体;前記芳香族多価イソシアネート化合物等とポリオール化合物とを反応させて得られる末端イソシアネートウレタンプレポリマー等が挙げられる。前記「アダクト体」は、前記芳香族多価イソシアネート化合物、脂肪族多価イソシアネート化合物又は脂環族多価イソシアネート化合物と、エチレングリコール、プロピレングリコール、ネオペンチルグリコール、トリメチロールプロパン又はヒマシ油等の低分子活性水素含有化合物との反応物を意味する。前記アダクト体の例としては、後述するようなトリメチロールプロパンのキシリレンジイソシアネート付加物等が挙げられる。また、「末端イソシアネートウレタンプレポリマー」とは、先に説明したとおりである。
 前記有機多価イソシアネート化合物として、より具体的には、例えば、2,4-トリレンジイソシアネート;2,6-トリレンジイソシアネート;1,3-キシリレンジイソシアネート;1,4-キシレンジイソシアネート;ジフェニルメタン-4,4’-ジイソシアネート;ジフェニルメタン-2,4’-ジイソシアネート;3-メチルジフェニルメタンジイソシアネート;ヘキサメチレンジイソシアネート;イソホロンジイソシアネート;ジシクロヘキシルメタン-4,4’-ジイソシアネート;ジシクロヘキシルメタン-2,4’-ジイソシアネート;トリメチロールプロパン等のポリオールのすべて又は一部の水酸基に、トリレンジイソシアネート、ヘキサメチレンジイソシアネート及びキシリレンジイソシアネートのいずれか1種又は2種以上が付加した化合物;リジンジイソシアネート等が挙げられる。
 前記有機多価イミン化合物としては、例えば、N,N’-ジフェニルメタン-4,4’-ビス(1-アジリジンカルボキシアミド)、トリメチロールプロパン-トリ-β-アジリジニルプロピオネート、テトラメチロールメタン-トリ-β-アジリジニルプロピオネート、N,N’-トルエン-2,4-ビス(1-アジリジンカルボキシアミド)トリエチレンメラミン等が挙げられる。
 架橋剤(F)として有機多価イソシアネート化合物を用いる場合、重合体成分(A)としては、水酸基含有重合体を用いることが好ましい。架橋剤(F)がイソシアネート基を有し、重合体成分(A)が水酸基を有する場合、架橋剤(F)と重合体成分(A)との反応によって、熱硬化性樹脂フィルムに架橋構造を簡便に導入できる。
 樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムが含有する架橋剤(F)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 架橋剤(F)を用いる場合、樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムにおいて、架橋剤(F)の含有量は、重合体成分(A)の含有量100質量部に対して、0.01~20質量部であることが好ましく、0.1~10質量部であることがより好ましく、0.5~5質量部であることが特に好ましい。架橋剤(F)の前記含有量が前記下限値以上であることで、架橋剤(F)を用いたことによる効果がより顕著に得られる。また、架橋剤(F)の前記含有量が前記上限値以下であることで、架橋剤(F)の過剰使用が抑制される。
[エネルギー線硬化性樹脂(G)]
 樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムは、エネルギー線硬化性樹脂(G)を含有していてもよい。熱硬化性樹脂フィルムは、エネルギー線硬化性樹脂(G)を含有していることにより、エネルギー線の照射によって特性を変化させることができる。
 エネルギー線硬化性樹脂(G)は、エネルギー線硬化性化合物を重合(硬化)して得られたものである。
 前記エネルギー線硬化性化合物としては、例えば、分子内に少なくとも1個の重合性二重結合を有する化合物が挙げられ、(メタ)アクリロイル基を有するアクリレート系化合物が好ましい。
 前記アクリレート系化合物としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,4-ブチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート等の鎖状脂肪族骨格含有(メタ)アクリレート;ジシクロペンタニルジ(メタ)アクリレート等の環状脂肪族骨格含有(メタ)アクリレート;ポリエチレングリコールジ(メタ)アクリレート等のポリアルキレングリコール(メタ)アクリレート;オリゴエステル(メタ)アクリレート;ウレタン(メタ)アクリレートオリゴマー;エポキシ変性(メタ)アクリレート;前記ポリアルキレングリコール(メタ)アクリレート以外のポリエーテル(メタ)アクリレート;イタコン酸オリゴマー等が挙げられる。
 前記エネルギー線硬化性化合物の重量平均分子量は、100~30000であることが好ましく、300~10000であることがより好ましい。
 重合に用いる前記エネルギー線硬化性化合物は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムが含有するエネルギー線硬化性樹脂(G)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 エネルギー線硬化性樹脂(G)を用いる場合、樹脂層形成用組成物(III)において、樹脂層形成用組成物(III)の総質量に対する、エネルギー線硬化性樹脂(G)の含有量の割合は、1~95質量%であることが好ましく、5~90質量%であることがより好ましく、10~85質量%であることが特に好ましい。
[光重合開始剤(H)]
 樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムは、エネルギー線硬化性樹脂(G)を含有する場合、エネルギー線硬化性樹脂(G)の重合反応を効率よく進めるために、光重合開始剤(H)を含有していてもよい。
 樹脂層形成用組成物(III)における光重合開始剤(H)としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾイン安息香酸、ベンゾイン安息香酸メチル、ベンゾインジメチルケタール等のベンゾイン化合物;アセトフェノン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン等のアセトフェノン化合物;ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド等のアシルフォスフィンオキサイド化合物;ベンジルフェニルスルフィド、テトラメチルチウラムモノスルフィド等のスルフィド化合物;1-ヒドロキシシクロヘキシルフェニルケトン等のα-ケトール化合物;アゾビスイソブチロニトリル等のアゾ化合物;チタノセン等のチタノセン化合物;チオキサント、2,4-ジエチルチオキサントン等のチオキサントン化合物;パーオキサイド化合物;ジアセチル等のジケトン化合物;ベンジル;ジベンジル;ベンゾフェノン;1,2-ジフェニルメタン;2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパノン;2-クロロアントラキノン等が挙げられる。
 また、光重合開始剤(H)としては、例えば、1-クロロアントラキノン等のキノン化合物;アミン等の光増感剤等を用いることもできる。
 樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムが含有する光重合開始剤(H)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 光重合開始剤(H)を用いる場合、樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムにおいて、光重合開始剤(H)の含有量は、エネルギー線硬化性樹脂(G)の含有量100質量部に対して、0.1~20質量部であることが好ましく、1~10質量部であることがより好ましく、2~5質量部であることが特に好ましい。
[着色剤(I)]
 樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムは、着色剤(I)を含有していてもよい。着色剤(I)は、例えば、熱硬化性樹脂フィルム及び第1保護膜に、適切な光線透過率を付与するための成分である。
 着色剤(I)は、公知のものでよく、例えば、染料及び顔料のいずれであってもよい。
 例えば、染料は、酸性染料、反応染料、直接染料、分散染料及びカチオン染料等のいずれであってもよい。
 樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムが含有する着色剤(I)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 着色剤(I)を用いる場合、樹脂層形成用組成物(III)の着色剤(I)の含有量は、熱硬化性樹脂フィルムの可視光線透過率及び赤外線透過率が目的の値となるように適宜調節すればよく、特に限定されない。例えば、前記着色剤(I)の含有量は、着色剤(I)の種類や、2種以上の着色剤(I)を併用する場合には、これら着色剤(I)の組み合わせ等に応じて、適宜調節すればよい。
 着色剤(I)を用いる場合、通常は、樹脂層形成用組成物(III)において、溶媒以外の全ての成分の総含有量に対する、着色剤(I)の含有量の割合(すなわち、熱硬化性樹脂フィルムにおける、熱硬化性樹脂フィルムの総質量に対する、着色剤(I)の含有量の割合)は、0.01~10質量%であることが好ましい。
[汎用添加剤(J)]
 樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムは、本発明の効果を損なわない範囲内において、汎用添加剤(J)を含有していてもよい。
 汎用添加剤(J)は、公知のものでよく、目的に応じて任意に選択でき、特に限定されないが、好ましいものとしては、例えば、可塑剤、帯電防止剤、酸化防止剤、ゲッタリング剤等が挙げられる。
 樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムが含有する汎用添加剤(J)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムの汎用添加剤(J)の含有量は、特に限定されず、目的に応じて適宜選択すればよい。
[溶媒]
 樹脂層形成用組成物(III)は、さらに溶媒を含有することが好ましい。溶媒を含有する樹脂層形成用組成物(III)は、取り扱い性が良好となる。
 前記溶媒は特に限定されないが、好ましいものとしては、例えば、トルエン、キシレン等の炭化水素;メタノール、エタノール、2-プロパノール、イソブチルアルコール(2-メチルプロパン-1-オール)、1-ブタノール等のアルコール;酢酸エチル等のエステル;アセトン、メチルエチルケトン等のケトン;テトラヒドロフラン等のエーテル;ジメチルホルムアミド、N-メチルピロリドン等のアミド(アミド結合を有する化合物)等が挙げられる。
 樹脂層形成用組成物(III)が含有する溶媒は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 樹脂層形成用組成物(III)が含有する溶媒は、樹脂層形成用組成物(III)中の含有成分をより均一に混合できる点から、メチルエチルケトン等であることが好ましい。
 樹脂層形成用組成物(III)の溶媒の含有量は、特に限定されず、例えば、溶媒以外の成分の種類に応じて適宜選択すればよい。
 樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムは、重合体成分(A)及び熱硬化性成分(B)を含有し、重合体成分(A)としてポリビニルアセタールを含有し、かつエポキシ樹脂(B1)として常温で液状のものを含有することが好ましく、これら成分以外に、さらに、硬化促進剤(C)及び充填材(D)を含有するものがより好ましい。そして、この場合の充填材(D)は、上述の平均粒径を有することが好ましい。このような樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムを用いることで、バンプの頭頂部において、第1保護膜残留物の残存を抑制する効果がより高くなる。
 樹脂層形成用組成物(III)で好ましいものの一実施形態としては、例えば、ポリビニルアセタールである重合体成分(A)と、常温で液状のエポキシ樹脂(B1)と、熱硬化剤(B2)と、硬化促進剤(C)と、充填材(D)と、を含有し、樹脂層形成用組成物(III)において、前記エポキシ樹脂(B1)と熱硬化剤(B2)との総含有量が、前記重合体成分(A)の含有量100質量部に対して、600~1000質量部であり、かつ、硬化促進剤(C)の含有量が、前記エポキシ樹脂(B1)と熱硬化剤(B2)との総含有量100質量部に対して、0.1~5質量部であり、樹脂層形成用組成物(III)において、溶媒以外の全ての成分の総含有量に対する、充填材(D)の含有量の割合が、3~30質量%であり、充填材(D)の平均粒径が6μm以下であるものが挙げられる。
