WO2019097430A1 - Dispositivo y método de deshidratación de fluidos y cortes - Google Patents

Dispositivo y método de deshidratación de fluidos y cortes Download PDF

Info

Publication number
WO2019097430A1
WO2019097430A1 PCT/IB2018/058970 IB2018058970W WO2019097430A1 WO 2019097430 A1 WO2019097430 A1 WO 2019097430A1 IB 2018058970 W IB2018058970 W IB 2018058970W WO 2019097430 A1 WO2019097430 A1 WO 2019097430A1
Authority
WO
WIPO (PCT)
Prior art keywords
dehydrating
cylinder
cuts
longitudinal region
sludge
Prior art date
Application number
PCT/IB2018/058970
Other languages
English (en)
French (fr)
Inventor
Luis Fernando IBARRA CERON
Miguel Antonio SUAREZ JAIMES
Original Assignee
Qmax Solutions Colombia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qmax Solutions Colombia filed Critical Qmax Solutions Colombia
Publication of WO2019097430A1 publication Critical patent/WO2019097430A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/13Treatment of sludge; Devices therefor by de-watering, drying or thickening by heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B11/00Machines or apparatus for drying solid materials or objects with movement which is non-progressive
    • F26B11/02Machines or apparatus for drying solid materials or objects with movement which is non-progressive in moving drums or other mainly-closed receptacles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B11/00Machines or apparatus for drying solid materials or objects with movement which is non-progressive
    • F26B11/02Machines or apparatus for drying solid materials or objects with movement which is non-progressive in moving drums or other mainly-closed receptacles
    • F26B11/04Machines or apparatus for drying solid materials or objects with movement which is non-progressive in moving drums or other mainly-closed receptacles rotating about a horizontal or slightly-inclined axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B11/00Machines or apparatus for drying solid materials or objects with movement which is non-progressive
    • F26B11/12Machines or apparatus for drying solid materials or objects with movement which is non-progressive in stationary drums or other mainly-closed receptacles with moving stirring devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B11/00Machines or apparatus for drying solid materials or objects with movement which is non-progressive
    • F26B11/12Machines or apparatus for drying solid materials or objects with movement which is non-progressive in stationary drums or other mainly-closed receptacles with moving stirring devices
    • F26B11/14Machines or apparatus for drying solid materials or objects with movement which is non-progressive in stationary drums or other mainly-closed receptacles with moving stirring devices the stirring device moving in a horizontal or slightly-inclined plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B11/00Machines or apparatus for drying solid materials or objects with movement which is non-progressive
    • F26B11/18Machines or apparatus for drying solid materials or objects with movement which is non-progressive on or in moving dishes, trays, pans, or other mainly-open receptacles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B11/00Machines or apparatus for drying solid materials or objects with movement which is non-progressive
    • F26B11/18Machines or apparatus for drying solid materials or objects with movement which is non-progressive on or in moving dishes, trays, pans, or other mainly-open receptacles
    • F26B11/20Machines or apparatus for drying solid materials or objects with movement which is non-progressive on or in moving dishes, trays, pans, or other mainly-open receptacles with stirring devices which are held stationary
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B17/00Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement
    • F26B17/30Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by rotary or oscillating containers; with movement performed by rotary floors
    • F26B17/32Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by rotary or oscillating containers; with movement performed by rotary floors the movement being in a horizontal or slightly inclined plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B23/00Heating arrangements
    • F26B23/02Heating arrangements using combustion heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B25/00Details of general application not covered by group F26B21/00 or F26B23/00
    • F26B25/04Agitating, stirring, or scraping devices

