RU2782208C1 - Мобильный комплекс по переработке промышленных нефтесодержащих отходов с помощью метода термической десорбции - Google Patents
Мобильный комплекс по переработке промышленных нефтесодержащих отходов с помощью метода термической десорбции Download PDFInfo
- Publication number
- RU2782208C1 RU2782208C1 RU2021133947A RU2021133947A RU2782208C1 RU 2782208 C1 RU2782208 C1 RU 2782208C1 RU 2021133947 A RU2021133947 A RU 2021133947A RU 2021133947 A RU2021133947 A RU 2021133947A RU 2782208 C1 RU2782208 C1 RU 2782208C1
- Authority
- RU
- Russia
- Prior art keywords
- module
- processing
- unloading
- petroleum
- complex according
- Prior art date
Links
- 239000002699 waste material Substances 0.000 title claims abstract description 22
- 238000003795 desorption Methods 0.000 title claims abstract description 6
- 239000003208 petroleum Substances 0.000 title abstract description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 33
- 239000000446 fuel Substances 0.000 claims abstract description 21
- 239000000126 substance Substances 0.000 claims abstract description 6
- 239000000463 material Substances 0.000 claims description 40
- 238000009833 condensation Methods 0.000 claims description 23
- 230000005494 condensation Effects 0.000 claims description 23
- 238000010438 heat treatment Methods 0.000 claims description 21
- 238000001035 drying Methods 0.000 claims description 18
- 239000000203 mixture Substances 0.000 claims description 15
- 238000000746 purification Methods 0.000 claims description 14
- 238000001914 filtration Methods 0.000 claims description 9
- 238000004140 cleaning Methods 0.000 claims description 8
- 238000009423 ventilation Methods 0.000 claims description 7
- 239000007788 liquid Substances 0.000 claims description 6
- 230000005291 magnetic Effects 0.000 claims description 5
- 239000000969 carrier Substances 0.000 claims description 4
- 229910002065 alloy metal Inorganic materials 0.000 claims description 3
- 238000009413 insulation Methods 0.000 claims description 3
- 230000029058 respiratory gaseous exchange Effects 0.000 claims description 3
- 238000005086 pumping Methods 0.000 claims description 2
- 238000004021 metal welding Methods 0.000 claims 1
- 239000010802 sludge Substances 0.000 abstract description 19
- 238000005553 drilling Methods 0.000 abstract description 5
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 239000008213 purified water Substances 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract description 2
- 238000004642 transportation engineering Methods 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 28
- 239000003921 oil Substances 0.000 description 28
- 238000000034 method Methods 0.000 description 14
- 150000002430 hydrocarbons Chemical class 0.000 description 11
- 239000012071 phase Substances 0.000 description 8
- 239000004215 Carbon black (E152) Substances 0.000 description 7
- 239000007791 liquid phase Substances 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 239000010410 layer Substances 0.000 description 4
- 238000011068 load Methods 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 241000273930 Brevoortia tyrannus Species 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000007792 gaseous phase Substances 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 239000010819 recyclable waste Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 238000007669 thermal treatment Methods 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 238000010410 dusting Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 239000008235 industrial water Substances 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 229910001338 liquidmetal Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000004566 IR spectroscopy Methods 0.000 description 1
- 210000002381 Plasma Anatomy 0.000 description 1
- 210000000614 Ribs Anatomy 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 210000004027 cells Anatomy 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000011365 complex material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001808 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000005202 decontamination Methods 0.000 description 1
- 230000003588 decontaminative Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000000789 fastener Substances 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 230000005294 ferromagnetic Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 239000002828 fuel tank Substances 0.000 description 1
- 239000010922 glass waste Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000005552 hardfacing Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000003973 irrigation Methods 0.000 description 1
- 230000002262 irrigation Effects 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 244000005706 microflora Species 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002365 multiple layer Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000001717 pathogenic Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 125000005575 polycyclic aromatic hydrocarbon group Chemical group 0.000 description 1
- 230000001681 protective Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000002441 reversible Effects 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 239000011345 viscous material Substances 0.000 description 1
Abstract
Изобретение относится к устройствам по переработке промышленных нефтесодержащих отходов и может быть использовано при очистке нефтезагрязненных земель на нефтяных месторождениях, а также при переработке содержимого шламовых амбаров. Сущность изобретения заключается в создании мобильного автономного комплекса по переработке промышленных нефтесодержащих отходов с помощью метода термической десорбции, использующего при своей работе в качестве источника энергии отделяемые в процессе очистки нефтепродукты. При этом решается техническая проблема переработки нефтесодержащих отходов непосредственно на месте их возникновения, без транспортировки к стационарным установкам переработки нефтесодержащих отходов. Технический результат, который достигается при реализации данного изобретения, заключается в полном использовании отходов нефтедобычи после переработки: очищенной воды и топлива - для технических нужд заказчика, масла - для изготовления бурового раствора, сухой фракции - для использования в дорожном строительстве. 7 з.п. ф-лы.
