WO2019095960A1 - 一种磁性超疏水织物及其制备方法 - Google Patents

一种磁性超疏水织物及其制备方法 Download PDF

Info

Publication number
WO2019095960A1
WO2019095960A1 PCT/CN2018/111931 CN2018111931W WO2019095960A1 WO 2019095960 A1 WO2019095960 A1 WO 2019095960A1 CN 2018111931 W CN2018111931 W CN 2018111931W WO 2019095960 A1 WO2019095960 A1 WO 2019095960A1
Authority
WO
WIPO (PCT)
Prior art keywords
fabric
magnetic
superhydrophobic
polydimethylsiloxane
parts
Prior art date
Application number
PCT/CN2018/111931
Other languages
English (en)
French (fr)
Inventor
李红强
苏晓竞
曾幸荣
赖学军
陈中华
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2019095960A1 publication Critical patent/WO2019095960A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/49Oxides or hydroxides of elements of Groups 8, 9,10 or 18 of the Periodic Table; Ferrates; Cobaltates; Nickelates; Ruthenates; Osmates; Rhodates; Iridates; Palladates; Platinates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/04Vegetal fibres
    • D06M2101/06Vegetal fibres cellulosic
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/10Animal fibres
    • D06M2101/12Keratin fibres or silk
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/18Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/26Polymers or copolymers of unsaturated carboxylic acids or derivatives thereof
    • D06M2101/28Acrylonitrile; Methacrylonitrile
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/32Polyesters
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/34Polyamides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/38Polyurethanes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/10Repellency against liquids
    • D06M2200/12Hydrophobic properties