Definitions

  • the present invention relates to sludge dewatering devices and / or cuts that include cylindrical kilns. Particularly the present invention relates to the dehydration of sludges and oil drilling cuts by means of a homo cylindrical, where the cylinder comprises more than two sections of internal vanes.
  • the document KR20060018924A describes a hot hopper and a cold hopper in which the material to be dehydrated is loaded; At least one burner is installed; at least one cylindrical drum installed between the cold hopper and the hot hopper; the cylindrical drum comprises a plurality of internal vanes distributed in at least three sections of the cylindrical drum. At least one group of vanes comprises two rectangular bars joined on one of their sides at a right angle, said vanes are located inside the middle section of the cylindrical drum. In addition, the cylindrical drum comprises another group of rectangular vanes that describe a semi-arc within the third section of the cylindrical drum.
  • the document discloses an outer gear that covers a circular section of the cylindrical drum and a pinion geared to the outer gear of the cylindrical drum, in addition to at least two outer bearings disposed below the cylindrical drum.
  • the document mentions a plurality of thermal insulation vanes disposed at regular intervals along the inner edge of the first section of the cylindrical drum, which are fixedly attached to spacers protruding from the inner surface of the cylindrical drum.
  • a sheet of three sides On the two spacers rests a sheet of three sides, which describe a concave angle and a convex angle to each other.
  • One of the sides of the sheet extends towards the inner surface of the cylindrical drum and towards the adjacent pallet without making contact with any of said elements.
  • one of the disadvantages presented in document KR20060018924A is due to the geometry of the pallets, since the solids would have a residence time inside the cylinder higher than necessary to bring it to the target humidity, which generates inefficiencies and waste.
  • the gases emitted by the device disclosed in document KR20060018924A do not present a decontamination treatment prior to their expulsion.
  • document US3387380A describes a homo unit equipped with a substantially cylindrical metal wall which, on the inner surface of its inlet end and outlet end, is provided with rows of pallets distributed in a main section and in a middle section .
  • the vanes of the main section inside the homo unit have a greater inclination than the rows of vanes in the middle section.
  • the vanes of the main section and the middle section extend radially towards the center of the oven and present a cross section in the form of "J" where the inclined portion is in the direction of the rotation of the unit, thus facilitating the Progressive and rotational progress of the load that is drying inside the oven.
  • the "J" shaped pallets of the main section and the middle section of the homo unit have a stepped relationship with the pallets of adjacent rows or pathways and define a passage open longitudinally along the entire length of the interior wall of the homo unit.
  • These vanes serve not only to advance the charge of spirally dried material but also to agitate it and allow the hot gas to come into contact with its particles during the advance along the homo.
  • document US3387380A has the disadvantage of not having an additional conveyor pallet in the "J” shape, with a geometry that avoids excess residence of the material to be dehydrated inside the homo cylindrical.
  • the configuration of the blades in the form of "J” would hardly achieve a percentage of dehydration of 25% of sludges and / or oil drilling cuts, taking into account that the blades in the form of "J” fulfill the function of transport and not of exposure of the material to dehydrate at high temperatures inside the homo cylindrical.
  • the present invention corresponds to a device for dewatering sludges and / or cuts and to a dehydration method thereof.
  • the device of the present invention corresponds to a dehydrating device having a rotary dewatering cylinder which includes an inlet, an outlet opposite the inlet, a first longitudinal region adjacent to the inlet, and a second longitudinal region located between the first longitudinal region and the exit.
  • Said rotary dewatering cylinder also includes a fluid supply unit coupled to the inlet.
  • the dehydrating device comprises a plurality of "T" type vanes located on an internal surface of the second longitudinal region of the rotary dehydrating cylinder, where each "T" type vane is formed of a sheet with a central region and two lateral sections. protruding from the central region and a support connected between the sheet and the inner surface of the second longitudinal region.
  • the present invention also consists of a method of dewatering sludges and / or cuts comprising an initial stage where sludges and / or cuts are supplied and an air stream to a dehydrating cylinder, where the mass flow of air is between 10 and 200 Sometimes the mass flow of sludge and / or cuts.
  • a second stage the sludges and / or cuts of the initial stage are dehydrated until they have a 25% humidity through a first longitudinal region of the dehydrating cylinder, generating a sludge and / or partially dry stream and a contaminated gas stream , where the first longitudinal region has an operating temperature greater than 100 ° C.
  • the sludge and / or partially dried sections of the second stage are transported along the drying cylinder by means of a plurality of "T" type pallets located on an internal surface of a second longitudinal region of the dehydrating cylinder, where the second Longitudinal region is located adjacent to the first longitudinal region.
  • the sludge and / or slit dewatering device and method comprises a feed hopper connected to a pump for transferring the sludge and / or cuts to the rotary dewatering cylinder where they are transported by a plurality of vanes.
  • the device of the present invention has a minimum capacity of 7.9m 3 processing daily sludge and / or cuts with a humidity of 75%, reaching an average moisture of 10% to 15% after treating the sludge and / or cuts in the present device.
  • FIG. l corresponds to a perspective view of a modality of the dehydrating device.
  • FIG. 2 corresponds to a side view of the dehydrating device of FIG. 1.
  • FIG. 3 corresponds to a top view of the dehydrating device of FIG. 1
  • FIG. 4 corresponds to a side view in section of the dehydrating device of FIG. 1 with a first detail corresponding to the burner, the cover, a conduit, "channel" dewatering vanes, a fluid supply unit, a second detail of the heat exchange mechanism, an inlet pipe and an outlet pipe.
  • FIG. 5 corresponds to a sectional side view of one embodiment of the solid gas separation mechanism including the bifurcation, the cyclone mechanism, the heat exchange mechanism, the fines separation mechanism and a detail of the mesh.
  • FIG. 6 corresponds to a perspective view of a modality of the dehydrating cylinder on the horizontal surface with a longitudinal cut, showing the three longitudinal regions with their respective blades, a first detail of the burner and the lid, a second detail of a roller and a third detail of the power transmission mechanism, the first transmission element and the first drive unit.
  • FIG. 7 corresponds to a perspective and frontal view of the first longitudinal region of the dehydrating cylinder and a detail of a dehydration vane type "channel" of a mode of the dehydrating cylinder.
  • FIG. 8 corresponds to a perspective and frontal view of the second longitudinal region and a detail of two "T" type vanes of a modality of the dehydrating cylinder.
  • FIG. 9 corresponds to a perspective and frontal view of the third longitudinal region and a detail of the "J" type pallets of a dehydrating cylinder mode.
  • Sludges and / or cuts are solid-liquid mixtures that are widely used in the industry.
  • drilling muds are essential for the formation of oil wells.
  • sludges and / or cuts will be understood as the fluids used for drilling wells, the solids product of well drilling and the mixture of the above fluids and solids. Sludges and / or cuts can be any substance or mixture of substances with physical and chemical characteristics, such as: air or gas, water, oil or combinations of water and oil with a certain percentage of solids.
  • drilling "cuts” are small pieces of rock that fracture due to the action of the teeth of a drill that pierces a soil, for example, in the formation of an oil well.
  • the bit is refrigerated, lubricated and driven by sludge, which is mixed with cuts in the area where the bit impacts the ground.
  • This mixture of sludge and cuts is pumped to the surface, hovered in vibrating screens and monitored for composition, size, shape, color, texture, and hydrocarbon content.
  • the drilling cuts are wetted with drilling mud in different proportions according to the conditions of the cuts and the quality of the equipment used to separate them from the mud.
  • the main functions of the drilling mud are: to remove the cuttings from the bottom of the well, to cool and lubricate the bit, in the case of the oil-based muds to avoid its corrosion, to control subsoil pressures, to sustain the cuts and heavy material in suspension and to transmit Hydraulic power to the bit.
  • water-based sludge consists of a mixture of solids, liquids and chemicals, with water. Some of the solids react with the water phase and dissolved chemicals, so they are called "reactive solids". Most are hydratable clays. The chemicals added to the mud restrict the activity of these, allowing certain properties of the drilling fluids to remain within desired limits.
  • the solids present in the mud do not react with water and chemicals significantly, being called "inert solids". Any oil that is added to a water-based mud is emulsified within the water phase, remaining as small and discontinuous drops (oil-in-water emulsion).
  • the sludge has the thixotropic property, which is the ability of a fluid to develop gel strength over time when it is allowed to stand, but allowing it to return to its fluid state by applying mechanical agitation.
  • Non-aqueous sludges are also grouped according to their content of aromatic hydrocarbons: Group I high content of aromatics, Group II average content of aromatic compounds, and Group III low content of aromatic compounds. It has been reported that the degrees of toxicity increase directly proportional to the content of aromatic compounds.
  • water-based and synthetic sludges are less harmful to the environment due to their biodegradable components, not to those based on oil. Over time, these sludge along with the cuts become a waste that demands a subsequent treatment for its disposal.
  • drilling mud there are basically two classes of drilling mud, 1) water-based drilling mud, whose composition is 76% -95% sea water or fresh water, 24% - 5% barite, bentonite, drilling solids and chemical products; 2) non-aqueous drilling muds.
  • the latter are subdivided into OBM oil-base muds, improved oil-mineral-based sludge and synthetic sludge.
  • One objective of the present invention is to achieve a sludge dewatering capacity and / or daily cuts between 7.9m and 72m 3 3 and a liquid phase reduction in sludge and cuts up to 50%, for example if receives an initial mix of sludge and / or cuts with a volumetric percentage of 68% in the liquid phase, after of the process carried out with the device and method of the present invention, a final mixture of sludges and / or cuts will be obtained with a volume percentage of the liquid phase up to 10%.
  • the minimum daily processing capacity of the dewatering device is 7.9m 3 of sludge and / or cuts with a humidity of 75%, reaching an average moisture of 10% to 15% after treating the sludge and / or cuts in the present device.
  • Other dehydration devices found in the industry for sludge treatment and / or cuts with 75% humidity obtain a percentage of humidity between 45% and 65% in sludge and / or treated cuts.
  • Another object of the present invention is to provide a dehydrating device that dehydrates sludge and / or cuts to a humidity between 60% to 75%.
  • another objective of the present invention is to provide a solid-gas separation mechanism, which separates the smaller particles of waste gas from the dehydrating cylinder, to prevent said particles from being thrown into the environment causing the contamination of this and the deterioration of the health of those who inhabit it.
  • the present invention includes a dehydrating device having a rotating dehydrating cylinder (100) that includes an inlet (101); an exit (102) opposite the entrance (101); a first longitudinal region (106) adjacent to the inlet (101); and a second longitudinal region (107) located between the first longitudinal region (106) and the outlet (102) and a fluid supply unit (105) coupled to the inlet (101);
  • the dehydrating device comprises:
  • each "T" type pallet (109) is formed of:
  • the dehydrating cylinder (100) rotates on its own axis to keep the sludge and / or cuts entering the inlet (101) in constant motion, and then of the path along the dehydrator cylinder (100) exit through the outlet (102).
  • the technical effect of the constant and rotary movement of the cylinder is to avoid undesired concentrations of the sludge and / or cuts along the dehydration device, such concentrations can cause bubbles, clogging and areas with excessive or insufficient temperature.
  • the concentration of sludge and / or cuts would prevent the centrifugal fan from reaching the draft required for the dragging of the particles.
  • the dehydrating cylinder (100) is divided into at least two longitudinal regions, a first longitudinal region (106) adjacent to the inlet (101) and a second longitudinal region (107) located between the first longitudinal region (106) and the outlet (102) in order to dehydrate and transport the sludge and / or cuts through the first longitudinal region (106) and the second longitudinal region (107).
  • Another of the technical effects of having more than two longitudinal regions is that in each of them different types of pallets can be installed that fulfill various functions, such as exposing the sludge and / or cuts to the direct flame, increasing the number of surfaces in contact with sludge and / or cuts, and transport said sludge and / or cuts.
  • the dewatering cylinder (100) has a fluid supply unit (105), coupled to the inlet (101), by means of said unit the sludge and / or cuts towards the interior of the dehydrating cylinder (100).
  • the fluid supply unit (105) is selected from the group consisting of pumps (eg pinion, piston, diaphragm, double diaphragm, blade, thyme, progressive cavity, lobes, cams, peristaltic, reciprocating) , centrifuges, duplexes, dilacerators), screw feeders, vibratory feeders, pipes, or combinations thereof.
  • pumps eg pinion, piston, diaphragm, double diaphragm, blade, thyme, progressive cavity, lobes, cams, peristaltic, reciprocating
  • the dehydrating cylinder comprises a plurality of "T" type vanes (109), located on an internal surface of the second longitudinal region (107), where each vane type "T” (109) is formed of a sheet (112) with a central region and two lateral sections protruding from the central region and a support (113) connected between the sheet (112) and the internal surface of the second longitudinal region (107).
  • one of the objectives of the use of the sheet (112), in the "T" type pallet (109) is to increase the number of surfaces in contact with sludges and / or cuts inside the dehydrating cylinder (100), in addition to the internal face of the dehydrating cylinder (100).
  • the sheet (112) may have in the central region a width between 90mm to l40mm and a length between 900mm to l.400mm , with an area between 0.08 lm 2 to 0.196m 2
  • the sheet (112) may have in a side section a width between 50 mm to 75 mm and a length between 900 mm to 1,400 mm, with an area between 0.045m 2 to 0, l05mm 2 .
  • the side sections may have different dimensions; in said example the opposite side section can have a width between 40 mm to 65 mm and a length between 900 mm to 1400 mm, with an area between 0.036m 2 to 0.09lm 2 . Therefore, each of the "T" type pallets (109) contains a volume of sludge and / or cuts of 0.0 lm 3 to 0.04 m 3
  • the second longitudinal region (107) comprises between 20 to 30 "T" type blades (109) equidistant, which allows to transport approximately 0.5m 3 to 0.75m 3 of sludges and / or cuts taking into account account that per day the dehydrator device could receive between 8m 3 to 80m 3 of sludge and / or cuts.
  • the "T" type palette (109) comprises a sheet (112) with two side sections protruding from the central region of the sheet (112), and which describe an angle g between 50 ° and 60 ° with respect to the central region of the sheet (112).
  • the "T" type pallet (109) includes a support (113) that is connected at one longitudinal end perpendicular to the central region of the sheet (112) and the opposite longitudinal end is connected to the internal surface of the second one.
  • longitudinal region (107) of the dehydrating cylinder (100) on the other hand one of its lateral ends connect perpendicularly to a plate (140) located only at one end of the "T" type pallet (109).
  • the support (113) is located longitudinally to the second longitudinal region (107) and to the central region of the sheet (112).
  • both the support (113) and the side sections of the sheet (112) allow the "T" type palette (109) to contain the sludges and / or cuts while these reach the highest point within of the dehydrator cylinder (100).
  • This technical effect is achieved thanks to the fact that the lateral sections of the sheet (112) fulfill the function of a blade, when they are at the lowest point of the dehydrating cylinder (100) they collect the sludge and / or cuts and contain them during their displacement. until reach the highest point of the dehydrating cylinder (100).
  • the plate (140) hinders the sludge and / or cuts contained in the pallets type "T" (109) preventing them from being returned to the anterior regions of the dehydrating cylinder (100).
  • one of the two lateral sections protruding from the central region of the sheet (112) may have an area between 0.07m 2 to 0.09m 2 , offering the advantage of raising and containing a greater amount of sludge and / or cuts avoiding the runoff of these from the "T" type pallet (109).
  • each sheet (112) forms an angle b of 10 ° to 110 ° with respect to a radial axis (136) leaving the centroid of the dehydrating cylinder (100).
  • the radial axis (136) emerging from the centroid of the dehydrating cylinder (100) forms a right angle with respect to a tangent (152) to the outer diameter of the dehydrating cylinder (100).
  • Said angle b is preferably in a range of 45 ° to 80 ° and even more preferably angle b is 65 °, this is because an angle b less than 65 ° will cause the sludge and / or cuts are drained before the "T" type palette (109) reaches the highest point of the dehydrating cylinder (100).
  • angle b is preferably in a range of 45 ° to 80 ° and even more preferably angle b is 65 °, this is because an angle b less than 65 ° will cause the sludge and / or cuts are drained before the "T" type palette (109) reaches the highest point of the dehydrating cylinder (100).
  • the "T" type blades (109) are separated from each other equiangularly with respect to a longitudinal axis (138) located in the centroid of the dehydrating cylinder (100) allowing a high quantity of sludge and / or cuts make contact with the "T" type pallets (109).
  • the sheet (112), the plate (140) and the support (113) can be selected from the group consisting of metals such as different types of steel or aluminum alloys, composite materials, ceramic materials, and other equivalents that are known to a person moderately versed in the subject.
  • Some types of steel that can be used are carbon steels, chrome steels, chrome-nickel steels, stainless steels such as 301 stainless steel, 302 stainless steel, 304 stainless steel, 316 stainless steel, 405 stainless steel, stainless steel 410, stainless steel 430, stainless steel 442, alloy steel with manganese.
  • Iron castings, galvanized iron, nickel-chrome-molybdenum-tungsten alloy, ferro-chrome-molybdenum alloys, etc. can also be used.
  • the sheet (112) and the support (113) can be further manufactured from composite materials, which can have polymer or fiber reinforced resin matrices, said fibers can be synthetic or natural.
  • Said support (113) can be adhered by means of chemical welding, temperature welding, pressure welding, friction welding, and other equivalent means that are known to a person of ordinary skill in the art.
  • the dehydrating device may include a third longitudinal region (108) located between the second longitudinal region (107) and the first outlet (102).
  • the dehydrating cylinder (100) rests on a horizontal surface (114), where the dehydrating cylinder (100) makes an angle between 2 or 5 or horizontal (114). ), this allows sludges and / or cuts with 40% to 75% humidity to be slid by the effect of tilt, gravity and rotation along the drying cylinder (100), towards the first outlet (102) of the cylinder dehydrator (100). Therefore, the highest part is in the inlet (101) and the lowest part is in the first outlet (102) of the dehydrating cylinder (100). This allows the sludge and / or cuts to be transported gradually from the inlet (101) to the outlet (102).
  • the moisture contained in the muds and / or cuts directly affects the transit of these through the different regions of the dehydrating cylinder (100), therefore the dehydration efficiency of the first region (106) directly affects the transit of the sludge and / or cuts to the second region (107) and to other possible regions of the dehydrating cylinder (100).
  • the dehydrating cylinder (100) is connected to a first motor unit (117), by means of which it obtains the rotary movement.
  • Said first driving unit (117) is axially connected to a power transmission mechanism (115), which in turn transfers the movement to a first transmission element (116) disposed in the dehydrating cylinder (100).
  • said first transmission element (116) is a toothed gear that is fits around the dehydrator cylinder (100) and fits with a pinion used as a power transmission mechanism (115).
  • the power transmission mechanism (115) is selected among cables, drive chains, belts or transmission belts, pulleys, toothed pulleys, gears, pinions, pinion-chain, pinion and worm gear mechanism, rack mechanism , friction wheels, friction discs, ribbed pins and spindles, cardan joints and CV joints, camshaft and other equivalent mechanical transmission elements known to a person skilled in the art.
  • the first drive unit (117) may be selected from alternating current motors (eg three-phase synchronous motors, synchronous asynchronous motors, motors with a permanent magnet rotor, single-phase motors, two-phase motors, motors with auxiliary start winding, motors with auxiliary start winding and with capacitor), DC motors (eg series excitation motors, parallel excitation motors, compound excitation motors).
  • alternating current motors eg three-phase synchronous motors, synchronous asynchronous motors, motors with a permanent magnet rotor, single-phase motors, two-phase motors, motors with auxiliary start winding, motors with auxiliary start winding and with capacitor
  • DC motors eg series excitation motors, parallel excitation motors, compound excitation motors.
  • the first drive unit (117) is connected to a gear speed reducer to adapt the speed of a motor to deliver the torque needed by the dehydrator cylinder (100) to develop a rotation between 1 revolution per minute up to 15 revolutions per minute. minute.
  • the speed of the rotation of the dehydrating cylinder (100) it is possible to control the residence time of the sludge and / or cuts inside the dehydrating cylinder (100). Also, depending on the humidity in the mud and / or cut-in to the process, the revolutions that must be applied are established with a rotation speed lower than 7 rpm as the preferred speed to treat sludge and / or cuts with a percentage of humidity greater than 45% and a rotation speed greater than 7 rpm as the preferred speed to dehydrate sludges and / or cuts with a humidity percentage lower than 45%.
  • the speed reducer will be selected among endless crown speed reducers, gear speed reducers, cycloidal reducers, planetary speed reducers, internal gear reducers, external gear reducers or combinations of the foregoing.
  • roller an element that allows the sliding, and / or the rolling of an element with respect to one of its faces.
  • the roller has a cylindrical shape, with an inner diameter that comes into contact with a sliding and / or rolling element with respect to the roller.
  • the dehydrating cylinder (100) can include at least four rollers (144) that facilitate the rotary movement on the longitudinal axis (138), making contact with the rails (146) and in turn provide support to the cylinder. dehydrator (100). Said rollers (144) are located equidistantly to the first transmission element (116), wherein at least two rollers (144) are adjacent to the inlet (101) and at least two rollers (144) are adjacent to the outlet ( 102) of the dehydrating cylinder (100). Additionally the rollers (144) are fastened on the horizontal surface (114).
  • the rollers (144) can be selected from self-lubricating rolls, bimetallic rolls with steel backing, stainless steel rolls, bronze rolls, rubber rolls, iron rolls, plastic bushings.
  • the dehydrating device is characterized in that the dehydrating cylinder (100) includes heating means operatively arranged in the first longitudinal region (106) of the dehydrating cylinder (100).
  • the heating means may be selected from electric resistance heaters, gas heaters, such as propane or methane gas, steam jacket heaters, coal heaters, heaters that use fuel elements, equivalent means known to a person of ordinary skill in the art. or combinations of the above.
  • the preferred heating means is a burner (119), jet type, comprising a conduit (150) for fuel transport, preferably it will be liquefied petroleum gas. Additionally, the burner (119), jet type, can include a fan to increase the primary air pressure needed for combustion and burn a greater amount of fuel and at the same time its performance is superior.
  • the dehydrating cylinder (100) may comprise a cover (103) disposed in the inlet (101), wherein the cover (103) has a first opening (104) connected to a mud transporting mechanism, and a second one (104). opening (118) in which a heating means is connected.
  • said heating means is a jet-type burner (119).
  • the burner (119) type jet may be a swirl-type burner (swirls, in English) enveloping, divergent whirlpool type, whirlwind with axial blades, whirlwind with radial blades, whirlwind of mobile blades, one, two, three, four or more torches, partial premix, burners with liquid fuel spray, similar burners known to a person skilled in the art, or combinations thereof.
  • swirl-type burner swirls, in English
  • divergent whirlpool type whirlwind with axial blades
  • whirlwind with radial blades whirlwind of mobile blades
  • torches one, two, three, four or more torches
  • partial premix burners with liquid fuel spray
  • the jet-type burner (119) can operate with a fuel selected from the group comprising liquefied petroleum gas (LPG), natural gas, synthesis gas, propane, butane, hexane, methane, pulverized coal (eg sub-bituminous, bituminous, anthracite), gas oil, gasoline, diesel, alcohols, solvents, biomass, biomass pretreated (eg by roasting, pyrolysis, rapid pyrolysis), solid waste (eg scale, paper, plastics, vegetable shavings), similar fuels known to a person versed in the matter or combinations thereof
  • the heating means are located concentrically to the lid (103) connected to the second opening (118) of the lid (103) of the dehydrating cylinder (100).
  • primary air is the air that enters through the burner (119) to obtain the mixture suitable for combustion.
  • the dehydrating device preferably includes as a heating medium a burner (119) of liquefied petroleum gas whose tip temperature reaches 800 ° C and as the cut Advance reaches normal boiling temperature.
  • the flame temperature of the preferred liquefied gas burner is l200 ° C, in the first longitudinal region (106) and a temperature of 380 ° C in the third longitudinal region (108) of the dehydrating cylinder (100).
  • the burner (119) can produce between 235kWh to l6l2kWh (800,000 BTU / h to 5.5 million BTU / h).
  • the burner produces around 1436kWh (4.9 million BTU / h) to achieve the best quality of drying in sludge and / or cuts. In order to produce 50% less emissions of NOx the burner reaches a maximum temperature in the flame that does not exceed the l300 ° C due to the NOx gases that are emitted at this temperature.
  • the thickness of the cover of the dehydrating cylinder (100) is preferably between 20mm to 60mm thick.
  • the cover having a thickness between 20mm to 60mm reduces the heat transfer through the outer surface of the dehydrating cylinder (100) so that the internal temperature is constant and there is no decrease in temperature.
  • the heating means (139) produces a direct flame inside the dehydrating cylinder (100), the dehydrating device preferably includes a burner (119) of liquefied petroleum gas whose tip temperature reaches 800 ° C, as the sludge and / or cuts advance reach the boiling temperature.
  • the flame temperature of the liquefied gas burner is 1200 ° C, in the first longitudinal region (106) and a temperature of 380 ° C in the third longitudinal region (108) of the dehydrating cylinder (100).
  • the burner (119) can produce between 800,000 BTU / h up to 5.5 million BTU / h.
  • the burner (119) can include two positive pressure sensors.
  • the burner (119) may include a second positive pressure sensor differential air pressure meter that is used to ensure that the pressure drop in the food air to the burner is adequate according to the operation being performed.
  • the dehydrating device may include in the cover (103) a cover (143) extending along the dehydrating cylinder (100), where the cover (143) has a length based on the length of the jet-type burner (119).
  • the cover (143) of the burner (119) has a length between 20% to 40% greater than the distance between the cover (103) of the dehydrator cylinder (100) and the tip that emits the flame of the burner (119).
  • the cover (143) has the purpose of preventing the sludge and / or cuts from falling directly on the tip of the burner (119) where the flame is generated.
  • the lid (103) has a tolerance between 20mm and 30mm with respect to the inlet (101) of the dehydrating cylinder (100), allowing secondary air to enter the dehydrating cylinder (100).
  • secondary air is the air that enters by means of the tolerance of the cover (103) for the drying of the sludge and / or cuts.
  • the secondary air allows combustion with excess air above the minimum necessary. When excess air is used, combustion tends not to produce combustible substances in the reaction gases. Also, the reason why excess air is normally used is to completely react the fuel available in the combustion process. In this type of combustion, the presence of oxygen in the combustion gases is typical.
  • the opening (104) of the lid (103), is connected to a fluid supply unit (105) comprising a hopper (147) and a transfer pump (148) that constantly transport the water-based cuts to the dehydrating cylinder (100).
  • a fluid supply unit (105) comprising a hopper (147) and a transfer pump (148) that constantly transport the water-based cuts to the dehydrating cylinder (100).
  • the sludge and / or stored cuts are transferred in one or more storage tanks of 39.75 m 3 .
  • from the storage tanks and through the use of a mechanism for removing the sludge and / or cuts are transferred to a hopper (147) from where they are fed to the transfer pump (148) of sludge and / or or cuts.
  • This transfer pump (148) is responsible for transporting the sludge and / or cuts with humidity between 65% to 80% to the dehydrating cylinder (100).
  • the transfer pump (148) moves particles up to 1.5 inches in diameter with pumping capacity of 40m3 / hr and l200psi. With this transfer pump (148) it is possible to give fluidity to the solids coming from the drilling, even though they have a high humidity, their properties are still those of a solid.
  • the transfer pump (148) operates at a power lOOhp generates a speed between 5 strokes 30 strokes and has a flow between 30 m 3 / ha 40 m 3 / h.
  • the transfer pump (148) can be selected from the group consisting of gear pumps, blade pumps, thyme pumps, progressive cavity pumps, lobe pumps or pump cams, peristaltic pumps, reciprocating pumps, centrifugal pumps, pump duplex, diaphragm pump, double diaphragm pump, dilacerating pumps or other equivalent pumps known to a person versed in the technical field.
  • the dehydrating cylinder (100), the cover (103), the horizontal surface (114) and the cover (143) can be selected from the group consisting of metals such as different types of steel or aluminum alloys, composite materials, ceramic materials, and other equivalents that are known by a person moderately versed in the subject.
  • Some types of steel that can be used are carbon steels, chrome steels, chrome-nickel steels, stainless steels such as 301 stainless steel, 302 stainless steel, 304 stainless steel, 316 stainless steel, 405 stainless steel, stainless steel 410, stainless steel 430, stainless steel 442, alloy steel with manganese.
  • the dehydrating cylinder (100), the cap (103), the horizontal surfaces can be further manufactured from composite materials, which can have polymer or fiber-reinforced resin matrixes, said fibers can be synthetic or natural such as glass fibers or fiber carbon.
  • the first region (106) adjacent to the inlet (101) of the dehydrating cylinder (100), the first region (106) comprises a plurality of dehydration vanes (110) type “channel” , which dehydrate the sludge and / or cuts with a humidity between 40% and 75%.
  • This dehydration paddle (110) type "channel” allows transporting the wettest sludge, which contain between 70% -75% water, from the inlet (101) of the rotary dewatering cylinder (100) to the second longitudinal region (107). ) where the "T" type pallets (109) are located.
  • the dehydration paddle (110) type "channel” has a hollow rectangular shape, said dewatering paddle (110) is located on the inner side of the first region (106) of the dehydrating cylinder (100) and are arranged in a manner transverse to the length of the dehydrator cylinder (100).
  • the dewatering paddle (110) type "channel” has two partitions arranged in such a way that they join the inner surface of the dehydrating cylinder (100), forming an angle between 40 ° and 55 ° respect to the longitudinal axis (138) of the dehydrating cylinder (100).
  • the dehydration paddle (110) type "channel” is a structure attached to the internal surface of the first longitudinal region (106) of the dehydrating cylinder (100) by two partitions with a length between lm to l, 2m. Said partitions can be adhered by means of chemical welding, temperature welding, pressure welding, friction welding, and other equivalent means that are known to a person of ordinary skill in the art.
  • one of the technical effects of the use of the dehydration paddle (110) type "channel" is to transport the sludge and / or cuts through the two partitions to the highest point of the dehydrating cylinder (100) and drop them from said point to the lower part of the dehydrating cylinder (100) exposing the sludge and / or cuts at high internal temperatures of the dehydrating cylinder (100).
  • the material of the "channel" dewatering paddle (110) can be selected from the group consisting of metals such as different types of steel or aluminum alloys, composite materials, ceramic materials, and other equivalents that are known to a moderately skilled person. in the matter.
  • metals such as different types of steel or aluminum alloys, composite materials, ceramic materials, and other equivalents that are known to a moderately skilled person. in the matter.
  • some types of steel that can be used are carbon steels, chrome steels, chrome-nickel steels, stainless steels such as 301 stainless steel, 302 stainless steel, 304 stainless steel, 316 stainless steel, 405 stainless steel, 410 stainless steel, 430 stainless steel, 442 stainless steel, alloy steel with manganese.
  • Iron castings, galvanized iron, nickel-chrome-molybdenum-tungsten alloy, ferro-chrome-molybdenum alloys, etc. can also be used.
  • dewatering paddle (110) type "channel” can be further manufactured from composite materials, which can have polymer or fiber reinforced resin matrices, said fibers can be synthetic or natural.
  • the transport pallet (111) type "J” located in the third region (108) of the dehydrating cylinder (100) has a length between 0.7m and 0.75m.
  • the conveyor pallet (111) type "J” comprises a rectangular base that follows the contour of the internal surface of the dehydrator cylinder (100), attached to the base and joined by one of its edges, extends a rectangular sheet perpendicular to said base. Adjacent to the rectangular sheet there is a rectangular plate with a concave angle between 40 ° and 55 ° with respect to the rectangular sheet.
  • the conveyor pallet (111) type "J" allows the sludge and / or cuts to move efficiently over the third longitudinal region (108) of the dehydrating cylinder (100), said third longitudinal region (108) represents between 70% and 80% of the inner surface of the dehydrating cylinder (100).
  • the sludges and / or cuts present a granular stage of approximately 60% to 80% of their total composition during which the sludge and / or cuts spontaneously start to form granules.
  • the technical effect of the use of said structure is to collect as much sludge and / or cuts, transporting them towards the outlet (102) of the dehydrating cylinder (100).
  • the conveyor pallet (111) type "J” can be selected from the group consisting of metals such as different types of steel or aluminum alloys, composite materials, ceramic materials, and other equivalents that are known to a person of ordinary skill in the art.
  • metals such as different types of steel or aluminum alloys, composite materials, ceramic materials, and other equivalents that are known to a person of ordinary skill in the art.
  • Some types of steel that can be used are carbon steels, chrome steels, chrome-nickel steels, stainless steels such as 301 stainless steel, 302 stainless steel, 304 stainless steel, 316 stainless steel, 405 stainless steel, stainless steel 410, stainless steel 430, stainless steel 442, alloy steel with manganese.
  • the conveyor pallet (111) type "J" can be manufactured from composite materials, which can have polymer or fiber reinforced resin matrices, said fibers can be synthetic or natural.
  • the conveyor pallet (111) type "J" is a structure attached to the inner surface of the third longitudinal region (108) of the dehydrating cylinder (100) by a rectangular base.
  • Said rectangular base can be adhered by means of chemical welding, temperature welding, pressure welding, friction welding, and other equivalent means that are known to a person of ordinary skill in the art.
  • FIG. 2, FIG.3, FIG.4 FIG.5 the dehydrating cylinder (100) is connected to a branch (121) which is attached to the outlet (102) opposite the inlet (101) of the dehydrating cylinder (100) .