Description
Изобретение относится к устройствам по переработке промышленных нефтесодержащих отходов и может быть использовано при очистке нефтезагрязненных земель на нефтяных месторождениях, а также при переработке содержимого шламовых амбаров.
Известно устройство для переработки нефтяных отходов по патенту РФ № 2627784, содержащее корпус шнекового транспортера, помещенный в него шнек, нагреватель, отличающееся тем, что дополнительно содержит парогенератор, при этом корпус шнекового транспортера в верхней части выполнен в виде прямоугольного короба, нижняя стенка которого выполнена в виде пористой пластины с пористостью 0,2-0,6, на которой установлен горизонтальный трубный пучок, а в нижней части корпус выполнен в виде двух полуцилиндрических желобов, установленных параллельно и соединенных по образующей цилиндрической поверхности, шнек выполнен в виде двух спиралей, каждая из которых установлена в полуцилиндрическом желобе, а по оси каждой спирали установлена труба с пористой стенкой, которая своим входом соединена с парогенератором, выход каждой трубы с пористой стенкой подключен к прямоугольному коробу, а нагреватель в виде трубного пучка установлен с внешней стороны на корпусе транспортера и своим входом подключен к выходу горизонтального трубного пучка.
Недостатком данного устройства является сложность циклического процесса загрузки нефтяных отходов через шлюзовые затворы.
Известна индукционная термическая десорбционная установка для термического обезвреживания промышленных нефтесодержащих отходов по патенту РФ № 2753356, отличающаяся тем, что она содержит блок подачи исходного материала, выход которого соединен с входом модуля термической обработки шнеком и/или трубопроводом с насосом, причем обе линии подачи в блок термической обработки оснащены системой подогрева транспортируемого материала, выход модуля термической обработки по твердому продукту подключен к блоку выгрузки обработанного материала, а по газообразному продукту - к блоку очистки газов, выходы которого подключены к блоку конденсации и сепарации, а также к блоку очистки несконденсированных газов, выходы блока конденсации и сепарации подключены через блок системы охлаждения к накопительным емкостям, при этом блок подачи исходного материала содержит бункер, в котором размещены, по меньшей мере, две мешалки и рабочая площадка с лестницей, причем на верхней части бункера блока подачи исходного материала дополнительно установлен датчик уровня исходного материала, блок выгрузки содержит разгрузочный бункер, разгрузочный шнек, контролируемый бункер твердой фазы, на верхней части которого установлен датчик уровня обработанного материала, а в бункере установлен перемешиватель, который выполнен с возможностью управления указанным датчиком уровня, поворотный клапан, установленный между блоком выгрузки термообработанного материала и выгрузочным шнеком, выполненный с возможностью регулировать уровень материала, причем модуль термической обработки выполнен в виде набора секционных камер термообработки, изготовленных из износостойкой стали с бесконтактной кольцевой локальной индукционной системой нагрева, и содержит рубашку, наполненную теплоносителем, а также шнек-смеситель, который обеспечивает движение материала к месту выгрузки термообработанного материала, причем скребки шнека-смесителя содержат механизм настройки, позволяющий минимизировать зазор между стенкой модуля термической обработки и скребком, а ножи и скребки шнекового смесителя выполнены с наплавкой твердосплавного металла.
К недостаткам данного устройства относится необходимость использования электроэнергии для питания бесконтактной кольцевой индукционной системы нагрева и использования в ней специального жидкометаллического теплоносителя или мелкой дроби цветного металла или смеси дроби с высокотемпературным гелем.
Наиболее близким к заявляемому изобретению является термическая десорбционная установка для термического обезвреживания промышленных нефтесодержащих отходов по патенту РФ № 2643872, характеризуемая тем, что она содержит блок подачи исходного материала, выход которого соединен с входом модуля процесса, выход которого по твердому продукту подключен к блоку выгрузки осушенного материала, а по газообразному продукту - к блоку очистки газов, выходы которого подключены к блоку конденсации и сепарации, а также к блоку очистки неконденсированных газов, выходы блока конденсации и сепарации подключены через блок системы охлаждения к накопительным емкостям, при этом блок подачи исходного материала содержит бункер, по меньшей мере, две мешалки, питающий конвейер и рабочую площадку с лестницей, причем на верхней части бункера блока подачи исходного материала дополнительно установлен датчик уровня обрабатываемого материала, блок выгрузки содержит разгрузочный бункер, разгрузочный шнек, бункер контроля твердой фазы, на верхней части которого установлен датчик уровня обработанного материала, и поворотный клапан.