 樹脂層形成用組成物(III)でより好ましいものの一実施形態としては、例えば、ポリビニルアセタールである重合体成分(A)と、常温で液状のエポキシ樹脂(B1)と、熱硬化剤(B2)と、硬化促進剤(C)と、充填材(D)と、を含有し、前記ポリビニルアセタールの重量平均分子量が40000以下であり、前記エポキシ樹脂(B1)の重量平均分子量が10000以下であり、樹脂層形成用組成物(III)において、前記エポキシ樹脂(B1)と熱硬化剤(B2)との総含有量が、前記重合体成分(A)の含有量100質量部に対して、600~1000質量部であり、かつ、硬化促進剤(C)の含有量が、前記エポキシ樹脂(B1)と熱硬化剤(B2)との総含有量100質量部に対して、0.1~5質量部であり、樹脂層形成用組成物(III)において、溶媒以外の全ての成分の総含有量に対する、充填材(D)の含有量の割合が、5~15質量%であり、充填材(D)の平均粒径が2μm以下であるものが挙げられる。
◎熱硬化性樹脂フィルム形成用組成物の製造方法
 樹脂層形成用組成物(III)等の熱硬化性樹脂フィルム形成用組成物は、これを構成するための各成分を配合することで得られる。
 各成分の配合時における添加順序は特に限定されず、2種以上の成分を同時に添加してもよい。
 溶媒を用いる場合には、溶媒を溶媒以外のいずれかの配合成分と混合してこの配合成分を予め希釈しておくことで用いてもよいし、溶媒以外のいずれかの配合成分を予め希釈しておくことなく、溶媒をこれら配合成分と混合することで用いてもよい。
 配合時に各成分を混合する方法は特に限定されず、撹拌子又は撹拌翼等を回転させて混合する方法;ミキサーを用いて混合する方法;超音波を加えて混合する方法等、公知の方法から適宜選択すればよい。
 各成分の添加及び混合時の温度並びに時間は、各配合成分が劣化しない限り特に限定されず、適宜調節すればよいが、温度は15~30℃であることが好ましい。
◎エネルギー線硬化性樹脂フィルム形成用組成物
○樹脂層形成用組成物(IV)
 エネルギー線硬化性樹脂フィルム形成用組成物としては、例えば、エネルギー線硬化性成分(a)を含有するエネルギー線硬化性樹脂フィルム形成用組成物(IV)(本明細書においては、単に「樹脂層形成用組成物(IV)」と略記することがある)等が挙げられる。
[エネルギー線硬化性成分(a)]
 エネルギー線硬化性成分(a)は、エネルギー線の照射によって硬化する成分であり、エネルギー線硬化性樹脂フィルムに造膜性や、可撓性等を付与するための成分でもある。
 エネルギー線硬化性成分(a)としては、例えば、エネルギー線硬化性基を有する、重量平均分子量が80000~2000000の重合体(a1)、及びエネルギー線硬化性基を有する、分子量が100~80000の化合物(a2)が挙げられる。前記重合体(a1)は、その少なくとも一部が架橋剤によって架橋されたものであってもよいし、架橋されていないものであってもよい。
 エネルギー線硬化性基を有する、重量平均分子量が80000~2000000の重合体(a1)としては、例えば、他の化合物が有する基と反応可能な官能基を有するアクリル系重合体(a11)と、前記官能基と反応する基、及びエネルギー線硬化性二重結合等のエネルギー線硬化性基を有するエネルギー線硬化性化合物(a12)と、が重合してなるアクリル系樹脂(a1-1)が挙げられる。
 他の化合物が有する基と反応可能な前記官能基としては、例えば、水酸基、カルボキシ基、アミノ基、置換アミノ基(アミノ基の1個又は2個の水素原子が水素原子以外の基で置換されてなる基)、エポキシ基等が挙げられる。ただし、半導体ウエハや半導体チップ等の回路の腐食を防止するという点では、前記官能基はカルボキシ基以外の基であることが好ましい。
 これらの中でも、前記官能基は、水酸基であることが好ましい。
 前記官能基を有するアクリル系重合体(a11)としては、例えば、前記官能基を有するアクリル系モノマーと、前記官能基を有しないアクリル系モノマーと、が共重合してなるものが挙げられ、これらモノマー以外に、さらにアクリル系モノマー以外のモノマー(非アクリル系モノマー)が共重合したものであってもよい。
 また、前記アクリル系重合体(a11)は、ランダム共重合体であってもよいし、ブロック共重合体であってもよい。
 前記アクリル系重合体(a11)において、前記官能基を有するアクリル系モノマー、前記官能基を有しないアクリル系モノマー、及び非アクリル系モノマーは、いずれも1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
 前記エネルギー線硬化性化合物(a12)は、前記アクリル系重合体(a11)が有する官能基と反応可能な基として、イソシアネート基、エポキシ基及びカルボキシ基からなる群より選択される1種又は2種以上を有するものが好ましく、前記基としてイソシアネート基を有するものがより好ましい。前記エネルギー線硬化性化合物(a12)は、例えば、前記基としてイソシアネート基を有する場合、このイソシアネート基が、前記官能基として水酸基を有するアクリル系重合体(a11)のこの水酸基と容易に反応する。
 エネルギー線硬化性基を有する、分子量が100~80000の化合物(a2)中の前記エネルギー線硬化性基としては、エネルギー線硬化性二重結合を含む基が挙げられ、好ましいものとしては、(メタ)アクリロイル基、ビニル基等が挙げられる。
[エネルギー線硬化性基を有しない重合体(b)]
 樹脂層形成用組成物(IV)及びエネルギー線硬化性樹脂フィルムは、前記エネルギー線硬化性成分(a)として前記化合物(a2)を含有する場合、さらにエネルギー線硬化性基を有しない重合体(b)も含有することが好ましい。
 前記重合体(b)は、その少なくとも一部が架橋剤によって架橋されたものであってもよいし、架橋されていないものであってもよい。
 エネルギー線硬化性基を有しない重合体(b)としては、例えば、アクリル系重合体、フェノキシ樹脂、ウレタン樹脂、ポリエステル、ゴム系樹脂、アクリルウレタン樹脂等が挙げられる。
 これらの中でも、前記重合体(b)は、アクリル系重合体(本明細書においては、「アクリル系重合体(b-1)」と称することがある)であることが好ましい。
 樹脂層形成用組成物(IV)としては、前記重合体(a1)及び前記化合物(a2)のいずれか一方又は両方を含有するものが挙げられる。そして、樹脂層形成用組成物(IV)は、前記化合物(a2)を含有する場合、さらにエネルギー線硬化性基を有しない重合体(b)も含有することが好ましく、この場合、さらに前記重合体(a1)を含有することも好ましい。また、樹脂層形成用組成物(IV)は、前記化合物(a2)を含有せず、前記重合体(a1)、及びエネルギー線硬化性基を有しない重合体(b)をともに含有していてもよい。
 樹脂層形成用組成物(IV)において、前記エネルギー線硬化性成分(a)、及びエネルギー線硬化性基を有しない重合体(b)は、それぞれ、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
 樹脂層形成用組成物(IV)が、前記重合体(a1)、前記化合物(a2)及びエネルギー線硬化性基を有しない重合体(b)を含有する場合、樹脂層形成用組成物(IV)において、前記化合物(a2)の含有量は、前記重合体(a1)及びエネルギー線硬化性基を有しない重合体(b)の総含有量100質量部に対して、10~400質量部であることが好ましい。
 樹脂層形成用組成物(IV)において、溶媒以外の成分の総含有量に対する、前記エネルギー線硬化性成分(a)及びエネルギー線硬化性基を有しない重合体(b)の合計含有量の割合(すなわち、エネルギー線硬化性樹脂フィルムにおける、エネルギー線硬化性樹脂フィルムの総質量に対する、前記エネルギー線硬化性成分(a)及びエネルギー線硬化性基を有しない重合体(b)の合計含有量の割合)は、5~90質量%であることが好ましい。
 樹脂層形成用組成物(IV)は、前記エネルギー線硬化性成分以外に、目的に応じて、熱硬化性成分、光重合開始剤、充填材、カップリング剤、架橋剤、着色剤、汎用添加剤及び溶媒からなる群より選択される1種又は2種以上を含有していてもよい。例えば、前記エネルギー線硬化性成分及び熱硬化性成分を含有する樹脂層形成用組成物(IV)を用いることにより、形成されるエネルギー線硬化性樹脂フィルムは、加熱によって被着体に対する接着力が向上し、このエネルギー線硬化性樹脂フィルムから形成された第1保護膜の強度も向上する。
 樹脂層形成用組成物(IV)における前記熱硬化性成分、光重合開始剤、充填材、カップリング剤、架橋剤、着色剤、汎用添加剤及び溶媒としては、それぞれ、樹脂層形成用組成物(III)における熱硬化性成分(B)、光重合開始剤(H)、充填材(D)、カップリング剤(E)、架橋剤(F)、着色剤(I)、汎用添加剤(J)及び溶媒と同じものが挙げられる。
 樹脂層形成用組成物(IV)において、前記熱硬化性成分、光重合開始剤、充填材、カップリング剤、架橋剤、着色剤、汎用添加剤及び溶媒は、それぞれ、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
 樹脂層形成用組成物(IV)における前記熱硬化性成分、光重合開始剤、充填材、カップリング剤、架橋剤、着色剤、汎用添加剤及び溶媒の含有量は、目的に応じて適宜調節すればよく、特に限定されない。
◎エネルギー線硬化性樹脂フィルム形成用組成物の製造方法
 樹脂層形成用組成物(IV)等のエネルギー線硬化性樹脂フィルム形成用組成物は、これを構成するための各成分を配合することで得られる。
 各成分の配合時における添加順序は特に限定されず、2種以上の成分を同時に添加してもよい。
 溶媒を用いる場合には、溶媒を溶媒以外のいずれかの配合成分と混合してこの配合成分を予め希釈しておくことで用いてもよいし、溶媒以外のいずれかの配合成分を予め希釈しておくことなく、溶媒をこれら配合成分と混合することで用いてもよい。
 配合時に各成分を混合する方法は特に限定されず、撹拌子又は撹拌翼等を回転させて混合する方法;ミキサーを用いて混合する方法;超音波を加えて混合する方法等、公知の方法から適宜選択すればよい。
 各成分の添加及び混合時の温度並びに時間は、各配合成分が劣化しない限り特に限定されず、適宜調節すればよいが、温度は15~30℃であることが好ましい。
◇第1保護膜付き半導体チップの製造方法
 本発明の第1保護膜付き半導体チップの製造方法は、上述の第1保護膜付き半導体チップの製造方法であって、半導体ウエハのバンプを有する面に、硬化性樹脂フィルムを貼付する工程(本明細書においては、「貼付工程」と略記することがある)と、貼付後の前記硬化性樹脂フィルムを硬化させることにより、第1保護膜を形成する工程(本明細書においては、「第1保護膜形成工程」と略記することがある)と、前記半導体ウエハを分割することにより、半導体チップを得る工程(本明細書においては、「分割工程」と略記することがある)と、を有し、前記硬化性樹脂フィルムを貼付する工程において、前記スズの濃度の割合が5%以上となるように、前記バンプの頭頂部を前記硬化性樹脂フィルムから突出させるか、又は、前記硬化性樹脂フィルムを貼付する工程の後に、さらに、前記スズの濃度の割合が5%以上となるように、前記バンプ上の残留物の量を低減する工程(本明細書においては、「残留物低減工程」と略記することがある)を有する。
 以下、図面を参照しながら、前記製造方法について説明する。
 まず、図1に示す第1保護膜付き半導体チップの製造方法について、説明する。図5は、本実施形態を模式的に説明するための拡大断面図である。
<貼付工程>
 前記製造方法においては、まず、前記貼付工程を行い、図5(a)に示すように、半導体ウエハ9’のバンプ形成面9aに、硬化性樹脂フィルム13’を貼付する。本工程を行うことにより、硬化性樹脂フィルム13’が、多数個存在するバンプ91間に広がって、バンプ形成面9aに密着するとともに、バンプ91の表面91a、特にバンプ形成面9aの近傍部位の表面91aを覆って、バンプ91を埋め込み、これらの領域を被覆している状態とすることができる。
 本工程においては、例えば、半導体ウエハ9’のバンプ91の頭頂部910は、硬化性樹脂フィルム13’を貫通して、硬化性樹脂フィルム13’から突出する。
 貼付工程においては、例えば、硬化性樹脂フィルム13’を単独で用いてもよいが、ここに示すように、第1支持シート10と、第1支持シート10上に形成された硬化性樹脂フィルム13’と、を備えて構成された、第1保護膜形成用シート191を用いることが好ましい。このような第1保護膜形成用シート191を用いることにより、硬化性樹脂フィルム13’とバンプ形成面9aとの間、並びに、硬化性樹脂フィルム13’とバンプ91の表面91aとの間、のいずれにおいても、空隙部の発生をより抑制できる。また最終的に、バンプ91の頭頂部910において、第1保護膜残留物の残存を抑制する効果がより高くなる。
 貼付工程において、ここに示すような第1保護膜形成用シートを用いる場合には、第1保護膜形成用シート中の硬化性樹脂フィルムを半導体ウエハのバンプ形成面に貼付することにより、第1保護膜形成用シート自体を、半導体ウエハのバンプ形成面に貼付すればよい。
 なお、本明細書においては、ここに示すような、半導体ウエハのバンプ形成面に、第1保護膜形成用シートが貼付されて構成されたものを、「積層構造体(1)」と称することがある。図5においては、積層構造体(1)101として、半導体ウエハ9’のバンプ形成面9aに、第1保護膜形成用シート191が貼付されて構成されたものを示している。
 第1保護膜形成用シート191において、第1支持シート10は、第1基材11と、第1基材11上に形成された緩衝層12と、を備えて構成されている。すなわち、第1保護膜形成用シート191は、第1基材11、緩衝層12及び硬化性樹脂フィルム13’がこの順に、これらの厚さ方向において積層されて、構成されている。