  • Said bifurcation (121) can also be referred to as a gas box and one of its functions is to separate the waste from the dehydrating cylinder (100) into solid waste, larger particles, and contaminated gaseous waste which contain smaller particles.
  • the outlet (102) of the dehydrating cylinder (100) is connected to a solids transport mechanism (120) which in turn is connected to a container (126).
  • the bifurcation (121) has two outlets, an upper outlet (154) and a lower outlet (155) that allow contaminated gases to rise and be directed to a solid-gas separation mechanism (122) through the upper outlet (154) of the bifurcation (121). Solid waste or larger particles are directed to a container (126) through the lower outlet (155) of the branch (121).
  • the dehydrating device characterized in that a solid transport mechanism (120) having an outlet connected to a container (126) is connected to the lower outlet (155) of the branch (121).
  • Said transport mechanism (120) is preferably a discharge screw for treated sludges and / or cuts, which works with a power of lOhp at 20hp, and which can have a speed of rotation from 30rpm to 50rpm.
  • the temperature of the contaminated gases within the bifurcation (121) is between 260 ° C to 320 ° C ensuring dehydration of a high percentage of the sludge and / or cuts.
  • the bifurcation (121) may have a sensor located in the lower part of the branch (121). This sensor controls the maximum operating temperature that guarantees the final humidity in the sludge and / or cuts and the integrity of the equipment.
  • a second sensor located in the upper part of the branch (121) has the same sensor function located in the lower part of the powder box and serves as a verification parameter.
  • the bifurcation (121) can be selected from the group consisting of metals such as different types of steel or aluminum alloys, composite materials, ceramic materials, and other equivalents that are known to a person of ordinary skill in the art.
  • metals such as different types of steel or aluminum alloys, composite materials, ceramic materials, and other equivalents that are known to a person of ordinary skill in the art.
  • Some types of steel that can be used are carbon steels, chrome steels, chrome-nickel steels, stainless steels such as 301 stainless steel, 302 stainless steel, 304 stainless steel, 316 stainless steel, 405 stainless steel, 410 stainless steel, 430 stainless steel, 442 stainless steel, alloy steel with manganese.
  • the bifurcation (121) can be further manufactured from composite materials, which can have polymer or fiber reinforced resin matrices, said fibers can be synthetic or natural such as glass fibers or carbon fibers.
  • the solid-gas separation mechanism (122) includes a cyclone mechanism (123) having an inlet (124) connected by the bifurcation (121); a lower outlet (125) connected to the container (126) and an upper outlet (127).
  • the dehydrating device can include a solid-gas separation mechanism (122) comprising a cyclone mechanism (142) consisting of two cyclones connected in parallel located behind the fork (121) and connect with the upper exit (154) of the fork (121).
  • a solid-gas separation mechanism (122) comprising a cyclone mechanism (142) consisting of two cyclones connected in parallel located behind the fork (121) and connect with the upper exit (154) of the fork (121).
  • the cyclone mechanism (142) is suitable for separating particles with diameters greater than 5pm. In addition, it has the advantage of not having moving parts, which implies low maintenance and operation costs. Also, the cyclone mechanism (142) has a low pressure drop, compared to other types of solid-gas separators, and can be manufactured in relatively small sizes, as compared to other separators, for example, settlers.
  • the gas path comprises a double vortex, wherein the gas describes a downward spiral on the outer side, and ascending, on the inner side.
  • the downward spiral pulls the solid particles gmesas, while the upward spiral carries with it gas and solid particles.
  • each cyclone of the cyclone mechanism (142) has a cylindrical section and a conical section extending downstream of the cylindrical section.
  • the cyclone mechanism (142) separates solid gmp particles present in the gas stream with solid contaminants entering through the side entrance (124).
  • the gum particles exit through the lower outlet (125), while the gases with fine solid contaminants exit through the upper outlet pipe (130).
  • the side entry (124) may be a surround volute, a partially encircling, tangential or axial volute.
  • the side entrance (124) may be circular or rectangular.
  • the upper outlet pipe (130) is a bifurcation extending from the inside of each cyclone, up to a point superior to the upper face of each cyclone.
  • the upper outlet pipe (130) is responsible for capturing the gas stream of the internal vortex of the cyclones and prevents entry of the gas entering through the side entrance (124).
  • the upper outlet pipe (130) extends from a point located at the height of the lower edge of the side entrance (124), or below it.
  • each cyclone of the cyclone mechanism (142) has a conical shape and has a side entrance (124) tangential to the larger base of the conical shape of each cyclone, connecting the two cyclones.
  • the main tangential lateral entry cyclone families (124) are high efficiency cyclones, conventional cyclones and high capacity cyclones.
  • Table 1 a comparison between the tangential lateral entry cyclone families (124) is shown, taking into account the removal efficiency of three types of solid contaminant particles suspended in a gas stream with solid contaminants.
  • the first type of particles are the total suspended particles (PST);
  • the second type of particles are the fraction of respirable particles (PM10), which have a size smaller than 10.0 pm.
  • the third type of particles are the fine particles (PM2.5) with size less than 2.5pm.
  • the cyclone is a high efficiency cyclone.
  • High efficiency cyclones are designed to achieve greater removal of small particles than conventional cyclones.
  • High efficiency cyclones can remove particles of 5pm with efficiencies up to 90%, and can achieve higher efficiencies with larger particles.
  • High capacity cyclones are guaranteed only to remove particles larger than 20pm, although to a lesser degree the collection of smaller particles occurs.
  • multicyclones it is possible to achieve harvesting efficiencies between 80% and 95% for particles larger than 5pm.
  • a parallel connection of two or more cyclones is when dividing the total flow entering in equal fractions, in each cyclone. In this way, large flows can be handled with small cyclones, and high separation efficiencies.
  • a container (126) is connected by a solid transport mechanism (120) to the lower outlet (125) of the cyclone mechanism (142).
  • the container (126) makes it possible to collect the coarse particles separated by the cyclone mechanism (142).
  • the cyclone mechanism (142) may contain a transport screw of particulate material which preferably works at a power between 4000W to 8000W (5hp to lOhp).
  • the cyclone mechanism (142) is selected from the group consisting of high efficiency centrifugal cyclones, high capacity cyclones, low pressure cyclones, dry dynamic precipitators, low efficiency cyclones, or combinations thereof.
  • the metallic materials of which the container (126) and / or the cyclone mechanism (142) are made can be made of stainless steel (e.g. AISI 304, 304L, 316, 316L); carbon steel (e.g., AISI 1020, 1015, 1040, 1070, 1080, 1045; ASTM A36, A516); steels alloyed to nickel, chromium, molybdenum, vanadium or combinations thereof; aluminum; brass; tin; bronze; or combinations thereof.
  • stainless steel e.g. AISI 304, 304L, 316, 316L
  • carbon steel e.g., AISI 1020, 1015, 1040, 1070, 1080, 1045; ASTM A36, A516)
  • steels alloyed to nickel, chromium, molybdenum, vanadium or combinations thereof aluminum; brass; tin; bronze; or combinations thereof.
  • the dehydrating device may include a heat exchange mechanism (135) connected to the cyclone mechanism (142) by the upper outlet pipe (130) of the cyclone mechanism (142).
  • the heat exchange mechanism (135) has an inlet (141) attached to the pipe of upper outlet (130) for the entry of contaminated gases and an exit (153) for contaminated gases with less concentration of solid particles.
  • Contaminated gases can be a laminar, transitional or turbulent flow. When it is laminar and at low speeds in the tube, there is very little movement near the walls of the tube, which prevents the transfer of heat and actually works as an insulator. A faster and turbulent flow does not have a continuous velocity gradient, which causes the fluid film to move. Design obstructions, located along the tubes, called turbulators disturb laminar flow, which improves heat transfer. These obstructions increase the pressure drop and increase the rate of condensation of contaminated gases.
  • the heat exchange mechanism (135) may have more than one inlet (156) for the entry of refrigerant which is preferably air.
  • refrigerant which is preferably air.
  • the contaminated gas fluid passes through the diffuser tubes and fins attached to the tubes that help break up the laminar flow to promote efficient heat transfer from the fluid to the tube walls.
  • the metal used in the manufacture preferably has a high thermal conductivity.
  • the heat exchange mechanism (135) has an inclination between 10 ° to 20 ° at the base of the heat exchange mechanism (135), facilitating the runoff of the condensed water from the contaminated gases and accumulating the water in one of the its corners for easy debugging of the heat exchange mechanism (135).
  • the heat exchange mechanism (135) can be of casing and tubes, where the gases with contaminants pass through the casing and between the tubes for refrigerant. Also, the heat exchange mechanism (135) can be one step, two steps, or three steps, this indicates that the refrigerants enters and leaves the casing the step number to increase the heat transfer rate.
  • the heat exchanger mechanism (135) may have fins, deflectors, turbulators or combinations thereof.
  • the heat exchange mechanism (135) can be selected from the group consisting of direct contact exchangers, indirect contact exchangers, reciprocating exchangers, surface exchangers, plate exchangers, tube exchangers, cross flow exchangers, parallel flow exchangers, co-current exchangers, countercurrent exchangers.
  • the heat exchange mechanism (135) has a structure containing said mechanism that can be selected from the group consisting of metals such as different types of steel or aluminum alloys, composite materials, ceramic materials, and other equivalents that are known to a person moderately versed in the subject.
  • metals such as different types of steel or aluminum alloys, composite materials, ceramic materials, and other equivalents that are known to a person moderately versed in the subject.
  • Some types of steel that can be used are carbon steels, chrome steels, chrome-nickel steels, stainless steels such as 301 stainless steel, 302 stainless steel, 304 stainless steel, 316 stainless steel, 405 stainless steel, stainless steel 410, stainless steel 430, stainless steel 442, alloy steel with manganese.
  • the heat exchange mechanism (135) can be further manufactured from composite materials, which can have polymer or fiber reinforced resin matrices, said fibers can be synthetic or natural such as glass fibers or carbon fibers.
  • the dehydrating device may include a solid-gas separation mechanism (122) comprising a fines separation mechanism (128) having an inlet (129) connected to the upper outlet (127) of the mechanism of cyclone (123), wherein a heat exchanger (135) is connected between the upper outlet (127) of the cyclone mechanism (123) and the inlet (129) of the fines separation mechanism (128).
  • a solid-gas separation mechanism (122) comprising a fines separation mechanism (128) having an inlet (129) connected to the upper outlet (127) of the mechanism of cyclone (123), wherein a heat exchanger (135) is connected between the upper outlet (127) of the cyclone mechanism (123) and the inlet (129) of the fines separation mechanism (128).
  • the solid-gas separation mechanism (122) is a fine particle collector comprising a bifurcation (121), a cyclone mechanism (142), a heat exchanger (135) and a mechanism of fines separation (128).
  • the fines separation mechanism (128) can be selected between mechanical cleaning bag filters (periodic shaking), cleaning bag filters by reversing the air or gas flow, cleaning bag filters by brief pulses of air.
  • the fines separation mechanism (128) can be a bag filter (145), a cartridge filter or a combination thereof.
  • the filtering of contaminated gases using the bag filter (145), preferably connected to an automated system that emits short pulses of air to the sleeves (145) avoiding its saturation, is an adaptation of an intermittent process, which refers to sequences of filtering cycle during a certain period of time, usually dictated by dimensions in the admissible pressure drop, and subsequent cleaning stages.
  • the fines separation mechanism (128) is a bag filter (145) with one, two, three, four, five, six, seven, eight, nine, ten or more sleeves.
  • bag filter (145) is an attachment used for the solid-gas separation by means of a porous medium. Its objective is to eliminate the solid particles that a gaseous current drags by passing it through a porous tissue.
  • the air within the fines separation mechanism (128) the air will reach a maximum operating speed of 2553 m / s and a minimum operating speed is 1276 m / s.
  • the bag filter (145) is tubular in shape and is suspended in a kind of armor or basket, preferably having a set of one hundred bag filters (145) of 2m long each. These hundred bag filters (145) have an automated cleaning system (149) which generates a clean air shot, which is preferably issued every 20 seconds, this ensures that the equipment does not saturate and thus allow the passage of water vapor.
  • an automated cleaning system 149
  • the fines separation mechanism (128) may include a relief valve located at the automated cleaning system (149), which blows air to the sleeves, guaranteeing the maximum operating pressure for the cleaning of sleeves.
  • the bag filter (145) can be one or more sleeves, where the material of the sleeves is selected from the group consisting of fabric, denim, microfiber, glass fiber, polyester fiber nonwovens, viscose polyester, silicone polyester, polyethylene , bicomponent fibers, polyamide fibers, aramid, or combinations thereof.
  • the fines separation mechanism (128) that can contain a transport screw of particulate material that preferably is a thyme that works at a power of 5hp to lOhp, a speed of rotation between 30 rpm and 50 rpm.
  • this mesh ( 151) is a box with an oblique parallelepiped shape formed by five faces where the nonexistent sixth face is the union with the entrance (129) which has no mesh (151).
  • the mesh (151) fulfills the objective of separating the larger particles, increasing the speed of entry of the contaminated gases, reducing the laminar flow and turning it turbulent in order to distribute the contaminated gases uniformly in the direction of the sleeves. Additionally, the mesh (151) is important during the fan's ignition, where a peak drag speed is generated.
  • the granulometry of the mesh (151) can be selected between 3 mesh, 4 mesh, 5 mesh, 6 mesh, 7 mesh, 8 mesh, 10 mesh, 12 mesh, 14 mesh, 16 mesh, 18 mesh, 20 mesh, Mesh 25, 30 mesh, 35 mesh, 40 mesh, 45 mesh, 50 mesh, 60 mesh, 70 mesh, 80 mesh and 90 mesh according to the American Standard Sieve.
  • the armature or basket of the fines separation mechanism (128) has a rectangular prismatic shape.
  • the armature or basket has a lid and an upper outlet.
  • a valve of preferably 50.8mm is located in the lower outlet.
  • the dehydration device does not include the heat exchange (135) and the fines separation mechanism (128), hence the outlet pipe (130) of the solid separation mechanism -gas (122), a suction pipe (131) of a vacuum generator mechanism (132) is connected.
  • the contaminated gases pass through the outlet pipe (130) and are directed to the heat exchanger (135), subsequently contaminated gases circulate towards a fines separation mechanism (128) where the particles are filtered between 5pm and 10pm.
  • the gases that have been previously separated from said particles exit through a suction pipe (131).
  • Said vacuum generating mechanism (132) is selected from the forming group by centrifugal fans (eg impeller with sirocco blades, inclined backwards, inclined forward, straight, helical), compressors (eg reciprocating, thyme, lobes, manifold) stage), blowers, or combinations of the above.
  • Said vacuum generating mechanism (132) could be a centrifugal fan connected to the end of the dehydrating device, transporting the waste gases from the dehydrating cylinder (100) by forced draft, generating a vacuum, decreasing the internal pressure of the dehydrating device, guaranteeing mass transfer from the phase liquid to the gas phase.
  • the centrifugal fan can have a vacuum sensor that allows to verify the negative pressure inside the system.
  • the centrifugal fan can be selected between fan with forward-bladed shovels, fan with backward-inclined blades: high-performance and high-pressure, radial blade fan, axial or helical fan, propeller-type fans.
  • the vacuum generating mechanism (132) could have a power of 100 hp, develop an angular speed of 800rpm to l300rpm and have a flow between 8m 3 / s to l 2m 3 / s, allowing the continuous dragging of gases and fine particles towards the end of the dehydrator device.
  • the dehydrator device may include a vacuum generating mechanism (132) having a discharge (133) connected to a chimney (134).
  • Said chimney (134) connected to the vacuum generator (132) allows to evacuate the gases from the dehydrator system by thermal convection, therefore the position of the chimney is completely vertical, which can reach a height of 15 meters.
  • the temperature reached by the gases in the chimney (134) is between l00 ° C and l5 ° C, because the heat exchanger (135) when separating the water from the contaminated gases lowers the temperature of the gases , at this point the particles that are still in the gases are less than 5pm.
  • the chimney (134) can have a sensor that allows to control the temperature of the combustion gases, steam and establish a limit of emission of pollutants to maintain them according to current environmental regulations.
  • the material of the chimney (134) can be selected from the group consisting of metals such as different types of steel or aluminum alloys, composite materials, ceramic materials, and other equivalents that are known to a person of ordinary skill in the art.
  • some types of steel that can be used are carbon steels, chrome steels, chrome-nickel steels, stainless steels such as 301 stainless steel, 302 stainless steel, 304 stainless steel, 316 stainless steel, 405 stainless steel, 410 stainless steel, 430 stainless steel, 442 stainless steel, alloy steel with manganese.
  • Iron castings, galvanized iron, nickel-chrome-molybdenum-tungsten alloy, ferro-chrome-molybdenum alloys, etc. can also be used.
  • the present invention includes a method of dewatering sludges and / or cuts (hereinafter method), which comprises the following steps:
  • first longitudinal region (106) of the dehydrating cylinder (100) generating a sludge and / or partially dry stream and a contaminated gas stream, where first longitudinal region (106) has an operating temperature greater than 100 ° C;
  • step b) transporting the partially dried sludge and / or cuts from step b) along the dehydrating cylinder (100) by a plurality of "T" type vanes (109) located on an internal surface of a second region longitudinal (107) of the dehydrating cylinder (100), where the second longitudinal region (107) is located adjacent to the first longitudinal region (106).
  • step a) of the method sludges and / or cuts and an air stream are supplied to a dehydrating cylinder (100); where the mass flow of air is between 10 and 300 times the mass flow of sludge and / or cuts; at this stage a pump transfers the sludge and / or cuts containing particles up to 38mm in diameter from a hopper (147) to the inlet (101) of the dehydrating cylinder (100).
  • the ratio of the mass flow of sludges and / or cuts and the mass flow of air depends on the conditions of humidity and air temperature, as well as the coefficient of heat transfer within the cylinder, which depends on the air velocity, the viscosity of the sludges and / or cuts and of the air temperature.
  • the air that is supplied to the dehydrating cylinder (100) can be pre-treated by dehydration processes and preheating, such as dehumidification by cooling by subsequent heating to constant pressure, or dehumidification by adsorption or absorption, similar methods known to a person skilled in the art or combinations thereof.
  • the residence time of sludge and / or cuts residence time in the dehydrating device can influence the rate of drying, the efficiency of the process and the final quality of the sludge dehydration and / or cuts. If the mass flow increases, the final product will be, in general, of better quality. On the other hand, there is an increase of the specific energy consumption, that is, of the energy that is needed to evaporate a unit of mass of water and a decrease of the thermal efficiency of the dehydration, because the sludges and / or cuts that pass by the dehydrating device with higher speed lose less moisture and dehydration may be insufficient. Proper handling of product speed is of fundamental importance in drying.
  • the selection of physical variables such as diameter of the dehydrator cylinder, angular velocity and inclination influences the residence time of the sludge and / or cuts inside said cylinder, which affects the contact time that the sludges and / or cuts have. with the air.
  • the pump (148) transfer sludge and / or cutting preferably has a pumping capacity of 25 m 3 / ha 45 m 3 / h from 800 psi to 1500 psi.
  • the slurry and / or cut transfer pump 148 has a feed range that preferably ranges from 3 strokes to 32 strokes per minute.
  • the variation in feeding strokes is directly related to the quality of the sludge and / or cuts received; that is to say that to greater humidity in the muds and / or cuts of smaller food must be the strokes, this in order to guarantee the time of exposure to the direct flame.
  • the transfer pipe of the pump (148) is connected to the cover (103) said cover is fixed and does not perform a rotary movement together with the dehydrating cylinder (100).
  • the cover (103) has a tolerance between 20mm to 30mm with respect to the inlet (101) of the dehydrator cylinder (100). By means of this tolerance, an air ratio between 20 to 100 times greater than the mass flow of sludge and / or cuts, which does not represent the total amount of air entering the dehydrator cylinder, can enter the dehydrator cylinder (100).
  • the dehydrating cylinder (100) rests on a horizontal surface (114), where the dehydrating cylinder (100) forms an angle between 2 or 5 or with the horizontal allowing the sludge and / or cuts to move towards the outlet (102). ) of the dehydrating cylinder (100), facilitating the displacement of the sludge and / or cuts from the first longitudinal region (106), where step b) occurs, to the second longitudinal region (107), where step c) occurs, and to a possible third longitudinal region (108).
  • the physical and chemical properties of the sludge and outlet cuts depend on the operating parameters of the dehydrator cylinder (100), because the speed of advance of a solid particle in the sludge and / or cuts is related to the speed of rotation and the angle of inclination of the dehydrator cylinder (100). In an embodiment of the present invention this rotation varies between 3rpm and 12rpm.
  • step b) of the method the sludges and / or cuts are dehydrated until they have a 25% humidity by means of a first longitudinal region (106) of the dehydrating cylinder (100), generating a stream of sludge and / or or partially dry cuts and a contaminated gas stream, where the first longitudinal region (106) has an operating temperature which may be between 100 ° C and 150 ° C, between 800 ° C to 1,200 ° C or higher than 2000 ° C .
  • the operating temperature in the first longitudinal region (106) inside the drying cylinder (100) must not exceed l200 ° C, since when exceeding l200 ° C, NOx gases can be generated.
  • An operating temperature between 100 ° C and 800 ° C inside the dehydrating cylinder (100) can be generated with heating means such as radiant tube heaters, electric resistance heaters, induction heaters, microwave emitting devices, premix burners and burners (119) jet type.
  • heating means such as radiant tube heaters, electric resistance heaters, induction heaters, microwave emitting devices, premix burners and burners (119) jet type.
  • the operating temperature refers to the maximum air temperature in a certain part of the method.
  • the heating means is a jet-type burner (119)
  • the maximum operating temperature in step b) refers to the flame temperature, which can be determined by measuring instruments such as pyrometers and thermometers.
  • the air is allowed to transfer heat to the sludge and / or cuts to achieve dehydration.
  • This range of temperatures can be achieved with jet-type burners (119) that operate with fuels such as liquefied petroleum gas, methane, butane, propane, natural gas, synthesis gas, pulverized coal (eg sub-bituminous, bituminous), or combinations of the same.
  • the burners (119) can use air enriched with added oxygen, to achieve increasing the flame temperature.
  • the enriched air can have an oxygen concentration between 20% and 40%.
  • a direct flame is used, which is located inside the dehydrating cylinder (100) fixed concentrically to the cover (103), the sludge and / or cuts are raised by means of pallets "channel" type (110) of the first longitudinal region (106) of the dehydrating cylinder (100), and falls freely, coming into direct contact with the flame.
  • the operating temperature is between 800 ° C and l500 ° C where the sludge and / or cuts reach their boiling point achieving a humidity of 25%.
  • Said direct flame is emitted by a burner (119) which is preferably a jet-type burner, whose temperature at the outlet of the burner (119) reaches 800 ° C.
  • the burner flame (119) can generate between 234456.86 W (800,000 BTU / h) up to 1611890.88 W (5.5 million BTU / h).
  • the burner could generate 1436048.24 W (4.9 million BTU / h).
  • the sludge and / or cuts present a percentage of humidity between 40% and 75%. Due to the concentration of water in the sludge and / or cuts it is possible that when falling on the tip of the burner (119) that emits the flame it can be extinguished. To avoid extinguishing the flame during the dehydration process, the direct fall of sludge and / or cuts on the burner tip (119) that emits the flame is obstructed by means of a sheet or plate, which prevents the flame from being extinguished with the fall direct from sludge and / or cuts.
  • the burner (119) operates with a fuel air ratio between 10 kg of air per 1 kg of fuel and 30 kg of air per 1 kg of fuel. Therefore, 30 kg of air mass enters the burner (119) to maintain a fuel air ratio of 900 kg.
  • the "channel" type dehydration vanes (110) have an angle between 40 ° and 55 ° with respect to the longitudinal axis (138) of the dehydrating cylinder (100), this angle allows to contain the sludge and / or cuts while the drying cylinder rotates on its longitudinal axis (138) raising the sludge and / or cuts to the highest point and then drop the sludge and / or cuts directly on the flame.
  • step b) the sludge and / or cuts are exposed to the direct flame by means of dehydration vanes (110) type "channel", located in the first longitudinal region (106) of the dehydrating cylinder (100), which they retain the sludge and / or cuts by means of two partitions with a length between lm to, 2m, and elevate them leaving them to drain on the direct flame.
  • step b) there is a sub-step bl) which consists of obstructing the flow of sludge and / or cuts around the burner (119).
  • This is important to prevent sludge and / or cuts from falling near the mouth of the burner torch (119), which could cause flame release or extinction of flame.
  • This is dangerous because in an uncontrolled time period, unreacted fuel and air would enter the dehydrator cylinder (100), which could generate a fuel and oxidant accumulation that would produce an uncontrolled deflagration that could structurally compromise the dehydrator cylinder ( 100).
  • the sludge and / or cuts to dehydrate and the gases flow in the same direction.
  • the hot gases resulting from the combustion of air and fuel come into contact with the sludge and / or cuts to dehydrate when they are more humid and at less temperature.
  • the highest heat flow is generated inside the dehydrating cylinder (100), which causes the majority of the moisture to be eliminated in the first stage. longitudinal region (106) of the dehydrating device.
  • the temperature of the inlet gases can be raised by preheating the dehydrating cylinder (100) to a temperature between 500 ° C and 1000 ° C for a period between 2min to 5min to reach the temperatures of boiling the sludge and / or cuts in order to achieve a more intense dehydration action, without drying the sludge and / or cuts to dehydrate.
  • the temperature difference between the hot gases and the sludge and / or cuts to be dehydrated is smaller in the cylindrical dehydrators of countercurrent flow than in those of parallel flow.
  • the dehydration performance is higher in parallel flow dehydrators such as that of the present invention.
  • stage c) of the method the partially dried sludges and / or cuts of stage b) are transported along the drying cylinder (100) by means of a plurality of "T" type blades (109) located in a inner surface of a second longitudinal region (107) of the dehydrating cylinder (100), wherein the second longitudinal region (107) is located adjacent to the first longitudinal region (106).
  • the configuration of the conveyor pallet type "T” (109) contains and prevents runoff of the sludge and / or cuts while the dehydrating cylinder (100) rotates on its longitudinal axis (138).
  • the "T" type pallet (109) receives the sludge and / or cuts with 40% to 75% dehydration of the first longitudinal region (106) and transports them to the outlet (102) of the dehydrating cylinder (100) .
  • each "T" type pallet (109) transports between 4% and 5% of the total sludge and / or cuts admitted to the dehydrator cylinder (100).
  • step c) sludges and / or cuts are transported to a third longitudinal region (108) of the dehydrating cylinder (100), which comprises "J" type conveyor vanes (111).
  • the conveyor pallet (111) type "J" allows the sludge and / or cuts to move efficiently from the second longitudinal region (107) of the dehydrating cylinder (100), said third longitudinal region ( 108) represents between 70% and 80% of the internal surface of the dehydrating cylinder (100). In this region the sludge and / or cuts spontaneously start to form granules, reaching a granular stage approximately 60% to 80% of its total composition. Additionally, the temperature in the third longitudinal region (108) is between 300 ° C to 400 ° C. In said stage c) the ideal temperature is 380 ° C to obtain sludges and / or cuts with a humidity of 25%.
  • the drying of a barrel of sludge and / or cuts requires the use of 3gal to 4gal of liquefied petroleum gas.
  • the method of the present invention may include a step d) consisting of treating the contaminated gas stream of step b) by means of a solid-gas separation mechanism (122) connected to the Dehydrator cylinder (100).
  • a bifurcation (121) and a cyclone mechanism (123) are used which separate the particles between 5 pm to 20 pm in diameter from the residual contaminated gases of the dehydration of the sludge and / or cuts in the dehydrating cylinder (100).
  • the bifurcation (121) has two outlets, an upper outlet (154) and a lower outlet (155) where the contaminated gases rise and are directed to a cyclone mechanism (123) by the upper outlet of the branch (121).
  • the temperature of the contaminated gases within the bifurcation (121) is between 260 ° C to 320 ° C guaranteeing a percentage of humidity of the sludge and / or cuts of 25%, this thanks to the exposure of the sludge and / or cuts inside the dehydrator cylinder (100) to the direct flame and to the hot air. During these exposures, 65% to 75% humidity is eliminated and the gases are subsequently separated from the solid waste at the bifurcation (121).
  • the solid-gas separation mechanism (122) comprises a cyclone mechanism (142) located behind the branch (121) and connected with the upper outlet (154) of the branch (121).
  • the cyclone mechanism (142) separates particles with diameters between 20 pm to 5pm.
  • the gas path comprises a double vortex, where the gas describes a downward spiral on the outer side, and ascending, on the inner side.
  • the downward spiral pulls the solid particles gmesas, while the upward spiral carries with it gas and solid particles less than 5pm.
  • gum particles greater than 5pm exit through the lower outlet (125) into a collecting container (126), while contaminating gases with solids less than 5pm exit through the upper outlet pipe (130).
  • the upper outlet pipe (130) is responsible for capturing the gas stream from the internal vortex of the cyclones and prevents the gas entering through the entrance of the cyclone mechanism (142) from entering.
  • the high capacity cyclones comprising the cyclone mechanism (142) are guaranteed only to remove particles larger than 20pm, although to a lesser extent the collection of smaller particles occurs. However, in the case of having multi-cyclones (several cyclones connected in parallel), harvesting efficiencies between 80% and 95% can be achieved for particles larger than 5pm.
  • the amount of particulate material coming from the cyclones is from 0.5% to 2% of the total amount of sludge and / or cuts admitted, that is to say that for every 100 barrels of sludge and / or cuts entered into the process it is possible to obtain 0,5 barrels at 2 barrels of mud and / or cuts with a percentage of fines approximately 28.19%. With this system of precipitation of particulate material, the emission of said material into the environment is avoided.
  • the method of the present invention may include a step e) subsequent to step d) which consists in separating a water vapor present in the contaminated gases by means of a heat exchange mechanism (135) connected to the solid-gas separation mechanism ( 122).
  • the heat exchange mechanism (135) is connected to the cyclone mechanism (123) by the upper outlet pipe (130) of the cyclone mechanism (142).
  • the heat exchange mechanism (135) has an inlet (141) attached to the upper outlet pipe (130) for the ingress of contaminated gases and an outlet (153) for the polluted gases with less concentration of solid particles.
  • the heat exchange mechanism (135) has at least four inputs (156) for the entry of refrigerant which is preferably air.
  • refrigerant which is preferably air.
  • the contaminated gas fluid passes through the diffuser tubes and fins attached to the tubes that help break up the laminar flow to promote efficient heat transfer from the fluid to the tube walls.
  • the metal used in the manufacture preferably has a high thermal conductivity.
  • the heat exchange mechanism (135) has an inclination between 10 ° to 20 °, with respect to the horizontal, at the base of the heat exchange mechanism (135), in order to bring the condensed water of the gases contaminated at one of its corners for easy debugging of the heat exchange mechanism (135).
  • the method of the present invention may have a step f) which consists of removing a particulate material from the contaminated gas stream by means of a fines separation mechanism (128) connected to the heat exchange mechanism (135), and generating a clean gas stream with a particulate content of less than 30%, where the particulate material of the clean gas stream has a diameter less than 5pm.
  • the fines separation mechanism (128) performs the filtration of contaminated gases using a bag filter (145) preferably by means of brief pulses of air.
  • said pulses of air are emitted every 0.03sa O.ls at a relative pressure of 60psig at 100 psig.
  • the bag filter (145) is an attachment used for the solid-gas separation by means of a porous medium. Its objective is to eliminate the solid particles that a gaseous current drags by passing it through a porous tissue.
  • the air will reach a maximum operating speed of 2553 m / s and a minimum operating speed is 1276 m / s.
  • the process of control of particulate material is carried out by means of 100 bag filters (145) and it can be established that the volume obtained is 0.3%, that is, for every 100 barrels of sludge and / or cuts entered into the system 0.3 barrels of fine powder with 44.38% fines are obtained.
  • the method of the present invention may have a step g) subsequent to step f), which consists in removing the clean gas through a chimney by means of a vacuum generating mechanism (132).
  • the vacuum generating mechanism (132) can be a centrifugal fan connected to the end of the dehydrating device, transporting the waste gases from the dehydrating cylinder (100) by forced draft, generating a vacuum, decreasing the internal pressure of the dehydrating device, guaranteeing mass transfer from the phase liquid to the gas phase.
  • the centrifugal fan modifies the direction of the air at an angle of 90 °, that is, the air enters the fan at a certain angle, normally between 80 ° and 90 °, with axial direction to the plane of rotation of the blades and exits at outside with a lag of 90 degrees between 0 ° and 10 °, in the radial direction.
  • the dehydrating device may include a vacuum generating mechanism (132) having a discharge (133) connected to a chimney (134).
  • Said chimney (134) connected to the vacuum generator (132) allows to evacuate the gases of the dehydrator system by thermal convection, therefore the position of the chimney is completely vertical and can reach a height of 15 meters. Also, the temperature reached by the gases in the chimney (134) is between l00 ° C and l5 ° C, at this point the particles that are still in the gases have a diameter between 5 mih and 15 mih.
  • a total of 3350 barrels of cuts were received and processed over 15 days, said barrels showed an average humidity of 68%.
  • the cuts are predominantly clayey and their humidity ranges from 57% to 80%.
  • the rate of feed of cuts to the cylinder dehydrator (100) was a variable of vital importance since it marked the guideline between the residence time of the cuts and the humidity at the exit of the same.
  • the variation in food strokes is directly related to the quality of the cut received; that is to say that to greater humidity in the cut of smaller food they must be the strokes, this with the only end to guarantee a sufficient time of exhibition to the direct flame.
  • a variable that determines the quality of the output cut is the rotation of the dehydrator cylinder (100), this rotation was varied from 3rpm to l2rpm.
  • Direct flame application A liquefied petroleum gas burner was used, which can be varied between 800,000 BTU / h to 5.5 million BTU / h.
  • the average consumption per barrel treated is 3.01 gallons per barrel of sludge and / or wet cuts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Development (AREA)
  • Treatment Of Sludge (AREA)