К недостаткам указанной установки относятся ее недоукомлектованность необходимыми модулями для создания полностью автономного мобильного комплекса по переработке промышленных нефтесодержащих отходов.
Сущность предлагаемого изобретения заключается в создании мобильного, автономного комплекса по переработке промышленных нефтесодержащих отходов с помощью метода термической десорбции, использующего при своей работе в качестве источника энергии отделяемые в процессе очистки нефтепродукты. При этом решается техническая проблема переработки нефтесодержащих отходов непосредственно на месте их возникновения, без транспортировки к стационарным установкам переработки нефтесодержащих отходов.
Технический результат, который достигается при реализации данного изобретения, заключается в полном использовании отходов нефтедобычи после переработки: очищенной воды и топлива - для технических нужд заказчика, масла - для изготовления бурового раствора, сухой фракции для использования в дорожном строительстве.
Изобретение относится к мобильным установкам для глубокой переработки нефтешлама, загрязненного нефтью или нефтепродуктами грунта и мелкой металлической стружки, содержащей масла. Содержание нефтепродуктов в буровом шламе колеблется в пределах от 2000 до 13870 мг/кг, из них - составляют смолы 5,6 %, полициклические ароматические углеводороды - 20,1 %. При прокаливании бурового шлама при температуре 300°С токсичность бурового шлама снижается в 10 раз, а при 500°С - буровой шлам обезвреживается полностью. Процесс переработки шлама в предлагаемом устройстве заключается в передаче тепла к материалу, что приводит к повышению температуры выше точки испарения летучих соединений, входящих в состав перерабатываемого материала. Процесс извлечения углеводородов из бурового шлама заключается в том, что материал подвергается нагреву через стенку реактора. Высокая температура в реакторе позволяет нагреть буровой шлам до температуры кипения жидкой фазы, после чего жидкая фаза переходит в газообразную. Следующая ступень процесса - это конденсация газа, при которой вещества переходят из газообразного состояния в жидкую фазу в результате охлаждения в конденсаторе. Последняя ступень процесса – это сепарация, где происходит разделение жидкой фазы на две фракции воды и нефти.
Установка содержит модуль приемки перерабатываемых отходов, модуль подачи перерабатываемого материала, модуль осушки, модуль выгрузки осушенного материала, модуль очистки парогазовой смеси и конденсации, модуль очистки воды, модуль фильтрации топлива, модуль управления и автоматизации, модуль-лабораторию, модуль-мастерскую для ремонта.
Модуль приемки перерабатываемых отходов
В модуль приемки перерабатываемых отходов входят две открытые емкости объемом от 15 м3, вибросито с решетками и ячейками разного размера, емкость для отделенного мусора, загрузочный бункер. Загрузочный бункер предназначен для измерения веса и транспортировки шлама из приемной емкости в питающий бункер для контроля объема перерабатываемого сырья. Загрузочный бункер имеет раму, защитную решетку, датчики измерения веса, шнековый конвейер для транспортировки шлама в питающий бункер или насос для перекачки тяжелого шлама. Приемные емкости имеют ребра жесткости и перегородки, рубашку обогрева, теплоноситель в которую подается с модуля конденсации парогазовой смеси. Вибросито имеет площадь просеивания до 2 м3 со съёмными решетками (размер ячейки от 10 до 50 мм), лоток для сброса крупного мусора и инородных предметов. Емкость для мусора представляет собой открытый контейнер емкостью от 1 до 5 м3.
Модуль подачи перерабатываемого материала
В модуль подачи входит бункер с рубашкой на корпусе, в которую подается жидкий теплоноситель (масло или гликоль) для подогрева подающего материала через стенки бункера. Бункер оснащен от одной до нескольких лопастных мешалок. Мешалки, разработаны с возможностью перемешивания тяжелого и вязкого материала и имеют функцию реверса с устанавливаемым временем. На верхней части бункера расположена прочная сетка для безопасной работы оператора. К бункеру прикреплен шнековый конвейер подачи. Конвейер подачи может быть одиночным стандартным шнеком или специальным безвальным. Для подачи сложного материала конвейер может оснащаться двойными комбинированными шнеками. Лопасти шнека имеют наплавку по всей поверхности из твердосплавного металла или сделаны из специальной износостойкой стали. Питающий шнековый конвейер оснащен рубашкой обогрева, жидкий теплоноситель (масло или гликоль) подается в рубашку для подогрева подающего материала через стенки конвейера.