Definitions

  • the invention relates to a superhydrophobic material, in particular to a magnetic superhydrophobic fabric and a preparation method thereof.
  • Superhydrophobic fabrics have attracted widespread attention due to their important application value in the fields of self-cleaning, anti-icing, anti-pollution, flame retardant, oil-water separation, etc., and are one of the hot spots of functional textiles.
  • the superhydrophobicity of solid surfaces is determined by the combination of surface micro-nano geometric roughness and low surface energy.
  • the researchers proposed various methods for constructing superhydrophobic fabrics such as vapor deposition, chemical etching, sol-gel, electrospinning, layer-by-layer self-assembly, and spray coating. For example, Xue, CH et al.
  • Chinese invention patent application 2016100795436 discloses a superhydrophobic fabric and a method for constructing the same by constructing a method for preparing a silicone gel by using methyltrimethylsiloxane as a raw material for preparing a silicone gel, and simultaneously immersing the textile in a silicone gel solution and polydimethylene In the mixed solution of the siloxane, the prepared hydrophobic fabric is not easy to fall off, and the mechanical properties are good.
  • the construction method provided by the present invention can obtain a superhydrophobic surface by directly drying naturally after the impregnation is completed, without Heating and drying, thereby greatly reducing the production cost, simplifying the construction method, and the mixed solution for impregnation is stable in nature and can be used multiple times; at the same time, the superhydrophobic fabric obtained by the invention has good waterproof performance and gas permeability. it is good.
  • Chinese invention patent application 2016100795436 needs to add more silicon gel to construct roughness; and the superhydrophobic fabric prepared by the invention has similar rough structure, single function, no magnetism, can not be applied to absorbing materials, endothermic In the fields of materials and medical clothing, the application range is narrow.
  • the invention aims at preparing a superhydrophobic fabric with simple operation and low cost, and has the advantages of simple preparation process, harsh reaction conditions and single function, and the obtained fabric has good magnetic properties and excellent superhydrophobicity, and The fabric has different adhesion to the water droplets in the front and back.
  • ferroferric oxide nanoparticles are added to 50-150 parts of ethanol for ultrasonic dispersion for 10-60 minutes, and then 0.5-1.0 parts of silane coupling agent and 0.5- 3 parts of water is added, mechanically stirred at room temperature for 3-12h, then centrifuged at 8000-12000rpm for 10-40min, and the obtained product is dried under vacuum at 40-60 °C for 1-12h to obtain modified oxidized three.
  • Iron nanoparticles 1-5 parts of ferroferric oxide nanoparticles are added to 50-150 parts of ethanol for ultrasonic dispersion for 10-60 minutes, and then 0.5-1.0 parts of silane coupling agent and 0.5- 3 parts of water is added, mechanically stirred at room temperature for 3-12h, then centrifuged at 8000-12000rpm for 10-40min, and the obtained product is dried under vacuum at 40-60 °C for 1-12h to obtain modified oxidized three.
  • Iron nanoparticles 1-5 parts of ferroferric oxide nanoparticles are added to
  • the ferroferric oxide particles While the solvent is volatilized, the ferroferric oxide particles will gradually migrate to the surface of the polydimethylsiloxane on the fabric by the action of the magnetic field; After being placed at a temperature of 80-130 ° C for 0.5-2 h, the polydimethylsiloxane is thermally cured to form a crosslinked structure, and a magnetic superhydrophobic fabric having a micro-nano roughness structure is obtained.
  • the size of the ferroferric oxide nanoparticles is from 20 to 100 nm.
  • the silane coupling agent is tridecafluorooctyltrimethoxysilane, tridecafluorooctyltriethoxysilane, vinyltriethoxysilane, ⁇ -methacryloxypropyltrimethyl Any one of oxysilane, decyltriethoxysilane, and aminopropyltriethoxysilane.
  • the polydimethylsiloxane is a component A of any one of Dow Corning Sylgard 184 and Sylgard 186 in the United States, and the B component is added at the same time, and the mixing mass ratio of the A and B components is 10 :1.
  • the organic solvent is any one of tetrahydrofuran, toluene and hexane.
  • the magnetic induction of the magnet is 0.5-1.0 Tesla, and the cross-sectional area of the magnet is larger than the area of the fabric (which can be covered by the fabric).
  • the common fabric is any one of polyester, cotton, wool, acrylic, polyurethane, and nylon.
  • a magnetic superhydrophobic fabric obtained by the above preparation method has a front water contact angle of 155.5°-167°, and the water droplets are easy to roll off, the water contact angle of the reverse side reaches 150°-154°, and the water droplets are easily adhered; the saturation magnetization of the fabric reaches 1.285 emu/g.
  • the invention relates to a method for preparing a magnetic superhydrophobic fabric, which firstly immerses the fabric in a mixed solution containing polydimethylsiloxane, a silane coupling agent-modified triiron tetroxide particle and an organic solvent; secondly, the fabric is taken out; The fabric is placed under magnetic field and cured to obtain a magnetic superhydrophobic fabric having a rough structure.
  • the process of the invention is simple, and the prepared superhydrophobic fabric has a front water contact angle of 155.5°-167° and the water droplets are easy to roll, and the water contact angle of the reverse side is 150.0°-154° and the water droplets are easily adhered.
  • the fabric also has good magnetic properties, and the superhydrophobic fabric can be driven by a magnetic field to achieve oil-water separation, and has important application value in marine surface oil treatment.
  • the magnetic superhydrophobic fabric can be used as a absorbing material, a heat absorbing material, etc., and has potential application prospects in military and national defense.
  • Chinese invention patent application 2016100795436 requires the addition of more silicone gel to construct roughness, and the present invention concentrates the iron oxide particles on the surface layer of polydimethylsiloxane by magnetic field control, using less iron oxide particles. Significant roughness can be achieved.
  • the super-hydrophobic fabric prepared by Chinese invention patent application 2016100795436 has a similar rough structure, has a single function, is not magnetic, and cannot be applied to fields such as absorbing materials, heat absorbing materials, medical clothing, etc., and has a narrow application range.
  • the magnetic superhydrophobic fabric prepared by the invention can be applied to military and national defense as an absorbing material and a heat absorbing material, in addition to oil-water separation.