Abstract

La presente invención corresponde a un dispositivo de deshidratación de lodos y/o cortes y a un método de deshidratación del mismo. El dispositivo de la presente invención corresponde a un dispositivo deshidratador que tiene un cilindro deshidratador rotatorio que incluye una entrada, una salida opuesta a la entrada, una primera región longitudinal adyacente a la entrada, y una segunda región longitudinal localizada entre la primera región longitudinal y la salida. Dicho cilindro deshidratador rotatorio también incluye una unidad de suministro de fluido acoplada a la entrada. Por su parte el dispositivo deshidratador comprende una pluralidad de paletas tipo "T" localizadas en una superficie interna de la segunda región longitudinal del cilindro deshidratador rotatorio, donde cada paleta tipo "T" se conforma de una lámina con una región central y dos secciones laterales que sobresalen de la región central y un soporte conectado entre la lámina y la superficie interna de la segunda región longitudinal.

Description

DISPOSITIVO Y MÉTODO DE DESHIDRATACIÓN DE FLUIDOS Y CORTES
Campo de la invención
La presente invención está relacionada con dispositivos de deshidratación de lodos y/o cortes que incluyen hornos cilindricos. Particularmente la presente invención se relaciona con la deshidratación de lodos y cortes de perforación petrolera mediante un homo cilindrico, donde el cilindro comprende más de dos secciones de paletas intemas.
Descripción del estado de la técnica
En el estado de la técnica se encuentran documentos que divulgan dispositivos de secado con hornos rotatorios, como por ejemplo, KR20060018924A y US3387380A.
El documento KR20060018924A describe una tolva caliente y una tolva fría en la que se carga el material a deshidratar; se instala al menos un quemador; al menos un tambor cilindrico instalado entre la tolva fría y la tolva caliente; el tambor cilindrico comprende una pluralidad de paletas internas distribuidas en al menos tres secciones del tambor cilindrico. Al menos un grupo de paletas comprende dos barras rectangulares unidas por uno de sus lados describiendo un ángulo recto, dichas paletas están ubicadas al interior de la sección media del tambor cilindrico. Además, el tambor cilindrico comprende otro gmpo de paletas rectangulares que describen un semi-arco al interior de la tercera sección del tambor cilindrico.
Adicionalmente, el documento divulga un engranaje exterior que cubre una sección circular del tambor cilindrico y un piñón engranado al engranaje exterior del tambor cilindrico, además de al menos dos rodamientos exteriores dispuestos por debajo del tambor cilindrico.
También, el documento menciona una pluralidad de paletas de aislamiento térmico dispuestas a intervalos regulares a lo largo del borde interior de la primera sección del tambor cilindrico, las cuales están unidas fijamente a espaciadores que sobresalen de la superficie interior del tambor cilindrico. Sobre los dos espaciadores descansa una lámina de tres lados, los cuales que describen un ángulo cóncavo y un ángulo convexo entre sí. Uno de los lados de la lámina se extiende hacia la superficie interna del tambor cilindrico y hacia la paleta adyacente sin hacer contacto con ninguno de dichos elementos. En particular, una de las desventajas presentes en el documento KR20060018924A se debe a la geometría de las paletas, ya que los sólidos tendrían un tiempo de residencia dentro del cilindro superior al necesario para llevarlo a la humedad objetivo, lo cual genera ineficiencias y desperdicios. Por otro lado, los gases emitidos por el dispositivo divulgado en el documento KR20060018924A no presentan un tratamiento de descontaminación previa a su expulsión.
Por su parte el documento US3387380A describe una unidad de homo dotado con una pared metálica sustancialmente cilindrica que, en la superficie interior de su extremo de entrada y extremo de salida, está provista de filas de paletas distribuidas en una sección principal y en una sección media. Las paletas de la sección principal al interior de la unidad de homo tienen una inclinación mayor que las filas de paletas en la sección media. Las paletas de la sección principal y en la sección media se extienden radialmente hacia el centro del homo y presentan una sección transversal en forma de “J” donde la porción inclinada se encuentra en dirección de la rotación de la unidad, de esta manera facilitan el avance progresivo y rotacional de la carga que se está secando al interior del homo.
Además, las paletas en forma de“J” de la sección principal y la sección media de la unidad de homo tienen una relación escalonada con las paletas de filas o vías adyacentes y definen un paso abierto longitudinalmente a lo largo de toda la longitud de la pared interior de la unidad de homo. Estas paletas sirven no sólo para hacer avanzar la carga de material secado en espiral sino también para agitarlo y permitir que el gas caliente entre en contacto con sus partículas durante el avance a lo largo del homo.
Por otra parte, el documento US3387380A presenta la desventaja de no tener una paleta transportadora adicional a la paleta en forma de“J”, con una geometría que evite el exceso de residencia del material a deshidratar dentro del homo cilindrico. La configuración de las paletas en forma de“J” difícilmente lograría un porcentaje de deshidratación del 25% de lodos y/o cortes de perforación de petróleo, teniendo en cuenta que las paletas en forma de“J” cumplen la función de transporte y no de exposición del material a deshidratar a las altas temperaturas dentro del homo cilindrico. Breve descripción de la invención
La presente invención corresponde a un dispositivo de deshidratación de lodos y/o cortes y a un método de deshidratación del mismo.
El dispositivo de la presente invención corresponde a un dispositivo deshidratador que tiene un cilindro deshidratador rotatorio que incluye una entrada, una salida opuesta a la entrada, una primera región longitudinal adyacente a la entrada, y una segunda región longitudinal localizada entre la primera región longitudinal y la salida. Dicho cilindro deshidratador rotatorio también incluye una unidad de suministro de fluido acoplada a la entrada. Por su parte el dispositivo deshidratador comprende una pluralidad de paletas tipo“T” localizadas en una superficie intema de la segunda región longitudinal del cilindro deshidratador rotatorio, donde cada paleta tipo“T” se conforma de una lámina con una región central y dos secciones laterales que sobresalen de la región central y un soporte conectado entre la lámina y la superficie intema de la segunda región longitudinal.
La presente invención también consta de un método de deshidratación de lodos y/o cortes que comprende una etapa inicial donde se suministran lodos y/o cortes y una corriente de aire a un cilindro deshidratador, donde el flujo másico de aire es entre 10 y 200 veces el flujo másico de lodos y/o cortes. En una segunda etapa se deshidratan los lodos y/o cortes de la etapa inicial hasta que tengan un 25% de humedad mediante una primera región longitudinal del cilindro deshidratador, generando una corriente de lodos y/o cortes parcialmente seca y una corriente de gases contaminados, donde la primera región longitudinal tiene una temperatura de operación superior a l00°C. En una etapa final se transportan los lodos y/o cortes parcialmente secos de la segunda etapa a lo largo del cilindro deshidratador mediante una pluralidad de paletas tipo“T” localizadas en una superficie interna de una segunda región longitudinal del cilindro deshidratador, donde la segunda región longitudinal se ubica contigua a la primera región longitudinal. En un ejemplo de la presente invención el dispositivo y método de deshidratación de lodos y/o cortes comprende una tolva de alimentación conectada a una bomba para transferir los lodos y/o cortes hacia el cilindro deshidratador rotatorio donde son transportados por una pluralidad de paletas. Allí el agua contenida en dichos lodos y/o cortes alcanza el punto de ebullición, produciendo una deshidratación de los lodos y/o cortes y por ende su reducción en volumen y humedad. Finalmente los lodos y/o cortes deshidratados pasan a través de un mecanismo de separación solido-gas conectado al final del cilindro deshidratador, lo cual evita la salida al ambiente de gases contaminados con material particulado.
El dispositivo de la presente invención tiene una capacidad mínima de procesamiento de 7,9m3 diarios de lodos y/o cortes con una humedad del 75%, alcanzando un promedio de humedad de 10% a 15% después de tratar el los lodos y/o cortes en el presente dispositivo.
Breve descripción de las figuras
La FIG. l corresponde a una vista en perspectiva de una modalidad del dispositivo deshidratador.
La FIG.2 corresponde a una vista lateral del dispositivo deshidratador de la Fig. 1.
La FIG.3 corresponde a una vista superior del dispositivo deshidratador de la Fig. 1 La FIG.4 corresponde a una vista lateral en corte del dispositivo deshidratador de la Fig. 1 con un primer detalle correspondiente al quemador , el cobertor , un conducto , paletas de deshidratación tipo“canal”, una unidad de suministro de fluido, un segundo detalle del mecanismo de intercambio de calor , una tubería de entrada y una tubería de salida. La FIG.5 corresponde a una vista lateral en corte de una modalidad del mecanismo de separación sólido gas que incluye la bifurcación , el mecanismo de ciclón, el mecanismo intercambiador de calor , el mecanismo de separación de finos y un detalle de la malla . La FIG.6 corresponde a una vista en perspectiva de una modalidad del cilindro deshidratador sobre la superficie horizontal con un corte longitudinal, dejando ver las tres regiones longitudinales con sus respectivas paletas, un primer detalle del quemador y la tapa, un segundo detalle de un rodillo y un tercer detalle del mecanismo de trasmisión de potencia, el primer elemento de transmisión y la primera unidad motriz.
La FIG.7 corresponde a una vista en perspectiva y frontal de la primera región longitudinal del cilindro deshidratador y un detalle de una paleta de deshidratación tipo “canal” de una modalidad del cilindro deshidratador.
La FIG.8 corresponde a una vista en perspectiva y frontal de la segunda región longitudinal y un detalle de dos paletas tipo“T” de una modalidad del cilindro deshidratador. La FIG.9 corresponde a una vista en perspectiva y frontal de la tercera región longitudinal y un detalle de las paletas transportadoras tipo“J” de una modalidad del cilindro deshidratador.
Descripción detallada de la invención
Los lodos y/o cortes son mezclas sólido-líquido que son ampliamente usadas en la industria. Particularmente, los lodos de perforación son esenciales para la formación de pozos petroleros.
Para efectos de la presente invención, se entenderán como “lodos y/o cortes” los fluidos usados para la perforación de pozos, los sólidos producto de la perforación de pozos y la mezcla de los anteriores fluidos y sólidos. Los lodos y/o cortes pueden ser cualquier sustancia o mezcla de sustancias con características físicas y químicas, como por ejemplo: aire o gas, agua, petróleo o combinaciones de agua y aceite con determinado porcentaje de sólidos.
Por otro lado, se entenderá que los“cortes” de perforación son trozos pequeños de roca que se fracturan debido a la acción de los dientes de una broca que perfora un suelo, por ejemplo, en la formación de un pozo petrolero.
Durante el proceso de perforación, la broca es refrigerada, lubricada y accionada por lodos, los cuales se mezclan con cortes en la zona donde la broca impacta el suelo. Esta mezcla de lodos y cortes se bombea hacia la superficie, se cierne en zarandas vibratorias y se monitorea en cuanto a composición, tamaño, forma, color, textura, y contenido de hidrocarburos.
Los cortes de perforación salen humectados con lodo de perforación en diferentes proporciones según las condiciones de los cortes y la calidad del equipo utilizado para separarlos del lodo. Las principales funciones del lodo de perforación son: retirar los cortes del fondo del pozo, enfriar y lubricar la broca, en el caso de los lodos base aceite evitar su corrosión, controlar presiones del subsuelo, sostener los cortes y material pesado en suspensión y transmitir potencia hidráulica a la broca.
Particularmente, los lodos base agua consisten en una mezcla de sólidos, líquidos y químicos, con agua. Algunos de los sólidos reaccionan con la fase agua y químicos disueltos, por lo tanto son llamados“sólidos reactivos”. La mayoría son arcillas hidratables. Los químicos agregados al lodo restringen la actividad de estos, permitiendo que ciertas propiedades de los fluidos de perforación se mantengan dentro de límites deseados.
Por otro lado, los sólidos presentes en el lodo no reaccionan con el agua y químicos de manera significativa, siendo llamados “sólidos inertes”. Cualquier aceite que se agregue a un lodo base agua es emulsificado dentro de la fase agua, manteniéndose como pequeñas y discontinuas gotas (emulsión aceite en agua).
También, el lodo presenta la propiedad tixotrópica, que es la capacidad de un fluido de desarrollar resistencia de gel con el tiempo cuando se le deja en reposo, pero permitiéndole regresar a su estado fluido al aplicarle agitación mecánica.
Los lodos no acuosos son también reagrupados de acuerdo a su contenido de hidrocarburos aromáticos: Grupo I alto contenido de aromáticos, Grupo II contenido medio de compuestos aromáticos, y Grupo III bajo contenido de compuestos aromáticos. Se ha reportado que los grados de toxicidad se incrementan de manera directamente proporcional al contenido de compuestos aromáticos.
Adicionalmente, los lodos base agua y sintéticos son menos dañinos al ambiente debido a sus componentes biodegradables, no sí para aquellos a base aceite. A través del tiempo estos lodos junto con los cortes se convierten en un desecho que demanda un tratamiento posterior para su disposición.
Actualmente, existen fundamentalmente dos clases de lodos de perforación, 1) lodos de perforación base agua, cuya composición es 76%-95% agua de mar o agua dulce, 24%- 5% barita, bentonita, sólidos de perforación y productos químicos; 2) lodos de perforación no acuosos. Estos últimos se subdividen en lodos base aceite OBM, lodos base aceite-mineral mejorado y lodos sintéticos.
Durante el proceso de separación mecánica de los lodos y/o cortes producidos por la perforación de un pozo petrolero se presenta una humectación muy alta de dichos cortes generando unas pérdidas importantes de lodo y una mayor dificultad para la disposición final de la mezcla de lodos y/o cortes, pues esto genera una mayor cantidad de volumen de desechos y como consecuencia un mayor costo de tratamiento. Estos lodos y/o cortes de perforación presentan una humedad promedio del 68% y requieren piscinas o zodmes (zona de disposición de material de excavación) de gran tamaño.
Uno de los objetivos de la presente invención es alcanzar una capacidad de deshidratación de lodos y/o cortes diaria entre 7,9m3 y 72m3 y una reducción de la fase liquida en los lodos y cortes hasta del 50%, por ejemplo si se recibe una mezcla inicial de lodos y/o cortes con un porcentaje volumétrico del 68% en la fase liquida, después del proceso llevado a cabo con el dispositivo y método de la presente invención, se obtendrá una mezcla final de lodos y/o cortes con un porcentaje en volumen de la fase liquida hasta del 10%.
Haciendo referencia a la FIG. l, la capacidad mínima de procesamiento diario del dispositivo de deshidratación, es de 7,9m3 de lodos y/o cortes con una humedad del 75%, alcanzando un promedio de humedad de 10% a 15% después de tratar los lodos y/o cortes en el presente dispositivo. Otros dispositivos de deshidratación encontrados en la industria para tratamiento de lodos y/o cortes con un 75% de humedad, obtienen un porcentaje de humedad entre 45% y 65% en los lodos y/o cortes tratados.
Otro de los objetivos de la presente invención es proporcionar un dispositivo deshidratador que deshidrate lodos y/o cortes hasta una humedad entre el 60% al 75%. Haciendo referencia a la FIG.5, otro objetivo de la presente invención es proporcionar un mecanismo de separación de sólido-gas, que separe las partículas de menor tamaño del gas residual del cilindro deshidratador, para evitar que dichas partículas sean arrojadas al ambiente provocando la contaminación de este y el deterioro de la salud de quienes lo habitan.
La presente invención incluye un dispositivo deshidratador que tiene un cilindro deshidratador (100) rotatorio que incluye una entrada (101); una salida (102) opuesta a la entrada (101); una primera región longitudinal (106) adyacente a la entrada (101); y una segunda región longitudinal (107) localizada entre la primera región longitudinal (106) y la salida (102) y una unidad de suministro de fluido (105) acoplada a la entrada (101); el dispositivo deshidratador comprende:
- una pluralidad de paletas tipo“T” (109) localizadas en una superficie interna de la segunda región longitudinal (107), donde cada paleta tipo“T” (109) se conforma de:
- una lámina (112) con una región central y dos secciones laterales que sobresalen de la región central; y
- un soporte (113) conectado entre la lámina (112) y la superficie intema de la segunda región longitudinal (107).
Haciendo referencia a la FIG.6, en una materialización preferida de la presente invención el cilindro deshidratador (100), rota sobre su propio eje para mantener en constante movimiento los lodos y/o cortes que ingresan por la entrada (101) y que después del recorrido a lo largo del cilindro deshidratador (100) salen por la salida (102). El efecto técnico del movimiento constante y rotatorio del cilindro es evitar concentraciones indeseadas de los lodos y/o cortes a lo largo del dispositivo de deshidratación, dichas concentraciones pueden provocar burbujas, taponamientos y zonas con excesiva o insuficiente temperatura. Además, la concentración de lodos y/o cortes impediría que el ventilador centrífugo alcance el tiro necesario para el arrastre de las partículas.
También, el cilindro deshidratador (100) está dividido en al menos dos regiones longitudinales, una primera región longitudinal (106) adyacente a la entrada (101) y una segunda región longitudinal (107) localizada entre la primera región longitudinal (106) y la salida (102) con el objetivo de deshidratar y transportar los lodos y/o cortes a través de la primera región longitudinal (106) y la segunda región longitudinal (107).
Otro de los efectos técnicos de tener más de dos regiones longitudinales es que en cada una de ellas pueden instalarse diferentes tipos de paletas que cumplan diversas funciones, tales como exponer los lodos y/o cortes a la llama directa, incrementar el número de superficies en contacto con los lodos y/o cortes, y transportar dichos lodos y/o cortes.
Haciendo referencia a la FIG.2, FIG.3 y la FIG.4, el cilindro deshidratador (100) tiene una unidad de suministro de fluido (105), acoplada a la entrada (101), por medio de dicha unidad se transportan los lodos y/o cortes hacia el interior del cilindro deshidratador (100).
Fa unidad de suministro de fluido (105) se selecciona del grupo conformado por bombas (v.g. de piñones, de pistones, de diafragma, de doble diafragma, de aspa, de tomillo, de cavidad progresiva, de lóbulos, de levas, peristálticas, reciprocantes, centrifugas, dúplex, dilaceradoras), alimentadores de tomillos, alimentadores vibratorios, tuberías, o combinaciones de los mismos.
Por otro lado, haciendo referencia a la FIG.6 y FIG.8, el cilindro deshidratador comprende una pluralidad de paletas tipo“T” (109), localizadas en una superficie interna de la segunda región longitudinal (107), donde cada paleta tipo“T” (109) se conforma de una lámina (112) con una región central y dos secciones laterales que sobresalen de la región central y un soporte (113) conectado entre la lámina (112) y la superficie interna de la segunda región longitudinal (107).
Haciendo referencia al detalle de la FIG.8, uno de los objetivos del uso de la lámina (112), en la paleta tipo“T” (109) es aumentar el número de superficies en contacto con los lodos y/o cortes al interior del cilindro deshidratador (100), de manera adicional a la cara intema del cilindro deshidratador (100).
Las dimensiones de la paleta tipo“T” (109) pueden variar de acuerdo al espíritu de la invención, por ejemplo la lámina (112) puede tener en la región central un ancho entre 90mm a l40mm y una longitud entre 900mm a l.400mm, con un área entre 0,08 lm2 a 0,196m2
También, la lámina (112) puede tener en una sección lateral un ancho entre 50 mm a 75 mm y una longitud entre 900 mm a 1.400 mm, con un área entre 0,045m2 a 0,l05mm2. En un ejemplo de la presente invención las secciones laterales pueden tener dimensiones diferentes; en dicho ejemplo la sección lateral opuesta puede tener un ancho entre 40 mm a 65 mm y una longitud entre 900 mm a 1.400 mm, con un área entre 0,036m2 a 0,09lm2. Por lo tanto, cada una de las paletas tipo“T” (109) contiene un volumen de lodos y/o cortes de 0,0 lm3 a 0,04m3
En un ejemplo de la invención la segunda región longitudinal (107) comprende entre 20 a 30 paletas tipo“T” (109) equidistantes, lo que permite transportar aproximadamente de 0,5m3 a0,75m3 de lodos y/o cortes teniendo en cuenta que por día el dispositivo deshidratador podría recibir entre 8m3 a 80m3 de lodos y/o cortes.
Haciendo referencia al detalle de la FIG.8, la paleta tipo“T” (109) comprende una lámina (112) con dos secciones laterales que sobresalen de la región central de la lámina (112), y que describen un ángulo g entre 50° y 60° respecto a la región central de la lámina (112). Adicionalmente la paleta tipo“T” (109) incluye un soporte (113) que se conecta en un extremo longitudinal de manera perpendicular a la región central de la lámina (112) y el extremo longitudinal opuesto se conecta a la superficie intema de la segunda región longitudinal (107) del cilindro deshidratador (100); por otra parte uno de sus extremos laterales de conectan perpendicularmente a una placa (140) ubicada únicamente en un extremo de la paleta tipo“T” (109). El soporte (113) se ubica longitudinalmente a la segunda región longitudinal (107) y a la región central de la lámina (112).
Haciendo referencia a la FIG.8, tanto el soporte (113) como las secciones laterales de la lámina (112) permiten que la paleta tipo“T” (109) contenga los lodos y/o cortes mientras estos alcanzan el punto más alto dentro del cilindro deshidratador (100). Este efecto técnico se logra gracias a que las secciones laterales de la lámina (112) cumplen la función de una pala, cuando están en el punto más bajo del cilindro deshidratador (100) recogen los lodos y/o cortes y los contienen durante su desplazamiento hasta llegar al punto más alto del cilindro deshidratador (100). Por su parte la placa (140), obstaculiza los lodos y/o cortes contenidos en las paletas tipo“T” (109) impidiendo que estos se devuelvan hacia regiones anteriores del cilindro deshidratador (100).
Adicionalmente, de manera preferida, una de las dos secciones laterales que sobresalen de la región central de la lámina (112) puede tener un área entre 0,07m2 a 0,09m2, ofreciendo la ventaja de elevar y contener una mayor cantidad de lodos y/o cortes evitando el escurrimiento de estos de la paleta tipo“T” (109).
Haciendo referencia a la FIG.8, la región central de cada lámina (112) conforma respecto a un eje radial (136) que sale del centroide del cilindro deshidratador (100) un ángulo b de 10° a 110°. Además, el eje radial (136) que sale del centroide del cilindro deshidratador (100) conforma respecto a una tangente (152) al diámetro exterior del cilindro deshidratador (100) un ángulo recto. Dicho ángulo b de manera preferible se encuentra en un rango de 45° a 80° y de manera aún más preferible del ángulo b es de 65°, esto se debe a que un ángulo b inferior a 65° propiciará que los lodos y/o cortes se escurran antes de que la paleta tipo“T” (109) llegue al punto más alto del cilindro deshidratador (100). Sin embargo una persona medianamente versada en la materia entenderá que el espíritu de la invención comprende diferentes rangos de ángulos b y y . Haciendo referencia a la FIG.8, las paletas tipo “T” (109) se separan entre sí equiángularmente respecto a un eje longitudinal (138) localizado en el centroide del cilindro deshidratador (100) permitiendo que una alta cantidad de lodos y/o cortes haga contacto con las paletas tipo“T” (109).
Preferiblemente, la lámina (112), la placa (140) y el soporte (113) pueden seleccionarse del grupo compuesto por metales como diferentes tipos de acero o aleaciones de aluminio, materiales compuestos, materiales cerámicos, y otros equivalentes que sean conocidos por una persona medianamente versada en la materia.