Модуль осушки
В модуле осушки происходит тепловая обработка перерабатываемого материала. Модуль состоит из печи и закрытой камеры сушки и размещается на раме в габаритах морского 20 или 40-футового контейнера. Печь представляет собой короб, утепленный изнутри тремя слоями высокотемпературной изоляции, закрепленной керамическими креплениями. В печи расположено несколько смотровых люков, датчики температуры, дымоходная труба, горелка, работающая на всех видах жидкого топлива и газа, газовая линия неконденсированных газов, дополнительные лючки для подачи воздуха. В печи также расположены отсекатели пламени для плавного распространения тепла. Дымоходная труба расположена снаружи на верхней поверхности печи. Труба соединена через фланец с возможностью крепления рекуператора для подогрева системы подачи. На трубе вмонтирован инспекционный люк для измерения показаний выбросов СО2. На верхней части трубы расположен зонт для защиты от осадков в период простоя установки. Труба может крепиться растяжками или специальным металлическим каркасом для удержания трубы. Горелка — это самый важный аппарат печи. Горелка, вмонтирована в кожух, который оснащен множественными слоями изоляции и рассчитан на всю длину пламени горелки. Горелка быстросъемная, в случае необходимости, ее легко снять с кожуха. Камера сушки — это труба (шовная или бесшовная) из жаропрочной и износостойкой стали, труба может быть с наплавкой из твёрдосплавного материала. В печи допускается размещение нескольких камер сушки, как по горизонтали, так и по вертикали, которые могут соединяться переходами между собой. Камера сушки может быть различного диаметра от 500 до 1500 мм и толщиной от 6 до 25 мм. Камера может быть секционная или цельная, камера может быть с рубашкой или без. Наполнителем в рубашке может быть жидкотекучие металлы, гели или высокотемпературное масло. В рубашку закрытого типа для безопасности закачивается азот или инертный газ аргон. Камеры имеют крепления для специальных крыльев и шахт для плавного нагрева камер. Крылья, как и шахты, могут быть с отверстиями и без таковых, так как они быстросъемные и в процессе ремонта могут быть заменены. В камере могут применяться разного вида лопастные мешалки, вращающиеся со скоростью от 10 до 200 об/мин. Мешалки оснащены износостойкими лопатками или лопатками с твердосплавной наплавкой. Лопатки регулируемые поворотные, лопатку можно настроить под любым необходимым углом, как по направлению прохождения материала, так и в обратную сторону. Лопатка также настраивается по высоте на минимальном расстоянии от стенки камеры сушки. Зазор между лопастями от 1 до 3 мм зависит от овальности камеры. Лопасти могут быть различного дизайна, ровные без изгибов, в виде скребка, в виде уголка, изогнутые в виде ковша или катапульты. Лопатки подстраивают таким образом, чтобы равномерно распространить материал по стенкам камеры сушки в зависимости от перерабатываемого материала. Все лопастные мешалки оснащены датчиками вращения, которые считывают обороты вращения мешалок. Камеры сушки крепятся на опоры и специальные балки. Универсальные опорные балки предназначены для удержания камеры сушки, выполнены с возможностью регулировки. Опорные балки не позволяют камере сушки усиливать вибрацию, даже когда мешалки работают на полной скорости.
Модуль выгрузки осушенного материала
Модуль выгрузки состоит из одного или нескольких шнековых транспортёров, датчиков, системы подогрева, мешалки сухой фазы, разгрузочного клапана, увлажнителя сухой фазы. Все разгрузочные шнеки должны иметь лопасти, которые полностью сделаны из твердосплавного металла или имеют наплавку из твердосплавного металла. Первый разгрузочный конвейер оснащен системой подогрева, греющим кабелем с датчиками температуры. Рабочая температура от 200 до 400°С во избежание появления конденсата в процессе переработки. Между конвейерами расположен мини бункер с датчиком уровня, мешалкой и разгрузочным клапаном. После мини бункера следует второй разгрузочный конвейер, который подает сухой материал в увлажнитель сухой фазы. Увлажнитель сухой фазы предназначен смачивать и перемешивать сухой продукт на выходе во избежание запыления. Увлажнённый осушенный шлам выгружается в контейнер, после чего может быть использован для изготовления гранул или отсыпки дорог.