  • the present invention migrates the modified ferroferric oxide particles to the surface of the polydimethylsiloxane on the fabric under magnetic field conditions to construct roughness, has the advantages of simple process, mild conditions, no need for expensive equipment, and the like.
  • the superhydrophobic fabric is magnetic.
  • the contact angle between the front and back sides of the superhydrophobic fabric prepared by the invention is greater than 150°, but the water droplets have different adhesion thereto, wherein the front water droplets are easy to roll off, the water droplets on the back surface are easily adhered, and the superhydrophobic material is widened. Application area.
  • Example 1 is a scanning electron micrograph of the front side of a magnetic superhydrophobic fabric prepared in Example 1 (image magnification: 2000 times).
  • Example 2 is a scanning electron micrograph of the reverse side of the magnetic superhydrophobic fabric prepared in Example 1 (image magnification: 2000 times).
  • the front side scanning electron micrograph of the prepared superhydrophobic fabric is shown in Fig. 1. It can be seen that the surface of the fabric exhibits a distinct micro-nano roughness structure, wherein the convex portion is a modified ferroferric oxide particle. This is mainly because during the process in which the solvent toluene volatilizes and the viscosity of the system gradually increases, the modified ferroferric oxide particles migrate to the surface of the polydimethylsiloxane on the fabric under the action of a magnetic field and form agglomeration.
  • the polydimethylsiloxane When the temperature is raised, the polydimethylsiloxane is thermally cured to form a chemical crosslinked structure, and the ferric oxide is fixed on the surface of the crosslinked polydimethylsiloxane to form a micro-nano roughness structure.
  • the reverse scanning electron micrograph of the superhydrophobic fabric is shown in Fig. 2.
  • the surface roughness of the fabric is small, which is mainly due to the movement of the ferroferric oxide nanoparticles toward the magnet, and the reverse side of the fabric is covered by polydimethylsiloxane. Smooth, there is only a small amount of raised triiron tetroxide particles.
  • the water contact angle of the front surface of the magnetic fabric prepared in this embodiment is 167°, and the water droplets are easy to roll off; while the water contact angle of the reverse side of the fabric is 154°, the water droplets are easily adhered.
  • the fabric was magnetically measured using a PPMS comprehensive physical property measuring system (Quantum, USA), and the results are shown in Table 2.
  • Table 2 the fabric prepared in this example had a saturation magnetization of 1.182 emu/g and exhibited good magnetic properties.
  • Oil-water separation can be achieved by driving the superhydrophobic fabric by magnetic field, which has important application value in marine surface oil treatment.
  • the magnetic superhydrophobic fabric can also be used as a absorbing material, a heat absorbing material, etc., and has potential application prospects in military and national defense.
  • Table 1 lists the water contact angles of the front and back surfaces of the magnetic superhydrophobic fabric prepared in this example and the adhesion to water droplets
  • Table 2 lists the saturation magnetization of the magnetic superhydrophobic fabric prepared in this example. It can be seen from Table 1 that the water contact angle of the front surface of the magnetic superhydrophobic fabric prepared in this embodiment is 155.5°, and the water droplets are easy to roll off; while the water contact angle of the reverse side of the fabric is 150°, the water droplets are easily adhered.
  • the magnetic superhydrophobic fabric prepared in this example had a saturation magnetization of 0.616 emu/g and exhibited good magnetic properties.
  • ferroferric oxide nanoparticles having a particle size of 60-80 nm were added to 150 g of ethanol for ultrasonic dispersion for 60 min, and then 1 g of aminopropyltriethoxysilane and 3 g of water were added, and mechanically stirred at room temperature for 12 h, then at 10,000 rpm.
  • the obtained product was vacuum dried at 50 ° C for 6 h to obtain modified ferroferric oxide nanoparticles; 0.11 g of modified ferroferric oxide nanoparticles and 0.4 g of Sylgard 184A component and 0.04 g of B
  • the components were ultrasonically dispersed in 12.57 g of hexane for 20 min, then a circular nylon fabric having a radius of 2 cm was placed and mechanically stirred at 100 rpm for 60 min at room temperature, and the fabric was taken out and placed in a circular and radius cross section. It was kept at 5 mm below the magnet of 3 cm for 60 min; finally, the fabric was placed at a temperature of 100 ° C for 1 h to obtain a magnetic superhydrophobic fabric having a micro-nano roughness structure.
  • Table 1 lists the water contact angles of the front and back surfaces of the magnetic superhydrophobic fabric prepared in this example and the adhesion to water droplets
  • Table 2 lists the saturation magnetization of the magnetic superhydrophobic fabric prepared in this example. It can be seen from Table 1 that the water contact angle of the front surface of the magnetic superhydrophobic fabric prepared in this embodiment is 162°, and the water droplets are easy to roll off; while the water contact angle of the reverse side of the fabric is 153.5°, the water droplets are easily adhered.
  • the magnetic superhydrophobic fabric prepared in this example had a saturation magnetization of 0.805 emu/g and exhibited good magnetic properties.
  • Table 1 lists the water contact angles of the front and back surfaces of the magnetic superhydrophobic fabric prepared in this example and the adhesion to water droplets
  • Table 2 lists the saturation magnetization of the magnetic superhydrophobic fabric prepared in this example.
  • the water contact angle of the front surface of the magnetic superhydrophobic fabric prepared in this example was 166.5°, and the water droplets were easy to roll off; while the water contact angle of the reverse side of the fabric was 154°, the water droplets were easily adhered.
  • the magnetic superhydrophobic fabric prepared in this example had a saturation magnetization of 1.285 emu/g and exhibited good magnetic properties.
  • 1 is a water contact angle of a front and a back surface of a magnetic superhydrophobic fabric according to an embodiment of the present invention and adhesion to water droplets;
  • Table 2 shows the saturation magnetization of the magnetic superhydrophobic fabric of the embodiment of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明公开了一种磁性超疏水织物及其制备方法。该制备方法先将普通织物浸入含聚二甲基硅氧烷、硅烷偶联剂改性的四氧化三铁粒子和有机溶剂的混合溶液中搅拌;将织物取出后置于磁铁下方1-5mm处在室温下保持10-60min,在溶剂挥发的同时四氧化三铁粒子会受磁场的作用逐渐向织物上的聚二甲基硅氧烷表层迁移;最后,将织物置于80-130℃的温度下使聚二甲基硅氧烷发生热固化形成交联结构,制得表面呈微纳粗糙结构的磁性超疏水织物。本发明工艺简单,所制备的超疏水织物的正面水接触角达到167°且水滴易滚动,反面水接触角达到154°且水滴易被粘附。此外,织物还具有良好的磁性,饱和磁化强度达到1.285emu/g。