 図6は、第1保護膜形成用シート191を模式的に示す拡大断面図である。
 第1支持シート10としては、公知のものを用いることができる。
 第1基材11は、シート状又はフィルム状であり、その構成材料としては、例えば、各種樹脂が挙げられる。
 前記樹脂としては、例えば、低密度ポリエチレン(LDPE)、直鎖低密度ポリエチレン(LLDPE)、高密度ポリエチレン(HDPE)等のポリエチレン;ポリプロピレン、ポリブテン、ポリブタジエン、ポリメチルペンテン、ノルボルネン樹脂等のポリエチレン以外のポリオレフィン;エチレン-酢酸ビニル共重合体、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル共重合体、エチレン-ノルボルネン共重合体等のエチレン系共重合体(モノマーとしてエチレンを用いて得られた共重合体);ポリ塩化ビニル、塩化ビニル共重合体等の塩化ビニル系樹脂(モノマーとして塩化ビニルを用いて得られた樹脂);ポリスチレン;ポリシクロオレフィン;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリエチレンイソフタレート、ポリエチレン-2,6-ナフタレンジカルボキシレート、すべての構成単位が芳香族環式基を有する全芳香族ポリエステル等のポリエステル;2種以上の前記ポリエステルの共重合体;ポリ(メタ)アクリル酸エステル;ポリウレタン;ポリウレタンアクリレート;ポリイミド;ポリアミド;ポリカーボネート;フッ素樹脂;ポリアセタール;変性ポリフェニレンオキシド;ポリフェニレンスルフィド;ポリスルホン;ポリエーテルケトン等が挙げられる。
 また、前記樹脂としては、例えば、前記ポリエステルとそれ以外の樹脂との混合物等のポリマーアロイも挙げられる。前記ポリエステルとそれ以外の樹脂とのポリマーアロイは、ポリエステル以外の樹脂の量が比較的少量であるものが好ましい。
 また、前記樹脂としては、例えば、ここまでに例示した前記樹脂の1種又は2種以上が架橋した架橋樹脂;ここまでに例示した前記樹脂の1種又は2種以上を用いたアイオノマー等の変性樹脂も挙げられる。
 第1基材11を構成する樹脂は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 第1基材11は1層(単層)のみでもよいし、2層以上の複数層でもよく、複数層である場合、これら複数層は、互いに同一でも異なっていてもよく、これら複数層の組み合わせは特に限定されない。
 第1基材11の厚さは、25~150μmであることが好ましい。
 ここで、「第1基材11の厚さ」とは、第1基材11全体の厚さを意味し、例えば、複数層からなる第1基材11の厚さとは、第1基材11を構成するすべての層の合計の厚さを意味する。
 緩衝層12は、緩衝層12とこれに隣接する層へ加えられる力に対して、緩衝作用を有する。ここでは、「緩衝層と隣接する層」として、硬化性樹脂フィルム13’を示している。
 緩衝層12は、シート状又はフィルム状であり、エネルギー線硬化性であることが好ましい。エネルギー線硬化性である緩衝層12は、エネルギー線硬化させることで、後述する硬化性樹脂フィルム13’からの剥離がより容易となる。
 緩衝層12の構成材料としては、例えば、各種粘着性樹脂が挙げられる。緩衝層12がエネルギー線硬化性である場合には、その構成材料としては、エネルギー線硬化に必要な各種成分も挙げられる。
 緩衝層12は1層(単層)のみでもよいし、2層以上の複数層でもよく、複数層である場合、これら複数層は、互いに同一でも異なっていてもよく、これら複数層の組み合わせは特に限定されない。
 緩衝層12の厚さは、60~675μmであることが好ましい。
 ここで、「緩衝層12の厚さ」とは、緩衝層12全体の厚さを意味し、例えば、複数層からなる緩衝層12の厚さとは、緩衝層12を構成するすべての層の合計の厚さを意味する。
 貼付工程においては、熱硬化性樹脂フィルム13’のうち、半導体ウエハ9’に対向している側の露出面(本明細書においては、「第1面」と称することがある)13’aを、半導体ウエハ9’のバンプ形成面9aに圧着させることで、熱硬化性樹脂フィルム13’を前記バンプ形成面9aに貼付できる。
 貼付工程においては、硬化性樹脂フィルム13’を加熱しながらバンプ形成面9aに貼付することが好ましい。このようにすることで、硬化性樹脂フィルム13’とバンプ形成面9aとの間、並びに、硬化性樹脂フィルム13’とバンプ91の表面91aとの間、のいずれにおいても、空隙部の発生をより抑制できる。また最終的に、バンプの頭頂部において、第1保護膜残留物の残存を抑制する効果がより高くなる。
 このときの硬化性樹脂フィルム13’の加熱温度は、過度な高温でなければよく、例えば、60~100℃であることが好ましい。ここで、「過度な高温」とは、例えば、硬化性樹脂フィルム13’が熱硬化性である場合には、硬化性樹脂フィルム13’の熱硬化が進行するなど、硬化性樹脂フィルム13’に目的外の作用が発現してしまう温度を意味する。
 貼付工程において、硬化性樹脂フィルム13’をバンプ形成面9aに貼付するときに、硬化性樹脂フィルム13’に加える圧力(本明細書においては、「貼付圧力」と称することがある)は、0.3~1MPaであることが好ましい。
 貼付工程により、積層構造体(1)101を形成した後は、この積層構造体(1)101をそのまま次工程で用いてもよいが、必要に応じて、半導体ウエハ9’のバンプ形成面9aとは反対側の面(裏面)9bを研削することにより、半導体ウエハ9’の厚さを調節してもよい。
 半導体ウエハ9’の裏面9bの研削は、グラインダーを用いる方法等の、公知の方法で行うことができる。
 半導体ウエハ9’の裏面9bを研削しない場合には、半導体ウエハ9’のバンプを除いた部位の厚さは、先に説明した、半導体チップのバンプを除いた部位の厚さと同じであることが好ましい。
 半導体ウエハ9’の裏面9bを研削する場合には、研削前における半導体ウエハ9’のバンプを除いた部位の厚さは、400~1200μmであることが好ましく、650~780μmであることがより好ましい。
 貼付工程により、積層構造体(1)101を形成した後は、積層構造体(1)101中の熱硬化性樹脂フィルム13’から、第1支持シート10を剥離させる。半導体ウエハ9’の裏面9bを研削した場合には、この研削後に、第1支持シート10を剥離させることが好ましい。
 このような工程を行うことで、図5(b)に示すように、半導体ウエハ9’のバンプ形成面9aに、熱硬化性樹脂フィルム13’を備えて構成された、積層構造体(2)(すなわち、硬化性樹脂フィルム付き半導体ウエハ)102が得られる。
 積層構造体(2)102においては、半導体ウエハ9’のバンプ91の頭頂部910は、硬化性樹脂フィルム13’を貫通して、突出している。
 緩衝層12がエネルギー線硬化性である場合には、エネルギー線の照射により、緩衝層12を硬化させて、緩衝層12の粘着性を低下させた後に、熱硬化性樹脂フィルム13’から第1支持シート10を剥離させることが好ましい。
<第1保護膜形成工程>
 前記製造方法においては、前記貼付工程後に前記第1保護膜形成工程を行い、図5(c)に示すように、貼付後の硬化性樹脂フィルム13’を硬化させることにより、第1保護膜13を形成する。
 積層構造体(1)101を形成した場合には、第1保護膜形成工程は、上述の第1支持シート10の剥離後に行うことができる。
 また、半導体ウエハ9’の裏面9bを研削した場合には、第1保護膜形成工程は、前記裏面9bの研削後に行うことができる。
 本工程を行うことにより、半導体ウエハ9’のバンプ形成面9aに、第1保護膜13を備えて構成された、積層構造体(3)(すなわち、第1保護膜付き半導体ウエハ)103が得られる。
 硬化性樹脂フィルム13’の硬化条件は、第1保護膜が十分にその機能を発揮できる程度の硬化度となる限り特に限定されず、熱硬化性樹脂フィルムの種類に応じて、適宜選択すればよい。
 硬化性樹脂フィルム13’が熱硬化性である場合には、硬化性樹脂フィルム13’の熱硬化時において、加熱温度は100~180℃であることが好ましく、加熱時間は0.5~5時間であることが好ましい。硬化性樹脂フィルム13’の熱硬化時においては、硬化性樹脂フィルム13’を加圧してもよく、その場合の加圧圧力は0.3~1MPaであることが好ましい。
 硬化性樹脂フィルム13’がエネルギー線硬化性である場合には、硬化性樹脂フィルム13’のエネルギー線硬化時において、エネルギー線の照度は180~280mW/cmであることが好ましく、エネルギー線の光量は450~1500mJ/cmであることが好ましい。
 図5(b)に示す積層構造体(2)(硬化性樹脂フィルム付き半導体ウエハ)102において、半導体ウエハ9’のバンプ91の頭頂部910に、硬化性樹脂フィルム13’に由来する残留物(硬化性樹脂フィルム残留物)が残存していなければ、第1保護膜形成工程後に、前記頭頂部910に第1保護膜残留物も存在しない。また、前記頭頂部910での、硬化性樹脂フィルム13’に由来する残留物(硬化性樹脂フィルム残留物)の量が少なければ、第1保護膜形成工程後に、前記頭頂部910での第1保護膜残留物の量も少なくなる。
<分割工程>
 前記製造方法においては、前記第1保護膜形成工程後に前記分割工程を行い、図5(d)に示すように、半導体ウエハ9’を分割することにより、半導体チップ9を得る。
 本工程により、目的物である第1保護膜付き半導体チップ1が得られる。
 半導体ウエハ9’の分割は、公知の方法で行うことができる。
 例えば、ダイシングブレードを用いてダイシングすることにより、半導体ウエハ9’を分割する場合には、積層構造体(3)(第1保護膜付き半導体ウエハ)103中の、半導体ウエハ9’の裏面9bに、ダイシングシート(又はダイシングテープ)を貼付して、以降、公知の方法でダイシングできる。
 なお、本明細書においては、このように、半導体ウエハのバンプ形成面に第1保護膜を備え、半導体ウエハの裏面にダイシングシートを備えて構成されたものを、「積層構造体(5)」と称することがある。また、この積層構造体(5)中の半導体ウエハを第1保護膜とともに個片化し、半導体チップを形成したものを「積層構造体(6)」と称することがある。
 ダイシングシートとして、その貼付対象物(例えば、半導体チップ)に接触する層がエネルギー線硬化性であるものを用いた場合には、ダイシング後、エネルギー線の照射により、この層を硬化させて粘着性を低下させることにより、その貼付対象物からダイシングシートをより容易に取り除くことができる。
 半導体ウエハ9’をダイシングする場合には、上述のダイシングシートに代えて、第2保護膜形成用シートを用いてもよい。
 第2保護膜形成用シートは、半導体チップの裏面に上述の第2保護膜を形成するための保護膜形成用フィルムが、ダイシングシート上に形成された構成を有する。第2保護膜形成用シートを用いた場合には、ダイシング後にダイシングシートが取り除かれ、最終的には、前記裏面に第2保護膜が貼付された状態の半導体チップが得られる。すなわち、先に説明した、半導体チップの裏面に第2保護膜を備えた第1保護膜付き半導体チップは、このような製造方法により得られる。
 前記製造方法においては、第1保護膜形成工程直後の段階で、上述のように、バンプ91の頭頂部910において、第1保護膜残留物の残存が抑制されている。したがって、目的物である第1保護膜付き半導体チップ1のバンプ91の頭頂部910において、第1保護膜残留物の残存が抑制される。
 このように、第1保護膜形成工程直後の段階で、バンプ91の頭頂部910において、第1保護膜残留物の残存が抑制されるためには、先の説明のように、積層構造体(2)(硬化性樹脂フィルム付き半導体ウエハ)102の段階で、半導体ウエハ9’のバンプ91の頭頂部910において、硬化性樹脂フィルム13’に由来する残留物(硬化性樹脂フィルム残留物)の残存が抑制されていることが必要である。そのためには、例えば、硬化性樹脂フィルム13’として、その残留物がバンプ91の頭頂部910に残存し難いものを用いればよい。そして、前記貼付工程において、前記スズの濃度の割合が5%以上となるように、バンプ91の頭頂部910を硬化性樹脂フィルム13’から突出させればよい。
 このような本発明の効果を顕著に得易い硬化性樹脂フィルム13’としては、先に説明したものが挙げられる。
 すなわち、熱硬化性樹脂フィルムの場合であれば、樹脂層形成用組成物(III)として、重合体成分(A)、エポキシ樹脂(B1)等の樹脂成分の重量平均分子量が小さい範囲のもの、充填材(D)の平均粒径が小さい範囲のもの、充填材(D)の含有量が少ない範囲のもの、等を用いることが好ましい。エポキシ樹脂(B1)としては、常温で液状のものを用いることが好ましい。
 一方、積層構造体(2)(硬化性樹脂フィルム付き半導体ウエハ)102の段階で、半導体ウエハ9’のバンプ91の頭頂部910において、硬化性樹脂フィルム13’に由来する残留物(硬化性樹脂フィルム残留物)の残存が抑制されていない場合には、最終的に、第1保護膜付き半導体チップのバンプの頭頂部において、第1保護膜残留物が残存しないか、又はその量が少なくなるような工程を、別途行うことが必要である。このような工程が、前記残留物低減工程である。
<残留物低減工程>