Algunos tipos de acero que pueden ser utilizados son los aceros al carbono, aceros al cromo, aceros al cromo-níquel, aceros inoxidables como el acero inoxidable 301, acero inoxidable 302, acero inoxidable 304, acero inoxidable 316, acero inoxidable 405, acero inoxidable 410, acero inoxidable 430, acero inoxidable 442, acero aleado con manganeso. También pueden usarse fundiciones de hierro, hierro galvanizado, aleación de níquel-cromo-molibdeno-tungsteno, aleaciones ferrosas al cromo-molibdeno, etc. La lámina (112) y el soporte (113) pueden fabricarse adicionalmente de materiales compuestos, los cuales pueden tener matrices poliméricas o de resinas reforzadas con fibras, dichas fibras pueden ser sintéticas o naturales.
Dicho soporte (113) puede adherirse por medio de soldadura química, soldadura por temperatura, soldadura por presión, soldadura por fricción, y otros medios equivalentes que sean conocidos por una persona medianamente versada en la materia.
Haciendo referencia a la FIG.6 y la FIG.9, en una realización de la invención, el dispositivo deshidratador, puede incluir una tercera región longitudinal (108) localizada entre la segunda región longitudinal (107) y la primera salida (102).
Haciendo referencia a la FIG.4 y la FIG.6, el cilindro deshidratador (100) se apoya sobre una superficie horizontal (114), donde el cilindro deshidratador (100) conforma un ángulo entre 2o a 5o con la horizontal (114), esto permite que los lodos y/o cortes con un 40% a 75% de humedad se deslicen por efecto de la inclinación, gravedad y rotación a lo largo del cilindro deshidratador (100), hacia la primera salida (102) del cilindro deshidratador (100). Por lo anterior, la parte más alta se encuentra en la entrada (101) y la parta más baja se encuentra en la primera salida (102) del cilindro deshidratador (100). Esto permite que los lodos y/o cortes sean transportados gradualmente desde la entrada (101) hacia la salida (102). La humedad contenida en los lodos y/o cortes afecta directamente el tránsito de estos a través de las diferentes regiones del cilindro deshidratador (100), por tanto la eficiencia de deshidratación de la primera región (106) afecta directamente el tránsito de los lodos y/o cortes hacia la segunda región (107) y hacia otras posibles regiones del cilindro deshidratador (100).
Haciendo referencia a la FIG.l y FIG.6 el cilindro deshidratador (100) que está unido a la superficie horizontal (114), donde dicha superficie horizontal (114) puede adherirse por medio de soldadura química, soldadura por temperatura, soldadura por presión, soldadura por fricción, y otros medios equivalentes que sean conocidos por una persona medianamente versada en la materia.
Haciendo referencia a la FIG.6, el cilindro deshidratador (100) se conecta a una primera unidad motriz (117), por medio de la cual obtiene el movimiento rotatorio. Dicha primera unidad motriz (117) se conecta axialmente a un mecanismo de transmisión de potencia (115), el cual transfiere a su vez, el movimiento a un primer elemento de transmisión (116) dispuesto en el cilindro deshidratador (100). En un ejemplo de la invención dicho primer elemento de transmisión (116) es un engranaje dentado que se ajusta alrededor del cilindro deshidratador (100) y que se encaja con un piñón usado como mecanismo de transmisión de potencia (115).
Preferiblemente, el mecanismo de transmisión de potencia (115) se selecciona entre cables, cadenas de transmisión, correas o bandas de transmisión, poleas, poleas dentadas, engranajes, piñones, piñón-cadena, mecanismo de piñón y tomillo sin fin, mecanismo de cremallera, ruedas de fricción, discos de fricción, chavetas y ejes nervados, juntas cardán y juntas homocinéticas, árbol de levas y otros elementos de transmisión mecánica equivalentes conocidos por una persona versada la materia técnica.
Haciendo referencia a la FIG.6, preferiblemente, la primera unidad motriz (117), puede seleccionarse entre motores de corriente alterna (v.g. motores sincrónicos trifásicos, motores asincronos sincronizados, motores con un rotor de imán permanente, motores monofásicos, motores bifásicos, motores con arranque auxiliar bobinado, motores con arranque auxiliar bobinado y con condensador), motores de corriente continua (v.g. motores de excitación en serie, motores de excitación en paralelo, motores de excitación compuesta).
Preferiblemente, la primera unidad motriz (117) está conectada a un reductor de velocidad de engranajes para adaptar la velocidad de un motor para entregar el par que necesita el cilindro deshidratador (100) para desarrollar una rotación entre 1 revolución por minuto hasta 15 revoluciones por minuto.
Adicionalmente, variando la velocidad de la rotación del cilindro deshidratador (100), es posible controlar el tiempo de residencia de los lodos y/o cortes en el interior del cilindro deshidratador (100). También, dependiendo de la humedad en el lodo y/o corte de entrada al proceso, se establece las revoluciones que se debe aplicar siendo una velocidad de rotación menor a 7 rpm como la velocidad preferida para tratar lodos y/ cortes con un porcentaje de humedad mayor al 45% y una velocidad de rotación mayor a 7 rpm como la velocidad preferida para deshidratar lodos y/o cortes con un porcentaje de humedad menor al 45%.
Preferiblemente, el reductor de velocidad se seleccionará entre reductores de velocidad sin fin de corona, reductores de velocidad de engranajes, reductores cicloidales, reductores de velocidad planetarios, reductores de engranajes intemos, reductores de engranajes extemos o combinaciones de los anteriores. Se entenderá en la presente invención por rodillo un elemento que permite el deslizamiento, y/o la rodadura de un elemento respecto a una de sus caras. Por lo general, el rodillo tiene una forma cilindrica, con un diámetro intemo que entra en contacto con un el elemento que desliza y/o rueda respecto al rodillo.
Haciendo referencia a la FIG.6 el cilindro deshidratador (100) puede incluir al menos cuatro rodillos (144) que facilitan el movimiento rotatorio sobre el eje longitudinal (138), haciendo contacto con los rieles (146) y a su vez brinden soporte al cilindro deshidratador (100). Dichos rodillos (144) están localizados equidistantemente al primer elemento de transmisión (116), en donde al menos dos rodillos (144) se encuentran adyacentes a la entrada (101) y al menos dos rodillos (144) se encuentran adyacentes a la salida (102) del cilindro deshidratador (100). Adicionalmente los rodillos (144) están sujetos sobre la superficie horizontal (114).
Preferiblemente, los rodillos (144) pueden seleccionarse entre rodillos auto-lubricantes, rodillos bimetálicos con respaldo de acero, rodillos de acero inoxidable, rodillos de bronce, rodillos de goma, rodillos de hierro, bujes de plástico.
También, el dispositivo deshidratador es caracterizado porque el cilindro deshidratador (100) incluye medios de calentamiento dispuestos operacionalmente en la primera región longitudinal (106) del cilindro deshidratador (100).
Los medios de calentamiento pueden seleccionarse entre calentadores de resistencias eléctricas, calentadores a gas, como de gas propano o metano, calentadores de chaqueta de vapor, calentadores de carbón, calentadores que usan elementos combustibles, medios equivalentes conocidos por una persona medianamente versada en la materia o combinaciones de las anteriores.
Haciendo referencia a la FIG.3, FIG.4 y Fig.6, el medio de calentamiento preferido es un quemador (119), tipo jet, que comprende un conducto (150) para el transporte combustible, preferiblemente será gas licuado de petróleo. Adicionalmente, el quemador (119), tipo jet, puede incluir un ventilador para aumentar la presión del aire primario necesario para la combustión y quemar una mayor cantidad de combustible y a su vez su rendimiento sea superior.
Haciendo referencia a la FIG. l y FIG.3, el cilindro deshidratador (100) puede comprender una tapa (103) dispuesta en la entrada (101), donde la tapa (103) tiene una primera abertura (104) conectada a un mecanismo transportador de lodo, y una segunda abertura (118) en la cual se conecta un medio de calentamiento. En un ejemplo de la presente invención dicho medio de calentamiento es un quemador (119) tipo jet. El quemador (119) tipo jet puede ser un quemador tipo torbellino (swirls, en inglés) envolvente, tipo torbellino divergente, de torbellino con álabes axiales, de torbellino con álabes radiales, de torbellino de álabes móviles, de una, dos, tres, cuatro o más antorchas, de premezcla parcial, quemadores con pulverizadores de combustible líquido, quemadores similares conocidos por una persona versada en la materia, o combinaciones de los mismos.
Asimismo, el quemador (119) tipo jet puede operar con un combustible seleccionado del grupo que comprende gas licuado de petróleo (GLP), gas natural, gas de síntesis, propano, butano, hexano, metano, carbón pulverizado (v.g. sub-bituminoso, bituminoso, antracita), gasóleo, gasolina, diésel, alcoholes, solventes, biomasa, biomasa pretratada (v.g. por torrefacción, pirólosis, pirólisis rápida), residuos sólidos (v.g. cascarilla, papel, plásticos, viruta vegetal), combustibles similares conocidos por una persona versada en la materia o combinaciones de los mismos
Haciendo referencia a la FIG. 4 y FIG. 6, los medios de calentamiento están ubicados concéntricamente a la tapa (103) conectada a la segunda abertura (118) de la tapa (103) del cilindro deshidratador (100).
Se entenderá en la presente invención que aire primario es el aire que ingresa por medio del quemador (119) para obtener la mezcla adecuada para la combustión.
Fos medios de calentamiento pueden generan una llama directa dentro del cilindro deshidratador (100), el dispositivo deshidratador incluye preferiblemente como medio de calentamiento un quemador (119) de gas licuado del petróleo cuya temperatura en punta alcanza los 800 °C y a medida que el corte avanza alcanza la temperatura normal de ebullición. Preferiblemente, la temperatura de la llama del quemador de gas licuado preferida es de l200°C, en la primera región longitudinal (106) y una temperatura de 380°C en la tercera región longitudinal (108) del cilindro deshidratador (100).
Adicionalmente, el quemador (119) puede producir entre 235kWh a l6l2kWh (800.000 BTU/h a 5.5 millones de BTU/h).
Igual que las variables anteriores su configuración de trabajo depende de la humedad inicial del corte a base agua a tratar. Teniendo en cuenta el porcentaje de humedad de los cortes base agua que son entre 60% y 80% de humedad es preferible que el quemador produzca alrededor de l436kWh (4.9 millones de BTU/h) para lograr la mejor calidad de secado en lodos y/o cortes. Con el fin de producir un 50% menos de emisiones contaminantes de NOx el quemador alcanza una temperatura máxima en la llama que no supere los l300°C debido a los gases NOx que se emiten a esta temperatura.
Con el fin de soportar las tensiones causadas por el vapor intemo, el espesor de la cubierta del cilindro deshidratador (100) tiene preferiblemente entre 20mm a 60mm de espesor. Además, la cubierta al tener un espesor entre 20mm a 60mm reduce la transferencia de calor a través de la superficie exterior del cilindro deshidratador (100) de modo que la temperatura intema es constante y no hay disminución de la temperatura.
El medio de calentamiento (139) produce una llama directa dentro del cilindro deshidratador (100), el dispositivo deshidratador incluye preferiblemente un quemador (119) de gas licuado del petróleo cuya temperatura en punta alcanza los 800 °C, a medida que los lodos y/o cortes avanzan alcanzan la temperatura de ebullición. Preferiblemente, la temperatura de la llama del quemador de gas licuado es de l200°C, en la primera región longitudinal (106) y una temperatura de 380°C en la tercera región longitudinal (108) del cilindro deshidratador (100).
Adicionalmente, el quemador (119) puede producir entre 800.000 BTU/h hasta 5.5 millones de BTU/h.
Igual que las variables anteriores su configuración de trabajo depende de la humedad inicial de los lodos y/o cortes. Teniendo en cuenta el porcentaje de humedad de los lodos y/o cortes que es del 60% al 80% es preferible que el quemador produzca 1436 kWh para lograr la mejor calidad de secado en los lodos y/o cortes.
Por otro lado, el quemador (119) puede incluir dos sensores de presión positiva. Un primer sensor medidor de presión diferencial para cualquier tipo de combustible, preferiblemente GUP, que se utiliza para garantizar que la caída de presión en el gas de alimento al quemador sea la adecuada según la operación que se esté realizando.
También, el quemador (119) puede incluir un segundo sensor de presión positiva medidor de presión diferencial de aire que se utiliza para garantizar que la caída de presión en el aire de alimento al quemador sea la adecuada según la operación que se esté realizando.
Haciendo referencia a la FIG.4 y FIG.6, en una realización de la invención, el dispositivo deshidratador, puede incluir en la tapa (103) un cobertor (143) que se extiende a lo largo del cilindro deshidratador (100), donde el cobertor (143) tiene una longitud con base en la longitud del quemador (119) tipo jet. Haciendo referencia a la FIG.4, el cobertor (143) del quemador (119) tiene una longitud entre 20% a 40% mayor a la distancia entre la tapa (103) del cilindro deshidratador (100) y la punta que emite la llama del quemador (119). El cobertor (143) tiene como objetivo impedir que los lodos y/o cortes caigan directamente sobre la punta del quemador (119) donde se genera la llama.
Por otro lado, la tapa (103) tiene una tolerancia entre 20mm y 30mm respecto a la entrada (101) del cilindro deshidratador (100), permitiendo el ingreso de aire secundario al cilindro deshidratador (100).
Haciendo referencia a la FIG.4, se entenderá en la presente invención que aire secundario es el aire que ingresa por medio de la tolerancia de la tapa (103) para el secado de los lodos y/o cortes. El aire secundario permite la combustión con exceso de aire superior al mínimo necesario. Cuando se utiliza un exceso de aire, la combustión tiende a no producir sustancias combustibles en los gases de reacción. También, la razón por la cual se utiliza normalmente un exceso de aire es hacer reaccionar completamente el combustible disponible en el proceso de combustión. En este tipo de combustión es típica la presencia de oxígeno en los gases de combustión.
Adicionalmente, la abertura (104) de la tapa (103), está conectada a una unidad de suministro de fluido (105) que comprende una tolva (147) y una bomba de transferencia (148) que transportan de manera constante los cortes base agua hacia el cilindro deshidratador (100). Mediante el uso de un dispositivo de remoción se transfieren los lodos y/o cortes almacenados en uno o varios tanques de almacenamiento de 39,75 m3. Haciendo referencia a la FIG. l a FIG.4, desde los tanques de almacenamiento y mediante el uso de un mecanismo de remoción de los lodos y/o cortes son transferidos a una tolva (147) de donde son alimentados a la bomba de transferencia (148) de lodos y/o cortes. Esta bomba de transferencia (148) se encarga de transportar los lodos y/o cortes con humedades entre 65% a 80% al cilindro deshidratador (100).
La bomba de transferencia (148) mueve partículas hasta de 1.5 pulgadas de diámetro con capacidad de bombeo de 40m3/hr y l200psi. Con esta bomba de transferencia (148) se logra dar fluidez a los sólidos provenientes de la perforación que aunque cuentan con una gran humedad sus propiedades siguen siendo las de un sólido. En una realización de la invención la bomba de transferencia (148) trabaja a una potencia de lOOhp, genera una velocidad entre 5 strokes a 30 strokes y tiene un flujo entre 30 m3/h a 40 m3/h. Preferiblemente, la bomba de transferencia (148) puede seleccionarse del grupo compuesto por bombas de engranes, bombas de aspa, bombas de tomillo, bombas de cavidad progresiva, bombas de lóbulo o bomba de levas, bombas peristálticas, bombas reciprocantes, bombas centrifugas, bomba dúplex, bomba de diafragma, bomba de doble diafragma, bombas dilaceradoras u otras bombas equivalentes conocidos por una persona versada en la materia técnica.
Preferiblemente, el cilindro deshidratador (100), la tapa (103), la superficie horizontal (114) y el cobertor (143) pueden seleccionarse del grupo compuesto por metales como diferentes tipos de acero o aleaciones de aluminio, materiales compuestos, materiales cerámicos, y otros equivalentes que sean conocidos por una persona medianamente versada en la materia.
Algunos tipos de acero que pueden ser utilizados son los aceros al carbono, aceros al cromo, aceros al cromo-níquel, aceros inoxidables como el acero inoxidable 301, acero inoxidable 302, acero inoxidable 304, acero inoxidable 316, acero inoxidable 405, acero inoxidable 410, acero inoxidable 430, acero inoxidable 442, acero aleado con manganeso.
También, pueden usarse fundiciones de hierro, hierro galvanizado, aleación de níquel- cromo-molibdeno-tungsteno, aleaciones ferrosas al cromo-molibdeno, etc. El cilindro deshidratador (100), la tapa (103), las superficies horizontales pueden fabricarse adicionalmente de materiales compuestos, los cuales pueden tener matrices poliméricas o de resinas reforzadas con fibras, dichas fibras pueden ser sintéticas o naturales como fibras de vidrio o fibras de carbono.
Por otro lado, haciendo referencia a la FIG.6 y FIG.7, adyacente a la entrada (101) del cilindro deshidratador (100), la primera región (106) comprende una pluralidad de paletas de deshidratación (110) tipo“canal”, las cuales deshidratan los lodos y/o cortes con una humedad entre 40% y 75%. Esta paleta de deshidratación (110) tipo“canal” permite transportar los lodos más húmedos, los cuales contienen entre 70%-75% de agua, desde la entrada (101) del cilindro deshidratador (100) rotatorio hasta la segunda región longitudinal (107) donde están localizadas las paletas tipo“T” (109).
Haciendo referencia a la FIG. 6 y FIG. 7 la paleta de deshidratación (110) tipo“canal” posee una forma rectangular hueca, dicha paleta de deshidratación (110) está ubicada en la cara intema de la primera región (106) del cilindro deshidratador (100) y se encuentran dispuestas de manera transversal a la longitud del cilindro deshidratador (100). Haciendo referencia a la FIG.7, la paleta de deshidratación (110) tipo“canal” tiene dos tabiques dispuestos de tal manera que se unen a la superficie intema del cilindro deshidratador (100), formando un ángulo entre 40° y 55° respecto al eje longitudinal (138) del cilindro deshidratador (100).
Haciendo referencia a la FIG.4, FIG. 6 y FIG.7 la paleta de deshidratación (110) tipo “canal” es una estructura unida a la superficie intema de la primera región longitudinal (106) del cilindro deshidratador (100) por dos tabiques con una longitud entre lm a l,2m. Dichos tabiques pueden adherirse por medio de soldadura química, soldadura por temperatura, soldadura por presión, soldadura por fricción, y otros medios equivalentes que sean conocidos por una persona medianamente versada en la materia.
Por otro lado, uno de los efectos técnicos del uso de la paleta de deshidratación (110) tipo“canal” es transportar los lodos y/o cortes mediante los dos tabiques al punto más alto del cilindro deshidratador (100) y dejarlos caer desde dicho punto hasta la parte más baja del cilindro deshidratador (100) exponiendo los lodos y/o cortes a altas temperaturas internas del cilindro deshidratador (100).
Preferiblemente, el material de la paleta de deshidratación (110) tipo“canal” puede seleccionarse del gmpo compuesto por metales como diferentes tipos de acero o aleaciones de aluminio, materiales compuestos, materiales cerámicos, y otros equivalentes que sean conocidos por una persona medianamente versada en la materia. Adicionalmente, algunos tipos de acero que pueden ser utilizados son los aceros al carbono, aceros al cromo, aceros al cromo-níquel, aceros inoxidables como el acero inoxidable 301, acero inoxidable 302, acero inoxidable 304, acero inoxidable 316, acero inoxidable 405, acero inoxidable 410, acero inoxidable 430, acero inoxidable 442, acero aleado con manganeso. También pueden usarse fundiciones de hierro, hierro galvanizado, aleación de níquel-cromo-molibdeno-tungsteno, aleaciones ferrosas al cromo-molibdeno, etc.
También la paleta de deshidratación (110) tipo“canal” puede fabricarse adicionalmente de materiales compuestos, los cuales pueden tener matrices poliméricas o de resinas reforzadas con fibras, dichas fibras pueden ser sintéticas o naturales.
Haciendo referencia a la FIG. 4, FIG. 6 y FIG.9 la paleta transportadora (111) tipo“J” ubicada en la tercera región (108) del cilindro deshidratador (100) tiene una longitud entre 0,7m y 0,75m. La paleta transportadora (111) tipo“J” comprende una base rectangular que sigue el contomo de la superficie intema del cilindro deshidratador (100), adjunta a la base y unida por una de sus aristas, se prolonga una lámina rectangular perpendicular a dicha base. Contigua a la lámina rectangular existe una placa rectangular con un ángulo a cóncavo entre 40° y 55° respecto a la lámina rectangular.
Haciendo referencia nuevamente a la FIG.9, la paleta de transportadora (111) tipo“J” permite que los lodos y/o cortes se desplacen eficientemente sobre la tercera región longitudinal (108) del cilindro deshidratador (100), dicha tercera región longitudinal (108) representa entre el 70% y el 80% de la superficie intema del cilindro deshidratador (100). En esta región los lodos y/o cortes presentan una etapa granular aproximadamente del 60% al 80% de su composición total durante la cual los lodos y/o cortes comienzan espontáneamente a formar gránulos.
Adicionalmente, el efecto técnico del uso de dicha estructura es recoger la mayor cantidad de lodos y/o cortes, transportándolos hacia la salida (102) del cilindro deshidratador (100).
Preferiblemente, la paleta de transportadora (111) tipo“J” pueden seleccionarse del grupo compuesto por metales como diferentes tipos de acero o aleaciones de aluminio, materiales compuestos, materiales cerámicos, y otros equivalentes que sean conocidos por una persona medianamente versada en la materia. Algunos tipos de acero que pueden ser utilizados son los aceros al carbono, aceros al cromo, aceros al cromo- níquel, aceros inoxidables como el acero inoxidable 301, acero inoxidable 302, acero inoxidable 304, acero inoxidable 316, acero inoxidable 405, acero inoxidable 410, acero inoxidable 430, acero inoxidable 442, acero aleado con manganeso.
También, pueden usarse fundiciones de hierro, hierro galvanizado, aleación de níquel- cromo-molibdeno-tungsteno, aleaciones ferrosas al cromo-molibdeno, etc. La paleta de transportadora (111) tipo“J” puede fabricarse de materiales compuestos, los cuales pueden tener matrices poliméricas o de resinas reforzadas con fibras, dichas fibras pueden ser sintéticas o naturales.
Haciendo referencia a la FIG.9 la paleta de transportadora (111) tipo“J” es una estructura unida a la superficie intema de la tercera región longitudinal (108) del cilindro deshidratador (100) por una base rectangular. Dicha base rectangular puede adherirse por medio de soldadura química, soldadura por temperatura, soldadura por presión, soldadura por fricción, y otros medios equivalentes que sean conocidos por una persona medianamente versada en la materia. Haciendo referencia la FIG. 2, FIG.3, FIG.4 FIG.5, el cilindro deshidratador (100) se conecta a una bifurcación (121) la cual está unida a la salida (102) opuesta a la entrada (101) del cilindro deshidratador (100). Dicha bifurcación (121) también puede denominarse como caja de gases y una de sus funciones es separar los residuos del cilindro deshidratador (100) en residuos sólidos, partículas de mayor tamaño, y en residuos gaseosos contaminados los cuales contienen partículas de menor tamaño. La salida (102) del cilindro deshidratador (100) se conecta a un mecanismo de transporte de sólidos (120) que a su vez se conecta a un recipiente (126).
La bifurcación (121) tiene dos salidas, una salida superior (154) y una salida inferior (155) que permiten que los gases contaminados asciendan y se dirijan a un mecanismo de separación sólido-gas (122) mediante la salida superior (154) de la bifurcación (121). Los residuos sólidos o las partículas de mayor tamaño se dirigen a un recipiente (126) mediante la salida inferior (155) de la bifurcación (121).
Haciendo referencia a la FIG. l, el dispositivo deshidratador, caracterizado porque en la salida inferior (155) de la bifurcación (121) se conecta un mecanismo de transporte de sólidos (120) que tiene una salida conectada a un recipiente (126). Dicho mecanismo de transporte (120) preferiblemente es un tomillo de descarga de lodos y/o cortes tratados, que trabaja con una potencia de lOhp a 20hp, y que puede tener una velocidad de giro de 30rpm a 50rpm.