Description

一种磁性超疏水织物及其制备方法 技术领域
本发明涉及一种超疏水材料,具体涉及一种磁性超疏水织物及其制备方法。
背景技术
超疏水织物凭借其在自清洁、防覆冰、防污染、阻燃、油水分离等领域的重要应用价值,引起了人们的广泛关注,是目前功能纺织品的热点之一。受自然界中“荷叶效应”的启发,人们发现固体表面的超疏水性是由表面的微纳几何粗糙结构和低表面能物质共同决定的。基于此原理,研究者们提出了气相沉积法、化学刻蚀法、溶胶凝胶法、静电纺丝法、层层自组装法、喷涂法等多种构造超疏水织物的方法。例如,Xue,C.H.等人结合碱液刻蚀和巯基点击化学反应在织物表面构造了超疏水涂层(J.Mater.Chem.A 2015,3,21797-21804),中国发明专利CN104562709通过氧化银颗粒的沉积和低表面能物质的修饰制备了一种稳定超疏水织物。但是,这些方法仍存在制备工艺繁琐、反应条件苛刻、织物性能单一等缺点。
中国发明专利申请2016100795436公开了一种超疏水织物及其构筑方法,构筑方法通过将甲基三甲基硅氧烷作为制备硅凝胶的原料,同时将纺织品浸渍在硅凝胶溶液与聚二甲基硅氧烷的混合溶液中,使得制备得到的疏水织物不易脱落,且机械性能好,而且,本发明提供的构筑方法,浸渍完成后,通过直接自然晾干即可得到超疏水表面,不需加热烘干,进而极大的降低了生产成本,也简化了构筑方法,且浸渍用的混合溶液性质稳定,可多次使用;同时,本发明得到的超疏水织物的防水性能和透气性能也很好。中国发明专利申请2016100795436需要加入较多的硅凝胶 以构造粗糙度;而且该发明制备的超疏水织物正反面具有相似的粗糙结构,功能单一,不具有磁性,无法应用于吸波材料、吸热材料、医用衣物等领域,应用范围窄。
发明内容
本发明针对目前超疏水织物制备过程复杂、反应条件苛刻和功能单一等缺点,提供一种操作简单、成本低廉的超疏水织物的制备方法,所得织物具有良好的磁性和优异的超疏水性,且织物正反面对水滴具有不同的粘附性。
本发明的目的通过如下技术方案实现:
一种磁性超疏水织物的制备方法:
(1)按质量份数计,将1-5份的四氧化三铁纳米粒子加入到50-150份的乙醇中超声分散10-60min,再将0.5-1.0份的硅烷偶联剂和0.5-3份的水加入,在室温下机械搅拌3-12h,然后在8000-12000rpm转速下离心10-40min,将所得产物在40-60℃温度下真空干燥1-12h,即得改性四氧化三铁纳米粒子。
(2)按质量份数计,将1-3份的改性四氧化三铁纳米粒子和6-10份的聚二甲基硅氧烷加入到100-160份的有机溶剂中超声分散10-60min,然后将织物放入并在室温下以100-300rpm的速度机械搅拌20-60min。将织物取出后置于磁铁下方1-5mm处保持10-60min,在溶剂挥发的同时四氧化三铁粒子会受磁场的作用逐渐向织物上的聚二甲基硅氧烷表层迁移;最后将织物在80-130℃的温度下放置0.5-2h,使聚二甲基硅氧烷发生热固化形成交联结构,制得表面呈微纳粗糙结构的磁性超疏水织物。
为进一步实现本发明目的,优选地,所述四氧化三铁纳米粒子的尺寸为20-100nm。
优选地,所述硅烷偶联剂为十三氟辛基三甲氧基硅烷、十三氟辛基三乙氧基硅 烷、乙烯基三乙氧基硅烷、γ-甲基丙烯酰氧基丙基三甲氧基硅烷、巯丙基三乙氧基硅烷和氨丙基三乙氧基硅烷中的任意一种。
优选地,所述聚二甲基硅氧烷为美国道康宁Sylgard 184和Sylgard 186的任意一种中的A组分,使用时需同时添加B组分,A、B组分的混合质量比为10:1。
优选地,所述有机溶剂为四氢呋喃、甲苯和己烷中的任意一种。
优选地,所述磁铁的磁感应强度为0.5-1.0特斯拉,且磁铁的横截面积要大于织物的面积(以能够覆盖织物为准)。
优选地,所述普通织物为聚酯、棉、羊毛、腈纶、聚氨酯和尼龙中的任意一种。
一种磁性超疏水织物,由上述的制备方法制得。该织物的正面水接触角为155.5°-167°,且水滴易滚落,反面水接触角达到150°-154°,且水滴易被粘附;织物的饱和磁化强度达到1.285emu/g。
本发明一种磁性超疏水织物的制备方法,首先将织物浸入含聚二甲基硅氧烷、硅烷偶联剂改性的四氧化三铁粒子和有机溶剂的混合溶液中机械搅拌;其次将取出的织物置于磁场条件下并固化,得到具有粗糙结构的磁性超疏水织物。本发明工艺简单,所制备的超疏水织物的正面水接触角达到155.5°-167°且水滴易滚动,反面水接触角达150.0°-154°且水滴易被粘附。尤其是,织物还具有良好的磁性,通过磁场驱动该超疏水织物可以实现油水分离,在海洋表面油污处理方面具有重要的应用价值。此外,该磁性超疏水织物可以作为吸波材料、吸热材料等,在军事和国防方面具有潜在的应用前景。
本发明所述的磁性超疏水涂层的制备方法,与现有技术相比,具有如下优点:
1)中国发明专利申请2016100795436需要加入较多的硅凝胶以构造粗糙度,而本发明通过磁场控制使氧化铁颗粒向聚二甲基硅氧烷表层聚集,使用较少的氧化 铁颗粒用量即可实现明显的粗糙度。
2)中国发明专利申请2016100795436制备的超疏水织物正反面具有相似的粗糙结构,功能单一,不具有磁性,无法应用于吸波材料、吸热材料、医用衣物等领域,应用范围窄。而本发明制备的磁性超疏水织物除了可应用于油水分离,还可作为吸波材料、吸热材料等在军事和国防方面得到应用。
3)本发明在磁场条件下使改性的四氧化三铁粒子向织物上的聚二甲基硅氧烷表层迁移以构造粗糙度,具有工艺简单、条件温和、无需昂贵设备等优点,且制备的超疏水织物具有磁性。
4)本发明制备的超疏水织物正反两面接触角均大于150°,但水滴对其具有不同的粘附性,其中正面水滴易滚落,反面水滴易被粘附,拓宽了超疏水材料的应用领域。
附图说明
图1为实施例1制备的磁性超疏水织物正面的扫描电镜图(图像放大倍数为2000倍)。
图2为实施例1制备的磁性超疏水织物反面的扫描电镜图(图像放大倍数为2000倍)。
具体实施方案
为更好地理解本发明,下面结合实施例对本发明作进一步说明,但是本发明的实施方式不限于此。
实施例1
将2g粒径为20-40nm的四氧化三铁纳米粒子加入到75g乙醇中超声分散10min,再将0.5g十三氟辛基三乙氧基硅烷和1g水加入,在室温下机械搅拌12h,然后在 8000rpm转速下离心40min,将所得产物在60℃温度下真空干燥1h,即得改性四氧化三铁纳米粒子;