 すなわち、前記残留物低減工程は、前記貼付工程の後に、前記スズの濃度の割合が5%以上となるように、バンプ91上の残留物の量を低減する工程である。より具体的には、残留物低減工程は、前記貼付工程の後、目的とする第1保護膜付き半導体チップを得るまでの、いずれかの段階で行う。そして、残留物低減工程においては、例えば、半導体ウエハ9’若しくは半導体チップ9のバンプ91の頭頂部910に残存している、硬化性樹脂フィルム残留物又は第1保護膜残留物等の、残留物の量を低減する。ここで、「残留物の量を低減する」とは、残留物が存在しないか、又は残留物が存在しても、その影響が認められない程度に残留物の量が少ない状態とすることを意味する。
 前記製造方法の一実施形態においては、前記第1保護膜形成工程の後に、残留物低減工程を行い、バンプ91上の第1保護膜残留物の量を低減する。
 図7は、本実施形態における残留物低減工程の一例を、模式的に説明するための拡大断面図である。
 本実施形態においては、第1保護膜形成工程終了後に、先に説明した積層構造体(3)(第1保護膜付き半導体ウエハ)103中のバンプ91の頭頂部910に、第1保護膜残留物131が残存していることがある。図7(a)は、このような積層構造体(3)を示しており、この積層構造体(3)103は、図5中の積層構造体(3)103とは、第1保護膜残留物131の残存量が多い点で異なっている。
 本実施形態の残留物低減工程では、積層構造体(3)103中の、半導体ウエハ9’のバンプ91の上部に対して、プラズマを照射することにより、バンプ91の上部の第1保護膜残留物131の量を低減する。これにより、図7(b)に示すように、図5(c)で示したものと同様に、バンプ91の頭頂部910において、第1保護膜残留物131の残存が抑制されている積層構造体が得られる。本明細書においては、このように積層構造体(3)に対して残留物低減工程を行って得られたものを積層構造体(4)と称することがある。図7においては、符号104を付して、積層構造体(4)を示している。
 残留物低減工程でのプラズマの照射条件は、第1保護膜残留物131の量を十分に低減できる限り、特に限定されない。
 例えば、テトラフルオロメタン(CF)ガス、酸素ガス等の反応性ガスの存在下、ガスの圧力を80~120Paとし、加える電力を200~300Wとして、プラズマを0.5~5分照射すればよい。ただし、この条件は、プラズマの照射条件の一例である。
 残留物低減工程でのプラズマの照射範囲は、第1保護膜残留物131の量を十分に低減できる限り、特に限定されず、少なくともバンプ91の上部が含まれていればよい。そして、残留物低減工程においては、例えば、第1保護膜13を備えた半導体ウエハ9’の、バンプ91を有する側の全面に、プラズマを照射してもよい。
 ここでは、第1保護膜形成工程の後で、かつ分割工程の前に、残留物低減工程を行う場合について説明したが、本実施形態での残留物低減工程は、分割工程の後に行ってもよい。この場合のプラズマの照射対象物は、半導体ウエハ9’ではなく半導体チップ9となる(換言すると、積層構造体(3)103ではなく、第1保護膜残留物131が残存する第1保護膜付き半導体チップ1となる)。この点以外は、上述の場合と同じ方法で、残留物低減工程を行うことができる。
 また、ここでは、プラズマの照射により、第1保護膜残留物131の量を低減する場合について説明したが、第1保護膜残留物131の量を低減する方法としては、これ以外に、例えば、第1保護膜残留物131に微粒子を衝突させる方法が挙げられる。
 この場合、前記微粒子は、少なくともバンプ91の上部に対して衝突させればよく、微粒子を衝突させる範囲は、上述のプラズマの照射範囲と同様とすることができる。
 前記微粒子は、第1保護膜残留物131の量を低減可能であれば、特に限定されず、その具体例としては、ケイ砂、アルミナ、ガラス等の無機材料からなる研磨材;ドライアイス微粒子等が挙げられる。
 これらの中でも、気化によって、第1保護膜付き半導体チップでの前記微粒子の残存を顕著に容易に抑制できる点では、前記微粒子はドライアイス微粒子であることが好ましい。
 前記製造方法の他の実施形態においては、前記貼付工程の後に、残留物低減工程を行い、バンプ91上の硬化性樹脂フィルム残留物の量を低減する。
 図8は、本実施形態における残留物低減工程の他の例を、模式的に説明するための拡大断面図である。
 本実施形態においては、貼付工程終了後に、先に説明した積層構造体(2)(硬化性樹脂フィルム付き半導体ウエハ)102中のバンプ91の頭頂部910に、硬化性樹脂フィルム残留物131’が残存していることがある。図8(a)は、このような積層構造体(2)を示しており、この積層構造体(2)102は、図5中の積層構造体(2)102とは、硬化性樹脂フィルム残留物131’の残存量が多い点で異なっている。
 本実施形態の残留物低減工程では、積層構造体(2)102中の、半導体ウエハ9’の少なくともバンプ91の上部に対して、プラズマを照射することにより、バンプ91の上部の硬化性樹脂フィルム残留物131’の量を低減する。これにより、図8(b)に示すように、図5(b)で示したものと同様に、バンプ91の頭頂部910において、硬化性樹脂フィルム残留物131’の残存が抑制されている積層構造体が得られる。本明細書においては、このように積層構造体(2)に対して残留物低減工程を行って得られたものを積層構造体(10)と称することがある。図8においては、符号110を付して、積層構造体(10)を示している。
 本実施形態におけるプラズマの照射条件は、照射対象物が異なる点以外は、先に説明した照射条件と同様とすることができる。
 また、本実施形態においても、先に説明した場合と同様に、プラズマの照射に代えて、硬化性樹脂フィルム残留物131’に微粒子を衝突させる方法を採用することによって、硬化性樹脂フィルム残留物131’の量を低減できる。本実施形態においても、先に説明した場合と同様の方法で、微粒子を衝突させることができる。
 ここまでは、残留物低減工程において、バンプ91上の残留物の量だけを低減する方法を採用したものについて説明したが、残留物低減工程においては、バンプ91上の残留物を、そのバンプ91の付着部位とともに除去する方法を採用してもよい。
 すなわち、前記製造方法のさらに他の実施形態においては、前記第1保護膜形成工程の後に、残留物低減工程を行うことにより、バンプ91上の第1保護膜残留物を、そのバンプ91の付着部位とともに除去する。
 図9は、本実施形態における残留物低減工程のさらに他の例を、模式的に説明するための拡大断面図である。
 先に説明したとおり、本実施形態においては、第1保護膜形成工程終了後に、先に説明した積層構造体(3)(第1保護膜付き半導体ウエハ)103中のバンプ91の頭頂部910に、第1保護膜残留物131が残存していることがある。図9(a)は、このような積層構造体(3)を示しており、この積層構造体(3)103は、図5中の積層構造体(3)103とは、第1保護膜残留物131の残存量が多い点で異なっている。
 本実施形態の残留物低減工程では、積層構造体(3)103中の、半導体ウエハ9’のバンプ91の上部のうち、第1保護膜残留物131が残存している部位を、この第1保護膜残留物131ごと除去する。より具体的には、積層構造体(3)103において、半導体ウエハ9’のバンプ91をその頂点から特定の距離だけ下の部位において切断し、切断片を除去することにより、バンプ91の第1保護膜残留物131が残存している上部を、この第1保護膜残留物131ごと除去する。これにより、図9(b)に示すように、バンプの形状が変化した積層構造体(11)111が得られる。そして、積層構造体(3)103に代えて、この積層構造体(11)111を用いることにより、最終的には、図3で示したものと同じ第1保護膜付き半導体チップ、すなわち、バンプ92の頭頂部920において、第1保護膜残留物131の残存が抑制されている第1保護膜付き半導体チップ3が得られる。
 上述のように、バンプ91の特定部位を切断する方法としては、ダイシングブレードを用いてバンプ91を切断する方法が挙げられる。
 この場合、積層構造体(3)103中の、半導体ウエハ9’の裏面9bに、ダイシングシートを貼付してから、バンプ91の特定部位を切断することが好ましい。この場合のダイシングシートとしては、通常のダイシングシートを用いることができる。
 ダイシングブレードを用いたバンプ91の特定部位の切断は、切断箇所が異なる点以外は、通常の半導体ウエハのダイシングの場合と同じ方法で行うことができる。
 例えば、ブレードの回転数は、20000~45000rpmであることが好ましく、ブレードの送り速度(移動速度)は、10~100mm/sであることが好ましい。
 なお、本明細書においては、このうようにバンプ91の特定部位を切断する前の、積層構造体(3)中において、半導体ウエハのバンプ形成面に第1保護膜を備え、半導体ウエハの裏面にダイシングテープを備えて構成されたものを、「積層構造体(7)」と称することがある。
 残留物低減工程でのバンプ91の切断部位は、第1保護膜残留物131の量を十分に低減できる限り、特に限定されない。
 例えば、半導体ウエハのバンプ形成面に対して平行な方向において、高さがHであるバンプを切断する場合には、バンプの頂点から、好ましくは0.15H~0.4Hのいずれかの距離だけ下の部位、より好ましくは0.18H~0.35Hのいずれかの距離だけ下の部位、さらに好ましくは0.21H~0.3Hのいずれかの距離だけ下の部位が、バンプの切断部位である。
 例えば、半導体ウエハのバンプ形成面に対して平行ではない方向において、高さがHであるバンプを切断する場合には、上述の数値範囲で特定される部位が切断部位に含まれるようにすることが好ましい。
 本実施形態においては、積層構造体(3)103に代えて、この積層構造体(7)を用いて、以下、同様の工程を行うことにより、第1保護膜付き半導体チップ3が得られる。
 本実施形態においては、積層構造体(7)において、上記のようにバンプの特定部位が切断されたものを「積層構造体(8)」と称し、さらに、この積層構造体(8)中の半導体ウエハが第1保護膜とともに個片化されて、半導体チップとなったものを「積層構造体(9)」と称することがある。
 なお、本実施形態においては、バンプ91の上部を第1保護膜残留物131ごと除去するが、目的とする第1保護膜付き半導体チップを得るまでのいずれかの段階における条件によっては、少量の第1保護膜残留物131がバンプ92の頭頂部920に残存することがある。このような状態の第1保護膜付き半導体チップが、図4に示す第1保護膜付き半導体チップ4である。
 ここでは、第1保護膜形成工程の後で、かつ分割工程の前に、残留物低減工程を行う場合について説明したが、本実施形態での残留物低減工程は、先に説明したように、分割工程の後に行ってもよい。この場合の切断対象物は、半導体ウエハ9’のバンプ91ではなく半導体チップ9のバンプ91となる(換言すると、積層構造体(3)ではなく、第1保護膜残留物131が残存する第1保護膜付き半導体チップ1となる)。この点以外は、上述の場合と同じ方法で、残留物低減工程を行うことができる。
 ただし、バンプ91の特定部位の切断がより容易である点では、本実施形態での残留物低減工程は、第1保護膜形成工程の後で、かつ分割工程の前に行うことが好ましい。
 前記製造方法のさらに他の実施形態においては、前記貼付工程の後に、残留物低減工程を行い、バンプ91上の硬化性樹脂フィルム残留物を、そのバンプ91の付着部位とともに除去する。
 図10は、本実施形態における残留物低減工程のさらに他の例を、模式的に説明するための拡大断面図である。
 先に説明したとおり、本実施形態においては、貼付工程終了後に、先に説明した積層構造体(2)(硬化性樹脂フィルム付き半導体ウエハ)102中のバンプ91の頭頂部910に、硬化性樹脂フィルム残留物131’が残存していることがある。図10(a)は、このような積層構造体(2)を示しており、この積層構造体(2)102は、図5中の積層構造体(2)102とは、硬化性樹脂フィルム残留物131’の残存量が多い点で異なっている。
 本実施形態の残留物低減工程では、積層構造体(2)102中の、半導体ウエハ9’のバンプ91の上部のうち、硬化性樹脂フィルム残留物131’が残存している部位を、この硬化性樹脂フィルム残留物131’ごと除去する。より具体的には、積層構造体(2)102において、半導体ウエハ9’のバンプ91をその頂点から特定の距離だけ下の部位において切断し、切断片を除去することにより、バンプ91の硬化性樹脂フィルム残留物131’が残存している上部を、この硬化性樹脂フィルム残留物131’ごと除去する。これにより、図10(b)に示すように、バンプの形状が変化した積層構造体(12)112が得られる。そして、積層構造体(3)103に代えて、この積層構造体(12)112を用いることにより、最終的には、図3で示したものと同じ第1保護膜付き半導体チップ、すなわち、バンプ92の頭頂部920において、第1保護膜残留物131の残存が抑制されている第1保護膜付き半導体チップ3が得られる。
 本実施形態におけるバンプ91の切断条件は、切断対象物が異なる点以外は、先に説明した切断条件と同様とすることができる。
 以上のように、ここまでは、図1及び図2に示すような、バンプの頭頂部が曲面である第1保護膜付き半導体チップの製造方法と、図3及び図4に示すような、バンプの頭頂部が平面である第1保護膜付き半導体チップの製造方法と、について説明した。