Модуль очистки парогазовой смеси и конденсации
Модуль очистки парогазовой смеси и конденсации расположен в раме 20 или 40-футового контейнера вместе с модулем автоматизации и управления. Модуль оснащен газовой трубой, двух или трех ступенчатым скруббером Вентури, теплообменниками, емкостью конденсации, сепаратором и множеством датчиков. Газовая труба соединяет модуль осушки с системой конденсации и может быть оснащена специальным шнеком для очистки запыленных газов. Специальный шнек оснащен лопастями и витками. Все лопасти закреплены на валу шнека, между лопастями есть свободное пространство, которое равно размеру лопасти. Каждая последующая секция лопастей находится со смещением на три четверти от размера лопасти. Витки высотой от 20 до 50 мм, ширина может быть от 8 до 14 мм. Газовая труба оснащена системой подогрева, греющим кабелем с датчиками температуры. Рабочая температура от 200-300°С во избежание появления конденсата. Крепление газовой трубы с стороны модуля конденсации осуществляется с помощью гофрированной трубы. Трех ступенчатый Скруббер Вентури имеет температурные датчики, датчики уровня, датчики давления и специальный насос для горячего масла. Первая ступень – это трубка Вентури с встроенной форсункой, выполненная в виде конуса. Сужающееся сечение конуса заставляет газ и твердые частицы двигаться быстрее – возникает эффект турбулентности. По мере поступления потока в расширяющуюся, цилиндрическую часть аппарата, его скорость снижается, турбулентность падает. Твердые частицы, прошедшие через масляной поток, напитавшиеся маслом, тяжелеют и оседают, тем самым очищают пары. Вторая ступень — это сам скруббер с внутренней перегородкой для разделения потока газа. В верхней части расположено несколько форсунок от 5 до 15 штук, которые распыляют горячее масло для промывки газов. Одна или две форсунки могут подключаться к воде для контроля температуры самого скруббера. Вода подается дозировочно в скруббер из конденсатора. Третья ступень — это труба с рубашкой, в трубе находится витки, через которые проходит горячее масло. В рубашку подается вода из конденсатора для охлаждения газов в третьей ступени. Скруббер оснащен специальным насосом или насосом с магнитной муфтой для циркуляции и подачи на форсунки горячего загрязнённого масла. Циркуляционная линия горячего масла проходит через теплообменник для регулирования температуры масла, как водяными форсунками, так и теплообменником. Очищенная парогазовая смесь после скруббера попадает в теплообменник. Теплообменники могут применяться различного вида: кожухотрубные, пластинчатые и комбинированные. Теплообменник должен быть максимально эффективным для парогазовой смеси, 90 % которой конденсируется в теплообменнике. Следующая ступень в системе конденсации это конденсор. Конденсор включает в себя емкость 1-2 м3 с множеством встроенных форсунок, теплообменник, датчики давления, температуры, уровня, циркуляционный насос, съемную перегородку с встроенными конусами Вентури. В верхней части расположены форсунки, которые распыляют охлаждённую воду через теплообменник для окончательной конденсации парогазовой смеси. Съемная перегородка помогает максимально понизить давление в системе конденсации. Сконденсированная жидкость (топливо и вода) перетекает в сепаратор. Сепаратор используется для разделения на углеводородную фракцию и техническую воду. Контроль верхнего и нижнего уровня масла и воды в сепараторе измеряется датчиками уровня. Разделенная углеводородная фаза выкачивается насосом из сепаратора в отдельные накопители и/или используется для разбавления масла или пополнения масла выше минимального уровня в скруббере. Разделенная вода выкачивается насосом из сепаратора в отдельные накопители. Остаточные несконденсированные газы, отводятся из установки через гидрозатвор, после чего, через линию, оснащённую пламегасителем, подаются в печь для сжигания. Неконденсированные газ помогают сэкономить топливо для поддержания температуры в процессе переработки.
Модуль очистки воды
Модуль очистки воды представляет собой контейнер, в котором размещены емкости для воды, аппарат вихревого слоя АВС, дозаторы химических реагентов, насосы, вентиляция, обогрев. Первая емкость объемом 3 м3 предназначена для поступающей загрязненной воды, вторая емкость объемом 3 м3 - для очищенной воды. Емкости имеют датчики контроля уровня, подключенные к автоматизированной системе контроля, насосы, трубную обвязку, дышащие клапаны и систему аварийного контроля. Аппарат АВС - это электромагнитный аппарат с ферромагнитными рабочими элементами, предназначен для интенсификации различных физических и химических процессов. Обработка загрязненной воды происходит в рабочей зоне аппарата, в вихревом слое, во вращающихся магнитных полях. Под воздействием плазменного облака протекают следующие процессы и реакции:
- осаждение гидроокисей металлов из растворов;
- восстановление некоторых соединений;
- уничтожение патогенной микрофлоры и микроорганизмов;
- ионизация воды с выделением водорода и ионов ОН;
- аномальное ускорение протекания химических реакций.