将0.22g改性四氧化三铁纳米粒子和0.5g Sylgard 184A组分及0.05g B组分加入到6.875g甲苯中超声分散30min,然后将2cm×2cm的聚酯织物放入并在室温下以300rpm的速度机械搅拌30min,将织物取出后置于横截面为圆形且半径为2cm的磁铁下方2mm处保持10min;最后将织物在80℃的温度下放置2h,制得表面呈微纳粗糙结构的磁性超疏水织物。
制备的超疏水织物的正面扫描电镜图如图1所示,可以看出,织物表面呈现明显的微纳粗糙结构,其中凸起部分为改性四氧化三铁粒子。这主要是因为在溶剂甲苯挥发且伴随着体系粘度逐渐变大的过程中,改性四氧化三铁粒子在磁场的作用下会向织物上的聚二甲基硅氧烷表层迁移并形成聚集。在升高温度的情况下,聚二甲基硅氧烷发生热固化形成化学交联结构,四氧化三铁就固定在交联的聚二甲基硅氧烷表层形成微纳粗糙结构。超疏水织物的反面扫描电镜图如图2所示,织物表面粗糙度较小,这主要是由于四氧化三铁纳米粒子向磁铁方向运动,织物反面被聚二甲基硅氧烷覆盖而变得平滑,仅存在少量凸起的四氧化三铁粒子。
为了评价超疏水织物正反面的疏水性,对水滴在其正面和反面的接触角及粘附性进行测量,粘附性具体测试方法为:采用德国KRUSS公司的DSA100测试仪,将本实施例制备的超疏水织物固定在滚动角测试平台上。旋转平台,若水滴在平台旋转至90°前已落下,则记为滚落,反之则记为粘附,所得结果列于表1。从表1可以看出,本实施例所制备的磁性织物正面的水接触角为167°,水滴易滚落;而织物反面的水接触角虽然达154°,但水滴易被粘附。
为了评价超疏水织物的磁性,采用PPMS综合物性测量系统(Quantum,USA) 对织物进行磁性测量,所得结果列于表2。从表2可以看出,本实施例所制备的织物的饱和磁化强度达到1.182emu/g,表现出良好的磁性。通过磁场驱动超疏水织物的运动可以实现油水分离,在海洋表面油污处理方面具有重要的应用价值。此外,该磁性超疏水织物还可以作为吸波材料、吸热材料等,在军事和国防方面具有潜在的应用前景。
实施例2
将1g粒径为80-100nm的四氧化三铁纳米粒子加入到50g乙醇中超声分散30min,再将0.6g巯丙基三乙氧基硅烷和2g水加入,在室温下机械搅拌3h,然后在12000rpm转速下离心10min,将所得产物在40℃温度下真空干燥12h,即得改性四氧化三铁纳米粒子;将0.033g改性四氧化三铁纳米粒子和0.3g Sylgard 184A组分及0.03g B组分加入到3.3g四氢呋喃中超声分散10min,然后将2cm×2cm的棉织物放入并在室温下以200rpm的速度机械搅拌20min,将织物取出后置于横截面为4cm×4cm大小的磁铁下方1mm处保持60min;最后将织物在130℃的温度下放置0.5h,制得表面呈微纳粗糙结构的磁性超疏水织物。
表1列出了本实施例制备的磁性超疏水织物正反面的水接触角以及对水滴的粘附性,表2列出了本实施例制备的磁性超疏水织物的饱和磁化强度。从表1可以看出,本实施例所制备的磁性超疏水织物正面的水接触角为155.5°,水滴易滚落;而织物反面的水接触角虽然达150°,但水滴易被粘附。从表2可以看出,本实施例所制备的磁性超疏水织物的饱和磁化强度达到0.616emu/g,表现出良好的磁性。
实施例3
将5g粒径为60-80nm的四氧化三铁纳米粒子加入到150g乙醇中超声分散60min,再将1g氨丙基三乙氧基硅烷和3g水加入,在室温下机械搅拌12h,然后 在10000rpm转速下离心20min,将所得产物在50℃温度下真空干燥6h,即得改性四氧化三铁纳米粒子;将0.11g改性四氧化三铁纳米粒子和0.4g Sylgard 184A组分及0.04g B组分加入到12.57g己烷中超声分散20min,然后将半径为2cm的圆形尼龙织物放入并在室温下以100rpm的速度机械搅拌60min,将织物取出后置于横截面为圆形且半径为3cm的磁铁下方5mm处保持60min;最后将织物在100℃的温度下放置1h,制得表面呈微纳粗糙结构的磁性超疏水织物。
表1列出了本实施例制备的磁性超疏水织物正反面的水接触角以及对水滴的粘附性,表2列出了本实施例制备的磁性超疏水织物的饱和磁化强度。从表1可以看出,本实施例所制备的磁性超疏水织物正面的水接触角为162°,水滴易滚落;而织物反面的水接触角虽然达153.5°,但水滴易被粘附。从表2可以看出,本实施例所制备的磁性超疏水织物的饱和磁化强度达到0.805emu/g,表现出良好的磁性。
实施例4
将1g粒径为40-60nm的四氧化三铁纳米粒子加入到100g乙醇中超声分15min,再将0.8g氨丙基三乙氧基硅烷和1.5g水加入,在室温下机械搅拌8h,然后在10000rpm转速下离心20min,将所得产物在60℃温度下真空干燥4h,即得改性四氧化三铁纳米粒子;将0.275g改性四氧化三铁纳米粒子和0.5g Sylgard 184A组分及0.05g B组分加入到9.17g己烷中超声分散20min,然后再将2cm×3cm的腈纶织物放入并在室温下以200rpm的速度机械搅拌40min,将织物取出后置于横截面为5cm×5cm大小的磁铁下方2mm处保持20min;最后将织物在100℃的温度下放置1h,制得表面呈微纳粗糙结构的磁性超疏水织物。
表1列出了本实施例制备的磁性超疏水织物正反面的水接触角以及对水滴的粘附性,表2列出了本实施例制备的磁性超疏水织物的饱和磁化强度。从表1可以 看出,本实施例所制备的磁性超疏水织物正面的水接触角为166.5°,水滴易滚落;而织物反面的水接触角虽然达154°,但水滴易被粘附。从表2可以看出,本实施例所制备的磁性超疏水织物的饱和磁化强度达到1.285emu/g,表现出良好的磁性。
表1为本发明实施例磁性超疏水织物正反面的水接触角以及对水滴的粘附性;
表1
Figure PCTCN2018111931-appb-000001
注:采用德国KRUSS公司的DSA100测试仪对接触角进行测试,每个样品取5个点计算平均值。
表2为本发明实施例磁性超疏水织物的饱和磁化强度。
表2
Figure PCTCN2018111931-appb-000002
注:采用美国Quantum公司的PPMS综合物性测量系统对磁性进行测试。