 これらのうち、バンプの頭頂部が平面である第1保護膜付き半導体チップの製造方法は、上述のとおり、半導体ウエハ又は半導体チップのバンプの一部を、これに付着している残留物とともに除去する工程(残留物低減工程)を有する。すなわち、このような残留物低減工程を有しない第1保護膜付き半導体チップの製造方法は、バンプの一部と、第1保護膜の形成に用いた材料の一部と、を無駄にすることがないという点で、残留物低減工程を有する第1保護膜付き半導体チップの製造方法よりも有利である。
 ただし、残留物低減工程を有する第1保護膜付き半導体チップの製造方法は、バンプの除去量を、目的を達成するための必要最低限の量とすることができ、過剰量となることを抑制できるという利点を有する。
 また、残留物低減工程を有しない製造方法で得られた第1保護膜付き半導体チップは、バンプの高さを高くし易いという点で、残留物低減工程を有する製造方法で得られた第1保護膜付き半導体チップよりも有利である。
 また、製造時に残留物低減工程を行う必要がある第1保護膜付き半導体チップにおいては、バンプのうち、半導体チップのバンプ形成面の近傍部位の面と、第1保護膜と、の間に、微細な空隙部が生じ易い傾向がある。これは、前記貼付工程において、バンプの頭頂部に硬化性樹脂フィルム残留物が残存し易い場合には、バンプの前記バンプ形成面の近傍部位の面と、硬化性樹脂フィルムと、の間に、微細な空隙部が生じ易い傾向があるためである。これに対して、残留物低減工程を有しない製造方法で得られた第1保護膜付き半導体チップは、前記空隙部が生じ難く、第1保護膜による保護効果がより高いという点で有利である。
 ここまでは、おもに図1~図4に示す第1保護膜付き半導体チップの製造方法について説明したが、他の第1保護膜付き半導体チップも、その構造に基づいて必要とされる他の工程を、上述の製造方法において、適宜、適したタイミングで別途有する製造方法により、製造できる。
◇半導体チップ・第1保護膜積層体の評価方法
 本発明の半導体チップ・第1保護膜積層体の評価方法は、半導体チップと、前記半導体チップのバンプを有する面(バンプ形成面)に形成された第1保護膜と、を備えた、半導体チップ・第1保護膜積層体の評価方法であって、前記半導体チップ・第1保護膜積層体中の前記バンプの頭頂部について、X線光電子分光法(XPS)によって分析を行い、炭素、酸素、ケイ素及びスズの合計濃度に対するスズの濃度の割合を求め、前記スズの濃度の割合が5%以上である場合には、前記半導体チップ・第1保護膜積層体を、目的とする第1保護膜付き半導体チップであると判定し、前記スズの濃度の割合が5%未満である場合には、前記半導体チップ・第1保護膜積層体を、目的とする第1保護膜付き半導体チップではないと判定する。
 すなわち、前記半導体チップ・第1保護膜積層体は、前記スズの濃度の割合が特定されていない点以外は、上述の第1保護膜付き半導体チップと同じであり、前記スズの濃度の割合の特定結果によって、第1保護膜付き半導体チップにもなり得るし、それ以外にもなり得る。
 本発明の半導体チップ・第1保護膜積層体の評価方法によれば、評価対象である半導体チップ・第1保護膜積層体が、上述の本発明の第1保護膜付き半導体チップであるか否かを判定できる。そして、この半導体チップ・第1保護膜積層体が、そのバンプと基板との間の接合強度を高くできるものであるか否か、さらに、その半導体チップと基板との接合体における電気的接続度(導電性)を高くできるものであるか否か、について、判定できる。そして、この半導体チップ・第1保護膜積層体が、最終的に、信頼性が高い半導体パッケージを構成可能であるか否か、について、判定できる。
 前記評価方法において、半導体チップ・第1保護膜積層体中のバンプの頭頂部についてのXPS分析は、先に説明した、第1保護膜付き半導体チップ中のバンプの頭頂部についてのXPS分析の場合と、同じ方法で行うことができる。
 第1保護膜付き半導体チップであると判定される程度に前記スズの濃度の割合が大きい、判定前の半導体チップ・第1保護膜積層体は、例えば、図1~図4に示す第1保護膜付き半導体チップと同様の構成を有する。
 一方、第1保護膜付き半導体チップであると判定されない程度に前記スズの濃度の割合が小さい、判定前の半導体チップ・第1保護膜積層体は、例えば、図2又は図4に示す第1保護膜付き半導体チップにおいて、バンプ上部の第1保護膜残留物の量がさらに増大したものと同様の構成を有する。
 以下、具体的実施例により、本発明についてより詳細に説明する。ただし、本発明は、以下に示す実施例に、何ら限定されるものではない。
 熱硬化性樹脂フィルム形成用組成物の製造に用いた成分を以下に示す。
・重合体成分(A)
 重合体成分(A)-1:下記式(i)-1、(i)-2及び(i)-3で表される構成単位を有するポリビニルブチラール(積水化学工業社製「エスレックBL-10」、重量平均分子量25000、ガラス転移温度59℃)
Figure JPOXMLDOC01-appb-C000002
 (式中、lは約28であり、mは1~3であり、nは68~74の整数である。)
・エポキシ樹脂(B1)
 エポキシ樹脂(B1)-1:液状ビスフェノールA型エポキシ樹脂(DIC社製「EPICLON EXA-4810-1000」、重量平均分子量4300、エポキシ当量408g/eq)
 エポキシ樹脂(B1)-2:ジシクロペンタジエン型エポキシ樹脂(DIC社製「EPICLON HP-7200」、分子量550、エポキシ当量254~264g/eq)
・熱硬化剤(B2)
 熱硬化剤(B2)-1:ノボラック型フェノール樹脂(昭和電工社製「ショウノール(登録商標)BRG-556」)
・硬化促進剤(C)
 硬化促進剤(C)-1:2-フェニル-4,5-ジヒドロキシメチルイミダゾール(四国化成工業社製「キュアゾール2PHZ」)
・充填材(D)
 充填材(D)-1:エポキシ基で修飾された球状シリカ(アドマテックス社製「アドマナノ YA050C-MKK」、平均粒径0.05μm)
[実施例1]
<<第1保護膜形成用シートの製造>>
<熱硬化性樹脂フィルム形成用組成物の製造>
 重合体成分(A)-1(9.9質量部)、エポキシ樹脂(B1)-1(37.8質量部)、エポキシ樹脂(B1)-2(25.0質量部)、熱硬化剤(B2)-1(18.1質量部)、硬化促進剤(C)-1(0.2質量部)及び充填材(D)-1(9.0質量部)を、メチルエチルケトンに溶解又は分散させて、23℃で撹拌することで、熱硬化性樹脂フィルム形成用組成物として、固形分濃度が55質量%である樹脂層形成用組成物(III)を得た。なお、ここに示す各成分の配合量は、すべて固形分量である。
<第1保護膜形成用シートの製造>
 ポリエチレンテレフタレート製フィルムの片面がシリコーン処理により剥離処理された剥離フィルム(リンテック社製「SP-PET381031」、厚さ38μm)を用い、その前記剥離処理面に、上記で得られた熱硬化性樹脂フィルム形成用組成物を塗工し、120℃で2分加熱乾燥させることにより、厚さ30μmの熱硬化性樹脂フィルムを形成した。
 次いで、第1支持シートとして貼付テープ(リンテック社製「E-8510HR」)を用い、この貼付テープの貼付対象層に、上述の剥離フィルム上の熱硬化性樹脂フィルムを貼り合わせることで、第1支持シート、熱硬化性樹脂フィルム及び剥離フィルムがこの順に、これらの厚さ方向において積層されて構成された、図6に示す構造を有する第1保護膜形成用シートを得た。
<<半導体チップ・第1保護膜積層体(第1保護膜付き半導体チップ)の製造>>
 上記で得られた第1保護膜形成用シートにおいて、剥離フィルムを取り除き、これにより露出した熱硬化性樹脂フィルムの表面(露出面)を、半導体ウエハのバンプ形成面に圧着させることで、半導体ウエハのバンプ形成面に第1保護膜形成用シートを貼付した。このとき、第1保護膜形成用シートの貼付は、貼付装置(ローラー式ラミネータ、リンテック社製「RAD-3510 F/12」)を用いて、テーブル温度90℃、貼付速度2mm/sec、貼付圧力0.5MPaの条件で、熱硬化性樹脂フィルムを加熱しながら行った。半導体ウエハとしては、バンプの形状が図1に示すように概ね球状であり、バンプの高さが210μmであり、バンプの幅が250μmであり、隣り合うバンプ間の距離が400μmであり、バンプを除いた部位の厚さが780μmであるものを用いた。
 以上により、半導体ウエハのバンプ形成面に、第1保護膜形成用シートが貼付されて構成された、積層構造体(1)を得た。
 次いで、グラインダー(ディスコ社製「DGP8760」)を用いて、得られた積層構造体(1)における半導体ウエハの、バンプ形成面とは反対側の面(裏面)を研削した。このとき、半導体ウエハのバンプを除いた部位の厚さが280μmとなるまで、前記裏面を研削した。
 次いで、紫外線照射装置(リンテック社製「RAD-2000 m/12」)を用いて、照度230mW/cm、光量570mJ/cmの条件で、裏面を研削後の積層構造体(1)中の第1保護膜形成用シートに紫外線を照射した。これにより、第1保護膜形成用シート中の第1支持シートのうち、熱硬化性樹脂フィルムに接触している層を紫外線硬化させた。
 次いで、貼付装置(リンテック社製「RAD-2700 F/12」)を用いて、第1支持シート(貼付シート)を積層構造体(1)中の熱硬化性樹脂フィルムから剥離させた。
 以上により、半導体ウエハのバンプ形成面に、熱硬化性樹脂フィルムを備えて構成された、積層構造体(2)(硬化性樹脂フィルム付き半導体ウエハ)を得た。
 次いで、熱硬化装置(リンテック社製「RAD-9100 m/12」)を用いて、加熱温度130℃、加熱時圧力0.5MPa、加熱時間2時間の条件で、上記で得られた積層構造体(2)中の熱硬化性樹脂フィルムを熱硬化させて、第1保護膜を形成した。
 以上により、半導体ウエハのバンプ形成面に、第1保護膜を備えて構成された、積層構造体(3)(第1保護膜付き半導体ウエハ)を得た。
 次いで、プラズマ照射機(samco社製「RIE-10NRT」)を用いて、上記で得られた積層構造体(3)中の、半導体ウエハのバンプ上部に対して、プラズマを照射し、バンプ上部の第1保護膜残留物の量を低減する操作を行った。このとき、テトラフルオロメタン(CF)ガスの流量を40sccm、酸素ガスの流量を80sccm、出力を250W、ガス導入後圧力を100Paとして、プラズマを5分照射した。また、このとき、プラズマは、第1保護膜を備えた半導体ウエハの、バンプを有する側の全面に、照射するようにした。
 以上により、積層構造体(4)を得た。
 次いで、得られた積層構造体(4)中の、半導体ウエハの前記裏面(研削面)に、ダイシングテープ(リンテック社製「Adwill D-675」)を貼付することで、半導体ウエハのバンプ形成面に第1保護膜を備え、前記裏面にダイシングテープを備えて構成された、積層構造体(5)を得た。
 次いで、ダイシング装置(ディスコ社製「DFD6361」)及びダイシングブレード(ディスコ社製「NBC-ZH2050-27HECC」)を用いて、積層構造体(5)中の半導体ウエハを第1保護膜とともに個片化し(すなわち、積層構造体(4)を個片化し)、大きさが6mm×6mmの半導体チップを形成して、積層構造体(6)を得た。
 次いで、紫外線照射装置(リンテック社製「RAD-2000 m/12」)を用いて、照度230mW/cm、光量120mJ/cmの条件で、上記で得られた積層構造体(6)中のダイシングテープに紫外線を照射した。これにより、ダイシングテープのうち、半導体チップに接触している層を紫外線硬化させた。
 次いで、半導体チップのバンプ形成面に第1保護膜を備えて構成されている半導体チップ・第1保護膜積層体を、紫外線照射後のダイシングテープから引き離してピックアップした。
<<バンプの評価>>
<バンプの頭頂部におけるスズの濃度の割合>
 上述の半導体チップ・第1保護膜積層体の製造過程において、積層構造体(6)中のダイシングテープへの紫外線照射と、半導体チップ・第1保護膜積層体のピックアップと、の間のタイミングで、半導体チップ・第1保護膜積層体中のバンプの頭頂部について、XPSによって分析を行い、炭素、酸素、ケイ素及びスズの合計濃度に対するスズの濃度の割合を求めた。分析対象である半導体チップ・第1保護膜積層体の、ダイシングテープ上での配置位置を説明するための平面図を図11に示す。図11に示すように、ダイシングテープ8上には、144個の半導体チップ・第1保護膜積層体1’が配置されている。これらのうち、符号1’-1~1’-6を付した6個の半導体チップ・第1保護膜積層体1’について、XPS分析を行った。XPS分析は、バンプの頂上を含む上部領域を対象として行った。前記上部領域は、バンプをその上方から見下ろして平面視したときに、バンプの頂上を含み、かつ、直径が20μmである円形領域として認識される領域、とした。そして、求められた前記スズの濃度の割合の平均値を、本実施例での前記スズの濃度の割合として採用した。
 XPS分析は、X線光電子分光分析装置(アルバック社製「Quantra SXM」)を用いて、照射角度45°、X線ビーム径20μmφ、出力4.5Wの条件で行った。結果を、表1中の「Sn濃度の割合(%)」の欄に示す。
<銅板と半導体チップとの接合体におけるせん断破壊形態>
 上記で得られた、ピックアップ後の半導体チップ・第1保護膜積層体を、フラックスが塗布された銅板(厚さ300μm)の表面に載置し、260℃で2分加熱することにより、この銅板に接合した。このとき、半導体チップ・第1保護膜積層体中のバンプが銅板の表面に接触するようにした。そして、銅板を洗浄してフラックスを除去した。