Preferiblemente, la temperatura de los gases contaminados dentro de la bifurcación (121) es entre 260°C a 320°C garantizando la deshidratación de un alto porcentaje de los lodos y/o cortes.
Por otro lado, la bifurcación (121) puede tener un sensor ubicado en parte inferior de la bifurcación (121). Dicho sensor controla la temperatura máxima de operación que garantice la humedad final en los lodos y/o cortes y la integridad del equipo. Un segundo sensor ubicado en la parte superior de la bifurcación (121) tiene la misma función del sensor ubicado en la parte inferior de la caja de polvos y sirve como parámetro de verificación.
Preferiblemente, la bifurcación (121) puede seleccionarse del grupo compuesto por metales como diferentes tipos de acero o aleaciones de aluminio, materiales compuestos, materiales cerámicos, y otros equivalentes que sean conocidos por una persona medianamente versada en la materia. Algunos tipos de acero que pueden ser utilizados son los aceros al carbono, aceros al cromo, aceros al cromo-níquel, aceros inoxidables como el acero inoxidable 301, acero inoxidable 302, acero inoxidable 304, acero inoxidable 316, acero inoxidable 405, acero inoxidable 410, acero inoxidable 430, acero inoxidable 442, acero aleado con manganeso.
También, pueden usarse fundiciones de hierro, hierro galvanizado, aleación de níquel- cromo-molibdeno-tungsteno, aleaciones ferrosas al cromo-molibdeno, etc. La bifurcación (121) puede fabricarse adicionalmente de materiales compuestos, los cuales pueden tener matrices poliméricas o de resinas reforzadas con fibras, dichas fibras pueden ser sintéticas o naturales como fibras de vidrio o fibras de carbono.
Haciendo referencia a la FIG.5, el mecanismo de separación sólido-gas (122) incluye un mecanismo de ciclón (123) que tiene una entrada (124) conectada mediante la bifurcación (121); una salida inferior (125) conectada al recipiente (126) y una salida superior (127).
Haciendo referencia a la FIG.5, en una realización de la invención, el dispositivo deshidratador puede incluir un mecanismo de separación sólido-gas (122) que comprende un mecanismo de ciclón (142) que consiste en dos ciclones conectados en paralelo ubicados detrás de la bifurcación (121) y se conectan con la salida superior (154) de la bifurcación (121).
El mecanismo de ciclón (142) es adecuado para separar partículas con diámetros mayores a 5pm. Además, cuenta con la ventaja de no tener partes móviles, lo cual implica bajos costos de mantenimiento y operación. También, el mecanismo de ciclón (142) tiene una caída de presión baja, en comparación con otros tipos de separadores sólido-gas, y puede fabricarse en tamaños relativamente pequeños, en comparación con otros separadores, por ejemplo, sedimentadores.
En el mecanismo de ciclón (142), la trayectoria del gas comprende un doble vórtice, en donde el gas describe una espiral descendente en el lado extemo, y ascendente, en el lado intemo. La espiral descendente arrastra las partículas sólidas gmesas, mientras que la espiral ascendente lleva consigo gas y partículas sólidas.
Preferiblemente, cada ciclón del mecanismo de ciclón (142) tiene en su parte superior una sección cilindrica y una sección cónica que se extiende hacia debajo de la sección cilindrica.
El mecanismo de ciclón (142) separa partículas sólidas gmesas presentes en la corriente de gases con contaminantes sólidos que entran por la entrada lateral (124). Las partículas gmesas salen por la salida inferior (125), mientras que los gases con contaminantes sólidos finos, salen a través de la tubería de salida superior (130). Haciendo referencia a la FIG.5, la entrada lateral (124) puede ser de voluta envolvente, de voluta parcialmente envolvente, tangencial o axial. También, la entrada lateral (124) puede ser circular o rectangular.
Por otra parte, haciendo referencia a la FIG.5, la tubería de salida superior (130) es una bifurcación que se extiende desde el interior de cada ciclón, hasta un punto superior a la cara superior de cada ciclón. La tubería de salida superior (130) se encarga de captar la corriente de gas del vórtice intemo de los ciclones y evita que ingrese el gas que entra a través de la entrada lateral (124). Preferiblemente, la tubería de salida superior (130) se extiende desde un punto ubicado a la altura de la arista inferior de la entrada lateral (124), o debajo de esta.
Haciendo referencia a la FIG. l y FIG.5, preferiblemente, cada ciclón del mecanismo de ciclón (142) tiene forma cónica y tiene una entrada lateral (124) tangencial respecto a la base mayor de la forma cónica de cada ciclón, conectando a los dos ciclones.
Por otro lado, las principales familias de ciclones de entrada lateral (124) tangencial son ciclones de alta eficiencia, ciclones convencionales y ciclones de alta capacidad.
En la Tabla 1, se muestra una comparación entre las familias de ciclones de entrada lateral (124) tangencial, tomando en cuenta la eficiencia de remoción de tres tipos de partículas de contaminantes sólidos suspendidas en una corriente de gas con contaminantes sólidos.
El primer tipo de partículas son las partículas suspendidas totales (PST); el segundo tipo de partículas, son la fracción de partículas respirables (PM10), las cuales tienen un tamaño menor a 10,0 pm. Finalmente, el tercer tipo de partículas, son las partículas finas (PM2.5) con tamaño inferior a 2,5pm.
También, se entenderá en la presente invención por partículas finas, partículas con un tamaño de lOpm.
Tabla 1. Comparativo de eficiencias de remoción para las familias de ciclones.
Figure imgf000024_0001
En una modalidad de la invención, el ciclón es un ciclón de alta eficiencia. Los ciclones de alta eficiencia se diseñan para alcanzar mayor remoción de las partículas pequeñas que los ciclones convencionales. Los ciclones de alta eficiencia pueden remover partículas de 5pm con eficiencias hasta del 90%, pudiendo alcanzar mayores eficiencias con partículas más grandes.
Los ciclones de alta capacidad están garantizados solamente para remover partículas mayores de 20pm, aunque en cierto grado ocurra la colección de partículas más pequeñas. Sin embargo, en el caso de tener varios ciclones conectados en paralelo, conocidos como multiciclones, se puede alcanzar eficiencias de recolección entre 80% y 95% para partículas de tamaño mayor a 5pm.
Haciendo referencia a la FIG. l y FIG.3, se entenderá en la presente invención que una conexión en paralelo de dos o más ciclones, es cuando se divide el caudal total que ingresa en fracciones iguales, en cada ciclón. De esta manera, se puede manejar caudales grandes con ciclones pequeños, y altas eficiencias de separación.
Haciendo referencia a la FIG. l, FIG.2 y FIG.3, preferiblemente, se conecta un recipiente (126) mediante un mecanismo de transporte de sólidos (120) a la salida inferior (125) del mecanismo de ciclón (142). El recipiente (126) permite recolectar las partículas gruesas separadas por el mecanismo de ciclón (142).
Por otro lado, el mecanismo de ciclón (142) puede contener un tomillo de transporte de material particulado que preferiblemente trabaja a una potencia entre 4000W a 8000W (5hp a lOhp).
El mecanismo de ciclón (142) se selecciona del grupo conformado por ciclones centrífugos de alta eficiencia, ciclones de alta capacidad, ciclones de baja presión, precipitadores dinámicos en seco, ciclones de baja eficiencia, o combinaciones de los mismos.
Por su parte, los materiales metálicos de los cuales están hechos el recipiente (126) y/o el mecanismo de ciclón (142), pueden ser de acero inoxidable (v.g. AISI 304, 304L, 316, 316L); acero al carbono (v.g. AISI 1020, 1015, 1040, 1070, 1080, 1045; ASTM A36, A516); aceros aleados al níquel, cromo, molibdeno, vanadio o combinaciones de estos; aluminio; latón; hojalata; bronce; o combinaciones de los mismos.
En una realización de la invención el dispositivo deshidratador puede incluir un mecanismo de intercambio de calor (135) conectado al mecanismo de ciclón (142) mediante la tubería de salida superior (130) del mecanismo de ciclón (142). El mecanismo de intercambio de calor (135) tiene una entrada (141) unida a la tubería de salida superior (130) para el ingreso de los gases contaminados y una salida (153) para los gases contaminados con menos concentración de partículas sólidas.
Los gases contaminados pueden ser un flujo laminar, de transición o turbulento. Cuando es laminar y a bajas velocidades en el tubo, existe muy poco movimiento cerca de las paredes del tubo, lo que impide la transferencia de calor y funciona en realidad como un aislante. Un flujo más rápido y turbulento no tiene un gradiente continuo de velocidad, lo que hace que la película de fluido se mueva. Obstrucciones de diseño, ubicadas a lo largo de los tubos, denominadas turbuladores perturban el flujo laminar, lo que mejora la transferencia de calor. Estas obstrucciones aumentan la caída de presión e incrementan la tasa de condensación de los gases contaminados.
Haciendo referencia a la FIG. l, FIG.4 y FIG.5, el mecanismo de intercambio de calor (135) puede tener más de una entrada (156) para el ingreso de refrigerante que preferiblemente es aire. El fluido de gases contaminados pasa a través de los tubos y aletas difusoras adheridas a los tubos que ayudan a romper con el flujo laminar para así promover una transferencia de calor eficiente desde el fluido hacia las paredes del tubo. El metal utilizado en la fabricación preferiblemente tiene una alta conductividad térmica.
También, el mecanismo de intercambio de calor (135) tiene una inclinación entre 10° a 20° en la base del mecanismo de intercambio de calor (135), facilitando el escurrimiento del agua condensada de los gases contaminados y acumulando el agua en una de sus esquinas para una fácil depuración del mecanismo de intercambio de calor (135).
Adicionalmente, el mecanismo de intercambio de calor (135) puede ser de carcasa y tubos, donde los gases con contaminantes pasan por la carcasa y entre los tubos para refrigerante. También, el mecanismo de intercambio de calor (135) puede ser es de un paso, dos pasos, o tres pasos, esto indica que el refrigerantes entra y sale de la carcasa el número de paso para aumentar las tasa de transferencia de calor.
Por otro lado para controlar la dirección general del flujo del lado de la carcasa el mecanismo intercambiador de calor (135) puede tener aletas, deflectores, turbuladores o combinaciones de estos.
Preferiblemente, el mecanismo de intercambio de calor (135) puede seleccionarse del grupo compuesto por intercambiadores de contacto directo, intercambiadores de contacto indirecto, intercambiadores alternativos, intercambiadores de superficie, intercambiadores de placas, intercambiadores de tubos, intercambiadores de flujos cruzados, intercambiadores de flujos paralelos, intercambiadores en co-corriente, intercambiadores en contracorriente.
Adicionalmente, el mecanismo de intercambio de calor (135) tiene una estructura que contiene dicho mecanismo que puede seleccionarse del grupo compuesto por metales como diferentes tipos de acero o aleaciones de aluminio, materiales compuestos, materiales cerámicos, y otros equivalentes que sean conocidos por una persona medianamente versada en la materia. Algunos tipos de acero que pueden ser utilizados son los aceros al carbono, aceros al cromo, aceros al cromo-níquel, aceros inoxidables como el acero inoxidable 301, acero inoxidable 302, acero inoxidable 304, acero inoxidable 316, acero inoxidable 405, acero inoxidable 410, acero inoxidable 430, acero inoxidable 442, acero aleado con manganeso.
También, pueden usarse fundiciones de hierro, hierro galvanizado, aleación de níquel- cromo-molibdeno-tungsteno, aleaciones ferrosas al cromo-molibdeno, etc. El mecanismo de intercambio de calor (135) puede fabricarse adicionalmente de materiales compuestos, los cuales pueden tener matrices poliméricas o de resinas reforzadas con fibras, dichas fibras pueden ser sintéticas o naturales como fibras de vidrio o fibras de carbono.
En una realización de la invención el dispositivo deshidratador, puede incluir un mecanismo de separación sólido-gas (122) que comprende un mecanismo de separación de finos (128) que tiene una entrada (129) conectada a la salida superior (127) del mecanismo de ciclón (123), en donde entre la salida superior (127) del mecanismo de ciclón (123) y la entrada (129) del mecanismo de separación de finos (128) se conecta un intercambiador de calor (135).
En una realización de la invención, el mecanismo de separación sólido-gas (122) es un colector de partículas finas que comprende un una bifurcación (121), un mecanismo de ciclón (142), un intercambiador de calor (135) y un mecanismo de separación de finos (128).
Preferiblemente, el mecanismo de separación de finos (128) pude seleccionarse entre filtros de mangas de limpieza mecánica (sacudido periódico), filtros de mangas de limpieza invirtiendo el flujo de aire o gas, filtros de mangas de limpieza mediante pulsos breves de aire.
El mecanismo de separación de finos (128) puede ser un filtro de mangas (145), un filtro de cartuchos o una combinación de los mismos. El filtrado de gases contaminados empleando el filtro de mangas (145), preferiblemente conectados a un sistema automatizado que emite pulsos breves de aire a las mangas (145) evitando su saturtación, es una adaptación de un proceso intermitente, que se refiere a secuencias de ciclo de filtrado durante un determinado período de tiempo, usualmente dictado por cotas en la caída de presión admisible, y etapas de limpieza subsiguiente.
A los efectos de lograr una continuidad en el filtrado de gases contaminados se ha optado por realizar la limpieza en lapso cortos de entre 0.03 y 0.1 segundos de aire entre 520 kPa y 800 kPa (60 y 100 psig), aumentando la frecuencia intercalando las operaciones de filtrado y limpieza, según un cronograma determinado manométricamente
En una realización de la invención, el mecanismo de separación de finos (128) es un filtro de mangas (145) con una, dos, tres, cuatro, cinco, seis, siete, ocho, nueve, diez o más mangas.
Adicionalmente el filtro de mangas (145) es un aditamento utilizado para la separación solido-gas mediante un medio poroso. Su objetivo es eliminar las partículas sólidas que arrastra una corriente gaseosa haciéndola pasar a través de un tejido poroso.
En una realización de la invención, dentro del mecanismo de separación de finos (128) el aire alcanzará una velocidad máxima de operación es de 2553 m/s y una velocidad mínima de operación es de 1276 m/s.
Haciendo referencia a la FIG.4 y a la FIG.5, el filtro de mangas (145) es de forma tubular y se encuentra suspendido en una especie de armadura o canastilla, preferiblemente se tiene un conjunto de cien filtros de mangas (145) de 2m de largo cada una. Estos cien filtros de mangas (145) cuentan con un sistema automatizado de limpieza (149) el cual genera un disparo de aire limpio, que se emite preferiblemente cada 20 segundos, con esto se garantiza que el equipo no se sature y permita así el paso del vapor de agua.
Haciendo referencia a la FIG.3, el mecanismo de separación de finos (128) puede incluir una válvula de alivio ubicada a en el sistema automatizado de limpieza (149), el cuál dispara aire a las mangas, garantizando la presión máxima de operación para la limpieza de mangas. El filtro de mangas (145) puede ser de una o más mangas, donde el material de las mangas se selecciona del grupo conformado por tela, dril, microfibra, fibra de vidrio, no tejidos de fibras poliéster, poliéster viscosas, poliéster siliconadas, polietileno, fibras bi- componente, fibras de poliamida, aramida, o combinaciones de los mismos.
Por otro lado, el mecanismo de separación de finos (128) que puede contener un tomillo de transporte de material particulado que preferiblemente es un tomillo que trabaja a una potencia de 5hp a lOhp, una velocidad de giro entre 30 rpm y 50 rpm.
Haciendo referencia a la FIG.4 y a la FIG.5, en la entrada (129) del mecanismo de separación de finos (128) se dispone de una malla (151) la cual está situada sobre la entrada (129), esta malla (151) es una caja con forma de paralelepípedo oblicuo conformado por cinco caras donde la inexistente sexta cara es la unión con la entrada (129) la cual no tiene malla (151).
Haciendo referencia al detalle de la FIG.5, la malla (151) cumple con el objetivo de separar las partículas de mayor tamaño, aumentar la velocidad de ingreso de los gases contaminados, reducir el flujo laminar y volverlo turbulento con el fin de distribuir los gases contaminados de manera uniforme en dirección a las mangas. Adicionalmente, la malla (151) es importante durante el encendido del ventilador, en donde se genera un pico de velocidad de arrastre.
Preferiblemente, la granulometría de la malla (151) pude seleccionarse entre malla 3, malla 4, malla 5, malla 6, malla 7, malla 8, malla 10, malla 12, malla 14, malla 16, malla 18, malla 20, malla 25, malla 30, malla 35, malla 40, malla 45, malla 50, malla 60, malla 70, malla 80 y malla 90 según el estándar Americano de tamiz (U.S. Standar Sieve).
Por otro lado, la armadura o canastilla del mecanismo de separación de finos (128) tiene forma prismática rectangular. Además, la armadura o canastilla tiene una tapa y una salida superior. Por su parte, en la salida inferior se ubica una válvula preferiblemente de 50,8mm.
En una realización (no ilustrada) de la presente invención el dispositivo de deshidratación no incluye el intercambiado de calor (135) y el mecanismo de separación de finos (128), por lo tanto la tubería de salida (130) del mecanismo de separación sólido-gas (122), está conectada una tubería de succión (131) de un mecanismo generador de vacío (132).
Haciendo referencia a la FIG.4 y FIG.5, en otra realización de la presente invención, los gases contaminados pasan a través de la tubería de salida (130) y se dirigen al intercambiador de calor (135), posteriormente los gases contaminados circulan hacia un mecanismo de separación de finos (128) donde se filtran las partículas entre 5pm y lOpm. Los gases que han sido previamente separados de dichas partículas, salen por una tubería de succión (131).
Dicho mecanismo generador de vacío (132) se selecciona del grupo conformador por ventiladores centrífugos (v.g. de rodete con aspas sirocco, inclinadas hacia atrás, inclinadas hacia adelante, rectas, helicoidales), compresores (v.g. reciprocantes, de tomillo, de lóbulos, de múltiple etapa), sopladores, o combinaciones de los anteriores. Dicho mecanismo generador de vacío (132) pude ser un ventilador centrífugo conectado al final del dispositivo deshidratador transportando los gases residuales del cilindro deshidratador (100) por tiro forzado al generar vacío disminuyendo la presión intema del dispositivo deshidratador garantizando la transferencia de masa desde la fase líquida a la fase gaseosa.
Es importante mencionar que de acuerdo a la forma que tengan las aspas o los álabes del rotor del ventilador centrífugo, este tendrá la capacidad de incrementar o mantener la presión del aire que sale de dicho ventilador centrífugo, respecto a la presión del aire que ingresó.
Por otro lado, el ventilador centrífugo puede tener un sensor de vacío que permite verificar la presión negativa dentro del sistema.
Preferiblemente, el ventilador centrífugo puede seleccionarse entre ventilador con palas alabeadas hacia delante, ventilador con palas inclinadas hacia atrás: de alto rendimiento y alta presión, ventilador de álabes radiales, ventilador axial o helicoidal, ventiladores tipo propulsor.
Adicionalmente, el mecanismo generador de vacío (132) podría tener una potencia de 100 hp, desarrollar una velocidad angular de 800rpm a l300rpm y tener un flujo entre 8m3/s a l2m3/s, permitiendo el arrastre continúo de los gases y partículas finas hacia el final del dispositivo deshidratador.
Haciendo referencia a la FIG.2 y a la FIG.4, en una realización de la invención el dispositivo deshidratador pude incluir un mecanismo generador de vacío (132) que tiene una descarga (133) conectado a una chimenea (134). Dicha chimenea (134) conectada al generador de vacío (132) permite evacuar los gases del sistema deshidratador por convección térmica, por ende la posición de la chimenea es completamente vertical, que puede alcanzar una altura de 15 metros. Por otra parte, la temperatura que alcanzan los gases en la chimenea (134) es entre l00°C a l l5°C, debido a que el intercambiador de calor (135) al separar el agua de los gases contaminados baja la temperatura de los gases, en este punto las partículas que aún se encuentran en los gases son menores a 5pm. Además, la chimenea (134) puede tener un sensor que permite controlar la temperatura de los gases de combustión, vapor de agua y establecer un límite de emisión de contaminantes para mantenerlos según regulación ambiental vigente.
Preferiblemente, el material de la chimenea (134) puede seleccionarse del grupo compuesto por metales como diferentes tipos de acero o aleaciones de aluminio, materiales compuestos, materiales cerámicos, y otros equivalentes que sean conocidos por una persona medianamente versada en la materia.
Adicionalmente, algunos tipos de acero que pueden ser utilizados son los aceros al carbono, aceros al cromo, aceros al cromo-níquel, aceros inoxidables como el acero inoxidable 301, acero inoxidable 302, acero inoxidable 304, acero inoxidable 316, acero inoxidable 405, acero inoxidable 410, acero inoxidable 430, acero inoxidable 442, acero aleado con manganeso. También pueden usarse fundiciones de hierro, hierro galvanizado, aleación de níquel-cromo-molibdeno-tungsteno, aleaciones ferrosas al cromo-molibdeno, etc.
Por otra parte, la presente invención incluye un método de deshidratación de lodos y/o cortes (en adelante método), el cual comprende las siguientes etapas:
a) suministrar lodos y/o cortes y una corriente de aire a un cilindro deshidratador (100); donde flujo másico de aire es entre 10 y 200 veces el flujo másico de lodos y/o cortes;
b) deshidratar los lodos y/o cortes hasta que tenga un 25% de humedad mediante una primera región longitudinal (106) del cilindro deshidratador (100), generando una corriente de lodos y/o cortes parcialmente seca y una corriente de gases contaminados, donde primera región longitudinal (106) tiene una temperatura de operación superior a l00°C; y
c) transportar los lodos y/o cortes parcialmente secos de la etapa b) a lo largo del cilindro deshidratador (100) mediante una pluralidad de paletas tipo“T” (109) localizadas en una superficie intema de una segunda región longitudinal (107) del cilindro deshidratador (100), donde la segunda región longitudinal (107) se ubica contigua a la primera región longitudinal (106).
En la etapa a) del método se suministran lodos y/o cortes y una corriente de aire a un cilindro deshidratador (100); donde el flujo másico de aire es entre 10 y 300 veces el flujo másico de lodos y/o cortes; en esta etapa una bomba transfiere los lodos y/o cortes que contienen partículas de hasta 38mm de diámetro desde una tolva (147) a la entrada (101) del cilindro deshidratador (100).
La relación del flujo másico de lodos y/o cortes y el flujo másico de aire depende de las condiciones de humedad y temperatura del aire, así como el coeficiente de transferencia de calor dentro del cilindro, el cual depende de la velocidad del aire, la viscosidad de los lodos y/o cortes y de la temperatura del aire.
Por ejemplo, si se tiene aire con humedad relativa inferior al 40% tendría una mayor capacidad de absorber el agua de los lodos y/o cortes que una corriente de aire con humedad relativa mayor al 80%. De acuerdo con lo anterior, la relación entre el flujo másico de lodos y/o cortes y el flujo másico de aire depende de las condiciones ambientales que determinan la humedad y temperatura del aire.
En caso de que las condiciones ambientales proporcionen aire con humedad relativa cercana al 90%, por ejemplo, en zonas de bosque húmedo tropical, o selváticas, el aire que se suministra al cilindro deshidratador (100) puede pre-tratarse mediante procesos de deshidratación y precalentamiento, tales como deshumidificación por enfriamiento por posterior calentamiento a presión constante, o deshumidificación por adsorción o absorción, métodos similares conocidos por una persona versada en la materia o combinaciones de los mismos.