Claims (10)

  1. 一种磁性超疏水织物的制备方法,其特征在于包括以下步骤:
    (1)按质量份数计,将1-5份的四氧化三铁纳米粒子加入乙醇中超声分散,再加入0.5-1.0份的硅烷偶联剂和0.5-3份水,搅拌,然后在8000-12000rpm转速下心处理,将所得产物真空干燥,即得改性四氧化三铁纳米粒子;
    (2)按质量份数计,将1-3份的改性四氧化三铁纳米粒子和6-10份的聚二甲基硅氧烷加入到100-160份的有机溶剂中超声分散,然后将织物放入并在室温下以100-300rpm的速度机械搅拌20-60min;将织物取出后置于磁铁下方1-5mm处保持10-60min,在溶剂挥发的同时四氧化三铁粒子会受磁场的作用逐渐向织物上的聚二甲基硅氧烷表层迁移;最后将织物在80-130℃的温度下放置0.5-2h,使聚二甲基硅氧烷发生热固化形成交联结构,制得表面呈微纳粗糙结构的磁性超疏水织物。
  2. 根据权利要求1所述的磁性超疏水织物的制备方法,其特征在于:所述的四氧化三铁纳米粒子的尺寸为20-100nm。
  3. 根据权利要求1所述的磁性超疏水织物的制备方法,其特征在于:所述硅烷偶联剂为十三氟辛基三甲氧基硅烷、十三氟辛基三乙氧基硅烷、乙烯基三乙氧基硅烷、γ-甲基丙烯酰氧基丙基三甲氧基硅烷、巯丙基三乙氧基硅烷和氨丙基三乙氧基硅烷中的任意一种。
  4. 根据权利要求1所述的磁性超疏水织物的制备方法,其特征在于:所述聚二甲基硅氧烷为美国道康宁Sylgard 184和Sylgard 186的任意一种中的A组分,使用时需同时添加B组分,A、B组分的混合质量比为10:1。其中A组分为基本主分,属于双键封端的聚二甲基硅氧烷,B组分为固化剂,属于多官能度的含硅氢键的聚 二甲基硅氧烷。
  5. 根据权利要求1所述的磁性超疏水织物的制备方法,其特征在于:所述有机溶剂为四氢呋喃、甲苯和己烷中的任意一种。
  6. 根据权利要求1所述的磁性超疏水织物的制备方法,其特征在于:以质量份数计,所述乙醇的用量为50-150份;步骤(1)和步骤(2)所述超声分散的时间都为10-60min;步骤(1)的搅拌为机械搅拌,搅拌的时间为3-12h;步骤(1)的离心处理为在8000-12000rpm转速下离心10-40min;步骤(1)的真空干燥为在40-60℃温度下真空干燥1-12h。
  7. 根据权利要求1所述的磁性超疏水织物的制备方法,其特征在于:所述磁铁的磁感应强度为0.5-1.0特斯拉,且磁铁的横截面积要大于织物的面积(以能够覆盖织物为准)。
  8. 根据权利要求1所述的磁性超疏水织物的制备方法,其特征在于:所述普通织物为聚酯、棉、羊毛、腈纶、聚氨酯和尼龙中的任意一种。
  9. 一种磁性超疏水织物,其特征在于由权利要求1-7任一项所述的制备方法制得。
  10. 根据权利要求8所述的磁性超疏水织物,其特征在于:该织物的正面水接触角为155.5°-167°,且水滴易滚落,反面水接触角达到150°-154°,且水滴易被粘附;织物的饱和磁化强度达到1.285emu/g。
PCT/CN2018/111931 2017-11-15 2018-10-25 一种磁性超疏水织物及其制备方法 WO2019095960A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711129790.3A CN107916561B (zh) 2017-11-15 2017-11-15 一种磁性超疏水织物及其制备方法
CN201711129790.3 2017-11-15