 次いで、せん断力測定装置(nordson Dage社製「Dage-SERIES4000XY」)を用いて、接合された半導体チップ・第1保護膜積層体に、銅板の表面(半導体チップ・第1保護膜積層体が接合されている面)に対して並行な方向にせん断力を加えて、接合状態を破壊した。そして、その破壊部位を観察して、破壊が「バンプ及び銅板間の界面における界面破壊(以下、単に「界面破壊」と略記する)」と、「バンプの破壊(以下、「凝集破壊」と略記する)」と、のいずれであるかを判定した。結果を、表1中の「せん断破壊形態」の欄に示す。
<基板と半導体チップとの接合体における電気的接続度>
 上記で得られた、ピックアップ後の半導体チップ・第1保護膜積層体を、フラックスが塗布された基板(KIT WLP(s) 300P/400P、厚さ1000μm)の表面に載置し、350℃で2分加熱することにより、この基板に接合した。このとき、半導体チップ・第1保護膜積層体中のバンプが前記基板の表面に接触するようにした。そして、基板を洗浄してフラックスを除去した。
 次いで、テスター(HIOKI製「3422 HiCARDTESTER」)を用いて、半導体チップと基板との間の抵抗値を測定した。そして、抵抗値が2.7~3.0Ωである場合には、電気的接続度をA(良好)と判定し、抵抗値が2.7~3.0Ωの範囲から外れる場合には、電気的接続度をB(不良)と判定した。結果を、表1中の「電気的接続度」の欄に示す。
<基板と半導体チップとの接合体のTCT信頼性>
 上記で得られた、ピックアップ後の半導体チップ・第1保護膜積層体を、フラックスが塗布された基板(KIT WLP(s) 300P/400P、厚さ(1000)μm)の表面に載置し、260℃で2分加熱することにより、この基板に接合した。このとき、半導体チップ・第1保護膜積層体中のバンプが前記基板の表面に接触するようにした。そして、基板を洗浄してフラックスを除去した。
 次いで、得られた接合体を、TCT試験機(ESPEC社製「TSE-11A」)の内部に格納し、-40℃を5分維持した後、125℃まで昇温し、125℃のまま5分維持してから、-40℃まで冷却する温度サイクルの条件下に、この格納後の接合体を置いた。そして、この温度サイクルを100回繰り返すごとに(100サイクルごとに)、前記接合体をTCT試験機から取り出して、上述の「基板と半導体チップとの接合体における電気的接続度」の評価の場合と同じ方法で、この取り出した前記接合体における電気的接続度を評価した。そして、その評価結果からワイブル分布を作成し、故障率が63.2%となるときのサイクル数が、1360以上である場合のTCT信頼性をA(良好)と判定し、1360未満である場合のTCT信頼性をB(不良)と判定した。この1360というサイクル数は、後述する参考例1での前記サイクル数であり、本評価は参考例1を基準として行っている。なお、ここでの「故障」は、バンプと基板との接合構造の破壊に起因する。結果を、表1中の「TCT信頼性」の欄に示す。
<<第1保護膜形成用シートの製造、半導体チップ・第1保護膜積層体(第1保護膜付き半導体チップ)の製造、バンプの評価>>
[実施例2]
 実施例1の場合と同じ方法で、第1保護膜形成用シートを製造した。
 そして、積層構造体(3)中の半導体ウエハのバンプ上部に対して、プラズマを照射する時間を5分に代えて3分とした点以外は、実施例1の場合と同じ方法で、半導体チップ・第1保護膜積層体(第1保護膜付き半導体チップ)を製造し、バンプを評価した。結果を表1に示す。
[実施例3]
 実施例1の場合と同じ方法で、第1保護膜形成用シートを製造した。
 そして、積層構造体(3)中の半導体ウエハのバンプ上部に対して、プラズマを照射する時間を5分に代えて1分とした点以外は、実施例1の場合と同じ方法で、半導体チップ・第1保護膜積層体(第1保護膜付き半導体チップ)を製造し、バンプを評価した。結果を表1に示す。
[実施例4]
<<第1保護膜形成用シートの製造>>
 実施例1の場合と同じ方法で、第1保護膜形成用シートを製造した。
<<半導体チップ・第1保護膜積層体(第1保護膜付き半導体チップ)の製造>>
 実施例1の場合と同じ方法で、積層構造体(3)(第1保護膜付き半導体ウエハ)を製造した。
 次いで、得られた積層構造体(3)中の、半導体ウエハの前記裏面(研削面)に、ダイシングテープ(リンテック社製「Adwill D-675」)を貼付することで、半導体ウエハのバンプ形成面に第1保護膜を備え、前記裏面にダイシングテープを備えて構成された、積層構造体(7)を得た。
 次いで、ダイシング装置(ディスコ社製「DFD6361」)及びダイシングブレード(ディスコ社製「NBC-ZH2050-SE 27HEEF」)を用いて、ブレード回転数30000rpm、ブレード送り速度50mm/sの条件で、バンプをその頂点から50μmだけ下の部位において、バンプ形成面に対して平行な方向において切断し、切断片を除去した。このように、バンプ上部の第1保護膜残留物の量を低減する操作を行うことにより、バンプを、高さが160μmであり、かつ、頭頂部が平面状である点以外は、実施例1の場合と同じであるものとした。換言すると、本実施例では、バンプの形状を図3に示すものとした。得られた積層構造体(8)は、さらに、ダイシング装置の洗浄ユニットを用いて洗浄した。
 次いで、上述の積層構造体(5)に代えて、上記で得られた積層構造体(8)を用い、実施例1の場合と同じ方法で、積層構造体(8)中の半導体ウエハを第1保護膜とともに個片化し、大きさが6mm×6mmの半導体チップを形成することにより、積層構造体(9)を得た。
 次いで、上述の積層構造体(6)に代えて、上記で得られた積層構造体(9)を用い、積層構造体(9)中のダイシングテープに紫外線を照射した。これにより、ダイシングテープのうち、半導体チップに接触している層を紫外線硬化させた。
 次いで、実施例1の場合と同じ方法で、半導体チップのバンプ形成面に第1保護膜を備えて構成されている半導体チップ・第1保護膜積層体を、紫外線照射後のダイシングテープから、引き離してピックアップした。
<<バンプの評価>>
 上記で得られた半導体チップ・第1保護膜積層体について、実施例1の場合と同じ方法で、バンプを評価した。結果を表1に示す。
<<半導体チップの製造、バンプの評価>>
[参考例1]
<<半導体チップの製造>>
 上述の剥離フィルムを取り除いた第1保護膜形成用シートに代えて、貼付テープ(リンテック社製「E-8510HR」)を用いた点以外は、実施例1の場合と同じ方法で、半導体ウエハのバンプ形成面に前記貼付テープが貼付されて構成された、積層構造体(1R)を得た。
 次いで、上述の積層構造体(1)に代えて、上記で得られた積層構造体(1R)を用いた点以外は、実施例1の場合と同じ方法で、積層構造体(1R)における半導体ウエハについて、そのバンプを除いた部位の厚さが280μmとなるまで、裏面を研削した。
 次いで、半導体ウエハの前記裏面(研削面)に、ダイシングテープ(リンテック社製「Adwill D-675」)を貼付して、積層構造体(2R)を得た。
 次いで、上述の裏面を研削後の積層構造体(1)に代えて、上記で得られた積層構造体(2R)を用いた点以外は、実施例1の場合と同じ方法で、貼付テープに紫外線を照射した。これにより、貼付テープのうち、半導体ウエハのバンプ形成面に接触している層を紫外線硬化させた。
 次いで、実施例1の場合と同じ方法で、貼付シートを半導体ウエハから剥離させた。
 以上により、半導体ウエハのバンプ形成面は露出しており、半導体ウエハの裏面にダイシングテープを備えて構成された、積層構造体(3R)(すなわち、ダイシングテープ付き半導体ウエハ)を得た。
 次いで、上述の積層構造体(5)に代えて、上記で得られた積層構造体(3R)を用いた点以外は、実施例1の場合と同じ方法で、積層構造体(3R)中の半導体ウエハを個片化し、大きさが6mm×6mmの半導体チップを形成することにより、積層構造体(4R)を得た。
 次いで、上述の積層構造体(6)に代えて、上記で得られた積層構造体(4R)を用いた点以外は、実施例1の場合と同じ方法で、積層構造体(4R)中のダイシングテープに紫外線を照射した。これにより、ダイシングテープのうち、半導体チップに接触している層を紫外線硬化させた。
 次いで、半導体チップを、紫外線照射後ダイシングテープから、引き離してピックアップした。
<<バンプの評価>>
 上記で得られた半導体チップについて、実施例1の場合と同じ方法で、バンプを評価した。結果を表1に示す。
<<第1保護膜形成用シートの製造、半導体チップ・第1保護膜積層体(第1保護膜付き半導体チップ)の製造、バンプの評価>>
[比較例1]
 実施例1の場合と同じ方法で、第1保護膜形成用シートを製造した。
 そして、積層構造体(3)中の半導体ウエハのバンプ上部に対して、プラズマを照射しなかった点以外は、実施例1の場合と同じ方法で、半導体チップ・第1保護膜積層体を製造し、バンプを評価した。結果を表1に示す。
[比較例2]
 実施例1の場合と同じ方法で、第1保護膜形成用シートを製造した。
 そして、積層構造体(3)中の半導体ウエハのバンプ上部に対して、プラズマを照射する時間を5分に代えて0.1分とした点以外は、実施例1の場合と同じ方法で、半導体チップ・第1保護膜積層体を製造し、バンプを評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000003
 上記結果から明らかなように、実施例1~4の半導体チップ・第1保護膜積層体においては、前記スズの濃度の割合が6.5%以上(6.5~13.3%)となっており、バンプの頭頂部において第1保護膜残留物の量が少なかった。これは、半導体チップ・第1保護膜積層体の製造時に、実施例1~3においては、半導体ウエハのバンプ上部にプラズマを5~1分照射することにより、前記残留物低減工程を行い、実施例4においては、バンプの上部を除去することにより、前記残留物低減工程を行ったためである。
 これら実施例では、このような結果を反映して、銅板とバンプとの間の接合強度が高く、銅板と半導体チップとの接合体におけるせん断破壊は、凝集破壊(バンプの破壊)であった。また、基板と半導体チップとの接合体における電気的接続度も高かった。そして、基板と半導体チップとの接合体のTCT信頼性も高かった。
 以上の結果から、実施例1~4で製造された半導体チップ・第1保護膜積層体は、目的とする第1保護膜付き半導体チップであると判定できた。
 実施例1~4の第1保護膜付き半導体チップ(半導体チップ・第1保護膜積層体)は、バンプの頭頂部における第1保護膜残留物の残存が抑制されたことにより、信頼性が高い半導体パッケージを構成可能であることを確認できた。
 参考例1の半導体ウエハ及び半導体チップにおいては、第1保護膜を設けておらず、前記スズの濃度の割合が低くなる要因がなく、実際に前記スズの濃度の割合は、高水準であった。
 実施例1~4、特に実施例1、2及び4における上述の評価結果は、参考例1における評価結果と同等程度の水準にあり、実施例1~4では、バンプの頭頂部における第1保護膜残留物の量の低減効果が高いと判断できた。
 これに対して、比較例1の半導体チップ・第1保護膜積層体においては、前記残留物低減工程を行っていないことにより、実施例1~4の場合と比較して、前記スズの濃度の割合が顕著に低く、実質的にスズを検出できなかった。
 本比較例では、このような結果を反映して、銅板とバンプとの間の接合強度が低く、銅板と半導体チップとの接合体におけるせん断破壊は、界面破壊(バンプ及び銅板間での界面破壊)であった。また、基板と半導体チップとの接合体における電気的接続度も低かった。そして、基板と半導体チップとの接合体のTCT信頼性の評価時には、温度サイクルを1サイクル終了する前の段階で、バンプと基板との接合構造が破壊されてしまった。
 比較例2の半導体チップ・第1保護膜積層体においては、前記スズの濃度の割合が3.4%となっており、バンプの頭頂部において第1保護膜残留物の量が多かった。これは、半導体チップ・第1保護膜積層体の製造時において、半導体ウエハのバンプ上部に対するプラズマの照射時間が短く、バンプ上部の第1保護膜残留物の量の低減が不十分であったためである。
 本比較例では、このような結果を反映して、銅板とバンプとの間の接合強度は高かったものの、基板と半導体チップとの接合体における電気的接続度が低かった。そして、基板と半導体チップとの接合体のTCT信頼性も低かった。
 以上の結果から、比較例1~2で製造された半導体チップ・第1保護膜積層体は、目的とする第1保護膜付き半導体チップではないと判定できた。
 比較例1~2の半導体チップ・第1保護膜積層体は、バンプの頭頂部における第1保護膜残留物の残存が抑制されなかったことにより、信頼性が高い半導体パッケージを構成できないことを確認できた。
 本発明は、フリップチップ実装時に使用される、接続パッド部にバンプを有する半導体チップ等の製造に利用可能である。
 1,2,3,4・・・第1保護膜付き半導体チップ(半導体チップ・第1保護膜積層体)、1’・・・半導体チップ・第1保護膜積層体、9・・・半導体チップ、9’・・・半導体ウエハ、9a・・・半導体チップ(半導体ウエハ)のバンプ形成面、91,92・・・半導体チップ(半導体ウエハ)のバンプ、91a,92a・・・バンプの表面、910,920・・・バンプの頭頂部、13・・・第1保護膜、131・・・第1保護膜残留物、13’・・・硬化性樹脂フィルム、131’・・・硬化性樹脂フィルム残留物