Суммарное воздействие всех факторов создает высокий уровень активации всех компонентов веществ, участвующих в процессе, позволяет изменить диффузионный тип переноса вещества, свойственный всем традиционным технологиям, на кинетический. Это позволяет максимально повысить производительность процессов, снизить энергоемкость модуля очистки воды. Обогрев модуля очистки воды происходит за счет модуля конденсации парогазовой смеси. Во всех модулях предусмотрена встроенная вентиляция, включая модуль очистки воды.
Модуль фильтрации топлива
Модуль фильтрации топлива включает в себя контейнер, в котором размещены емкости для топлива, насосы, вентиляция. Приемная емкость объемом более 3 м3 для получаемого в процессе переработки топлива. Емкость оборудована датчиками контроля уровня, подключенными к системе автоматизации. В емкости размещены: насос, трубная обвязка, магнитный фильтр, самоочищающиеся фильтры, дышащие клапаны с угольными фильтрами, выведенными наружу контейнера; предусмотрена система аварийного контроля. Обогрев модуля фильтрации топлива происходит за счет модуля конденсации парогазовой смеси. Во всех модулях предусмотрена встроенная вентиляция, включая модуль фильтрации топлива.
Модуль управления и автоматизации
Пульт управления может находиться в двух местах. Первый пульт может находиться в одном контейнере с модулем конденсации. Шкаф управления двигателем MCC (motor control center)– это распределительный щит, включающий в себя группу устройств, предназначенных для обеспечения стабильной работы электродвигателя. Каждое из устройств используется для решения одной из задач: управление двигателем, защита персонала, защита всего оборудования от электрических повреждений. Второй пульт может находиться в отдельном помещении для удобства эксплуатации в комфортных условиях.
Модуль-лаборатория
Модуль-лаборатория оснащен оборудованием для проведения анализов лабораторными приборами, измерения уровня содержания углеводородов и воды в шламе до и после очистки. Измерение уровня содержания нефтяных углеводородов в сырье (TPH - total petroleum hydrocarbons) выполняется методом инфракрасной спектрометрии, результат которого может быть получен в Модуль-лаборатории за 5 - 20 минут. Обогрев модуля происходит за счет электрического обогревателя. Предусмотрена индивидуальная встроенная вентиляция, подключаемая от электрической сети.
Модуль-мастерская для ремонта.
Модуль-мастерская оснащен рабочим местом для проведения текущего ремонта оборудования (приводов, насосов, трубной обвязки, датчиков и т.д.). В модуль укомплектован соответствующим инструментом и расходными материалами (смазкой, маслом, набивкой, комплектующими и т.д.) для ремонта и технического обслуживания всего комплекса. Обогрев происходит за счет электрического обогревателя. Освещение и индивидуальная встроенная вентиляция работают от электрической сети.
Изобретение может быть осуществлено следующим образом.
Перерабатываемые отходы загружаются в модуль приемки перерабатываемых отходов, где они просеиваются через вибросита, подогреваются и посредством шнеков перемещаются в модуль подачи перерабатываемого материала, состоящий из бункера и двухшнекового комбинированного питающего конвейера, имеющего систему подогрева через рубашку конвейера.
Подача материала может осуществляться в двух вариантах. Первый вариант использует подачу материала по таймеру с контролем скорости. При этом материал подается порционно, через установленные временные интервалы (например, 30 секунд включение и через 60 секунд выключение). При подаче шлама порционно происходит теплообмен по всему диаметру реактора, так как радиальная скорость позволяет снимать тепло с максимальным КПД. После остановки на настроенное время температура реактора возвращается в заданный режим. Этот вариант используется для очень жидких материалов. При проведении тестов по этому варианту, производительность увеличивалась в 4 раза по сравнению с непрерывной подачей шлама. Второй вариант подачи - непрерывный режим с увеличением или понижением скорости подачи шлама в реактор. Он показывает хороший результат только при умеренной влажности шлама. В случае переработки трудноперерабатываемых нефтешламов необходимы добавки (различные виды растворителя до 2 %, керосин, топливо, получаемое в процессе переработки). Подбор добавок осуществляется лабораторным путем в модуле-лаборатории. Добавки вводят непосредственно в бункере. Далее материал перемещается в модуль осушки, где размещен двухярусный реактор. Двухъярусный реактор размещается в габаритах морского 20-ти футового контейнера (длина –5,90 м, ширина – 2,35 м, высота – 2,39 м). Вес реактора до 4 тонн. Реактор выполнен из металла, стоит на опорах, находится в печи термической установки комплекса и представляет собой две горизонтальных трубы (размером 5 - 6 метров в длину, диаметром 0,6 - 1,2 м), расположенных одна над другой и соединенных специальным патрубком. Верхний и нижний ярус отличаются толщиной металла и радиусом, каждая часть реактора работает в разных режимах. Процесс осушки шлама в верхнем реакторе при температуре до 400 оС происходит за время до 5 минут, без накопления шлама в реакторе. Нижний уровень реактора прогревается до 600°С с накоплением и удержанием осушенного шлама слоем до 50 мм.