Adicionalmente el tiempo de residencia de lodos y/o cortes tiempo de residencia en el dispositivo deshidratador, puede influir en la tasa de secado, la eficiencia del proceso y la calidad final de la deshidratación de lodos y/o cortes. Si el flujo de masa aumenta, el producto final será, en general, de mejor calidad. Por otra parte, hay un aumento del consumo de energía específica, esto es, de la energía que se necesita para evaporar una unidad de masa de agua y una disminución de la eficiencia térmica de la deshidratación, porque los lodos y/o cortes que pasan por el dispositivo deshidratador con mayor velocidad pierden menos humedad y la deshidratación puede resultar insuficiente. El manejo adecuado de la velocidad del producto tiene importancia fundamental en el secado. Adicionalmente, la selección de variables físicas como diámetro del cilindro deshidratador, velocidad angular e inclinación influye en el tiempo de residencia de los lodos y/o cortes dentro de dicho cilindro, lo cual afecta el tiempo de contacto que tienen los lodos y/o cortes con el aire.
También, la bomba (148) de transferencia de lodos y/o cortes preferiblemente tiene una capacidad de bombeo entre 25 m3/h a 45 m3/h y entre 800 psi a 1500 psi. La bomba (148) de transferencia de lodos y/o cortes tiene un rango de alimentación que preferiblemente varía entre 3strokes a 32 strokes por minuto.
Adicionalmente, la variación en los strokes de alimentación está directamente relacionada a la calidad de los lodos y/o cortes recibidos; es decir que a mayor humedad en los lodos y/o cortes de alimento menor deben ser los strokes, esto con el fin de garantizar el tiempo de exposición a la llama directa.
El conducto de transferencia de la bomba (148) está conectado a la tapa (103) dicha tapa está fija y no realiza un movimiento giratorio junto con el cilindro deshidratador (100). La tapa (103) tiene una tolerancia entre 20mm a 30mm respecto a la entrada (101) del cilindro deshidratador (100). Por medio de esta tolerancia puede ingresar al cilindro deshidratador (100) una relación de aire entre 20 a 100 veces mayor al flujo másico de lodos y/o cortes, la cual no representa la totalidad de aire que ingresa al cilindro deshidratador.
El cilindro deshidratador (100) se apoya sobre una superficie horizontal (114), donde el cilindro deshidratador (100) conforma un ángulo entre 2o a 5o con la horizontal permitiendo que los lodos y/o cortes se desplacen hacia la salida (102) del cilindro deshidratador (100), facilitando el desplazamiento de los lodos y/o cortes desde la primera región longitudinal (106), donde acontece la etapa b), a la segunda región longitudinal (107), donde acontece la etapa c), y a una posible tercera región longitudinal (108).
Las propiedades físicas y químicas de los lodos y cortes de salida dependen de los parámetros de operación del cilindro deshidratador (100), debido a que la velocidad de avance de una partícula sólida en los lodos y/o cortes se relaciona con la velocidad de rotación y el ángulo de inclinación del cilindro deshidratador (100). En una realización de la presente invención esta rotación varía entre 3rpm y l2rpm.
Las relaciones que influyen en la deshidratación, cuando se deshidratan lodos y/o cortes con aire forzado, son: la temperatura y la humedad relativa ambiente, la temperatura y el flujo de aire caliente, el contenido de humedad inicial y la temperatura. Por esta razón cuanto más elevado sea el contenido de humedad de los lodos y/o cortes, mayor será la cantidad de agua evaporada por unidad de energía.
Por otra parte, en la etapa b) del método, se deshidratan los lodos y/o cortes hasta que tengan un 25% de humedad mediante una primera región longitudinal (106) del cilindro deshidratador (100), generando una comente de lodos y/o cortes parcialmente seca y una comente de gases contaminados, donde la primera región longitudinal (106) tiene una temperatura de operación que puede ser entre l00°C y l50°C, entre 800°C a l200°C o mayor a 2000°C. Preferiblemente la temperatura de operación en la primera región longitudinal (106) al interior del cilindro deshidratador (100) no debe superar los l200°C, pues al superar l200°C pueden generarse gases de NOx.
Una temperatura de operación entre l00°C y 800°C al interior del cilindro deshidratador (100) puede generarse con medios de calentamiento como calentadores de tubos radiantes, calentadores por resistencias eléctricas, calentadores de inducción, dispositivos emisores de microondas, quemadores de premezcla y quemadores (119) tipo jet.
Se entenderá en la presente invención que la temperatura de operación se refiere a la temperatura máxima del aire en determinada parte del método. En el caso particular de que el medio de calentamiento sea un quemador (119) tipo jet, la temperatura máxima de operación en la etapa b) se refiere a la temperatura de llama, la cual puede determinarse por instrumentos de medición como pirómetros y termómetros.
Particularmente, a una temperatura superior a l00°C se propicia que el aire transfiera calor a los lodos y/o cortes para lograr deshidratarlos. Sin embargo, para tener mayores tasas de transferencia de calor, es preferible tener una temperatura de operación entre 500°C y 2000°C.
Este rango de temperaturas puede lograrse con quemadores (119) tipo jet que operen con combustibles como gas licuado de petróleo, metano, butano, propano, gas natural, gas de síntesis, carbón pulverizado (v.g. sub-bituminoso, bituminoso), o combinaciones de los mismos. También, los quemadores (119) pueden usar aire enriquecido con oxígeno adicionado, para lograr aumentar la temperatura de llama. El aire enriquecido puede tener una concentración de oxígeno entre 20% y 40%.
Haciendo referencia a la FIG.7, en una realización de la invención se utiliza una llama directa, la cual se localiza dentro del cilindro deshidratador (100) fijado concéntricamente a la tapa (103), los lodos y/o cortes se elevan mediante unas paletas tipo“canal” (110) de la primera región longitudinal (106) del cilindro deshidratador (100), y cae libremente, entrando en contacto directo con la llama. En esta primera región longitudinal (106) la temperatura de operación es entre 800°C y l500°C donde los lodos y/o cortes alcanzan su punto de ebullición logrando una humedad del 25%. Dicha llama directa es emitida por un quemador (119) que preferiblemente es un quemador tipo jet, cuya temperatura en la salida del quemador (119) alcanza los 800 °C. La llama del quemador (119) puede generar entre 234456.86 W (800.000 BTU/h) hasta 1611890.88 W (5.5 millones de BTU/h). Preferiblemente para alcanzar que los lodos y/o cortes lleguen a una deshidratación del 75% el quemador podría generar 1436048.24 W (4.9 millones de BTU/h).
Antes de que los lodos y/o cortes caigan directamente sobre la llama, los lodos y/o cortes presentan un porcentaje de humedad entre el 40% y 75%. Debido a la concentración de agua en los lodos y/o cortes es posible que al caer sobre la punta del quemador (119) que emite la llama puede ser apagada. Para evitar apagar la llama durante el proceso de deshidratación se obstruye la caída directa de lodos y/o cortes sobre la punta del quemador (119) que emite la llama, mediante una lámina o placa, que evita que la llama se apague con la caída directa de los lodos y/o cortes.
Preferiblemente, el quemador (119) opera con una relación de aire combustible entre de 10 kg de aire por 1 kg de combustible y 30 kg de aire por 1 kg de combustible. Por lo anterior, ingresan 30 kg de masa de aire al quemador (119) para mantener una relación de aire combustible de 900 kg.
Haciendo referencia a la FIG.7, las paletas de deshidratación (110) tipo“canal” tiene un ángulo entre 40° y 55° respecto al eje longitudinal (138) del cilindro deshidratador (100), este ángulo permite contener los lodos y/o cortes mientras el cilindro deshidratador gira sobre su eje longitudinal (138) elevando los lodos y/o cortes al punto más alto para luego dejar caer los lodos y/o cortes directamente sobre la llama.
También, en la etapa b) se exponen los lodos y/o cortes a la llama directa mediante unas paletas de deshidratación (110) tipo “canal”, localizadas en la primera región longitudinal (106) del cilindro deshidratador (100), las cuales retienen los lodos y/o cortes por medio de dos tabiques con una longitud entre lm a l,2m, y los elevan dejándolos escurrir sobre la llama directa.
Preferiblemente, en la etapa b) se tiene una subetapa bl) que consiste en obstruir el flujo de lodos y/o cortes alrededor del quemador (119). Esto es importante para evitar que los lodos y/o cortes caigan cerca de la boca de la antorcha del quemador (119), lo cual podría ocasionar desprendimiento de llama o extinción de la misma. Lo anterior es peligroso porque en un lapso no controlado, se ingresaría combustible y aire sin reaccionar dentro del cilindro deshidratador (100), lo cual podría generar una acumulación de combustible y oxidante que produciría una deflagración no controlada que podría comprometer estructuralmente el cilindro deshidratador (100).
Preferiblemente los lodos y/o cortes a deshidratar y los gases fluyen en la misma dirección. De esta manera, los gases calientes resultantes de la combustión del aire y el combustible, entran en contacto con los lodos y/o cortes a deshidratar cuando están más húmedos y a menos temperatura. Como consecuencia del elevado gradiente de temperatura, entre los gases y los lodos y/o cortes húmedos se genera el flujo de calor más alto dentro del cilindro deshidratador (100), lo cual produce que la mayor parte de la humedad se elimine en la primera región longitudinal (106) del dispositivo deshidratador.
En el proceso de deshidratación de la presente invención, puede elevarse la temperatura de los gases de entrada, precalentando el cilindro deshidratador (100) a una temperatura entre 500°C y l000°C durante un período entre 2min a 5min para alcanzar las temperaturas de ebullición de los lodos y/o cortes con el fin de conseguir una acción de deshidratación más intensa, sin pequdicar los lodos y/o cortes a deshidratar.
Adicionalmente, para lograr un mayor rendimiento de deshidratación la diferencia de temperatura entre los gases calientes y los lodos y/o cortes a deshidratar es más pequeña en los deshidratadores cilindricos de flujo a contracorriente que en los de flujo paralelo. Como consecuencia de ello el rendimiento de deshidratación es mayor en los deshidratadores de flujo paralelo como el de la presente invención.
Por otro lado, en la etapa c) del método se transportan los lodos y/o cortes parcialmente secos de la etapa b) a lo largo del cilindro deshidratador (100) mediante una pluralidad de paletas tipo“T” (109) localizadas en una superficie intema de una segunda región longitudinal (107) del cilindro deshidratador (100), donde la segunda región longitudinal (107) se ubica contigua a la primera región longitudinal (106).
De acuerdo a lo anterior, la configuración de la paleta transportadora tipo“T” (109) contiene y evita el escurrimiento de los lodos y/o cortes mientras el cilindro deshidratador (100) rota sobre su eje longitudinal (138). Esto se logra por la configuración de la paleta tipo “T” (109) compuesta por una lámina (112), dos secciones laterales que sobresalen de la región central de la lámina (112) que describen un ángulo entre 50° y 60° respecto a la lámina (112), donde el soporte (113) se conecta entre la lámina (112) y la superficie intema de la segunda región longitudinal (107) del cilindro deshidratador (100).
También la paleta tipo“T” (109) recibe los lodos y/o cortes con un 40% a un 75% de deshidratación de la primera región longitudinal (106) y los transporta hacia la salida (102) del cilindro deshidratador (100).
En particular el uso de la paleta tipo“T” (109) permite incrementar las superficies en contacto con los lodos y/o cortes al interior del cilindro deshidratador (100), adicionales a la cara intema del cilindro deshidratador (100). Cada paleta tipo“T” (109) transporta entre el 4% al 5% del total de lodos y/o cortes ingresados al cilindro deshidratador (100).
En una realización de la invención en la etapa c) se transportan lodos y/o cortes a una tercera región longitudinal (108) del cilindro deshidratador (100), que comprende paletas transportadoras (111) tipo“J”.
Haciendo referencia a la FIG.9, la paleta de transportadora (111) tipo“J” permite que los lodos y/o cortes se desplacen eficientemente desde la segunda región longitudinal (107) del cilindro deshidratador (100), dicha tercera región longitudinal (108) representa entre el 70% y el 80% de la superficie interna del cilindro deshidratador (100). En esta región los lodos y/o cortes comienzan espontáneamente a formar gránulos, llegando a una etapa granular aproximadamente del 60% al 80% de su composición total. Adicionalmente, la temperatura en la tercera región longitudinal (108) es entre 300°C a 400°C. En dicha etapa c) la temperatura ideal es de 380°C para obtener lodos y/o cortes con una humedad de 25%.
En una realización de la presente invención el secado de un barril de lodos y/o cortes requiere el uso de 3gal a 4gal de gas licuado de petróleo.
Por otra parte, después de la etapa c), el método de la presente invención puede incluir una etapa d) que consiste en tratar la corriente de gases contaminados de la etapa b) mediante un mecanismo de separación sólido-gas (122) conectado al cilindro deshidratador (100).
Haciendo referencia a la FIG.4 y a la FIG.5, en la etapa d) se usa una bifurcación (121) y un mecanismo de ciclón (123) que separan las partículas entre a 5pm a 20pm de diámetro de los gases contaminados residuales de la deshidratación de los lodos y/o cortes en el cilindro deshidratador (100). La bifurcación (121) tiene dos salidas, una salida superior (154) y una salida inferior (155) donde los gases contaminados asciendan y se dirigen a un mecanismo de ciclón (123) mediante la salida superior de la bifurcación (121).
Preferiblemente, la temperatura de los gases contaminados dentro de la bifurcación (121) es entre 260°C a 320°C garantizando un porcentaje de humedad de los lodos y/o cortes del 25%, esto gracias a la exposición de los lodos y/o cortes dentro del cilindro deshidratador (100) a la llama directa y al aire caliente. Durante dichas exposiciones se elimina entre un 65% a 75% de humedad y posteriormente se separan los gases de los residuos sólidos en la bifurcación (121).
Haciendo referencia la FIG.5, el mecanismo de separación sólido-gas (122) comprende un mecanismo de ciclón (142) ubicado detrás de la bifurcación (121) y se conecta con la salida superior (154) de la bifurcación (121). El mecanismo de ciclón (142) separa partículas con diámetros entre 20 pm a 5pm.
Dentro del mecanismo de ciclón (142), la trayectoria del gas comprende un doble vórtice, en donde el gas describe una espiral descendente en el lado extemo, y ascendente, en el lado intemo. La espiral descendente arrastra las partículas sólidas gmesas, mientras que la espiral ascendente lleva consigo gas y partículas sólidas menores a 5pm.
Adicionalmente, las partículas gmesas mayores a 5pm salen por la salida inferior (125) hacia un recipiente recolector (126), mientras que los gases contaminantes con sólidos menores a 5pm, salen a través de la tubería de salida superior (130).
También, la tubería de salida superior (130) se encarga de captar la corriente de gas del vórtice interno de los ciclones y evita que ingrese el gas que entra a través de la entrada del mecanismo de ciclón (142).
Los ciclones de alta capacidad que comprende el mecanismo de ciclón (142) están garantizados solamente para remover partículas mayores de 20pm, aunque en cierto grado ocurra la colección de partículas más pequeñas. Sin embargo, en el caso de tener multiciclones (varios ciclones conectados en paralelo), se puede alcanzar eficiencias de recolección entre 80% y 95% para partículas de tamaño mayor a 5pm.
En una realización de la invención, la cantidad de material particulado proveniente de los ciclones es del 0,5% al 2% de la cantidad total de lodos y/o cortes ingresados, es decir que por cada 100 barriles de lodos y/o cortes ingresados al proceso es posible obtener 0,5barriles a 2barriles de lodos y/o cortes con un porcentaje de finos aproximadamente del 28,19%. Con este sistema de precipitación de material particulado, se evita la emisión de dicho material al ambiente.
El método de la presente invención puede incluir una etapa e) posterior a la etapa d) que consiste en separar un vapor de agua presente en los gases contaminados mediante un mecanismo de intercambio de calor (135) conectado al mecanismo de separación sólido-gas (122).
Haciendo referencia a la FIG.5, el mecanismo de intercambio de calor (135) está conectado al mecanismo de ciclón (123) mediante la tubería de salida superior (130) del mecanismo de ciclón (142). El mecanismo de intercambio de calor (135) tiene una entrada (141) unida a la tubería de salida superior (130) para el ingreso de los gases contaminados y una salida (153) para los gases contaminados con menos concentración de partículas sólidas.
El mecanismo de intercambio de calor (135) posee al menos cuatro entradas (156) para el ingreso de refrigerante que preferiblemente es aire. El fluido de gases contaminados pasa a través de los tubos y aletas difusoras adheridas a los tubos que ayudan a romper con el flujo laminar para así promover una transferencia de calor eficiente desde el fluido hacia las paredes del tubo. El metal utilizado en la fabricación preferiblemente tiene una alta conductividad térmica.
También, el mecanismo de intercambio de calor (135) tiene una inclinación entre 10° a 20° , respecto a la horizontal, en la base del mecanismo de intercambio de calor (135), con el fin de llevar el agua condensada de los gases contaminados a una de sus esquinas para una fácil depuración del mecanismo de intercambio de calor (135).
Por otro lado, el método de la presente invención puede tener una etapa f) que consiste en retirar de la corriente de gases contaminados un material particulado mediante un mecanismo de separación de finos (128) conectado al mecanismo de intercambio de calor (135), y generar una corriente de gas limpio con un contenido de material particulado inferior al 30%, donde el material particulado de la corriente de gas limpio tiene un diámetro inferior a 5pm.
En una realización de la invención, el mecanismo de separación de finos (128) realiza el filtrado de gases contaminados empleando un filtro de mangas (145) preferiblemente mediante pulsos breves de aire. En una realización de la invención, dichos pulsos de aire se emiten cada 0.03s a O.ls a una presión relativa de 60psig a 100 psig. Adicionalmente el filtro de mangas (145) es un aditamento utilizado para la separación solido-gas mediante un medio poroso. Su objetivo es eliminar las partículas sólidas que arrastra una corriente gaseosa haciéndola pasar a través de un tejido poroso. Preferiblemente, dentro del mecanismo de separación de finos (128) el aire alcanzará una velocidad máxima de operación es de 2553 m/s y una velocidad mínima de operación es de 1276 m/s.
En una realización de la invención el proceso de control de material particulado se realiza por medio de 100 filtros de mangas (145) y se puede establecer que el volumen obtenido es del 0.3% es decir que por cada 100 barriles de lodos y/o cortes ingresados al sistema se obtienen 0.3 barriles de polvo fino con 44,38% de finos.
Por otro lado, en la entrada (129) del mecanismo de separación de finos (128) se dispone una malla (151) la cual está situada sobre la entrada (129). Dicha malla (151) separa las partículas de mayor tamaño, aumentar la velocidad de ingreso de los gases contaminados, reduce el flujo laminar y lo vuelve turbulento con el fin de distribuir los gases contaminados de manera uniforme en dirección a las mangas.
El método de la presente invención puede tener una etapa g) posterior a la etapa f), la cual consiste en sacar el gas limpio a través de una chimenea mediante un mecanismo generador de vacío (132).
El mecanismo generador de vacío (132) pude ser un ventilador centrífugo conectado al final del dispositivo deshidratador transportando los gases residuales del cilindro deshidratador (100) por tiro forzado al generar vacío disminuyendo la presión intema del dispositivo deshidratador garantizando la transferencia de masa desde la fase líquida a la fase gaseosa.
El ventilador centrífugo modifica la dirección del aire en un ángulo de 90°, es decir, el aire entra en el ventilador con un determinado ángulo, normalmente entre 80° y 90°, con dirección axial al plano de giro de las aspas y sale al exterior con un desfase de 90a grados, entre 0o y 10°, en dirección radial.
En una realización de la invención el dispositivo deshidratador pude incluir un mecanismo generador de vacío (132) que tiene una descarga (133) conectado a una chimenea (134).
Dicha chimenea (134) conectada al generador de vacío (132) permite evacuar los gases del sistema deshidratador por convección térmica, por ende la posición de la chimenea es completamente vertical y puede alcanzar una altura de 15 metros. También, la temperatura que alcanzan los gases en la chimenea (134) es entre l00°C a l l5°C, en este punto las partículas que aún se encuentran en los gases tienen un diámetro entre 5 mih y 15 mih .
Ejemplo 1:
Transporte de cortes desde pozo hasta la base de un dispositivo deshidratador:
Se recibieron almacenaron y trataron un total de 3350 barriles de cortes a lo largo de 15 días, dichos barriles presentaron una humedad promedio de 68%. Los cortes son predominantemente arcillosos y su humedad oscila entre 57% hasta 80%.
Estos 3350 barriles de cortes se recibieron en grupos de 250 barriles en un recipiente de almacenamiento ubicado en la zona asignada para la construcción del dispositivo deshidratador.
Alimentación de cortes al cilindro deshidratador:
Estos cortes fueron transferidos desde la tolva de alimentación hasta el cilindro deshidratador (100) rotario por medio de una bomba de transporte de cortes y su tasa de alimentación vario de 3 strokes a 32 strokes por minuto.
La tasa de alimentación de cortes al cilindro deshidratador (100) fue una variable de vital importancia ya que marcó la pauta entre el tiempo de residencia de los cortes y la humedad a la salida de los mismos.
La variación en los strokes de alimento está directamente relacionada a la calidad del corte recibido; es decir que a mayor humedad en el corte de alimento menor deben ser los strokes, esto con el único fin de garantizar un tiempo suficiente de exposición a la llama directa.
Rotación del cilindro transportador de cortes:
Una variable que determina la calidad del corte de salida es la rotación del cilindro deshidratador (100), esta rotación se varió desde 3rpm hasta l2rpm.
Aplicación de llama directa: Se utilizó un quemador de gas licuado de petróleo el cual se puede variar entre 800.000 BTU/h hasta 5.5 millones de BTU/h.
Igual que las variables anteriores su configuración de trabajo depende de la humedad inicial del corte a tratar, sin embargo se logró la mejor calidad de corte a la salido con 4.9 millones de BTU/h.
En cuanto al combustible se obtuvieron los siguientes consumos por día de prueba en el pozo Jacana 6:
Figure imgf000042_0001
De la tabla anterior se puede establecer que el consumo promedio por barril tratado es de 3.01 galones por barril de lodos y/o cortes húmedos.
Control de material particulado en el mecanismo de ciclón y el mecanismo de separación de finos:
Se pudo establecer de forma experimental que la cantidad de material particulado proveniente de los ciclones fue del 1% del valor del alimento, es decir que por cada 100 barriles alimentados al proceso se obtuvo 1 barril de cortes con un porcentaje de finos del 28,19%.
Con este sistema de precipitación de material particulado, se evitó que se generaran emisiones al ambiente.
Para el proceso de control de material particulado por medio del sistema de 100 mangas se pudo establecer experimentalmente que el volumen obtenido es del 0.3% es decir que por cada 100 barriles de cortes alimentados al sistema se obtuvieron 0.3 barriles de polvo fino con 44,38% de finos.
Durante la prueba se determinó que el volumen de procesamiento con el cual se logra la saturación de las mangas es de 2200 barriles, esta saturación la corroboro con el diferencial de presión antes y después del paso por las mangas, el diferencial detectado fue de 20 psi. Una vez procesados los 2200 barriles se procedió a realizar la respectiva limpieza de las mangas y se verifico nuevamente el diferencial de presión el cual regreso a 0.5 psi.
Resumen de la prueba realizada:
Figure imgf000043_0001
A continuación se presentan en tablas los parámetros del dispositivo de deshidratación usado en el anterior ejemplo 1, y posteriormente los parámetros del dispositivo de deshidratación usado en un ejemplo 2.
Figure imgf000043_0002
Figure imgf000044_0001
Figure imgf000044_0002
Figure imgf000045_0001
Se debe entender que la presente invención no se halla limitada a las modalidades descritas e ilustradas, pues como será evidente para una persona versada en el arte, existen variaciones y modificaciones posibles que no se apartan del espíritu de la invención, el cual solo se encuentra definido por las siguientes reivindicaciones.