Claims (3)

  1.  半導体チップと、前記半導体チップのバンプを有する面に形成された第1保護膜と、を備え、
     前記バンプの頭頂部について、X線光電子分光法によって分析を行ったとき、炭素、酸素、ケイ素及びスズの合計濃度に対するスズの濃度の割合が、5%以上となる、第1保護膜付き半導体チップ。
  2.  請求項1に記載の第1保護膜付き半導体チップの製造方法であって、
     半導体ウエハのバンプを有する面に、硬化性樹脂フィルムを貼付する工程と、
     貼付後の前記硬化性樹脂フィルムを硬化させることにより、第1保護膜を形成する工程と、
     前記半導体ウエハを分割することにより、半導体チップを得る工程と、
    を有し、
     前記硬化性樹脂フィルムを貼付する工程において、前記スズの濃度の割合が5%以上となるように、前記バンプの頭頂部を前記硬化性樹脂フィルムから突出させるか、又は、
     前記硬化性樹脂フィルムを貼付する工程の後に、さらに、前記スズの濃度の割合が5%以上となるように、前記バンプ上の残留物の量を低減する工程を有する、第1保護膜付き半導体チップの製造方法。
  3.  半導体チップと、前記半導体チップのバンプを有する面に形成された第1保護膜と、を備えた、半導体チップ・第1保護膜積層体の評価方法であって、
     前記半導体チップ・第1保護膜積層体中の前記バンプの頭頂部について、X線光電子分光法によって分析を行い、炭素、酸素、ケイ素及びスズの合計濃度に対するスズの濃度の割合を求め、前記スズの濃度の割合が5%以上である場合には、前記半導体チップ・第1保護膜積層体を、目的とする第1保護膜付き半導体チップであると判定し、前記スズの濃度の割合が5%未満である場合には、前記半導体チップ・第1保護膜積層体を、目的とする第1保護膜付き半導体チップではないと判定する、半導体チップ・第1保護膜積層体の評価方法。
PCT/JP2018/042485 2017-11-17 2018-11-16 第1保護膜付き半導体チップ、第1保護膜付き半導体チップの製造方法、及び半導体チップ・第1保護膜積層体の評価方法 WO2019098326A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880072997.8A CN111344850A (zh) 2017-11-17 2018-11-16 带第一保护膜的半导体芯片及其制造方法、及半导体芯片-第一保护膜层叠体的评价方法
KR1020207013181A KR102594248B1 (ko) 2017-11-17 2018-11-16 제1 보호막이 형성된 반도체 칩, 제1 보호막이 형성된 반도체 칩의 제조 방법, 및 반도체 칩 제1 보호막 적층체의 평가 방법
JP2019554310A JP7218296B2 (ja) 2017-11-17 2018-11-16 第1保護膜付き半導体チップ、第1保護膜付き半導体チップの製造方法、及び半導体チップ・第1保護膜積層体の評価方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017221987 2017-11-17
JP2017-221987 2017-11-17