Осушенный материал поступает в модуль выгрузки осушенного материала, где он подвергается смешиванию с водой для увлажнения с помощью мешалки, во избежание запыления. Осушенный шлам на выходе не должен превышать углеводородный след более чем 0,5 %.
В процессе осушки шлама в реакторе, жидкая фаза переходит в газообразную фазу. Газообразная фаза выходит через газовую трубу в трехступенчатый скруббер для очистки парогазовой смеси от мелкодисперсной пыли. Из скруббера парогазовая смесь подается в теплообменник, где переходит в жидкое состояние и разделяется на две основных фазы (углеводородная и вода). Далее жидкая фаза подается в сепаратор, где происходит разделение жидкостей на техническую воду и углеводородное топливо. Разделенные углеводородная фаза и техническая вода выкачиваются насосом из сепаратора в отдельные накопители. Остаточные несконденсированные газы отводятся из установки через гидрозатвор, после чего, через линию, оснащённую пламегасителем, подаются в печь для сжигания.
Комплекс выделяет в процессе переработки от 50 до 300 литров технической воды в час. Вода из накопителя подается в модуль очистки воды, где доводится до прозрачного состояния и устранения запаха, что позволят использовать техническую воду для орошения сухого шлама. Углеводородная фаза подается в модуль фильтрации топлива, где проходит очистку через магнитный фильтр и топливные фильтры тонкой очистки. Комплекс выделяет в процессе переработки от 50 до 200 литров топлива в час. Полученное топливо после фильтрации может использоваться для горелки в качестве топлива для обогрева реактора.
Осушённый шлам в виде цементной фракции может использоваться для изготовления гранул или дорожного материала путем смешивания отходов дробленого пластика и стекла при температуре не ниже 200°С.
Claims (8)
1. Мобильный комплекс по переработке промышленных нефтесодержащих отходов с помощью метода термической десорбции, отличающийся тем, что состоит из подогреваемого модуля приемки перерабатываемых отходов, содержащего приемные емкости и вибросито, соединенного с подогреваемым модулем подачи перерабатываемого материала, состоящим из бункера и шнекового конвейера, оснащенных рубашкой, заполняемой жидким теплоносителем для равномерного подогрева перерабатываемого материала, и мешалок с функцией реверса, который соединен с модулем осушки, состоящим из печи и камеры осушки с размещенными в ней лопастными мешалками с регулируемым углом поворота лопастей, соединенным с модулем выгрузки осушенного материала и модулем очистки парогазовой смеси и конденсации, причем модуль выгрузки состоит из двух последовательно размещенных разгрузочных конвейеров, между которыми расположен мини-бункер, и увлажнителя сухой фазы в конечной точке выгрузки, а модуль очистки парогазовой смеси и конденсации оснащен газовой трубой, двух- или трехступенчатым скруббером Вентури, теплообменниками, системой конденсации, сепаратором, датчиками и соединен с модулем очистки воды и модулем фильтрации топлива, причем модуль очистки воды содержит аппарат вихревого слоя, емкости, дозаторы химии, датчики уровня, систему вентиляции емкостей, насосы и линию откачки, а модуль фильтрации топлива содержит магнитный фильтр, топливные фильтры тонкой очистки, емкости, датчики уровня, насосы, дышащий клапан.
2. Мобильный комплекс по п. 1, отличающийся тем, что нагрев теплоносителя в модулях приемки и подачи происходит за счет тепла, поступающего из теплообменника системы конденсации.
3. Мобильный комплекс по п. 1, отличающийся тем, что печь модуля осушки утеплена изнутри тремя слоями высокотемпературной изоляции.
4. Мобильный комплекс по п. 1, отличающийся тем, что лопастные мешалки имеют износостойкие лопатки с твердосплавной наплавкой.
5. Мобильный комплекс по п. 1, отличающийся тем, что лопасти разгрузочных шнеков полностью изготовлены из твердосплавного металла или имеют наплавку из твердосплавного металла.