Publications (1)

Publication Number Publication Date
WO2019095960A1 true WO2019095960A1 (zh) 2019-05-23

Family

ID=61896492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111931 WO2019095960A1 (zh) 2017-11-15 2018-10-25 一种磁性超疏水织物及其制备方法

Country Status (2)

Country Link
CN (1) CN107916561B (zh)
WO (1) WO2019095960A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107916561B (zh) * 2017-11-15 2019-08-20 华南理工大学 一种磁性超疏水织物及其制备方法
CN108912748A (zh) * 2018-04-23 2018-11-30 南京理工大学 一种碳基材料与四氧化三铁复合的致密超疏水涂层的制备方法
CN109295733B (zh) * 2018-09-14 2021-04-27 河北工业大学 一种水性无氟超疏水织物的制备方法
CN109610160A (zh) * 2018-11-07 2019-04-12 浙江大学 一种具有优异疏水性能的蚕丝织物的制备方法
CN110079994A (zh) * 2019-03-11 2019-08-02 常州市雄泰纺织品有限公司 一种磁性织物的制备方法
CN111286267B (zh) * 2020-02-12 2022-01-28 常熟理工学院 具有针状表面结构的超疏水高黏附涂层薄膜的制备方法
CN111389695B (zh) * 2020-02-12 2022-08-26 常熟理工学院 一种超疏水涂层薄膜的润湿性调控方法
CN112409884B (zh) * 2020-11-20 2022-04-08 湖南科技大学 一种环氧树脂/go超疏水防腐涂层的制备方法
CN113861836A (zh) * 2021-03-15 2021-12-31 中国矿业大学 一种具有多尺度结构的柔性超疏水薄膜可控制备方法
CN113275224B (zh) * 2021-04-29 2022-09-23 杭州电子科技大学 一种钕铁硼永磁体的表面腐蚀防护方法
CN113322715B (zh) * 2021-06-22 2022-06-07 扬州大学 光、磁双重响应致动器复合材料的制备方法
CN113717528B (zh) * 2021-08-16 2023-03-07 中国科学院宁波材料技术与工程研究所 一种柔性传感器界面及其制备方法
CN115233456A (zh) * 2022-09-14 2022-10-25 浙江泰斯德电气有限公司 一种纤维织物整理用涂料及其使用方法
CN116020725B (zh) * 2022-12-26 2023-12-22 江苏理工学院 一种磁控液滴无损运输的超疏水表面的制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101728047A (zh) * 2010-01-25 2010-06-09 上海交通大学 四氧化三铁磁性纳米粒子乳液的制备方法
CN103060927A (zh) * 2012-12-24 2013-04-24 吉林大学 一种基于超疏水界面的水溶性蛋白的磁性可控书写方法
CN103074768A (zh) * 2012-12-17 2013-05-01 陕西科技大学 一种超耐用超疏水纺织品及其制备方法
CN103173998A (zh) * 2011-12-23 2013-06-26 中国科学院兰州化学物理研究所 用于油水分离的超疏水织布的制备方法
US20150191868A1 (en) * 2014-01-03 2015-07-09 Korea Institute Of Science And Technology Super-hydrophobic fiber having needle-shaped nano structure on its surface, method for fabricating the same and fiber product comprising the same
CN204824698U (zh) * 2015-07-14 2015-12-02 三峡大学 一种具有荷叶效应表面的制备设备
CN105477904A (zh) * 2015-10-12 2016-04-13 杭州师范大学 一种超疏水超亲油海绵材料的制备方法与应用
CN105780468A (zh) * 2016-03-28 2016-07-20 北京易净星科技有限公司 超疏水织物及其制备方法
CN106553249A (zh) * 2016-12-07 2017-04-05 浙江农林大学 制备超疏水趋磁性木材表面的方法及其木材
CN107130428A (zh) * 2017-06-15 2017-09-05 东华大学 一种超疏水织物及其制备方法
CN107916561A (zh) * 2017-11-15 2018-04-17 华南理工大学 一种磁性超疏水织物及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101108753B1 (ko) * 2010-04-28 2012-02-16 (주)에스티원창 수분산폴리우레탄의 다중광택코팅방법
CN104805680A (zh) * 2015-04-28 2015-07-29 武汉纺织大学 一种功能性织物的制备方法
CN105602297A (zh) * 2015-11-17 2016-05-25 天津理工大学 一种通过不同平均粒径无机纳米颗粒复合制备超疏水涂层的方法
CN105731547B (zh) * 2016-02-04 2018-04-10 苏州科技学院 一种疏水四氧化三铁磁性纳米粒子及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101728047A (zh) * 2010-01-25 2010-06-09 上海交通大学 四氧化三铁磁性纳米粒子乳液的制备方法
CN103173998A (zh) * 2011-12-23 2013-06-26 中国科学院兰州化学物理研究所 用于油水分离的超疏水织布的制备方法
CN103074768A (zh) * 2012-12-17 2013-05-01 陕西科技大学 一种超耐用超疏水纺织品及其制备方法
CN103060927A (zh) * 2012-12-24 2013-04-24 吉林大学 一种基于超疏水界面的水溶性蛋白的磁性可控书写方法
US20150191868A1 (en) * 2014-01-03 2015-07-09 Korea Institute Of Science And Technology Super-hydrophobic fiber having needle-shaped nano structure on its surface, method for fabricating the same and fiber product comprising the same
CN204824698U (zh) * 2015-07-14 2015-12-02 三峡大学 一种具有荷叶效应表面的制备设备
CN105477904A (zh) * 2015-10-12 2016-04-13 杭州师范大学 一种超疏水超亲油海绵材料的制备方法与应用
CN105780468A (zh) * 2016-03-28 2016-07-20 北京易净星科技有限公司 超疏水织物及其制备方法
CN106553249A (zh) * 2016-12-07 2017-04-05 浙江农林大学 制备超疏水趋磁性木材表面的方法及其木材
CN107130428A (zh) * 2017-06-15 2017-09-05 东华大学 一种超疏水织物及其制备方法
CN107916561A (zh) * 2017-11-15 2018-04-17 华南理工大学 一种磁性超疏水织物及其制备方法