Publications (1)

Publication Number Publication Date
WO2019098326A1 true WO2019098326A1 (ja) 2019-05-23

Family

ID=66538988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042485 WO2019098326A1 (ja) 2017-11-17 2018-11-16 第1保護膜付き半導体チップ、第1保護膜付き半導体チップの製造方法、及び半導体チップ・第1保護膜積層体の評価方法

Country Status (5)

Country Link
JP (1) JP7218296B2 (ja)
KR (1) KR102594248B1 (ja)
CN (1) CN111344850A (ja)
TW (1) TWI794334B (ja)
WO (1) WO2019098326A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004134487A (ja) * 2002-10-09 2004-04-30 Toray Ind Inc 半導体装置の製造方法および半導体装置
JP2009239288A (ja) * 2009-04-13 2009-10-15 Univ Waseda 接合方法及び接合装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5515811U (ja) 1978-07-14 1980-01-31
US5938856A (en) * 1997-06-13 1999-08-17 International Business Machines Corporation Process of removing flux residue from microelectronic components
JP2002170431A (ja) * 2000-11-29 2002-06-14 Idemitsu Kosan Co Ltd 電極基板およびその製造方法
JP5515811B2 (ja) * 2010-02-05 2014-06-11 日立化成株式会社 半導体装置の製造方法及び回路部材接続用接着シート
JP5884582B2 (ja) 2012-03-19 2016-03-15 富士通株式会社 半導体装置の製造方法及び半導体装置の製造装置
JP6157206B2 (ja) * 2012-11-28 2017-07-05 学校法人早稲田大学 積層構造体の製造方法
KR102224971B1 (ko) * 2012-11-30 2021-03-08 린텍 가부시키가이샤 경화성 수지막 형성층이 형성된 시트 및 그 시트를 사용한 반도체 장치의 제조 방법
US9657386B2 (en) 2014-03-28 2017-05-23 Kaneka Corporation Transparent conductive film and method for producing same
WO2017026127A1 (ja) * 2015-08-13 2017-02-16 出光興産株式会社 導体とその製造方法、及びそれを用いた積層回路及び積層配線部材
TWI704996B (zh) * 2015-11-04 2020-09-21 日商琳得科股份有限公司 第一保護膜形成用片
TWI745314B (zh) * 2015-11-04 2021-11-11 日商琳得科股份有限公司 保護膜形成用片

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004134487A (ja) * 2002-10-09 2004-04-30 Toray Ind Inc 半導体装置の製造方法および半導体装置
JP2009239288A (ja) * 2009-04-13 2009-10-15 Univ Waseda 接合方法及び接合装置

Also Published As

Publication number Publication date
CN111344850A (zh) 2020-06-26
JP7218296B2 (ja) 2023-02-06
KR20200083481A (ko) 2020-07-08
TWI794334B (zh) 2023-03-01
TW201937573A (zh) 2019-09-16
KR102594248B1 (ko) 2023-10-25
JPWO2019098326A1 (ja) 2020-12-10

Similar Documents

Publication Publication Date Title
WO2021172410A1 (ja) 熱硬化性樹脂フィルム、複合シート、及び第1保護膜付き半導体チップの製造方法
WO2019098329A1 (ja) 熱硬化性樹脂フィルム及び第1保護膜形成用シート
JP6438181B1 (ja) 半導体装置及びその製造方法
JP6978890B2 (ja) ダイシングダイボンディングシート及び半導体チップの製造方法
WO2019008898A1 (ja) 樹脂膜形成用フィルム及び樹脂膜形成用複合シート
WO2019098334A1 (ja) 第1保護膜付き半導体チップ、第1保護膜付き半導体チップの製造方法、及び半導体チップ・第1保護膜積層体の評価方法
JP6427791B2 (ja) チップ用樹脂膜形成用シート及び半導体装置の製造方法
WO2020196130A1 (ja) フィルム状接着剤及び半導体加工用シート
WO2019098326A1 (ja) 第1保護膜付き半導体チップ、第1保護膜付き半導体チップの製造方法、及び半導体チップ・第1保護膜積層体の評価方法
WO2020196138A1 (ja) フィルム状接着剤及び半導体加工用シート
JPWO2019189173A1 (ja) 半導体チップの製造方法
JP6907122B2 (ja) 硬化性樹脂フィルム及び第1保護膜形成用シート
WO2020196156A1 (ja) フィルム状接着剤及び半導体加工用シート
JP7453208B2 (ja) 第1保護膜付きワーク加工物の製造方法
WO2021235005A1 (ja) 半導体装置の製造方法
WO2020195761A1 (ja) 熱硬化性樹脂フィルム、第1保護膜形成用シート、キット、及び第1保護膜付きワーク加工物の製造方法
JPWO2020175421A1 (ja) 熱硬化性樹脂フィルム及び第1保護膜形成用シート
JPWO2020175423A1 (ja) 熱硬化性樹脂フィルム及び第1保護膜形成用シート
JP2022153305A (ja) ダイシングダイボンディングシート及び半導体装置の製造方法
JP2021147479A (ja) フィルム状接着剤及びダイシングダイボンディングシート
JP2022146567A (ja) 保護膜形成フィルム、保護膜形成用複合シート、保護膜付きワーク加工物の製造方法、及び保護膜付きワークの製造方法
JP2021147478A (ja) フィルム状接着剤及びダイシングダイボンディングシート

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879538

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019554310

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18879538

Country of ref document: EP

Kind code of ref document: A1