6. Мобильный комплекс по п. 1, отличающийся тем, что дополнительно содержит встроенный модуль управления и автоматизации.
7. Мобильный комплекс по п. 1, отличающийся тем, что дополнительно содержит модуль-лабораторию.
8. Мобильный комплекс по п. 1, отличающийся тем, что дополнительно содержит модуль-мастерскую для ремонта.
Publications (1)
Publication Number | Publication Date |
---|---|
RU2782208C1 true RU2782208C1 (ru) | 2022-10-24 |
Family
ID=
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2156750C2 (ru) * | 1998-02-25 | 2000-09-27 | Позднышев Геннадий Николаевич | Способ переработки нефтесодержащих отходов (шламов) |
CN104736680A (zh) * | 2012-06-29 | 2015-06-24 | 乔恩·雅各布森 | 由废弃物生产燃料气的方法和设备 |
RU2574411C1 (ru) * | 2014-09-03 | 2016-02-10 | Общество с ограниченной ответственостью "ЭКОЛОГИЧЕСКАЯ ТОПЛИВНО-ЭНЕРГЕТИЧЕСКАЯ КОМПАНИЯ" | Устройство для переработки нефтяных отходов |
CN107382007A (zh) * | 2017-08-03 | 2017-11-24 | 王凯军 | 一种移动式油泥热解资源化处置的集成装置与方法 |
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2156750C2 (ru) * | 1998-02-25 | 2000-09-27 | Позднышев Геннадий Николаевич | Способ переработки нефтесодержащих отходов (шламов) |
CN104736680A (zh) * | 2012-06-29 | 2015-06-24 | 乔恩·雅各布森 | 由废弃物生产燃料气的方法和设备 |
RU2574411C1 (ru) * | 2014-09-03 | 2016-02-10 | Общество с ограниченной ответственостью "ЭКОЛОГИЧЕСКАЯ ТОПЛИВНО-ЭНЕРГЕТИЧЕСКАЯ КОМПАНИЯ" | Устройство для переработки нефтяных отходов |
CN107382007A (zh) * | 2017-08-03 | 2017-11-24 | 王凯军 | 一种移动式油泥热解资源化处置的集成装置与方法 |
Non-Patent Citations (1)
Title |
---|
2753356 C1, 13.08.2021. * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104496136B (zh) | 含油固废间接加热热解吸处理装置及方法 | |
US20130269735A1 (en) | System and method for treating a contaminated substrate | |
AU2014210348B2 (en) | Turbulent vacuum thermal separation methods and systems | |
CN109477010B (zh) | 用于将废弃塑料转化成燃料的系统和工艺 | |
CN100419206C (zh) | 钻切屑干燥设备和使用该钻切屑干燥设备干燥钻切屑的方法 | |
EP3321344A1 (en) | Plant for processing organic raw material using pyrolysis method | |
KR101083024B1 (ko) | 열풍을 이용한 유기성 폐기물 건조장치 | |
AU2013353753A1 (en) | A reaction pump and system for hydrocarbon conversion | |
WO2019097430A1 (es) | Dispositivo y método de deshidratación de fluidos y cortes | |
CN108679963A (zh) | 一种利用烟气加热的煤烘干除尘及进料系统 | |
RU2782208C1 (ru) | Мобильный комплекс по переработке промышленных нефтесодержащих отходов с помощью метода термической десорбции | |
CN110238115B (zh) | 油泥清洗机 | |
RU2408819C1 (ru) | Установка для переработки твердых органических отходов | |
CN106623366A (zh) | 均浆流体scwo处理高浓度难降解有机危险废物wf的系统 | |
CN203411445U (zh) | 一种含油污泥两级分离处理设备 | |
CN209890466U (zh) | 一种罐底含油污泥处理系统 | |
US20150107497A1 (en) | Solid waste incinerator system | |
CN210543506U (zh) | 油水分离器 | |
RU80838U1 (ru) | Промышленный участок для переработки нефтесодержащих отходов | |
RU2671742C1 (ru) | Комплекс для переработки иловых осадков сточных вод | |
CN218811279U (zh) | 一种钻井废弃物液压传输、微泡固液分离及热解干化设备 | |
CN210560000U (zh) | 移动式油泥处理系统 | |
CN215559785U (zh) | 一种适用于海上钻井平台的新型热解干化装置 | |
CN203256100U (zh) | 一种含油污泥两级流化除杂装置 | |
RU81559U1 (ru) | Производственная система оборудования для утилизации отходов процесса бурения нефтяных скважин |