Also Published As

Publication number Publication date
CN107916561B (zh) 2019-08-20
CN107916561A (zh) 2018-04-17

Similar Documents

Publication Publication Date Title
WO2019095960A1 (zh) 一种磁性超疏水织物及其制备方法
Khan et al. Superhydrophobicity, UV protection and oil/water separation properties of fly ash/Trimethoxy (octadecyl) silane coated cotton fabrics
Wang et al. Preparation of a durable superhydrophobic membrane by electrospinning poly (vinylidene fluoride)(PVDF) mixed with epoxy–siloxane modified SiO2 nanoparticles: A possible route to superhydrophobic surfaces with low water sliding angle and high water contact angle
WO2017133312A1 (zh) 一种超疏水织物及其构筑方法
CN104694001B (zh) 一种超疏水超顺磁硅树脂复合材料涂层的制备方法
CN106381709B (zh) 用于纺织品的超疏水与抗紫外整理剂、制备方法及其应用
CN104805680A (zh) 一种功能性织物的制备方法
CN104558664B (zh) 利用氧化石墨烯和纳米二氧化硅制备强亲水pet膜的方法
JP2014513174A (ja) 両疎媒性ブロックコポリマーおよびその用途
CN104262639B (zh) 超疏水型交联聚硅氧烷-聚倍半硅氧烷纳米球杂化材料的制备方法
Wang et al. Preparation of a multifunctional material with superhydrophobicity, superparamagnetism, mechanical stability and acids–bases resistance by electrospinning
CN104449357A (zh) 一种透明超疏水涂层材料及其制备透明超疏水涂层的方法
CN102861541B (zh) 表面修饰的荧光磁性高分子复合微球的制备方法
CN110499044B (zh) 一种有机改性黑磷纳米片的制备及其在聚合物复合材料中的应用
CN108102121B (zh) 一种各向异性磁性高分子复合薄膜材料及其制备方法
CN102268820A (zh) 一种防紫外线针织涂层织物的制备方法
CN106634264A (zh) 石墨烯增强超疏水罩面漆及其制备方法
CN108129691A (zh) 一种超疏水用微纳双级聚合物复合微球的制备方法
CN109401619B (zh) 涂料组合物及其制备方法、涂覆件及其制备方法、家用电器
CN114854243B (zh) 一种环保型拒水拒油涂层用改性二氧化硅的制备方法及应用
CN107652868B (zh) 一种含氟氧化石墨烯改性聚氨酯涂料及其制备方法和应用
Hao et al. Synthesis of fluoro-containing superhydrophobic cotton fabric with washing resistant property using nano-SiO2 sol-gel method
Xia et al. A remote-activated shape memory polymer network employing vinyl-capped Fe3O4 nanoparticles as netpoints for durable performance
Qi et al. Superhydrophobic brocades modified with aligned ZnO nanorods
CN109111695A (zh) 石墨烯和芳纶纤维混合增强环氧树脂板材的制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18877786

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 13.10.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18877786

Country of ref document: EP

Kind code of ref document: A1