Claims

REIVINDICACIONES
1. Un dispositivo deshidratador que tiene un cilindro deshidratador (100) rotatorio que incluye una entrada (101); una salida (102) opuesta a la entrada (101); una primera región longitudinal (106) adyacente a la entrada (101); y una segunda región longitudinal (107) localizada entre la primera región longitudinal (106) y la salida (102) y una unidad de suministro de fluido (105) acoplada a la entrada (101); el dispositivo deshidratador comprende:
- una pluralidad de paletas tipo“T” (109) localizadas en una superficie intema de la segunda región longitudinal (107), donde cada paleta tipo“T” (109) se conforma de:
- una lámina (112) con una región central y dos secciones laterales que sobresalen de la región central; y
- un soporte (113) conectado entre la lámina (112) y la superficie intema de la segunda región longitudinal (107).
2. El dispositivo deshidratador de la Reivindicación 1, caracterizado porque la lámina (112) de cada paleta tipo“T” (109) se extiende a lo largo de la segunda región longitudinal (107) y se conecta a un soporte (113), donde el soporte (113) se ubica longitudinalmente a la segunda región longitudinal (107) y a la región central de la lámina (112).
3. El dispositivo deshidratador de la Reivindicación 2, caracterizado porque el soporte (113) está unido por uno de sus extremos a una placa (140) perpendicular al soporte (113).
4. El dispositivo deshidratador de la Reivindicación 1, donde la región central de cada lámina (112) conforma con un eje radial (136) que sale del centroide del cilindro deshidratador (100), un ángulo b entre 10° y 110°.
5. El dispositivo deshidratador de la Reivindicación 1, donde las paletas tipo“T” (109) se separan entre sí equiángulamente respecto a un eje longitudinal (138) localizado en el centroide del cilindro deshidratador (100).
6. El dispositivo deshidratador de la Reivindicación 1, donde la región central de la lámina (112) conforma con cada sección lateral un ángulo entre 50° y 60°, y donde una sección lateral es más ancha que la sección lateral opuesta.
7. El dispositivo deshidratador de la Reivindicación 1, donde una sección lateral tiene dimensiones diferentes a la otra sección lateral.
8. El dispositivo deshidratador de la Reivindicación 1, caracterizado porque el cilindro deshidratador (100) incluye una tercera región longitudinal (108) localizada entre la segunda región longitudinal (107) y la salida (102).
9. El dispositivo deshidratador de la Reivindicación 1, caracterizado porque el cilindro deshidratador (100) se apoya sobre una superficie horizontal (114), donde el cilindro deshidratador (100) conforma un ángulo entre 2o a 5o con la horizontal.
10. El dispositivo deshidratador de la Reivindicación 1, caracterizado porque el cilindro deshidratador (100) se conecta a una primera unidad motriz (117).
11. El dispositivo deshidratador de la Reivindicación 1, caracterizado porque el cilindro deshidratador (100) incluye medios de calentamiento dispuestos operacionalmente en la primera región longitudinal (106).
12. El dispositivo deshidratador de la Reivindicación 11, caracterizado porque el cilindro deshidratador (100) incluye una tapa (103) conectada a la entrada (101), la tapa (103) tiene una primera abertura (104) conectada a la unidad de suministro de fluido (105) y una segunda abertura (118) en la cual se conecta un medio de calentamiento.
13. El dispositivo deshidratador de la Reivindicación 12, caracterizado porque el medio de calentamiento es un quemador (119) tipo jet.
14. El dispositivo deshidratador de la Reivindicación 13, caracterizado porque la tapa (103) incluye un cobertor (143) que se extiende a lo largo del cilindro deshidratador (100), donde el cobertor (143) tiene una longitud con base en la longitud del quemador (119) tipo jet.
15. El dispositivo deshidratador de la Reivindicación 1, caracterizado porque la primera región longitudinal (106) del cilindro deshidratador (100) tiene una superficie intema en la cual se conecta una pluralidad de paletas de deshidratación (110) tipo“canal”.
16. El dispositivo deshidratador de la Reivindicación 8, caracterizado porque la tercera región longitudinal (108) del cilindro deshidratador (100) tiene una superficie intema en la cual se dispone una pluralidad de paletas transportadoras (111) tipo“J”.
17. El dispositivo deshidratador de la Reivindicación 1, caracterizado porque en la salida (102) del cilindro deshidratador (100) se conecta un mecanismo de transporte de sólidos (120), dicho mecanismo de transporte de sólidos (120) se conecta a un recipiente (126).
18. El dispositivo deshidratador de la Reivindicación 1, caracterizado porque en la salida (102) del cilindro deshidratador (100) se conecta a una bifurcación (121) que también se conecta a un mecanismo de separación sólido-gas (122).
19. El dispositivo deshidratador de la Reivindicación 18, donde el mecanismo de separación sólido-gas (122) incluye un mecanismo de ciclón (123) que tiene: una entrada (124) conectada mediante una bifurcación (121); una salida inferior (125) conectada a un recipiente (126); y una salida superior (127).
20. El dispositivo deshidratador de la Reivindicación 19, donde el mecanismo de separación sólido-gas (122) incluye un mecanismo de separación de finos (128) que tiene una entrada (129) conectada a la salida superior (127) del mecanismo de ciclón (123).
21. El dispositivo deshidratador de la Reivindicación 20, caracterizado porque entre la salida superior (127) del mecanismo de ciclón (123) y la entrada (129) del mecanismo de separación de finos (128) se conecta un intercambiador de calor (135).
22. El dispositivo deshidratador de la Reivindicación 18, caracterizado porque el mecanismo de separación sólido-gas (122) tiene una tubería de salida (130) conectada a una tubería de succión (131) de un mecanismo generador de vacío (132).
23. El dispositivo deshidratador de la Reivindicación 22, caracterizado porque el mecanismo generador de vacío (132) tiene una descarga (133) conectado a una chimenea (134).
24. Un método de deshidratación de lodos y/o cortes que comprende las siguientes etapas:
a) suministrar lodos y/o cortes y una corriente de aire a un cilindro deshidratador (100); donde el flujo másico de aire es entre 10 y 200 veces el flujo másico de lodos y/o cortes;
b) deshidratar los lodos y/o cortes hasta que tengan un 25% de humedad mediante una primera región longitudinal (106) del cilindro deshidratador (100), generando una corriente de lodos y/o cortes parcialmente seca y una corriente de gases contaminados, donde la primera región longitudinal (106) tiene una temperatura de operación superior a l00°C; y
c) transportar los lodos y/o cortes parcialmente secos de la etapa b) a lo largo del cilindro deshidratador (100) mediante una pluralidad de paletas tipo“T” (109) localizadas en una superficie intema de una segunda región longitudinal (107) del cilindro deshidratador (100), donde la segunda región longitudinal (107) se ubica contigua a la primera región longitudinal (106).
25. El método de la Reivindicación 24, caracterizado porque en la etapa b) los lodos y/o cortes húmedos entra en contacto directo con una llama que produce un quemador (119) localizado dentro del cilindro deshidratador (100).
26. El método de la Reivindicación 24, caracterizado porque la temperatura de operación de la primera región longitudinal (106) es entre 800°C y l500°C.
27. El método de la Reivindicación 25 caracterizado porque el quemador (119) tiene un conducto anular mediante el cual se suministra el aire de la etapa a), y tiene un conducto central concéntrico con el conducto anular mediante el cual se inyecta un combustible.
28. El método de la Reivindicación 27 caracterizado porque la relación aire combustible del quemador (119) es entre 10 kg y 30 kg de aire por 1 kg de combustible.
29. El método de la Reivindicación 24, caracterizado porque después de la etapa c), tiene una etapa d) que consiste en tratar la corriente de gases contaminados de la etapa b) mediante un mecanismo de separación sólido-gas (122) conectado al cilindro deshidratador (100).
30. El método de la Reivindicación 24, caracterizado porque después de la etapa d), tiene una etapa e) que consiste en separar un vapor de agua presente en los gases contaminados mediante un mecanismo de intercambio de calor (135) conectado al mecanismo de separación sólido-gas (122).
31. El método de la Reivindicación 30, caracterizado porque después de la etapa e) tiene una etapa f) que consiste en retirar de la corriente de gases contaminados un material particulado mediante un mecanismo de separación de finos (128), conectado al mecanismo de intercambio de calor (135).
32. El método de la Reivindicación 31, caracterizado porque incluye una etapa g) posterior a la etapa f), la cual consiste en sacar el gas limpio a través de una chimenea mediante un mecanismo generador de vacío (132).
33. El método de la Reivindicación 24, caracterizado porque antes de iniciar la etapa a) el cilindro deshidratador (100) se precalienta a una temperatura entre 500°C y l000°C.
PCT/IB2018/058970 2017-11-14 2018-11-14 Dispositivo y método de deshidratación de fluidos y cortes WO2019097430A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CONC2017/0011592 2017-11-14
CONC2017/0011592A CO2017011592A1 (es) 2017-11-14 2017-11-14 Dispositivo y método de deshidratación de fluidos y cortes

Publications (1)

Publication Number Publication Date
WO2019097430A1 true WO2019097430A1 (es) 2019-05-23

Family

ID=62598449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2018/058970 WO2019097430A1 (es) 2017-11-14 2018-11-14 Dispositivo y método de deshidratación de fluidos y cortes

Country Status (3)

Country Link
AR (1) AR113504A1 (es)
CO (1) CO2017011592A1 (es)
WO (1) WO2019097430A1 (es)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112356085A (zh) * 2020-09-30 2021-02-12 南京传业环保科技有限公司 一种节能环保的污泥干化设备
CN112361773A (zh) * 2020-11-18 2021-02-12 青岛黄海学院 一种烘干设备及其操作方法
CN116481283A (zh) * 2023-05-04 2023-07-25 南通三优佳磁业有限公司 一种磁粉的干燥装置
CN117346504A (zh) * 2023-12-04 2024-01-05 泰兴冶炼厂有限公司 一种高活性氧化铜活性温控烘干装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3387380A (en) * 1961-05-05 1968-06-11 Willis L. Pritts Jr. Coal drying apparatus
US4300837A (en) * 1980-03-07 1981-11-17 Creusot-Loire Device for the preparation of coated bituminous products for road surfacing
US4318620A (en) * 1980-01-11 1982-03-09 Creusot-Loire Apparatus for producing bituminous coated products from aggregates, bitumen and solid materials likely to deteriorate at high temperature
US4683664A (en) * 1983-03-23 1987-08-04 Giovanni Codenotti Apparatus for drying metal turnings or scrap
US5203693A (en) * 1991-10-01 1993-04-20 Astec Industries, Inc. Rotary drum dryer having internal flights
WO1995030522A1 (en) * 1994-05-09 1995-11-16 Astec Industries, Inc. Drum dryer having aggregate cooled shielding flights

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3387380A (en) * 1961-05-05 1968-06-11 Willis L. Pritts Jr. Coal drying apparatus
US4318620A (en) * 1980-01-11 1982-03-09 Creusot-Loire Apparatus for producing bituminous coated products from aggregates, bitumen and solid materials likely to deteriorate at high temperature
US4300837A (en) * 1980-03-07 1981-11-17 Creusot-Loire Device for the preparation of coated bituminous products for road surfacing
US4683664A (en) * 1983-03-23 1987-08-04 Giovanni Codenotti Apparatus for drying metal turnings or scrap
US5203693A (en) * 1991-10-01 1993-04-20 Astec Industries, Inc. Rotary drum dryer having internal flights
WO1995030522A1 (en) * 1994-05-09 1995-11-16 Astec Industries, Inc. Drum dryer having aggregate cooled shielding flights

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112356085A (zh) * 2020-09-30 2021-02-12 南京传业环保科技有限公司 一种节能环保的污泥干化设备
CN112361773A (zh) * 2020-11-18 2021-02-12 青岛黄海学院 一种烘干设备及其操作方法
CN116481283A (zh) * 2023-05-04 2023-07-25 南通三优佳磁业有限公司 一种磁粉的干燥装置
CN117346504A (zh) * 2023-12-04 2024-01-05 泰兴冶炼厂有限公司 一种高活性氧化铜活性温控烘干装置
CN117346504B (zh) * 2023-12-04 2024-03-26 泰兴冶炼厂有限公司 一种高活性氧化铜活性温控烘干装置

Also Published As

Publication number Publication date
AR113504A1 (es) 2020-05-13
CO2017011592A1 (es) 2018-03-09

Similar Documents

Publication Publication Date Title
WO2019097430A1 (es) Dispositivo y método de deshidratación de fluidos y cortes
US11078101B2 (en) Process and apparatus for treating sludge
ES2938879T3 (es) Sistema multifuncional de procesamiento de residuos húmedos
BR112019000051B1 (pt) aparelho para processar combustível reutilizável
EP2703715A1 (en) Combustion device, combustion method, and electric power-generating device and electric power-generating method using same
US4862601A (en) Particulate solids dryer with recycled hot-pebble heat exchange medium
CA2960052A1 (en) Induction heater for drilling cuttings and other materials and method
US4649655A (en) Drilling mud dehydration system
RU2015118429A (ru) Устройство для зонированного центробежного сжигания с использованием потока топочного воздуха
CN108975653B (zh) 一种污泥干化设备
JP6653901B2 (ja) 燃焼装置
CN110081698A (zh) 负压循环加热的连续烘焙、干燥、炒制设备
CN109539238A (zh) 一种高效生物质燃料蒸汽锅炉
US20150107497A1 (en) Solid waste incinerator system
EP3491312B1 (de) Kontakttrockner
RU184124U1 (ru) Конвейер шнековый
RU2782208C1 (ru) Мобильный комплекс по переработке промышленных нефтесодержащих отходов с помощью метода термической десорбции
CN201768397U (zh) 可多种供能的连续逆流浸出装置
RU81559U1 (ru) Производственная система оборудования для утилизации отходов процесса бурения нефтяных скважин
CN212719691U (zh) 双锅筒组装链条炉排锅炉
CN106979534A (zh) 上料装置及生物质锅炉
JP4325124B2 (ja) 汚泥ホッパ及び汚泥処理設備
KR101520090B1 (ko) 고체연료 버너의 연소공기 공급 재처리장치
KR930006370A (ko) 폐열 이용 장치가 구성된 쓰레기 처리장치
JP2011078948A (ja) 海水濃縮装置及びこれを用いた海水濃縮物の製造方法並びに淡水の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879663

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18879663

Country of ref document: EP

Kind code of ref document: A1